Make instream be per UI
[deliverable/binutils-gdb.git] / gdb / mi / mi-interp.c
1 /* MI Interpreter Definitions and Commands for GDB, the GNU debugger.
2
3 Copyright (C) 2002-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "interps.h"
22 #include "event-top.h"
23 #include "event-loop.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "ui-out.h"
27 #include "top.h"
28 #include "mi-main.h"
29 #include "mi-cmds.h"
30 #include "mi-out.h"
31 #include "mi-console.h"
32 #include "mi-common.h"
33 #include "observer.h"
34 #include "gdbthread.h"
35 #include "solist.h"
36 #include "gdb.h"
37 #include "objfiles.h"
38 #include "tracepoint.h"
39 #include "cli-out.h"
40 #include "thread-fsm.h"
41
42 /* These are the interpreter setup, etc. functions for the MI
43 interpreter. */
44
45 static void mi_execute_command_wrapper (const char *cmd);
46 static void mi_execute_command_input_handler (char *cmd);
47 static void mi_command_loop (void *data);
48
49 /* These are hooks that we put in place while doing interpreter_exec
50 so we can report interesting things that happened "behind the MI's
51 back" in this command. */
52
53 static int mi_interp_query_hook (const char *ctlstr, va_list ap)
54 ATTRIBUTE_PRINTF (1, 0);
55
56 static void mi_insert_notify_hooks (void);
57 static void mi_remove_notify_hooks (void);
58
59 static void mi_on_signal_received (enum gdb_signal siggnal);
60 static void mi_on_end_stepping_range (void);
61 static void mi_on_signal_exited (enum gdb_signal siggnal);
62 static void mi_on_exited (int exitstatus);
63 static void mi_on_normal_stop (struct bpstats *bs, int print_frame);
64 static void mi_on_no_history (void);
65
66 static void mi_new_thread (struct thread_info *t);
67 static void mi_thread_exit (struct thread_info *t, int silent);
68 static void mi_record_changed (struct inferior*, int, const char *,
69 const char *);
70 static void mi_inferior_added (struct inferior *inf);
71 static void mi_inferior_appeared (struct inferior *inf);
72 static void mi_inferior_exit (struct inferior *inf);
73 static void mi_inferior_removed (struct inferior *inf);
74 static void mi_on_resume (ptid_t ptid);
75 static void mi_solib_loaded (struct so_list *solib);
76 static void mi_solib_unloaded (struct so_list *solib);
77 static void mi_about_to_proceed (void);
78 static void mi_traceframe_changed (int tfnum, int tpnum);
79 static void mi_tsv_created (const struct trace_state_variable *tsv);
80 static void mi_tsv_deleted (const struct trace_state_variable *tsv);
81 static void mi_tsv_modified (const struct trace_state_variable *tsv);
82 static void mi_breakpoint_created (struct breakpoint *b);
83 static void mi_breakpoint_deleted (struct breakpoint *b);
84 static void mi_breakpoint_modified (struct breakpoint *b);
85 static void mi_command_param_changed (const char *param, const char *value);
86 static void mi_memory_changed (struct inferior *inf, CORE_ADDR memaddr,
87 ssize_t len, const bfd_byte *myaddr);
88 static void mi_on_sync_execution_done (void);
89
90 static int report_initial_inferior (struct inferior *inf, void *closure);
91
92 /* Returns the INTERP's data cast as mi_interp if INTERP is an MI, and
93 returns NULL otherwise. */
94
95 static struct mi_interp *
96 as_mi_interp (struct interp *interp)
97 {
98 if (ui_out_is_mi_like_p (interp_ui_out (interp)))
99 return (struct mi_interp *) interp_data (interp);
100 return NULL;
101 }
102
103 static void *
104 mi_interpreter_init (struct interp *interp, int top_level)
105 {
106 struct mi_interp *mi = XNEW (struct mi_interp);
107 const char *name;
108 int mi_version;
109
110 /* Assign the output channel created at startup to its own global,
111 so that we can create a console channel that encapsulates and
112 prefixes all gdb_output-type bits coming from the rest of the
113 debugger. */
114
115 raw_stdout = gdb_stdout;
116
117 /* Create MI console channels, each with a different prefix so they
118 can be distinguished. */
119 mi->out = mi_console_file_new (raw_stdout, "~", '"');
120 mi->err = mi_console_file_new (raw_stdout, "&", '"');
121 mi->log = mi->err;
122 mi->targ = mi_console_file_new (raw_stdout, "@", '"');
123 mi->event_channel = mi_console_file_new (raw_stdout, "=", 0);
124
125 name = interp_name (interp);
126 /* INTERP_MI selects the most recent released version. "mi2" was
127 released as part of GDB 6.0. */
128 if (strcmp (name, INTERP_MI) == 0)
129 mi_version = 2;
130 else if (strcmp (name, INTERP_MI1) == 0)
131 mi_version = 1;
132 else if (strcmp (name, INTERP_MI2) == 0)
133 mi_version = 2;
134 else if (strcmp (name, INTERP_MI3) == 0)
135 mi_version = 3;
136 else
137 gdb_assert_not_reached ("unhandled MI version");
138
139 mi->mi_uiout = mi_out_new (mi_version);
140 mi->cli_uiout = cli_out_new (mi->out);
141
142 if (top_level)
143 {
144 /* The initial inferior is created before this function is
145 called, so we need to report it explicitly. Use iteration in
146 case future version of GDB creates more than one inferior
147 up-front. */
148 iterate_over_inferiors (report_initial_inferior, mi);
149 }
150
151 return mi;
152 }
153
154 static int
155 mi_interpreter_resume (void *data)
156 {
157 struct mi_interp *mi = (struct mi_interp *) data;
158 struct ui *ui = current_ui;
159
160 /* As per hack note in mi_interpreter_init, swap in the output
161 channels... */
162 gdb_setup_readline ();
163
164 /* These overwrite some of the initialization done in
165 _intialize_event_loop. */
166 ui->call_readline = gdb_readline_no_editing_callback;
167 ui->input_handler = mi_execute_command_input_handler;
168 async_command_editing_p = 0;
169 /* FIXME: This is a total hack for now. PB's use of the MI
170 implicitly relies on a bug in the async support which allows
171 asynchronous commands to leak through the commmand loop. The bug
172 involves (but is not limited to) the fact that sync_execution was
173 erroneously initialized to 0. Duplicate by initializing it thus
174 here... */
175 sync_execution = 0;
176
177 gdb_stdout = mi->out;
178 /* Route error and log output through the MI. */
179 gdb_stderr = mi->err;
180 gdb_stdlog = mi->log;
181 /* Route target output through the MI. */
182 gdb_stdtarg = mi->targ;
183 /* Route target error through the MI as well. */
184 gdb_stdtargerr = mi->targ;
185
186 /* Replace all the hooks that we know about. There really needs to
187 be a better way of doing this... */
188 clear_interpreter_hooks ();
189
190 deprecated_show_load_progress = mi_load_progress;
191
192 return 1;
193 }
194
195 static int
196 mi_interpreter_suspend (void *data)
197 {
198 gdb_disable_readline ();
199 return 1;
200 }
201
202 static struct gdb_exception
203 mi_interpreter_exec (void *data, const char *command)
204 {
205 mi_execute_command_wrapper (command);
206 return exception_none;
207 }
208
209 void
210 mi_cmd_interpreter_exec (char *command, char **argv, int argc)
211 {
212 struct interp *interp_to_use;
213 int i;
214 char *mi_error_message = NULL;
215 struct cleanup *old_chain;
216
217 if (argc < 2)
218 error (_("-interpreter-exec: "
219 "Usage: -interpreter-exec interp command"));
220
221 interp_to_use = interp_lookup (current_ui, argv[0]);
222 if (interp_to_use == NULL)
223 error (_("-interpreter-exec: could not find interpreter \"%s\""),
224 argv[0]);
225
226 /* Note that unlike the CLI version of this command, we don't
227 actually set INTERP_TO_USE as the current interpreter, as we
228 still want gdb_stdout, etc. to point at MI streams. */
229
230 /* Insert the MI out hooks, making sure to also call the
231 interpreter's hooks if it has any. */
232 /* KRS: We shouldn't need this... Events should be installed and
233 they should just ALWAYS fire something out down the MI
234 channel. */
235 mi_insert_notify_hooks ();
236
237 /* Now run the code. */
238
239 old_chain = make_cleanup (null_cleanup, 0);
240 for (i = 1; i < argc; i++)
241 {
242 struct gdb_exception e = interp_exec (interp_to_use, argv[i]);
243
244 if (e.reason < 0)
245 {
246 mi_error_message = xstrdup (e.message);
247 make_cleanup (xfree, mi_error_message);
248 break;
249 }
250 }
251
252 mi_remove_notify_hooks ();
253
254 if (mi_error_message != NULL)
255 error ("%s", mi_error_message);
256 do_cleanups (old_chain);
257 }
258
259 /* This inserts a number of hooks that are meant to produce
260 async-notify ("=") MI messages while running commands in another
261 interpreter using mi_interpreter_exec. The canonical use for this
262 is to allow access to the gdb CLI interpreter from within the MI,
263 while still producing MI style output when actions in the CLI
264 command change GDB's state. */
265
266 static void
267 mi_insert_notify_hooks (void)
268 {
269 deprecated_query_hook = mi_interp_query_hook;
270 }
271
272 static void
273 mi_remove_notify_hooks (void)
274 {
275 deprecated_query_hook = NULL;
276 }
277
278 static int
279 mi_interp_query_hook (const char *ctlstr, va_list ap)
280 {
281 return 1;
282 }
283
284 static void
285 mi_execute_command_wrapper (const char *cmd)
286 {
287 struct ui *ui = current_ui;
288
289 mi_execute_command (cmd, stdin == ui->instream);
290 }
291
292 /* Observer for the synchronous_command_done notification. */
293
294 static void
295 mi_on_sync_execution_done (void)
296 {
297 struct ui *ui = current_ui;
298 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
299
300 if (mi == NULL)
301 return;
302
303 /* If MI is sync, then output the MI prompt now, indicating we're
304 ready for further input. */
305 if (!mi_async_p ())
306 {
307 fputs_unfiltered ("(gdb) \n", raw_stdout);
308 gdb_flush (raw_stdout);
309 }
310 }
311
312 /* mi_execute_command_wrapper wrapper suitable for INPUT_HANDLER. */
313
314 static void
315 mi_execute_command_input_handler (char *cmd)
316 {
317 mi_execute_command_wrapper (cmd);
318
319 /* Print a prompt, indicating we're ready for further input, unless
320 we just started a synchronous command. In that case, we're about
321 to go back to the event loop and will output the prompt in the
322 'synchronous_command_done' observer when the target next
323 stops. */
324 if (!sync_execution)
325 {
326 fputs_unfiltered ("(gdb) \n", raw_stdout);
327 gdb_flush (raw_stdout);
328 }
329 }
330
331 static void
332 mi_command_loop (void *data)
333 {
334 /* Turn off 8 bit strings in quoted output. Any character with the
335 high bit set is printed using C's octal format. */
336 sevenbit_strings = 1;
337
338 /* Tell the world that we're alive. */
339 fputs_unfiltered ("(gdb) \n", raw_stdout);
340 gdb_flush (raw_stdout);
341
342 start_event_loop ();
343 }
344
345 static void
346 mi_new_thread (struct thread_info *t)
347 {
348 struct inferior *inf = find_inferior_ptid (t->ptid);
349 struct switch_thru_all_uis state;
350
351 gdb_assert (inf);
352
353 SWITCH_THRU_ALL_UIS (state)
354 {
355 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
356 struct cleanup *old_chain;
357
358 if (mi == NULL)
359 continue;
360
361 old_chain = make_cleanup_restore_target_terminal ();
362 target_terminal_ours_for_output ();
363
364 fprintf_unfiltered (mi->event_channel,
365 "thread-created,id=\"%d\",group-id=\"i%d\"",
366 t->global_num, inf->num);
367 gdb_flush (mi->event_channel);
368
369 do_cleanups (old_chain);
370 }
371 }
372
373 static void
374 mi_thread_exit (struct thread_info *t, int silent)
375 {
376 struct switch_thru_all_uis state;
377
378 if (silent)
379 return;
380
381 SWITCH_THRU_ALL_UIS (state)
382 {
383 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
384 struct cleanup *old_chain;
385
386 if (mi == NULL)
387 continue;
388
389 old_chain = make_cleanup_restore_target_terminal ();
390 target_terminal_ours_for_output ();
391 fprintf_unfiltered (mi->event_channel,
392 "thread-exited,id=\"%d\",group-id=\"i%d\"",
393 t->global_num, t->inf->num);
394 gdb_flush (mi->event_channel);
395
396 do_cleanups (old_chain);
397 }
398 }
399
400 /* Emit notification on changing the state of record. */
401
402 static void
403 mi_record_changed (struct inferior *inferior, int started, const char *method,
404 const char *format)
405 {
406 struct switch_thru_all_uis state;
407
408 SWITCH_THRU_ALL_UIS (state)
409 {
410 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
411 struct cleanup *old_chain;
412
413 if (mi == NULL)
414 continue;
415
416 old_chain = make_cleanup_restore_target_terminal ();
417 target_terminal_ours_for_output ();
418
419 if (started)
420 {
421 if (format != NULL)
422 {
423 fprintf_unfiltered (mi->event_channel,
424 "record-started,thread-group=\"i%d\","
425 "method=\"%s\",format=\"%s\"",
426 inferior->num, method, format);
427 }
428 else
429 {
430 fprintf_unfiltered (mi->event_channel,
431 "record-started,thread-group=\"i%d\","
432 "method=\"%s\"",
433 inferior->num, method);
434 }
435 }
436 else
437 {
438 fprintf_unfiltered (mi->event_channel,
439 "record-stopped,thread-group=\"i%d\"",
440 inferior->num);
441 }
442
443 gdb_flush (mi->event_channel);
444
445 do_cleanups (old_chain);
446 }
447 }
448
449 static void
450 mi_inferior_added (struct inferior *inf)
451 {
452 struct switch_thru_all_uis state;
453
454 SWITCH_THRU_ALL_UIS (state)
455 {
456 struct interp *interp;
457 struct mi_interp *mi;
458 struct cleanup *old_chain;
459
460 /* We'll be called once for the initial inferior, before the top
461 level interpreter is set. */
462 interp = top_level_interpreter ();
463 if (interp == NULL)
464 continue;
465
466 mi = as_mi_interp (interp);
467 if (mi == NULL)
468 continue;
469
470 old_chain = make_cleanup_restore_target_terminal ();
471 target_terminal_ours_for_output ();
472
473 fprintf_unfiltered (mi->event_channel,
474 "thread-group-added,id=\"i%d\"",
475 inf->num);
476 gdb_flush (mi->event_channel);
477
478 do_cleanups (old_chain);
479 }
480 }
481
482 static void
483 mi_inferior_appeared (struct inferior *inf)
484 {
485 struct switch_thru_all_uis state;
486
487 SWITCH_THRU_ALL_UIS (state)
488 {
489 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
490 struct cleanup *old_chain;
491
492 if (mi == NULL)
493 continue;
494
495 old_chain = make_cleanup_restore_target_terminal ();
496 target_terminal_ours_for_output ();
497
498 fprintf_unfiltered (mi->event_channel,
499 "thread-group-started,id=\"i%d\",pid=\"%d\"",
500 inf->num, inf->pid);
501 gdb_flush (mi->event_channel);
502 do_cleanups (old_chain);
503 }
504 }
505
506 static void
507 mi_inferior_exit (struct inferior *inf)
508 {
509 struct switch_thru_all_uis state;
510
511 SWITCH_THRU_ALL_UIS (state)
512 {
513 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
514 struct cleanup *old_chain;
515
516 if (mi == NULL)
517 continue;
518
519 old_chain = make_cleanup_restore_target_terminal ();
520 target_terminal_ours_for_output ();
521
522 if (inf->has_exit_code)
523 fprintf_unfiltered (mi->event_channel,
524 "thread-group-exited,id=\"i%d\",exit-code=\"%s\"",
525 inf->num, int_string (inf->exit_code, 8, 0, 0, 1));
526 else
527 fprintf_unfiltered (mi->event_channel,
528 "thread-group-exited,id=\"i%d\"", inf->num);
529
530 gdb_flush (mi->event_channel);
531 do_cleanups (old_chain);
532 }
533 }
534
535 static void
536 mi_inferior_removed (struct inferior *inf)
537 {
538 struct switch_thru_all_uis state;
539
540 SWITCH_THRU_ALL_UIS (state)
541 {
542 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
543 struct cleanup *old_chain;
544
545 if (mi == NULL)
546 continue;
547
548 old_chain = make_cleanup_restore_target_terminal ();
549 target_terminal_ours_for_output ();
550
551 fprintf_unfiltered (mi->event_channel,
552 "thread-group-removed,id=\"i%d\"",
553 inf->num);
554 gdb_flush (mi->event_channel);
555
556 do_cleanups (old_chain);
557 }
558 }
559
560 /* Return the MI interpreter, if it is active -- either because it's
561 the top-level interpreter or the interpreter executing the current
562 command. Returns NULL if the MI interpreter is not being used. */
563
564 static struct mi_interp *
565 find_mi_interp (void)
566 {
567 struct mi_interp *mi;
568
569 mi = as_mi_interp (top_level_interpreter ());
570 if (mi != NULL)
571 return mi;
572
573 mi = as_mi_interp (command_interp ());
574 if (mi != NULL)
575 return mi;
576
577 return NULL;
578 }
579
580 /* Observers for several run control events that print why the
581 inferior has stopped to both the the MI event channel and to the MI
582 console. If the MI interpreter is not active, print nothing. */
583
584 /* Observer for the signal_received notification. */
585
586 static void
587 mi_on_signal_received (enum gdb_signal siggnal)
588 {
589 struct switch_thru_all_uis state;
590
591 SWITCH_THRU_ALL_UIS (state)
592 {
593 struct mi_interp *mi = find_mi_interp ();
594
595 if (mi == NULL)
596 continue;
597
598 print_signal_received_reason (mi->mi_uiout, siggnal);
599 print_signal_received_reason (mi->cli_uiout, siggnal);
600 }
601 }
602
603 /* Observer for the end_stepping_range notification. */
604
605 static void
606 mi_on_end_stepping_range (void)
607 {
608 struct switch_thru_all_uis state;
609
610 SWITCH_THRU_ALL_UIS (state)
611 {
612 struct mi_interp *mi = find_mi_interp ();
613
614 if (mi == NULL)
615 continue;
616
617 print_end_stepping_range_reason (mi->mi_uiout);
618 print_end_stepping_range_reason (mi->cli_uiout);
619 }
620 }
621
622 /* Observer for the signal_exited notification. */
623
624 static void
625 mi_on_signal_exited (enum gdb_signal siggnal)
626 {
627 struct switch_thru_all_uis state;
628
629 SWITCH_THRU_ALL_UIS (state)
630 {
631 struct mi_interp *mi = find_mi_interp ();
632
633 if (mi == NULL)
634 continue;
635
636 print_signal_exited_reason (mi->mi_uiout, siggnal);
637 print_signal_exited_reason (mi->cli_uiout, siggnal);
638 }
639 }
640
641 /* Observer for the exited notification. */
642
643 static void
644 mi_on_exited (int exitstatus)
645 {
646 struct switch_thru_all_uis state;
647
648 SWITCH_THRU_ALL_UIS (state)
649 {
650 struct mi_interp *mi = find_mi_interp ();
651
652 if (mi == NULL)
653 continue;
654
655 print_exited_reason (mi->mi_uiout, exitstatus);
656 print_exited_reason (mi->cli_uiout, exitstatus);
657 }
658 }
659
660 /* Observer for the no_history notification. */
661
662 static void
663 mi_on_no_history (void)
664 {
665 struct switch_thru_all_uis state;
666
667 SWITCH_THRU_ALL_UIS (state)
668 {
669 struct mi_interp *mi = find_mi_interp ();
670
671 if (mi == NULL)
672 continue;
673
674 print_no_history_reason (mi->mi_uiout);
675 print_no_history_reason (mi->cli_uiout);
676 }
677 }
678
679 static void
680 mi_on_normal_stop_1 (struct bpstats *bs, int print_frame)
681 {
682 /* Since this can be called when CLI command is executing,
683 using cli interpreter, be sure to use MI uiout for output,
684 not the current one. */
685 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
686
687 if (print_frame)
688 {
689 struct thread_info *tp;
690 int core;
691
692 tp = inferior_thread ();
693
694 if (tp->thread_fsm != NULL
695 && thread_fsm_finished_p (tp->thread_fsm))
696 {
697 enum async_reply_reason reason;
698
699 reason = thread_fsm_async_reply_reason (tp->thread_fsm);
700 ui_out_field_string (mi_uiout, "reason",
701 async_reason_lookup (reason));
702 }
703 print_stop_event (mi_uiout);
704
705 /* Breakpoint hits should always be mirrored to the console.
706 Deciding what to mirror to the console wrt to breakpoints and
707 random stops gets messy real fast. E.g., say "s" trips on a
708 breakpoint. We'd clearly want to mirror the event to the
709 console in this case. But what about more complicated cases
710 like "s&; thread n; s&", and one of those steps spawning a
711 new thread, and that thread hitting a breakpoint? It's
712 impossible in general to track whether the thread had any
713 relation to the commands that had been executed. So we just
714 simplify and always mirror breakpoints and random events to
715 the console.
716
717 OTOH, we should print the source line to the console when
718 stepping or other similar commands, iff the step was started
719 by a console command, but not if it was started with
720 -exec-step or similar. */
721 if ((bpstat_what (tp->control.stop_bpstat).main_action
722 == BPSTAT_WHAT_STOP_NOISY)
723 || !(tp->thread_fsm != NULL
724 && thread_fsm_finished_p (tp->thread_fsm))
725 || (tp->control.command_interp != NULL
726 && tp->control.command_interp != top_level_interpreter ()))
727 {
728 struct mi_interp *mi
729 = (struct mi_interp *) top_level_interpreter_data ();
730
731 print_stop_event (mi->cli_uiout);
732 }
733
734 tp = inferior_thread ();
735 ui_out_field_int (mi_uiout, "thread-id", tp->global_num);
736 if (non_stop)
737 {
738 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
739 (mi_uiout, "stopped-threads");
740
741 ui_out_field_int (mi_uiout, NULL, tp->global_num);
742 do_cleanups (back_to);
743 }
744 else
745 ui_out_field_string (mi_uiout, "stopped-threads", "all");
746
747 core = target_core_of_thread (inferior_ptid);
748 if (core != -1)
749 ui_out_field_int (mi_uiout, "core", core);
750 }
751
752 fputs_unfiltered ("*stopped", raw_stdout);
753 mi_out_put (mi_uiout, raw_stdout);
754 mi_out_rewind (mi_uiout);
755 mi_print_timing_maybe ();
756 fputs_unfiltered ("\n", raw_stdout);
757 gdb_flush (raw_stdout);
758 }
759
760 static void
761 mi_on_normal_stop (struct bpstats *bs, int print_frame)
762 {
763 struct switch_thru_all_uis state;
764
765 SWITCH_THRU_ALL_UIS (state)
766 {
767 if (as_mi_interp (top_level_interpreter ()) == NULL)
768 continue;
769
770 mi_on_normal_stop_1 (bs, print_frame);
771 }
772 }
773
774 static void
775 mi_about_to_proceed (void)
776 {
777 /* Suppress output while calling an inferior function. */
778
779 if (!ptid_equal (inferior_ptid, null_ptid))
780 {
781 struct thread_info *tp = inferior_thread ();
782
783 if (tp->control.in_infcall)
784 return;
785 }
786
787 mi_proceeded = 1;
788 }
789
790 /* When the element is non-zero, no MI notifications will be emitted in
791 response to the corresponding observers. */
792
793 struct mi_suppress_notification mi_suppress_notification =
794 {
795 0,
796 0,
797 0,
798 };
799
800 /* Emit notification on changing a traceframe. */
801
802 static void
803 mi_traceframe_changed (int tfnum, int tpnum)
804 {
805 struct switch_thru_all_uis state;
806
807 if (mi_suppress_notification.traceframe)
808 return;
809
810 SWITCH_THRU_ALL_UIS (state)
811 {
812 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
813 struct cleanup *old_chain;
814
815 if (mi == NULL)
816 continue;
817
818 old_chain = make_cleanup_restore_target_terminal ();
819 target_terminal_ours_for_output ();
820
821 if (tfnum >= 0)
822 fprintf_unfiltered (mi->event_channel, "traceframe-changed,"
823 "num=\"%d\",tracepoint=\"%d\"\n",
824 tfnum, tpnum);
825 else
826 fprintf_unfiltered (mi->event_channel, "traceframe-changed,end");
827
828 gdb_flush (mi->event_channel);
829
830 do_cleanups (old_chain);
831 }
832 }
833
834 /* Emit notification on creating a trace state variable. */
835
836 static void
837 mi_tsv_created (const struct trace_state_variable *tsv)
838 {
839 struct switch_thru_all_uis state;
840
841 SWITCH_THRU_ALL_UIS (state)
842 {
843 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
844 struct cleanup *old_chain;
845
846 if (mi == NULL)
847 continue;
848
849 old_chain = make_cleanup_restore_target_terminal ();
850 target_terminal_ours_for_output ();
851
852 fprintf_unfiltered (mi->event_channel, "tsv-created,"
853 "name=\"%s\",initial=\"%s\"\n",
854 tsv->name, plongest (tsv->initial_value));
855
856 gdb_flush (mi->event_channel);
857
858 do_cleanups (old_chain);
859 }
860 }
861
862 /* Emit notification on deleting a trace state variable. */
863
864 static void
865 mi_tsv_deleted (const struct trace_state_variable *tsv)
866 {
867 struct switch_thru_all_uis state;
868
869 SWITCH_THRU_ALL_UIS (state)
870 {
871 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
872 struct cleanup *old_chain;
873
874 if (mi == NULL)
875 continue;
876
877 old_chain = make_cleanup_restore_target_terminal ();
878 target_terminal_ours_for_output ();
879
880 if (tsv != NULL)
881 fprintf_unfiltered (mi->event_channel, "tsv-deleted,"
882 "name=\"%s\"\n", tsv->name);
883 else
884 fprintf_unfiltered (mi->event_channel, "tsv-deleted\n");
885
886 gdb_flush (mi->event_channel);
887
888 do_cleanups (old_chain);
889 }
890 }
891
892 /* Emit notification on modifying a trace state variable. */
893
894 static void
895 mi_tsv_modified (const struct trace_state_variable *tsv)
896 {
897 struct switch_thru_all_uis state;
898
899 SWITCH_THRU_ALL_UIS (state)
900 {
901 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
902 struct ui_out *mi_uiout;
903 struct cleanup *old_chain;
904
905 if (mi == NULL)
906 continue;
907
908 mi_uiout = interp_ui_out (top_level_interpreter ());
909
910 old_chain = make_cleanup_restore_target_terminal ();
911 target_terminal_ours_for_output ();
912
913 fprintf_unfiltered (mi->event_channel,
914 "tsv-modified");
915
916 ui_out_redirect (mi_uiout, mi->event_channel);
917
918 ui_out_field_string (mi_uiout, "name", tsv->name);
919 ui_out_field_string (mi_uiout, "initial",
920 plongest (tsv->initial_value));
921 if (tsv->value_known)
922 ui_out_field_string (mi_uiout, "current", plongest (tsv->value));
923
924 ui_out_redirect (mi_uiout, NULL);
925
926 gdb_flush (mi->event_channel);
927
928 do_cleanups (old_chain);
929 }
930 }
931
932 /* Emit notification about a created breakpoint. */
933
934 static void
935 mi_breakpoint_created (struct breakpoint *b)
936 {
937 struct switch_thru_all_uis state;
938
939 if (mi_suppress_notification.breakpoint)
940 return;
941
942 if (b->number <= 0)
943 return;
944
945 SWITCH_THRU_ALL_UIS (state)
946 {
947 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
948 struct ui_out *mi_uiout;
949 struct cleanup *old_chain;
950
951 if (mi == NULL)
952 continue;
953
954 mi_uiout = interp_ui_out (top_level_interpreter ());
955
956 old_chain = make_cleanup_restore_target_terminal ();
957 target_terminal_ours_for_output ();
958
959 fprintf_unfiltered (mi->event_channel,
960 "breakpoint-created");
961 /* We want the output from gdb_breakpoint_query to go to
962 mi->event_channel. One approach would be to just call
963 gdb_breakpoint_query, and then use mi_out_put to send the current
964 content of mi_outout into mi->event_channel. However, that will
965 break if anything is output to mi_uiout prior to calling the
966 breakpoint_created notifications. So, we use
967 ui_out_redirect. */
968 ui_out_redirect (mi_uiout, mi->event_channel);
969 TRY
970 {
971 gdb_breakpoint_query (mi_uiout, b->number, NULL);
972 }
973 CATCH (e, RETURN_MASK_ERROR)
974 {
975 }
976 END_CATCH
977
978 ui_out_redirect (mi_uiout, NULL);
979
980 gdb_flush (mi->event_channel);
981
982 do_cleanups (old_chain);
983 }
984 }
985
986 /* Emit notification about deleted breakpoint. */
987
988 static void
989 mi_breakpoint_deleted (struct breakpoint *b)
990 {
991 struct switch_thru_all_uis state;
992
993 if (mi_suppress_notification.breakpoint)
994 return;
995
996 if (b->number <= 0)
997 return;
998
999 SWITCH_THRU_ALL_UIS (state)
1000 {
1001 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
1002 struct cleanup *old_chain;
1003
1004 if (mi == NULL)
1005 continue;
1006
1007 old_chain = make_cleanup_restore_target_terminal ();
1008 target_terminal_ours_for_output ();
1009
1010 fprintf_unfiltered (mi->event_channel, "breakpoint-deleted,id=\"%d\"",
1011 b->number);
1012
1013 gdb_flush (mi->event_channel);
1014
1015 do_cleanups (old_chain);
1016 }
1017 }
1018
1019 /* Emit notification about modified breakpoint. */
1020
1021 static void
1022 mi_breakpoint_modified (struct breakpoint *b)
1023 {
1024 struct switch_thru_all_uis state;
1025
1026 if (mi_suppress_notification.breakpoint)
1027 return;
1028
1029 if (b->number <= 0)
1030 return;
1031
1032 SWITCH_THRU_ALL_UIS (state)
1033 {
1034 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
1035 struct cleanup *old_chain;
1036
1037 if (mi == NULL)
1038 continue;
1039
1040 old_chain = make_cleanup_restore_target_terminal ();
1041 target_terminal_ours_for_output ();
1042 fprintf_unfiltered (mi->event_channel,
1043 "breakpoint-modified");
1044 /* We want the output from gdb_breakpoint_query to go to
1045 mi->event_channel. One approach would be to just call
1046 gdb_breakpoint_query, and then use mi_out_put to send the current
1047 content of mi_outout into mi->event_channel. However, that will
1048 break if anything is output to mi_uiout prior to calling the
1049 breakpoint_created notifications. So, we use
1050 ui_out_redirect. */
1051 ui_out_redirect (mi->mi_uiout, mi->event_channel);
1052 TRY
1053 {
1054 gdb_breakpoint_query (mi->mi_uiout, b->number, NULL);
1055 }
1056 CATCH (e, RETURN_MASK_ERROR)
1057 {
1058 }
1059 END_CATCH
1060
1061 ui_out_redirect (mi->mi_uiout, NULL);
1062
1063 gdb_flush (mi->event_channel);
1064
1065 do_cleanups (old_chain);
1066 }
1067 }
1068
1069 static int
1070 mi_output_running_pid (struct thread_info *info, void *arg)
1071 {
1072 ptid_t *ptid = (ptid_t *) arg;
1073 struct switch_thru_all_uis state;
1074
1075 SWITCH_THRU_ALL_UIS (state)
1076 {
1077 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
1078
1079 if (mi == NULL)
1080 continue;
1081
1082 if (ptid_get_pid (*ptid) == ptid_get_pid (info->ptid))
1083 fprintf_unfiltered (raw_stdout,
1084 "*running,thread-id=\"%d\"\n",
1085 info->global_num);
1086 }
1087
1088 return 0;
1089 }
1090
1091 static int
1092 mi_inferior_count (struct inferior *inf, void *arg)
1093 {
1094 if (inf->pid != 0)
1095 {
1096 int *count_p = (int *) arg;
1097 (*count_p)++;
1098 }
1099
1100 return 0;
1101 }
1102
1103 static void
1104 mi_on_resume_1 (ptid_t ptid)
1105 {
1106 /* To cater for older frontends, emit ^running, but do it only once
1107 per each command. We do it here, since at this point we know
1108 that the target was successfully resumed, and in non-async mode,
1109 we won't return back to MI interpreter code until the target
1110 is done running, so delaying the output of "^running" until then
1111 will make it impossible for frontend to know what's going on.
1112
1113 In future (MI3), we'll be outputting "^done" here. */
1114 if (!running_result_record_printed && mi_proceeded)
1115 {
1116 fprintf_unfiltered (raw_stdout, "%s^running\n",
1117 current_token ? current_token : "");
1118 }
1119
1120 if (ptid_get_pid (ptid) == -1)
1121 fprintf_unfiltered (raw_stdout, "*running,thread-id=\"all\"\n");
1122 else if (ptid_is_pid (ptid))
1123 {
1124 int count = 0;
1125
1126 /* Backwards compatibility. If there's only one inferior,
1127 output "all", otherwise, output each resumed thread
1128 individually. */
1129 iterate_over_inferiors (mi_inferior_count, &count);
1130
1131 if (count == 1)
1132 fprintf_unfiltered (raw_stdout, "*running,thread-id=\"all\"\n");
1133 else
1134 iterate_over_threads (mi_output_running_pid, &ptid);
1135 }
1136 else
1137 {
1138 struct thread_info *ti = find_thread_ptid (ptid);
1139
1140 gdb_assert (ti);
1141 fprintf_unfiltered (raw_stdout, "*running,thread-id=\"%d\"\n",
1142 ti->global_num);
1143 }
1144
1145 if (!running_result_record_printed && mi_proceeded)
1146 {
1147 running_result_record_printed = 1;
1148 /* This is what gdb used to do historically -- printing prompt even if
1149 it cannot actually accept any input. This will be surely removed
1150 for MI3, and may be removed even earlier. SYNC_EXECUTION is
1151 checked here because we only need to emit a prompt if a
1152 synchronous command was issued when the target is async. */
1153 if (!target_can_async_p () || sync_execution)
1154 fputs_unfiltered ("(gdb) \n", raw_stdout);
1155 }
1156 gdb_flush (raw_stdout);
1157 }
1158
1159 static void
1160 mi_on_resume (ptid_t ptid)
1161 {
1162 struct thread_info *tp = NULL;
1163 struct switch_thru_all_uis state;
1164
1165 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
1166 tp = inferior_thread ();
1167 else
1168 tp = find_thread_ptid (ptid);
1169
1170 /* Suppress output while calling an inferior function. */
1171 if (tp->control.in_infcall)
1172 return;
1173
1174 SWITCH_THRU_ALL_UIS (state)
1175 {
1176 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
1177 struct cleanup *old_chain;
1178
1179 if (mi == NULL)
1180 continue;
1181
1182 old_chain = make_cleanup_restore_target_terminal ();
1183 target_terminal_ours_for_output ();
1184
1185 mi_on_resume_1 (ptid);
1186
1187 do_cleanups (old_chain);
1188 }
1189 }
1190
1191 static void
1192 mi_solib_loaded (struct so_list *solib)
1193 {
1194 struct switch_thru_all_uis state;
1195
1196 SWITCH_THRU_ALL_UIS (state)
1197 {
1198 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
1199 struct ui_out *uiout;
1200 struct cleanup *old_chain;
1201
1202 if (mi == NULL)
1203 continue;
1204
1205 uiout = interp_ui_out (top_level_interpreter ());
1206
1207 old_chain = make_cleanup_restore_target_terminal ();
1208 target_terminal_ours_for_output ();
1209
1210 fprintf_unfiltered (mi->event_channel, "library-loaded");
1211
1212 ui_out_redirect (uiout, mi->event_channel);
1213
1214 ui_out_field_string (uiout, "id", solib->so_original_name);
1215 ui_out_field_string (uiout, "target-name", solib->so_original_name);
1216 ui_out_field_string (uiout, "host-name", solib->so_name);
1217 ui_out_field_int (uiout, "symbols-loaded", solib->symbols_loaded);
1218 if (!gdbarch_has_global_solist (target_gdbarch ()))
1219 {
1220 ui_out_field_fmt (uiout, "thread-group", "i%d",
1221 current_inferior ()->num);
1222 }
1223
1224 ui_out_redirect (uiout, NULL);
1225
1226 gdb_flush (mi->event_channel);
1227
1228 do_cleanups (old_chain);
1229 }
1230 }
1231
1232 static void
1233 mi_solib_unloaded (struct so_list *solib)
1234 {
1235 struct switch_thru_all_uis state;
1236
1237 SWITCH_THRU_ALL_UIS (state)
1238 {
1239 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
1240 struct ui_out *uiout;
1241 struct cleanup *old_chain;
1242
1243 if (mi == NULL)
1244 continue;
1245
1246 uiout = interp_ui_out (top_level_interpreter ());
1247
1248 old_chain = make_cleanup_restore_target_terminal ();
1249 target_terminal_ours_for_output ();
1250
1251 fprintf_unfiltered (mi->event_channel, "library-unloaded");
1252
1253 ui_out_redirect (uiout, mi->event_channel);
1254
1255 ui_out_field_string (uiout, "id", solib->so_original_name);
1256 ui_out_field_string (uiout, "target-name", solib->so_original_name);
1257 ui_out_field_string (uiout, "host-name", solib->so_name);
1258 if (!gdbarch_has_global_solist (target_gdbarch ()))
1259 {
1260 ui_out_field_fmt (uiout, "thread-group", "i%d",
1261 current_inferior ()->num);
1262 }
1263
1264 ui_out_redirect (uiout, NULL);
1265
1266 gdb_flush (mi->event_channel);
1267
1268 do_cleanups (old_chain);
1269 }
1270 }
1271
1272 /* Emit notification about the command parameter change. */
1273
1274 static void
1275 mi_command_param_changed (const char *param, const char *value)
1276 {
1277 struct switch_thru_all_uis state;
1278
1279 if (mi_suppress_notification.cmd_param_changed)
1280 return;
1281
1282 SWITCH_THRU_ALL_UIS (state)
1283 {
1284 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
1285 struct ui_out *mi_uiout;
1286 struct cleanup *old_chain;
1287
1288 if (mi == NULL)
1289 continue;
1290
1291 mi_uiout = interp_ui_out (top_level_interpreter ());
1292
1293 old_chain = make_cleanup_restore_target_terminal ();
1294 target_terminal_ours_for_output ();
1295
1296 fprintf_unfiltered (mi->event_channel, "cmd-param-changed");
1297
1298 ui_out_redirect (mi_uiout, mi->event_channel);
1299
1300 ui_out_field_string (mi_uiout, "param", param);
1301 ui_out_field_string (mi_uiout, "value", value);
1302
1303 ui_out_redirect (mi_uiout, NULL);
1304
1305 gdb_flush (mi->event_channel);
1306
1307 do_cleanups (old_chain);
1308 }
1309 }
1310
1311 /* Emit notification about the target memory change. */
1312
1313 static void
1314 mi_memory_changed (struct inferior *inferior, CORE_ADDR memaddr,
1315 ssize_t len, const bfd_byte *myaddr)
1316 {
1317 struct switch_thru_all_uis state;
1318
1319 if (mi_suppress_notification.memory)
1320 return;
1321
1322 SWITCH_THRU_ALL_UIS (state)
1323 {
1324 struct mi_interp *mi = as_mi_interp (top_level_interpreter ());
1325 struct ui_out *mi_uiout;
1326 struct obj_section *sec;
1327 struct cleanup *old_chain;
1328
1329 if (mi == NULL)
1330 continue;
1331
1332 mi_uiout = interp_ui_out (top_level_interpreter ());
1333
1334 old_chain = make_cleanup_restore_target_terminal ();
1335 target_terminal_ours_for_output ();
1336
1337 fprintf_unfiltered (mi->event_channel, "memory-changed");
1338
1339 ui_out_redirect (mi_uiout, mi->event_channel);
1340
1341 ui_out_field_fmt (mi_uiout, "thread-group", "i%d", inferior->num);
1342 ui_out_field_core_addr (mi_uiout, "addr", target_gdbarch (), memaddr);
1343 ui_out_field_fmt (mi_uiout, "len", "%s", hex_string (len));
1344
1345 /* Append 'type=code' into notification if MEMADDR falls in the range of
1346 sections contain code. */
1347 sec = find_pc_section (memaddr);
1348 if (sec != NULL && sec->objfile != NULL)
1349 {
1350 flagword flags = bfd_get_section_flags (sec->objfile->obfd,
1351 sec->the_bfd_section);
1352
1353 if (flags & SEC_CODE)
1354 ui_out_field_string (mi_uiout, "type", "code");
1355 }
1356
1357 ui_out_redirect (mi_uiout, NULL);
1358
1359 gdb_flush (mi->event_channel);
1360
1361 do_cleanups (old_chain);
1362 }
1363 }
1364
1365 static int
1366 report_initial_inferior (struct inferior *inf, void *closure)
1367 {
1368 /* This function is called from mi_interpreter_init, and since
1369 mi_inferior_added assumes that inferior is fully initialized
1370 and top_level_interpreter_data is set, we cannot call
1371 it here. */
1372 struct mi_interp *mi = (struct mi_interp *) closure;
1373 struct cleanup *old_chain;
1374
1375 old_chain = make_cleanup_restore_target_terminal ();
1376 target_terminal_ours_for_output ();
1377
1378 fprintf_unfiltered (mi->event_channel,
1379 "thread-group-added,id=\"i%d\"",
1380 inf->num);
1381 gdb_flush (mi->event_channel);
1382
1383 do_cleanups (old_chain);
1384 return 0;
1385 }
1386
1387 static struct ui_out *
1388 mi_ui_out (struct interp *interp)
1389 {
1390 struct mi_interp *mi = (struct mi_interp *) interp_data (interp);
1391
1392 return mi->mi_uiout;
1393 }
1394
1395 /* Save the original value of raw_stdout here when logging, so we can
1396 restore correctly when done. */
1397
1398 static struct ui_file *saved_raw_stdout;
1399
1400 /* Do MI-specific logging actions; save raw_stdout, and change all
1401 the consoles to use the supplied ui-file(s). */
1402
1403 static int
1404 mi_set_logging (struct interp *interp, int start_log,
1405 struct ui_file *out, struct ui_file *logfile)
1406 {
1407 struct mi_interp *mi = (struct mi_interp *) interp_data (interp);
1408
1409 if (!mi)
1410 return 0;
1411
1412 if (start_log)
1413 {
1414 /* The tee created already is based on gdb_stdout, which for MI
1415 is a console and so we end up in an infinite loop of console
1416 writing to ui_file writing to console etc. So discard the
1417 existing tee (it hasn't been used yet, and MI won't ever use
1418 it), and create one based on raw_stdout instead. */
1419 if (logfile)
1420 {
1421 ui_file_delete (out);
1422 out = tee_file_new (raw_stdout, 0, logfile, 0);
1423 }
1424
1425 saved_raw_stdout = raw_stdout;
1426 raw_stdout = out;
1427 }
1428 else
1429 {
1430 raw_stdout = saved_raw_stdout;
1431 saved_raw_stdout = NULL;
1432 }
1433
1434 mi_console_set_raw (mi->out, raw_stdout);
1435 mi_console_set_raw (mi->err, raw_stdout);
1436 mi_console_set_raw (mi->log, raw_stdout);
1437 mi_console_set_raw (mi->targ, raw_stdout);
1438 mi_console_set_raw (mi->event_channel, raw_stdout);
1439
1440 return 1;
1441 }
1442
1443 /* The MI interpreter's vtable. */
1444
1445 static const struct interp_procs mi_interp_procs =
1446 {
1447 mi_interpreter_init, /* init_proc */
1448 mi_interpreter_resume, /* resume_proc */
1449 mi_interpreter_suspend, /* suspend_proc */
1450 mi_interpreter_exec, /* exec_proc */
1451 mi_ui_out, /* ui_out_proc */
1452 mi_set_logging, /* set_logging_proc */
1453 mi_command_loop /* command_loop_proc */
1454 };
1455
1456 /* Factory for MI interpreters. */
1457
1458 static struct interp *
1459 mi_interp_factory (const char *name)
1460 {
1461 return interp_new (name, &mi_interp_procs, NULL);
1462 }
1463
1464 extern initialize_file_ftype _initialize_mi_interp; /* -Wmissing-prototypes */
1465
1466 void
1467 _initialize_mi_interp (void)
1468 {
1469 /* The various interpreter levels. */
1470 interp_factory_register (INTERP_MI1, mi_interp_factory);
1471 interp_factory_register (INTERP_MI2, mi_interp_factory);
1472 interp_factory_register (INTERP_MI3, mi_interp_factory);
1473 interp_factory_register (INTERP_MI, mi_interp_factory);
1474
1475 observer_attach_signal_received (mi_on_signal_received);
1476 observer_attach_end_stepping_range (mi_on_end_stepping_range);
1477 observer_attach_signal_exited (mi_on_signal_exited);
1478 observer_attach_exited (mi_on_exited);
1479 observer_attach_no_history (mi_on_no_history);
1480 observer_attach_new_thread (mi_new_thread);
1481 observer_attach_thread_exit (mi_thread_exit);
1482 observer_attach_inferior_added (mi_inferior_added);
1483 observer_attach_inferior_appeared (mi_inferior_appeared);
1484 observer_attach_inferior_exit (mi_inferior_exit);
1485 observer_attach_inferior_removed (mi_inferior_removed);
1486 observer_attach_record_changed (mi_record_changed);
1487 observer_attach_normal_stop (mi_on_normal_stop);
1488 observer_attach_target_resumed (mi_on_resume);
1489 observer_attach_solib_loaded (mi_solib_loaded);
1490 observer_attach_solib_unloaded (mi_solib_unloaded);
1491 observer_attach_about_to_proceed (mi_about_to_proceed);
1492 observer_attach_traceframe_changed (mi_traceframe_changed);
1493 observer_attach_tsv_created (mi_tsv_created);
1494 observer_attach_tsv_deleted (mi_tsv_deleted);
1495 observer_attach_tsv_modified (mi_tsv_modified);
1496 observer_attach_breakpoint_created (mi_breakpoint_created);
1497 observer_attach_breakpoint_deleted (mi_breakpoint_deleted);
1498 observer_attach_breakpoint_modified (mi_breakpoint_modified);
1499 observer_attach_command_param_changed (mi_command_param_changed);
1500 observer_attach_memory_changed (mi_memory_changed);
1501 observer_attach_sync_execution_done (mi_on_sync_execution_done);
1502 }
This page took 0.063027 seconds and 4 git commands to generate.