Remove spurious exceptions.h inclusions
[deliverable/binutils-gdb.git] / gdb / mi / mi-interp.c
1 /* MI Interpreter Definitions and Commands for GDB, the GNU debugger.
2
3 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "interps.h"
22 #include "event-top.h"
23 #include "event-loop.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "ui-out.h"
27 #include "top.h"
28 #include "mi-main.h"
29 #include "mi-cmds.h"
30 #include "mi-out.h"
31 #include "mi-console.h"
32 #include "mi-common.h"
33 #include "observer.h"
34 #include "gdbthread.h"
35 #include "solist.h"
36 #include "gdb.h"
37 #include "objfiles.h"
38 #include "tracepoint.h"
39 #include "cli-out.h"
40
41 /* These are the interpreter setup, etc. functions for the MI
42 interpreter. */
43
44 static void mi_execute_command_wrapper (const char *cmd);
45 static void mi_execute_command_input_handler (char *cmd);
46 static void mi_command_loop (void *data);
47
48 /* These are hooks that we put in place while doing interpreter_exec
49 so we can report interesting things that happened "behind the MI's
50 back" in this command. */
51
52 static int mi_interp_query_hook (const char *ctlstr, va_list ap)
53 ATTRIBUTE_PRINTF (1, 0);
54
55 static void mi_insert_notify_hooks (void);
56 static void mi_remove_notify_hooks (void);
57
58 static void mi_on_signal_received (enum gdb_signal siggnal);
59 static void mi_on_end_stepping_range (void);
60 static void mi_on_signal_exited (enum gdb_signal siggnal);
61 static void mi_on_exited (int exitstatus);
62 static void mi_on_normal_stop (struct bpstats *bs, int print_frame);
63 static void mi_on_no_history (void);
64
65 static void mi_new_thread (struct thread_info *t);
66 static void mi_thread_exit (struct thread_info *t, int silent);
67 static void mi_record_changed (struct inferior*, int);
68 static void mi_inferior_added (struct inferior *inf);
69 static void mi_inferior_appeared (struct inferior *inf);
70 static void mi_inferior_exit (struct inferior *inf);
71 static void mi_inferior_removed (struct inferior *inf);
72 static void mi_on_resume (ptid_t ptid);
73 static void mi_solib_loaded (struct so_list *solib);
74 static void mi_solib_unloaded (struct so_list *solib);
75 static void mi_about_to_proceed (void);
76 static void mi_traceframe_changed (int tfnum, int tpnum);
77 static void mi_tsv_created (const struct trace_state_variable *tsv);
78 static void mi_tsv_deleted (const struct trace_state_variable *tsv);
79 static void mi_tsv_modified (const struct trace_state_variable *tsv);
80 static void mi_breakpoint_created (struct breakpoint *b);
81 static void mi_breakpoint_deleted (struct breakpoint *b);
82 static void mi_breakpoint_modified (struct breakpoint *b);
83 static void mi_command_param_changed (const char *param, const char *value);
84 static void mi_memory_changed (struct inferior *inf, CORE_ADDR memaddr,
85 ssize_t len, const bfd_byte *myaddr);
86 static void mi_on_sync_execution_done (void);
87
88 static int report_initial_inferior (struct inferior *inf, void *closure);
89
90 static void *
91 mi_interpreter_init (struct interp *interp, int top_level)
92 {
93 struct mi_interp *mi = XNEW (struct mi_interp);
94 const char *name;
95 int mi_version;
96
97 /* Assign the output channel created at startup to its own global,
98 so that we can create a console channel that encapsulates and
99 prefixes all gdb_output-type bits coming from the rest of the
100 debugger. */
101
102 raw_stdout = gdb_stdout;
103
104 /* Create MI console channels, each with a different prefix so they
105 can be distinguished. */
106 mi->out = mi_console_file_new (raw_stdout, "~", '"');
107 mi->err = mi_console_file_new (raw_stdout, "&", '"');
108 mi->log = mi->err;
109 mi->targ = mi_console_file_new (raw_stdout, "@", '"');
110 mi->event_channel = mi_console_file_new (raw_stdout, "=", 0);
111
112 name = interp_name (interp);
113 /* INTERP_MI selects the most recent released version. "mi2" was
114 released as part of GDB 6.0. */
115 if (strcmp (name, INTERP_MI) == 0)
116 mi_version = 2;
117 else if (strcmp (name, INTERP_MI1) == 0)
118 mi_version = 1;
119 else if (strcmp (name, INTERP_MI2) == 0)
120 mi_version = 2;
121 else if (strcmp (name, INTERP_MI3) == 0)
122 mi_version = 3;
123 else
124 gdb_assert_not_reached ("unhandled MI version");
125
126 mi->mi_uiout = mi_out_new (mi_version);
127 mi->cli_uiout = cli_out_new (mi->out);
128
129 /* There are installed even if MI is not the top level interpreter.
130 The callbacks themselves decide whether to be skipped. */
131 observer_attach_signal_received (mi_on_signal_received);
132 observer_attach_end_stepping_range (mi_on_end_stepping_range);
133 observer_attach_signal_exited (mi_on_signal_exited);
134 observer_attach_exited (mi_on_exited);
135 observer_attach_no_history (mi_on_no_history);
136
137 if (top_level)
138 {
139 observer_attach_new_thread (mi_new_thread);
140 observer_attach_thread_exit (mi_thread_exit);
141 observer_attach_inferior_added (mi_inferior_added);
142 observer_attach_inferior_appeared (mi_inferior_appeared);
143 observer_attach_inferior_exit (mi_inferior_exit);
144 observer_attach_inferior_removed (mi_inferior_removed);
145 observer_attach_record_changed (mi_record_changed);
146 observer_attach_normal_stop (mi_on_normal_stop);
147 observer_attach_target_resumed (mi_on_resume);
148 observer_attach_solib_loaded (mi_solib_loaded);
149 observer_attach_solib_unloaded (mi_solib_unloaded);
150 observer_attach_about_to_proceed (mi_about_to_proceed);
151 observer_attach_traceframe_changed (mi_traceframe_changed);
152 observer_attach_tsv_created (mi_tsv_created);
153 observer_attach_tsv_deleted (mi_tsv_deleted);
154 observer_attach_tsv_modified (mi_tsv_modified);
155 observer_attach_breakpoint_created (mi_breakpoint_created);
156 observer_attach_breakpoint_deleted (mi_breakpoint_deleted);
157 observer_attach_breakpoint_modified (mi_breakpoint_modified);
158 observer_attach_command_param_changed (mi_command_param_changed);
159 observer_attach_memory_changed (mi_memory_changed);
160 observer_attach_sync_execution_done (mi_on_sync_execution_done);
161
162 /* The initial inferior is created before this function is
163 called, so we need to report it explicitly. Use iteration in
164 case future version of GDB creates more than one inferior
165 up-front. */
166 iterate_over_inferiors (report_initial_inferior, mi);
167 }
168
169 return mi;
170 }
171
172 static int
173 mi_interpreter_resume (void *data)
174 {
175 struct mi_interp *mi = data;
176
177 /* As per hack note in mi_interpreter_init, swap in the output
178 channels... */
179 gdb_setup_readline ();
180
181 /* These overwrite some of the initialization done in
182 _intialize_event_loop. */
183 call_readline = gdb_readline2;
184 input_handler = mi_execute_command_input_handler;
185 async_command_editing_p = 0;
186 /* FIXME: This is a total hack for now. PB's use of the MI
187 implicitly relies on a bug in the async support which allows
188 asynchronous commands to leak through the commmand loop. The bug
189 involves (but is not limited to) the fact that sync_execution was
190 erroneously initialized to 0. Duplicate by initializing it thus
191 here... */
192 sync_execution = 0;
193
194 gdb_stdout = mi->out;
195 /* Route error and log output through the MI. */
196 gdb_stderr = mi->err;
197 gdb_stdlog = mi->log;
198 /* Route target output through the MI. */
199 gdb_stdtarg = mi->targ;
200 /* Route target error through the MI as well. */
201 gdb_stdtargerr = mi->targ;
202
203 /* Replace all the hooks that we know about. There really needs to
204 be a better way of doing this... */
205 clear_interpreter_hooks ();
206
207 deprecated_show_load_progress = mi_load_progress;
208
209 return 1;
210 }
211
212 static int
213 mi_interpreter_suspend (void *data)
214 {
215 gdb_disable_readline ();
216 return 1;
217 }
218
219 static struct gdb_exception
220 mi_interpreter_exec (void *data, const char *command)
221 {
222 mi_execute_command_wrapper (command);
223 return exception_none;
224 }
225
226 void
227 mi_cmd_interpreter_exec (char *command, char **argv, int argc)
228 {
229 struct interp *interp_to_use;
230 int i;
231 char *mi_error_message = NULL;
232 struct cleanup *old_chain;
233
234 if (argc < 2)
235 error (_("-interpreter-exec: "
236 "Usage: -interpreter-exec interp command"));
237
238 interp_to_use = interp_lookup (argv[0]);
239 if (interp_to_use == NULL)
240 error (_("-interpreter-exec: could not find interpreter \"%s\""),
241 argv[0]);
242
243 /* Note that unlike the CLI version of this command, we don't
244 actually set INTERP_TO_USE as the current interpreter, as we
245 still want gdb_stdout, etc. to point at MI streams. */
246
247 /* Insert the MI out hooks, making sure to also call the
248 interpreter's hooks if it has any. */
249 /* KRS: We shouldn't need this... Events should be installed and
250 they should just ALWAYS fire something out down the MI
251 channel. */
252 mi_insert_notify_hooks ();
253
254 /* Now run the code. */
255
256 old_chain = make_cleanup (null_cleanup, 0);
257 for (i = 1; i < argc; i++)
258 {
259 struct gdb_exception e = interp_exec (interp_to_use, argv[i]);
260
261 if (e.reason < 0)
262 {
263 mi_error_message = xstrdup (e.message);
264 make_cleanup (xfree, mi_error_message);
265 break;
266 }
267 }
268
269 mi_remove_notify_hooks ();
270
271 if (mi_error_message != NULL)
272 error ("%s", mi_error_message);
273 do_cleanups (old_chain);
274 }
275
276 /* This inserts a number of hooks that are meant to produce
277 async-notify ("=") MI messages while running commands in another
278 interpreter using mi_interpreter_exec. The canonical use for this
279 is to allow access to the gdb CLI interpreter from within the MI,
280 while still producing MI style output when actions in the CLI
281 command change GDB's state. */
282
283 static void
284 mi_insert_notify_hooks (void)
285 {
286 deprecated_query_hook = mi_interp_query_hook;
287 }
288
289 static void
290 mi_remove_notify_hooks (void)
291 {
292 deprecated_query_hook = NULL;
293 }
294
295 static int
296 mi_interp_query_hook (const char *ctlstr, va_list ap)
297 {
298 return 1;
299 }
300
301 static void
302 mi_execute_command_wrapper (const char *cmd)
303 {
304 mi_execute_command (cmd, stdin == instream);
305 }
306
307 /* Observer for the synchronous_command_done notification. */
308
309 static void
310 mi_on_sync_execution_done (void)
311 {
312 /* MI generally prints a prompt after a command, indicating it's
313 ready for further input. However, due to an historical wart, if
314 MI async, and a (CLI) synchronous command was issued, then we
315 will print the prompt right after printing "^running", even if we
316 cannot actually accept any input until the target stops. See
317 mi_on_resume. However, if the target is async but MI is sync,
318 then we need to output the MI prompt now, to replicate gdb's
319 behavior when neither the target nor MI are async. (Note this
320 observer is only called by the asynchronous target event handling
321 code.) */
322 if (!mi_async_p ())
323 {
324 fputs_unfiltered ("(gdb) \n", raw_stdout);
325 gdb_flush (raw_stdout);
326 }
327 }
328
329 /* mi_execute_command_wrapper wrapper suitable for INPUT_HANDLER. */
330
331 static void
332 mi_execute_command_input_handler (char *cmd)
333 {
334 mi_execute_command_wrapper (cmd);
335
336 /* MI generally prints a prompt after a command, indicating it's
337 ready for further input. However, due to an historical wart, if
338 MI is async, and a synchronous command was issued, then we will
339 print the prompt right after printing "^running", even if we
340 cannot actually accept any input until the target stops. See
341 mi_on_resume.
342
343 If MI is not async, then we print the prompt when the command
344 finishes. If the target is sync, that means output the prompt
345 now, as in that case executing a command doesn't return until the
346 command is done. However, if the target is async, we go back to
347 the event loop and output the prompt in the
348 'synchronous_command_done' observer. */
349 if (!target_is_async_p () || !sync_execution)
350 {
351 fputs_unfiltered ("(gdb) \n", raw_stdout);
352 gdb_flush (raw_stdout);
353 }
354 }
355
356 static void
357 mi_command_loop (void *data)
358 {
359 /* Turn off 8 bit strings in quoted output. Any character with the
360 high bit set is printed using C's octal format. */
361 sevenbit_strings = 1;
362
363 /* Tell the world that we're alive. */
364 fputs_unfiltered ("(gdb) \n", raw_stdout);
365 gdb_flush (raw_stdout);
366
367 start_event_loop ();
368 }
369
370 static void
371 mi_new_thread (struct thread_info *t)
372 {
373 struct mi_interp *mi = top_level_interpreter_data ();
374 struct inferior *inf = find_inferior_pid (ptid_get_pid (t->ptid));
375
376 gdb_assert (inf);
377
378 fprintf_unfiltered (mi->event_channel,
379 "thread-created,id=\"%d\",group-id=\"i%d\"",
380 t->num, inf->num);
381 gdb_flush (mi->event_channel);
382 }
383
384 static void
385 mi_thread_exit (struct thread_info *t, int silent)
386 {
387 struct mi_interp *mi;
388 struct inferior *inf;
389
390 if (silent)
391 return;
392
393 inf = find_inferior_pid (ptid_get_pid (t->ptid));
394
395 mi = top_level_interpreter_data ();
396 target_terminal_ours ();
397 fprintf_unfiltered (mi->event_channel,
398 "thread-exited,id=\"%d\",group-id=\"i%d\"",
399 t->num, inf->num);
400 gdb_flush (mi->event_channel);
401 }
402
403 /* Emit notification on changing the state of record. */
404
405 static void
406 mi_record_changed (struct inferior *inferior, int started)
407 {
408 struct mi_interp *mi = top_level_interpreter_data ();
409
410 fprintf_unfiltered (mi->event_channel, "record-%s,thread-group=\"i%d\"",
411 started ? "started" : "stopped", inferior->num);
412
413 gdb_flush (mi->event_channel);
414 }
415
416 static void
417 mi_inferior_added (struct inferior *inf)
418 {
419 struct mi_interp *mi = top_level_interpreter_data ();
420
421 target_terminal_ours ();
422 fprintf_unfiltered (mi->event_channel,
423 "thread-group-added,id=\"i%d\"",
424 inf->num);
425 gdb_flush (mi->event_channel);
426 }
427
428 static void
429 mi_inferior_appeared (struct inferior *inf)
430 {
431 struct mi_interp *mi = top_level_interpreter_data ();
432
433 target_terminal_ours ();
434 fprintf_unfiltered (mi->event_channel,
435 "thread-group-started,id=\"i%d\",pid=\"%d\"",
436 inf->num, inf->pid);
437 gdb_flush (mi->event_channel);
438 }
439
440 static void
441 mi_inferior_exit (struct inferior *inf)
442 {
443 struct mi_interp *mi = top_level_interpreter_data ();
444
445 target_terminal_ours ();
446 if (inf->has_exit_code)
447 fprintf_unfiltered (mi->event_channel,
448 "thread-group-exited,id=\"i%d\",exit-code=\"%s\"",
449 inf->num, int_string (inf->exit_code, 8, 0, 0, 1));
450 else
451 fprintf_unfiltered (mi->event_channel,
452 "thread-group-exited,id=\"i%d\"", inf->num);
453
454 gdb_flush (mi->event_channel);
455 }
456
457 static void
458 mi_inferior_removed (struct inferior *inf)
459 {
460 struct mi_interp *mi = top_level_interpreter_data ();
461
462 target_terminal_ours ();
463 fprintf_unfiltered (mi->event_channel,
464 "thread-group-removed,id=\"i%d\"",
465 inf->num);
466 gdb_flush (mi->event_channel);
467 }
468
469 /* Cleanup that restores a previous current uiout. */
470
471 static void
472 restore_current_uiout_cleanup (void *arg)
473 {
474 struct ui_out *saved_uiout = arg;
475
476 current_uiout = saved_uiout;
477 }
478
479 /* Return the MI interpreter, if it is active -- either because it's
480 the top-level interpreter or the interpreter executing the current
481 command. Returns NULL if the MI interpreter is not being used. */
482
483 static struct interp *
484 find_mi_interpreter (void)
485 {
486 struct interp *interp;
487
488 interp = top_level_interpreter ();
489 if (ui_out_is_mi_like_p (interp_ui_out (interp)))
490 return interp;
491
492 interp = command_interp ();
493 if (ui_out_is_mi_like_p (interp_ui_out (interp)))
494 return interp;
495
496 return NULL;
497 }
498
499 /* Return the MI_INTERP structure of the active MI interpreter.
500 Returns NULL if MI is not active. */
501
502 static struct mi_interp *
503 mi_interp_data (void)
504 {
505 struct interp *interp = find_mi_interpreter ();
506
507 if (interp != NULL)
508 return interp_data (interp);
509 return NULL;
510 }
511
512 /* Observers for several run control events that print why the
513 inferior has stopped to both the the MI event channel and to the MI
514 console. If the MI interpreter is not active, print nothing. */
515
516 /* Observer for the signal_received notification. */
517
518 static void
519 mi_on_signal_received (enum gdb_signal siggnal)
520 {
521 struct mi_interp *mi = mi_interp_data ();
522
523 if (mi == NULL)
524 return;
525
526 print_signal_received_reason (mi->mi_uiout, siggnal);
527 print_signal_received_reason (mi->cli_uiout, siggnal);
528 }
529
530 /* Observer for the end_stepping_range notification. */
531
532 static void
533 mi_on_end_stepping_range (void)
534 {
535 struct mi_interp *mi = mi_interp_data ();
536
537 if (mi == NULL)
538 return;
539
540 print_end_stepping_range_reason (mi->mi_uiout);
541 print_end_stepping_range_reason (mi->cli_uiout);
542 }
543
544 /* Observer for the signal_exited notification. */
545
546 static void
547 mi_on_signal_exited (enum gdb_signal siggnal)
548 {
549 struct mi_interp *mi = mi_interp_data ();
550
551 if (mi == NULL)
552 return;
553
554 print_signal_exited_reason (mi->mi_uiout, siggnal);
555 print_signal_exited_reason (mi->cli_uiout, siggnal);
556 }
557
558 /* Observer for the exited notification. */
559
560 static void
561 mi_on_exited (int exitstatus)
562 {
563 struct mi_interp *mi = mi_interp_data ();
564
565 if (mi == NULL)
566 return;
567
568 print_exited_reason (mi->mi_uiout, exitstatus);
569 print_exited_reason (mi->cli_uiout, exitstatus);
570 }
571
572 /* Observer for the no_history notification. */
573
574 static void
575 mi_on_no_history (void)
576 {
577 struct mi_interp *mi = mi_interp_data ();
578
579 if (mi == NULL)
580 return;
581
582 print_no_history_reason (mi->mi_uiout);
583 print_no_history_reason (mi->cli_uiout);
584 }
585
586 static void
587 mi_on_normal_stop (struct bpstats *bs, int print_frame)
588 {
589 /* Since this can be called when CLI command is executing,
590 using cli interpreter, be sure to use MI uiout for output,
591 not the current one. */
592 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
593
594 if (print_frame)
595 {
596 int core;
597
598 if (current_uiout != mi_uiout)
599 {
600 /* The normal_stop function has printed frame information
601 into CLI uiout, or some other non-MI uiout. There's no
602 way we can extract proper fields from random uiout
603 object, so we print the frame again. In practice, this
604 can only happen when running a CLI command in MI. */
605 struct ui_out *saved_uiout = current_uiout;
606 struct target_waitstatus last;
607 ptid_t last_ptid;
608
609 current_uiout = mi_uiout;
610
611 get_last_target_status (&last_ptid, &last);
612 print_stop_event (&last);
613
614 current_uiout = saved_uiout;
615 }
616 /* Otherwise, frame information has already been printed by
617 normal_stop. */
618 else
619 {
620 /* Breakpoint hits should always be mirrored to the console.
621 Deciding what to mirror to the console wrt to breakpoints
622 and random stops gets messy real fast. E.g., say "s"
623 trips on a breakpoint. We'd clearly want to mirror the
624 event to the console in this case. But what about more
625 complicated cases like "s&; thread n; s&", and one of
626 those steps spawning a new thread, and that thread
627 hitting a breakpoint? It's impossible in general to
628 track whether the thread had any relation to the commands
629 that had been executed. So we just simplify and always
630 mirror breakpoints and random events to the console.
631
632 Also, CLI execution commands (-interpreter-exec console
633 "next", for example) in async mode have the opposite
634 issue as described in the "then" branch above --
635 normal_stop has already printed frame information to MI
636 uiout, but nothing has printed the same information to
637 the CLI channel. We should print the source line to the
638 console when stepping or other similar commands, iff the
639 step was started by a console command (but not if it was
640 started with -exec-step or similar). */
641 struct thread_info *tp = inferior_thread ();
642
643 if ((!tp->control.stop_step
644 && !tp->control.proceed_to_finish)
645 || (tp->control.command_interp != NULL
646 && tp->control.command_interp != top_level_interpreter ()))
647 {
648 struct mi_interp *mi = top_level_interpreter_data ();
649 struct target_waitstatus last;
650 ptid_t last_ptid;
651 struct cleanup *old_chain;
652
653 /* Set the current uiout to CLI uiout temporarily. */
654 old_chain = make_cleanup (restore_current_uiout_cleanup,
655 current_uiout);
656 current_uiout = mi->cli_uiout;
657
658 get_last_target_status (&last_ptid, &last);
659 print_stop_event (&last);
660
661 do_cleanups (old_chain);
662 }
663 }
664
665 ui_out_field_int (mi_uiout, "thread-id",
666 pid_to_thread_id (inferior_ptid));
667 if (non_stop)
668 {
669 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
670 (mi_uiout, "stopped-threads");
671
672 ui_out_field_int (mi_uiout, NULL,
673 pid_to_thread_id (inferior_ptid));
674 do_cleanups (back_to);
675 }
676 else
677 ui_out_field_string (mi_uiout, "stopped-threads", "all");
678
679 core = target_core_of_thread (inferior_ptid);
680 if (core != -1)
681 ui_out_field_int (mi_uiout, "core", core);
682 }
683
684 fputs_unfiltered ("*stopped", raw_stdout);
685 mi_out_put (mi_uiout, raw_stdout);
686 mi_out_rewind (mi_uiout);
687 mi_print_timing_maybe ();
688 fputs_unfiltered ("\n", raw_stdout);
689 gdb_flush (raw_stdout);
690 }
691
692 static void
693 mi_about_to_proceed (void)
694 {
695 /* Suppress output while calling an inferior function. */
696
697 if (!ptid_equal (inferior_ptid, null_ptid))
698 {
699 struct thread_info *tp = inferior_thread ();
700
701 if (tp->control.in_infcall)
702 return;
703 }
704
705 mi_proceeded = 1;
706 }
707
708 /* When the element is non-zero, no MI notifications will be emitted in
709 response to the corresponding observers. */
710
711 struct mi_suppress_notification mi_suppress_notification =
712 {
713 0,
714 0,
715 0,
716 };
717
718 /* Emit notification on changing a traceframe. */
719
720 static void
721 mi_traceframe_changed (int tfnum, int tpnum)
722 {
723 struct mi_interp *mi = top_level_interpreter_data ();
724
725 if (mi_suppress_notification.traceframe)
726 return;
727
728 target_terminal_ours ();
729
730 if (tfnum >= 0)
731 fprintf_unfiltered (mi->event_channel, "traceframe-changed,"
732 "num=\"%d\",tracepoint=\"%d\"\n",
733 tfnum, tpnum);
734 else
735 fprintf_unfiltered (mi->event_channel, "traceframe-changed,end");
736
737 gdb_flush (mi->event_channel);
738 }
739
740 /* Emit notification on creating a trace state variable. */
741
742 static void
743 mi_tsv_created (const struct trace_state_variable *tsv)
744 {
745 struct mi_interp *mi = top_level_interpreter_data ();
746
747 target_terminal_ours ();
748
749 fprintf_unfiltered (mi->event_channel, "tsv-created,"
750 "name=\"%s\",initial=\"%s\"\n",
751 tsv->name, plongest (tsv->initial_value));
752
753 gdb_flush (mi->event_channel);
754 }
755
756 /* Emit notification on deleting a trace state variable. */
757
758 static void
759 mi_tsv_deleted (const struct trace_state_variable *tsv)
760 {
761 struct mi_interp *mi = top_level_interpreter_data ();
762
763 target_terminal_ours ();
764
765 if (tsv != NULL)
766 fprintf_unfiltered (mi->event_channel, "tsv-deleted,"
767 "name=\"%s\"\n", tsv->name);
768 else
769 fprintf_unfiltered (mi->event_channel, "tsv-deleted\n");
770
771 gdb_flush (mi->event_channel);
772 }
773
774 /* Emit notification on modifying a trace state variable. */
775
776 static void
777 mi_tsv_modified (const struct trace_state_variable *tsv)
778 {
779 struct mi_interp *mi = top_level_interpreter_data ();
780 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
781
782 target_terminal_ours ();
783
784 fprintf_unfiltered (mi->event_channel,
785 "tsv-modified");
786
787 ui_out_redirect (mi_uiout, mi->event_channel);
788
789 ui_out_field_string (mi_uiout, "name", tsv->name);
790 ui_out_field_string (mi_uiout, "initial",
791 plongest (tsv->initial_value));
792 if (tsv->value_known)
793 ui_out_field_string (mi_uiout, "current", plongest (tsv->value));
794
795 ui_out_redirect (mi_uiout, NULL);
796
797 gdb_flush (mi->event_channel);
798 }
799
800 /* Emit notification about a created breakpoint. */
801
802 static void
803 mi_breakpoint_created (struct breakpoint *b)
804 {
805 struct mi_interp *mi = top_level_interpreter_data ();
806 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
807 volatile struct gdb_exception e;
808
809 if (mi_suppress_notification.breakpoint)
810 return;
811
812 if (b->number <= 0)
813 return;
814
815 target_terminal_ours ();
816 fprintf_unfiltered (mi->event_channel,
817 "breakpoint-created");
818 /* We want the output from gdb_breakpoint_query to go to
819 mi->event_channel. One approach would be to just call
820 gdb_breakpoint_query, and then use mi_out_put to send the current
821 content of mi_outout into mi->event_channel. However, that will
822 break if anything is output to mi_uiout prior to calling the
823 breakpoint_created notifications. So, we use
824 ui_out_redirect. */
825 ui_out_redirect (mi_uiout, mi->event_channel);
826 TRY_CATCH (e, RETURN_MASK_ERROR)
827 gdb_breakpoint_query (mi_uiout, b->number, NULL);
828 ui_out_redirect (mi_uiout, NULL);
829
830 gdb_flush (mi->event_channel);
831 }
832
833 /* Emit notification about deleted breakpoint. */
834
835 static void
836 mi_breakpoint_deleted (struct breakpoint *b)
837 {
838 struct mi_interp *mi = top_level_interpreter_data ();
839
840 if (mi_suppress_notification.breakpoint)
841 return;
842
843 if (b->number <= 0)
844 return;
845
846 target_terminal_ours ();
847
848 fprintf_unfiltered (mi->event_channel, "breakpoint-deleted,id=\"%d\"",
849 b->number);
850
851 gdb_flush (mi->event_channel);
852 }
853
854 /* Emit notification about modified breakpoint. */
855
856 static void
857 mi_breakpoint_modified (struct breakpoint *b)
858 {
859 struct mi_interp *mi = top_level_interpreter_data ();
860 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
861 volatile struct gdb_exception e;
862
863 if (mi_suppress_notification.breakpoint)
864 return;
865
866 if (b->number <= 0)
867 return;
868
869 target_terminal_ours ();
870 fprintf_unfiltered (mi->event_channel,
871 "breakpoint-modified");
872 /* We want the output from gdb_breakpoint_query to go to
873 mi->event_channel. One approach would be to just call
874 gdb_breakpoint_query, and then use mi_out_put to send the current
875 content of mi_outout into mi->event_channel. However, that will
876 break if anything is output to mi_uiout prior to calling the
877 breakpoint_created notifications. So, we use
878 ui_out_redirect. */
879 ui_out_redirect (mi_uiout, mi->event_channel);
880 TRY_CATCH (e, RETURN_MASK_ERROR)
881 gdb_breakpoint_query (mi_uiout, b->number, NULL);
882 ui_out_redirect (mi_uiout, NULL);
883
884 gdb_flush (mi->event_channel);
885 }
886
887 static int
888 mi_output_running_pid (struct thread_info *info, void *arg)
889 {
890 ptid_t *ptid = arg;
891
892 if (ptid_get_pid (*ptid) == ptid_get_pid (info->ptid))
893 fprintf_unfiltered (raw_stdout,
894 "*running,thread-id=\"%d\"\n",
895 info->num);
896
897 return 0;
898 }
899
900 static int
901 mi_inferior_count (struct inferior *inf, void *arg)
902 {
903 if (inf->pid != 0)
904 {
905 int *count_p = arg;
906 (*count_p)++;
907 }
908
909 return 0;
910 }
911
912 static void
913 mi_on_resume (ptid_t ptid)
914 {
915 struct thread_info *tp = NULL;
916
917 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
918 tp = inferior_thread ();
919 else
920 tp = find_thread_ptid (ptid);
921
922 /* Suppress output while calling an inferior function. */
923 if (tp->control.in_infcall)
924 return;
925
926 /* To cater for older frontends, emit ^running, but do it only once
927 per each command. We do it here, since at this point we know
928 that the target was successfully resumed, and in non-async mode,
929 we won't return back to MI interpreter code until the target
930 is done running, so delaying the output of "^running" until then
931 will make it impossible for frontend to know what's going on.
932
933 In future (MI3), we'll be outputting "^done" here. */
934 if (!running_result_record_printed && mi_proceeded)
935 {
936 fprintf_unfiltered (raw_stdout, "%s^running\n",
937 current_token ? current_token : "");
938 }
939
940 if (ptid_get_pid (ptid) == -1)
941 fprintf_unfiltered (raw_stdout, "*running,thread-id=\"all\"\n");
942 else if (ptid_is_pid (ptid))
943 {
944 int count = 0;
945
946 /* Backwards compatibility. If there's only one inferior,
947 output "all", otherwise, output each resumed thread
948 individually. */
949 iterate_over_inferiors (mi_inferior_count, &count);
950
951 if (count == 1)
952 fprintf_unfiltered (raw_stdout, "*running,thread-id=\"all\"\n");
953 else
954 iterate_over_threads (mi_output_running_pid, &ptid);
955 }
956 else
957 {
958 struct thread_info *ti = find_thread_ptid (ptid);
959
960 gdb_assert (ti);
961 fprintf_unfiltered (raw_stdout, "*running,thread-id=\"%d\"\n", ti->num);
962 }
963
964 if (!running_result_record_printed && mi_proceeded)
965 {
966 running_result_record_printed = 1;
967 /* This is what gdb used to do historically -- printing prompt even if
968 it cannot actually accept any input. This will be surely removed
969 for MI3, and may be removed even earlier. SYNC_EXECUTION is
970 checked here because we only need to emit a prompt if a
971 synchronous command was issued when the target is async. */
972 if (!target_is_async_p () || sync_execution)
973 fputs_unfiltered ("(gdb) \n", raw_stdout);
974 }
975 gdb_flush (raw_stdout);
976 }
977
978 static void
979 mi_solib_loaded (struct so_list *solib)
980 {
981 struct mi_interp *mi = top_level_interpreter_data ();
982 struct ui_out *uiout = interp_ui_out (top_level_interpreter ());
983
984 target_terminal_ours ();
985
986 fprintf_unfiltered (mi->event_channel, "library-loaded");
987
988 ui_out_redirect (uiout, mi->event_channel);
989
990 ui_out_field_string (uiout, "id", solib->so_original_name);
991 ui_out_field_string (uiout, "target-name", solib->so_original_name);
992 ui_out_field_string (uiout, "host-name", solib->so_name);
993 ui_out_field_int (uiout, "symbols-loaded", solib->symbols_loaded);
994 if (!gdbarch_has_global_solist (target_gdbarch ()))
995 {
996 ui_out_field_fmt (uiout, "thread-group", "i%d", current_inferior ()->num);
997 }
998
999 ui_out_redirect (uiout, NULL);
1000
1001 gdb_flush (mi->event_channel);
1002 }
1003
1004 static void
1005 mi_solib_unloaded (struct so_list *solib)
1006 {
1007 struct mi_interp *mi = top_level_interpreter_data ();
1008 struct ui_out *uiout = interp_ui_out (top_level_interpreter ());
1009
1010 target_terminal_ours ();
1011
1012 fprintf_unfiltered (mi->event_channel, "library-unloaded");
1013
1014 ui_out_redirect (uiout, mi->event_channel);
1015
1016 ui_out_field_string (uiout, "id", solib->so_original_name);
1017 ui_out_field_string (uiout, "target-name", solib->so_original_name);
1018 ui_out_field_string (uiout, "host-name", solib->so_name);
1019 if (!gdbarch_has_global_solist (target_gdbarch ()))
1020 {
1021 ui_out_field_fmt (uiout, "thread-group", "i%d", current_inferior ()->num);
1022 }
1023
1024 ui_out_redirect (uiout, NULL);
1025
1026 gdb_flush (mi->event_channel);
1027 }
1028
1029 /* Emit notification about the command parameter change. */
1030
1031 static void
1032 mi_command_param_changed (const char *param, const char *value)
1033 {
1034 struct mi_interp *mi = top_level_interpreter_data ();
1035 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
1036
1037 if (mi_suppress_notification.cmd_param_changed)
1038 return;
1039
1040 target_terminal_ours ();
1041
1042 fprintf_unfiltered (mi->event_channel,
1043 "cmd-param-changed");
1044
1045 ui_out_redirect (mi_uiout, mi->event_channel);
1046
1047 ui_out_field_string (mi_uiout, "param", param);
1048 ui_out_field_string (mi_uiout, "value", value);
1049
1050 ui_out_redirect (mi_uiout, NULL);
1051
1052 gdb_flush (mi->event_channel);
1053 }
1054
1055 /* Emit notification about the target memory change. */
1056
1057 static void
1058 mi_memory_changed (struct inferior *inferior, CORE_ADDR memaddr,
1059 ssize_t len, const bfd_byte *myaddr)
1060 {
1061 struct mi_interp *mi = top_level_interpreter_data ();
1062 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
1063 struct obj_section *sec;
1064
1065 if (mi_suppress_notification.memory)
1066 return;
1067
1068 target_terminal_ours ();
1069
1070 fprintf_unfiltered (mi->event_channel,
1071 "memory-changed");
1072
1073 ui_out_redirect (mi_uiout, mi->event_channel);
1074
1075 ui_out_field_fmt (mi_uiout, "thread-group", "i%d", inferior->num);
1076 ui_out_field_core_addr (mi_uiout, "addr", target_gdbarch (), memaddr);
1077 ui_out_field_fmt (mi_uiout, "len", "%s", hex_string (len));
1078
1079 /* Append 'type=code' into notification if MEMADDR falls in the range of
1080 sections contain code. */
1081 sec = find_pc_section (memaddr);
1082 if (sec != NULL && sec->objfile != NULL)
1083 {
1084 flagword flags = bfd_get_section_flags (sec->objfile->obfd,
1085 sec->the_bfd_section);
1086
1087 if (flags & SEC_CODE)
1088 ui_out_field_string (mi_uiout, "type", "code");
1089 }
1090
1091 ui_out_redirect (mi_uiout, NULL);
1092
1093 gdb_flush (mi->event_channel);
1094 }
1095
1096 static int
1097 report_initial_inferior (struct inferior *inf, void *closure)
1098 {
1099 /* This function is called from mi_intepreter_init, and since
1100 mi_inferior_added assumes that inferior is fully initialized
1101 and top_level_interpreter_data is set, we cannot call
1102 it here. */
1103 struct mi_interp *mi = closure;
1104
1105 target_terminal_ours ();
1106 fprintf_unfiltered (mi->event_channel,
1107 "thread-group-added,id=\"i%d\"",
1108 inf->num);
1109 gdb_flush (mi->event_channel);
1110 return 0;
1111 }
1112
1113 static struct ui_out *
1114 mi_ui_out (struct interp *interp)
1115 {
1116 struct mi_interp *mi = interp_data (interp);
1117
1118 return mi->mi_uiout;
1119 }
1120
1121 /* Save the original value of raw_stdout here when logging, so we can
1122 restore correctly when done. */
1123
1124 static struct ui_file *saved_raw_stdout;
1125
1126 /* Do MI-specific logging actions; save raw_stdout, and change all
1127 the consoles to use the supplied ui-file(s). */
1128
1129 static int
1130 mi_set_logging (struct interp *interp, int start_log,
1131 struct ui_file *out, struct ui_file *logfile)
1132 {
1133 struct mi_interp *mi = interp_data (interp);
1134
1135 if (!mi)
1136 return 0;
1137
1138 if (start_log)
1139 {
1140 /* The tee created already is based on gdb_stdout, which for MI
1141 is a console and so we end up in an infinite loop of console
1142 writing to ui_file writing to console etc. So discard the
1143 existing tee (it hasn't been used yet, and MI won't ever use
1144 it), and create one based on raw_stdout instead. */
1145 if (logfile)
1146 {
1147 ui_file_delete (out);
1148 out = tee_file_new (raw_stdout, 0, logfile, 0);
1149 }
1150
1151 saved_raw_stdout = raw_stdout;
1152 raw_stdout = out;
1153 }
1154 else
1155 {
1156 raw_stdout = saved_raw_stdout;
1157 saved_raw_stdout = NULL;
1158 }
1159
1160 mi_console_set_raw (mi->out, raw_stdout);
1161 mi_console_set_raw (mi->err, raw_stdout);
1162 mi_console_set_raw (mi->log, raw_stdout);
1163 mi_console_set_raw (mi->targ, raw_stdout);
1164 mi_console_set_raw (mi->event_channel, raw_stdout);
1165
1166 return 1;
1167 }
1168
1169 extern initialize_file_ftype _initialize_mi_interp; /* -Wmissing-prototypes */
1170
1171 void
1172 _initialize_mi_interp (void)
1173 {
1174 static const struct interp_procs procs =
1175 {
1176 mi_interpreter_init, /* init_proc */
1177 mi_interpreter_resume, /* resume_proc */
1178 mi_interpreter_suspend, /* suspend_proc */
1179 mi_interpreter_exec, /* exec_proc */
1180 mi_ui_out, /* ui_out_proc */
1181 mi_set_logging, /* set_logging_proc */
1182 mi_command_loop /* command_loop_proc */
1183 };
1184
1185 /* The various interpreter levels. */
1186 interp_add (interp_new (INTERP_MI1, &procs));
1187 interp_add (interp_new (INTERP_MI2, &procs));
1188 interp_add (interp_new (INTERP_MI3, &procs));
1189 interp_add (interp_new (INTERP_MI, &procs));
1190 }
This page took 0.095129 seconds and 5 git commands to generate.