2004-09-02 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000,
4 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "dwarf2-frame.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "floatformat.h"
29 #include "symtab.h"
30 #include "gdbcore.h"
31 #include "value.h"
32 #include "gdb_string.h"
33 #include "gdb_assert.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "dis-asm.h"
39
40 #include "m68k-tdep.h"
41 \f
42
43 #define P_LINKL_FP 0x480e
44 #define P_LINKW_FP 0x4e56
45 #define P_PEA_FP 0x4856
46 #define P_MOVEAL_SP_FP 0x2c4f
47 #define P_ADDAW_SP 0xdefc
48 #define P_ADDAL_SP 0xdffc
49 #define P_SUBQW_SP 0x514f
50 #define P_SUBQL_SP 0x518f
51 #define P_LEA_SP_SP 0x4fef
52 #define P_LEA_PC_A5 0x4bfb0170
53 #define P_FMOVEMX_SP 0xf227
54 #define P_MOVEL_SP 0x2f00
55 #define P_MOVEML_SP 0x48e7
56
57
58 #define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
59 #define REGISTER_BYTES_NOFP (16*4 + 8)
60
61 /* Offset from SP to first arg on stack at first instruction of a function */
62 #define SP_ARG0 (1 * 4)
63
64 #if !defined (BPT_VECTOR)
65 #define BPT_VECTOR 0xf
66 #endif
67
68 static const unsigned char *
69 m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
70 {
71 static unsigned char break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
72 *lenptr = sizeof (break_insn);
73 return break_insn;
74 }
75
76
77 static int
78 m68k_register_bytes_ok (long numbytes)
79 {
80 return ((numbytes == REGISTER_BYTES_FP)
81 || (numbytes == REGISTER_BYTES_NOFP));
82 }
83
84 /* Return the GDB type object for the "standard" data type of data in
85 register N. This should be int for D0-D7, SR, FPCONTROL and
86 FPSTATUS, long double for FP0-FP7, and void pointer for all others
87 (A0-A7, PC, FPIADDR). Note, for registers which contain
88 addresses return pointer to void, not pointer to char, because we
89 don't want to attempt to print the string after printing the
90 address. */
91
92 static struct type *
93 m68k_register_type (struct gdbarch *gdbarch, int regnum)
94 {
95 if (regnum >= FP0_REGNUM && regnum <= FP0_REGNUM + 7)
96 return builtin_type_m68881_ext;
97
98 if (regnum == M68K_FPI_REGNUM || regnum == PC_REGNUM)
99 return builtin_type_void_func_ptr;
100
101 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM
102 || regnum == PS_REGNUM)
103 return builtin_type_int32;
104
105 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
106 return builtin_type_void_data_ptr;
107
108 return builtin_type_int32;
109 }
110
111 /* Function: m68k_register_name
112 Returns the name of the standard m68k register regnum. */
113
114 static const char *
115 m68k_register_name (int regnum)
116 {
117 static char *register_names[] = {
118 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
119 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
120 "ps", "pc",
121 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
122 "fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags"
123 };
124
125 if (regnum < 0 ||
126 regnum >= sizeof (register_names) / sizeof (register_names[0]))
127 internal_error (__FILE__, __LINE__,
128 "m68k_register_name: illegal register number %d", regnum);
129 else
130 return register_names[regnum];
131 }
132 \f
133 /* Return nonzero if a value of type TYPE stored in register REGNUM
134 needs any special handling. */
135
136 static int
137 m68k_convert_register_p (int regnum, struct type *type)
138 {
139 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7);
140 }
141
142 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
143 return its contents in TO. */
144
145 static void
146 m68k_register_to_value (struct frame_info *frame, int regnum,
147 struct type *type, void *to)
148 {
149 char from[M68K_MAX_REGISTER_SIZE];
150
151 /* We only support floating-point values. */
152 if (TYPE_CODE (type) != TYPE_CODE_FLT)
153 {
154 warning ("Cannot convert floating-point register value "
155 "to non-floating-point type.");
156 return;
157 }
158
159 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
160 the extended floating-point format used by the FPU. */
161 get_frame_register (frame, regnum, from);
162 convert_typed_floating (from, builtin_type_m68881_ext, to, type);
163 }
164
165 /* Write the contents FROM of a value of type TYPE into register
166 REGNUM in frame FRAME. */
167
168 static void
169 m68k_value_to_register (struct frame_info *frame, int regnum,
170 struct type *type, const void *from)
171 {
172 char to[M68K_MAX_REGISTER_SIZE];
173
174 /* We only support floating-point values. */
175 if (TYPE_CODE (type) != TYPE_CODE_FLT)
176 {
177 warning ("Cannot convert non-floating-point type "
178 "to floating-point register value.");
179 return;
180 }
181
182 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
183 to the extended floating-point format used by the FPU. */
184 convert_typed_floating (from, type, to, builtin_type_m68881_ext);
185 put_frame_register (frame, regnum, to);
186 }
187
188 \f
189 /* There is a fair number of calling conventions that are in somewhat
190 wide use. The 68000/08/10 don't support an FPU, not even as a
191 coprocessor. All function return values are stored in %d0/%d1.
192 Structures are returned in a static buffer, a pointer to which is
193 returned in %d0. This means that functions returning a structure
194 are not re-entrant. To avoid this problem some systems use a
195 convention where the caller passes a pointer to a buffer in %a1
196 where the return values is to be stored. This convention is the
197 default, and is implemented in the function m68k_return_value.
198
199 The 68020/030/040/060 do support an FPU, either as a coprocessor
200 (68881/2) or built-in (68040/68060). That's why System V release 4
201 (SVR4) instroduces a new calling convention specified by the SVR4
202 psABI. Integer values are returned in %d0/%d1, pointer return
203 values in %a0 and floating values in %fp0. When calling functions
204 returning a structure the caller should pass a pointer to a buffer
205 for the return value in %a0. This convention is implemented in the
206 function m68k_svr4_return_value, and by appropriately setting the
207 struct_value_regnum member of `struct gdbarch_tdep'.
208
209 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
210 for passing the structure return value buffer.
211
212 GCC can also generate code where small structures are returned in
213 %d0/%d1 instead of in memory by using -freg-struct-return. This is
214 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
215 embedded systems. This convention is implemented by setting the
216 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
217
218 /* Read a function return value of TYPE from REGCACHE, and copy that
219 into VALBUF. */
220
221 static void
222 m68k_extract_return_value (struct type *type, struct regcache *regcache,
223 void *valbuf)
224 {
225 int len = TYPE_LENGTH (type);
226 char buf[M68K_MAX_REGISTER_SIZE];
227
228 if (len <= 4)
229 {
230 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
231 memcpy (valbuf, buf + (4 - len), len);
232 }
233 else if (len <= 8)
234 {
235 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
236 memcpy (valbuf, buf + (8 - len), len - 4);
237 regcache_raw_read (regcache, M68K_D1_REGNUM,
238 (char *) valbuf + (len - 4));
239 }
240 else
241 internal_error (__FILE__, __LINE__,
242 "Cannot extract return value of %d bytes long.", len);
243 }
244
245 static void
246 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
247 void *valbuf)
248 {
249 int len = TYPE_LENGTH (type);
250 char buf[M68K_MAX_REGISTER_SIZE];
251
252 if (TYPE_CODE (type) == TYPE_CODE_FLT)
253 {
254 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
255 convert_typed_floating (buf, builtin_type_m68881_ext, valbuf, type);
256 }
257 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
258 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
259 else
260 m68k_extract_return_value (type, regcache, valbuf);
261 }
262
263 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
264
265 static void
266 m68k_store_return_value (struct type *type, struct regcache *regcache,
267 const void *valbuf)
268 {
269 int len = TYPE_LENGTH (type);
270
271 if (len <= 4)
272 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
273 else if (len <= 8)
274 {
275 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
276 len - 4, valbuf);
277 regcache_raw_write (regcache, M68K_D1_REGNUM,
278 (char *) valbuf + (len - 4));
279 }
280 else
281 internal_error (__FILE__, __LINE__,
282 "Cannot store return value of %d bytes long.", len);
283 }
284
285 static void
286 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
287 const void *valbuf)
288 {
289 int len = TYPE_LENGTH (type);
290
291 if (TYPE_CODE (type) == TYPE_CODE_FLT)
292 {
293 char buf[M68K_MAX_REGISTER_SIZE];
294 convert_typed_floating (valbuf, type, buf, builtin_type_m68881_ext);
295 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
296 }
297 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
298 {
299 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
300 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
301 }
302 else
303 m68k_store_return_value (type, regcache, valbuf);
304 }
305
306 /* Return non-zero if TYPE, which is assumed to be a structure or
307 union type, should be returned in registers for architecture
308 GDBARCH. */
309
310 static int
311 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
312 {
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314 enum type_code code = TYPE_CODE (type);
315 int len = TYPE_LENGTH (type);
316
317 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
318
319 if (tdep->struct_return == pcc_struct_return)
320 return 0;
321
322 return (len == 1 || len == 2 || len == 4 || len == 8);
323 }
324
325 /* Determine, for architecture GDBARCH, how a return value of TYPE
326 should be returned. If it is supposed to be returned in registers,
327 and READBUF is non-zero, read the appropriate value from REGCACHE,
328 and copy it into READBUF. If WRITEBUF is non-zero, write the value
329 from WRITEBUF into REGCACHE. */
330
331 static enum return_value_convention
332 m68k_return_value (struct gdbarch *gdbarch, struct type *type,
333 struct regcache *regcache, void *readbuf,
334 const void *writebuf)
335 {
336 enum type_code code = TYPE_CODE (type);
337
338 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
339 && !m68k_reg_struct_return_p (gdbarch, type))
340 return RETURN_VALUE_STRUCT_CONVENTION;
341
342 /* GCC returns a `long double' in memory. */
343 if (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12)
344 return RETURN_VALUE_STRUCT_CONVENTION;
345
346 if (readbuf)
347 m68k_extract_return_value (type, regcache, readbuf);
348 if (writebuf)
349 m68k_store_return_value (type, regcache, writebuf);
350
351 return RETURN_VALUE_REGISTER_CONVENTION;
352 }
353
354 static enum return_value_convention
355 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
356 struct regcache *regcache, void *readbuf,
357 const void *writebuf)
358 {
359 enum type_code code = TYPE_CODE (type);
360
361 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
362 && !m68k_reg_struct_return_p (gdbarch, type))
363 {
364 /* The System V ABI says that:
365
366 "A function returning a structure or union also sets %a0 to
367 the value it finds in %a0. Thus when the caller receives
368 control again, the address of the returned object resides in
369 register %a0."
370
371 So the ABI guarantees that we can always find the return
372 value just after the function has returned. */
373
374 if (readbuf)
375 {
376 ULONGEST addr;
377
378 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
379 read_memory (addr, readbuf, TYPE_LENGTH (type));
380 }
381
382 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
383 }
384
385 /* This special case is for structures consisting of a single
386 `float' or `double' member. These structures are returned in
387 %fp0. For these structures, we call ourselves recursively,
388 changing TYPE into the type of the first member of the structure.
389 Since that should work for all structures that have only one
390 member, we don't bother to check the member's type here. */
391 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
392 {
393 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
394 return m68k_svr4_return_value (gdbarch, type, regcache,
395 readbuf, writebuf);
396 }
397
398 if (readbuf)
399 m68k_svr4_extract_return_value (type, regcache, readbuf);
400 if (writebuf)
401 m68k_svr4_store_return_value (type, regcache, writebuf);
402
403 return RETURN_VALUE_REGISTER_CONVENTION;
404 }
405 \f
406
407 static CORE_ADDR
408 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
409 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
410 struct value **args, CORE_ADDR sp, int struct_return,
411 CORE_ADDR struct_addr)
412 {
413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
414 char buf[4];
415 int i;
416
417 /* Push arguments in reverse order. */
418 for (i = nargs - 1; i >= 0; i--)
419 {
420 struct type *value_type = VALUE_ENCLOSING_TYPE (args[i]);
421 int len = TYPE_LENGTH (value_type);
422 int container_len = (len + 3) & ~3;
423 int offset;
424
425 /* Non-scalars bigger than 4 bytes are left aligned, others are
426 right aligned. */
427 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
428 || TYPE_CODE (value_type) == TYPE_CODE_UNION
429 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
430 && len > 4)
431 offset = 0;
432 else
433 offset = container_len - len;
434 sp -= container_len;
435 write_memory (sp + offset, VALUE_CONTENTS_ALL (args[i]), len);
436 }
437
438 /* Store struct value address. */
439 if (struct_return)
440 {
441 store_unsigned_integer (buf, 4, struct_addr);
442 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
443 }
444
445 /* Store return address. */
446 sp -= 4;
447 store_unsigned_integer (buf, 4, bp_addr);
448 write_memory (sp, buf, 4);
449
450 /* Finally, update the stack pointer... */
451 store_unsigned_integer (buf, 4, sp);
452 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
453
454 /* ...and fake a frame pointer. */
455 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
456
457 /* DWARF2/GCC uses the stack address *before* the function call as a
458 frame's CFA. */
459 return sp + 8;
460 }
461 \f
462 struct m68k_frame_cache
463 {
464 /* Base address. */
465 CORE_ADDR base;
466 CORE_ADDR sp_offset;
467 CORE_ADDR pc;
468
469 /* Saved registers. */
470 CORE_ADDR saved_regs[M68K_NUM_REGS];
471 CORE_ADDR saved_sp;
472
473 /* Stack space reserved for local variables. */
474 long locals;
475 };
476
477 /* Allocate and initialize a frame cache. */
478
479 static struct m68k_frame_cache *
480 m68k_alloc_frame_cache (void)
481 {
482 struct m68k_frame_cache *cache;
483 int i;
484
485 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
486
487 /* Base address. */
488 cache->base = 0;
489 cache->sp_offset = -4;
490 cache->pc = 0;
491
492 /* Saved registers. We initialize these to -1 since zero is a valid
493 offset (that's where %fp is supposed to be stored). */
494 for (i = 0; i < M68K_NUM_REGS; i++)
495 cache->saved_regs[i] = -1;
496
497 /* Frameless until proven otherwise. */
498 cache->locals = -1;
499
500 return cache;
501 }
502
503 /* Check whether PC points at a code that sets up a new stack frame.
504 If so, it updates CACHE and returns the address of the first
505 instruction after the sequence that sets removes the "hidden"
506 argument from the stack or CURRENT_PC, whichever is smaller.
507 Otherwise, return PC. */
508
509 static CORE_ADDR
510 m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
511 struct m68k_frame_cache *cache)
512 {
513 int op;
514
515 if (pc >= current_pc)
516 return current_pc;
517
518 op = read_memory_unsigned_integer (pc, 2);
519
520 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
521 {
522 cache->saved_regs[M68K_FP_REGNUM] = 0;
523 cache->sp_offset += 4;
524 if (op == P_LINKW_FP)
525 {
526 /* link.w %fp, #-N */
527 /* link.w %fp, #0; adda.l #-N, %sp */
528 cache->locals = -read_memory_integer (pc + 2, 2);
529
530 if (pc + 4 < current_pc && cache->locals == 0)
531 {
532 op = read_memory_unsigned_integer (pc + 4, 2);
533 if (op == P_ADDAL_SP)
534 {
535 cache->locals = read_memory_integer (pc + 6, 4);
536 return pc + 10;
537 }
538 }
539
540 return pc + 4;
541 }
542 else if (op == P_LINKL_FP)
543 {
544 /* link.l %fp, #-N */
545 cache->locals = -read_memory_integer (pc + 2, 4);
546 return pc + 6;
547 }
548 else
549 {
550 /* pea (%fp); movea.l %sp, %fp */
551 cache->locals = 0;
552
553 if (pc + 2 < current_pc)
554 {
555 op = read_memory_unsigned_integer (pc + 2, 2);
556
557 if (op == P_MOVEAL_SP_FP)
558 {
559 /* move.l %sp, %fp */
560 return pc + 4;
561 }
562 }
563
564 return pc + 2;
565 }
566 }
567 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
568 {
569 /* subq.[wl] #N,%sp */
570 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
571 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
572 if (pc + 2 < current_pc)
573 {
574 op = read_memory_unsigned_integer (pc + 2, 2);
575 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
576 {
577 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
578 return pc + 4;
579 }
580 }
581 return pc + 2;
582 }
583 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
584 {
585 /* adda.w #-N,%sp */
586 /* lea (-N,%sp),%sp */
587 cache->locals = -read_memory_integer (pc + 2, 2);
588 return pc + 4;
589 }
590 else if (op == P_ADDAL_SP)
591 {
592 /* adda.l #-N,%sp */
593 cache->locals = -read_memory_integer (pc + 2, 4);
594 return pc + 6;
595 }
596
597 return pc;
598 }
599
600 /* Check whether PC points at code that saves registers on the stack.
601 If so, it updates CACHE and returns the address of the first
602 instruction after the register saves or CURRENT_PC, whichever is
603 smaller. Otherwise, return PC. */
604
605 static CORE_ADDR
606 m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
607 struct m68k_frame_cache *cache)
608 {
609 if (cache->locals >= 0)
610 {
611 CORE_ADDR offset;
612 int op;
613 int i, mask, regno;
614
615 offset = -4 - cache->locals;
616 while (pc < current_pc)
617 {
618 op = read_memory_unsigned_integer (pc, 2);
619 if (op == P_FMOVEMX_SP)
620 {
621 /* fmovem.x REGS,-(%sp) */
622 op = read_memory_unsigned_integer (pc + 2, 2);
623 if ((op & 0xff00) == 0xe000)
624 {
625 mask = op & 0xff;
626 for (i = 0; i < 16; i++, mask >>= 1)
627 {
628 if (mask & 1)
629 {
630 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
631 offset -= 12;
632 }
633 }
634 pc += 4;
635 }
636 else
637 break;
638 }
639 else if ((op & 0170677) == P_MOVEL_SP)
640 {
641 /* move.l %R,-(%sp) */
642 regno = ((op & 07000) >> 9) | ((op & 0100) >> 3);
643 cache->saved_regs[regno] = offset;
644 offset -= 4;
645 pc += 2;
646 }
647 else if (op == P_MOVEML_SP)
648 {
649 /* movem.l REGS,-(%sp) */
650 mask = read_memory_unsigned_integer (pc + 2, 2);
651 for (i = 0; i < 16; i++, mask >>= 1)
652 {
653 if (mask & 1)
654 {
655 cache->saved_regs[15 - i] = offset;
656 offset -= 4;
657 }
658 }
659 pc += 4;
660 }
661 else
662 break;
663 }
664 }
665
666 return pc;
667 }
668
669
670 /* Do a full analysis of the prologue at PC and update CACHE
671 accordingly. Bail out early if CURRENT_PC is reached. Return the
672 address where the analysis stopped.
673
674 We handle all cases that can be generated by gcc.
675
676 For allocating a stack frame:
677
678 link.w %a6,#-N
679 link.l %a6,#-N
680 pea (%fp); move.l %sp,%fp
681 link.w %a6,#0; add.l #-N,%sp
682 subq.l #N,%sp
683 subq.w #N,%sp
684 subq.w #8,%sp; subq.w #N-8,%sp
685 add.w #-N,%sp
686 lea (-N,%sp),%sp
687 add.l #-N,%sp
688
689 For saving registers:
690
691 fmovem.x REGS,-(%sp)
692 move.l R1,-(%sp)
693 move.l R1,-(%sp); move.l R2,-(%sp)
694 movem.l REGS,-(%sp)
695
696 For setting up the PIC register:
697
698 lea (%pc,N),%a5
699
700 */
701
702 static CORE_ADDR
703 m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
704 struct m68k_frame_cache *cache)
705 {
706 unsigned int op;
707
708 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
709 pc = m68k_analyze_register_saves (pc, current_pc, cache);
710 if (pc >= current_pc)
711 return current_pc;
712
713 /* Check for GOT setup. */
714 op = read_memory_unsigned_integer (pc, 4);
715 if (op == P_LEA_PC_A5)
716 {
717 /* lea (%pc,N),%a5 */
718 return pc + 6;
719 }
720
721 return pc;
722 }
723
724 /* Return PC of first real instruction. */
725
726 static CORE_ADDR
727 m68k_skip_prologue (CORE_ADDR start_pc)
728 {
729 struct m68k_frame_cache cache;
730 CORE_ADDR pc;
731 int op;
732
733 cache.locals = -1;
734 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
735 if (cache.locals < 0)
736 return start_pc;
737 return pc;
738 }
739
740 static CORE_ADDR
741 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
742 {
743 char buf[8];
744
745 frame_unwind_register (next_frame, PC_REGNUM, buf);
746 return extract_typed_address (buf, builtin_type_void_func_ptr);
747 }
748 \f
749 /* Normal frames. */
750
751 static struct m68k_frame_cache *
752 m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
753 {
754 struct m68k_frame_cache *cache;
755 char buf[4];
756 int i;
757
758 if (*this_cache)
759 return *this_cache;
760
761 cache = m68k_alloc_frame_cache ();
762 *this_cache = cache;
763
764 /* In principle, for normal frames, %fp holds the frame pointer,
765 which holds the base address for the current stack frame.
766 However, for functions that don't need it, the frame pointer is
767 optional. For these "frameless" functions the frame pointer is
768 actually the frame pointer of the calling frame. Signal
769 trampolines are just a special case of a "frameless" function.
770 They (usually) share their frame pointer with the frame that was
771 in progress when the signal occurred. */
772
773 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
774 cache->base = extract_unsigned_integer (buf, 4);
775 if (cache->base == 0)
776 return cache;
777
778 /* For normal frames, %pc is stored at 4(%fp). */
779 cache->saved_regs[M68K_PC_REGNUM] = 4;
780
781 cache->pc = frame_func_unwind (next_frame);
782 if (cache->pc != 0)
783 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
784
785 if (cache->locals < 0)
786 {
787 /* We didn't find a valid frame, which means that CACHE->base
788 currently holds the frame pointer for our calling frame. If
789 we're at the start of a function, or somewhere half-way its
790 prologue, the function's frame probably hasn't been fully
791 setup yet. Try to reconstruct the base address for the stack
792 frame by looking at the stack pointer. For truly "frameless"
793 functions this might work too. */
794
795 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
796 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
797 }
798
799 /* Now that we have the base address for the stack frame we can
800 calculate the value of %sp in the calling frame. */
801 cache->saved_sp = cache->base + 8;
802
803 /* Adjust all the saved registers such that they contain addresses
804 instead of offsets. */
805 for (i = 0; i < M68K_NUM_REGS; i++)
806 if (cache->saved_regs[i] != -1)
807 cache->saved_regs[i] += cache->base;
808
809 return cache;
810 }
811
812 static void
813 m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
814 struct frame_id *this_id)
815 {
816 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
817
818 /* This marks the outermost frame. */
819 if (cache->base == 0)
820 return;
821
822 /* See the end of m68k_push_dummy_call. */
823 *this_id = frame_id_build (cache->base + 8, cache->pc);
824 }
825
826 static void
827 m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
828 int regnum, int *optimizedp,
829 enum lval_type *lvalp, CORE_ADDR *addrp,
830 int *realnump, void *valuep)
831 {
832 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
833
834 gdb_assert (regnum >= 0);
835
836 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
837 {
838 *optimizedp = 0;
839 *lvalp = not_lval;
840 *addrp = 0;
841 *realnump = -1;
842 if (valuep)
843 {
844 /* Store the value. */
845 store_unsigned_integer (valuep, 4, cache->saved_sp);
846 }
847 return;
848 }
849
850 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
851 {
852 *optimizedp = 0;
853 *lvalp = lval_memory;
854 *addrp = cache->saved_regs[regnum];
855 *realnump = -1;
856 if (valuep)
857 {
858 /* Read the value in from memory. */
859 read_memory (*addrp, valuep,
860 register_size (current_gdbarch, regnum));
861 }
862 return;
863 }
864
865 frame_register_unwind (next_frame, regnum,
866 optimizedp, lvalp, addrp, realnump, valuep);
867 }
868
869 static const struct frame_unwind m68k_frame_unwind =
870 {
871 NORMAL_FRAME,
872 m68k_frame_this_id,
873 m68k_frame_prev_register
874 };
875
876 static const struct frame_unwind *
877 m68k_frame_sniffer (struct frame_info *next_frame)
878 {
879 return &m68k_frame_unwind;
880 }
881 \f
882 static CORE_ADDR
883 m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
884 {
885 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
886
887 return cache->base;
888 }
889
890 static const struct frame_base m68k_frame_base =
891 {
892 &m68k_frame_unwind,
893 m68k_frame_base_address,
894 m68k_frame_base_address,
895 m68k_frame_base_address
896 };
897
898 static struct frame_id
899 m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
900 {
901 char buf[4];
902 CORE_ADDR fp;
903
904 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
905 fp = extract_unsigned_integer (buf, 4);
906
907 /* See the end of m68k_push_dummy_call. */
908 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
909 }
910 \f
911 #ifdef USE_PROC_FS /* Target dependent support for /proc */
912
913 #include <sys/procfs.h>
914
915 /* Prototypes for supply_gregset etc. */
916 #include "gregset.h"
917
918 /* The /proc interface divides the target machine's register set up into
919 two different sets, the general register set (gregset) and the floating
920 point register set (fpregset). For each set, there is an ioctl to get
921 the current register set and another ioctl to set the current values.
922
923 The actual structure passed through the ioctl interface is, of course,
924 naturally machine dependent, and is different for each set of registers.
925 For the m68k for example, the general register set is typically defined
926 by:
927
928 typedef int gregset_t[18];
929
930 #define R_D0 0
931 ...
932 #define R_PS 17
933
934 and the floating point set by:
935
936 typedef struct fpregset {
937 int f_pcr;
938 int f_psr;
939 int f_fpiaddr;
940 int f_fpregs[8][3]; (8 regs, 96 bits each)
941 } fpregset_t;
942
943 These routines provide the packing and unpacking of gregset_t and
944 fpregset_t formatted data.
945
946 */
947
948 /* Atari SVR4 has R_SR but not R_PS */
949
950 #if !defined (R_PS) && defined (R_SR)
951 #define R_PS R_SR
952 #endif
953
954 /* Given a pointer to a general register set in /proc format (gregset_t *),
955 unpack the register contents and supply them as gdb's idea of the current
956 register values. */
957
958 void
959 supply_gregset (gregset_t *gregsetp)
960 {
961 int regi;
962 greg_t *regp = (greg_t *) gregsetp;
963
964 for (regi = 0; regi < R_PC; regi++)
965 {
966 regcache_raw_supply (current_regcache, regi, (char *) (regp + regi));
967 }
968 regcache_raw_supply (current_regcache, PS_REGNUM, (char *) (regp + R_PS));
969 regcache_raw_supply (current_regcache, PC_REGNUM, (char *) (regp + R_PC));
970 }
971
972 void
973 fill_gregset (gregset_t *gregsetp, int regno)
974 {
975 int regi;
976 greg_t *regp = (greg_t *) gregsetp;
977
978 for (regi = 0; regi < R_PC; regi++)
979 {
980 if (regno == -1 || regno == regi)
981 regcache_raw_collect (current_regcache, regi, regp + regi);
982 }
983 if (regno == -1 || regno == PS_REGNUM)
984 regcache_raw_collect (current_regcache, PS_REGNUM, regp + R_PS);
985 if (regno == -1 || regno == PC_REGNUM)
986 regcache_raw_collect (current_regcache, PC_REGNUM, regp + R_PC);
987 }
988
989 #if defined (FP0_REGNUM)
990
991 /* Given a pointer to a floating point register set in /proc format
992 (fpregset_t *), unpack the register contents and supply them as gdb's
993 idea of the current floating point register values. */
994
995 void
996 supply_fpregset (fpregset_t *fpregsetp)
997 {
998 int regi;
999 char *from;
1000
1001 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
1002 {
1003 from = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
1004 regcache_raw_supply (current_regcache, regi, from);
1005 }
1006 regcache_raw_supply (current_regcache, M68K_FPC_REGNUM,
1007 (char *) &(fpregsetp->f_pcr));
1008 regcache_raw_supply (current_regcache, M68K_FPS_REGNUM,
1009 (char *) &(fpregsetp->f_psr));
1010 regcache_raw_supply (current_regcache, M68K_FPI_REGNUM,
1011 (char *) &(fpregsetp->f_fpiaddr));
1012 }
1013
1014 /* Given a pointer to a floating point register set in /proc format
1015 (fpregset_t *), update the register specified by REGNO from gdb's idea
1016 of the current floating point register set. If REGNO is -1, update
1017 them all. */
1018
1019 void
1020 fill_fpregset (fpregset_t *fpregsetp, int regno)
1021 {
1022 int regi;
1023
1024 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
1025 {
1026 if (regno == -1 || regno == regi)
1027 regcache_raw_collect (current_regcache, regi,
1028 &fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
1029 }
1030 if (regno == -1 || regno == M68K_FPC_REGNUM)
1031 regcache_raw_collect (current_regcache, M68K_FPC_REGNUM,
1032 &fpregsetp->f_pcr);
1033 if (regno == -1 || regno == M68K_FPS_REGNUM)
1034 regcache_raw_collect (current_regcache, M68K_FPS_REGNUM,
1035 &fpregsetp->f_psr);
1036 if (regno == -1 || regno == M68K_FPI_REGNUM)
1037 regcache_raw_collect (current_regcache, M68K_FPI_REGNUM,
1038 &fpregsetp->f_fpiaddr);
1039 }
1040
1041 #endif /* defined (FP0_REGNUM) */
1042
1043 #endif /* USE_PROC_FS */
1044
1045 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1046 We expect the first arg to be a pointer to the jmp_buf structure from which
1047 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1048 This routine returns true on success. */
1049
1050 static int
1051 m68k_get_longjmp_target (CORE_ADDR *pc)
1052 {
1053 char *buf;
1054 CORE_ADDR sp, jb_addr;
1055 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1056
1057 if (tdep->jb_pc < 0)
1058 {
1059 internal_error (__FILE__, __LINE__,
1060 "m68k_get_longjmp_target: not implemented");
1061 return 0;
1062 }
1063
1064 buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
1065 sp = read_register (SP_REGNUM);
1066
1067 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1068 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
1069 return 0;
1070
1071 jb_addr = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1072
1073 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1074 TARGET_PTR_BIT / TARGET_CHAR_BIT))
1075 return 0;
1076
1077 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1078 return 1;
1079 }
1080 \f
1081
1082 /* System V Release 4 (SVR4). */
1083
1084 void
1085 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1086 {
1087 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1088
1089 /* SVR4 uses a different calling convention. */
1090 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1091
1092 /* SVR4 uses %a0 instead of %a1. */
1093 tdep->struct_value_regnum = M68K_A0_REGNUM;
1094 }
1095 \f
1096
1097 /* Function: m68k_gdbarch_init
1098 Initializer function for the m68k gdbarch vector.
1099 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1100
1101 static struct gdbarch *
1102 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1103 {
1104 struct gdbarch_tdep *tdep = NULL;
1105 struct gdbarch *gdbarch;
1106
1107 /* find a candidate among the list of pre-declared architectures. */
1108 arches = gdbarch_list_lookup_by_info (arches, &info);
1109 if (arches != NULL)
1110 return (arches->gdbarch);
1111
1112 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1113 gdbarch = gdbarch_alloc (&info, tdep);
1114
1115 set_gdbarch_long_double_format (gdbarch, &floatformat_m68881_ext);
1116 set_gdbarch_long_double_bit (gdbarch, 96);
1117
1118 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1119 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1120
1121 /* Stack grows down. */
1122 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1123
1124 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1125 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1126
1127 set_gdbarch_frame_args_skip (gdbarch, 8);
1128
1129 set_gdbarch_register_type (gdbarch, m68k_register_type);
1130 set_gdbarch_register_name (gdbarch, m68k_register_name);
1131 set_gdbarch_num_regs (gdbarch, 29);
1132 set_gdbarch_register_bytes_ok (gdbarch, m68k_register_bytes_ok);
1133 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1134 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1135 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1136 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1137 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1138 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1139 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1140
1141 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1142 set_gdbarch_return_value (gdbarch, m68k_return_value);
1143
1144 /* Disassembler. */
1145 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1146
1147 #if defined JB_PC && defined JB_ELEMENT_SIZE
1148 tdep->jb_pc = JB_PC;
1149 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1150 #else
1151 tdep->jb_pc = -1;
1152 #endif
1153 tdep->struct_value_regnum = M68K_A1_REGNUM;
1154 tdep->struct_return = reg_struct_return;
1155
1156 /* Frame unwinder. */
1157 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1158 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1159
1160 /* Hook in the DWARF CFI frame unwinder. */
1161 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1162
1163 frame_base_set_default (gdbarch, &m68k_frame_base);
1164
1165 /* Hook in ABI-specific overrides, if they have been registered. */
1166 gdbarch_init_osabi (info, gdbarch);
1167
1168 /* Now we have tuned the configuration, set a few final things,
1169 based on what the OS ABI has told us. */
1170
1171 if (tdep->jb_pc >= 0)
1172 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1173
1174 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
1175
1176 return gdbarch;
1177 }
1178
1179
1180 static void
1181 m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1182 {
1183 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1184
1185 if (tdep == NULL)
1186 return;
1187 }
1188
1189 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1190
1191 void
1192 _initialize_m68k_tdep (void)
1193 {
1194 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1195 }
This page took 0.065332 seconds and 5 git commands to generate.