* mep-tdep.c (current_me_module): Read from current regcache
[deliverable/binutils-gdb.git] / gdb / mep-tdep.c
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by Red Hat, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdb_string.h"
34 #include "value.h"
35 #include "inferior.h"
36 #include "dis-asm.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "remote.h"
43 #include "floatformat.h"
44 #include "sim-regno.h"
45 #include "disasm.h"
46 #include "trad-frame.h"
47 #include "reggroups.h"
48 #include "elf-bfd.h"
49 #include "elf/mep.h"
50 #include "prologue-value.h"
51 #include "opcode/cgen-bitset.h"
52 #include "infcall.h"
53
54 #include "gdb_assert.h"
55
56 /* Get the user's customized MeP coprocessor register names from
57 libopcodes. */
58 #include "opcodes/mep-desc.h"
59 #include "opcodes/mep-opc.h"
60
61 \f
62 /* The gdbarch_tdep structure. */
63
64 /* A quick recap for GDB hackers not familiar with the whole Toshiba
65 Media Processor story:
66
67 The MeP media engine is a configureable processor: users can design
68 their own coprocessors, implement custom instructions, adjust cache
69 sizes, select optional standard facilities like add-and-saturate
70 instructions, and so on. Then, they can build custom versions of
71 the GNU toolchain to support their customized chips. The
72 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
73 tree, and a config file pointing to various files provided by the
74 user describing their customizations, and edits the source tree to
75 produce a compiler that can generate their custom instructions, an
76 assembler that can assemble them and recognize their custom
77 register names, and so on.
78
79 Furthermore, the user can actually specify several of these custom
80 configurations, called 'me_modules', and get a toolchain which can
81 produce code for any of them, given a compiler/assembler switch;
82 you say something like 'gcc -mconfig=mm_max' to generate code for
83 the me_module named 'mm_max'.
84
85 GDB, in particular, needs to:
86
87 - use the coprocessor control register names provided by the user
88 in their hardware description, in expressions, 'info register'
89 output, and disassembly,
90
91 - know the number, names, and types of the coprocessor's
92 general-purpose registers, adjust the 'info all-registers' output
93 accordingly, and print error messages if the user refers to one
94 that doesn't exist
95
96 - allow access to the control bus space only when the configuration
97 actually has a control bus, and recognize which regions of the
98 control bus space are actually populated,
99
100 - disassemble using the user's provided mnemonics for their custom
101 instructions, and
102
103 - recognize whether the $hi and $lo registers are present, and
104 allow access to them only when they are actually there.
105
106 There are three sources of information about what sort of me_module
107 we're actually dealing with:
108
109 - A MeP executable file indicates which me_module it was compiled
110 for, and libopcodes has tables describing each module. So, given
111 an executable file, we can find out about the processor it was
112 compiled for.
113
114 - There are SID command-line options to select a particular
115 me_module, overriding the one specified in the ELF file. SID
116 provides GDB with a fake read-only register, 'module', which
117 indicates which me_module GDB is communicating with an instance
118 of.
119
120 - There are SID command-line options to enable or disable certain
121 optional processor features, overriding the defaults for the
122 selected me_module. The MeP $OPT register indicates which
123 options are present on the current processor. */
124
125
126 struct gdbarch_tdep
127 {
128 /* A CGEN cpu descriptor for this BFD architecture and machine.
129
130 Note: this is *not* customized for any particular me_module; the
131 MeP libopcodes machinery actually puts off module-specific
132 customization until the last minute. So this contains
133 information about all supported me_modules. */
134 CGEN_CPU_DESC cpu_desc;
135
136 /* The me_module index from the ELF file we used to select this
137 architecture, or CONFIG_NONE if there was none.
138
139 Note that we should prefer to use the me_module number available
140 via the 'module' register, whenever we're actually talking to a
141 real target.
142
143 In the absence of live information, we'd like to get the
144 me_module number from the ELF file. But which ELF file: the
145 executable file, the core file, ... ? The answer is, "the last
146 ELF file we used to set the current architecture". Thus, we
147 create a separate instance of the gdbarch structure for each
148 me_module value mep_gdbarch_init sees, and store the me_module
149 value from the ELF file here. */
150 CONFIG_ATTR me_module;
151 };
152
153
154 \f
155 /* Getting me_module information from the CGEN tables. */
156
157
158 /* Find an entry in the DESC's hardware table whose name begins with
159 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
160 intersect with GENERIC_ISA_MASK. If there is no matching entry,
161 return zero. */
162 static const CGEN_HW_ENTRY *
163 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
164 const char *prefix,
165 CGEN_BITSET *copro_isa_mask,
166 CGEN_BITSET *generic_isa_mask)
167 {
168 int prefix_len = strlen (prefix);
169 int i;
170
171 for (i = 0; i < desc->hw_table.num_entries; i++)
172 {
173 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
174 if (strncmp (prefix, hw->name, prefix_len) == 0)
175 {
176 CGEN_BITSET *hw_isa_mask
177 = ((CGEN_BITSET *)
178 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
179
180 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
181 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
182 return hw;
183 }
184 }
185
186 return 0;
187 }
188
189
190 /* Find an entry in DESC's hardware table whose type is TYPE. Return
191 zero if there is none. */
192 static const CGEN_HW_ENTRY *
193 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
194 {
195 int i;
196
197 for (i = 0; i < desc->hw_table.num_entries; i++)
198 {
199 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
200
201 if (hw->type == type)
202 return hw;
203 }
204
205 return 0;
206 }
207
208
209 /* Return the CGEN hardware table entry for the coprocessor register
210 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
211 no such register set, return zero. If ME_MODULE is the generic
212 me_module CONFIG_NONE, return the table entry for the register set
213 whose hardware type is GENERIC_TYPE. */
214 static const CGEN_HW_ENTRY *
215 me_module_register_set (CONFIG_ATTR me_module,
216 const char *prefix,
217 CGEN_HW_TYPE generic_type)
218 {
219 /* This is kind of tricky, because the hardware table is constructed
220 in a way that isn't very helpful. Perhaps we can fix that, but
221 here's how it works at the moment:
222
223 The configuration map, `mep_config_map', is indexed by me_module
224 number, and indicates which coprocessor and core ISAs that
225 me_module supports. The 'core_isa' mask includes all the core
226 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
227 The entry for the generic me_module, CONFIG_NONE, has an empty
228 'cop_isa', and its 'core_isa' selects only the standard MeP
229 instruction set.
230
231 The CGEN CPU descriptor's hardware table, desc->hw_table, has
232 entries for all the register sets, for all me_modules. Each
233 entry has a mask indicating which ISAs use that register set.
234 So, if an me_module supports some coprocessor ISA, we can find
235 applicable register sets by scanning the hardware table for
236 register sets whose masks include (at least some of) those ISAs.
237
238 Each hardware table entry also has a name, whose prefix says
239 whether it's a general-purpose ("h-cr") or control ("h-ccr")
240 coprocessor register set. It might be nicer to have an attribute
241 indicating what sort of register set it was, that we could use
242 instead of pattern-matching on the name.
243
244 When there is no hardware table entry whose mask includes a
245 particular coprocessor ISA and whose name starts with a given
246 prefix, then that means that that coprocessor doesn't have any
247 registers of that type. In such cases, this function must return
248 a null pointer.
249
250 Coprocessor register sets' masks may or may not include the core
251 ISA for the me_module they belong to. Those generated by a2cgen
252 do, but the sample me_module included in the unconfigured tree,
253 'ccfx', does not.
254
255 There are generic coprocessor register sets, intended only for
256 use with the generic me_module. Unfortunately, their masks
257 include *all* ISAs --- even those for coprocessors that don't
258 have such register sets. This makes detecting the case where a
259 coprocessor lacks a particular register set more complicated.
260
261 So, here's the approach we take:
262
263 - For CONFIG_NONE, we return the generic coprocessor register set.
264
265 - For any other me_module, we search for a register set whose
266 mask contains any of the me_module's coprocessor ISAs,
267 specifically excluding the generic coprocessor register sets. */
268
269 CGEN_CPU_DESC desc = gdbarch_tdep (current_gdbarch)->cpu_desc;
270 const CGEN_HW_ENTRY *hw;
271
272 if (me_module == CONFIG_NONE)
273 hw = find_hw_entry_by_type (desc, generic_type);
274 else
275 {
276 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
277 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
278 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
279 CGEN_BITSET *cop_and_core;
280
281 /* The coprocessor ISAs include the ISA for the specific core which
282 has that coprocessor. */
283 cop_and_core = cgen_bitset_copy (cop);
284 cgen_bitset_union (cop, core, cop_and_core);
285 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
286 }
287
288 return hw;
289 }
290
291
292 /* Given a hardware table entry HW representing a register set, return
293 a pointer to the keyword table with all the register names. If HW
294 is NULL, return NULL, to propage the "no such register set" info
295 along. */
296 static CGEN_KEYWORD *
297 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
298 {
299 if (! hw)
300 return NULL;
301
302 /* Check that HW is actually a keyword table. */
303 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
304
305 /* The 'asm_data' field of a register set's hardware table entry
306 refers to a keyword table. */
307 return (CGEN_KEYWORD *) hw->asm_data;
308 }
309
310
311 /* Given a keyword table KEYWORD and a register number REGNUM, return
312 the name of the register, or "" if KEYWORD contains no register
313 whose number is REGNUM. */
314 static char *
315 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
316 {
317 const CGEN_KEYWORD_ENTRY *entry
318 = cgen_keyword_lookup_value (keyword_table, regnum);
319
320 if (entry)
321 {
322 char *name = entry->name;
323
324 /* The CGEN keyword entries for register names include the
325 leading $, which appears in MeP assembly as well as in GDB.
326 But we don't want to return that; GDB core code adds that
327 itself. */
328 if (name[0] == '$')
329 name++;
330
331 return name;
332 }
333 else
334 return "";
335 }
336
337
338 /* Masks for option bits in the OPT special-purpose register. */
339 enum {
340 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
341 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
342 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
343 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
344 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
345 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
346 MEP_OPT_AVE = 1 << 19, /* average instruction option */
347 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
348 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
349 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
350 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
351 MEP_OPT_COP = 1 << 4, /* coprocessor option */
352 MEP_OPT_DSP = 1 << 2, /* DSP option */
353 MEP_OPT_UCI = 1 << 1, /* UCI option */
354 MEP_OPT_DBG = 1 << 0, /* DBG function option */
355 };
356
357
358 /* Given the option_mask value for a particular entry in
359 mep_config_map, produce the value the processor's OPT register
360 would use to represent the same set of options. */
361 static unsigned int
362 opt_from_option_mask (unsigned int option_mask)
363 {
364 /* A table mapping OPT register bits onto CGEN config map option
365 bits. */
366 struct {
367 unsigned int opt_bit, option_mask_bit;
368 } bits[] = {
369 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
370 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
371 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
372 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
373 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
374 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
375 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
376 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
377 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
378 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
379 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
380 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
381 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
382 };
383
384 int i;
385 unsigned int opt = 0;
386
387 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
388 if (option_mask & bits[i].option_mask_bit)
389 opt |= bits[i].opt_bit;
390
391 return opt;
392 }
393
394
395 /* Return the value the $OPT register would use to represent the set
396 of options for ME_MODULE. */
397 static unsigned int
398 me_module_opt (CONFIG_ATTR me_module)
399 {
400 return opt_from_option_mask (mep_config_map[me_module].option_mask);
401 }
402
403
404 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
405 This is either 32 or 64. */
406 static int
407 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
408 {
409 if (mep_config_map[me_module].option_mask
410 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
411 return 64;
412 else
413 return 32;
414 }
415
416
417 /* Return true if ME_MODULE is big-endian, false otherwise. */
418 static int
419 me_module_big_endian (CONFIG_ATTR me_module)
420 {
421 return mep_config_map[me_module].big_endian;
422 }
423
424
425 /* Return the name of ME_MODULE, or NULL if it has no name. */
426 static const char *
427 me_module_name (CONFIG_ATTR me_module)
428 {
429 /* The default me_module has "" as its name, but it's easier for our
430 callers to test for NULL. */
431 if (! mep_config_map[me_module].name
432 || mep_config_map[me_module].name[0] == '\0')
433 return NULL;
434 else
435 return mep_config_map[me_module].name;
436 }
437 \f
438 /* Register set. */
439
440
441 /* The MeP spec defines the following registers:
442 16 general purpose registers (r0-r15)
443 32 control/special registers (csr0-csr31)
444 32 coprocessor general-purpose registers (c0 -- c31)
445 64 coprocessor control registers (ccr0 -- ccr63)
446
447 For the raw registers, we assign numbers here explicitly, instead
448 of letting the enum assign them for us; the numbers are a matter of
449 external protocol, and shouldn't shift around as things are edited.
450
451 We access the control/special registers via pseudoregisters, to
452 enforce read-only portions that some registers have.
453
454 We access the coprocessor general purpose and control registers via
455 pseudoregisters, to make sure they appear in the proper order in
456 the 'info all-registers' command (which uses the register number
457 ordering), and also to allow them to be renamed and resized
458 depending on the me_module in use.
459
460 The MeP allows coprocessor general-purpose registers to be either
461 32 or 64 bits long, depending on the configuration. Since we don't
462 want the format of the 'g' packet to vary from one core to another,
463 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
464 types of registers to change (see the implementation of
465 register_type), so we have four banks of pseudoregisters for the
466 coprocessor gprs --- 32-bit vs. 64-bit, and integer
467 vs. floating-point --- and we show or hide them depending on the
468 configuration. */
469 enum
470 {
471 MEP_FIRST_RAW_REGNUM = 0,
472
473 MEP_FIRST_GPR_REGNUM = 0,
474 MEP_R0_REGNUM = 0,
475 MEP_R1_REGNUM = 1,
476 MEP_R2_REGNUM = 2,
477 MEP_R3_REGNUM = 3,
478 MEP_R4_REGNUM = 4,
479 MEP_R5_REGNUM = 5,
480 MEP_R6_REGNUM = 6,
481 MEP_R7_REGNUM = 7,
482 MEP_R8_REGNUM = 8,
483 MEP_R9_REGNUM = 9,
484 MEP_R10_REGNUM = 10,
485 MEP_R11_REGNUM = 11,
486 MEP_R12_REGNUM = 12,
487 MEP_FP_REGNUM = MEP_R8_REGNUM,
488 MEP_R13_REGNUM = 13,
489 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
490 MEP_R14_REGNUM = 14,
491 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
492 MEP_R15_REGNUM = 15,
493 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
494 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
495
496 /* The raw control registers. These are the values as received via
497 the remote protocol, directly from the target; we only let user
498 code touch the via the pseudoregisters, which enforce read-only
499 bits. */
500 MEP_FIRST_RAW_CSR_REGNUM = 16,
501 MEP_RAW_PC_REGNUM = 16, /* Program counter */
502 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
503 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
504 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
505 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
506 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
507 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
508 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
509 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
510 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
511 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
512 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
513 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
514 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
515 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
516 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
517 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
518 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
519 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
520 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
521 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
522 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
523 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
524 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
525 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
526 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
527 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
528 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
529 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
530 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
531 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
532 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
533 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
534
535 /* The raw coprocessor general-purpose registers. These are all 64
536 bits wide. */
537 MEP_FIRST_RAW_CR_REGNUM = 48,
538 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
539
540 MEP_FIRST_RAW_CCR_REGNUM = 80,
541 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
542
543 /* The module number register. This is the index of the me_module
544 of which the current target is an instance. (This is not a real
545 MeP-specified register; it's provided by SID.) */
546 MEP_MODULE_REGNUM,
547
548 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
549
550 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
551
552 /* Pseudoregisters. See mep_pseudo_register_read and
553 mep_pseudo_register_write. */
554 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
555
556 /* We have a pseudoregister for every control/special register, to
557 implement registers with read-only bits. */
558 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
559 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
560 MEP_LP_REGNUM, /* Link pointer */
561 MEP_SAR_REGNUM, /* shift amount */
562 MEP_CSR3_REGNUM, /* csr3: reserved */
563 MEP_RPB_REGNUM, /* repeat begin address */
564 MEP_RPE_REGNUM, /* Repeat end address */
565 MEP_RPC_REGNUM, /* Repeat count */
566 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
567 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
568 MEP_CSR9_REGNUM, /* csr3: reserved */
569 MEP_CSR10_REGNUM, /* csr3: reserved */
570 MEP_CSR11_REGNUM, /* csr3: reserved */
571 MEP_MB0_REGNUM, /* modulo begin address 0 */
572 MEP_ME0_REGNUM, /* modulo end address 0 */
573 MEP_MB1_REGNUM, /* modulo begin address 1 */
574 MEP_ME1_REGNUM, /* modulo end address 1 */
575 MEP_PSW_REGNUM, /* program status word */
576 MEP_ID_REGNUM, /* processor ID/revision */
577 MEP_TMP_REGNUM, /* Temporary */
578 MEP_EPC_REGNUM, /* Exception program counter */
579 MEP_EXC_REGNUM, /* exception cause */
580 MEP_CFG_REGNUM, /* processor configuration*/
581 MEP_CSR22_REGNUM, /* csr3: reserved */
582 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
583 MEP_DBG_REGNUM, /* debug */
584 MEP_DEPC_REGNUM, /* Debug exception PC */
585 MEP_OPT_REGNUM, /* options */
586 MEP_RCFG_REGNUM, /* local ram config */
587 MEP_CCFG_REGNUM, /* cache config */
588 MEP_CSR29_REGNUM, /* csr3: reserved */
589 MEP_CSR30_REGNUM, /* csr3: reserved */
590 MEP_CSR31_REGNUM, /* csr3: reserved */
591 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
592
593 /* The 32-bit integer view of the coprocessor GPR's. */
594 MEP_FIRST_CR32_REGNUM,
595 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
596
597 /* The 32-bit floating-point view of the coprocessor GPR's. */
598 MEP_FIRST_FP_CR32_REGNUM,
599 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
600
601 /* The 64-bit integer view of the coprocessor GPR's. */
602 MEP_FIRST_CR64_REGNUM,
603 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
604
605 /* The 64-bit floating-point view of the coprocessor GPR's. */
606 MEP_FIRST_FP_CR64_REGNUM,
607 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
608
609 MEP_FIRST_CCR_REGNUM,
610 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
611
612 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
613
614 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
615
616 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
617 };
618
619
620 #define IN_SET(set, n) \
621 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
622
623 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
624 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
625 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
626 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
627
628 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
629 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
630 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
631 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
632 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
633 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
634 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
635 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
636
637 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
638 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
639
640 #define NUM_REGS_IN_SET(set) \
641 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
642
643 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
644 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
645 #define MEP_LP_SIZE (4) /* Size of the LP register. */
646
647
648 /* Many of the control/special registers contain bits that cannot be
649 written to; some are entirely read-only. So we present them all as
650 pseudoregisters.
651
652 The following table describes the special properties of each CSR. */
653 struct mep_csr_register
654 {
655 /* The number of this CSR's raw register. */
656 int raw;
657
658 /* The number of this CSR's pseudoregister. */
659 int pseudo;
660
661 /* A mask of the bits that are writeable: if a bit is set here, then
662 it can be modified; if the bit is clear, then it cannot. */
663 LONGEST writeable_bits;
664 };
665
666
667 /* mep_csr_registers[i] describes the i'th CSR.
668 We just list the register numbers here explicitly to help catch
669 typos. */
670 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
671 struct mep_csr_register mep_csr_registers[] = {
672 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
673 { CSR(LP), 0xffffffff },
674 { CSR(SAR), 0x0000003f },
675 { CSR(CSR3), 0xffffffff },
676 { CSR(RPB), 0xfffffffe },
677 { CSR(RPE), 0xffffffff },
678 { CSR(RPC), 0xffffffff },
679 { CSR(HI), 0xffffffff },
680 { CSR(LO), 0xffffffff },
681 { CSR(CSR9), 0xffffffff },
682 { CSR(CSR10), 0xffffffff },
683 { CSR(CSR11), 0xffffffff },
684 { CSR(MB0), 0x0000ffff },
685 { CSR(ME0), 0x0000ffff },
686 { CSR(MB1), 0x0000ffff },
687 { CSR(ME1), 0x0000ffff },
688 { CSR(PSW), 0x000003ff },
689 { CSR(ID), 0x00000000 },
690 { CSR(TMP), 0xffffffff },
691 { CSR(EPC), 0xffffffff },
692 { CSR(EXC), 0x000030f0 },
693 { CSR(CFG), 0x00c0001b },
694 { CSR(CSR22), 0xffffffff },
695 { CSR(NPC), 0xffffffff },
696 { CSR(DBG), 0x00000580 },
697 { CSR(DEPC), 0xffffffff },
698 { CSR(OPT), 0x00000000 },
699 { CSR(RCFG), 0x00000000 },
700 { CSR(CCFG), 0x00000000 },
701 { CSR(CSR29), 0xffffffff },
702 { CSR(CSR30), 0xffffffff },
703 { CSR(CSR31), 0xffffffff },
704 };
705
706
707 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
708 the number of the corresponding pseudoregister. Otherwise,
709 mep_raw_to_pseudo[R] == R. */
710 static int mep_raw_to_pseudo[MEP_NUM_REGS];
711
712 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
713 is the number of the underlying raw register. Otherwise
714 mep_pseudo_to_raw[R] == R. */
715 static int mep_pseudo_to_raw[MEP_NUM_REGS];
716
717 static void
718 mep_init_pseudoregister_maps (void)
719 {
720 int i;
721
722 /* Verify that mep_csr_registers covers all the CSRs, in order. */
723 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
724 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
725
726 /* Verify that the raw and pseudo ranges have matching sizes. */
727 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
728 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
729 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
730 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
731
732 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
733 {
734 struct mep_csr_register *r = &mep_csr_registers[i];
735
736 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
737 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
738 }
739
740 /* Set up the initial raw<->pseudo mappings. */
741 for (i = 0; i < MEP_NUM_REGS; i++)
742 {
743 mep_raw_to_pseudo[i] = i;
744 mep_pseudo_to_raw[i] = i;
745 }
746
747 /* Add the CSR raw<->pseudo mappings. */
748 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
749 {
750 struct mep_csr_register *r = &mep_csr_registers[i];
751
752 mep_raw_to_pseudo[r->raw] = r->pseudo;
753 mep_pseudo_to_raw[r->pseudo] = r->raw;
754 }
755
756 /* Add the CR raw<->pseudo mappings. */
757 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
758 {
759 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
760 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
761 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
762 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
763 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
764
765 /* Truly, the raw->pseudo mapping depends on the current module.
766 But we use the raw->pseudo mapping when we read the debugging
767 info; at that point, we don't know what module we'll actually
768 be running yet. So, we always supply the 64-bit register
769 numbers; GDB knows how to pick a smaller value out of a
770 larger register properly. */
771 mep_raw_to_pseudo[raw] = pseudo64;
772 mep_pseudo_to_raw[pseudo32] = raw;
773 mep_pseudo_to_raw[pseudofp32] = raw;
774 mep_pseudo_to_raw[pseudo64] = raw;
775 mep_pseudo_to_raw[pseudofp64] = raw;
776 }
777
778 /* Add the CCR raw<->pseudo mappings. */
779 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
780 {
781 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
782 int pseudo = MEP_FIRST_CCR_REGNUM + i;
783 mep_raw_to_pseudo[raw] = pseudo;
784 mep_pseudo_to_raw[pseudo] = raw;
785 }
786 }
787
788
789 static int
790 mep_debug_reg_to_regnum (int debug_reg)
791 {
792 /* The debug info uses the raw register numbers. */
793 return mep_raw_to_pseudo[debug_reg];
794 }
795
796
797 /* Return the size, in bits, of the coprocessor pseudoregister
798 numbered PSEUDO. */
799 static int
800 mep_pseudo_cr_size (int pseudo)
801 {
802 if (IS_CR32_REGNUM (pseudo)
803 || IS_FP_CR32_REGNUM (pseudo))
804 return 32;
805 else if (IS_CR64_REGNUM (pseudo)
806 || IS_FP_CR64_REGNUM (pseudo))
807 return 64;
808 else
809 gdb_assert (0);
810 }
811
812
813 /* If the coprocessor pseudoregister numbered PSEUDO is a
814 floating-point register, return non-zero; if it is an integer
815 register, return zero. */
816 static int
817 mep_pseudo_cr_is_float (int pseudo)
818 {
819 return (IS_FP_CR32_REGNUM (pseudo)
820 || IS_FP_CR64_REGNUM (pseudo));
821 }
822
823
824 /* Given a coprocessor GPR pseudoregister number, return its index
825 within that register bank. */
826 static int
827 mep_pseudo_cr_index (int pseudo)
828 {
829 if (IS_CR32_REGNUM (pseudo))
830 return pseudo - MEP_FIRST_CR32_REGNUM;
831 else if (IS_FP_CR32_REGNUM (pseudo))
832 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
833 else if (IS_CR64_REGNUM (pseudo))
834 return pseudo - MEP_FIRST_CR64_REGNUM;
835 else if (IS_FP_CR64_REGNUM (pseudo))
836 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
837 else
838 gdb_assert (0);
839 }
840
841
842 /* Return the me_module index describing the current target.
843
844 If the current target has registers (e.g., simulator, remote
845 target), then this uses the value of the 'module' register, raw
846 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
847 from the ELF header's e_flags field of the current executable
848 file. */
849 static CONFIG_ATTR
850 current_me_module ()
851 {
852 if (target_has_registers)
853 {
854 ULONGEST regval;
855 regcache_cooked_read_unsigned (current_regcache,
856 MEP_MODULE_REGNUM, &regval);
857 return regval;
858 }
859 else
860 return gdbarch_tdep (current_gdbarch)->me_module;
861 }
862
863
864 /* Return the set of options for the current target, in the form that
865 the OPT register would use.
866
867 If the current target has registers (e.g., simulator, remote
868 target), then this is the actual value of the OPT register. If the
869 current target does not have registers (e.g., an executable file),
870 then use the 'module_opt' field we computed when we build the
871 gdbarch object for this module. */
872 static unsigned int
873 current_options ()
874 {
875 if (target_has_registers)
876 {
877 ULONGEST regval;
878 regcache_cooked_read_unsigned (current_regcache,
879 MEP_OPT_REGNUM, &regval);
880 return regval;
881 }
882 else
883 return me_module_opt (current_me_module ());
884 }
885
886
887 /* Return the width of the current me_module's coprocessor data bus,
888 in bits. This is either 32 or 64. */
889 static int
890 current_cop_data_bus_width ()
891 {
892 return me_module_cop_data_bus_width (current_me_module ());
893 }
894
895
896 /* Return the keyword table of coprocessor general-purpose register
897 names appropriate for the me_module we're dealing with. */
898 static CGEN_KEYWORD *
899 current_cr_names ()
900 {
901 const CGEN_HW_ENTRY *hw
902 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
903
904 return register_set_keyword_table (hw);
905 }
906
907
908 /* Return non-zero if the coprocessor general-purpose registers are
909 floating-point values, zero otherwise. */
910 static int
911 current_cr_is_float ()
912 {
913 const CGEN_HW_ENTRY *hw
914 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
915
916 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
917 }
918
919
920 /* Return the keyword table of coprocessor control register names
921 appropriate for the me_module we're dealing with. */
922 static CGEN_KEYWORD *
923 current_ccr_names ()
924 {
925 const CGEN_HW_ENTRY *hw
926 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
927
928 return register_set_keyword_table (hw);
929 }
930
931
932 static const char *
933 mep_register_name (int regnr)
934 {
935 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
936
937 /* General-purpose registers. */
938 static const char *gpr_names[] = {
939 "r0", "r1", "r2", "r3", /* 0 */
940 "r4", "r5", "r6", "r7", /* 4 */
941 "fp", "r9", "r10", "r11", /* 8 */
942 "r12", "tp", "gp", "sp" /* 12 */
943 };
944
945 /* Special-purpose registers. */
946 static const char *csr_names[] = {
947 "pc", "lp", "sar", "", /* 0 csr3: reserved */
948 "rpb", "rpe", "rpc", "hi", /* 4 */
949 "lo", "", "", "", /* 8 csr9-csr11: reserved */
950 "mb0", "me0", "mb1", "me1", /* 12 */
951
952 "psw", "id", "tmp", "epc", /* 16 */
953 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
954 "dbg", "depc", "opt", "rcfg", /* 24 */
955 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
956 };
957
958 if (IS_GPR_REGNUM (regnr))
959 return gpr_names[regnr - MEP_R0_REGNUM];
960 else if (IS_CSR_REGNUM (regnr))
961 {
962 /* The 'hi' and 'lo' registers are only present on processors
963 that have the 'MUL' or 'DIV' instructions enabled. */
964 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
965 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
966 return "";
967
968 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
969 }
970 else if (IS_CR_REGNUM (regnr))
971 {
972 CGEN_KEYWORD *names;
973 int cr_size;
974 int cr_is_float;
975
976 /* Does this module have a coprocessor at all? */
977 if (! (current_options () & MEP_OPT_COP))
978 return "";
979
980 names = current_cr_names ();
981 if (! names)
982 /* This module's coprocessor has no general-purpose registers. */
983 return "";
984
985 cr_size = current_cop_data_bus_width ();
986 if (cr_size != mep_pseudo_cr_size (regnr))
987 /* This module's coprocessor's GPR's are of a different size. */
988 return "";
989
990 cr_is_float = current_cr_is_float ();
991 /* The extra ! operators ensure we get boolean equality, not
992 numeric equality. */
993 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
994 /* This module's coprocessor's GPR's are of a different type. */
995 return "";
996
997 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
998 }
999 else if (IS_CCR_REGNUM (regnr))
1000 {
1001 /* Does this module have a coprocessor at all? */
1002 if (! (current_options () & MEP_OPT_COP))
1003 return "";
1004
1005 {
1006 CGEN_KEYWORD *names = current_ccr_names ();
1007
1008 if (! names)
1009 /* This me_module's coprocessor has no control registers. */
1010 return "";
1011
1012 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1013 }
1014 }
1015
1016 /* It might be nice to give the 'module' register a name, but that
1017 would affect the output of 'info all-registers', which would
1018 disturb the test suites. So we leave it invisible. */
1019 else
1020 return NULL;
1021 }
1022
1023
1024 /* Custom register groups for the MeP. */
1025 static struct reggroup *mep_csr_reggroup; /* control/special */
1026 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1027 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1028
1029
1030 static int
1031 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1032 struct reggroup *group)
1033 {
1034 /* Filter reserved or unused register numbers. */
1035 {
1036 const char *name = mep_register_name (regnum);
1037
1038 if (! name || name[0] == '\0')
1039 return 0;
1040 }
1041
1042 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1043 the existing behavior, so we'd want to run that by them. */
1044 if (group == general_reggroup)
1045 return (IS_GPR_REGNUM (regnum)
1046 || IS_CSR_REGNUM (regnum));
1047
1048 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1049 else if (group == all_reggroup)
1050 return (IS_GPR_REGNUM (regnum)
1051 || IS_CSR_REGNUM (regnum)
1052 || IS_CR_REGNUM (regnum)
1053 || IS_CCR_REGNUM (regnum));
1054
1055 /* All registers should be saved and restored, except for the raw
1056 CSR's.
1057
1058 This is probably right if the coprocessor is something like a
1059 floating-point unit, but would be wrong if the coprocessor is
1060 something that does I/O, where register accesses actually cause
1061 externally-visible actions. But I get the impression that the
1062 coprocessor isn't supposed to do things like that --- you'd use a
1063 hardware engine, perhaps. */
1064 else if (group == save_reggroup || group == restore_reggroup)
1065 return (IS_GPR_REGNUM (regnum)
1066 || IS_CSR_REGNUM (regnum)
1067 || IS_CR_REGNUM (regnum)
1068 || IS_CCR_REGNUM (regnum));
1069
1070 else if (group == mep_csr_reggroup)
1071 return IS_CSR_REGNUM (regnum);
1072 else if (group == mep_cr_reggroup)
1073 return IS_CR_REGNUM (regnum);
1074 else if (group == mep_ccr_reggroup)
1075 return IS_CCR_REGNUM (regnum);
1076 else
1077 return 0;
1078 }
1079
1080
1081 static struct type *
1082 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1083 {
1084 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1085 long. So for them, the raw registers are always 64 bits long (to
1086 keep the 'g' packet format fixed), and the pseudoregisters vary
1087 in length. */
1088 if (IS_RAW_CR_REGNUM (reg_nr))
1089 return builtin_type_uint64;
1090
1091 /* Since GDB doesn't allow registers to change type, we have two
1092 banks of pseudoregisters for the coprocessor general-purpose
1093 registers: one that gives a 32-bit view, and one that gives a
1094 64-bit view. We hide or show one or the other depending on the
1095 current module. */
1096 if (IS_CR_REGNUM (reg_nr))
1097 {
1098 int size = mep_pseudo_cr_size (reg_nr);
1099 if (size == 32)
1100 {
1101 if (mep_pseudo_cr_is_float (reg_nr))
1102 return builtin_type_float;
1103 else
1104 return builtin_type_uint32;
1105 }
1106 else if (size == 64)
1107 {
1108 if (mep_pseudo_cr_is_float (reg_nr))
1109 return builtin_type_double;
1110 else
1111 return builtin_type_uint64;
1112 }
1113 else
1114 gdb_assert (0);
1115 }
1116
1117 /* All other registers are 32 bits long. */
1118 else
1119 return builtin_type_uint32;
1120 }
1121
1122
1123 static CORE_ADDR
1124 mep_read_pc (ptid_t ptid)
1125 {
1126 ptid_t saved_ptid;
1127 CORE_ADDR pc;
1128
1129 saved_ptid = inferior_ptid;
1130 inferior_ptid = ptid;
1131
1132 pc = read_register (MEP_PC_REGNUM);
1133
1134 inferior_ptid = saved_ptid;
1135 return pc;
1136 }
1137
1138 static void
1139 mep_write_pc (CORE_ADDR pc, ptid_t ptid)
1140 {
1141 ptid_t saved_ptid;
1142
1143 saved_ptid = inferior_ptid;
1144 inferior_ptid = ptid;
1145
1146 write_register (MEP_PC_REGNUM, pc);
1147
1148 inferior_ptid = saved_ptid;
1149 }
1150
1151
1152 static void
1153 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1154 struct regcache *regcache,
1155 int cookednum,
1156 void *buf)
1157 {
1158 /* Read the raw register into a 64-bit buffer, and then return the
1159 appropriate end of that buffer. */
1160 int rawnum = mep_pseudo_to_raw[cookednum];
1161 char buf64[8];
1162
1163 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1164 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1165 regcache_raw_read (regcache, rawnum, buf64);
1166 /* Slow, but legible. */
1167 store_unsigned_integer (buf, 4, extract_unsigned_integer (buf64, 8));
1168 }
1169
1170
1171 static void
1172 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1173 struct regcache *regcache,
1174 int cookednum,
1175 void *buf)
1176 {
1177 regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1178 }
1179
1180
1181 static void
1182 mep_pseudo_register_read (struct gdbarch *gdbarch,
1183 struct regcache *regcache,
1184 int cookednum,
1185 gdb_byte *buf)
1186 {
1187 if (IS_CSR_REGNUM (cookednum)
1188 || IS_CCR_REGNUM (cookednum))
1189 regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1190 else if (IS_CR32_REGNUM (cookednum)
1191 || IS_FP_CR32_REGNUM (cookednum))
1192 mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1193 else if (IS_CR64_REGNUM (cookednum)
1194 || IS_FP_CR64_REGNUM (cookednum))
1195 mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1196 else
1197 gdb_assert (0);
1198 }
1199
1200
1201 static void
1202 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1203 struct regcache *regcache,
1204 int cookednum,
1205 const void *buf)
1206 {
1207 int size = register_size (gdbarch, cookednum);
1208 struct mep_csr_register *r
1209 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1210
1211 if (r->writeable_bits == 0)
1212 /* A completely read-only register; avoid the read-modify-
1213 write cycle, and juts ignore the entire write. */
1214 ;
1215 else
1216 {
1217 /* A partially writeable register; do a read-modify-write cycle. */
1218 ULONGEST old_bits;
1219 ULONGEST new_bits;
1220 ULONGEST mixed_bits;
1221
1222 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1223 new_bits = extract_unsigned_integer (buf, size);
1224 mixed_bits = ((r->writeable_bits & new_bits)
1225 | (~r->writeable_bits & old_bits));
1226 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1227 }
1228 }
1229
1230
1231 static void
1232 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1233 struct regcache *regcache,
1234 int cookednum,
1235 const void *buf)
1236 {
1237 /* Expand the 32-bit value into a 64-bit value, and write that to
1238 the pseudoregister. */
1239 int rawnum = mep_pseudo_to_raw[cookednum];
1240 char buf64[8];
1241
1242 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1243 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1244 /* Slow, but legible. */
1245 store_unsigned_integer (buf64, 8, extract_unsigned_integer (buf, 4));
1246 regcache_raw_write (regcache, rawnum, buf64);
1247 }
1248
1249
1250 static void
1251 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1252 struct regcache *regcache,
1253 int cookednum,
1254 const void *buf)
1255 {
1256 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1257 }
1258
1259
1260 static void
1261 mep_pseudo_register_write (struct gdbarch *gdbarch,
1262 struct regcache *regcache,
1263 int cookednum,
1264 const gdb_byte *buf)
1265 {
1266 if (IS_CSR_REGNUM (cookednum))
1267 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1268 else if (IS_CR32_REGNUM (cookednum)
1269 || IS_FP_CR32_REGNUM (cookednum))
1270 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1271 else if (IS_CR64_REGNUM (cookednum)
1272 || IS_FP_CR64_REGNUM (cookednum))
1273 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1274 else if (IS_CCR_REGNUM (cookednum))
1275 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1276 else
1277 gdb_assert (0);
1278 }
1279
1280
1281 \f
1282 /* Disassembly. */
1283
1284 /* The mep disassembler needs to know about the section in order to
1285 work correctly. */
1286 int
1287 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1288 {
1289 struct obj_section * s = find_pc_section (pc);
1290
1291 if (s)
1292 {
1293 /* The libopcodes disassembly code uses the section to find the
1294 BFD, the BFD to find the ELF header, the ELF header to find
1295 the me_module index, and the me_module index to select the
1296 right instructions to print. */
1297 info->section = s->the_bfd_section;
1298 info->arch = bfd_arch_mep;
1299
1300 return print_insn_mep (pc, info);
1301 }
1302
1303 return 0;
1304 }
1305
1306 \f
1307 /* Prologue analysis. */
1308
1309
1310 /* The MeP has two classes of instructions: "core" instructions, which
1311 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1312 which are mostly concerned with moving data in and out of
1313 coprocessor registers, and branching on coprocessor condition
1314 codes. There's space in the instruction set for custom coprocessor
1315 instructions, too.
1316
1317 Instructions can be 16 or 32 bits long; the top two bits of the
1318 first byte indicate the length. The coprocessor instructions are
1319 mixed in with the core instructions, and there's no easy way to
1320 distinguish them; you have to completely decode them to tell one
1321 from the other.
1322
1323 The MeP also supports a "VLIW" operation mode, where instructions
1324 always occur in fixed-width bundles. The bundles are either 32
1325 bits or 64 bits long, depending on a fixed configuration flag. You
1326 decode the first part of the bundle as normal; if it's a core
1327 instruction, and there's any space left in the bundle, the
1328 remainder of the bundle is a coprocessor instruction, which will
1329 execute in parallel with the core instruction. If the first part
1330 of the bundle is a coprocessor instruction, it occupies the entire
1331 bundle.
1332
1333 So, here are all the cases:
1334
1335 - 32-bit VLIW mode:
1336 Every bundle is four bytes long, and naturally aligned, and can hold
1337 one or two instructions:
1338 - 16-bit core instruction; 16-bit coprocessor instruction
1339 These execute in parallel.
1340 - 32-bit core instruction
1341 - 32-bit coprocessor instruction
1342
1343 - 64-bit VLIW mode:
1344 Every bundle is eight bytes long, and naturally aligned, and can hold
1345 one or two instructions:
1346 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1347 These execute in parallel.
1348 - 32-bit core instruction; 32-bit coprocessor instruction
1349 These execute in parallel.
1350 - 64-bit coprocessor instruction
1351
1352 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1353 instruction, so I don't really know what's up there; perhaps these
1354 are always the user-defined coprocessor instructions. */
1355
1356
1357 /* Return non-zero if PC is in a VLIW code section, zero
1358 otherwise. */
1359 static int
1360 mep_pc_in_vliw_section (CORE_ADDR pc)
1361 {
1362 struct obj_section *s = find_pc_section (pc);
1363 if (s)
1364 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1365 return 0;
1366 }
1367
1368
1369 /* Set *INSN to the next core instruction at PC, and return the
1370 address of the next instruction.
1371
1372 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1373 instructions are encoded as one or two two-byte parts, and each
1374 part is byte-swapped independently. Thus:
1375
1376 void
1377 foo (void)
1378 {
1379 asm ("movu $1, 0x123456");
1380 asm ("sb $1,0x5678($2)");
1381 asm ("clip $1, 19");
1382 }
1383
1384 compiles to this big-endian code:
1385
1386 0: d1 56 12 34 movu $1,0x123456
1387 4: c1 28 56 78 sb $1,22136($2)
1388 8: f1 01 10 98 clip $1,0x13
1389 c: 70 02 ret
1390
1391 and this little-endian code:
1392
1393 0: 56 d1 34 12 movu $1,0x123456
1394 4: 28 c1 78 56 sb $1,22136($2)
1395 8: 01 f1 98 10 clip $1,0x13
1396 c: 02 70 ret
1397
1398 Instructions are returned in *INSN in an endian-independent form: a
1399 given instruction always appears in *INSN the same way, regardless
1400 of whether the instruction stream is big-endian or little-endian.
1401
1402 *INSN's most significant 16 bits are the first (i.e., at lower
1403 addresses) 16 bit part of the instruction. Its least significant
1404 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1405 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1406 are fetched using the current endianness.
1407
1408 So, the *INSN values for the instruction sequence above would be
1409 the following, in either endianness:
1410
1411 0xd1561234 movu $1,0x123456
1412 0xc1285678 sb $1,22136($2)
1413 0xf1011098 clip $1,0x13
1414 0x70020000 ret
1415
1416 (In a sense, it would be more natural to return 16-bit instructions
1417 in the least significant 16 bits of *INSN, but that would be
1418 ambiguous. In order to tell whether you're looking at a 16- or a
1419 32-bit instruction, you have to consult the major opcode field ---
1420 the most significant four bits of the instruction's first 16-bit
1421 part. But if we put 16-bit instructions at the least significant
1422 end of *INSN, then you don't know where to find the major opcode
1423 field until you know if it's a 16- or a 32-bit instruction ---
1424 which is where we started.)
1425
1426 If PC points to a core / coprocessor bundle in a VLIW section, set
1427 *INSN to the core instruction, and return the address of the next
1428 bundle. This has the effect of skipping the bundled coprocessor
1429 instruction. That's okay, since coprocessor instructions aren't
1430 significant to prologue analysis --- for the time being,
1431 anyway. */
1432
1433 static CORE_ADDR
1434 mep_get_insn (CORE_ADDR pc, long *insn)
1435 {
1436 int pc_in_vliw_section;
1437 int vliw_mode;
1438 int insn_len;
1439 char buf[2];
1440
1441 *insn = 0;
1442
1443 /* Are we in a VLIW section? */
1444 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1445 if (pc_in_vliw_section)
1446 {
1447 /* Yes, find out which bundle size. */
1448 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1449
1450 /* If PC is in a VLIW section, but the current core doesn't say
1451 that it supports either VLIW mode, then we don't have enough
1452 information to parse the instruction stream it contains.
1453 Since the "undifferentiated" standard core doesn't have
1454 either VLIW mode bit set, this could happen.
1455
1456 But it shouldn't be an error to (say) set a breakpoint in a
1457 VLIW section, if you know you'll never reach it. (Perhaps
1458 you have a script that sets a bunch of standard breakpoints.)
1459
1460 So we'll just return zero here, and hope for the best. */
1461 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1462 return 0;
1463
1464 /* If both VL32 and VL64 are set, that's bogus, too. */
1465 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1466 return 0;
1467 }
1468 else
1469 vliw_mode = 0;
1470
1471 read_memory (pc, buf, sizeof (buf));
1472 *insn = extract_unsigned_integer (buf, 2) << 16;
1473
1474 /* The major opcode --- the top four bits of the first 16-bit
1475 part --- indicates whether this instruction is 16 or 32 bits
1476 long. All 32-bit instructions have a major opcode whose top
1477 two bits are 11; all the rest are 16-bit instructions. */
1478 if ((*insn & 0xc0000000) == 0xc0000000)
1479 {
1480 /* Fetch the second 16-bit part of the instruction. */
1481 read_memory (pc + 2, buf, sizeof (buf));
1482 *insn = *insn | extract_unsigned_integer (buf, 2);
1483 }
1484
1485 /* If we're in VLIW code, then the VLIW width determines the address
1486 of the next instruction. */
1487 if (vliw_mode)
1488 {
1489 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1490 coprocessor half of a core / copro bundle. */
1491 if (vliw_mode == MEP_OPT_VL32)
1492 insn_len = 4;
1493
1494 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1495 coprocessor half of a core / copro bundle. */
1496 else if (vliw_mode == MEP_OPT_VL64)
1497 insn_len = 8;
1498
1499 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1500 else
1501 gdb_assert (0);
1502 }
1503
1504 /* Otherwise, the top two bits of the major opcode are (again) what
1505 we need to check. */
1506 else if ((*insn & 0xc0000000) == 0xc0000000)
1507 insn_len = 4;
1508 else
1509 insn_len = 2;
1510
1511 return pc + insn_len;
1512 }
1513
1514
1515 /* Sign-extend the LEN-bit value N. */
1516 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1517
1518 /* Return the LEN-bit field at POS from I. */
1519 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1520
1521 /* Like FIELD, but sign-extend the field's value. */
1522 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1523
1524
1525 /* Macros for decoding instructions.
1526
1527 Remember that 16-bit instructions are placed in bits 16..31 of i,
1528 not at the least significant end; this means that the major opcode
1529 field is always in the same place, regardless of the width of the
1530 instruction. As a reminder of this, we show the lower 16 bits of a
1531 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1532
1533 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1534 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1535 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1536
1537 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1538 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1539 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1540 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1541 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1542 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1543 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1544 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1545 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1546
1547 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1548 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1549 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1550 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1551
1552 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1553 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1554 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1555 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1556
1557 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1558 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1559 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1560 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1561
1562 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1563 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1564 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1565 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1566 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1567
1568 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1569 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1570 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1571 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1572
1573 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1574 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1575 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1576 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1577
1578 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1579 imm5 = I||i[7:4] */
1580 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1581 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1582 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1583
1584 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1585 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1586 #define LW_TARGET(i) (FIELD (i, 24, 4))
1587 #define LW_BASE(i) (FIELD (i, 20, 4))
1588 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1589
1590 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1591 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1592 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1593 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1594
1595
1596 /* This structure holds the results of a prologue analysis. */
1597 struct mep_prologue
1598 {
1599 /* The offset from the frame base to the stack pointer --- always
1600 zero or negative.
1601
1602 Calling this a "size" is a bit misleading, but given that the
1603 stack grows downwards, using offsets for everything keeps one
1604 from going completely sign-crazy: you never change anything's
1605 sign for an ADD instruction; always change the second operand's
1606 sign for a SUB instruction; and everything takes care of
1607 itself. */
1608 int frame_size;
1609
1610 /* Non-zero if this function has initialized the frame pointer from
1611 the stack pointer, zero otherwise. */
1612 int has_frame_ptr;
1613
1614 /* If has_frame_ptr is non-zero, this is the offset from the frame
1615 base to where the frame pointer points. This is always zero or
1616 negative. */
1617 int frame_ptr_offset;
1618
1619 /* The address of the first instruction at which the frame has been
1620 set up and the arguments are where the debug info says they are
1621 --- as best as we can tell. */
1622 CORE_ADDR prologue_end;
1623
1624 /* reg_offset[R] is the offset from the CFA at which register R is
1625 saved, or 1 if register R has not been saved. (Real values are
1626 always zero or negative.) */
1627 int reg_offset[MEP_NUM_REGS];
1628 };
1629
1630 /* Return non-zero if VALUE is an incoming argument register. */
1631
1632 static int
1633 is_arg_reg (pv_t value)
1634 {
1635 return (value.kind == pvk_register
1636 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1637 && value.k == 0);
1638 }
1639
1640 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1641 probably spilling an argument register to its stack slot in STACK.
1642 Such instructions should be included in the prologue, if possible.
1643
1644 The store is a spill if:
1645 - the value being stored is REG's original value;
1646 - the value has not already been stored somewhere in STACK; and
1647 - ADDR is a stack slot's address (e.g., relative to the original
1648 value of the SP). */
1649 static int
1650 is_arg_spill (pv_t value, pv_t addr, struct pv_area *stack)
1651 {
1652 return (is_arg_reg (value)
1653 && pv_is_register (addr, MEP_SP_REGNUM)
1654 && ! pv_area_find_reg (stack, current_gdbarch, value.reg, 0));
1655 }
1656
1657
1658 /* Function for finding saved registers in a 'struct pv_area'; we pass
1659 this to pv_area_scan.
1660
1661 If VALUE is a saved register, ADDR says it was saved at a constant
1662 offset from the frame base, and SIZE indicates that the whole
1663 register was saved, record its offset in RESULT_UNTYPED. */
1664 static void
1665 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1666 {
1667 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1668
1669 if (value.kind == pvk_register
1670 && value.k == 0
1671 && pv_is_register (addr, MEP_SP_REGNUM)
1672 && size == register_size (current_gdbarch, value.reg))
1673 result->reg_offset[value.reg] = addr.k;
1674 }
1675
1676
1677 /* Analyze a prologue starting at START_PC, going no further than
1678 LIMIT_PC. Fill in RESULT as appropriate. */
1679 static void
1680 mep_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1681 struct mep_prologue *result)
1682 {
1683 CORE_ADDR pc;
1684 unsigned long insn;
1685 int rn;
1686 int found_lp = 0;
1687 pv_t reg[MEP_NUM_REGS];
1688 struct pv_area *stack;
1689 struct cleanup *back_to;
1690 CORE_ADDR after_last_frame_setup_insn = start_pc;
1691
1692 memset (result, 0, sizeof (*result));
1693
1694 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1695 {
1696 reg[rn] = pv_register (rn, 0);
1697 result->reg_offset[rn] = 1;
1698 }
1699
1700 stack = make_pv_area (MEP_SP_REGNUM);
1701 back_to = make_cleanup_free_pv_area (stack);
1702
1703 pc = start_pc;
1704 while (pc < limit_pc)
1705 {
1706 CORE_ADDR next_pc;
1707 pv_t pre_insn_fp, pre_insn_sp;
1708
1709 next_pc = mep_get_insn (pc, &insn);
1710
1711 /* A zero return from mep_get_insn means that either we weren't
1712 able to read the instruction from memory, or that we don't
1713 have enough information to be able to reliably decode it. So
1714 we'll store here and hope for the best. */
1715 if (! next_pc)
1716 break;
1717
1718 /* Note the current values of the SP and FP, so we can tell if
1719 this instruction changed them, below. */
1720 pre_insn_fp = reg[MEP_FP_REGNUM];
1721 pre_insn_sp = reg[MEP_SP_REGNUM];
1722
1723 if (IS_ADD (insn))
1724 {
1725 int rn = ADD_TARGET (insn);
1726 CORE_ADDR imm6 = ADD_OFFSET (insn);
1727
1728 reg[rn] = pv_add_constant (reg[rn], imm6);
1729 }
1730 else if (IS_ADD3_16 (insn))
1731 {
1732 int rn = ADD3_16_TARGET (insn);
1733 int imm7 = ADD3_16_OFFSET (insn);
1734
1735 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1736 }
1737 else if (IS_ADD3_32 (insn))
1738 {
1739 int rn = ADD3_32_TARGET (insn);
1740 int rm = ADD3_32_SOURCE (insn);
1741 int imm16 = ADD3_32_OFFSET (insn);
1742
1743 reg[rn] = pv_add_constant (reg[rm], imm16);
1744 }
1745 else if (IS_SW_REG (insn))
1746 {
1747 int rn = SW_REG_SOURCE (insn);
1748 int rm = SW_REG_BASE (insn);
1749
1750 /* If simulating this store would require us to forget
1751 everything we know about the stack frame in the name of
1752 accuracy, it would be better to just quit now. */
1753 if (pv_area_store_would_trash (stack, reg[rm]))
1754 break;
1755
1756 if (is_arg_spill (reg[rn], reg[rm], stack))
1757 after_last_frame_setup_insn = next_pc;
1758
1759 pv_area_store (stack, reg[rm], 4, reg[rn]);
1760 }
1761 else if (IS_SW_IMMD (insn))
1762 {
1763 int rn = SW_IMMD_SOURCE (insn);
1764 int offset = SW_IMMD_OFFSET (insn);
1765 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1766
1767 /* If simulating this store would require us to forget
1768 everything we know about the stack frame in the name of
1769 accuracy, it would be better to just quit now. */
1770 if (pv_area_store_would_trash (stack, addr))
1771 break;
1772
1773 if (is_arg_spill (reg[rn], addr, stack))
1774 after_last_frame_setup_insn = next_pc;
1775
1776 pv_area_store (stack, addr, 4, reg[rn]);
1777 }
1778 else if (IS_MOV (insn))
1779 {
1780 int rn = MOV_TARGET (insn);
1781 int rm = MOV_SOURCE (insn);
1782
1783 reg[rn] = reg[rm];
1784
1785 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1786 after_last_frame_setup_insn = next_pc;
1787 }
1788 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1789 {
1790 int rn = SWBH_32_SOURCE (insn);
1791 int rm = SWBH_32_BASE (insn);
1792 int disp = SWBH_32_OFFSET (insn);
1793 int size = (IS_SB (insn) ? 1
1794 : IS_SH (insn) ? 2
1795 : IS_SW (insn) ? 4
1796 : (gdb_assert (0), 1));
1797 pv_t addr = pv_add_constant (reg[rm], disp);
1798
1799 if (pv_area_store_would_trash (stack, addr))
1800 break;
1801
1802 if (is_arg_spill (reg[rn], addr, stack))
1803 after_last_frame_setup_insn = next_pc;
1804
1805 pv_area_store (stack, addr, size, reg[rn]);
1806 }
1807 else if (IS_LDC (insn))
1808 {
1809 int rn = LDC_TARGET (insn);
1810 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1811
1812 reg[rn] = reg[cr];
1813 }
1814 else if (IS_LW (insn))
1815 {
1816 int rn = LW_TARGET (insn);
1817 int rm = LW_BASE (insn);
1818 int offset = LW_OFFSET (insn);
1819 pv_t addr = pv_add_constant (reg[rm], offset);
1820
1821 reg[rn] = pv_area_fetch (stack, addr, 4);
1822 }
1823 else
1824 /* We've hit some instruction we don't know how to simulate.
1825 Strictly speaking, we should set every value we're
1826 tracking to "unknown". But we'll be optimistic, assume
1827 that we have enough information already, and stop
1828 analysis here. */
1829 break;
1830
1831 /* If this instruction changed the FP or decreased the SP (i.e.,
1832 allocated more stack space), then this may be a good place to
1833 declare the prologue finished. However, there are some
1834 exceptions:
1835
1836 - If the instruction just changed the FP back to its original
1837 value, then that's probably a restore instruction. The
1838 prologue should definitely end before that.
1839
1840 - If the instruction increased the value of the SP (that is,
1841 shrunk the frame), then it's probably part of a frame
1842 teardown sequence, and the prologue should end before that. */
1843
1844 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1845 {
1846 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1847 after_last_frame_setup_insn = next_pc;
1848 }
1849 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1850 {
1851 /* The comparison of constants looks odd, there, because .k
1852 is unsigned. All it really means is that the new value
1853 is lower than it was before the instruction. */
1854 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1855 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1856 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1857 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1858 after_last_frame_setup_insn = next_pc;
1859 }
1860
1861 pc = next_pc;
1862 }
1863
1864 /* Is the frame size (offset, really) a known constant? */
1865 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1866 result->frame_size = reg[MEP_SP_REGNUM].k;
1867
1868 /* Was the frame pointer initialized? */
1869 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1870 {
1871 result->has_frame_ptr = 1;
1872 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1873 }
1874
1875 /* Record where all the registers were saved. */
1876 pv_area_scan (stack, check_for_saved, (void *) result);
1877
1878 result->prologue_end = after_last_frame_setup_insn;
1879
1880 do_cleanups (back_to);
1881 }
1882
1883
1884 static CORE_ADDR
1885 mep_skip_prologue (CORE_ADDR pc)
1886 {
1887 char *name;
1888 CORE_ADDR func_addr, func_end;
1889 struct mep_prologue p;
1890
1891 /* Try to find the extent of the function that contains PC. */
1892 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1893 return pc;
1894
1895 mep_analyze_prologue (pc, func_end, &p);
1896 return p.prologue_end;
1897 }
1898
1899
1900 \f
1901 /* Breakpoints. */
1902
1903 static const unsigned char *
1904 mep_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
1905 {
1906 static unsigned char breakpoint[] = { 0x70, 0x32 };
1907 *lenptr = sizeof (breakpoint);
1908 return breakpoint;
1909 }
1910
1911
1912 \f
1913 /* Frames and frame unwinding. */
1914
1915
1916 static struct mep_prologue *
1917 mep_analyze_frame_prologue (struct frame_info *next_frame,
1918 void **this_prologue_cache)
1919 {
1920 if (! *this_prologue_cache)
1921 {
1922 CORE_ADDR func_start, stop_addr;
1923
1924 *this_prologue_cache
1925 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1926
1927 func_start = frame_func_unwind (next_frame, NORMAL_FRAME);
1928 stop_addr = frame_pc_unwind (next_frame);
1929
1930 /* If we couldn't find any function containing the PC, then
1931 just initialize the prologue cache, but don't do anything. */
1932 if (! func_start)
1933 stop_addr = func_start;
1934
1935 mep_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
1936 }
1937
1938 return *this_prologue_cache;
1939 }
1940
1941
1942 /* Given the next frame and a prologue cache, return this frame's
1943 base. */
1944 static CORE_ADDR
1945 mep_frame_base (struct frame_info *next_frame,
1946 void **this_prologue_cache)
1947 {
1948 struct mep_prologue *p
1949 = mep_analyze_frame_prologue (next_frame, this_prologue_cache);
1950
1951 /* In functions that use alloca, the distance between the stack
1952 pointer and the frame base varies dynamically, so we can't use
1953 the SP plus static information like prologue analysis to find the
1954 frame base. However, such functions must have a frame pointer,
1955 to be able to restore the SP on exit. So whenever we do have a
1956 frame pointer, use that to find the base. */
1957 if (p->has_frame_ptr)
1958 {
1959 CORE_ADDR fp
1960 = frame_unwind_register_unsigned (next_frame, MEP_FP_REGNUM);
1961 return fp - p->frame_ptr_offset;
1962 }
1963 else
1964 {
1965 CORE_ADDR sp
1966 = frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
1967 return sp - p->frame_size;
1968 }
1969 }
1970
1971
1972 static void
1973 mep_frame_this_id (struct frame_info *next_frame,
1974 void **this_prologue_cache,
1975 struct frame_id *this_id)
1976 {
1977 *this_id = frame_id_build (mep_frame_base (next_frame, this_prologue_cache),
1978 frame_func_unwind (next_frame, NORMAL_FRAME));
1979 }
1980
1981
1982 static void
1983 mep_frame_prev_register (struct frame_info *next_frame,
1984 void **this_prologue_cache,
1985 int regnum, int *optimizedp,
1986 enum lval_type *lvalp, CORE_ADDR *addrp,
1987 int *realnump, gdb_byte *bufferp)
1988 {
1989 struct mep_prologue *p
1990 = mep_analyze_frame_prologue (next_frame, this_prologue_cache);
1991
1992 /* There are a number of complications in unwinding registers on the
1993 MeP, having to do with core functions calling VLIW functions and
1994 vice versa.
1995
1996 The least significant bit of the link register, LP.LTOM, is the
1997 VLIW mode toggle bit: it's set if a core function called a VLIW
1998 function, or vice versa, and clear when the caller and callee
1999 were both in the same mode.
2000
2001 So, if we're asked to unwind the PC, then we really want to
2002 unwind the LP and clear the least significant bit. (Real return
2003 addresses are always even.) And if we want to unwind the program
2004 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2005
2006 Tweaking the register values we return in this way means that the
2007 bits in BUFFERP[] are not the same as the bits you'd find at
2008 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2009 do this. */
2010 if (regnum == MEP_PC_REGNUM)
2011 {
2012 mep_frame_prev_register (next_frame, this_prologue_cache, MEP_LP_REGNUM,
2013 optimizedp, lvalp, addrp, realnump, bufferp);
2014 store_unsigned_integer (bufferp, MEP_LP_SIZE,
2015 (extract_unsigned_integer (bufferp, MEP_LP_SIZE)
2016 & ~1));
2017 *lvalp = not_lval;
2018 }
2019 else
2020 {
2021 CORE_ADDR frame_base = mep_frame_base (next_frame, this_prologue_cache);
2022 int reg_size = register_size (get_frame_arch (next_frame), regnum);
2023
2024 /* Our caller's SP is our frame base. */
2025 if (regnum == MEP_SP_REGNUM)
2026 {
2027 *optimizedp = 0;
2028 *lvalp = not_lval;
2029 *addrp = 0;
2030 *realnump = -1;
2031 if (bufferp)
2032 store_unsigned_integer (bufferp, reg_size, frame_base);
2033 }
2034
2035 /* If prologue analysis says we saved this register somewhere,
2036 return a description of the stack slot holding it. */
2037 else if (p->reg_offset[regnum] != 1)
2038 {
2039 *optimizedp = 0;
2040 *lvalp = lval_memory;
2041 *addrp = frame_base + p->reg_offset[regnum];
2042 *realnump = -1;
2043 if (bufferp)
2044 get_frame_memory (next_frame, *addrp, bufferp, reg_size);
2045 }
2046
2047 /* Otherwise, presume we haven't changed the value of this
2048 register, and get it from the next frame. */
2049 else
2050 frame_register_unwind (next_frame, regnum,
2051 optimizedp, lvalp, addrp, realnump, bufferp);
2052
2053 /* If we need to toggle the operating mode, do so. */
2054 if (regnum == MEP_PSW_REGNUM)
2055 {
2056 int lp_optimized;
2057 enum lval_type lp_lval;
2058 CORE_ADDR lp_addr;
2059 int lp_realnum;
2060 char lp_buffer[MEP_LP_SIZE];
2061
2062 /* Get the LP's value, too. */
2063 frame_register_unwind (next_frame, MEP_LP_REGNUM,
2064 &lp_optimized, &lp_lval, &lp_addr,
2065 &lp_realnum, lp_buffer);
2066
2067 /* If LP.LTOM is set, then toggle PSW.OM. */
2068 if (extract_unsigned_integer (lp_buffer, MEP_LP_SIZE) & 0x1)
2069 store_unsigned_integer
2070 (bufferp, MEP_PSW_SIZE,
2071 (extract_unsigned_integer (bufferp, MEP_PSW_SIZE) ^ 0x1000));
2072 *lvalp = not_lval;
2073 }
2074 }
2075 }
2076
2077
2078 static const struct frame_unwind mep_frame_unwind = {
2079 NORMAL_FRAME,
2080 mep_frame_this_id,
2081 mep_frame_prev_register
2082 };
2083
2084
2085 static const struct frame_unwind *
2086 mep_frame_sniffer (struct frame_info *next_frame)
2087 {
2088 return &mep_frame_unwind;
2089 }
2090
2091
2092 /* Our general unwinding function can handle unwinding the PC. */
2093 static CORE_ADDR
2094 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2095 {
2096 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2097 }
2098
2099
2100 /* Our general unwinding function can handle unwinding the SP. */
2101 static CORE_ADDR
2102 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2103 {
2104 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2105 }
2106
2107
2108 \f
2109 /* Return values. */
2110
2111
2112 static int
2113 mep_use_struct_convention (struct type *type)
2114 {
2115 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2116 }
2117
2118
2119 static void
2120 mep_extract_return_value (struct gdbarch *arch,
2121 struct type *type,
2122 struct regcache *regcache,
2123 gdb_byte *valbuf)
2124 {
2125 int byte_order = gdbarch_byte_order (arch);
2126
2127 /* Values that don't occupy a full register appear at the less
2128 significant end of the value. This is the offset to where the
2129 value starts. */
2130 int offset;
2131
2132 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2133 pointed to by R0. */
2134 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2135
2136 if (byte_order == BFD_ENDIAN_BIG)
2137 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2138 else
2139 offset = 0;
2140
2141 /* Return values that do fit in a single register are returned in R0. */
2142 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2143 offset, TYPE_LENGTH (type),
2144 valbuf);
2145 }
2146
2147
2148 static void
2149 mep_store_return_value (struct gdbarch *arch,
2150 struct type *type,
2151 struct regcache *regcache,
2152 const gdb_byte *valbuf)
2153 {
2154 int byte_order = gdbarch_byte_order (arch);
2155
2156 /* Values that fit in a single register go in R0. */
2157 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2158 {
2159 /* Values that don't occupy a full register appear at the least
2160 significant end of the value. This is the offset to where the
2161 value starts. */
2162 int offset;
2163
2164 if (byte_order == BFD_ENDIAN_BIG)
2165 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2166 else
2167 offset = 0;
2168
2169 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2170 offset, TYPE_LENGTH (type),
2171 valbuf);
2172 }
2173
2174 /* Return values larger than a single register are returned in
2175 memory, pointed to by R0. Unfortunately, we can't count on R0
2176 pointing to the return buffer, so we raise an error here. */
2177 else
2178 error ("GDB cannot set return values larger than four bytes; "
2179 "the Media Processor's\n"
2180 "calling conventions do not provide enough information "
2181 "to do this.\n"
2182 "Try using the 'return' command with no argument.");
2183 }
2184
2185 enum return_value_convention
2186 mep_return_value (struct gdbarch *gdbarch, struct type *type,
2187 struct regcache *regcache, gdb_byte *readbuf,
2188 const gdb_byte *writebuf)
2189 {
2190 if (mep_use_struct_convention (type))
2191 {
2192 if (readbuf)
2193 {
2194 ULONGEST addr;
2195 /* Although the address of the struct buffer gets passed in R1, it's
2196 returned in R0. Fetch R0's value and then read the memory
2197 at that address. */
2198 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2199 read_memory (addr, readbuf, TYPE_LENGTH (type));
2200 }
2201 if (writebuf)
2202 {
2203 /* Return values larger than a single register are returned in
2204 memory, pointed to by R0. Unfortunately, we can't count on R0
2205 pointing to the return buffer, so we raise an error here. */
2206 error ("GDB cannot set return values larger than four bytes; "
2207 "the Media Processor's\n"
2208 "calling conventions do not provide enough information "
2209 "to do this.\n"
2210 "Try using the 'return' command with no argument.");
2211 }
2212 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2213 }
2214
2215 if (readbuf)
2216 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2217 if (writebuf)
2218 mep_store_return_value (gdbarch, type, regcache, writebuf);
2219
2220 return RETURN_VALUE_REGISTER_CONVENTION;
2221 }
2222
2223 \f
2224 /* Inferior calls. */
2225
2226
2227 static CORE_ADDR
2228 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2229 {
2230 /* Require word alignment. */
2231 return sp & -4;
2232 }
2233
2234
2235 /* From "lang_spec2.txt":
2236
2237 4.2 Calling conventions
2238
2239 4.2.1 Core register conventions
2240
2241 - Parameters should be evaluated from left to right, and they
2242 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2243 after should be held in the stack. If the size is larger than 4
2244 bytes in the first four parameters, the pointer should be held in
2245 the registers instead. If the size is larger than 4 bytes in the
2246 fifth parameter or after, the pointer should be held in the stack.
2247
2248 - Return value of a function should be held in register $0. If the
2249 size of return value is larger than 4 bytes, $1 should hold the
2250 pointer pointing memory that would hold the return value. In this
2251 case, the first parameter should be held in $2, the second one in
2252 $3, and the third one in $4, and the forth parameter or after
2253 should be held in the stack.
2254
2255 [This doesn't say so, but arguments shorter than four bytes are
2256 passed in the least significant end of a four-byte word when
2257 they're passed on the stack.] */
2258
2259
2260 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2261 large to fit in a register, save it on the stack, and place its
2262 address in COPY[i]. SP is the initial stack pointer; return the
2263 new stack pointer. */
2264 static CORE_ADDR
2265 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2266 CORE_ADDR copy[])
2267 {
2268 int i;
2269
2270 for (i = 0; i < argc; i++)
2271 {
2272 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2273
2274 if (arg_len > MEP_GPR_SIZE)
2275 {
2276 /* Reserve space for the copy, and then round the SP down, to
2277 make sure it's all aligned properly. */
2278 sp = (sp - arg_len) & -4;
2279 write_memory (sp, value_contents (argv[i]), arg_len);
2280 copy[i] = sp;
2281 }
2282 }
2283
2284 return sp;
2285 }
2286
2287
2288 static CORE_ADDR
2289 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2290 struct regcache *regcache, CORE_ADDR bp_addr,
2291 int argc, struct value **argv, CORE_ADDR sp,
2292 int struct_return,
2293 CORE_ADDR struct_addr)
2294 {
2295 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2296 CORE_ADDR func_addr = find_function_addr (function, NULL);
2297 int i;
2298
2299 /* The number of the next register available to hold an argument. */
2300 int arg_reg;
2301
2302 /* The address of the next stack slot available to hold an argument. */
2303 CORE_ADDR arg_stack;
2304
2305 /* The address of the end of the stack area for arguments. This is
2306 just for error checking. */
2307 CORE_ADDR arg_stack_end;
2308
2309 sp = push_large_arguments (sp, argc, argv, copy);
2310
2311 /* Reserve space for the stack arguments, if any. */
2312 arg_stack_end = sp;
2313 if (argc + (struct_addr ? 1 : 0) > 4)
2314 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2315
2316 arg_reg = MEP_R1_REGNUM;
2317 arg_stack = sp;
2318
2319 /* If we're returning a structure by value, push the pointer to the
2320 buffer as the first argument. */
2321 if (struct_return)
2322 {
2323 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2324 arg_reg++;
2325 }
2326
2327 for (i = 0; i < argc; i++)
2328 {
2329 unsigned arg_size = TYPE_LENGTH (value_type (argv[i]));
2330 ULONGEST value;
2331
2332 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2333 if (arg_size <= MEP_GPR_SIZE)
2334 value = extract_unsigned_integer (value_contents (argv[i]),
2335 TYPE_LENGTH (value_type (argv[i])));
2336
2337 /* Arguments too large to fit in a GPR get copied to the stack,
2338 and we pass a pointer to the copy. */
2339 else
2340 value = copy[i];
2341
2342 /* We use $1 -- $4 for passing arguments, then use the stack. */
2343 if (arg_reg <= MEP_R4_REGNUM)
2344 {
2345 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2346 arg_reg++;
2347 }
2348 else
2349 {
2350 char buf[MEP_GPR_SIZE];
2351 store_unsigned_integer (buf, MEP_GPR_SIZE, value);
2352 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2353 arg_stack += MEP_GPR_SIZE;
2354 }
2355 }
2356
2357 gdb_assert (arg_stack <= arg_stack_end);
2358
2359 /* Set the return address. */
2360 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2361
2362 /* Update the stack pointer. */
2363 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2364
2365 return sp;
2366 }
2367
2368
2369 static struct frame_id
2370 mep_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2371 {
2372 return frame_id_build (mep_unwind_sp (gdbarch, next_frame),
2373 frame_pc_unwind (next_frame));
2374 }
2375
2376
2377 \f
2378 /* Initialization. */
2379
2380
2381 static struct gdbarch *
2382 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2383 {
2384 struct gdbarch *gdbarch;
2385 struct gdbarch_tdep *tdep;
2386
2387 /* Which me_module are we building a gdbarch object for? */
2388 CONFIG_ATTR me_module;
2389
2390 /* If we have a BFD in hand, figure out which me_module it was built
2391 for. Otherwise, use the no-particular-me_module code. */
2392 if (info.abfd)
2393 {
2394 /* The way to get the me_module code depends on the object file
2395 format. At the moment, we only know how to handle ELF. */
2396 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2397 me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2398 else
2399 me_module = CONFIG_NONE;
2400 }
2401 else
2402 me_module = CONFIG_NONE;
2403
2404 /* If we're setting the architecture from a file, check the
2405 endianness of the file against that of the me_module. */
2406 if (info.abfd)
2407 {
2408 /* The negations on either side make the comparison treat all
2409 non-zero (true) values as equal. */
2410 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2411 {
2412 const char *module_name = me_module_name (me_module);
2413 const char *module_endianness
2414 = me_module_big_endian (me_module) ? "big" : "little";
2415 const char *file_name = bfd_get_filename (info.abfd);
2416 const char *file_endianness
2417 = bfd_big_endian (info.abfd) ? "big" : "little";
2418
2419 fputc_unfiltered ('\n', gdb_stderr);
2420 if (module_name)
2421 warning ("the MeP module '%s' is %s-endian, but the executable\n"
2422 "%s is %s-endian.",
2423 module_name, module_endianness,
2424 file_name, file_endianness);
2425 else
2426 warning ("the selected MeP module is %s-endian, but the "
2427 "executable\n"
2428 "%s is %s-endian.",
2429 module_endianness, file_name, file_endianness);
2430 }
2431 }
2432
2433 /* Find a candidate among the list of architectures we've created
2434 already. info->bfd_arch_info needs to match, but we also want
2435 the right me_module: the ELF header's e_flags field needs to
2436 match as well. */
2437 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2438 arches != NULL;
2439 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2440 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2441 return arches->gdbarch;
2442
2443 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2444 gdbarch = gdbarch_alloc (&info, tdep);
2445
2446 /* Get a CGEN CPU descriptor for this architecture. */
2447 {
2448 const char *mach_name = info.bfd_arch_info->printable_name;
2449 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2450 ? CGEN_ENDIAN_BIG
2451 : CGEN_ENDIAN_LITTLE);
2452
2453 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2454 CGEN_CPU_OPEN_ENDIAN, endian,
2455 CGEN_CPU_OPEN_END);
2456 }
2457
2458 tdep->me_module = me_module;
2459
2460 /* Register set. */
2461 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2462 set_gdbarch_write_pc (gdbarch, mep_write_pc);
2463 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2464 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2465 set_gdbarch_register_name (gdbarch, mep_register_name);
2466 set_gdbarch_register_type (gdbarch, mep_register_type);
2467 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2468 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2469 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2470 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2471 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2472
2473 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2474 reggroup_add (gdbarch, all_reggroup);
2475 reggroup_add (gdbarch, general_reggroup);
2476 reggroup_add (gdbarch, save_reggroup);
2477 reggroup_add (gdbarch, restore_reggroup);
2478 reggroup_add (gdbarch, mep_csr_reggroup);
2479 reggroup_add (gdbarch, mep_cr_reggroup);
2480 reggroup_add (gdbarch, mep_ccr_reggroup);
2481
2482 /* Disassembly. */
2483 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2484
2485 /* Breakpoints. */
2486 set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2487 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2488 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2489
2490 /* Frames and frame unwinding. */
2491 frame_unwind_append_sniffer (gdbarch, mep_frame_sniffer);
2492 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2493 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2494 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2495 set_gdbarch_frame_args_skip (gdbarch, 0);
2496
2497 /* Return values. */
2498 set_gdbarch_return_value (gdbarch, mep_return_value);
2499
2500 /* Inferior function calls. */
2501 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2502 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2503 set_gdbarch_unwind_dummy_id (gdbarch, mep_unwind_dummy_id);
2504
2505 return gdbarch;
2506 }
2507
2508
2509 void
2510 _initialize_mep_tdep (void)
2511 {
2512 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2513 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2514 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2515
2516 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2517
2518 mep_init_pseudoregister_maps ();
2519 }
This page took 0.08295 seconds and 5 git commands to generate.