Introduce ref_ptr::new_reference
[deliverable/binutils-gdb.git] / gdb / mep-tdep.c
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2018 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "inferior.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "language.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "remote.h"
39 #include "sim-regno.h"
40 #include "disasm.h"
41 #include "trad-frame.h"
42 #include "reggroups.h"
43 #include "elf-bfd.h"
44 #include "elf/mep.h"
45 #include "prologue-value.h"
46 #include "cgen/bitset.h"
47 #include "infcall.h"
48
49 /* Get the user's customized MeP coprocessor register names from
50 libopcodes. */
51 #include "opcodes/mep-desc.h"
52 #include "opcodes/mep-opc.h"
53
54 \f
55 /* The gdbarch_tdep structure. */
56
57 /* A quick recap for GDB hackers not familiar with the whole Toshiba
58 Media Processor story:
59
60 The MeP media engine is a configureable processor: users can design
61 their own coprocessors, implement custom instructions, adjust cache
62 sizes, select optional standard facilities like add-and-saturate
63 instructions, and so on. Then, they can build custom versions of
64 the GNU toolchain to support their customized chips. The
65 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
66 tree, and a config file pointing to various files provided by the
67 user describing their customizations, and edits the source tree to
68 produce a compiler that can generate their custom instructions, an
69 assembler that can assemble them and recognize their custom
70 register names, and so on.
71
72 Furthermore, the user can actually specify several of these custom
73 configurations, called 'me_modules', and get a toolchain which can
74 produce code for any of them, given a compiler/assembler switch;
75 you say something like 'gcc -mconfig=mm_max' to generate code for
76 the me_module named 'mm_max'.
77
78 GDB, in particular, needs to:
79
80 - use the coprocessor control register names provided by the user
81 in their hardware description, in expressions, 'info register'
82 output, and disassembly,
83
84 - know the number, names, and types of the coprocessor's
85 general-purpose registers, adjust the 'info all-registers' output
86 accordingly, and print error messages if the user refers to one
87 that doesn't exist
88
89 - allow access to the control bus space only when the configuration
90 actually has a control bus, and recognize which regions of the
91 control bus space are actually populated,
92
93 - disassemble using the user's provided mnemonics for their custom
94 instructions, and
95
96 - recognize whether the $hi and $lo registers are present, and
97 allow access to them only when they are actually there.
98
99 There are three sources of information about what sort of me_module
100 we're actually dealing with:
101
102 - A MeP executable file indicates which me_module it was compiled
103 for, and libopcodes has tables describing each module. So, given
104 an executable file, we can find out about the processor it was
105 compiled for.
106
107 - There are SID command-line options to select a particular
108 me_module, overriding the one specified in the ELF file. SID
109 provides GDB with a fake read-only register, 'module', which
110 indicates which me_module GDB is communicating with an instance
111 of.
112
113 - There are SID command-line options to enable or disable certain
114 optional processor features, overriding the defaults for the
115 selected me_module. The MeP $OPT register indicates which
116 options are present on the current processor. */
117
118
119 struct gdbarch_tdep
120 {
121 /* A CGEN cpu descriptor for this BFD architecture and machine.
122
123 Note: this is *not* customized for any particular me_module; the
124 MeP libopcodes machinery actually puts off module-specific
125 customization until the last minute. So this contains
126 information about all supported me_modules. */
127 CGEN_CPU_DESC cpu_desc;
128
129 /* The me_module index from the ELF file we used to select this
130 architecture, or CONFIG_NONE if there was none.
131
132 Note that we should prefer to use the me_module number available
133 via the 'module' register, whenever we're actually talking to a
134 real target.
135
136 In the absence of live information, we'd like to get the
137 me_module number from the ELF file. But which ELF file: the
138 executable file, the core file, ... ? The answer is, "the last
139 ELF file we used to set the current architecture". Thus, we
140 create a separate instance of the gdbarch structure for each
141 me_module value mep_gdbarch_init sees, and store the me_module
142 value from the ELF file here. */
143 CONFIG_ATTR me_module;
144 };
145
146
147 \f
148 /* Getting me_module information from the CGEN tables. */
149
150
151 /* Find an entry in the DESC's hardware table whose name begins with
152 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
153 intersect with GENERIC_ISA_MASK. If there is no matching entry,
154 return zero. */
155 static const CGEN_HW_ENTRY *
156 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
157 const char *prefix,
158 CGEN_BITSET *copro_isa_mask,
159 CGEN_BITSET *generic_isa_mask)
160 {
161 int prefix_len = strlen (prefix);
162 int i;
163
164 for (i = 0; i < desc->hw_table.num_entries; i++)
165 {
166 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
167 if (strncmp (prefix, hw->name, prefix_len) == 0)
168 {
169 CGEN_BITSET *hw_isa_mask
170 = ((CGEN_BITSET *)
171 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
172
173 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
174 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
175 return hw;
176 }
177 }
178
179 return 0;
180 }
181
182
183 /* Find an entry in DESC's hardware table whose type is TYPE. Return
184 zero if there is none. */
185 static const CGEN_HW_ENTRY *
186 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
187 {
188 int i;
189
190 for (i = 0; i < desc->hw_table.num_entries; i++)
191 {
192 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
193
194 if (hw->type == type)
195 return hw;
196 }
197
198 return 0;
199 }
200
201
202 /* Return the CGEN hardware table entry for the coprocessor register
203 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
204 no such register set, return zero. If ME_MODULE is the generic
205 me_module CONFIG_NONE, return the table entry for the register set
206 whose hardware type is GENERIC_TYPE. */
207 static const CGEN_HW_ENTRY *
208 me_module_register_set (CONFIG_ATTR me_module,
209 const char *prefix,
210 CGEN_HW_TYPE generic_type)
211 {
212 /* This is kind of tricky, because the hardware table is constructed
213 in a way that isn't very helpful. Perhaps we can fix that, but
214 here's how it works at the moment:
215
216 The configuration map, `mep_config_map', is indexed by me_module
217 number, and indicates which coprocessor and core ISAs that
218 me_module supports. The 'core_isa' mask includes all the core
219 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
220 The entry for the generic me_module, CONFIG_NONE, has an empty
221 'cop_isa', and its 'core_isa' selects only the standard MeP
222 instruction set.
223
224 The CGEN CPU descriptor's hardware table, desc->hw_table, has
225 entries for all the register sets, for all me_modules. Each
226 entry has a mask indicating which ISAs use that register set.
227 So, if an me_module supports some coprocessor ISA, we can find
228 applicable register sets by scanning the hardware table for
229 register sets whose masks include (at least some of) those ISAs.
230
231 Each hardware table entry also has a name, whose prefix says
232 whether it's a general-purpose ("h-cr") or control ("h-ccr")
233 coprocessor register set. It might be nicer to have an attribute
234 indicating what sort of register set it was, that we could use
235 instead of pattern-matching on the name.
236
237 When there is no hardware table entry whose mask includes a
238 particular coprocessor ISA and whose name starts with a given
239 prefix, then that means that that coprocessor doesn't have any
240 registers of that type. In such cases, this function must return
241 a null pointer.
242
243 Coprocessor register sets' masks may or may not include the core
244 ISA for the me_module they belong to. Those generated by a2cgen
245 do, but the sample me_module included in the unconfigured tree,
246 'ccfx', does not.
247
248 There are generic coprocessor register sets, intended only for
249 use with the generic me_module. Unfortunately, their masks
250 include *all* ISAs --- even those for coprocessors that don't
251 have such register sets. This makes detecting the case where a
252 coprocessor lacks a particular register set more complicated.
253
254 So, here's the approach we take:
255
256 - For CONFIG_NONE, we return the generic coprocessor register set.
257
258 - For any other me_module, we search for a register set whose
259 mask contains any of the me_module's coprocessor ISAs,
260 specifically excluding the generic coprocessor register sets. */
261
262 CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
263 const CGEN_HW_ENTRY *hw;
264
265 if (me_module == CONFIG_NONE)
266 hw = find_hw_entry_by_type (desc, generic_type);
267 else
268 {
269 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
270 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
271 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
272 CGEN_BITSET *cop_and_core;
273
274 /* The coprocessor ISAs include the ISA for the specific core which
275 has that coprocessor. */
276 cop_and_core = cgen_bitset_copy (cop);
277 cgen_bitset_union (cop, core, cop_and_core);
278 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
279 }
280
281 return hw;
282 }
283
284
285 /* Given a hardware table entry HW representing a register set, return
286 a pointer to the keyword table with all the register names. If HW
287 is NULL, return NULL, to propage the "no such register set" info
288 along. */
289 static CGEN_KEYWORD *
290 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
291 {
292 if (! hw)
293 return NULL;
294
295 /* Check that HW is actually a keyword table. */
296 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
297
298 /* The 'asm_data' field of a register set's hardware table entry
299 refers to a keyword table. */
300 return (CGEN_KEYWORD *) hw->asm_data;
301 }
302
303
304 /* Given a keyword table KEYWORD and a register number REGNUM, return
305 the name of the register, or "" if KEYWORD contains no register
306 whose number is REGNUM. */
307 static const char *
308 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
309 {
310 const CGEN_KEYWORD_ENTRY *entry
311 = cgen_keyword_lookup_value (keyword_table, regnum);
312
313 if (entry)
314 {
315 char *name = entry->name;
316
317 /* The CGEN keyword entries for register names include the
318 leading $, which appears in MeP assembly as well as in GDB.
319 But we don't want to return that; GDB core code adds that
320 itself. */
321 if (name[0] == '$')
322 name++;
323
324 return name;
325 }
326 else
327 return "";
328 }
329
330
331 /* Masks for option bits in the OPT special-purpose register. */
332 enum {
333 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
334 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
335 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
336 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
337 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
338 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
339 MEP_OPT_AVE = 1 << 19, /* average instruction option */
340 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
341 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
342 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
343 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
344 MEP_OPT_COP = 1 << 4, /* coprocessor option */
345 MEP_OPT_DSP = 1 << 2, /* DSP option */
346 MEP_OPT_UCI = 1 << 1, /* UCI option */
347 MEP_OPT_DBG = 1 << 0, /* DBG function option */
348 };
349
350
351 /* Given the option_mask value for a particular entry in
352 mep_config_map, produce the value the processor's OPT register
353 would use to represent the same set of options. */
354 static unsigned int
355 opt_from_option_mask (unsigned int option_mask)
356 {
357 /* A table mapping OPT register bits onto CGEN config map option
358 bits. */
359 struct {
360 unsigned int opt_bit, option_mask_bit;
361 } bits[] = {
362 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
363 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
364 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
365 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
366 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
367 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
368 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
369 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
370 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
371 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
372 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
373 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
374 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
375 };
376
377 int i;
378 unsigned int opt = 0;
379
380 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
381 if (option_mask & bits[i].option_mask_bit)
382 opt |= bits[i].opt_bit;
383
384 return opt;
385 }
386
387
388 /* Return the value the $OPT register would use to represent the set
389 of options for ME_MODULE. */
390 static unsigned int
391 me_module_opt (CONFIG_ATTR me_module)
392 {
393 return opt_from_option_mask (mep_config_map[me_module].option_mask);
394 }
395
396
397 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
398 This is either 32 or 64. */
399 static int
400 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
401 {
402 if (mep_config_map[me_module].option_mask
403 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
404 return 64;
405 else
406 return 32;
407 }
408
409
410 /* Return true if ME_MODULE is big-endian, false otherwise. */
411 static int
412 me_module_big_endian (CONFIG_ATTR me_module)
413 {
414 return mep_config_map[me_module].big_endian;
415 }
416
417
418 /* Return the name of ME_MODULE, or NULL if it has no name. */
419 static const char *
420 me_module_name (CONFIG_ATTR me_module)
421 {
422 /* The default me_module has "" as its name, but it's easier for our
423 callers to test for NULL. */
424 if (! mep_config_map[me_module].name
425 || mep_config_map[me_module].name[0] == '\0')
426 return NULL;
427 else
428 return mep_config_map[me_module].name;
429 }
430 \f
431 /* Register set. */
432
433
434 /* The MeP spec defines the following registers:
435 16 general purpose registers (r0-r15)
436 32 control/special registers (csr0-csr31)
437 32 coprocessor general-purpose registers (c0 -- c31)
438 64 coprocessor control registers (ccr0 -- ccr63)
439
440 For the raw registers, we assign numbers here explicitly, instead
441 of letting the enum assign them for us; the numbers are a matter of
442 external protocol, and shouldn't shift around as things are edited.
443
444 We access the control/special registers via pseudoregisters, to
445 enforce read-only portions that some registers have.
446
447 We access the coprocessor general purpose and control registers via
448 pseudoregisters, to make sure they appear in the proper order in
449 the 'info all-registers' command (which uses the register number
450 ordering), and also to allow them to be renamed and resized
451 depending on the me_module in use.
452
453 The MeP allows coprocessor general-purpose registers to be either
454 32 or 64 bits long, depending on the configuration. Since we don't
455 want the format of the 'g' packet to vary from one core to another,
456 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
457 types of registers to change (see the implementation of
458 register_type), so we have four banks of pseudoregisters for the
459 coprocessor gprs --- 32-bit vs. 64-bit, and integer
460 vs. floating-point --- and we show or hide them depending on the
461 configuration. */
462 enum
463 {
464 MEP_FIRST_RAW_REGNUM = 0,
465
466 MEP_FIRST_GPR_REGNUM = 0,
467 MEP_R0_REGNUM = 0,
468 MEP_R1_REGNUM = 1,
469 MEP_R2_REGNUM = 2,
470 MEP_R3_REGNUM = 3,
471 MEP_R4_REGNUM = 4,
472 MEP_R5_REGNUM = 5,
473 MEP_R6_REGNUM = 6,
474 MEP_R7_REGNUM = 7,
475 MEP_R8_REGNUM = 8,
476 MEP_R9_REGNUM = 9,
477 MEP_R10_REGNUM = 10,
478 MEP_R11_REGNUM = 11,
479 MEP_R12_REGNUM = 12,
480 MEP_FP_REGNUM = MEP_R8_REGNUM,
481 MEP_R13_REGNUM = 13,
482 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
483 MEP_R14_REGNUM = 14,
484 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
485 MEP_R15_REGNUM = 15,
486 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
487 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
488
489 /* The raw control registers. These are the values as received via
490 the remote protocol, directly from the target; we only let user
491 code touch the via the pseudoregisters, which enforce read-only
492 bits. */
493 MEP_FIRST_RAW_CSR_REGNUM = 16,
494 MEP_RAW_PC_REGNUM = 16, /* Program counter */
495 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
496 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
497 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
498 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
499 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
500 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
501 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
502 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
503 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
504 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
505 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
506 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
507 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
508 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
509 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
510 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
511 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
512 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
513 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
514 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
515 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
516 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
517 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
518 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
519 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
520 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
521 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
522 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
523 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
524 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
525 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
526 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
527
528 /* The raw coprocessor general-purpose registers. These are all 64
529 bits wide. */
530 MEP_FIRST_RAW_CR_REGNUM = 48,
531 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
532
533 MEP_FIRST_RAW_CCR_REGNUM = 80,
534 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
535
536 /* The module number register. This is the index of the me_module
537 of which the current target is an instance. (This is not a real
538 MeP-specified register; it's provided by SID.) */
539 MEP_MODULE_REGNUM,
540
541 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
542
543 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
544
545 /* Pseudoregisters. See mep_pseudo_register_read and
546 mep_pseudo_register_write. */
547 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
548
549 /* We have a pseudoregister for every control/special register, to
550 implement registers with read-only bits. */
551 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
552 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
553 MEP_LP_REGNUM, /* Link pointer */
554 MEP_SAR_REGNUM, /* shift amount */
555 MEP_CSR3_REGNUM, /* csr3: reserved */
556 MEP_RPB_REGNUM, /* repeat begin address */
557 MEP_RPE_REGNUM, /* Repeat end address */
558 MEP_RPC_REGNUM, /* Repeat count */
559 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
560 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
561 MEP_CSR9_REGNUM, /* csr3: reserved */
562 MEP_CSR10_REGNUM, /* csr3: reserved */
563 MEP_CSR11_REGNUM, /* csr3: reserved */
564 MEP_MB0_REGNUM, /* modulo begin address 0 */
565 MEP_ME0_REGNUM, /* modulo end address 0 */
566 MEP_MB1_REGNUM, /* modulo begin address 1 */
567 MEP_ME1_REGNUM, /* modulo end address 1 */
568 MEP_PSW_REGNUM, /* program status word */
569 MEP_ID_REGNUM, /* processor ID/revision */
570 MEP_TMP_REGNUM, /* Temporary */
571 MEP_EPC_REGNUM, /* Exception program counter */
572 MEP_EXC_REGNUM, /* exception cause */
573 MEP_CFG_REGNUM, /* processor configuration*/
574 MEP_CSR22_REGNUM, /* csr3: reserved */
575 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
576 MEP_DBG_REGNUM, /* debug */
577 MEP_DEPC_REGNUM, /* Debug exception PC */
578 MEP_OPT_REGNUM, /* options */
579 MEP_RCFG_REGNUM, /* local ram config */
580 MEP_CCFG_REGNUM, /* cache config */
581 MEP_CSR29_REGNUM, /* csr3: reserved */
582 MEP_CSR30_REGNUM, /* csr3: reserved */
583 MEP_CSR31_REGNUM, /* csr3: reserved */
584 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
585
586 /* The 32-bit integer view of the coprocessor GPR's. */
587 MEP_FIRST_CR32_REGNUM,
588 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
589
590 /* The 32-bit floating-point view of the coprocessor GPR's. */
591 MEP_FIRST_FP_CR32_REGNUM,
592 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
593
594 /* The 64-bit integer view of the coprocessor GPR's. */
595 MEP_FIRST_CR64_REGNUM,
596 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
597
598 /* The 64-bit floating-point view of the coprocessor GPR's. */
599 MEP_FIRST_FP_CR64_REGNUM,
600 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
601
602 MEP_FIRST_CCR_REGNUM,
603 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
604
605 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
606
607 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
608
609 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
610 };
611
612
613 #define IN_SET(set, n) \
614 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
615
616 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
617 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
618 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
619 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
620
621 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
622 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
623 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
624 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
625 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
626 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
627 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
628 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
629
630 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
631 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
632
633 #define NUM_REGS_IN_SET(set) \
634 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
635
636 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
637 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
638 #define MEP_LP_SIZE (4) /* Size of the LP register. */
639
640
641 /* Many of the control/special registers contain bits that cannot be
642 written to; some are entirely read-only. So we present them all as
643 pseudoregisters.
644
645 The following table describes the special properties of each CSR. */
646 struct mep_csr_register
647 {
648 /* The number of this CSR's raw register. */
649 int raw;
650
651 /* The number of this CSR's pseudoregister. */
652 int pseudo;
653
654 /* A mask of the bits that are writeable: if a bit is set here, then
655 it can be modified; if the bit is clear, then it cannot. */
656 LONGEST writeable_bits;
657 };
658
659
660 /* mep_csr_registers[i] describes the i'th CSR.
661 We just list the register numbers here explicitly to help catch
662 typos. */
663 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
664 struct mep_csr_register mep_csr_registers[] = {
665 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
666 { CSR(LP), 0xffffffff },
667 { CSR(SAR), 0x0000003f },
668 { CSR(CSR3), 0xffffffff },
669 { CSR(RPB), 0xfffffffe },
670 { CSR(RPE), 0xffffffff },
671 { CSR(RPC), 0xffffffff },
672 { CSR(HI), 0xffffffff },
673 { CSR(LO), 0xffffffff },
674 { CSR(CSR9), 0xffffffff },
675 { CSR(CSR10), 0xffffffff },
676 { CSR(CSR11), 0xffffffff },
677 { CSR(MB0), 0x0000ffff },
678 { CSR(ME0), 0x0000ffff },
679 { CSR(MB1), 0x0000ffff },
680 { CSR(ME1), 0x0000ffff },
681 { CSR(PSW), 0x000003ff },
682 { CSR(ID), 0x00000000 },
683 { CSR(TMP), 0xffffffff },
684 { CSR(EPC), 0xffffffff },
685 { CSR(EXC), 0x000030f0 },
686 { CSR(CFG), 0x00c0001b },
687 { CSR(CSR22), 0xffffffff },
688 { CSR(NPC), 0xffffffff },
689 { CSR(DBG), 0x00000580 },
690 { CSR(DEPC), 0xffffffff },
691 { CSR(OPT), 0x00000000 },
692 { CSR(RCFG), 0x00000000 },
693 { CSR(CCFG), 0x00000000 },
694 { CSR(CSR29), 0xffffffff },
695 { CSR(CSR30), 0xffffffff },
696 { CSR(CSR31), 0xffffffff },
697 };
698
699
700 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
701 the number of the corresponding pseudoregister. Otherwise,
702 mep_raw_to_pseudo[R] == R. */
703 static int mep_raw_to_pseudo[MEP_NUM_REGS];
704
705 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
706 is the number of the underlying raw register. Otherwise
707 mep_pseudo_to_raw[R] == R. */
708 static int mep_pseudo_to_raw[MEP_NUM_REGS];
709
710 static void
711 mep_init_pseudoregister_maps (void)
712 {
713 int i;
714
715 /* Verify that mep_csr_registers covers all the CSRs, in order. */
716 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
717 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
718
719 /* Verify that the raw and pseudo ranges have matching sizes. */
720 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
721 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
722 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
723 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
724
725 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
726 {
727 struct mep_csr_register *r = &mep_csr_registers[i];
728
729 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
730 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
731 }
732
733 /* Set up the initial raw<->pseudo mappings. */
734 for (i = 0; i < MEP_NUM_REGS; i++)
735 {
736 mep_raw_to_pseudo[i] = i;
737 mep_pseudo_to_raw[i] = i;
738 }
739
740 /* Add the CSR raw<->pseudo mappings. */
741 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
742 {
743 struct mep_csr_register *r = &mep_csr_registers[i];
744
745 mep_raw_to_pseudo[r->raw] = r->pseudo;
746 mep_pseudo_to_raw[r->pseudo] = r->raw;
747 }
748
749 /* Add the CR raw<->pseudo mappings. */
750 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
751 {
752 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
753 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
754 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
755 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
756 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
757
758 /* Truly, the raw->pseudo mapping depends on the current module.
759 But we use the raw->pseudo mapping when we read the debugging
760 info; at that point, we don't know what module we'll actually
761 be running yet. So, we always supply the 64-bit register
762 numbers; GDB knows how to pick a smaller value out of a
763 larger register properly. */
764 mep_raw_to_pseudo[raw] = pseudo64;
765 mep_pseudo_to_raw[pseudo32] = raw;
766 mep_pseudo_to_raw[pseudofp32] = raw;
767 mep_pseudo_to_raw[pseudo64] = raw;
768 mep_pseudo_to_raw[pseudofp64] = raw;
769 }
770
771 /* Add the CCR raw<->pseudo mappings. */
772 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
773 {
774 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
775 int pseudo = MEP_FIRST_CCR_REGNUM + i;
776 mep_raw_to_pseudo[raw] = pseudo;
777 mep_pseudo_to_raw[pseudo] = raw;
778 }
779 }
780
781
782 static int
783 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
784 {
785 /* The debug info uses the raw register numbers. */
786 if (debug_reg >= 0 && debug_reg < ARRAY_SIZE (mep_raw_to_pseudo))
787 return mep_raw_to_pseudo[debug_reg];
788 return -1;
789 }
790
791
792 /* Return the size, in bits, of the coprocessor pseudoregister
793 numbered PSEUDO. */
794 static int
795 mep_pseudo_cr_size (int pseudo)
796 {
797 if (IS_CR32_REGNUM (pseudo)
798 || IS_FP_CR32_REGNUM (pseudo))
799 return 32;
800 else if (IS_CR64_REGNUM (pseudo)
801 || IS_FP_CR64_REGNUM (pseudo))
802 return 64;
803 else
804 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
805 }
806
807
808 /* If the coprocessor pseudoregister numbered PSEUDO is a
809 floating-point register, return non-zero; if it is an integer
810 register, return zero. */
811 static int
812 mep_pseudo_cr_is_float (int pseudo)
813 {
814 return (IS_FP_CR32_REGNUM (pseudo)
815 || IS_FP_CR64_REGNUM (pseudo));
816 }
817
818
819 /* Given a coprocessor GPR pseudoregister number, return its index
820 within that register bank. */
821 static int
822 mep_pseudo_cr_index (int pseudo)
823 {
824 if (IS_CR32_REGNUM (pseudo))
825 return pseudo - MEP_FIRST_CR32_REGNUM;
826 else if (IS_FP_CR32_REGNUM (pseudo))
827 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
828 else if (IS_CR64_REGNUM (pseudo))
829 return pseudo - MEP_FIRST_CR64_REGNUM;
830 else if (IS_FP_CR64_REGNUM (pseudo))
831 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
832 else
833 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
834 }
835
836
837 /* Return the me_module index describing the current target.
838
839 If the current target has registers (e.g., simulator, remote
840 target), then this uses the value of the 'module' register, raw
841 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
842 from the ELF header's e_flags field of the current executable
843 file. */
844 static CONFIG_ATTR
845 current_me_module (void)
846 {
847 if (target_has_registers)
848 {
849 ULONGEST regval;
850 regcache_cooked_read_unsigned (get_current_regcache (),
851 MEP_MODULE_REGNUM, &regval);
852 return (CONFIG_ATTR) regval;
853 }
854 else
855 return gdbarch_tdep (target_gdbarch ())->me_module;
856 }
857
858
859 /* Return the set of options for the current target, in the form that
860 the OPT register would use.
861
862 If the current target has registers (e.g., simulator, remote
863 target), then this is the actual value of the OPT register. If the
864 current target does not have registers (e.g., an executable file),
865 then use the 'module_opt' field we computed when we build the
866 gdbarch object for this module. */
867 static unsigned int
868 current_options (void)
869 {
870 if (target_has_registers)
871 {
872 ULONGEST regval;
873 regcache_cooked_read_unsigned (get_current_regcache (),
874 MEP_OPT_REGNUM, &regval);
875 return regval;
876 }
877 else
878 return me_module_opt (current_me_module ());
879 }
880
881
882 /* Return the width of the current me_module's coprocessor data bus,
883 in bits. This is either 32 or 64. */
884 static int
885 current_cop_data_bus_width (void)
886 {
887 return me_module_cop_data_bus_width (current_me_module ());
888 }
889
890
891 /* Return the keyword table of coprocessor general-purpose register
892 names appropriate for the me_module we're dealing with. */
893 static CGEN_KEYWORD *
894 current_cr_names (void)
895 {
896 const CGEN_HW_ENTRY *hw
897 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
898
899 return register_set_keyword_table (hw);
900 }
901
902
903 /* Return non-zero if the coprocessor general-purpose registers are
904 floating-point values, zero otherwise. */
905 static int
906 current_cr_is_float (void)
907 {
908 const CGEN_HW_ENTRY *hw
909 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
910
911 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
912 }
913
914
915 /* Return the keyword table of coprocessor control register names
916 appropriate for the me_module we're dealing with. */
917 static CGEN_KEYWORD *
918 current_ccr_names (void)
919 {
920 const CGEN_HW_ENTRY *hw
921 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
922
923 return register_set_keyword_table (hw);
924 }
925
926
927 static const char *
928 mep_register_name (struct gdbarch *gdbarch, int regnr)
929 {
930 /* General-purpose registers. */
931 static const char *gpr_names[] = {
932 "r0", "r1", "r2", "r3", /* 0 */
933 "r4", "r5", "r6", "r7", /* 4 */
934 "fp", "r9", "r10", "r11", /* 8 */
935 "r12", "tp", "gp", "sp" /* 12 */
936 };
937
938 /* Special-purpose registers. */
939 static const char *csr_names[] = {
940 "pc", "lp", "sar", "", /* 0 csr3: reserved */
941 "rpb", "rpe", "rpc", "hi", /* 4 */
942 "lo", "", "", "", /* 8 csr9-csr11: reserved */
943 "mb0", "me0", "mb1", "me1", /* 12 */
944
945 "psw", "id", "tmp", "epc", /* 16 */
946 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
947 "dbg", "depc", "opt", "rcfg", /* 24 */
948 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
949 };
950
951 if (IS_GPR_REGNUM (regnr))
952 return gpr_names[regnr - MEP_R0_REGNUM];
953 else if (IS_CSR_REGNUM (regnr))
954 {
955 /* The 'hi' and 'lo' registers are only present on processors
956 that have the 'MUL' or 'DIV' instructions enabled. */
957 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
958 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
959 return "";
960
961 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
962 }
963 else if (IS_CR_REGNUM (regnr))
964 {
965 CGEN_KEYWORD *names;
966 int cr_size;
967 int cr_is_float;
968
969 /* Does this module have a coprocessor at all? */
970 if (! (current_options () & MEP_OPT_COP))
971 return "";
972
973 names = current_cr_names ();
974 if (! names)
975 /* This module's coprocessor has no general-purpose registers. */
976 return "";
977
978 cr_size = current_cop_data_bus_width ();
979 if (cr_size != mep_pseudo_cr_size (regnr))
980 /* This module's coprocessor's GPR's are of a different size. */
981 return "";
982
983 cr_is_float = current_cr_is_float ();
984 /* The extra ! operators ensure we get boolean equality, not
985 numeric equality. */
986 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
987 /* This module's coprocessor's GPR's are of a different type. */
988 return "";
989
990 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
991 }
992 else if (IS_CCR_REGNUM (regnr))
993 {
994 /* Does this module have a coprocessor at all? */
995 if (! (current_options () & MEP_OPT_COP))
996 return "";
997
998 {
999 CGEN_KEYWORD *names = current_ccr_names ();
1000
1001 if (! names)
1002 /* This me_module's coprocessor has no control registers. */
1003 return "";
1004
1005 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1006 }
1007 }
1008
1009 /* It might be nice to give the 'module' register a name, but that
1010 would affect the output of 'info all-registers', which would
1011 disturb the test suites. So we leave it invisible. */
1012 else
1013 return NULL;
1014 }
1015
1016
1017 /* Custom register groups for the MeP. */
1018 static struct reggroup *mep_csr_reggroup; /* control/special */
1019 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1020 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1021
1022
1023 static int
1024 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1025 struct reggroup *group)
1026 {
1027 /* Filter reserved or unused register numbers. */
1028 {
1029 const char *name = mep_register_name (gdbarch, regnum);
1030
1031 if (! name || name[0] == '\0')
1032 return 0;
1033 }
1034
1035 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1036 the existing behavior, so we'd want to run that by them. */
1037 if (group == general_reggroup)
1038 return (IS_GPR_REGNUM (regnum)
1039 || IS_CSR_REGNUM (regnum));
1040
1041 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1042 else if (group == all_reggroup)
1043 return (IS_GPR_REGNUM (regnum)
1044 || IS_CSR_REGNUM (regnum)
1045 || IS_CR_REGNUM (regnum)
1046 || IS_CCR_REGNUM (regnum));
1047
1048 /* All registers should be saved and restored, except for the raw
1049 CSR's.
1050
1051 This is probably right if the coprocessor is something like a
1052 floating-point unit, but would be wrong if the coprocessor is
1053 something that does I/O, where register accesses actually cause
1054 externally-visible actions. But I get the impression that the
1055 coprocessor isn't supposed to do things like that --- you'd use a
1056 hardware engine, perhaps. */
1057 else if (group == save_reggroup || group == restore_reggroup)
1058 return (IS_GPR_REGNUM (regnum)
1059 || IS_CSR_REGNUM (regnum)
1060 || IS_CR_REGNUM (regnum)
1061 || IS_CCR_REGNUM (regnum));
1062
1063 else if (group == mep_csr_reggroup)
1064 return IS_CSR_REGNUM (regnum);
1065 else if (group == mep_cr_reggroup)
1066 return IS_CR_REGNUM (regnum);
1067 else if (group == mep_ccr_reggroup)
1068 return IS_CCR_REGNUM (regnum);
1069 else
1070 return 0;
1071 }
1072
1073
1074 static struct type *
1075 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1076 {
1077 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1078 long. So for them, the raw registers are always 64 bits long (to
1079 keep the 'g' packet format fixed), and the pseudoregisters vary
1080 in length. */
1081 if (IS_RAW_CR_REGNUM (reg_nr))
1082 return builtin_type (gdbarch)->builtin_uint64;
1083
1084 /* Since GDB doesn't allow registers to change type, we have two
1085 banks of pseudoregisters for the coprocessor general-purpose
1086 registers: one that gives a 32-bit view, and one that gives a
1087 64-bit view. We hide or show one or the other depending on the
1088 current module. */
1089 if (IS_CR_REGNUM (reg_nr))
1090 {
1091 int size = mep_pseudo_cr_size (reg_nr);
1092 if (size == 32)
1093 {
1094 if (mep_pseudo_cr_is_float (reg_nr))
1095 return builtin_type (gdbarch)->builtin_float;
1096 else
1097 return builtin_type (gdbarch)->builtin_uint32;
1098 }
1099 else if (size == 64)
1100 {
1101 if (mep_pseudo_cr_is_float (reg_nr))
1102 return builtin_type (gdbarch)->builtin_double;
1103 else
1104 return builtin_type (gdbarch)->builtin_uint64;
1105 }
1106 else
1107 gdb_assert_not_reached ("unexpected cr size");
1108 }
1109
1110 /* All other registers are 32 bits long. */
1111 else
1112 return builtin_type (gdbarch)->builtin_uint32;
1113 }
1114
1115 static enum register_status
1116 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1117 readable_regcache *regcache,
1118 int cookednum,
1119 gdb_byte *buf)
1120 {
1121 enum register_status status;
1122 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1123 /* Read the raw register into a 64-bit buffer, and then return the
1124 appropriate end of that buffer. */
1125 int rawnum = mep_pseudo_to_raw[cookednum];
1126 gdb_byte buf64[8];
1127
1128 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1129 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1130 status = regcache->raw_read (rawnum, buf64);
1131 if (status == REG_VALID)
1132 {
1133 /* Slow, but legible. */
1134 store_unsigned_integer (buf, 4, byte_order,
1135 extract_unsigned_integer (buf64, 8, byte_order));
1136 }
1137 return status;
1138 }
1139
1140
1141 static enum register_status
1142 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1143 readable_regcache *regcache,
1144 int cookednum,
1145 gdb_byte *buf)
1146 {
1147 return regcache->raw_read (mep_pseudo_to_raw[cookednum], buf);
1148 }
1149
1150
1151 static enum register_status
1152 mep_pseudo_register_read (struct gdbarch *gdbarch,
1153 readable_regcache *regcache,
1154 int cookednum,
1155 gdb_byte *buf)
1156 {
1157 if (IS_CSR_REGNUM (cookednum)
1158 || IS_CCR_REGNUM (cookednum))
1159 return regcache->raw_read (mep_pseudo_to_raw[cookednum], buf);
1160 else if (IS_CR32_REGNUM (cookednum)
1161 || IS_FP_CR32_REGNUM (cookednum))
1162 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1163 else if (IS_CR64_REGNUM (cookednum)
1164 || IS_FP_CR64_REGNUM (cookednum))
1165 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1166 else
1167 gdb_assert_not_reached ("unexpected pseudo register");
1168 }
1169
1170
1171 static void
1172 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1173 struct regcache *regcache,
1174 int cookednum,
1175 const gdb_byte *buf)
1176 {
1177 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1178 int size = register_size (gdbarch, cookednum);
1179 struct mep_csr_register *r
1180 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1181
1182 if (r->writeable_bits == 0)
1183 /* A completely read-only register; avoid the read-modify-
1184 write cycle, and juts ignore the entire write. */
1185 ;
1186 else
1187 {
1188 /* A partially writeable register; do a read-modify-write cycle. */
1189 ULONGEST old_bits;
1190 ULONGEST new_bits;
1191 ULONGEST mixed_bits;
1192
1193 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1194 new_bits = extract_unsigned_integer (buf, size, byte_order);
1195 mixed_bits = ((r->writeable_bits & new_bits)
1196 | (~r->writeable_bits & old_bits));
1197 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1198 }
1199 }
1200
1201
1202 static void
1203 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1204 struct regcache *regcache,
1205 int cookednum,
1206 const gdb_byte *buf)
1207 {
1208 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1209 /* Expand the 32-bit value into a 64-bit value, and write that to
1210 the pseudoregister. */
1211 int rawnum = mep_pseudo_to_raw[cookednum];
1212 gdb_byte buf64[8];
1213
1214 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1215 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1216 /* Slow, but legible. */
1217 store_unsigned_integer (buf64, 8, byte_order,
1218 extract_unsigned_integer (buf, 4, byte_order));
1219 regcache_raw_write (regcache, rawnum, buf64);
1220 }
1221
1222
1223 static void
1224 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1225 struct regcache *regcache,
1226 int cookednum,
1227 const gdb_byte *buf)
1228 {
1229 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1230 }
1231
1232
1233 static void
1234 mep_pseudo_register_write (struct gdbarch *gdbarch,
1235 struct regcache *regcache,
1236 int cookednum,
1237 const gdb_byte *buf)
1238 {
1239 if (IS_CSR_REGNUM (cookednum))
1240 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1241 else if (IS_CR32_REGNUM (cookednum)
1242 || IS_FP_CR32_REGNUM (cookednum))
1243 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1244 else if (IS_CR64_REGNUM (cookednum)
1245 || IS_FP_CR64_REGNUM (cookednum))
1246 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1247 else if (IS_CCR_REGNUM (cookednum))
1248 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1249 else
1250 gdb_assert_not_reached ("unexpected pseudo register");
1251 }
1252
1253
1254 \f
1255 /* Disassembly. */
1256
1257 static int
1258 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1259 {
1260 struct obj_section * s = find_pc_section (pc);
1261
1262 info->arch = bfd_arch_mep;
1263 if (s)
1264 {
1265 /* The libopcodes disassembly code uses the section to find the
1266 BFD, the BFD to find the ELF header, the ELF header to find
1267 the me_module index, and the me_module index to select the
1268 right instructions to print. */
1269 info->section = s->the_bfd_section;
1270 }
1271
1272 return print_insn_mep (pc, info);
1273 }
1274
1275 \f
1276 /* Prologue analysis. */
1277
1278
1279 /* The MeP has two classes of instructions: "core" instructions, which
1280 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1281 which are mostly concerned with moving data in and out of
1282 coprocessor registers, and branching on coprocessor condition
1283 codes. There's space in the instruction set for custom coprocessor
1284 instructions, too.
1285
1286 Instructions can be 16 or 32 bits long; the top two bits of the
1287 first byte indicate the length. The coprocessor instructions are
1288 mixed in with the core instructions, and there's no easy way to
1289 distinguish them; you have to completely decode them to tell one
1290 from the other.
1291
1292 The MeP also supports a "VLIW" operation mode, where instructions
1293 always occur in fixed-width bundles. The bundles are either 32
1294 bits or 64 bits long, depending on a fixed configuration flag. You
1295 decode the first part of the bundle as normal; if it's a core
1296 instruction, and there's any space left in the bundle, the
1297 remainder of the bundle is a coprocessor instruction, which will
1298 execute in parallel with the core instruction. If the first part
1299 of the bundle is a coprocessor instruction, it occupies the entire
1300 bundle.
1301
1302 So, here are all the cases:
1303
1304 - 32-bit VLIW mode:
1305 Every bundle is four bytes long, and naturally aligned, and can hold
1306 one or two instructions:
1307 - 16-bit core instruction; 16-bit coprocessor instruction
1308 These execute in parallel.
1309 - 32-bit core instruction
1310 - 32-bit coprocessor instruction
1311
1312 - 64-bit VLIW mode:
1313 Every bundle is eight bytes long, and naturally aligned, and can hold
1314 one or two instructions:
1315 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1316 These execute in parallel.
1317 - 32-bit core instruction; 32-bit coprocessor instruction
1318 These execute in parallel.
1319 - 64-bit coprocessor instruction
1320
1321 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1322 instruction, so I don't really know what's up there; perhaps these
1323 are always the user-defined coprocessor instructions. */
1324
1325
1326 /* Return non-zero if PC is in a VLIW code section, zero
1327 otherwise. */
1328 static int
1329 mep_pc_in_vliw_section (CORE_ADDR pc)
1330 {
1331 struct obj_section *s = find_pc_section (pc);
1332 if (s)
1333 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1334 return 0;
1335 }
1336
1337
1338 /* Set *INSN to the next core instruction at PC, and return the
1339 address of the next instruction.
1340
1341 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1342 instructions are encoded as one or two two-byte parts, and each
1343 part is byte-swapped independently. Thus:
1344
1345 void
1346 foo (void)
1347 {
1348 asm ("movu $1, 0x123456");
1349 asm ("sb $1,0x5678($2)");
1350 asm ("clip $1, 19");
1351 }
1352
1353 compiles to this big-endian code:
1354
1355 0: d1 56 12 34 movu $1,0x123456
1356 4: c1 28 56 78 sb $1,22136($2)
1357 8: f1 01 10 98 clip $1,0x13
1358 c: 70 02 ret
1359
1360 and this little-endian code:
1361
1362 0: 56 d1 34 12 movu $1,0x123456
1363 4: 28 c1 78 56 sb $1,22136($2)
1364 8: 01 f1 98 10 clip $1,0x13
1365 c: 02 70 ret
1366
1367 Instructions are returned in *INSN in an endian-independent form: a
1368 given instruction always appears in *INSN the same way, regardless
1369 of whether the instruction stream is big-endian or little-endian.
1370
1371 *INSN's most significant 16 bits are the first (i.e., at lower
1372 addresses) 16 bit part of the instruction. Its least significant
1373 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1374 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1375 are fetched using the current endianness.
1376
1377 So, the *INSN values for the instruction sequence above would be
1378 the following, in either endianness:
1379
1380 0xd1561234 movu $1,0x123456
1381 0xc1285678 sb $1,22136($2)
1382 0xf1011098 clip $1,0x13
1383 0x70020000 ret
1384
1385 (In a sense, it would be more natural to return 16-bit instructions
1386 in the least significant 16 bits of *INSN, but that would be
1387 ambiguous. In order to tell whether you're looking at a 16- or a
1388 32-bit instruction, you have to consult the major opcode field ---
1389 the most significant four bits of the instruction's first 16-bit
1390 part. But if we put 16-bit instructions at the least significant
1391 end of *INSN, then you don't know where to find the major opcode
1392 field until you know if it's a 16- or a 32-bit instruction ---
1393 which is where we started.)
1394
1395 If PC points to a core / coprocessor bundle in a VLIW section, set
1396 *INSN to the core instruction, and return the address of the next
1397 bundle. This has the effect of skipping the bundled coprocessor
1398 instruction. That's okay, since coprocessor instructions aren't
1399 significant to prologue analysis --- for the time being,
1400 anyway. */
1401
1402 static CORE_ADDR
1403 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1404 {
1405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1406 int pc_in_vliw_section;
1407 int vliw_mode;
1408 int insn_len;
1409 gdb_byte buf[2];
1410
1411 *insn = 0;
1412
1413 /* Are we in a VLIW section? */
1414 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1415 if (pc_in_vliw_section)
1416 {
1417 /* Yes, find out which bundle size. */
1418 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1419
1420 /* If PC is in a VLIW section, but the current core doesn't say
1421 that it supports either VLIW mode, then we don't have enough
1422 information to parse the instruction stream it contains.
1423 Since the "undifferentiated" standard core doesn't have
1424 either VLIW mode bit set, this could happen.
1425
1426 But it shouldn't be an error to (say) set a breakpoint in a
1427 VLIW section, if you know you'll never reach it. (Perhaps
1428 you have a script that sets a bunch of standard breakpoints.)
1429
1430 So we'll just return zero here, and hope for the best. */
1431 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1432 return 0;
1433
1434 /* If both VL32 and VL64 are set, that's bogus, too. */
1435 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1436 return 0;
1437 }
1438 else
1439 vliw_mode = 0;
1440
1441 read_memory (pc, buf, sizeof (buf));
1442 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1443
1444 /* The major opcode --- the top four bits of the first 16-bit
1445 part --- indicates whether this instruction is 16 or 32 bits
1446 long. All 32-bit instructions have a major opcode whose top
1447 two bits are 11; all the rest are 16-bit instructions. */
1448 if ((*insn & 0xc0000000) == 0xc0000000)
1449 {
1450 /* Fetch the second 16-bit part of the instruction. */
1451 read_memory (pc + 2, buf, sizeof (buf));
1452 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1453 }
1454
1455 /* If we're in VLIW code, then the VLIW width determines the address
1456 of the next instruction. */
1457 if (vliw_mode)
1458 {
1459 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1460 coprocessor half of a core / copro bundle. */
1461 if (vliw_mode == MEP_OPT_VL32)
1462 insn_len = 4;
1463
1464 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1465 coprocessor half of a core / copro bundle. */
1466 else if (vliw_mode == MEP_OPT_VL64)
1467 insn_len = 8;
1468
1469 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1470 else
1471 gdb_assert_not_reached ("unexpected vliw mode");
1472 }
1473
1474 /* Otherwise, the top two bits of the major opcode are (again) what
1475 we need to check. */
1476 else if ((*insn & 0xc0000000) == 0xc0000000)
1477 insn_len = 4;
1478 else
1479 insn_len = 2;
1480
1481 return pc + insn_len;
1482 }
1483
1484
1485 /* Sign-extend the LEN-bit value N. */
1486 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1487
1488 /* Return the LEN-bit field at POS from I. */
1489 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1490
1491 /* Like FIELD, but sign-extend the field's value. */
1492 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1493
1494
1495 /* Macros for decoding instructions.
1496
1497 Remember that 16-bit instructions are placed in bits 16..31 of i,
1498 not at the least significant end; this means that the major opcode
1499 field is always in the same place, regardless of the width of the
1500 instruction. As a reminder of this, we show the lower 16 bits of a
1501 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1502
1503 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1504 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1505 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1506
1507 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1508 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1509 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1510 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1511 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1512 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1513 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1514 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1515 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1516
1517 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1518 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1519 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1520 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1521
1522 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1523 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1524 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1525 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1526
1527 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1528 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1529 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1530 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1531
1532 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1533 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1534 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1535 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1536 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1537
1538 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1539 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1540 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1541 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1542
1543 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1544 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1545 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1546 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1547
1548 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1549 imm5 = I||i[7:4] */
1550 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1551 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1552 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1553
1554 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1555 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1556 #define LW_TARGET(i) (FIELD (i, 24, 4))
1557 #define LW_BASE(i) (FIELD (i, 20, 4))
1558 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1559
1560 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1561 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1562 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1563 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1564
1565 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1566 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1567 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1568
1569
1570 /* This structure holds the results of a prologue analysis. */
1571 struct mep_prologue
1572 {
1573 /* The architecture for which we generated this prologue info. */
1574 struct gdbarch *gdbarch;
1575
1576 /* The offset from the frame base to the stack pointer --- always
1577 zero or negative.
1578
1579 Calling this a "size" is a bit misleading, but given that the
1580 stack grows downwards, using offsets for everything keeps one
1581 from going completely sign-crazy: you never change anything's
1582 sign for an ADD instruction; always change the second operand's
1583 sign for a SUB instruction; and everything takes care of
1584 itself. */
1585 int frame_size;
1586
1587 /* Non-zero if this function has initialized the frame pointer from
1588 the stack pointer, zero otherwise. */
1589 int has_frame_ptr;
1590
1591 /* If has_frame_ptr is non-zero, this is the offset from the frame
1592 base to where the frame pointer points. This is always zero or
1593 negative. */
1594 int frame_ptr_offset;
1595
1596 /* The address of the first instruction at which the frame has been
1597 set up and the arguments are where the debug info says they are
1598 --- as best as we can tell. */
1599 CORE_ADDR prologue_end;
1600
1601 /* reg_offset[R] is the offset from the CFA at which register R is
1602 saved, or 1 if register R has not been saved. (Real values are
1603 always zero or negative.) */
1604 int reg_offset[MEP_NUM_REGS];
1605 };
1606
1607 /* Return non-zero if VALUE is an incoming argument register. */
1608
1609 static int
1610 is_arg_reg (pv_t value)
1611 {
1612 return (value.kind == pvk_register
1613 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1614 && value.k == 0);
1615 }
1616
1617 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1618 probably spilling an argument register to its stack slot in STACK.
1619 Such instructions should be included in the prologue, if possible.
1620
1621 The store is a spill if:
1622 - the value being stored is REG's original value;
1623 - the value has not already been stored somewhere in STACK; and
1624 - ADDR is a stack slot's address (e.g., relative to the original
1625 value of the SP). */
1626 static int
1627 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1628 struct pv_area *stack)
1629 {
1630 return (is_arg_reg (value)
1631 && pv_is_register (addr, MEP_SP_REGNUM)
1632 && ! stack->find_reg (gdbarch, value.reg, 0));
1633 }
1634
1635
1636 /* Function for finding saved registers in a 'struct pv_area'; we pass
1637 this to pv_area::scan.
1638
1639 If VALUE is a saved register, ADDR says it was saved at a constant
1640 offset from the frame base, and SIZE indicates that the whole
1641 register was saved, record its offset in RESULT_UNTYPED. */
1642 static void
1643 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1644 {
1645 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1646
1647 if (value.kind == pvk_register
1648 && value.k == 0
1649 && pv_is_register (addr, MEP_SP_REGNUM)
1650 && size == register_size (result->gdbarch, value.reg))
1651 result->reg_offset[value.reg] = addr.k;
1652 }
1653
1654
1655 /* Analyze a prologue starting at START_PC, going no further than
1656 LIMIT_PC. Fill in RESULT as appropriate. */
1657 static void
1658 mep_analyze_prologue (struct gdbarch *gdbarch,
1659 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1660 struct mep_prologue *result)
1661 {
1662 CORE_ADDR pc;
1663 unsigned long insn;
1664 int rn;
1665 pv_t reg[MEP_NUM_REGS];
1666 CORE_ADDR after_last_frame_setup_insn = start_pc;
1667
1668 memset (result, 0, sizeof (*result));
1669 result->gdbarch = gdbarch;
1670
1671 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1672 {
1673 reg[rn] = pv_register (rn, 0);
1674 result->reg_offset[rn] = 1;
1675 }
1676
1677 pv_area stack (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1678
1679 pc = start_pc;
1680 while (pc < limit_pc)
1681 {
1682 CORE_ADDR next_pc;
1683 pv_t pre_insn_fp, pre_insn_sp;
1684
1685 next_pc = mep_get_insn (gdbarch, pc, &insn);
1686
1687 /* A zero return from mep_get_insn means that either we weren't
1688 able to read the instruction from memory, or that we don't
1689 have enough information to be able to reliably decode it. So
1690 we'll store here and hope for the best. */
1691 if (! next_pc)
1692 break;
1693
1694 /* Note the current values of the SP and FP, so we can tell if
1695 this instruction changed them, below. */
1696 pre_insn_fp = reg[MEP_FP_REGNUM];
1697 pre_insn_sp = reg[MEP_SP_REGNUM];
1698
1699 if (IS_ADD (insn))
1700 {
1701 int rn = ADD_TARGET (insn);
1702 CORE_ADDR imm6 = ADD_OFFSET (insn);
1703
1704 reg[rn] = pv_add_constant (reg[rn], imm6);
1705 }
1706 else if (IS_ADD3_16 (insn))
1707 {
1708 int rn = ADD3_16_TARGET (insn);
1709 int imm7 = ADD3_16_OFFSET (insn);
1710
1711 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1712 }
1713 else if (IS_ADD3_32 (insn))
1714 {
1715 int rn = ADD3_32_TARGET (insn);
1716 int rm = ADD3_32_SOURCE (insn);
1717 int imm16 = ADD3_32_OFFSET (insn);
1718
1719 reg[rn] = pv_add_constant (reg[rm], imm16);
1720 }
1721 else if (IS_SW_REG (insn))
1722 {
1723 int rn = SW_REG_SOURCE (insn);
1724 int rm = SW_REG_BASE (insn);
1725
1726 /* If simulating this store would require us to forget
1727 everything we know about the stack frame in the name of
1728 accuracy, it would be better to just quit now. */
1729 if (stack.store_would_trash (reg[rm]))
1730 break;
1731
1732 if (is_arg_spill (gdbarch, reg[rn], reg[rm], &stack))
1733 after_last_frame_setup_insn = next_pc;
1734
1735 stack.store (reg[rm], 4, reg[rn]);
1736 }
1737 else if (IS_SW_IMMD (insn))
1738 {
1739 int rn = SW_IMMD_SOURCE (insn);
1740 int offset = SW_IMMD_OFFSET (insn);
1741 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1742
1743 /* If simulating this store would require us to forget
1744 everything we know about the stack frame in the name of
1745 accuracy, it would be better to just quit now. */
1746 if (stack.store_would_trash (addr))
1747 break;
1748
1749 if (is_arg_spill (gdbarch, reg[rn], addr, &stack))
1750 after_last_frame_setup_insn = next_pc;
1751
1752 stack.store (addr, 4, reg[rn]);
1753 }
1754 else if (IS_MOV (insn))
1755 {
1756 int rn = MOV_TARGET (insn);
1757 int rm = MOV_SOURCE (insn);
1758
1759 reg[rn] = reg[rm];
1760
1761 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1762 after_last_frame_setup_insn = next_pc;
1763 }
1764 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1765 {
1766 int rn = SWBH_32_SOURCE (insn);
1767 int rm = SWBH_32_BASE (insn);
1768 int disp = SWBH_32_OFFSET (insn);
1769 int size = (IS_SB (insn) ? 1
1770 : IS_SH (insn) ? 2
1771 : (gdb_assert (IS_SW (insn)), 4));
1772 pv_t addr = pv_add_constant (reg[rm], disp);
1773
1774 if (stack.store_would_trash (addr))
1775 break;
1776
1777 if (is_arg_spill (gdbarch, reg[rn], addr, &stack))
1778 after_last_frame_setup_insn = next_pc;
1779
1780 stack.store (addr, size, reg[rn]);
1781 }
1782 else if (IS_LDC (insn))
1783 {
1784 int rn = LDC_TARGET (insn);
1785 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1786
1787 reg[rn] = reg[cr];
1788 }
1789 else if (IS_LW (insn))
1790 {
1791 int rn = LW_TARGET (insn);
1792 int rm = LW_BASE (insn);
1793 int offset = LW_OFFSET (insn);
1794 pv_t addr = pv_add_constant (reg[rm], offset);
1795
1796 reg[rn] = stack.fetch (addr, 4);
1797 }
1798 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1799 {
1800 /* When a loop appears as the first statement of a function
1801 body, gcc 4.x will use a BRA instruction to branch to the
1802 loop condition checking code. This BRA instruction is
1803 marked as part of the prologue. We therefore set next_pc
1804 to this branch target and also stop the prologue scan.
1805 The instructions at and beyond the branch target should
1806 no longer be associated with the prologue.
1807
1808 Note that we only consider forward branches here. We
1809 presume that a forward branch is being used to skip over
1810 a loop body.
1811
1812 A backwards branch is covered by the default case below.
1813 If we were to encounter a backwards branch, that would
1814 most likely mean that we've scanned through a loop body.
1815 We definitely want to stop the prologue scan when this
1816 happens and that is precisely what is done by the default
1817 case below. */
1818 next_pc = pc + BRA_DISP (insn);
1819 after_last_frame_setup_insn = next_pc;
1820 break;
1821 }
1822 else
1823 /* We've hit some instruction we don't know how to simulate.
1824 Strictly speaking, we should set every value we're
1825 tracking to "unknown". But we'll be optimistic, assume
1826 that we have enough information already, and stop
1827 analysis here. */
1828 break;
1829
1830 /* If this instruction changed the FP or decreased the SP (i.e.,
1831 allocated more stack space), then this may be a good place to
1832 declare the prologue finished. However, there are some
1833 exceptions:
1834
1835 - If the instruction just changed the FP back to its original
1836 value, then that's probably a restore instruction. The
1837 prologue should definitely end before that.
1838
1839 - If the instruction increased the value of the SP (that is,
1840 shrunk the frame), then it's probably part of a frame
1841 teardown sequence, and the prologue should end before that. */
1842
1843 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1844 {
1845 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1846 after_last_frame_setup_insn = next_pc;
1847 }
1848 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1849 {
1850 /* The comparison of constants looks odd, there, because .k
1851 is unsigned. All it really means is that the new value
1852 is lower than it was before the instruction. */
1853 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1854 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1855 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1856 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1857 after_last_frame_setup_insn = next_pc;
1858 }
1859
1860 pc = next_pc;
1861 }
1862
1863 /* Is the frame size (offset, really) a known constant? */
1864 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1865 result->frame_size = reg[MEP_SP_REGNUM].k;
1866
1867 /* Was the frame pointer initialized? */
1868 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1869 {
1870 result->has_frame_ptr = 1;
1871 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1872 }
1873
1874 /* Record where all the registers were saved. */
1875 stack.scan (check_for_saved, (void *) result);
1876
1877 result->prologue_end = after_last_frame_setup_insn;
1878 }
1879
1880
1881 static CORE_ADDR
1882 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1883 {
1884 const char *name;
1885 CORE_ADDR func_addr, func_end;
1886 struct mep_prologue p;
1887
1888 /* Try to find the extent of the function that contains PC. */
1889 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1890 return pc;
1891
1892 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1893 return p.prologue_end;
1894 }
1895
1896
1897 \f
1898 /* Breakpoints. */
1899 constexpr gdb_byte mep_break_insn[] = { 0x70, 0x32 };
1900
1901 typedef BP_MANIPULATION (mep_break_insn) mep_breakpoint;
1902
1903 \f
1904 /* Frames and frame unwinding. */
1905
1906
1907 static struct mep_prologue *
1908 mep_analyze_frame_prologue (struct frame_info *this_frame,
1909 void **this_prologue_cache)
1910 {
1911 if (! *this_prologue_cache)
1912 {
1913 CORE_ADDR func_start, stop_addr;
1914
1915 *this_prologue_cache
1916 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1917
1918 func_start = get_frame_func (this_frame);
1919 stop_addr = get_frame_pc (this_frame);
1920
1921 /* If we couldn't find any function containing the PC, then
1922 just initialize the prologue cache, but don't do anything. */
1923 if (! func_start)
1924 stop_addr = func_start;
1925
1926 mep_analyze_prologue (get_frame_arch (this_frame),
1927 func_start, stop_addr,
1928 (struct mep_prologue *) *this_prologue_cache);
1929 }
1930
1931 return (struct mep_prologue *) *this_prologue_cache;
1932 }
1933
1934
1935 /* Given the next frame and a prologue cache, return this frame's
1936 base. */
1937 static CORE_ADDR
1938 mep_frame_base (struct frame_info *this_frame,
1939 void **this_prologue_cache)
1940 {
1941 struct mep_prologue *p
1942 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1943
1944 /* In functions that use alloca, the distance between the stack
1945 pointer and the frame base varies dynamically, so we can't use
1946 the SP plus static information like prologue analysis to find the
1947 frame base. However, such functions must have a frame pointer,
1948 to be able to restore the SP on exit. So whenever we do have a
1949 frame pointer, use that to find the base. */
1950 if (p->has_frame_ptr)
1951 {
1952 CORE_ADDR fp
1953 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1954 return fp - p->frame_ptr_offset;
1955 }
1956 else
1957 {
1958 CORE_ADDR sp
1959 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1960 return sp - p->frame_size;
1961 }
1962 }
1963
1964
1965 static void
1966 mep_frame_this_id (struct frame_info *this_frame,
1967 void **this_prologue_cache,
1968 struct frame_id *this_id)
1969 {
1970 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1971 get_frame_func (this_frame));
1972 }
1973
1974
1975 static struct value *
1976 mep_frame_prev_register (struct frame_info *this_frame,
1977 void **this_prologue_cache, int regnum)
1978 {
1979 struct mep_prologue *p
1980 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1981
1982 /* There are a number of complications in unwinding registers on the
1983 MeP, having to do with core functions calling VLIW functions and
1984 vice versa.
1985
1986 The least significant bit of the link register, LP.LTOM, is the
1987 VLIW mode toggle bit: it's set if a core function called a VLIW
1988 function, or vice versa, and clear when the caller and callee
1989 were both in the same mode.
1990
1991 So, if we're asked to unwind the PC, then we really want to
1992 unwind the LP and clear the least significant bit. (Real return
1993 addresses are always even.) And if we want to unwind the program
1994 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
1995
1996 Tweaking the register values we return in this way means that the
1997 bits in BUFFERP[] are not the same as the bits you'd find at
1998 ADDRP in the inferior, so we make sure lvalp is not_lval when we
1999 do this. */
2000 if (regnum == MEP_PC_REGNUM)
2001 {
2002 struct value *value;
2003 CORE_ADDR lp;
2004 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2005 MEP_LP_REGNUM);
2006 lp = value_as_long (value);
2007 release_value (value);
2008
2009 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2010 }
2011 else
2012 {
2013 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2014 struct value *value;
2015
2016 /* Our caller's SP is our frame base. */
2017 if (regnum == MEP_SP_REGNUM)
2018 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2019
2020 /* If prologue analysis says we saved this register somewhere,
2021 return a description of the stack slot holding it. */
2022 if (p->reg_offset[regnum] != 1)
2023 value = frame_unwind_got_memory (this_frame, regnum,
2024 frame_base + p->reg_offset[regnum]);
2025
2026 /* Otherwise, presume we haven't changed the value of this
2027 register, and get it from the next frame. */
2028 else
2029 value = frame_unwind_got_register (this_frame, regnum, regnum);
2030
2031 /* If we need to toggle the operating mode, do so. */
2032 if (regnum == MEP_PSW_REGNUM)
2033 {
2034 CORE_ADDR psw, lp;
2035
2036 psw = value_as_long (value);
2037 release_value (value);
2038
2039 /* Get the LP's value, too. */
2040 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2041 lp = value_as_long (value);
2042 release_value (value);
2043
2044 /* If LP.LTOM is set, then toggle PSW.OM. */
2045 if (lp & 0x1)
2046 psw ^= 0x1000;
2047
2048 return frame_unwind_got_constant (this_frame, regnum, psw);
2049 }
2050
2051 return value;
2052 }
2053 }
2054
2055
2056 static const struct frame_unwind mep_frame_unwind = {
2057 NORMAL_FRAME,
2058 default_frame_unwind_stop_reason,
2059 mep_frame_this_id,
2060 mep_frame_prev_register,
2061 NULL,
2062 default_frame_sniffer
2063 };
2064
2065
2066 /* Our general unwinding function can handle unwinding the PC. */
2067 static CORE_ADDR
2068 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2069 {
2070 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2071 }
2072
2073
2074 /* Our general unwinding function can handle unwinding the SP. */
2075 static CORE_ADDR
2076 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2077 {
2078 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2079 }
2080
2081
2082 \f
2083 /* Return values. */
2084
2085
2086 static int
2087 mep_use_struct_convention (struct type *type)
2088 {
2089 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2090 }
2091
2092
2093 static void
2094 mep_extract_return_value (struct gdbarch *arch,
2095 struct type *type,
2096 struct regcache *regcache,
2097 gdb_byte *valbuf)
2098 {
2099 int byte_order = gdbarch_byte_order (arch);
2100
2101 /* Values that don't occupy a full register appear at the less
2102 significant end of the value. This is the offset to where the
2103 value starts. */
2104 int offset;
2105
2106 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2107 pointed to by R0. */
2108 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2109
2110 if (byte_order == BFD_ENDIAN_BIG)
2111 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2112 else
2113 offset = 0;
2114
2115 /* Return values that do fit in a single register are returned in R0. */
2116 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2117 offset, TYPE_LENGTH (type),
2118 valbuf);
2119 }
2120
2121
2122 static void
2123 mep_store_return_value (struct gdbarch *arch,
2124 struct type *type,
2125 struct regcache *regcache,
2126 const gdb_byte *valbuf)
2127 {
2128 int byte_order = gdbarch_byte_order (arch);
2129
2130 /* Values that fit in a single register go in R0. */
2131 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2132 {
2133 /* Values that don't occupy a full register appear at the least
2134 significant end of the value. This is the offset to where the
2135 value starts. */
2136 int offset;
2137
2138 if (byte_order == BFD_ENDIAN_BIG)
2139 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2140 else
2141 offset = 0;
2142
2143 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2144 offset, TYPE_LENGTH (type),
2145 valbuf);
2146 }
2147
2148 /* Return values larger than a single register are returned in
2149 memory, pointed to by R0. Unfortunately, we can't count on R0
2150 pointing to the return buffer, so we raise an error here. */
2151 else
2152 error (_("\
2153 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2154 calling conventions do not provide enough information to do this.\n\
2155 Try using the 'return' command with no argument."));
2156 }
2157
2158 static enum return_value_convention
2159 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2160 struct type *type, struct regcache *regcache,
2161 gdb_byte *readbuf, const gdb_byte *writebuf)
2162 {
2163 if (mep_use_struct_convention (type))
2164 {
2165 if (readbuf)
2166 {
2167 ULONGEST addr;
2168 /* Although the address of the struct buffer gets passed in R1, it's
2169 returned in R0. Fetch R0's value and then read the memory
2170 at that address. */
2171 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2172 read_memory (addr, readbuf, TYPE_LENGTH (type));
2173 }
2174 if (writebuf)
2175 {
2176 /* Return values larger than a single register are returned in
2177 memory, pointed to by R0. Unfortunately, we can't count on R0
2178 pointing to the return buffer, so we raise an error here. */
2179 error (_("\
2180 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2181 calling conventions do not provide enough information to do this.\n\
2182 Try using the 'return' command with no argument."));
2183 }
2184 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2185 }
2186
2187 if (readbuf)
2188 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2189 if (writebuf)
2190 mep_store_return_value (gdbarch, type, regcache, writebuf);
2191
2192 return RETURN_VALUE_REGISTER_CONVENTION;
2193 }
2194
2195 \f
2196 /* Inferior calls. */
2197
2198
2199 static CORE_ADDR
2200 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2201 {
2202 /* Require word alignment. */
2203 return sp & -4;
2204 }
2205
2206
2207 /* From "lang_spec2.txt":
2208
2209 4.2 Calling conventions
2210
2211 4.2.1 Core register conventions
2212
2213 - Parameters should be evaluated from left to right, and they
2214 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2215 after should be held in the stack. If the size is larger than 4
2216 bytes in the first four parameters, the pointer should be held in
2217 the registers instead. If the size is larger than 4 bytes in the
2218 fifth parameter or after, the pointer should be held in the stack.
2219
2220 - Return value of a function should be held in register $0. If the
2221 size of return value is larger than 4 bytes, $1 should hold the
2222 pointer pointing memory that would hold the return value. In this
2223 case, the first parameter should be held in $2, the second one in
2224 $3, and the third one in $4, and the forth parameter or after
2225 should be held in the stack.
2226
2227 [This doesn't say so, but arguments shorter than four bytes are
2228 passed in the least significant end of a four-byte word when
2229 they're passed on the stack.] */
2230
2231
2232 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2233 large to fit in a register, save it on the stack, and place its
2234 address in COPY[i]. SP is the initial stack pointer; return the
2235 new stack pointer. */
2236 static CORE_ADDR
2237 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2238 CORE_ADDR copy[])
2239 {
2240 int i;
2241
2242 for (i = 0; i < argc; i++)
2243 {
2244 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2245
2246 if (arg_len > MEP_GPR_SIZE)
2247 {
2248 /* Reserve space for the copy, and then round the SP down, to
2249 make sure it's all aligned properly. */
2250 sp = (sp - arg_len) & -4;
2251 write_memory (sp, value_contents (argv[i]), arg_len);
2252 copy[i] = sp;
2253 }
2254 }
2255
2256 return sp;
2257 }
2258
2259
2260 static CORE_ADDR
2261 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2262 struct regcache *regcache, CORE_ADDR bp_addr,
2263 int argc, struct value **argv, CORE_ADDR sp,
2264 int struct_return,
2265 CORE_ADDR struct_addr)
2266 {
2267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2268 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2269 CORE_ADDR func_addr = find_function_addr (function, NULL);
2270 int i;
2271
2272 /* The number of the next register available to hold an argument. */
2273 int arg_reg;
2274
2275 /* The address of the next stack slot available to hold an argument. */
2276 CORE_ADDR arg_stack;
2277
2278 /* The address of the end of the stack area for arguments. This is
2279 just for error checking. */
2280 CORE_ADDR arg_stack_end;
2281
2282 sp = push_large_arguments (sp, argc, argv, copy);
2283
2284 /* Reserve space for the stack arguments, if any. */
2285 arg_stack_end = sp;
2286 if (argc + (struct_addr ? 1 : 0) > 4)
2287 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2288
2289 arg_reg = MEP_R1_REGNUM;
2290 arg_stack = sp;
2291
2292 /* If we're returning a structure by value, push the pointer to the
2293 buffer as the first argument. */
2294 if (struct_return)
2295 {
2296 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2297 arg_reg++;
2298 }
2299
2300 for (i = 0; i < argc; i++)
2301 {
2302 ULONGEST value;
2303
2304 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2305 if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2306 value = extract_unsigned_integer (value_contents (argv[i]),
2307 TYPE_LENGTH (value_type (argv[i])),
2308 byte_order);
2309
2310 /* Arguments too large to fit in a GPR get copied to the stack,
2311 and we pass a pointer to the copy. */
2312 else
2313 value = copy[i];
2314
2315 /* We use $1 -- $4 for passing arguments, then use the stack. */
2316 if (arg_reg <= MEP_R4_REGNUM)
2317 {
2318 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2319 arg_reg++;
2320 }
2321 else
2322 {
2323 gdb_byte buf[MEP_GPR_SIZE];
2324 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2325 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2326 arg_stack += MEP_GPR_SIZE;
2327 }
2328 }
2329
2330 gdb_assert (arg_stack <= arg_stack_end);
2331
2332 /* Set the return address. */
2333 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2334
2335 /* Update the stack pointer. */
2336 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2337
2338 return sp;
2339 }
2340
2341
2342 static struct frame_id
2343 mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2344 {
2345 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2346 return frame_id_build (sp, get_frame_pc (this_frame));
2347 }
2348
2349
2350 \f
2351 /* Initialization. */
2352
2353
2354 static struct gdbarch *
2355 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2356 {
2357 struct gdbarch *gdbarch;
2358 struct gdbarch_tdep *tdep;
2359
2360 /* Which me_module are we building a gdbarch object for? */
2361 CONFIG_ATTR me_module;
2362
2363 /* If we have a BFD in hand, figure out which me_module it was built
2364 for. Otherwise, use the no-particular-me_module code. */
2365 if (info.abfd)
2366 {
2367 /* The way to get the me_module code depends on the object file
2368 format. At the moment, we only know how to handle ELF. */
2369 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2370 {
2371 int flag = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2372 me_module = (CONFIG_ATTR) flag;
2373 }
2374 else
2375 me_module = CONFIG_NONE;
2376 }
2377 else
2378 me_module = CONFIG_NONE;
2379
2380 /* If we're setting the architecture from a file, check the
2381 endianness of the file against that of the me_module. */
2382 if (info.abfd)
2383 {
2384 /* The negations on either side make the comparison treat all
2385 non-zero (true) values as equal. */
2386 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2387 {
2388 const char *module_name = me_module_name (me_module);
2389 const char *module_endianness
2390 = me_module_big_endian (me_module) ? "big" : "little";
2391 const char *file_name = bfd_get_filename (info.abfd);
2392 const char *file_endianness
2393 = bfd_big_endian (info.abfd) ? "big" : "little";
2394
2395 fputc_unfiltered ('\n', gdb_stderr);
2396 if (module_name)
2397 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2398 "%s is %s-endian."),
2399 module_name, module_endianness,
2400 file_name, file_endianness);
2401 else
2402 warning (_("the selected MeP module is %s-endian, but the "
2403 "executable\n"
2404 "%s is %s-endian."),
2405 module_endianness, file_name, file_endianness);
2406 }
2407 }
2408
2409 /* Find a candidate among the list of architectures we've created
2410 already. info->bfd_arch_info needs to match, but we also want
2411 the right me_module: the ELF header's e_flags field needs to
2412 match as well. */
2413 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2414 arches != NULL;
2415 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2416 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2417 return arches->gdbarch;
2418
2419 tdep = XCNEW (struct gdbarch_tdep);
2420 gdbarch = gdbarch_alloc (&info, tdep);
2421
2422 /* Get a CGEN CPU descriptor for this architecture. */
2423 {
2424 const char *mach_name = info.bfd_arch_info->printable_name;
2425 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2426 ? CGEN_ENDIAN_BIG
2427 : CGEN_ENDIAN_LITTLE);
2428
2429 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2430 CGEN_CPU_OPEN_ENDIAN, endian,
2431 CGEN_CPU_OPEN_END);
2432 }
2433
2434 tdep->me_module = me_module;
2435
2436 /* Register set. */
2437 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2438 set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2439 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2440 set_gdbarch_register_name (gdbarch, mep_register_name);
2441 set_gdbarch_register_type (gdbarch, mep_register_type);
2442 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2443 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2444 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2445 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2446 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2447
2448 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2449 reggroup_add (gdbarch, all_reggroup);
2450 reggroup_add (gdbarch, general_reggroup);
2451 reggroup_add (gdbarch, save_reggroup);
2452 reggroup_add (gdbarch, restore_reggroup);
2453 reggroup_add (gdbarch, mep_csr_reggroup);
2454 reggroup_add (gdbarch, mep_cr_reggroup);
2455 reggroup_add (gdbarch, mep_ccr_reggroup);
2456
2457 /* Disassembly. */
2458 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2459
2460 /* Breakpoints. */
2461 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mep_breakpoint::kind_from_pc);
2462 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mep_breakpoint::bp_from_kind);
2463 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2464 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2465
2466 /* Frames and frame unwinding. */
2467 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2468 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2469 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2470 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2471 set_gdbarch_frame_args_skip (gdbarch, 0);
2472
2473 /* Return values. */
2474 set_gdbarch_return_value (gdbarch, mep_return_value);
2475
2476 /* Inferior function calls. */
2477 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2478 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2479 set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2480
2481 return gdbarch;
2482 }
2483
2484 void
2485 _initialize_mep_tdep (void)
2486 {
2487 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2488 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2489 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2490
2491 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2492
2493 mep_init_pseudoregister_maps ();
2494 }
This page took 0.087147 seconds and 4 git commands to generate.