Update years in copyright notice for the GDB files.
[deliverable/binutils-gdb.git] / gdb / m88k-tdep.c
1 /* Target-dependent code for the Motorola 88000 series.
2
3 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "frame.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
26 #include "gdbcore.h"
27 #include "gdbtypes.h"
28 #include "regcache.h"
29 #include "regset.h"
30 #include "symtab.h"
31 #include "trad-frame.h"
32 #include "value.h"
33
34 #include "gdb_assert.h"
35 #include "gdb_string.h"
36
37 #include "m88k-tdep.h"
38
39 /* Fetch the instruction at PC. */
40
41 static unsigned long
42 m88k_fetch_instruction (CORE_ADDR pc, enum bfd_endian byte_order)
43 {
44 return read_memory_unsigned_integer (pc, 4, byte_order);
45 }
46
47 /* Register information. */
48
49 /* Return the name of register REGNUM. */
50
51 static const char *
52 m88k_register_name (struct gdbarch *gdbarch, int regnum)
53 {
54 static char *register_names[] =
55 {
56 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
59 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
60 "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
61 };
62
63 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
64 return register_names[regnum];
65
66 return NULL;
67 }
68
69 /* Return the GDB type object for the "standard" data type of data in
70 register REGNUM. */
71
72 static struct type *
73 m88k_register_type (struct gdbarch *gdbarch, int regnum)
74 {
75 /* SXIP, SNIP, SFIP and R1 contain code addresses. */
76 if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
77 || regnum == M88K_R1_REGNUM)
78 return builtin_type (gdbarch)->builtin_func_ptr;
79
80 /* R30 and R31 typically contains data addresses. */
81 if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
82 return builtin_type (gdbarch)->builtin_data_ptr;
83
84 return builtin_type (gdbarch)->builtin_int32;
85 }
86 \f
87
88 static CORE_ADDR
89 m88k_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
90 {
91 /* All instructures are 4-byte aligned. The lower 2 bits of SXIP,
92 SNIP and SFIP are used for special purposes: bit 0 is the
93 exception bit and bit 1 is the valid bit. */
94 return addr & ~0x3;
95 }
96
97 /* Use the program counter to determine the contents and size of a
98 breakpoint instruction. Return a pointer to a string of bytes that
99 encode a breakpoint instruction, store the length of the string in
100 *LEN and optionally adjust *PC to point to the correct memory
101 location for inserting the breakpoint. */
102
103 static const gdb_byte *
104 m88k_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
105 {
106 /* tb 0,r0,511 */
107 static gdb_byte break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
108
109 *len = sizeof (break_insn);
110 return break_insn;
111 }
112
113 static CORE_ADDR
114 m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
115 {
116 CORE_ADDR pc;
117
118 pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
119 return m88k_addr_bits_remove (gdbarch, pc);
120 }
121
122 static void
123 m88k_write_pc (struct regcache *regcache, CORE_ADDR pc)
124 {
125 /* According to the MC88100 RISC Microprocessor User's Manual,
126 section 6.4.3.1.2:
127
128 "... can be made to return to a particular instruction by placing
129 a valid instruction address in the SNIP and the next sequential
130 instruction address in the SFIP (with V bits set and E bits
131 clear). The rte resumes execution at the instruction pointed to
132 by the SNIP, then the SFIP."
133
134 The E bit is the least significant bit (bit 0). The V (valid)
135 bit is bit 1. This is why we logical or 2 into the values we are
136 writing below. It turns out that SXIP plays no role when
137 returning from an exception so nothing special has to be done
138 with it. We could even (presumably) give it a totally bogus
139 value. */
140
141 regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc);
142 regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2);
143 regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2);
144 }
145 \f
146
147 /* The functions on this page are intended to be used to classify
148 function arguments. */
149
150 /* Check whether TYPE is "Integral or Pointer". */
151
152 static int
153 m88k_integral_or_pointer_p (const struct type *type)
154 {
155 switch (TYPE_CODE (type))
156 {
157 case TYPE_CODE_INT:
158 case TYPE_CODE_BOOL:
159 case TYPE_CODE_CHAR:
160 case TYPE_CODE_ENUM:
161 case TYPE_CODE_RANGE:
162 {
163 /* We have byte, half-word, word and extended-word/doubleword
164 integral types. */
165 int len = TYPE_LENGTH (type);
166 return (len == 1 || len == 2 || len == 4 || len == 8);
167 }
168 return 1;
169 case TYPE_CODE_PTR:
170 case TYPE_CODE_REF:
171 {
172 /* Allow only 32-bit pointers. */
173 return (TYPE_LENGTH (type) == 4);
174 }
175 return 1;
176 default:
177 break;
178 }
179
180 return 0;
181 }
182
183 /* Check whether TYPE is "Floating". */
184
185 static int
186 m88k_floating_p (const struct type *type)
187 {
188 switch (TYPE_CODE (type))
189 {
190 case TYPE_CODE_FLT:
191 {
192 int len = TYPE_LENGTH (type);
193 return (len == 4 || len == 8);
194 }
195 default:
196 break;
197 }
198
199 return 0;
200 }
201
202 /* Check whether TYPE is "Structure or Union". */
203
204 static int
205 m88k_structure_or_union_p (const struct type *type)
206 {
207 switch (TYPE_CODE (type))
208 {
209 case TYPE_CODE_STRUCT:
210 case TYPE_CODE_UNION:
211 return 1;
212 default:
213 break;
214 }
215
216 return 0;
217 }
218
219 /* Check whether TYPE has 8-byte alignment. */
220
221 static int
222 m88k_8_byte_align_p (struct type *type)
223 {
224 if (m88k_structure_or_union_p (type))
225 {
226 int i;
227
228 for (i = 0; i < TYPE_NFIELDS (type); i++)
229 {
230 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
231
232 if (m88k_8_byte_align_p (subtype))
233 return 1;
234 }
235 }
236
237 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
238 return (TYPE_LENGTH (type) == 8);
239
240 return 0;
241 }
242
243 /* Check whether TYPE can be passed in a register. */
244
245 static int
246 m88k_in_register_p (struct type *type)
247 {
248 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
249 return 1;
250
251 if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
252 return 1;
253
254 return 0;
255 }
256
257 static CORE_ADDR
258 m88k_store_arguments (struct regcache *regcache, int nargs,
259 struct value **args, CORE_ADDR sp)
260 {
261 struct gdbarch *gdbarch = get_regcache_arch (regcache);
262 int num_register_words = 0;
263 int num_stack_words = 0;
264 int i;
265
266 for (i = 0; i < nargs; i++)
267 {
268 struct type *type = value_type (args[i]);
269 int len = TYPE_LENGTH (type);
270
271 if (m88k_integral_or_pointer_p (type) && len < 4)
272 {
273 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
274 args[i]);
275 type = value_type (args[i]);
276 len = TYPE_LENGTH (type);
277 }
278
279 if (m88k_in_register_p (type))
280 {
281 int num_words = 0;
282
283 if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
284 num_words++;
285
286 num_words += ((len + 3) / 4);
287 if (num_register_words + num_words <= 8)
288 {
289 num_register_words += num_words;
290 continue;
291 }
292
293 /* We've run out of available registers. Pass the argument
294 on the stack. */
295 }
296
297 if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
298 num_stack_words++;
299
300 num_stack_words += ((len + 3) / 4);
301 }
302
303 /* Allocate stack space. */
304 sp = align_down (sp - 32 - num_stack_words * 4, 16);
305 num_stack_words = num_register_words = 0;
306
307 for (i = 0; i < nargs; i++)
308 {
309 const bfd_byte *valbuf = value_contents (args[i]);
310 struct type *type = value_type (args[i]);
311 int len = TYPE_LENGTH (type);
312 int stack_word = num_stack_words;
313
314 if (m88k_in_register_p (type))
315 {
316 int register_word = num_register_words;
317
318 if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
319 register_word++;
320
321 gdb_assert (len == 4 || len == 8);
322
323 if (register_word + len / 8 < 8)
324 {
325 int regnum = M88K_R2_REGNUM + register_word;
326
327 regcache_raw_write (regcache, regnum, valbuf);
328 if (len > 4)
329 regcache_raw_write (regcache, regnum + 1, valbuf + 4);
330
331 num_register_words = (register_word + len / 4);
332 continue;
333 }
334 }
335
336 if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
337 stack_word++;
338
339 write_memory (sp + stack_word * 4, valbuf, len);
340 num_stack_words = (stack_word + (len + 3) / 4);
341 }
342
343 return sp;
344 }
345
346 static CORE_ADDR
347 m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
348 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
349 struct value **args, CORE_ADDR sp, int struct_return,
350 CORE_ADDR struct_addr)
351 {
352 /* Set up the function arguments. */
353 sp = m88k_store_arguments (regcache, nargs, args, sp);
354 gdb_assert (sp % 16 == 0);
355
356 /* Store return value address. */
357 if (struct_return)
358 regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
359
360 /* Store the stack pointer and return address in the appropriate
361 registers. */
362 regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
363 regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
364
365 /* Return the stack pointer. */
366 return sp;
367 }
368
369 static struct frame_id
370 m88k_dummy_id (struct gdbarch *arch, struct frame_info *this_frame)
371 {
372 CORE_ADDR sp;
373
374 sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
375 return frame_id_build (sp, get_frame_pc (this_frame));
376 }
377 \f
378
379 /* Determine, for architecture GDBARCH, how a return value of TYPE
380 should be returned. If it is supposed to be returned in registers,
381 and READBUF is non-zero, read the appropriate value from REGCACHE,
382 and copy it into READBUF. If WRITEBUF is non-zero, write the value
383 from WRITEBUF into REGCACHE. */
384
385 static enum return_value_convention
386 m88k_return_value (struct gdbarch *gdbarch, struct value *function,
387 struct type *type, struct regcache *regcache,
388 gdb_byte *readbuf, const gdb_byte *writebuf)
389 {
390 int len = TYPE_LENGTH (type);
391 gdb_byte buf[8];
392
393 if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
394 return RETURN_VALUE_STRUCT_CONVENTION;
395
396 if (readbuf)
397 {
398 /* Read the contents of R2 and (if necessary) R3. */
399 regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
400 if (len > 4)
401 {
402 regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
403 gdb_assert (len == 8);
404 memcpy (readbuf, buf, len);
405 }
406 else
407 {
408 /* Just stripping off any unused bytes should preserve the
409 signed-ness just fine. */
410 memcpy (readbuf, buf + 4 - len, len);
411 }
412 }
413
414 if (writebuf)
415 {
416 /* Read the contents to R2 and (if necessary) R3. */
417 if (len > 4)
418 {
419 gdb_assert (len == 8);
420 memcpy (buf, writebuf, 8);
421 regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
422 }
423 else
424 {
425 /* ??? Do we need to do any sign-extension here? */
426 memcpy (buf + 4 - len, writebuf, len);
427 }
428 regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
429 }
430
431 return RETURN_VALUE_REGISTER_CONVENTION;
432 }
433 \f
434 /* Default frame unwinder. */
435
436 struct m88k_frame_cache
437 {
438 /* Base address. */
439 CORE_ADDR base;
440 CORE_ADDR pc;
441
442 int sp_offset;
443 int fp_offset;
444
445 /* Table of saved registers. */
446 struct trad_frame_saved_reg *saved_regs;
447 };
448
449 /* Prologue analysis. */
450
451 /* Macros for extracting fields from instructions. */
452
453 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
454 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
455 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
456 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
457 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
458 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
459
460 /* Possible actions to be taken by the prologue analyzer for the
461 instructions it encounters. */
462
463 enum m88k_prologue_insn_action
464 {
465 M88K_PIA_SKIP, /* Ignore. */
466 M88K_PIA_NOTE_ST, /* Note register store. */
467 M88K_PIA_NOTE_STD, /* Note register pair store. */
468 M88K_PIA_NOTE_SP_ADJUSTMENT, /* Note stack pointer adjustment. */
469 M88K_PIA_NOTE_FP_ASSIGNMENT, /* Note frame pointer assignment. */
470 M88K_PIA_NOTE_BRANCH, /* Note branch. */
471 M88K_PIA_NOTE_PROLOGUE_END /* Note end of prologue. */
472 };
473
474 /* Table of instructions that may comprise a function prologue. */
475
476 struct m88k_prologue_insn
477 {
478 unsigned long insn;
479 unsigned long mask;
480 enum m88k_prologue_insn_action action;
481 };
482
483 struct m88k_prologue_insn m88k_prologue_insn_table[] =
484 {
485 /* Various register move instructions. */
486 { 0x58000000, 0xf800ffff, M88K_PIA_SKIP }, /* or/or.u with immed of 0 */
487 { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP }, /* or rd,r0,rs */
488 { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP }, /* or rd,rs,r0 */
489
490 /* Various other instructions. */
491 { 0x58000000, 0xf8000000, M88K_PIA_SKIP }, /* or/or.u */
492
493 /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */
494 { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
495
496 /* Frame pointer assignment: "addu r30,r31,n". */
497 { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
498
499 /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */
500 { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST }, /* st rx,sp,n */
501 { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
502
503 /* Instructions needed for setting up r25 for pic code. */
504 { 0x5f200000, 0xffff0000, M88K_PIA_SKIP }, /* or.u r25,r0,offset_high */
505 { 0xcc000002, 0xffffffff, M88K_PIA_SKIP }, /* bsr.n Lab */
506 { 0x5b390000, 0xffff0000, M88K_PIA_SKIP }, /* or r25,r25,offset_low */
507 { 0xf7396001, 0xffffffff, M88K_PIA_SKIP }, /* Lab: addu r25,r25,r1 */
508
509 /* Various branch or jump instructions which have a delay slot --
510 these do not form part of the prologue, but the instruction in
511 the delay slot might be a store instruction which should be
512 noted. */
513 { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
514 /* br.n, bsr.n, bb0.n, or bb1.n */
515 { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
516 { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
517
518 /* Catch all. Ends prologue analysis. */
519 { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
520 };
521
522 /* Do a full analysis of the function prologue at PC and update CACHE
523 accordingly. Bail out early if LIMIT is reached. Return the
524 address where the analysis stopped. If LIMIT points beyond the
525 function prologue, the return address should be the end of the
526 prologue. */
527
528 static CORE_ADDR
529 m88k_analyze_prologue (struct gdbarch *gdbarch,
530 CORE_ADDR pc, CORE_ADDR limit,
531 struct m88k_frame_cache *cache)
532 {
533 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
534 CORE_ADDR end = limit;
535
536 /* Provide a dummy cache if necessary. */
537 if (cache == NULL)
538 {
539 size_t sizeof_saved_regs =
540 (M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg);
541
542 cache = alloca (sizeof (struct m88k_frame_cache));
543 cache->saved_regs = alloca (sizeof_saved_regs);
544
545 /* We only initialize the members we care about. */
546 cache->saved_regs[M88K_R1_REGNUM].addr = -1;
547 cache->fp_offset = -1;
548 }
549
550 while (pc < limit)
551 {
552 struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
553 unsigned long insn = m88k_fetch_instruction (pc, byte_order);
554
555 while ((insn & pi->mask) != pi->insn)
556 pi++;
557
558 switch (pi->action)
559 {
560 case M88K_PIA_SKIP:
561 /* If we have a frame pointer, and R1 has been saved,
562 consider this instruction as not being part of the
563 prologue. */
564 if (cache->fp_offset != -1
565 && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
566 return min (pc, end);
567 break;
568
569 case M88K_PIA_NOTE_ST:
570 case M88K_PIA_NOTE_STD:
571 /* If no frame has been allocated, the stores aren't part of
572 the prologue. */
573 if (cache->sp_offset == 0)
574 return min (pc, end);
575
576 /* Record location of saved registers. */
577 {
578 int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
579 ULONGEST offset = ST_OFFSET (insn);
580
581 cache->saved_regs[regnum].addr = offset;
582 if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
583 cache->saved_regs[regnum + 1].addr = offset + 4;
584 }
585 break;
586
587 case M88K_PIA_NOTE_SP_ADJUSTMENT:
588 /* A second stack pointer adjustment isn't part of the
589 prologue. */
590 if (cache->sp_offset != 0)
591 return min (pc, end);
592
593 /* Store stack pointer adjustment. */
594 cache->sp_offset = -SUBU_OFFSET (insn);
595 break;
596
597 case M88K_PIA_NOTE_FP_ASSIGNMENT:
598 /* A second frame pointer assignment isn't part of the
599 prologue. */
600 if (cache->fp_offset != -1)
601 return min (pc, end);
602
603 /* Record frame pointer assignment. */
604 cache->fp_offset = ADDU_OFFSET (insn);
605 break;
606
607 case M88K_PIA_NOTE_BRANCH:
608 /* The branch instruction isn't part of the prologue, but
609 the instruction in the delay slot might be. Limit the
610 prologue analysis to the delay slot and record the branch
611 instruction as the end of the prologue. */
612 limit = min (limit, pc + 2 * M88K_INSN_SIZE);
613 end = pc;
614 break;
615
616 case M88K_PIA_NOTE_PROLOGUE_END:
617 return min (pc, end);
618 }
619
620 pc += M88K_INSN_SIZE;
621 }
622
623 return end;
624 }
625
626 /* An upper limit to the size of the prologue. */
627 const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
628
629 /* Return the address of first real instruction of the function
630 starting at PC. */
631
632 static CORE_ADDR
633 m88k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
634 {
635 struct symtab_and_line sal;
636 CORE_ADDR func_start, func_end;
637
638 /* This is the preferred method, find the end of the prologue by
639 using the debugging information. */
640 if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
641 {
642 sal = find_pc_line (func_start, 0);
643
644 if (sal.end < func_end && pc <= sal.end)
645 return sal.end;
646 }
647
648 return m88k_analyze_prologue (gdbarch, pc, pc + m88k_max_prologue_size,
649 NULL);
650 }
651
652 static struct m88k_frame_cache *
653 m88k_frame_cache (struct frame_info *this_frame, void **this_cache)
654 {
655 struct gdbarch *gdbarch = get_frame_arch (this_frame);
656 struct m88k_frame_cache *cache;
657 CORE_ADDR frame_sp;
658
659 if (*this_cache)
660 return *this_cache;
661
662 cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
663 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
664 cache->fp_offset = -1;
665
666 cache->pc = get_frame_func (this_frame);
667 if (cache->pc != 0)
668 m88k_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
669 cache);
670
671 /* Calculate the stack pointer used in the prologue. */
672 if (cache->fp_offset != -1)
673 {
674 CORE_ADDR fp;
675
676 fp = get_frame_register_unsigned (this_frame, M88K_R30_REGNUM);
677 frame_sp = fp - cache->fp_offset;
678 }
679 else
680 {
681 /* If we know where the return address is saved, we can take a
682 solid guess at what the frame pointer should be. */
683 if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
684 cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
685 frame_sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
686 }
687
688 /* Now that we know the stack pointer, adjust the location of the
689 saved registers. */
690 {
691 int regnum;
692
693 for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
694 if (cache->saved_regs[regnum].addr != -1)
695 cache->saved_regs[regnum].addr += frame_sp;
696 }
697
698 /* Calculate the frame's base. */
699 cache->base = frame_sp - cache->sp_offset;
700 trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
701
702 /* Identify SXIP with the return address in R1. */
703 cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
704
705 *this_cache = cache;
706 return cache;
707 }
708
709 static void
710 m88k_frame_this_id (struct frame_info *this_frame, void **this_cache,
711 struct frame_id *this_id)
712 {
713 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
714
715 /* This marks the outermost frame. */
716 if (cache->base == 0)
717 return;
718
719 (*this_id) = frame_id_build (cache->base, cache->pc);
720 }
721
722 static struct value *
723 m88k_frame_prev_register (struct frame_info *this_frame,
724 void **this_cache, int regnum)
725 {
726 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
727
728 if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
729 {
730 struct value *value;
731 CORE_ADDR pc;
732
733 value = trad_frame_get_prev_register (this_frame, cache->saved_regs,
734 M88K_SXIP_REGNUM);
735 pc = value_as_long (value);
736 release_value (value);
737 value_free (value);
738
739 if (regnum == M88K_SFIP_REGNUM)
740 pc += 4;
741
742 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
743 }
744
745 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
746 }
747
748 static const struct frame_unwind m88k_frame_unwind =
749 {
750 NORMAL_FRAME,
751 default_frame_unwind_stop_reason,
752 m88k_frame_this_id,
753 m88k_frame_prev_register,
754 NULL,
755 default_frame_sniffer
756 };
757 \f
758
759 static CORE_ADDR
760 m88k_frame_base_address (struct frame_info *this_frame, void **this_cache)
761 {
762 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
763
764 if (cache->fp_offset != -1)
765 return cache->base + cache->sp_offset + cache->fp_offset;
766
767 return 0;
768 }
769
770 static const struct frame_base m88k_frame_base =
771 {
772 &m88k_frame_unwind,
773 m88k_frame_base_address,
774 m88k_frame_base_address,
775 m88k_frame_base_address
776 };
777 \f
778
779 /* Core file support. */
780
781 /* Supply register REGNUM from the buffer specified by GREGS and LEN
782 in the general-purpose register set REGSET to register cache
783 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
784
785 static void
786 m88k_supply_gregset (const struct regset *regset,
787 struct regcache *regcache,
788 int regnum, const void *gregs, size_t len)
789 {
790 const gdb_byte *regs = gregs;
791 int i;
792
793 for (i = 0; i < M88K_NUM_REGS; i++)
794 {
795 if (regnum == i || regnum == -1)
796 regcache_raw_supply (regcache, i, regs + i * 4);
797 }
798 }
799
800 /* Motorola 88000 register set. */
801
802 static struct regset m88k_gregset =
803 {
804 NULL,
805 m88k_supply_gregset
806 };
807
808 /* Return the appropriate register set for the core section identified
809 by SECT_NAME and SECT_SIZE. */
810
811 static const struct regset *
812 m88k_regset_from_core_section (struct gdbarch *gdbarch,
813 const char *sect_name, size_t sect_size)
814 {
815 if (strcmp (sect_name, ".reg") == 0 && sect_size >= M88K_NUM_REGS * 4)
816 return &m88k_gregset;
817
818 return NULL;
819 }
820 \f
821
822 static struct gdbarch *
823 m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
824 {
825 struct gdbarch *gdbarch;
826
827 /* If there is already a candidate, use it. */
828 arches = gdbarch_list_lookup_by_info (arches, &info);
829 if (arches != NULL)
830 return arches->gdbarch;
831
832 /* Allocate space for the new architecture. */
833 gdbarch = gdbarch_alloc (&info, NULL);
834
835 /* There is no real `long double'. */
836 set_gdbarch_long_double_bit (gdbarch, 64);
837 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
838
839 set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
840 set_gdbarch_register_name (gdbarch, m88k_register_name);
841 set_gdbarch_register_type (gdbarch, m88k_register_type);
842
843 /* Register numbers of various important registers. */
844 set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
845 set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
846
847 /* Core file support. */
848 set_gdbarch_regset_from_core_section
849 (gdbarch, m88k_regset_from_core_section);
850
851 set_gdbarch_print_insn (gdbarch, print_insn_m88k);
852
853 set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
854
855 /* Stack grows downward. */
856 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
857
858 /* Call dummy code. */
859 set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
860 set_gdbarch_dummy_id (gdbarch, m88k_dummy_id);
861
862 /* Return value info. */
863 set_gdbarch_return_value (gdbarch, m88k_return_value);
864
865 set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
866 set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
867 set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
868 set_gdbarch_write_pc (gdbarch, m88k_write_pc);
869
870 frame_base_set_default (gdbarch, &m88k_frame_base);
871 frame_unwind_append_unwinder (gdbarch, &m88k_frame_unwind);
872
873 return gdbarch;
874 }
875 \f
876
877 /* Provide a prototype to silence -Wmissing-prototypes. */
878 void _initialize_m88k_tdep (void);
879
880 void
881 _initialize_m88k_tdep (void)
882 {
883 gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);
884 }
This page took 0.049786 seconds and 4 git commands to generate.