1 /* Target-dependent code for the Motorola 88000 series.
3 Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "arch-utils.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
32 #include "trad-frame.h"
35 #include "gdb_assert.h"
36 #include "gdb_string.h"
38 #include "m88k-tdep.h"
40 /* Fetch the instruction at PC. */
43 m88k_fetch_instruction (CORE_ADDR pc
, enum bfd_endian byte_order
)
45 return read_memory_unsigned_integer (pc
, 4, byte_order
);
48 /* Register information. */
50 /* Return the name of register REGNUM. */
53 m88k_register_name (struct gdbarch
*gdbarch
, int regnum
)
55 static char *register_names
[] =
57 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
58 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
59 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
60 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
61 "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
64 if (regnum
>= 0 && regnum
< ARRAY_SIZE (register_names
))
65 return register_names
[regnum
];
70 /* Return the GDB type object for the "standard" data type of data in
74 m88k_register_type (struct gdbarch
*gdbarch
, int regnum
)
76 /* SXIP, SNIP, SFIP and R1 contain code addresses. */
77 if ((regnum
>= M88K_SXIP_REGNUM
&& regnum
<= M88K_SFIP_REGNUM
)
78 || regnum
== M88K_R1_REGNUM
)
79 return builtin_type (gdbarch
)->builtin_func_ptr
;
81 /* R30 and R31 typically contains data addresses. */
82 if (regnum
== M88K_R30_REGNUM
|| regnum
== M88K_R31_REGNUM
)
83 return builtin_type (gdbarch
)->builtin_data_ptr
;
85 return builtin_type (gdbarch
)->builtin_int32
;
90 m88k_addr_bits_remove (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
92 /* All instructures are 4-byte aligned. The lower 2 bits of SXIP,
93 SNIP and SFIP are used for special purposes: bit 0 is the
94 exception bit and bit 1 is the valid bit. */
98 /* Use the program counter to determine the contents and size of a
99 breakpoint instruction. Return a pointer to a string of bytes that
100 encode a breakpoint instruction, store the length of the string in
101 *LEN and optionally adjust *PC to point to the correct memory
102 location for inserting the breakpoint. */
104 static const gdb_byte
*
105 m88k_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pc
, int *len
)
108 static gdb_byte break_insn
[] = { 0xf0, 0x00, 0xd1, 0xff };
110 *len
= sizeof (break_insn
);
115 m88k_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
119 pc
= frame_unwind_register_unsigned (next_frame
, M88K_SXIP_REGNUM
);
120 return m88k_addr_bits_remove (gdbarch
, pc
);
124 m88k_write_pc (struct regcache
*regcache
, CORE_ADDR pc
)
126 /* According to the MC88100 RISC Microprocessor User's Manual,
129 "... can be made to return to a particular instruction by placing
130 a valid instruction address in the SNIP and the next sequential
131 instruction address in the SFIP (with V bits set and E bits
132 clear). The rte resumes execution at the instruction pointed to
133 by the SNIP, then the SFIP."
135 The E bit is the least significant bit (bit 0). The V (valid)
136 bit is bit 1. This is why we logical or 2 into the values we are
137 writing below. It turns out that SXIP plays no role when
138 returning from an exception so nothing special has to be done
139 with it. We could even (presumably) give it a totally bogus
142 regcache_cooked_write_unsigned (regcache
, M88K_SXIP_REGNUM
, pc
);
143 regcache_cooked_write_unsigned (regcache
, M88K_SNIP_REGNUM
, pc
| 2);
144 regcache_cooked_write_unsigned (regcache
, M88K_SFIP_REGNUM
, (pc
+ 4) | 2);
148 /* The functions on this page are intended to be used to classify
149 function arguments. */
151 /* Check whether TYPE is "Integral or Pointer". */
154 m88k_integral_or_pointer_p (const struct type
*type
)
156 switch (TYPE_CODE (type
))
162 case TYPE_CODE_RANGE
:
164 /* We have byte, half-word, word and extended-word/doubleword
166 int len
= TYPE_LENGTH (type
);
167 return (len
== 1 || len
== 2 || len
== 4 || len
== 8);
173 /* Allow only 32-bit pointers. */
174 return (TYPE_LENGTH (type
) == 4);
184 /* Check whether TYPE is "Floating". */
187 m88k_floating_p (const struct type
*type
)
189 switch (TYPE_CODE (type
))
193 int len
= TYPE_LENGTH (type
);
194 return (len
== 4 || len
== 8);
203 /* Check whether TYPE is "Structure or Union". */
206 m88k_structure_or_union_p (const struct type
*type
)
208 switch (TYPE_CODE (type
))
210 case TYPE_CODE_STRUCT
:
211 case TYPE_CODE_UNION
:
220 /* Check whether TYPE has 8-byte alignment. */
223 m88k_8_byte_align_p (struct type
*type
)
225 if (m88k_structure_or_union_p (type
))
229 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
231 struct type
*subtype
= check_typedef (TYPE_FIELD_TYPE (type
, i
));
233 if (m88k_8_byte_align_p (subtype
))
238 if (m88k_integral_or_pointer_p (type
) || m88k_floating_p (type
))
239 return (TYPE_LENGTH (type
) == 8);
244 /* Check whether TYPE can be passed in a register. */
247 m88k_in_register_p (struct type
*type
)
249 if (m88k_integral_or_pointer_p (type
) || m88k_floating_p (type
))
252 if (m88k_structure_or_union_p (type
) && TYPE_LENGTH (type
) == 4)
259 m88k_store_arguments (struct regcache
*regcache
, int nargs
,
260 struct value
**args
, CORE_ADDR sp
)
262 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
263 int num_register_words
= 0;
264 int num_stack_words
= 0;
267 for (i
= 0; i
< nargs
; i
++)
269 struct type
*type
= value_type (args
[i
]);
270 int len
= TYPE_LENGTH (type
);
272 if (m88k_integral_or_pointer_p (type
) && len
< 4)
274 args
[i
] = value_cast (builtin_type (gdbarch
)->builtin_int32
,
276 type
= value_type (args
[i
]);
277 len
= TYPE_LENGTH (type
);
280 if (m88k_in_register_p (type
))
284 if (num_register_words
% 2 == 1 && m88k_8_byte_align_p (type
))
287 num_words
+= ((len
+ 3) / 4);
288 if (num_register_words
+ num_words
<= 8)
290 num_register_words
+= num_words
;
294 /* We've run out of available registers. Pass the argument
298 if (num_stack_words
% 2 == 1 && m88k_8_byte_align_p (type
))
301 num_stack_words
+= ((len
+ 3) / 4);
304 /* Allocate stack space. */
305 sp
= align_down (sp
- 32 - num_stack_words
* 4, 16);
306 num_stack_words
= num_register_words
= 0;
308 for (i
= 0; i
< nargs
; i
++)
310 const bfd_byte
*valbuf
= value_contents (args
[i
]);
311 struct type
*type
= value_type (args
[i
]);
312 int len
= TYPE_LENGTH (type
);
313 int stack_word
= num_stack_words
;
315 if (m88k_in_register_p (type
))
317 int register_word
= num_register_words
;
319 if (register_word
% 2 == 1 && m88k_8_byte_align_p (type
))
322 gdb_assert (len
== 4 || len
== 8);
324 if (register_word
+ len
/ 8 < 8)
326 int regnum
= M88K_R2_REGNUM
+ register_word
;
328 regcache_raw_write (regcache
, regnum
, valbuf
);
330 regcache_raw_write (regcache
, regnum
+ 1, valbuf
+ 4);
332 num_register_words
= (register_word
+ len
/ 4);
337 if (stack_word
% 2 == -1 && m88k_8_byte_align_p (type
))
340 write_memory (sp
+ stack_word
* 4, valbuf
, len
);
341 num_stack_words
= (stack_word
+ (len
+ 3) / 4);
348 m88k_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
349 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
350 struct value
**args
, CORE_ADDR sp
, int struct_return
,
351 CORE_ADDR struct_addr
)
353 /* Set up the function arguments. */
354 sp
= m88k_store_arguments (regcache
, nargs
, args
, sp
);
355 gdb_assert (sp
% 16 == 0);
357 /* Store return value address. */
359 regcache_raw_write_unsigned (regcache
, M88K_R12_REGNUM
, struct_addr
);
361 /* Store the stack pointer and return address in the appropriate
363 regcache_raw_write_unsigned (regcache
, M88K_R31_REGNUM
, sp
);
364 regcache_raw_write_unsigned (regcache
, M88K_R1_REGNUM
, bp_addr
);
366 /* Return the stack pointer. */
370 static struct frame_id
371 m88k_dummy_id (struct gdbarch
*arch
, struct frame_info
*this_frame
)
375 sp
= get_frame_register_unsigned (this_frame
, M88K_R31_REGNUM
);
376 return frame_id_build (sp
, get_frame_pc (this_frame
));
380 /* Determine, for architecture GDBARCH, how a return value of TYPE
381 should be returned. If it is supposed to be returned in registers,
382 and READBUF is non-zero, read the appropriate value from REGCACHE,
383 and copy it into READBUF. If WRITEBUF is non-zero, write the value
384 from WRITEBUF into REGCACHE. */
386 static enum return_value_convention
387 m88k_return_value (struct gdbarch
*gdbarch
, struct type
*func_type
,
388 struct type
*type
, struct regcache
*regcache
,
389 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
391 int len
= TYPE_LENGTH (type
);
394 if (!m88k_integral_or_pointer_p (type
) && !m88k_floating_p (type
))
395 return RETURN_VALUE_STRUCT_CONVENTION
;
399 /* Read the contents of R2 and (if necessary) R3. */
400 regcache_cooked_read (regcache
, M88K_R2_REGNUM
, buf
);
403 regcache_cooked_read (regcache
, M88K_R3_REGNUM
, buf
+ 4);
404 gdb_assert (len
== 8);
405 memcpy (readbuf
, buf
, len
);
409 /* Just stripping off any unused bytes should preserve the
410 signed-ness just fine. */
411 memcpy (readbuf
, buf
+ 4 - len
, len
);
417 /* Read the contents to R2 and (if necessary) R3. */
420 gdb_assert (len
== 8);
421 memcpy (buf
, writebuf
, 8);
422 regcache_cooked_write (regcache
, M88K_R3_REGNUM
, buf
+ 4);
426 /* ??? Do we need to do any sign-extension here? */
427 memcpy (buf
+ 4 - len
, writebuf
, len
);
429 regcache_cooked_write (regcache
, M88K_R2_REGNUM
, buf
);
432 return RETURN_VALUE_REGISTER_CONVENTION
;
435 /* Default frame unwinder. */
437 struct m88k_frame_cache
446 /* Table of saved registers. */
447 struct trad_frame_saved_reg
*saved_regs
;
450 /* Prologue analysis. */
452 /* Macros for extracting fields from instructions. */
454 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
455 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
456 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
457 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
458 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
459 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
461 /* Possible actions to be taken by the prologue analyzer for the
462 instructions it encounters. */
464 enum m88k_prologue_insn_action
466 M88K_PIA_SKIP
, /* Ignore. */
467 M88K_PIA_NOTE_ST
, /* Note register store. */
468 M88K_PIA_NOTE_STD
, /* Note register pair store. */
469 M88K_PIA_NOTE_SP_ADJUSTMENT
, /* Note stack pointer adjustment. */
470 M88K_PIA_NOTE_FP_ASSIGNMENT
, /* Note frame pointer assignment. */
471 M88K_PIA_NOTE_BRANCH
, /* Note branch. */
472 M88K_PIA_NOTE_PROLOGUE_END
/* Note end of prologue. */
475 /* Table of instructions that may comprise a function prologue. */
477 struct m88k_prologue_insn
481 enum m88k_prologue_insn_action action
;
484 struct m88k_prologue_insn m88k_prologue_insn_table
[] =
486 /* Various register move instructions. */
487 { 0x58000000, 0xf800ffff, M88K_PIA_SKIP
}, /* or/or.u with immed of 0 */
488 { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP
}, /* or rd,r0,rs */
489 { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP
}, /* or rd,rs,r0 */
491 /* Various other instructions. */
492 { 0x58000000, 0xf8000000, M88K_PIA_SKIP
}, /* or/or.u */
494 /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */
495 { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT
},
497 /* Frame pointer assignment: "addu r30,r31,n". */
498 { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT
},
500 /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */
501 { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST
}, /* st rx,sp,n */
502 { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD
}, /* st.d rs,sp,n */
504 /* Instructions needed for setting up r25 for pic code. */
505 { 0x5f200000, 0xffff0000, M88K_PIA_SKIP
}, /* or.u r25,r0,offset_high */
506 { 0xcc000002, 0xffffffff, M88K_PIA_SKIP
}, /* bsr.n Lab */
507 { 0x5b390000, 0xffff0000, M88K_PIA_SKIP
}, /* or r25,r25,offset_low */
508 { 0xf7396001, 0xffffffff, M88K_PIA_SKIP
}, /* Lab: addu r25,r25,r1 */
510 /* Various branch or jump instructions which have a delay slot --
511 these do not form part of the prologue, but the instruction in
512 the delay slot might be a store instruction which should be
514 { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH
},
515 /* br.n, bsr.n, bb0.n, or bb1.n */
516 { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH
}, /* bcnd.n */
517 { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH
}, /* jmp.n or jsr.n */
519 /* Catch all. Ends prologue analysis. */
520 { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END
}
523 /* Do a full analysis of the function prologue at PC and update CACHE
524 accordingly. Bail out early if LIMIT is reached. Return the
525 address where the analysis stopped. If LIMIT points beyond the
526 function prologue, the return address should be the end of the
530 m88k_analyze_prologue (struct gdbarch
*gdbarch
,
531 CORE_ADDR pc
, CORE_ADDR limit
,
532 struct m88k_frame_cache
*cache
)
534 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
535 CORE_ADDR end
= limit
;
537 /* Provide a dummy cache if necessary. */
540 size_t sizeof_saved_regs
=
541 (M88K_R31_REGNUM
+ 1) * sizeof (struct trad_frame_saved_reg
);
543 cache
= alloca (sizeof (struct m88k_frame_cache
));
544 cache
->saved_regs
= alloca (sizeof_saved_regs
);
546 /* We only initialize the members we care about. */
547 cache
->saved_regs
[M88K_R1_REGNUM
].addr
= -1;
548 cache
->fp_offset
= -1;
553 struct m88k_prologue_insn
*pi
= m88k_prologue_insn_table
;
554 unsigned long insn
= m88k_fetch_instruction (pc
, byte_order
);
556 while ((insn
& pi
->mask
) != pi
->insn
)
562 /* If we have a frame pointer, and R1 has been saved,
563 consider this instruction as not being part of the
565 if (cache
->fp_offset
!= -1
566 && cache
->saved_regs
[M88K_R1_REGNUM
].addr
!= -1)
567 return min (pc
, end
);
570 case M88K_PIA_NOTE_ST
:
571 case M88K_PIA_NOTE_STD
:
572 /* If no frame has been allocated, the stores aren't part of
574 if (cache
->sp_offset
== 0)
575 return min (pc
, end
);
577 /* Record location of saved registers. */
579 int regnum
= ST_SRC (insn
) + M88K_R0_REGNUM
;
580 ULONGEST offset
= ST_OFFSET (insn
);
582 cache
->saved_regs
[regnum
].addr
= offset
;
583 if (pi
->action
== M88K_PIA_NOTE_STD
&& regnum
< M88K_R31_REGNUM
)
584 cache
->saved_regs
[regnum
+ 1].addr
= offset
+ 4;
588 case M88K_PIA_NOTE_SP_ADJUSTMENT
:
589 /* A second stack pointer adjustment isn't part of the
591 if (cache
->sp_offset
!= 0)
592 return min (pc
, end
);
594 /* Store stack pointer adjustment. */
595 cache
->sp_offset
= -SUBU_OFFSET (insn
);
598 case M88K_PIA_NOTE_FP_ASSIGNMENT
:
599 /* A second frame pointer assignment isn't part of the
601 if (cache
->fp_offset
!= -1)
602 return min (pc
, end
);
604 /* Record frame pointer assignment. */
605 cache
->fp_offset
= ADDU_OFFSET (insn
);
608 case M88K_PIA_NOTE_BRANCH
:
609 /* The branch instruction isn't part of the prologue, but
610 the instruction in the delay slot might be. Limit the
611 prologue analysis to the delay slot and record the branch
612 instruction as the end of the prologue. */
613 limit
= min (limit
, pc
+ 2 * M88K_INSN_SIZE
);
617 case M88K_PIA_NOTE_PROLOGUE_END
:
618 return min (pc
, end
);
621 pc
+= M88K_INSN_SIZE
;
627 /* An upper limit to the size of the prologue. */
628 const int m88k_max_prologue_size
= 128 * M88K_INSN_SIZE
;
630 /* Return the address of first real instruction of the function
634 m88k_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
636 struct symtab_and_line sal
;
637 CORE_ADDR func_start
, func_end
;
639 /* This is the preferred method, find the end of the prologue by
640 using the debugging information. */
641 if (find_pc_partial_function (pc
, NULL
, &func_start
, &func_end
))
643 sal
= find_pc_line (func_start
, 0);
645 if (sal
.end
< func_end
&& pc
<= sal
.end
)
649 return m88k_analyze_prologue (gdbarch
, pc
, pc
+ m88k_max_prologue_size
,
653 static struct m88k_frame_cache
*
654 m88k_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
656 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
657 struct m88k_frame_cache
*cache
;
663 cache
= FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache
);
664 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
665 cache
->fp_offset
= -1;
667 cache
->pc
= get_frame_func (this_frame
);
669 m88k_analyze_prologue (gdbarch
, cache
->pc
, get_frame_pc (this_frame
),
672 /* Calculate the stack pointer used in the prologue. */
673 if (cache
->fp_offset
!= -1)
677 fp
= get_frame_register_unsigned (this_frame
, M88K_R30_REGNUM
);
678 frame_sp
= fp
- cache
->fp_offset
;
682 /* If we know where the return address is saved, we can take a
683 solid guess at what the frame pointer should be. */
684 if (cache
->saved_regs
[M88K_R1_REGNUM
].addr
!= -1)
685 cache
->fp_offset
= cache
->saved_regs
[M88K_R1_REGNUM
].addr
- 4;
686 frame_sp
= get_frame_register_unsigned (this_frame
, M88K_R31_REGNUM
);
689 /* Now that we know the stack pointer, adjust the location of the
694 for (regnum
= M88K_R0_REGNUM
; regnum
< M88K_R31_REGNUM
; regnum
++)
695 if (cache
->saved_regs
[regnum
].addr
!= -1)
696 cache
->saved_regs
[regnum
].addr
+= frame_sp
;
699 /* Calculate the frame's base. */
700 cache
->base
= frame_sp
- cache
->sp_offset
;
701 trad_frame_set_value (cache
->saved_regs
, M88K_R31_REGNUM
, cache
->base
);
703 /* Identify SXIP with the return address in R1. */
704 cache
->saved_regs
[M88K_SXIP_REGNUM
] = cache
->saved_regs
[M88K_R1_REGNUM
];
711 m88k_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
712 struct frame_id
*this_id
)
714 struct m88k_frame_cache
*cache
= m88k_frame_cache (this_frame
, this_cache
);
716 /* This marks the outermost frame. */
717 if (cache
->base
== 0)
720 (*this_id
) = frame_id_build (cache
->base
, cache
->pc
);
723 static struct value
*
724 m88k_frame_prev_register (struct frame_info
*this_frame
,
725 void **this_cache
, int regnum
)
727 struct m88k_frame_cache
*cache
= m88k_frame_cache (this_frame
, this_cache
);
729 if (regnum
== M88K_SNIP_REGNUM
|| regnum
== M88K_SFIP_REGNUM
)
734 value
= trad_frame_get_prev_register (this_frame
, cache
->saved_regs
,
736 pc
= value_as_long (value
);
737 release_value (value
);
740 if (regnum
== M88K_SFIP_REGNUM
)
743 return frame_unwind_got_constant (this_frame
, regnum
, pc
+ 4);
746 return trad_frame_get_prev_register (this_frame
, cache
->saved_regs
, regnum
);
749 static const struct frame_unwind m88k_frame_unwind
=
753 m88k_frame_prev_register
,
755 default_frame_sniffer
760 m88k_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
762 struct m88k_frame_cache
*cache
= m88k_frame_cache (this_frame
, this_cache
);
764 if (cache
->fp_offset
!= -1)
765 return cache
->base
+ cache
->sp_offset
+ cache
->fp_offset
;
770 static const struct frame_base m88k_frame_base
=
773 m88k_frame_base_address
,
774 m88k_frame_base_address
,
775 m88k_frame_base_address
779 /* Core file support. */
781 /* Supply register REGNUM from the buffer specified by GREGS and LEN
782 in the general-purpose register set REGSET to register cache
783 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
786 m88k_supply_gregset (const struct regset
*regset
,
787 struct regcache
*regcache
,
788 int regnum
, const void *gregs
, size_t len
)
790 const gdb_byte
*regs
= gregs
;
793 for (i
= 0; i
< M88K_NUM_REGS
; i
++)
795 if (regnum
== i
|| regnum
== -1)
796 regcache_raw_supply (regcache
, i
, regs
+ i
* 4);
800 /* Motorola 88000 register set. */
802 static struct regset m88k_gregset
=
808 /* Return the appropriate register set for the core section identified
809 by SECT_NAME and SECT_SIZE. */
811 static const struct regset
*
812 m88k_regset_from_core_section (struct gdbarch
*gdbarch
,
813 const char *sect_name
, size_t sect_size
)
815 if (strcmp (sect_name
, ".reg") == 0 && sect_size
>= M88K_NUM_REGS
* 4)
816 return &m88k_gregset
;
822 static struct gdbarch
*
823 m88k_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
825 struct gdbarch
*gdbarch
;
827 /* If there is already a candidate, use it. */
828 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
830 return arches
->gdbarch
;
832 /* Allocate space for the new architecture. */
833 gdbarch
= gdbarch_alloc (&info
, NULL
);
835 /* There is no real `long double'. */
836 set_gdbarch_long_double_bit (gdbarch
, 64);
837 set_gdbarch_long_double_format (gdbarch
, floatformats_ieee_double
);
839 set_gdbarch_num_regs (gdbarch
, M88K_NUM_REGS
);
840 set_gdbarch_register_name (gdbarch
, m88k_register_name
);
841 set_gdbarch_register_type (gdbarch
, m88k_register_type
);
843 /* Register numbers of various important registers. */
844 set_gdbarch_sp_regnum (gdbarch
, M88K_R31_REGNUM
);
845 set_gdbarch_pc_regnum (gdbarch
, M88K_SXIP_REGNUM
);
847 /* Core file support. */
848 set_gdbarch_regset_from_core_section
849 (gdbarch
, m88k_regset_from_core_section
);
851 set_gdbarch_print_insn (gdbarch
, print_insn_m88k
);
853 set_gdbarch_skip_prologue (gdbarch
, m88k_skip_prologue
);
855 /* Stack grows downward. */
856 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
858 /* Call dummy code. */
859 set_gdbarch_push_dummy_call (gdbarch
, m88k_push_dummy_call
);
860 set_gdbarch_dummy_id (gdbarch
, m88k_dummy_id
);
862 /* Return value info */
863 set_gdbarch_return_value (gdbarch
, m88k_return_value
);
865 set_gdbarch_addr_bits_remove (gdbarch
, m88k_addr_bits_remove
);
866 set_gdbarch_breakpoint_from_pc (gdbarch
, m88k_breakpoint_from_pc
);
867 set_gdbarch_unwind_pc (gdbarch
, m88k_unwind_pc
);
868 set_gdbarch_write_pc (gdbarch
, m88k_write_pc
);
870 frame_base_set_default (gdbarch
, &m88k_frame_base
);
871 frame_unwind_append_unwinder (gdbarch
, &m88k_frame_unwind
);
877 /* Provide a prototype to silence -Wmissing-prototypes. */
878 void _initialize_m88k_tdep (void);
881 _initialize_m88k_tdep (void)
883 gdbarch_register (bfd_arch_m88k
, m88k_gdbarch_init
, NULL
);