gdb/
[deliverable/binutils-gdb.git] / gdb / m88k-tdep.c
1 /* Target-dependent code for the Motorola 88000 series.
2
3 Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "gdbcore.h"
28 #include "gdbtypes.h"
29 #include "regcache.h"
30 #include "regset.h"
31 #include "symtab.h"
32 #include "trad-frame.h"
33 #include "value.h"
34
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
37
38 #include "m88k-tdep.h"
39
40 /* Fetch the instruction at PC. */
41
42 static unsigned long
43 m88k_fetch_instruction (CORE_ADDR pc, enum bfd_endian byte_order)
44 {
45 return read_memory_unsigned_integer (pc, 4, byte_order);
46 }
47
48 /* Register information. */
49
50 /* Return the name of register REGNUM. */
51
52 static const char *
53 m88k_register_name (struct gdbarch *gdbarch, int regnum)
54 {
55 static char *register_names[] =
56 {
57 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
58 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
59 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
60 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
61 "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
62 };
63
64 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
65 return register_names[regnum];
66
67 return NULL;
68 }
69
70 /* Return the GDB type object for the "standard" data type of data in
71 register REGNUM. */
72
73 static struct type *
74 m88k_register_type (struct gdbarch *gdbarch, int regnum)
75 {
76 /* SXIP, SNIP, SFIP and R1 contain code addresses. */
77 if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
78 || regnum == M88K_R1_REGNUM)
79 return builtin_type (gdbarch)->builtin_func_ptr;
80
81 /* R30 and R31 typically contains data addresses. */
82 if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
83 return builtin_type (gdbarch)->builtin_data_ptr;
84
85 return builtin_type (gdbarch)->builtin_int32;
86 }
87 \f
88
89 static CORE_ADDR
90 m88k_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
91 {
92 /* All instructures are 4-byte aligned. The lower 2 bits of SXIP,
93 SNIP and SFIP are used for special purposes: bit 0 is the
94 exception bit and bit 1 is the valid bit. */
95 return addr & ~0x3;
96 }
97
98 /* Use the program counter to determine the contents and size of a
99 breakpoint instruction. Return a pointer to a string of bytes that
100 encode a breakpoint instruction, store the length of the string in
101 *LEN and optionally adjust *PC to point to the correct memory
102 location for inserting the breakpoint. */
103
104 static const gdb_byte *
105 m88k_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
106 {
107 /* tb 0,r0,511 */
108 static gdb_byte break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
109
110 *len = sizeof (break_insn);
111 return break_insn;
112 }
113
114 static CORE_ADDR
115 m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
116 {
117 CORE_ADDR pc;
118
119 pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
120 return m88k_addr_bits_remove (gdbarch, pc);
121 }
122
123 static void
124 m88k_write_pc (struct regcache *regcache, CORE_ADDR pc)
125 {
126 /* According to the MC88100 RISC Microprocessor User's Manual,
127 section 6.4.3.1.2:
128
129 "... can be made to return to a particular instruction by placing
130 a valid instruction address in the SNIP and the next sequential
131 instruction address in the SFIP (with V bits set and E bits
132 clear). The rte resumes execution at the instruction pointed to
133 by the SNIP, then the SFIP."
134
135 The E bit is the least significant bit (bit 0). The V (valid)
136 bit is bit 1. This is why we logical or 2 into the values we are
137 writing below. It turns out that SXIP plays no role when
138 returning from an exception so nothing special has to be done
139 with it. We could even (presumably) give it a totally bogus
140 value. */
141
142 regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc);
143 regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2);
144 regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2);
145 }
146 \f
147
148 /* The functions on this page are intended to be used to classify
149 function arguments. */
150
151 /* Check whether TYPE is "Integral or Pointer". */
152
153 static int
154 m88k_integral_or_pointer_p (const struct type *type)
155 {
156 switch (TYPE_CODE (type))
157 {
158 case TYPE_CODE_INT:
159 case TYPE_CODE_BOOL:
160 case TYPE_CODE_CHAR:
161 case TYPE_CODE_ENUM:
162 case TYPE_CODE_RANGE:
163 {
164 /* We have byte, half-word, word and extended-word/doubleword
165 integral types. */
166 int len = TYPE_LENGTH (type);
167 return (len == 1 || len == 2 || len == 4 || len == 8);
168 }
169 return 1;
170 case TYPE_CODE_PTR:
171 case TYPE_CODE_REF:
172 {
173 /* Allow only 32-bit pointers. */
174 return (TYPE_LENGTH (type) == 4);
175 }
176 return 1;
177 default:
178 break;
179 }
180
181 return 0;
182 }
183
184 /* Check whether TYPE is "Floating". */
185
186 static int
187 m88k_floating_p (const struct type *type)
188 {
189 switch (TYPE_CODE (type))
190 {
191 case TYPE_CODE_FLT:
192 {
193 int len = TYPE_LENGTH (type);
194 return (len == 4 || len == 8);
195 }
196 default:
197 break;
198 }
199
200 return 0;
201 }
202
203 /* Check whether TYPE is "Structure or Union". */
204
205 static int
206 m88k_structure_or_union_p (const struct type *type)
207 {
208 switch (TYPE_CODE (type))
209 {
210 case TYPE_CODE_STRUCT:
211 case TYPE_CODE_UNION:
212 return 1;
213 default:
214 break;
215 }
216
217 return 0;
218 }
219
220 /* Check whether TYPE has 8-byte alignment. */
221
222 static int
223 m88k_8_byte_align_p (struct type *type)
224 {
225 if (m88k_structure_or_union_p (type))
226 {
227 int i;
228
229 for (i = 0; i < TYPE_NFIELDS (type); i++)
230 {
231 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
232
233 if (m88k_8_byte_align_p (subtype))
234 return 1;
235 }
236 }
237
238 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
239 return (TYPE_LENGTH (type) == 8);
240
241 return 0;
242 }
243
244 /* Check whether TYPE can be passed in a register. */
245
246 static int
247 m88k_in_register_p (struct type *type)
248 {
249 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
250 return 1;
251
252 if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
253 return 1;
254
255 return 0;
256 }
257
258 static CORE_ADDR
259 m88k_store_arguments (struct regcache *regcache, int nargs,
260 struct value **args, CORE_ADDR sp)
261 {
262 struct gdbarch *gdbarch = get_regcache_arch (regcache);
263 int num_register_words = 0;
264 int num_stack_words = 0;
265 int i;
266
267 for (i = 0; i < nargs; i++)
268 {
269 struct type *type = value_type (args[i]);
270 int len = TYPE_LENGTH (type);
271
272 if (m88k_integral_or_pointer_p (type) && len < 4)
273 {
274 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
275 args[i]);
276 type = value_type (args[i]);
277 len = TYPE_LENGTH (type);
278 }
279
280 if (m88k_in_register_p (type))
281 {
282 int num_words = 0;
283
284 if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
285 num_words++;
286
287 num_words += ((len + 3) / 4);
288 if (num_register_words + num_words <= 8)
289 {
290 num_register_words += num_words;
291 continue;
292 }
293
294 /* We've run out of available registers. Pass the argument
295 on the stack. */
296 }
297
298 if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
299 num_stack_words++;
300
301 num_stack_words += ((len + 3) / 4);
302 }
303
304 /* Allocate stack space. */
305 sp = align_down (sp - 32 - num_stack_words * 4, 16);
306 num_stack_words = num_register_words = 0;
307
308 for (i = 0; i < nargs; i++)
309 {
310 const bfd_byte *valbuf = value_contents (args[i]);
311 struct type *type = value_type (args[i]);
312 int len = TYPE_LENGTH (type);
313 int stack_word = num_stack_words;
314
315 if (m88k_in_register_p (type))
316 {
317 int register_word = num_register_words;
318
319 if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
320 register_word++;
321
322 gdb_assert (len == 4 || len == 8);
323
324 if (register_word + len / 8 < 8)
325 {
326 int regnum = M88K_R2_REGNUM + register_word;
327
328 regcache_raw_write (regcache, regnum, valbuf);
329 if (len > 4)
330 regcache_raw_write (regcache, regnum + 1, valbuf + 4);
331
332 num_register_words = (register_word + len / 4);
333 continue;
334 }
335 }
336
337 if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
338 stack_word++;
339
340 write_memory (sp + stack_word * 4, valbuf, len);
341 num_stack_words = (stack_word + (len + 3) / 4);
342 }
343
344 return sp;
345 }
346
347 static CORE_ADDR
348 m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
349 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
350 struct value **args, CORE_ADDR sp, int struct_return,
351 CORE_ADDR struct_addr)
352 {
353 /* Set up the function arguments. */
354 sp = m88k_store_arguments (regcache, nargs, args, sp);
355 gdb_assert (sp % 16 == 0);
356
357 /* Store return value address. */
358 if (struct_return)
359 regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
360
361 /* Store the stack pointer and return address in the appropriate
362 registers. */
363 regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
364 regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
365
366 /* Return the stack pointer. */
367 return sp;
368 }
369
370 static struct frame_id
371 m88k_dummy_id (struct gdbarch *arch, struct frame_info *this_frame)
372 {
373 CORE_ADDR sp;
374
375 sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
376 return frame_id_build (sp, get_frame_pc (this_frame));
377 }
378 \f
379
380 /* Determine, for architecture GDBARCH, how a return value of TYPE
381 should be returned. If it is supposed to be returned in registers,
382 and READBUF is non-zero, read the appropriate value from REGCACHE,
383 and copy it into READBUF. If WRITEBUF is non-zero, write the value
384 from WRITEBUF into REGCACHE. */
385
386 static enum return_value_convention
387 m88k_return_value (struct gdbarch *gdbarch, struct type *func_type,
388 struct type *type, struct regcache *regcache,
389 gdb_byte *readbuf, const gdb_byte *writebuf)
390 {
391 int len = TYPE_LENGTH (type);
392 gdb_byte buf[8];
393
394 if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
395 return RETURN_VALUE_STRUCT_CONVENTION;
396
397 if (readbuf)
398 {
399 /* Read the contents of R2 and (if necessary) R3. */
400 regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
401 if (len > 4)
402 {
403 regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
404 gdb_assert (len == 8);
405 memcpy (readbuf, buf, len);
406 }
407 else
408 {
409 /* Just stripping off any unused bytes should preserve the
410 signed-ness just fine. */
411 memcpy (readbuf, buf + 4 - len, len);
412 }
413 }
414
415 if (writebuf)
416 {
417 /* Read the contents to R2 and (if necessary) R3. */
418 if (len > 4)
419 {
420 gdb_assert (len == 8);
421 memcpy (buf, writebuf, 8);
422 regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
423 }
424 else
425 {
426 /* ??? Do we need to do any sign-extension here? */
427 memcpy (buf + 4 - len, writebuf, len);
428 }
429 regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
430 }
431
432 return RETURN_VALUE_REGISTER_CONVENTION;
433 }
434 \f
435 /* Default frame unwinder. */
436
437 struct m88k_frame_cache
438 {
439 /* Base address. */
440 CORE_ADDR base;
441 CORE_ADDR pc;
442
443 int sp_offset;
444 int fp_offset;
445
446 /* Table of saved registers. */
447 struct trad_frame_saved_reg *saved_regs;
448 };
449
450 /* Prologue analysis. */
451
452 /* Macros for extracting fields from instructions. */
453
454 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
455 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
456 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
457 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
458 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
459 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
460
461 /* Possible actions to be taken by the prologue analyzer for the
462 instructions it encounters. */
463
464 enum m88k_prologue_insn_action
465 {
466 M88K_PIA_SKIP, /* Ignore. */
467 M88K_PIA_NOTE_ST, /* Note register store. */
468 M88K_PIA_NOTE_STD, /* Note register pair store. */
469 M88K_PIA_NOTE_SP_ADJUSTMENT, /* Note stack pointer adjustment. */
470 M88K_PIA_NOTE_FP_ASSIGNMENT, /* Note frame pointer assignment. */
471 M88K_PIA_NOTE_BRANCH, /* Note branch. */
472 M88K_PIA_NOTE_PROLOGUE_END /* Note end of prologue. */
473 };
474
475 /* Table of instructions that may comprise a function prologue. */
476
477 struct m88k_prologue_insn
478 {
479 unsigned long insn;
480 unsigned long mask;
481 enum m88k_prologue_insn_action action;
482 };
483
484 struct m88k_prologue_insn m88k_prologue_insn_table[] =
485 {
486 /* Various register move instructions. */
487 { 0x58000000, 0xf800ffff, M88K_PIA_SKIP }, /* or/or.u with immed of 0 */
488 { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP }, /* or rd,r0,rs */
489 { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP }, /* or rd,rs,r0 */
490
491 /* Various other instructions. */
492 { 0x58000000, 0xf8000000, M88K_PIA_SKIP }, /* or/or.u */
493
494 /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */
495 { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
496
497 /* Frame pointer assignment: "addu r30,r31,n". */
498 { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
499
500 /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */
501 { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST }, /* st rx,sp,n */
502 { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
503
504 /* Instructions needed for setting up r25 for pic code. */
505 { 0x5f200000, 0xffff0000, M88K_PIA_SKIP }, /* or.u r25,r0,offset_high */
506 { 0xcc000002, 0xffffffff, M88K_PIA_SKIP }, /* bsr.n Lab */
507 { 0x5b390000, 0xffff0000, M88K_PIA_SKIP }, /* or r25,r25,offset_low */
508 { 0xf7396001, 0xffffffff, M88K_PIA_SKIP }, /* Lab: addu r25,r25,r1 */
509
510 /* Various branch or jump instructions which have a delay slot --
511 these do not form part of the prologue, but the instruction in
512 the delay slot might be a store instruction which should be
513 noted. */
514 { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
515 /* br.n, bsr.n, bb0.n, or bb1.n */
516 { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
517 { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
518
519 /* Catch all. Ends prologue analysis. */
520 { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
521 };
522
523 /* Do a full analysis of the function prologue at PC and update CACHE
524 accordingly. Bail out early if LIMIT is reached. Return the
525 address where the analysis stopped. If LIMIT points beyond the
526 function prologue, the return address should be the end of the
527 prologue. */
528
529 static CORE_ADDR
530 m88k_analyze_prologue (struct gdbarch *gdbarch,
531 CORE_ADDR pc, CORE_ADDR limit,
532 struct m88k_frame_cache *cache)
533 {
534 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
535 CORE_ADDR end = limit;
536
537 /* Provide a dummy cache if necessary. */
538 if (cache == NULL)
539 {
540 size_t sizeof_saved_regs =
541 (M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg);
542
543 cache = alloca (sizeof (struct m88k_frame_cache));
544 cache->saved_regs = alloca (sizeof_saved_regs);
545
546 /* We only initialize the members we care about. */
547 cache->saved_regs[M88K_R1_REGNUM].addr = -1;
548 cache->fp_offset = -1;
549 }
550
551 while (pc < limit)
552 {
553 struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
554 unsigned long insn = m88k_fetch_instruction (pc, byte_order);
555
556 while ((insn & pi->mask) != pi->insn)
557 pi++;
558
559 switch (pi->action)
560 {
561 case M88K_PIA_SKIP:
562 /* If we have a frame pointer, and R1 has been saved,
563 consider this instruction as not being part of the
564 prologue. */
565 if (cache->fp_offset != -1
566 && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
567 return min (pc, end);
568 break;
569
570 case M88K_PIA_NOTE_ST:
571 case M88K_PIA_NOTE_STD:
572 /* If no frame has been allocated, the stores aren't part of
573 the prologue. */
574 if (cache->sp_offset == 0)
575 return min (pc, end);
576
577 /* Record location of saved registers. */
578 {
579 int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
580 ULONGEST offset = ST_OFFSET (insn);
581
582 cache->saved_regs[regnum].addr = offset;
583 if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
584 cache->saved_regs[regnum + 1].addr = offset + 4;
585 }
586 break;
587
588 case M88K_PIA_NOTE_SP_ADJUSTMENT:
589 /* A second stack pointer adjustment isn't part of the
590 prologue. */
591 if (cache->sp_offset != 0)
592 return min (pc, end);
593
594 /* Store stack pointer adjustment. */
595 cache->sp_offset = -SUBU_OFFSET (insn);
596 break;
597
598 case M88K_PIA_NOTE_FP_ASSIGNMENT:
599 /* A second frame pointer assignment isn't part of the
600 prologue. */
601 if (cache->fp_offset != -1)
602 return min (pc, end);
603
604 /* Record frame pointer assignment. */
605 cache->fp_offset = ADDU_OFFSET (insn);
606 break;
607
608 case M88K_PIA_NOTE_BRANCH:
609 /* The branch instruction isn't part of the prologue, but
610 the instruction in the delay slot might be. Limit the
611 prologue analysis to the delay slot and record the branch
612 instruction as the end of the prologue. */
613 limit = min (limit, pc + 2 * M88K_INSN_SIZE);
614 end = pc;
615 break;
616
617 case M88K_PIA_NOTE_PROLOGUE_END:
618 return min (pc, end);
619 }
620
621 pc += M88K_INSN_SIZE;
622 }
623
624 return end;
625 }
626
627 /* An upper limit to the size of the prologue. */
628 const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
629
630 /* Return the address of first real instruction of the function
631 starting at PC. */
632
633 static CORE_ADDR
634 m88k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
635 {
636 struct symtab_and_line sal;
637 CORE_ADDR func_start, func_end;
638
639 /* This is the preferred method, find the end of the prologue by
640 using the debugging information. */
641 if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
642 {
643 sal = find_pc_line (func_start, 0);
644
645 if (sal.end < func_end && pc <= sal.end)
646 return sal.end;
647 }
648
649 return m88k_analyze_prologue (gdbarch, pc, pc + m88k_max_prologue_size,
650 NULL);
651 }
652
653 static struct m88k_frame_cache *
654 m88k_frame_cache (struct frame_info *this_frame, void **this_cache)
655 {
656 struct gdbarch *gdbarch = get_frame_arch (this_frame);
657 struct m88k_frame_cache *cache;
658 CORE_ADDR frame_sp;
659
660 if (*this_cache)
661 return *this_cache;
662
663 cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
664 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
665 cache->fp_offset = -1;
666
667 cache->pc = get_frame_func (this_frame);
668 if (cache->pc != 0)
669 m88k_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
670 cache);
671
672 /* Calculate the stack pointer used in the prologue. */
673 if (cache->fp_offset != -1)
674 {
675 CORE_ADDR fp;
676
677 fp = get_frame_register_unsigned (this_frame, M88K_R30_REGNUM);
678 frame_sp = fp - cache->fp_offset;
679 }
680 else
681 {
682 /* If we know where the return address is saved, we can take a
683 solid guess at what the frame pointer should be. */
684 if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
685 cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
686 frame_sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
687 }
688
689 /* Now that we know the stack pointer, adjust the location of the
690 saved registers. */
691 {
692 int regnum;
693
694 for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
695 if (cache->saved_regs[regnum].addr != -1)
696 cache->saved_regs[regnum].addr += frame_sp;
697 }
698
699 /* Calculate the frame's base. */
700 cache->base = frame_sp - cache->sp_offset;
701 trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
702
703 /* Identify SXIP with the return address in R1. */
704 cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
705
706 *this_cache = cache;
707 return cache;
708 }
709
710 static void
711 m88k_frame_this_id (struct frame_info *this_frame, void **this_cache,
712 struct frame_id *this_id)
713 {
714 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
715
716 /* This marks the outermost frame. */
717 if (cache->base == 0)
718 return;
719
720 (*this_id) = frame_id_build (cache->base, cache->pc);
721 }
722
723 static struct value *
724 m88k_frame_prev_register (struct frame_info *this_frame,
725 void **this_cache, int regnum)
726 {
727 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
728
729 if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
730 {
731 struct value *value;
732 CORE_ADDR pc;
733
734 value = trad_frame_get_prev_register (this_frame, cache->saved_regs,
735 M88K_SXIP_REGNUM);
736 pc = value_as_long (value);
737 release_value (value);
738 value_free (value);
739
740 if (regnum == M88K_SFIP_REGNUM)
741 pc += 4;
742
743 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
744 }
745
746 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
747 }
748
749 static const struct frame_unwind m88k_frame_unwind =
750 {
751 NORMAL_FRAME,
752 m88k_frame_this_id,
753 m88k_frame_prev_register,
754 NULL,
755 default_frame_sniffer
756 };
757 \f
758
759 static CORE_ADDR
760 m88k_frame_base_address (struct frame_info *this_frame, void **this_cache)
761 {
762 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
763
764 if (cache->fp_offset != -1)
765 return cache->base + cache->sp_offset + cache->fp_offset;
766
767 return 0;
768 }
769
770 static const struct frame_base m88k_frame_base =
771 {
772 &m88k_frame_unwind,
773 m88k_frame_base_address,
774 m88k_frame_base_address,
775 m88k_frame_base_address
776 };
777 \f
778
779 /* Core file support. */
780
781 /* Supply register REGNUM from the buffer specified by GREGS and LEN
782 in the general-purpose register set REGSET to register cache
783 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
784
785 static void
786 m88k_supply_gregset (const struct regset *regset,
787 struct regcache *regcache,
788 int regnum, const void *gregs, size_t len)
789 {
790 const gdb_byte *regs = gregs;
791 int i;
792
793 for (i = 0; i < M88K_NUM_REGS; i++)
794 {
795 if (regnum == i || regnum == -1)
796 regcache_raw_supply (regcache, i, regs + i * 4);
797 }
798 }
799
800 /* Motorola 88000 register set. */
801
802 static struct regset m88k_gregset =
803 {
804 NULL,
805 m88k_supply_gregset
806 };
807
808 /* Return the appropriate register set for the core section identified
809 by SECT_NAME and SECT_SIZE. */
810
811 static const struct regset *
812 m88k_regset_from_core_section (struct gdbarch *gdbarch,
813 const char *sect_name, size_t sect_size)
814 {
815 if (strcmp (sect_name, ".reg") == 0 && sect_size >= M88K_NUM_REGS * 4)
816 return &m88k_gregset;
817
818 return NULL;
819 }
820 \f
821
822 static struct gdbarch *
823 m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
824 {
825 struct gdbarch *gdbarch;
826
827 /* If there is already a candidate, use it. */
828 arches = gdbarch_list_lookup_by_info (arches, &info);
829 if (arches != NULL)
830 return arches->gdbarch;
831
832 /* Allocate space for the new architecture. */
833 gdbarch = gdbarch_alloc (&info, NULL);
834
835 /* There is no real `long double'. */
836 set_gdbarch_long_double_bit (gdbarch, 64);
837 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
838
839 set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
840 set_gdbarch_register_name (gdbarch, m88k_register_name);
841 set_gdbarch_register_type (gdbarch, m88k_register_type);
842
843 /* Register numbers of various important registers. */
844 set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
845 set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
846
847 /* Core file support. */
848 set_gdbarch_regset_from_core_section
849 (gdbarch, m88k_regset_from_core_section);
850
851 set_gdbarch_print_insn (gdbarch, print_insn_m88k);
852
853 set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
854
855 /* Stack grows downward. */
856 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
857
858 /* Call dummy code. */
859 set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
860 set_gdbarch_dummy_id (gdbarch, m88k_dummy_id);
861
862 /* Return value info */
863 set_gdbarch_return_value (gdbarch, m88k_return_value);
864
865 set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
866 set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
867 set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
868 set_gdbarch_write_pc (gdbarch, m88k_write_pc);
869
870 frame_base_set_default (gdbarch, &m88k_frame_base);
871 frame_unwind_append_unwinder (gdbarch, &m88k_frame_unwind);
872
873 return gdbarch;
874 }
875 \f
876
877 /* Provide a prototype to silence -Wmissing-prototypes. */
878 void _initialize_m88k_tdep (void);
879
880 void
881 _initialize_m88k_tdep (void)
882 {
883 gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);
884 }
This page took 0.051979 seconds and 4 git commands to generate.