Remove "noisy" parameter from clear_complaints
[deliverable/binutils-gdb.git] / gdb / macrotab.c
1 /* C preprocessor macro tables for GDB.
2 Copyright (C) 2002-2018 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_obstack.h"
22 #include "splay-tree.h"
23 #include "filenames.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "macrotab.h"
28 #include "bcache.h"
29 #include "complaints.h"
30 #include "macroexp.h"
31
32 \f
33 /* The macro table structure. */
34
35 struct macro_table
36 {
37 /* The obstack this table's data should be allocated in, or zero if
38 we should use xmalloc. */
39 struct obstack *obstack;
40
41 /* The bcache we should use to hold macro names, argument names, and
42 definitions, or zero if we should use xmalloc. */
43 struct bcache *bcache;
44
45 /* The main source file for this compilation unit --- the one whose
46 name was given to the compiler. This is the root of the
47 #inclusion tree; everything else is #included from here. */
48 struct macro_source_file *main_source;
49
50 /* Backlink to containing compilation unit, or NULL if there isn't one. */
51 struct compunit_symtab *compunit_symtab;
52
53 /* True if macros in this table can be redefined without issuing an
54 error. */
55 int redef_ok;
56
57 /* The table of macro definitions. This is a splay tree (an ordered
58 binary tree that stays balanced, effectively), sorted by macro
59 name. Where a macro gets defined more than once (presumably with
60 an #undefinition in between), we sort the definitions by the
61 order they would appear in the preprocessor's output. That is,
62 if `a.c' #includes `m.h' and then #includes `n.h', and both
63 header files #define X (with an #undef somewhere in between),
64 then the definition from `m.h' appears in our splay tree before
65 the one from `n.h'.
66
67 The splay tree's keys are `struct macro_key' pointers;
68 the values are `struct macro_definition' pointers.
69
70 The splay tree, its nodes, and the keys and values are allocated
71 in obstack, if it's non-zero, or with xmalloc otherwise. The
72 macro names, argument names, argument name arrays, and definition
73 strings are all allocated in bcache, if non-zero, or with xmalloc
74 otherwise. */
75 splay_tree definitions;
76 };
77
78
79 \f
80 /* Allocation and freeing functions. */
81
82 /* Allocate SIZE bytes of memory appropriately for the macro table T.
83 This just checks whether T has an obstack, or whether its pieces
84 should be allocated with xmalloc. */
85 static void *
86 macro_alloc (int size, struct macro_table *t)
87 {
88 if (t->obstack)
89 return obstack_alloc (t->obstack, size);
90 else
91 return xmalloc (size);
92 }
93
94
95 static void
96 macro_free (void *object, struct macro_table *t)
97 {
98 if (t->obstack)
99 /* There are cases where we need to remove entries from a macro
100 table, even when reading debugging information. This should be
101 rare, and there's no easy way to free arbitrary data from an
102 obstack, so we just leak it. */
103 ;
104 else
105 xfree (object);
106 }
107
108
109 /* If the macro table T has a bcache, then cache the LEN bytes at ADDR
110 there, and return the cached copy. Otherwise, just xmalloc a copy
111 of the bytes, and return a pointer to that. */
112 static const void *
113 macro_bcache (struct macro_table *t, const void *addr, int len)
114 {
115 if (t->bcache)
116 return bcache (addr, len, t->bcache);
117 else
118 {
119 void *copy = xmalloc (len);
120
121 memcpy (copy, addr, len);
122 return copy;
123 }
124 }
125
126
127 /* If the macro table T has a bcache, cache the null-terminated string
128 S there, and return a pointer to the cached copy. Otherwise,
129 xmalloc a copy and return that. */
130 static const char *
131 macro_bcache_str (struct macro_table *t, const char *s)
132 {
133 return (const char *) macro_bcache (t, s, strlen (s) + 1);
134 }
135
136
137 /* Free a possibly bcached object OBJ. That is, if the macro table T
138 has a bcache, do nothing; otherwise, xfree OBJ. */
139 static void
140 macro_bcache_free (struct macro_table *t, void *obj)
141 {
142 if (t->bcache)
143 /* There are cases where we need to remove entries from a macro
144 table, even when reading debugging information. This should be
145 rare, and there's no easy way to free data from a bcache, so we
146 just leak it. */
147 ;
148 else
149 xfree (obj);
150 }
151
152
153 \f
154 /* Macro tree keys, w/their comparison, allocation, and freeing functions. */
155
156 /* A key in the splay tree. */
157 struct macro_key
158 {
159 /* The table we're in. We only need this in order to free it, since
160 the splay tree library's key and value freeing functions require
161 that the key or value contain all the information needed to free
162 themselves. */
163 struct macro_table *table;
164
165 /* The name of the macro. This is in the table's bcache, if it has
166 one. */
167 const char *name;
168
169 /* The source file and line number where the definition's scope
170 begins. This is also the line of the definition itself. */
171 struct macro_source_file *start_file;
172 int start_line;
173
174 /* The first source file and line after the definition's scope.
175 (That is, the scope does not include this endpoint.) If end_file
176 is zero, then the definition extends to the end of the
177 compilation unit. */
178 struct macro_source_file *end_file;
179 int end_line;
180 };
181
182
183 /* Return the #inclusion depth of the source file FILE. This is the
184 number of #inclusions it took to reach this file. For the main
185 source file, the #inclusion depth is zero; for a file it #includes
186 directly, the depth would be one; and so on. */
187 static int
188 inclusion_depth (struct macro_source_file *file)
189 {
190 int depth;
191
192 for (depth = 0; file->included_by; depth++)
193 file = file->included_by;
194
195 return depth;
196 }
197
198
199 /* Compare two source locations (from the same compilation unit).
200 This is part of the comparison function for the tree of
201 definitions.
202
203 LINE1 and LINE2 are line numbers in the source files FILE1 and
204 FILE2. Return a value:
205 - less than zero if {LINE,FILE}1 comes before {LINE,FILE}2,
206 - greater than zero if {LINE,FILE}1 comes after {LINE,FILE}2, or
207 - zero if they are equal.
208
209 When the two locations are in different source files --- perhaps
210 one is in a header, while another is in the main source file --- we
211 order them by where they would appear in the fully pre-processed
212 sources, where all the #included files have been substituted into
213 their places. */
214 static int
215 compare_locations (struct macro_source_file *file1, int line1,
216 struct macro_source_file *file2, int line2)
217 {
218 /* We want to treat positions in an #included file as coming *after*
219 the line containing the #include, but *before* the line after the
220 include. As we walk up the #inclusion tree toward the main
221 source file, we update fileX and lineX as we go; includedX
222 indicates whether the original position was from the #included
223 file. */
224 int included1 = 0;
225 int included2 = 0;
226
227 /* If a file is zero, that means "end of compilation unit." Handle
228 that specially. */
229 if (! file1)
230 {
231 if (! file2)
232 return 0;
233 else
234 return 1;
235 }
236 else if (! file2)
237 return -1;
238
239 /* If the two files are not the same, find their common ancestor in
240 the #inclusion tree. */
241 if (file1 != file2)
242 {
243 /* If one file is deeper than the other, walk up the #inclusion
244 chain until the two files are at least at the same *depth*.
245 Then, walk up both files in synchrony until they're the same
246 file. That file is the common ancestor. */
247 int depth1 = inclusion_depth (file1);
248 int depth2 = inclusion_depth (file2);
249
250 /* Only one of these while loops will ever execute in any given
251 case. */
252 while (depth1 > depth2)
253 {
254 line1 = file1->included_at_line;
255 file1 = file1->included_by;
256 included1 = 1;
257 depth1--;
258 }
259 while (depth2 > depth1)
260 {
261 line2 = file2->included_at_line;
262 file2 = file2->included_by;
263 included2 = 1;
264 depth2--;
265 }
266
267 /* Now both file1 and file2 are at the same depth. Walk toward
268 the root of the tree until we find where the branches meet. */
269 while (file1 != file2)
270 {
271 line1 = file1->included_at_line;
272 file1 = file1->included_by;
273 /* At this point, we know that the case the includedX flags
274 are trying to deal with won't come up, but we'll just
275 maintain them anyway. */
276 included1 = 1;
277
278 line2 = file2->included_at_line;
279 file2 = file2->included_by;
280 included2 = 1;
281
282 /* Sanity check. If file1 and file2 are really from the
283 same compilation unit, then they should both be part of
284 the same tree, and this shouldn't happen. */
285 gdb_assert (file1 && file2);
286 }
287 }
288
289 /* Now we've got two line numbers in the same file. */
290 if (line1 == line2)
291 {
292 /* They can't both be from #included files. Then we shouldn't
293 have walked up this far. */
294 gdb_assert (! included1 || ! included2);
295
296 /* Any #included position comes after a non-#included position
297 with the same line number in the #including file. */
298 if (included1)
299 return 1;
300 else if (included2)
301 return -1;
302 else
303 return 0;
304 }
305 else
306 return line1 - line2;
307 }
308
309
310 /* Compare a macro key KEY against NAME, the source file FILE, and
311 line number LINE.
312
313 Sort definitions by name; for two definitions with the same name,
314 place the one whose definition comes earlier before the one whose
315 definition comes later.
316
317 Return -1, 0, or 1 if key comes before, is identical to, or comes
318 after NAME, FILE, and LINE. */
319 static int
320 key_compare (struct macro_key *key,
321 const char *name, struct macro_source_file *file, int line)
322 {
323 int names = strcmp (key->name, name);
324
325 if (names)
326 return names;
327
328 return compare_locations (key->start_file, key->start_line,
329 file, line);
330 }
331
332
333 /* The macro tree comparison function, typed for the splay tree
334 library's happiness. */
335 static int
336 macro_tree_compare (splay_tree_key untyped_key1,
337 splay_tree_key untyped_key2)
338 {
339 struct macro_key *key1 = (struct macro_key *) untyped_key1;
340 struct macro_key *key2 = (struct macro_key *) untyped_key2;
341
342 return key_compare (key1, key2->name, key2->start_file, key2->start_line);
343 }
344
345
346 /* Construct a new macro key node for a macro in table T whose name is
347 NAME, and whose scope starts at LINE in FILE; register the name in
348 the bcache. */
349 static struct macro_key *
350 new_macro_key (struct macro_table *t,
351 const char *name,
352 struct macro_source_file *file,
353 int line)
354 {
355 struct macro_key *k = (struct macro_key *) macro_alloc (sizeof (*k), t);
356
357 memset (k, 0, sizeof (*k));
358 k->table = t;
359 k->name = macro_bcache_str (t, name);
360 k->start_file = file;
361 k->start_line = line;
362 k->end_file = 0;
363
364 return k;
365 }
366
367
368 static void
369 macro_tree_delete_key (void *untyped_key)
370 {
371 struct macro_key *key = (struct macro_key *) untyped_key;
372
373 macro_bcache_free (key->table, (char *) key->name);
374 macro_free (key, key->table);
375 }
376
377
378 \f
379 /* Building and querying the tree of #included files. */
380
381
382 /* Allocate and initialize a new source file structure. */
383 static struct macro_source_file *
384 new_source_file (struct macro_table *t,
385 const char *filename)
386 {
387 /* Get space for the source file structure itself. */
388 struct macro_source_file *f
389 = (struct macro_source_file *) macro_alloc (sizeof (*f), t);
390
391 memset (f, 0, sizeof (*f));
392 f->table = t;
393 f->filename = macro_bcache_str (t, filename);
394 f->includes = 0;
395
396 return f;
397 }
398
399
400 /* Free a source file, and all the source files it #included. */
401 static void
402 free_macro_source_file (struct macro_source_file *src)
403 {
404 struct macro_source_file *child, *next_child;
405
406 /* Free this file's children. */
407 for (child = src->includes; child; child = next_child)
408 {
409 next_child = child->next_included;
410 free_macro_source_file (child);
411 }
412
413 macro_bcache_free (src->table, (char *) src->filename);
414 macro_free (src, src->table);
415 }
416
417
418 struct macro_source_file *
419 macro_set_main (struct macro_table *t,
420 const char *filename)
421 {
422 /* You can't change a table's main source file. What would that do
423 to the tree? */
424 gdb_assert (! t->main_source);
425
426 t->main_source = new_source_file (t, filename);
427
428 return t->main_source;
429 }
430
431
432 struct macro_source_file *
433 macro_main (struct macro_table *t)
434 {
435 gdb_assert (t->main_source);
436
437 return t->main_source;
438 }
439
440
441 void
442 macro_allow_redefinitions (struct macro_table *t)
443 {
444 gdb_assert (! t->obstack);
445 t->redef_ok = 1;
446 }
447
448
449 struct macro_source_file *
450 macro_include (struct macro_source_file *source,
451 int line,
452 const char *included)
453 {
454 struct macro_source_file *newobj;
455 struct macro_source_file **link;
456
457 /* Find the right position in SOURCE's `includes' list for the new
458 file. Skip inclusions at earlier lines, until we find one at the
459 same line or later --- or until the end of the list. */
460 for (link = &source->includes;
461 *link && (*link)->included_at_line < line;
462 link = &(*link)->next_included)
463 ;
464
465 /* Did we find another file already #included at the same line as
466 the new one? */
467 if (*link && line == (*link)->included_at_line)
468 {
469 char *link_fullname, *source_fullname;
470
471 /* This means the compiler is emitting bogus debug info. (GCC
472 circa March 2002 did this.) It also means that the splay
473 tree ordering function, macro_tree_compare, will abort,
474 because it can't tell which #inclusion came first. But GDB
475 should tolerate bad debug info. So:
476
477 First, squawk. */
478
479 link_fullname = macro_source_fullname (*link);
480 source_fullname = macro_source_fullname (source);
481 complaint (&symfile_complaints,
482 _("both `%s' and `%s' allegedly #included at %s:%d"),
483 included, link_fullname, source_fullname, line);
484 xfree (source_fullname);
485 xfree (link_fullname);
486
487 /* Now, choose a new, unoccupied line number for this
488 #inclusion, after the alleged #inclusion line. */
489 while (*link && line == (*link)->included_at_line)
490 {
491 /* This line number is taken, so try the next line. */
492 line++;
493 link = &(*link)->next_included;
494 }
495 }
496
497 /* At this point, we know that LINE is an unused line number, and
498 *LINK points to the entry an #inclusion at that line should
499 precede. */
500 newobj = new_source_file (source->table, included);
501 newobj->included_by = source;
502 newobj->included_at_line = line;
503 newobj->next_included = *link;
504 *link = newobj;
505
506 return newobj;
507 }
508
509
510 struct macro_source_file *
511 macro_lookup_inclusion (struct macro_source_file *source, const char *name)
512 {
513 /* Is SOURCE itself named NAME? */
514 if (filename_cmp (name, source->filename) == 0)
515 return source;
516
517 /* It's not us. Try all our children, and return the lowest. */
518 {
519 struct macro_source_file *child;
520 struct macro_source_file *best = NULL;
521 int best_depth = 0;
522
523 for (child = source->includes; child; child = child->next_included)
524 {
525 struct macro_source_file *result
526 = macro_lookup_inclusion (child, name);
527
528 if (result)
529 {
530 int result_depth = inclusion_depth (result);
531
532 if (! best || result_depth < best_depth)
533 {
534 best = result;
535 best_depth = result_depth;
536 }
537 }
538 }
539
540 return best;
541 }
542 }
543
544
545 \f
546 /* Registering and looking up macro definitions. */
547
548
549 /* Construct a definition for a macro in table T. Cache all strings,
550 and the macro_definition structure itself, in T's bcache. */
551 static struct macro_definition *
552 new_macro_definition (struct macro_table *t,
553 enum macro_kind kind,
554 int argc, const char **argv,
555 const char *replacement)
556 {
557 struct macro_definition *d
558 = (struct macro_definition *) macro_alloc (sizeof (*d), t);
559
560 memset (d, 0, sizeof (*d));
561 d->table = t;
562 d->kind = kind;
563 d->replacement = macro_bcache_str (t, replacement);
564 d->argc = argc;
565
566 if (kind == macro_function_like)
567 {
568 int i;
569 const char **cached_argv;
570 int cached_argv_size = argc * sizeof (*cached_argv);
571
572 /* Bcache all the arguments. */
573 cached_argv = (const char **) alloca (cached_argv_size);
574 for (i = 0; i < argc; i++)
575 cached_argv[i] = macro_bcache_str (t, argv[i]);
576
577 /* Now bcache the array of argument pointers itself. */
578 d->argv = ((const char * const *)
579 macro_bcache (t, cached_argv, cached_argv_size));
580 }
581
582 /* We don't bcache the entire definition structure because it's got
583 a pointer to the macro table in it; since each compilation unit
584 has its own macro table, you'd only get bcache hits for identical
585 definitions within a compilation unit, which seems unlikely.
586
587 "So, why do macro definitions have pointers to their macro tables
588 at all?" Well, when the splay tree library wants to free a
589 node's value, it calls the value freeing function with nothing
590 but the value itself. It makes the (apparently reasonable)
591 assumption that the value carries enough information to free
592 itself. But not all macro tables have bcaches, so not all macro
593 definitions would be bcached. There's no way to tell whether a
594 given definition is bcached without knowing which table the
595 definition belongs to. ... blah. The thing's only sixteen
596 bytes anyway, and we can still bcache the name, args, and
597 definition, so we just don't bother bcaching the definition
598 structure itself. */
599 return d;
600 }
601
602
603 /* Free a macro definition. */
604 static void
605 macro_tree_delete_value (void *untyped_definition)
606 {
607 struct macro_definition *d = (struct macro_definition *) untyped_definition;
608 struct macro_table *t = d->table;
609
610 if (d->kind == macro_function_like)
611 {
612 int i;
613
614 for (i = 0; i < d->argc; i++)
615 macro_bcache_free (t, (char *) d->argv[i]);
616 macro_bcache_free (t, (char **) d->argv);
617 }
618
619 macro_bcache_free (t, (char *) d->replacement);
620 macro_free (d, t);
621 }
622
623
624 /* Find the splay tree node for the definition of NAME at LINE in
625 SOURCE, or zero if there is none. */
626 static splay_tree_node
627 find_definition (const char *name,
628 struct macro_source_file *file,
629 int line)
630 {
631 struct macro_table *t = file->table;
632 splay_tree_node n;
633
634 /* Construct a macro_key object, just for the query. */
635 struct macro_key query;
636
637 query.name = name;
638 query.start_file = file;
639 query.start_line = line;
640 query.end_file = NULL;
641
642 n = splay_tree_lookup (t->definitions, (splay_tree_key) &query);
643 if (! n)
644 {
645 /* It's okay for us to do two queries like this: the real work
646 of the searching is done when we splay, and splaying the tree
647 a second time at the same key is a constant time operation.
648 If this still bugs you, you could always just extend the
649 splay tree library with a predecessor-or-equal operation, and
650 use that. */
651 splay_tree_node pred = splay_tree_predecessor (t->definitions,
652 (splay_tree_key) &query);
653
654 if (pred)
655 {
656 /* Make sure this predecessor actually has the right name.
657 We just want to search within a given name's definitions. */
658 struct macro_key *found = (struct macro_key *) pred->key;
659
660 if (strcmp (found->name, name) == 0)
661 n = pred;
662 }
663 }
664
665 if (n)
666 {
667 struct macro_key *found = (struct macro_key *) n->key;
668
669 /* Okay, so this definition has the right name, and its scope
670 begins before the given source location. But does its scope
671 end after the given source location? */
672 if (compare_locations (file, line, found->end_file, found->end_line) < 0)
673 return n;
674 else
675 return 0;
676 }
677 else
678 return 0;
679 }
680
681
682 /* If NAME already has a definition in scope at LINE in SOURCE, return
683 the key. If the old definition is different from the definition
684 given by KIND, ARGC, ARGV, and REPLACEMENT, complain, too.
685 Otherwise, return zero. (ARGC and ARGV are meaningless unless KIND
686 is `macro_function_like'.) */
687 static struct macro_key *
688 check_for_redefinition (struct macro_source_file *source, int line,
689 const char *name, enum macro_kind kind,
690 int argc, const char **argv,
691 const char *replacement)
692 {
693 splay_tree_node n = find_definition (name, source, line);
694
695 if (n)
696 {
697 struct macro_key *found_key = (struct macro_key *) n->key;
698 struct macro_definition *found_def
699 = (struct macro_definition *) n->value;
700 int same = 1;
701
702 /* Is this definition the same as the existing one?
703 According to the standard, this comparison needs to be done
704 on lists of tokens, not byte-by-byte, as we do here. But
705 that's too hard for us at the moment, and comparing
706 byte-by-byte will only yield false negatives (i.e., extra
707 warning messages), not false positives (i.e., unnoticed
708 definition changes). */
709 if (kind != found_def->kind)
710 same = 0;
711 else if (strcmp (replacement, found_def->replacement))
712 same = 0;
713 else if (kind == macro_function_like)
714 {
715 if (argc != found_def->argc)
716 same = 0;
717 else
718 {
719 int i;
720
721 for (i = 0; i < argc; i++)
722 if (strcmp (argv[i], found_def->argv[i]))
723 same = 0;
724 }
725 }
726
727 if (! same)
728 {
729 char *source_fullname, *found_key_fullname;
730
731 source_fullname = macro_source_fullname (source);
732 found_key_fullname = macro_source_fullname (found_key->start_file);
733 complaint (&symfile_complaints,
734 _("macro `%s' redefined at %s:%d; "
735 "original definition at %s:%d"),
736 name, source_fullname, line, found_key_fullname,
737 found_key->start_line);
738 xfree (found_key_fullname);
739 xfree (source_fullname);
740 }
741
742 return found_key;
743 }
744 else
745 return 0;
746 }
747
748 /* A helper function to define a new object-like macro. */
749
750 static void
751 macro_define_object_internal (struct macro_source_file *source, int line,
752 const char *name, const char *replacement,
753 enum macro_special_kind kind)
754 {
755 struct macro_table *t = source->table;
756 struct macro_key *k = NULL;
757 struct macro_definition *d;
758
759 if (! t->redef_ok)
760 k = check_for_redefinition (source, line,
761 name, macro_object_like,
762 0, 0,
763 replacement);
764
765 /* If we're redefining a symbol, and the existing key would be
766 identical to our new key, then the splay_tree_insert function
767 will try to delete the old definition. When the definition is
768 living on an obstack, this isn't a happy thing.
769
770 Since this only happens in the presence of questionable debug
771 info, we just ignore all definitions after the first. The only
772 case I know of where this arises is in GCC's output for
773 predefined macros, and all the definitions are the same in that
774 case. */
775 if (k && ! key_compare (k, name, source, line))
776 return;
777
778 k = new_macro_key (t, name, source, line);
779 d = new_macro_definition (t, macro_object_like, kind, 0, replacement);
780 splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
781 }
782
783 void
784 macro_define_object (struct macro_source_file *source, int line,
785 const char *name, const char *replacement)
786 {
787 macro_define_object_internal (source, line, name, replacement,
788 macro_ordinary);
789 }
790
791 /* See macrotab.h. */
792
793 void
794 macro_define_special (struct macro_table *table)
795 {
796 macro_define_object_internal (table->main_source, -1, "__FILE__", "",
797 macro_FILE);
798 macro_define_object_internal (table->main_source, -1, "__LINE__", "",
799 macro_LINE);
800 }
801
802 void
803 macro_define_function (struct macro_source_file *source, int line,
804 const char *name, int argc, const char **argv,
805 const char *replacement)
806 {
807 struct macro_table *t = source->table;
808 struct macro_key *k = NULL;
809 struct macro_definition *d;
810
811 if (! t->redef_ok)
812 k = check_for_redefinition (source, line,
813 name, macro_function_like,
814 argc, argv,
815 replacement);
816
817 /* See comments about duplicate keys in macro_define_object. */
818 if (k && ! key_compare (k, name, source, line))
819 return;
820
821 /* We should also check here that all the argument names in ARGV are
822 distinct. */
823
824 k = new_macro_key (t, name, source, line);
825 d = new_macro_definition (t, macro_function_like, argc, argv, replacement);
826 splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
827 }
828
829
830 void
831 macro_undef (struct macro_source_file *source, int line,
832 const char *name)
833 {
834 splay_tree_node n = find_definition (name, source, line);
835
836 if (n)
837 {
838 struct macro_key *key = (struct macro_key *) n->key;
839
840 /* If we're removing a definition at exactly the same point that
841 we defined it, then just delete the entry altogether. GCC
842 4.1.2 will generate DWARF that says to do this if you pass it
843 arguments like '-DFOO -UFOO -DFOO=2'. */
844 if (source == key->start_file
845 && line == key->start_line)
846 splay_tree_remove (source->table->definitions, n->key);
847
848 else
849 {
850 /* This function is the only place a macro's end-of-scope
851 location gets set to anything other than "end of the
852 compilation unit" (i.e., end_file is zero). So if this
853 macro already has its end-of-scope set, then we're
854 probably seeing a second #undefinition for the same
855 #definition. */
856 if (key->end_file)
857 {
858 char *source_fullname, *key_fullname;
859
860 source_fullname = macro_source_fullname (source);
861 key_fullname = macro_source_fullname (key->end_file);
862 complaint (&symfile_complaints,
863 _("macro '%s' is #undefined twice,"
864 " at %s:%d and %s:%d"),
865 name, source_fullname, line, key_fullname,
866 key->end_line);
867 xfree (key_fullname);
868 xfree (source_fullname);
869 }
870
871 /* Whether or not we've seen a prior #undefinition, wipe out
872 the old ending point, and make this the ending point. */
873 key->end_file = source;
874 key->end_line = line;
875 }
876 }
877 else
878 {
879 /* According to the ISO C standard, an #undef for a symbol that
880 has no macro definition in scope is ignored. So we should
881 ignore it too. */
882 #if 0
883 complaint (&symfile_complaints,
884 _("no definition for macro `%s' in scope to #undef at %s:%d"),
885 name, source->filename, line);
886 #endif
887 }
888 }
889
890 /* A helper function that rewrites the definition of a special macro,
891 when needed. */
892
893 static struct macro_definition *
894 fixup_definition (const char *filename, int line, struct macro_definition *def)
895 {
896 static char *saved_expansion;
897
898 if (saved_expansion)
899 {
900 xfree (saved_expansion);
901 saved_expansion = NULL;
902 }
903
904 if (def->kind == macro_object_like)
905 {
906 if (def->argc == macro_FILE)
907 {
908 saved_expansion = macro_stringify (filename);
909 def->replacement = saved_expansion;
910 }
911 else if (def->argc == macro_LINE)
912 {
913 saved_expansion = xstrprintf ("%d", line);
914 def->replacement = saved_expansion;
915 }
916 }
917
918 return def;
919 }
920
921 struct macro_definition *
922 macro_lookup_definition (struct macro_source_file *source,
923 int line, const char *name)
924 {
925 splay_tree_node n = find_definition (name, source, line);
926
927 if (n)
928 {
929 struct macro_definition *retval;
930 char *source_fullname;
931
932 source_fullname = macro_source_fullname (source);
933 retval = fixup_definition (source_fullname, line,
934 (struct macro_definition *) n->value);
935 xfree (source_fullname);
936 return retval;
937 }
938 else
939 return 0;
940 }
941
942
943 struct macro_source_file *
944 macro_definition_location (struct macro_source_file *source,
945 int line,
946 const char *name,
947 int *definition_line)
948 {
949 splay_tree_node n = find_definition (name, source, line);
950
951 if (n)
952 {
953 struct macro_key *key = (struct macro_key *) n->key;
954
955 *definition_line = key->start_line;
956 return key->start_file;
957 }
958 else
959 return 0;
960 }
961
962
963 /* The type for callback data for iterating the splay tree in
964 macro_for_each and macro_for_each_in_scope. Only the latter uses
965 the FILE and LINE fields. */
966 struct macro_for_each_data
967 {
968 gdb::function_view<macro_callback_fn> fn;
969 struct macro_source_file *file;
970 int line;
971 };
972
973 /* Helper function for macro_for_each. */
974 static int
975 foreach_macro (splay_tree_node node, void *arg)
976 {
977 struct macro_for_each_data *datum = (struct macro_for_each_data *) arg;
978 struct macro_key *key = (struct macro_key *) node->key;
979 struct macro_definition *def;
980 char *key_fullname;
981
982 key_fullname = macro_source_fullname (key->start_file);
983 def = fixup_definition (key_fullname, key->start_line,
984 (struct macro_definition *) node->value);
985 xfree (key_fullname);
986
987 datum->fn (key->name, def, key->start_file, key->start_line);
988 return 0;
989 }
990
991 /* Call FN for every macro in TABLE. */
992 void
993 macro_for_each (struct macro_table *table,
994 gdb::function_view<macro_callback_fn> fn)
995 {
996 struct macro_for_each_data datum;
997
998 datum.fn = fn;
999 datum.file = NULL;
1000 datum.line = 0;
1001 splay_tree_foreach (table->definitions, foreach_macro, &datum);
1002 }
1003
1004 static int
1005 foreach_macro_in_scope (splay_tree_node node, void *info)
1006 {
1007 struct macro_for_each_data *datum = (struct macro_for_each_data *) info;
1008 struct macro_key *key = (struct macro_key *) node->key;
1009 struct macro_definition *def;
1010 char *datum_fullname;
1011
1012 datum_fullname = macro_source_fullname (datum->file);
1013 def = fixup_definition (datum_fullname, datum->line,
1014 (struct macro_definition *) node->value);
1015 xfree (datum_fullname);
1016
1017 /* See if this macro is defined before the passed-in line, and
1018 extends past that line. */
1019 if (compare_locations (key->start_file, key->start_line,
1020 datum->file, datum->line) < 0
1021 && (!key->end_file
1022 || compare_locations (key->end_file, key->end_line,
1023 datum->file, datum->line) >= 0))
1024 datum->fn (key->name, def, key->start_file, key->start_line);
1025 return 0;
1026 }
1027
1028 /* Call FN for every macro is visible in SCOPE. */
1029 void
1030 macro_for_each_in_scope (struct macro_source_file *file, int line,
1031 gdb::function_view<macro_callback_fn> fn)
1032 {
1033 struct macro_for_each_data datum;
1034
1035 datum.fn = fn;
1036 datum.file = file;
1037 datum.line = line;
1038 splay_tree_foreach (file->table->definitions,
1039 foreach_macro_in_scope, &datum);
1040 }
1041
1042
1043 \f
1044 /* Creating and freeing macro tables. */
1045
1046
1047 struct macro_table *
1048 new_macro_table (struct obstack *obstack, struct bcache *b,
1049 struct compunit_symtab *cust)
1050 {
1051 struct macro_table *t;
1052
1053 /* First, get storage for the `struct macro_table' itself. */
1054 if (obstack)
1055 t = XOBNEW (obstack, struct macro_table);
1056 else
1057 t = XNEW (struct macro_table);
1058
1059 memset (t, 0, sizeof (*t));
1060 t->obstack = obstack;
1061 t->bcache = b;
1062 t->main_source = NULL;
1063 t->compunit_symtab = cust;
1064 t->redef_ok = 0;
1065 t->definitions = (splay_tree_new_with_allocator
1066 (macro_tree_compare,
1067 ((splay_tree_delete_key_fn) macro_tree_delete_key),
1068 ((splay_tree_delete_value_fn) macro_tree_delete_value),
1069 ((splay_tree_allocate_fn) macro_alloc),
1070 ((splay_tree_deallocate_fn) macro_free),
1071 t));
1072
1073 return t;
1074 }
1075
1076
1077 void
1078 free_macro_table (struct macro_table *table)
1079 {
1080 /* Free the source file tree. */
1081 free_macro_source_file (table->main_source);
1082
1083 /* Free the table of macro definitions. */
1084 splay_tree_delete (table->definitions);
1085 }
1086
1087 /* See macrotab.h for the comment. */
1088
1089 char *
1090 macro_source_fullname (struct macro_source_file *file)
1091 {
1092 const char *comp_dir = NULL;
1093
1094 if (file->table->compunit_symtab != NULL)
1095 comp_dir = COMPUNIT_DIRNAME (file->table->compunit_symtab);
1096
1097 if (comp_dir == NULL || IS_ABSOLUTE_PATH (file->filename))
1098 return xstrdup (file->filename);
1099
1100 return concat (comp_dir, SLASH_STRING, file->filename, (char *) NULL);
1101 }
This page took 0.052861 seconds and 5 git commands to generate.