* vms-tir.c: Add missing prototypes.
[deliverable/binutils-gdb.git] / gdb / m88k-tdep.c
1 /* Target-machine dependent code for Motorola 88000 series, for GDB.
2 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 2000,
3 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "symtab.h"
28 #include "setjmp.h"
29 #include "value.h"
30 #include "regcache.h"
31
32 /* Size of an instruction */
33 #define BYTES_PER_88K_INSN 4
34
35 void frame_find_saved_regs ();
36
37 /* Is this target an m88110? Otherwise assume m88100. This has
38 relevance for the ways in which we screw with instruction pointers. */
39
40 int target_is_m88110 = 0;
41
42 /* The m88k kernel aligns all instructions on 4-byte boundaries. The
43 kernel also uses the least significant two bits for its own hocus
44 pocus. When gdb receives an address from the kernel, it needs to
45 preserve those right-most two bits, but gdb also needs to be careful
46 to realize that those two bits are not really a part of the address
47 of an instruction. Shrug. */
48
49 CORE_ADDR
50 m88k_addr_bits_remove (CORE_ADDR addr)
51 {
52 return ((addr) & ~3);
53 }
54
55
56 /* Given a GDB frame, determine the address of the calling function's frame.
57 This will be used to create a new GDB frame struct, and then
58 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
59
60 For us, the frame address is its stack pointer value, so we look up
61 the function prologue to determine the caller's sp value, and return it. */
62
63 CORE_ADDR
64 frame_chain (struct frame_info *thisframe)
65 {
66
67 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
68 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
69 the ADDRESS, of SP_REGNUM. It also depends on the cache of
70 frame_find_saved_regs results. */
71 if (thisframe->fsr->regs[SP_REGNUM])
72 return thisframe->fsr->regs[SP_REGNUM];
73 else
74 return thisframe->frame; /* Leaf fn -- next frame up has same SP. */
75 }
76
77 int
78 frameless_function_invocation (struct frame_info *frame)
79 {
80
81 frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
82 /* NOTE: this depends on frame_find_saved_regs returning the VALUE, not
83 the ADDRESS, of SP_REGNUM. It also depends on the cache of
84 frame_find_saved_regs results. */
85 if (frame->fsr->regs[SP_REGNUM])
86 return 0; /* Frameful -- return addr saved somewhere */
87 else
88 return 1; /* Frameless -- no saved return address */
89 }
90
91 void
92 init_extra_frame_info (int fromleaf, struct frame_info *frame)
93 {
94 frame->fsr = 0; /* Not yet allocated */
95 frame->args_pointer = 0; /* Unknown */
96 frame->locals_pointer = 0; /* Unknown */
97 }
98 \f
99 /* Examine an m88k function prologue, recording the addresses at which
100 registers are saved explicitly by the prologue code, and returning
101 the address of the first instruction after the prologue (but not
102 after the instruction at address LIMIT, as explained below).
103
104 LIMIT places an upper bound on addresses of the instructions to be
105 examined. If the prologue code scan reaches LIMIT, the scan is
106 aborted and LIMIT is returned. This is used, when examining the
107 prologue for the current frame, to keep examine_prologue () from
108 claiming that a given register has been saved when in fact the
109 instruction that saves it has not yet been executed. LIMIT is used
110 at other times to stop the scan when we hit code after the true
111 function prologue (e.g. for the first source line) which might
112 otherwise be mistaken for function prologue.
113
114 The format of the function prologue matched by this routine is
115 derived from examination of the source to gcc 1.95, particularly
116 the routine output_prologue () in config/out-m88k.c.
117
118 subu r31,r31,n # stack pointer update
119
120 (st rn,r31,offset)? # save incoming regs
121 (st.d rn,r31,offset)?
122
123 (addu r30,r31,n)? # frame pointer update
124
125 (pic sequence)? # PIC code prologue
126
127 (or rn,rm,0)? # Move parameters to other regs
128 */
129
130 /* Macros for extracting fields from instructions. */
131
132 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
133 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
134 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
135 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
136 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
137 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
138
139 /*
140 * prologue_insn_tbl is a table of instructions which may comprise a
141 * function prologue. Associated with each table entry (corresponding
142 * to a single instruction or group of instructions), is an action.
143 * This action is used by examine_prologue (below) to determine
144 * the state of certain machine registers and where the stack frame lives.
145 */
146
147 enum prologue_insn_action
148 {
149 PIA_SKIP, /* don't care what the instruction does */
150 PIA_NOTE_ST, /* note register stored and where */
151 PIA_NOTE_STD, /* note pair of registers stored and where */
152 PIA_NOTE_SP_ADJUSTMENT, /* note stack pointer adjustment */
153 PIA_NOTE_FP_ASSIGNMENT, /* note frame pointer assignment */
154 PIA_NOTE_PROLOGUE_END, /* no more prologue */
155 };
156
157 struct prologue_insns
158 {
159 unsigned long insn;
160 unsigned long mask;
161 enum prologue_insn_action action;
162 };
163
164 struct prologue_insns prologue_insn_tbl[] =
165 {
166 /* Various register move instructions */
167 {0x58000000, 0xf800ffff, PIA_SKIP}, /* or/or.u with immed of 0 */
168 {0xf4005800, 0xfc1fffe0, PIA_SKIP}, /* or rd, r0, rs */
169 {0xf4005800, 0xfc00ffff, PIA_SKIP}, /* or rd, rs, r0 */
170
171 /* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */
172 {0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT},
173
174 /* Frame pointer assignment: "addu r30, r31, n" */
175 {0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT},
176
177 /* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */
178 {0x241f0000, 0xfc1f0000, PIA_NOTE_ST}, /* st rx, sp, n */
179 {0x201f0000, 0xfc1f0000, PIA_NOTE_STD}, /* st.d rs, sp, n */
180
181 /* Instructions needed for setting up r25 for pic code. */
182 {0x5f200000, 0xffff0000, PIA_SKIP}, /* or.u r25, r0, offset_high */
183 {0xcc000002, 0xffffffff, PIA_SKIP}, /* bsr.n Lab */
184 {0x5b390000, 0xffff0000, PIA_SKIP}, /* or r25, r25, offset_low */
185 {0xf7396001, 0xffffffff, PIA_SKIP}, /* Lab: addu r25, r25, r1 */
186
187 /* Various branch or jump instructions which have a delay slot -- these
188 do not form part of the prologue, but the instruction in the delay
189 slot might be a store instruction which should be noted. */
190 {0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END},
191 /* br.n, bsr.n, bb0.n, or bb1.n */
192 {0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END}, /* bcnd.n */
193 {0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END} /* jmp.n or jsr.n */
194
195 };
196
197
198 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
199 is not the address of a valid instruction, the address of the next
200 instruction beyond ADDR otherwise. *PWORD1 receives the first word
201 of the instruction. */
202
203 #define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
204 (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
205
206 /* Read the m88k instruction at 'memaddr' and return the address of
207 the next instruction after that, or 0 if 'memaddr' is not the
208 address of a valid instruction. The instruction
209 is stored at 'pword1'. */
210
211 CORE_ADDR
212 next_insn (CORE_ADDR memaddr, unsigned long *pword1)
213 {
214 *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
215 return memaddr + BYTES_PER_88K_INSN;
216 }
217
218 /* Read a register from frames called by us (or from the hardware regs). */
219
220 static int
221 read_next_frame_reg (struct frame_info *frame, int regno)
222 {
223 for (; frame; frame = frame->next)
224 {
225 if (regno == SP_REGNUM)
226 return FRAME_FP (frame);
227 else if (frame->fsr->regs[regno])
228 return read_memory_integer (frame->fsr->regs[regno], 4);
229 }
230 return read_register (regno);
231 }
232
233 /* Examine the prologue of a function. `ip' points to the first instruction.
234 `limit' is the limit of the prologue (e.g. the addr of the first
235 linenumber, or perhaps the program counter if we're stepping through).
236 `frame_sp' is the stack pointer value in use in this frame.
237 `fsr' is a pointer to a frame_saved_regs structure into which we put
238 info about the registers saved by this frame.
239 `fi' is a struct frame_info pointer; we fill in various fields in it
240 to reflect the offsets of the arg pointer and the locals pointer. */
241
242 static CORE_ADDR
243 examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
244 CORE_ADDR frame_sp, struct frame_saved_regs *fsr,
245 struct frame_info *fi)
246 {
247 register CORE_ADDR next_ip;
248 register int src;
249 unsigned long insn;
250 int size, offset;
251 char must_adjust[32]; /* If set, must adjust offsets in fsr */
252 int sp_offset = -1; /* -1 means not set (valid must be mult of 8) */
253 int fp_offset = -1; /* -1 means not set */
254 CORE_ADDR frame_fp;
255 CORE_ADDR prologue_end = 0;
256
257 memset (must_adjust, '\0', sizeof (must_adjust));
258 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
259
260 while (next_ip)
261 {
262 struct prologue_insns *pip;
263
264 for (pip = prologue_insn_tbl; (insn & pip->mask) != pip->insn;)
265 if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl)
266 goto end_of_prologue_found; /* not a prologue insn */
267
268 switch (pip->action)
269 {
270 case PIA_NOTE_ST:
271 case PIA_NOTE_STD:
272 if (sp_offset != -1)
273 {
274 src = ST_SRC (insn);
275 offset = ST_OFFSET (insn);
276 must_adjust[src] = 1;
277 fsr->regs[src++] = offset; /* Will be adjusted later */
278 if (pip->action == PIA_NOTE_STD && src < 32)
279 {
280 offset += 4;
281 must_adjust[src] = 1;
282 fsr->regs[src++] = offset;
283 }
284 }
285 else
286 goto end_of_prologue_found;
287 break;
288 case PIA_NOTE_SP_ADJUSTMENT:
289 if (sp_offset == -1)
290 sp_offset = -SUBU_OFFSET (insn);
291 else
292 goto end_of_prologue_found;
293 break;
294 case PIA_NOTE_FP_ASSIGNMENT:
295 if (fp_offset == -1)
296 fp_offset = ADDU_OFFSET (insn);
297 else
298 goto end_of_prologue_found;
299 break;
300 case PIA_NOTE_PROLOGUE_END:
301 if (!prologue_end)
302 prologue_end = ip;
303 break;
304 case PIA_SKIP:
305 default:
306 /* Do nothing */
307 break;
308 }
309
310 ip = next_ip;
311 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
312 }
313
314 end_of_prologue_found:
315
316 if (prologue_end)
317 ip = prologue_end;
318
319 /* We're done with the prologue. If we don't care about the stack
320 frame itself, just return. (Note that fsr->regs has been trashed,
321 but the one caller who calls with fi==0 passes a dummy there.) */
322
323 if (fi == 0)
324 return ip;
325
326 /*
327 OK, now we have:
328
329 sp_offset original (before any alloca calls) displacement of SP
330 (will be negative).
331
332 fp_offset displacement from original SP to the FP for this frame
333 or -1.
334
335 fsr->regs[0..31] displacement from original SP to the stack
336 location where reg[0..31] is stored.
337
338 must_adjust[0..31] set if corresponding offset was set.
339
340 If alloca has been called between the function prologue and the current
341 IP, then the current SP (frame_sp) will not be the original SP as set by
342 the function prologue. If the current SP is not the original SP, then the
343 compiler will have allocated an FP for this frame, fp_offset will be set,
344 and we can use it to calculate the original SP.
345
346 Then, we figure out where the arguments and locals are, and relocate the
347 offsets in fsr->regs to absolute addresses. */
348
349 if (fp_offset != -1)
350 {
351 /* We have a frame pointer, so get it, and base our calc's on it. */
352 frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
353 frame_sp = frame_fp - fp_offset;
354 }
355 else
356 {
357 /* We have no frame pointer, therefore frame_sp is still the same value
358 as set by prologue. But where is the frame itself? */
359 if (must_adjust[SRP_REGNUM])
360 {
361 /* Function header saved SRP (r1), the return address. Frame starts
362 4 bytes down from where it was saved. */
363 frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
364 fi->locals_pointer = frame_fp;
365 }
366 else
367 {
368 /* Function header didn't save SRP (r1), so we are in a leaf fn or
369 are otherwise confused. */
370 frame_fp = -1;
371 }
372 }
373
374 /* The locals are relative to the FP (whether it exists as an allocated
375 register, or just as an assumed offset from the SP) */
376 fi->locals_pointer = frame_fp;
377
378 /* The arguments are just above the SP as it was before we adjusted it
379 on entry. */
380 fi->args_pointer = frame_sp - sp_offset;
381
382 /* Now that we know the SP value used by the prologue, we know where
383 it saved all the registers. */
384 for (src = 0; src < 32; src++)
385 if (must_adjust[src])
386 fsr->regs[src] += frame_sp;
387
388 /* The saved value of the SP is always known. */
389 /* (we hope...) */
390 if (fsr->regs[SP_REGNUM] != 0
391 && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
392 fprintf_unfiltered (gdb_stderr, "Bad saved SP value %lx != %lx, offset %x!\n",
393 fsr->regs[SP_REGNUM],
394 frame_sp - sp_offset, sp_offset);
395
396 fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
397
398 return (ip);
399 }
400
401 /* Given an ip value corresponding to the start of a function,
402 return the ip of the first instruction after the function
403 prologue. */
404
405 CORE_ADDR
406 m88k_skip_prologue (CORE_ADDR ip)
407 {
408 struct frame_saved_regs saved_regs_dummy;
409 struct symtab_and_line sal;
410 CORE_ADDR limit;
411
412 sal = find_pc_line (ip, 0);
413 limit = (sal.end) ? sal.end : 0xffffffff;
414
415 return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy,
416 (struct frame_info *) 0));
417 }
418
419 /* Put here the code to store, into a struct frame_saved_regs,
420 the addresses of the saved registers of frame described by FRAME_INFO.
421 This includes special registers such as pc and fp saved in special
422 ways in the stack frame. sp is even more special:
423 the address we return for it IS the sp for the next frame.
424
425 We cache the result of doing this in the frame_obstack, since it is
426 fairly expensive. */
427
428 void
429 frame_find_saved_regs (struct frame_info *fi, struct frame_saved_regs *fsr)
430 {
431 register struct frame_saved_regs *cache_fsr;
432 CORE_ADDR ip;
433 struct symtab_and_line sal;
434 CORE_ADDR limit;
435
436 if (!fi->fsr)
437 {
438 cache_fsr = (struct frame_saved_regs *)
439 frame_obstack_alloc (sizeof (struct frame_saved_regs));
440 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
441 fi->fsr = cache_fsr;
442
443 /* Find the start and end of the function prologue. If the PC
444 is in the function prologue, we only consider the part that
445 has executed already. In the case where the PC is not in
446 the function prologue, we set limit to two instructions beyond
447 where the prologue ends in case if any of the prologue instructions
448 were moved into a delay slot of a branch instruction. */
449
450 ip = get_pc_function_start (fi->pc);
451 sal = find_pc_line (ip, 0);
452 limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN
453 : fi->pc;
454
455 /* This will fill in fields in *fi as well as in cache_fsr. */
456 #ifdef SIGTRAMP_FRAME_FIXUP
457 if (fi->signal_handler_caller)
458 SIGTRAMP_FRAME_FIXUP (fi->frame);
459 #endif
460 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
461 #ifdef SIGTRAMP_SP_FIXUP
462 if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
463 SIGTRAMP_SP_FIXUP (fi->fsr->regs[SP_REGNUM]);
464 #endif
465 }
466
467 if (fsr)
468 *fsr = *fi->fsr;
469 }
470
471 /* Return the address of the locals block for the frame
472 described by FI. Returns 0 if the address is unknown.
473 NOTE! Frame locals are referred to by negative offsets from the
474 argument pointer, so this is the same as frame_args_address(). */
475
476 CORE_ADDR
477 frame_locals_address (struct frame_info *fi)
478 {
479 struct frame_saved_regs fsr;
480
481 if (fi->args_pointer) /* Cached value is likely there. */
482 return fi->args_pointer;
483
484 /* Nope, generate it. */
485
486 get_frame_saved_regs (fi, &fsr);
487
488 return fi->args_pointer;
489 }
490
491 /* Return the address of the argument block for the frame
492 described by FI. Returns 0 if the address is unknown. */
493
494 CORE_ADDR
495 frame_args_address (struct frame_info *fi)
496 {
497 struct frame_saved_regs fsr;
498
499 if (fi->args_pointer) /* Cached value is likely there. */
500 return fi->args_pointer;
501
502 /* Nope, generate it. */
503
504 get_frame_saved_regs (fi, &fsr);
505
506 return fi->args_pointer;
507 }
508
509 /* Return the saved PC from this frame.
510
511 If the frame has a memory copy of SRP_REGNUM, use that. If not,
512 just use the register SRP_REGNUM itself. */
513
514 CORE_ADDR
515 frame_saved_pc (struct frame_info *frame)
516 {
517 return read_next_frame_reg (frame, SRP_REGNUM);
518 }
519
520
521 #define DUMMY_FRAME_SIZE 192
522
523 static void
524 write_word (CORE_ADDR sp, ULONGEST word)
525 {
526 register int len = REGISTER_SIZE;
527 char buffer[MAX_REGISTER_RAW_SIZE];
528
529 store_unsigned_integer (buffer, len, word);
530 write_memory (sp, buffer, len);
531 }
532
533 void
534 m88k_push_dummy_frame (void)
535 {
536 register CORE_ADDR sp = read_register (SP_REGNUM);
537 register int rn;
538 int offset;
539
540 sp -= DUMMY_FRAME_SIZE; /* allocate a bunch of space */
541
542 for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset += 4)
543 write_word (sp + offset, read_register (rn));
544
545 write_word (sp + offset, read_register (SXIP_REGNUM));
546 offset += 4;
547
548 write_word (sp + offset, read_register (SNIP_REGNUM));
549 offset += 4;
550
551 write_word (sp + offset, read_register (SFIP_REGNUM));
552 offset += 4;
553
554 write_word (sp + offset, read_register (PSR_REGNUM));
555 offset += 4;
556
557 write_word (sp + offset, read_register (FPSR_REGNUM));
558 offset += 4;
559
560 write_word (sp + offset, read_register (FPCR_REGNUM));
561 offset += 4;
562
563 write_register (SP_REGNUM, sp);
564 write_register (ACTUAL_FP_REGNUM, sp);
565 }
566
567 void
568 pop_frame (void)
569 {
570 register struct frame_info *frame = get_current_frame ();
571 register int regnum;
572 struct frame_saved_regs fsr;
573
574 get_frame_saved_regs (frame, &fsr);
575
576 if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), frame->frame))
577 {
578 /* FIXME: I think get_frame_saved_regs should be handling this so
579 that we can deal with the saved registers properly (e.g. frame
580 1 is a call dummy, the user types "frame 2" and then "print $ps"). */
581 register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
582 int offset;
583
584 for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset += 4)
585 (void) write_register (regnum, read_memory_integer (sp + offset, 4));
586
587 write_register (SXIP_REGNUM, read_memory_integer (sp + offset, 4));
588 offset += 4;
589
590 write_register (SNIP_REGNUM, read_memory_integer (sp + offset, 4));
591 offset += 4;
592
593 write_register (SFIP_REGNUM, read_memory_integer (sp + offset, 4));
594 offset += 4;
595
596 write_register (PSR_REGNUM, read_memory_integer (sp + offset, 4));
597 offset += 4;
598
599 write_register (FPSR_REGNUM, read_memory_integer (sp + offset, 4));
600 offset += 4;
601
602 write_register (FPCR_REGNUM, read_memory_integer (sp + offset, 4));
603 offset += 4;
604
605 }
606 else
607 {
608 for (regnum = FP_REGNUM; regnum > 0; regnum--)
609 if (fsr.regs[regnum])
610 write_register (regnum,
611 read_memory_integer (fsr.regs[regnum], 4));
612 write_pc (frame_saved_pc (frame));
613 }
614 reinit_frame_cache ();
615 }
616
617 void
618 _initialize_m88k_tdep (void)
619 {
620 tm_print_insn = print_insn_m88k;
621 }
This page took 0.041907 seconds and 4 git commands to generate.