-trace-define-variable and -trace-list-variables.
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Solutions (a Red Hat company).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Work in progress. */
24
25 #include "defs.h"
26 #include "arch-utils.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "gdb_string.h"
30 #include "exceptions.h"
31 #include "top.h"
32 #include "gdbthread.h"
33 #include "mi-cmds.h"
34 #include "mi-parse.h"
35 #include "mi-getopt.h"
36 #include "mi-console.h"
37 #include "ui-out.h"
38 #include "mi-out.h"
39 #include "interps.h"
40 #include "event-loop.h"
41 #include "event-top.h"
42 #include "gdbcore.h" /* For write_memory(). */
43 #include "value.h"
44 #include "regcache.h"
45 #include "gdb.h"
46 #include "frame.h"
47 #include "mi-main.h"
48 #include "mi-common.h"
49 #include "language.h"
50 #include "valprint.h"
51 #include "inferior.h"
52 #include "osdata.h"
53 #include "splay-tree.h"
54 #include "tracepoint.h"
55
56 #include <ctype.h>
57 #include <sys/time.h>
58
59 #if defined HAVE_SYS_RESOURCE_H
60 #include <sys/resource.h>
61 #endif
62
63 #ifdef HAVE_GETRUSAGE
64 struct rusage rusage;
65 #endif
66
67 enum
68 {
69 FROM_TTY = 0
70 };
71
72 int mi_debug_p;
73 struct ui_file *raw_stdout;
74
75 /* This is used to pass the current command timestamp
76 down to continuation routines. */
77 static struct mi_timestamp *current_command_ts;
78
79 static int do_timings = 0;
80
81 char *current_token;
82 /* Few commands would like to know if options like --thread-group
83 were explicitly specified. This variable keeps the current
84 parsed command including all option, and make it possible. */
85 static struct mi_parse *current_context;
86
87 int running_result_record_printed = 1;
88
89 /* Flag indicating that the target has proceeded since the last
90 command was issued. */
91 int mi_proceeded;
92
93 extern void _initialize_mi_main (void);
94 static void mi_cmd_execute (struct mi_parse *parse);
95
96 static void mi_execute_cli_command (const char *cmd, int args_p,
97 const char *args);
98 static void mi_execute_async_cli_command (char *cli_command,
99 char **argv, int argc);
100 static int register_changed_p (int regnum, struct regcache *,
101 struct regcache *);
102 static void get_register (struct frame_info *, int regnum, int format);
103
104 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
105 layer that calls libgdb. Any operation used in the below should be
106 formalized. */
107
108 static void timestamp (struct mi_timestamp *tv);
109
110 static void print_diff_now (struct mi_timestamp *start);
111 static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
112
113 void
114 mi_cmd_gdb_exit (char *command, char **argv, int argc)
115 {
116 /* We have to print everything right here because we never return. */
117 if (current_token)
118 fputs_unfiltered (current_token, raw_stdout);
119 fputs_unfiltered ("^exit\n", raw_stdout);
120 mi_out_put (uiout, raw_stdout);
121 gdb_flush (raw_stdout);
122 /* FIXME: The function called is not yet a formal libgdb function. */
123 quit_force (NULL, FROM_TTY);
124 }
125
126 void
127 mi_cmd_exec_next (char *command, char **argv, int argc)
128 {
129 /* FIXME: Should call a libgdb function, not a cli wrapper. */
130 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
131 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
132 else
133 mi_execute_async_cli_command ("next", argv, argc);
134 }
135
136 void
137 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
138 {
139 /* FIXME: Should call a libgdb function, not a cli wrapper. */
140 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
141 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
142 else
143 mi_execute_async_cli_command ("nexti", argv, argc);
144 }
145
146 void
147 mi_cmd_exec_step (char *command, char **argv, int argc)
148 {
149 /* FIXME: Should call a libgdb function, not a cli wrapper. */
150 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
151 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
152 else
153 mi_execute_async_cli_command ("step", argv, argc);
154 }
155
156 void
157 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
158 {
159 /* FIXME: Should call a libgdb function, not a cli wrapper. */
160 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
161 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
162 else
163 mi_execute_async_cli_command ("stepi", argv, argc);
164 }
165
166 void
167 mi_cmd_exec_finish (char *command, char **argv, int argc)
168 {
169 /* FIXME: Should call a libgdb function, not a cli wrapper. */
170 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
171 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
172 else
173 mi_execute_async_cli_command ("finish", argv, argc);
174 }
175
176 void
177 mi_cmd_exec_return (char *command, char **argv, int argc)
178 {
179 /* This command doesn't really execute the target, it just pops the
180 specified number of frames. */
181 if (argc)
182 /* Call return_command with from_tty argument equal to 0 so as to
183 avoid being queried. */
184 return_command (*argv, 0);
185 else
186 /* Call return_command with from_tty argument equal to 0 so as to
187 avoid being queried. */
188 return_command (NULL, 0);
189
190 /* Because we have called return_command with from_tty = 0, we need
191 to print the frame here. */
192 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS);
193 }
194
195 void
196 mi_cmd_exec_jump (char *args, char **argv, int argc)
197 {
198 /* FIXME: Should call a libgdb function, not a cli wrapper. */
199 mi_execute_async_cli_command ("jump", argv, argc);
200 }
201
202 static void
203 proceed_thread (struct thread_info *thread, int pid)
204 {
205 if (!is_stopped (thread->ptid))
206 return;
207
208 if (pid != 0 && PIDGET (thread->ptid) != pid)
209 return;
210
211 switch_to_thread (thread->ptid);
212 clear_proceed_status ();
213 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
214 }
215
216
217 static int
218 proceed_thread_callback (struct thread_info *thread, void *arg)
219 {
220 int pid = *(int *)arg;
221 proceed_thread (thread, pid);
222 return 0;
223 }
224
225 static void
226 exec_continue (char **argv, int argc)
227 {
228 if (non_stop)
229 {
230 /* In non-stop mode, 'resume' always resumes a single thread. Therefore,
231 to resume all threads of the current inferior, or all threads in all
232 inferiors, we need to iterate over threads.
233
234 See comment on infcmd.c:proceed_thread_callback for rationale. */
235 if (current_context->all || current_context->thread_group != -1)
236 {
237 int pid = 0;
238 struct cleanup *back_to = make_cleanup_restore_current_thread ();
239
240 if (!current_context->all)
241 {
242 struct inferior *inf = find_inferior_id (current_context->thread_group);
243 pid = inf->pid;
244 }
245 iterate_over_threads (proceed_thread_callback, &pid);
246 do_cleanups (back_to);
247 }
248 else
249 {
250 continue_1 (0);
251 }
252 }
253 else
254 {
255 struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
256 if (current_context->all)
257 {
258 sched_multi = 1;
259 continue_1 (0);
260 }
261 else
262 {
263 /* In all-stop mode, -exec-continue traditionally resumed either
264 all threads, or one thread, depending on the 'scheduler-locking'
265 variable. Let's continue to do the same. */
266 continue_1 (1);
267 }
268 do_cleanups (back_to);
269 }
270 }
271
272 static void
273 exec_direction_forward (void *notused)
274 {
275 execution_direction = EXEC_FORWARD;
276 }
277
278 static void
279 exec_reverse_continue (char **argv, int argc)
280 {
281 enum exec_direction_kind dir = execution_direction;
282 struct cleanup *old_chain;
283
284 if (dir == EXEC_ERROR)
285 error (_("Target %s does not support this command."), target_shortname);
286
287 if (dir == EXEC_REVERSE)
288 error (_("Already in reverse mode."));
289
290 if (!target_can_execute_reverse)
291 error (_("Target %s does not support this command."), target_shortname);
292
293 old_chain = make_cleanup (exec_direction_forward, NULL);
294 execution_direction = EXEC_REVERSE;
295 exec_continue (argv, argc);
296 do_cleanups (old_chain);
297 }
298
299 void
300 mi_cmd_exec_continue (char *command, char **argv, int argc)
301 {
302 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
303 exec_reverse_continue (argv + 1, argc - 1);
304 else
305 exec_continue (argv, argc);
306 }
307
308 static int
309 interrupt_thread_callback (struct thread_info *thread, void *arg)
310 {
311 int pid = *(int *)arg;
312
313 if (!is_running (thread->ptid))
314 return 0;
315
316 if (PIDGET (thread->ptid) != pid)
317 return 0;
318
319 target_stop (thread->ptid);
320 return 0;
321 }
322
323 /* Interrupt the execution of the target. Note how we must play around
324 with the token variables, in order to display the current token in
325 the result of the interrupt command, and the previous execution
326 token when the target finally stops. See comments in
327 mi_cmd_execute. */
328 void
329 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
330 {
331 /* In all-stop mode, everything stops, so we don't need to try
332 anything specific. */
333 if (!non_stop)
334 {
335 interrupt_target_1 (0);
336 return;
337 }
338
339 if (current_context->all)
340 {
341 /* This will interrupt all threads in all inferiors. */
342 interrupt_target_1 (1);
343 }
344 else if (current_context->thread_group != -1)
345 {
346 struct inferior *inf = find_inferior_id (current_context->thread_group);
347 iterate_over_threads (interrupt_thread_callback, &inf->pid);
348 }
349 else
350 {
351 /* Interrupt just the current thread -- either explicitly
352 specified via --thread or whatever was current before
353 MI command was sent. */
354 interrupt_target_1 (0);
355 }
356 }
357
358 static int
359 run_one_inferior (struct inferior *inf, void *arg)
360 {
361 struct thread_info *tp = 0;
362
363 if (inf->pid != 0)
364 {
365 if (inf->pid != ptid_get_pid (inferior_ptid))
366 {
367 struct thread_info *tp;
368
369 tp = any_thread_of_process (inf->pid);
370 if (!tp)
371 error (_("Inferior has no threads."));
372
373 switch_to_thread (tp->ptid);
374 }
375 }
376 else
377 {
378 set_current_inferior (inf);
379 switch_to_thread (null_ptid);
380 set_current_program_space (inf->pspace);
381 }
382 mi_execute_cli_command ("run", target_can_async_p (),
383 target_can_async_p () ? "&" : NULL);
384 return 0;
385 }
386
387 void
388 mi_cmd_exec_run (char *command, char **argv, int argc)
389 {
390 if (current_context->all)
391 {
392 struct cleanup *back_to = save_current_space_and_thread ();
393 iterate_over_inferiors (run_one_inferior, NULL);
394 do_cleanups (back_to);
395 }
396 else
397 {
398 mi_execute_cli_command ("run", target_can_async_p (),
399 target_can_async_p () ? "&" : NULL);
400 }
401 }
402
403
404 static int
405 find_thread_of_process (struct thread_info *ti, void *p)
406 {
407 int pid = *(int *)p;
408 if (PIDGET (ti->ptid) == pid && !is_exited (ti->ptid))
409 return 1;
410
411 return 0;
412 }
413
414 void
415 mi_cmd_target_detach (char *command, char **argv, int argc)
416 {
417 if (argc != 0 && argc != 1)
418 error ("Usage: -target-detach [thread-group]");
419
420 if (argc == 1)
421 {
422 struct thread_info *tp;
423 char *end = argv[0];
424 int pid = strtol (argv[0], &end, 10);
425 if (*end != '\0')
426 error (_("Cannot parse thread group id '%s'"), argv[0]);
427
428 /* Pick any thread in the desired process. Current
429 target_detach deteches from the parent of inferior_ptid. */
430 tp = iterate_over_threads (find_thread_of_process, &pid);
431 if (!tp)
432 error (_("Thread group is empty"));
433
434 switch_to_thread (tp->ptid);
435 }
436
437 detach_command (NULL, 0);
438 }
439
440 void
441 mi_cmd_thread_select (char *command, char **argv, int argc)
442 {
443 enum gdb_rc rc;
444 char *mi_error_message;
445
446 if (argc != 1)
447 error ("mi_cmd_thread_select: USAGE: threadnum.");
448
449 rc = gdb_thread_select (uiout, argv[0], &mi_error_message);
450
451 if (rc == GDB_RC_FAIL)
452 {
453 make_cleanup (xfree, mi_error_message);
454 error ("%s", mi_error_message);
455 }
456 }
457
458 void
459 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
460 {
461 enum gdb_rc rc;
462 char *mi_error_message;
463
464 if (argc != 0)
465 error ("mi_cmd_thread_list_ids: No arguments required.");
466
467 rc = gdb_list_thread_ids (uiout, &mi_error_message);
468
469 if (rc == GDB_RC_FAIL)
470 {
471 make_cleanup (xfree, mi_error_message);
472 error ("%s", mi_error_message);
473 }
474 }
475
476 void
477 mi_cmd_thread_info (char *command, char **argv, int argc)
478 {
479 int thread = -1;
480
481 if (argc != 0 && argc != 1)
482 error ("Invalid MI command");
483
484 if (argc == 1)
485 thread = atoi (argv[0]);
486
487 print_thread_info (uiout, thread, -1);
488 }
489
490 struct collect_cores_data
491 {
492 int pid;
493
494 VEC (int) *cores;
495 };
496
497 static int
498 collect_cores (struct thread_info *ti, void *xdata)
499 {
500 struct collect_cores_data *data = xdata;
501
502 if (ptid_get_pid (ti->ptid) == data->pid)
503 {
504 int core = target_core_of_thread (ti->ptid);
505 if (core != -1)
506 VEC_safe_push (int, data->cores, core);
507 }
508
509 return 0;
510 }
511
512 static int *
513 unique (int *b, int *e)
514 {
515 int *d = b;
516 while (++b != e)
517 if (*d != *b)
518 *++d = *b;
519 return ++d;
520 }
521
522 struct print_one_inferior_data
523 {
524 int recurse;
525 VEC (int) *inferiors;
526 };
527
528 static int
529 print_one_inferior (struct inferior *inferior, void *xdata)
530 {
531 struct print_one_inferior_data *top_data = xdata;
532
533 if (VEC_empty (int, top_data->inferiors)
534 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
535 VEC_length (int, top_data->inferiors), sizeof (int),
536 compare_positive_ints))
537 {
538 struct collect_cores_data data;
539 struct cleanup *back_to
540 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
541
542 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
543 ui_out_field_string (uiout, "type", "process");
544 if (inferior->pid != 0)
545 ui_out_field_int (uiout, "pid", inferior->pid);
546
547 if (inferior->pspace->ebfd)
548 {
549 ui_out_field_string (uiout, "executable",
550 bfd_get_filename (inferior->pspace->ebfd));
551 }
552
553 data.cores = 0;
554 if (inferior->pid != 0)
555 {
556 data.pid = inferior->pid;
557 iterate_over_threads (collect_cores, &data);
558 }
559
560 if (!VEC_empty (int, data.cores))
561 {
562 int elt;
563 int i;
564 int *b, *e;
565 struct cleanup *back_to_2 =
566 make_cleanup_ui_out_list_begin_end (uiout, "cores");
567
568 qsort (VEC_address (int, data.cores),
569 VEC_length (int, data.cores), sizeof (int),
570 compare_positive_ints);
571
572 b = VEC_address (int, data.cores);
573 e = b + VEC_length (int, data.cores);
574 e = unique (b, e);
575
576 for (; b != e; ++b)
577 ui_out_field_int (uiout, NULL, *b);
578
579 do_cleanups (back_to_2);
580 }
581
582 if (top_data->recurse)
583 print_thread_info (uiout, -1, inferior->pid);
584
585 do_cleanups (back_to);
586 }
587
588 return 0;
589 }
590
591 /* Output a field named 'cores' with a list as the value. The elements of
592 the list are obtained by splitting 'cores' on comma. */
593
594 static void
595 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
596 {
597 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
598 field_name);
599 char *cores = xstrdup (xcores);
600 char *p = cores;
601
602 make_cleanup (xfree, cores);
603
604 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
605 ui_out_field_string (uiout, NULL, p);
606
607 do_cleanups (back_to);
608 }
609
610 static void
611 free_vector_of_ints (void *xvector)
612 {
613 VEC (int) **vector = xvector;
614 VEC_free (int, *vector);
615 }
616
617 static void
618 do_nothing (splay_tree_key k)
619 {
620 }
621
622 static void
623 free_vector_of_osdata_items (splay_tree_value xvalue)
624 {
625 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
626 /* We don't free the items itself, it will be done separately. */
627 VEC_free (osdata_item_s, value);
628 }
629
630 static int
631 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
632 {
633 int a = xa;
634 int b = xb;
635 return a - b;
636 }
637
638 static void
639 free_splay_tree (void *xt)
640 {
641 splay_tree t = xt;
642 splay_tree_delete (t);
643 }
644
645 static void
646 list_available_thread_groups (VEC (int) *ids, int recurse)
647 {
648 struct osdata *data;
649 struct osdata_item *item;
650 int ix_items;
651 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
652 The vector contains information about all threads for the given pid.
653 This is assigned an initial value to avoid "may be used uninitialized"
654 warning from gcc. */
655 splay_tree tree = NULL;
656
657 /* get_osdata will throw if it cannot return data. */
658 data = get_osdata ("processes");
659 make_cleanup_osdata_free (data);
660
661 if (recurse)
662 {
663 struct osdata *threads = get_osdata ("threads");
664 make_cleanup_osdata_free (threads);
665
666 tree = splay_tree_new (splay_tree_int_comparator,
667 do_nothing,
668 free_vector_of_osdata_items);
669 make_cleanup (free_splay_tree, tree);
670
671 for (ix_items = 0;
672 VEC_iterate (osdata_item_s, threads->items,
673 ix_items, item);
674 ix_items++)
675 {
676 const char *pid = get_osdata_column (item, "pid");
677 int pid_i = strtoul (pid, NULL, 0);
678 VEC (osdata_item_s) *vec = 0;
679
680 splay_tree_node n = splay_tree_lookup (tree, pid_i);
681 if (!n)
682 {
683 VEC_safe_push (osdata_item_s, vec, item);
684 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
685 }
686 else
687 {
688 vec = (VEC (osdata_item_s) *) n->value;
689 VEC_safe_push (osdata_item_s, vec, item);
690 n->value = (splay_tree_value) vec;
691 }
692 }
693 }
694
695 make_cleanup_ui_out_list_begin_end (uiout, "groups");
696
697 for (ix_items = 0;
698 VEC_iterate (osdata_item_s, data->items,
699 ix_items, item);
700 ix_items++)
701 {
702 struct cleanup *back_to;
703
704 const char *pid = get_osdata_column (item, "pid");
705 const char *cmd = get_osdata_column (item, "command");
706 const char *user = get_osdata_column (item, "user");
707 const char *cores = get_osdata_column (item, "cores");
708
709 int pid_i = strtoul (pid, NULL, 0);
710
711 /* At present, the target will return all available processes
712 and if information about specific ones was required, we filter
713 undesired processes here. */
714 if (ids && bsearch (&pid_i, VEC_address (int, ids),
715 VEC_length (int, ids),
716 sizeof (int), compare_positive_ints) == NULL)
717 continue;
718
719
720 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
721
722 ui_out_field_fmt (uiout, "id", "%s", pid);
723 ui_out_field_string (uiout, "type", "process");
724 if (cmd)
725 ui_out_field_string (uiout, "description", cmd);
726 if (user)
727 ui_out_field_string (uiout, "user", user);
728 if (cores)
729 output_cores (uiout, "cores", cores);
730
731 if (recurse)
732 {
733 splay_tree_node n = splay_tree_lookup (tree, pid_i);
734 if (n)
735 {
736 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
737 struct osdata_item *child;
738 int ix_child;
739
740 make_cleanup_ui_out_list_begin_end (uiout, "threads");
741
742 for (ix_child = 0;
743 VEC_iterate (osdata_item_s, children, ix_child, child);
744 ++ix_child)
745 {
746 struct cleanup *back_to_2 =
747 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
748
749 const char *tid = get_osdata_column (child, "tid");
750 const char *tcore = get_osdata_column (child, "core");
751 ui_out_field_string (uiout, "id", tid);
752 if (tcore)
753 ui_out_field_string (uiout, "core", tcore);
754
755 do_cleanups (back_to_2);
756 }
757 }
758 }
759
760 do_cleanups (back_to);
761 }
762 }
763
764 void
765 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
766 {
767 struct cleanup *back_to;
768 int available = 0;
769 int recurse = 0;
770 VEC (int) *ids = 0;
771
772 enum opt
773 {
774 AVAILABLE_OPT, RECURSE_OPT
775 };
776 static struct mi_opt opts[] =
777 {
778 {"-available", AVAILABLE_OPT, 0},
779 {"-recurse", RECURSE_OPT, 1},
780 { 0, 0, 0 }
781 };
782
783 int optind = 0;
784 char *optarg;
785
786 while (1)
787 {
788 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
789 &optind, &optarg);
790 if (opt < 0)
791 break;
792 switch ((enum opt) opt)
793 {
794 case AVAILABLE_OPT:
795 available = 1;
796 break;
797 case RECURSE_OPT:
798 if (strcmp (optarg, "0") == 0)
799 ;
800 else if (strcmp (optarg, "1") == 0)
801 recurse = 1;
802 else
803 error ("only '0' and '1' are valid values for the '--recurse' option");
804 break;
805 }
806 }
807
808 for (; optind < argc; ++optind)
809 {
810 char *end;
811 int inf = strtoul (argv[optind], &end, 0);
812 if (*end != '\0')
813 error ("invalid group id '%s'", argv[optind]);
814 VEC_safe_push (int, ids, inf);
815 }
816 if (VEC_length (int, ids) > 1)
817 qsort (VEC_address (int, ids),
818 VEC_length (int, ids),
819 sizeof (int), compare_positive_ints);
820
821 back_to = make_cleanup (free_vector_of_ints, &ids);
822
823 if (available)
824 {
825 list_available_thread_groups (ids, recurse);
826 }
827 else if (VEC_length (int, ids) == 1)
828 {
829 /* Local thread groups, single id. */
830 int pid = *VEC_address (int, ids);
831 if (!in_inferior_list (pid))
832 error ("Invalid thread group id '%d'", pid);
833 print_thread_info (uiout, -1, pid);
834 }
835 else
836 {
837 struct print_one_inferior_data data;
838 data.recurse = recurse;
839 data.inferiors = ids;
840
841 /* Local thread groups. Either no explicit ids -- and we
842 print everything, or several explicit ids. In both cases,
843 we print more than one group, and have to use 'groups'
844 as the top-level element. */
845 make_cleanup_ui_out_list_begin_end (uiout, "groups");
846 update_thread_list ();
847 iterate_over_inferiors (print_one_inferior, &data);
848 }
849
850 do_cleanups (back_to);
851 }
852
853 void
854 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
855 {
856 struct gdbarch *gdbarch;
857 int regnum, numregs;
858 int i;
859 struct cleanup *cleanup;
860
861 /* Note that the test for a valid register must include checking the
862 gdbarch_register_name because gdbarch_num_regs may be allocated for
863 the union of the register sets within a family of related processors.
864 In this case, some entries of gdbarch_register_name will change depending
865 upon the particular processor being debugged. */
866
867 gdbarch = get_current_arch ();
868 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
869
870 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
871
872 if (argc == 0) /* No args, just do all the regs. */
873 {
874 for (regnum = 0;
875 regnum < numregs;
876 regnum++)
877 {
878 if (gdbarch_register_name (gdbarch, regnum) == NULL
879 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
880 ui_out_field_string (uiout, NULL, "");
881 else
882 ui_out_field_string (uiout, NULL,
883 gdbarch_register_name (gdbarch, regnum));
884 }
885 }
886
887 /* Else, list of register #s, just do listed regs. */
888 for (i = 0; i < argc; i++)
889 {
890 regnum = atoi (argv[i]);
891 if (regnum < 0 || regnum >= numregs)
892 error ("bad register number");
893
894 if (gdbarch_register_name (gdbarch, regnum) == NULL
895 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
896 ui_out_field_string (uiout, NULL, "");
897 else
898 ui_out_field_string (uiout, NULL,
899 gdbarch_register_name (gdbarch, regnum));
900 }
901 do_cleanups (cleanup);
902 }
903
904 void
905 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
906 {
907 static struct regcache *this_regs = NULL;
908 struct regcache *prev_regs;
909 struct gdbarch *gdbarch;
910 int regnum, numregs, changed;
911 int i;
912 struct cleanup *cleanup;
913
914 /* The last time we visited this function, the current frame's register
915 contents were saved in THIS_REGS. Move THIS_REGS over to PREV_REGS,
916 and refresh THIS_REGS with the now-current register contents. */
917
918 prev_regs = this_regs;
919 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
920 cleanup = make_cleanup_regcache_xfree (prev_regs);
921
922 /* Note that the test for a valid register must include checking the
923 gdbarch_register_name because gdbarch_num_regs may be allocated for
924 the union of the register sets within a family of related processors.
925 In this case, some entries of gdbarch_register_name will change depending
926 upon the particular processor being debugged. */
927
928 gdbarch = get_regcache_arch (this_regs);
929 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
930
931 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
932
933 if (argc == 0) /* No args, just do all the regs. */
934 {
935 for (regnum = 0;
936 regnum < numregs;
937 regnum++)
938 {
939 if (gdbarch_register_name (gdbarch, regnum) == NULL
940 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
941 continue;
942 changed = register_changed_p (regnum, prev_regs, this_regs);
943 if (changed < 0)
944 error ("mi_cmd_data_list_changed_registers: Unable to read register contents.");
945 else if (changed)
946 ui_out_field_int (uiout, NULL, regnum);
947 }
948 }
949
950 /* Else, list of register #s, just do listed regs. */
951 for (i = 0; i < argc; i++)
952 {
953 regnum = atoi (argv[i]);
954
955 if (regnum >= 0
956 && regnum < numregs
957 && gdbarch_register_name (gdbarch, regnum) != NULL
958 && *gdbarch_register_name (gdbarch, regnum) != '\000')
959 {
960 changed = register_changed_p (regnum, prev_regs, this_regs);
961 if (changed < 0)
962 error ("mi_cmd_data_list_register_change: Unable to read register contents.");
963 else if (changed)
964 ui_out_field_int (uiout, NULL, regnum);
965 }
966 else
967 error ("bad register number");
968 }
969 do_cleanups (cleanup);
970 }
971
972 static int
973 register_changed_p (int regnum, struct regcache *prev_regs,
974 struct regcache *this_regs)
975 {
976 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
977 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
978 gdb_byte this_buffer[MAX_REGISTER_SIZE];
979
980 /* Registers not valid in this frame return count as unchanged. */
981 if (!regcache_valid_p (this_regs, regnum))
982 return 0;
983
984 /* First time through or after gdbarch change consider all registers as
985 changed. Same for registers not valid in the previous frame. */
986 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch
987 || !regcache_valid_p (prev_regs, regnum))
988 return 1;
989
990 /* Get register contents and compare. */
991 regcache_cooked_read (prev_regs, regnum, prev_buffer);
992 regcache_cooked_read (this_regs, regnum, this_buffer);
993
994 return memcmp (prev_buffer, this_buffer,
995 register_size (gdbarch, regnum)) != 0;
996 }
997
998 /* Return a list of register number and value pairs. The valid
999 arguments expected are: a letter indicating the format in which to
1000 display the registers contents. This can be one of: x (hexadecimal), d
1001 (decimal), N (natural), t (binary), o (octal), r (raw). After the
1002 format argumetn there can be a sequence of numbers, indicating which
1003 registers to fetch the content of. If the format is the only argument,
1004 a list of all the registers with their values is returned. */
1005 void
1006 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1007 {
1008 struct frame_info *frame;
1009 struct gdbarch *gdbarch;
1010 int regnum, numregs, format;
1011 int i;
1012 struct cleanup *list_cleanup, *tuple_cleanup;
1013
1014 /* Note that the test for a valid register must include checking the
1015 gdbarch_register_name because gdbarch_num_regs may be allocated for
1016 the union of the register sets within a family of related processors.
1017 In this case, some entries of gdbarch_register_name will change depending
1018 upon the particular processor being debugged. */
1019
1020 if (argc == 0)
1021 error ("mi_cmd_data_list_register_values: Usage: -data-list-register-values <format> [<regnum1>...<regnumN>]");
1022
1023 format = (int) argv[0][0];
1024
1025 frame = get_selected_frame (NULL);
1026 gdbarch = get_frame_arch (frame);
1027 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1028
1029 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1030
1031 if (argc == 1) /* No args, beside the format: do all the regs. */
1032 {
1033 for (regnum = 0;
1034 regnum < numregs;
1035 regnum++)
1036 {
1037 if (gdbarch_register_name (gdbarch, regnum) == NULL
1038 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1039 continue;
1040 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1041 ui_out_field_int (uiout, "number", regnum);
1042 get_register (frame, regnum, format);
1043 do_cleanups (tuple_cleanup);
1044 }
1045 }
1046
1047 /* Else, list of register #s, just do listed regs. */
1048 for (i = 1; i < argc; i++)
1049 {
1050 regnum = atoi (argv[i]);
1051
1052 if (regnum >= 0
1053 && regnum < numregs
1054 && gdbarch_register_name (gdbarch, regnum) != NULL
1055 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1056 {
1057 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1058 ui_out_field_int (uiout, "number", regnum);
1059 get_register (frame, regnum, format);
1060 do_cleanups (tuple_cleanup);
1061 }
1062 else
1063 error ("bad register number");
1064 }
1065 do_cleanups (list_cleanup);
1066 }
1067
1068 /* Output one register's contents in the desired format. */
1069 static void
1070 get_register (struct frame_info *frame, int regnum, int format)
1071 {
1072 struct gdbarch *gdbarch = get_frame_arch (frame);
1073 gdb_byte buffer[MAX_REGISTER_SIZE];
1074 int optim;
1075 int realnum;
1076 CORE_ADDR addr;
1077 enum lval_type lval;
1078 static struct ui_stream *stb = NULL;
1079
1080 stb = ui_out_stream_new (uiout);
1081
1082 if (format == 'N')
1083 format = 0;
1084
1085 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, buffer);
1086
1087 if (optim)
1088 error ("Optimized out");
1089
1090 if (format == 'r')
1091 {
1092 int j;
1093 char *ptr, buf[1024];
1094
1095 strcpy (buf, "0x");
1096 ptr = buf + 2;
1097 for (j = 0; j < register_size (gdbarch, regnum); j++)
1098 {
1099 int idx = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ?
1100 j : register_size (gdbarch, regnum) - 1 - j;
1101 sprintf (ptr, "%02x", (unsigned char) buffer[idx]);
1102 ptr += 2;
1103 }
1104 ui_out_field_string (uiout, "value", buf);
1105 /*fputs_filtered (buf, gdb_stdout); */
1106 }
1107 else
1108 {
1109 struct value_print_options opts;
1110 get_formatted_print_options (&opts, format);
1111 opts.deref_ref = 1;
1112 val_print (register_type (gdbarch, regnum), buffer, 0, 0,
1113 stb->stream, 0, &opts, current_language);
1114 ui_out_field_stream (uiout, "value", stb);
1115 ui_out_stream_delete (stb);
1116 }
1117 }
1118
1119 /* Write given values into registers. The registers and values are
1120 given as pairs. The corresponding MI command is
1121 -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>]*/
1122 void
1123 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1124 {
1125 struct regcache *regcache;
1126 struct gdbarch *gdbarch;
1127 int numregs, i;
1128 char format;
1129
1130 /* Note that the test for a valid register must include checking the
1131 gdbarch_register_name because gdbarch_num_regs may be allocated for
1132 the union of the register sets within a family of related processors.
1133 In this case, some entries of gdbarch_register_name will change depending
1134 upon the particular processor being debugged. */
1135
1136 regcache = get_current_regcache ();
1137 gdbarch = get_regcache_arch (regcache);
1138 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1139
1140 if (argc == 0)
1141 error ("mi_cmd_data_write_register_values: Usage: -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>]");
1142
1143 format = (int) argv[0][0];
1144
1145 if (!target_has_registers)
1146 error ("mi_cmd_data_write_register_values: No registers.");
1147
1148 if (!(argc - 1))
1149 error ("mi_cmd_data_write_register_values: No regs and values specified.");
1150
1151 if ((argc - 1) % 2)
1152 error ("mi_cmd_data_write_register_values: Regs and vals are not in pairs.");
1153
1154 for (i = 1; i < argc; i = i + 2)
1155 {
1156 int regnum = atoi (argv[i]);
1157
1158 if (regnum >= 0 && regnum < numregs
1159 && gdbarch_register_name (gdbarch, regnum)
1160 && *gdbarch_register_name (gdbarch, regnum))
1161 {
1162 LONGEST value;
1163
1164 /* Get the value as a number. */
1165 value = parse_and_eval_address (argv[i + 1]);
1166
1167 /* Write it down. */
1168 regcache_cooked_write_signed (regcache, regnum, value);
1169 }
1170 else
1171 error ("bad register number");
1172 }
1173 }
1174
1175 /* Evaluate the value of the argument. The argument is an
1176 expression. If the expression contains spaces it needs to be
1177 included in double quotes. */
1178 void
1179 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1180 {
1181 struct expression *expr;
1182 struct cleanup *old_chain = NULL;
1183 struct value *val;
1184 struct ui_stream *stb = NULL;
1185 struct value_print_options opts;
1186
1187 stb = ui_out_stream_new (uiout);
1188
1189 if (argc != 1)
1190 {
1191 ui_out_stream_delete (stb);
1192 error ("mi_cmd_data_evaluate_expression: Usage: -data-evaluate-expression expression");
1193 }
1194
1195 expr = parse_expression (argv[0]);
1196
1197 old_chain = make_cleanup (free_current_contents, &expr);
1198
1199 val = evaluate_expression (expr);
1200
1201 /* Print the result of the expression evaluation. */
1202 get_user_print_options (&opts);
1203 opts.deref_ref = 0;
1204 val_print (value_type (val), value_contents (val),
1205 value_embedded_offset (val), value_address (val),
1206 stb->stream, 0, &opts, current_language);
1207
1208 ui_out_field_stream (uiout, "value", stb);
1209 ui_out_stream_delete (stb);
1210
1211 do_cleanups (old_chain);
1212 }
1213
1214 /* DATA-MEMORY-READ:
1215
1216 ADDR: start address of data to be dumped.
1217 WORD-FORMAT: a char indicating format for the ``word''. See
1218 the ``x'' command.
1219 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1220 NR_ROW: Number of rows.
1221 NR_COL: The number of colums (words per row).
1222 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1223 ASCHAR for unprintable characters.
1224
1225 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1226 displayes them. Returns:
1227
1228 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1229
1230 Returns:
1231 The number of bytes read is SIZE*ROW*COL. */
1232
1233 void
1234 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1235 {
1236 struct gdbarch *gdbarch = get_current_arch ();
1237 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1238 CORE_ADDR addr;
1239 long total_bytes;
1240 long nr_cols;
1241 long nr_rows;
1242 char word_format;
1243 struct type *word_type;
1244 long word_size;
1245 char word_asize;
1246 char aschar;
1247 gdb_byte *mbuf;
1248 int nr_bytes;
1249 long offset = 0;
1250 int optind = 0;
1251 char *optarg;
1252 enum opt
1253 {
1254 OFFSET_OPT
1255 };
1256 static struct mi_opt opts[] =
1257 {
1258 {"o", OFFSET_OPT, 1},
1259 { 0, 0, 0 }
1260 };
1261
1262 while (1)
1263 {
1264 int opt = mi_getopt ("mi_cmd_data_read_memory", argc, argv, opts,
1265 &optind, &optarg);
1266 if (opt < 0)
1267 break;
1268 switch ((enum opt) opt)
1269 {
1270 case OFFSET_OPT:
1271 offset = atol (optarg);
1272 break;
1273 }
1274 }
1275 argv += optind;
1276 argc -= optind;
1277
1278 if (argc < 5 || argc > 6)
1279 error ("mi_cmd_data_read_memory: Usage: ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR].");
1280
1281 /* Extract all the arguments. */
1282
1283 /* Start address of the memory dump. */
1284 addr = parse_and_eval_address (argv[0]) + offset;
1285 /* The format character to use when displaying a memory word. See
1286 the ``x'' command. */
1287 word_format = argv[1][0];
1288 /* The size of the memory word. */
1289 word_size = atol (argv[2]);
1290 switch (word_size)
1291 {
1292 case 1:
1293 word_type = builtin_type (gdbarch)->builtin_int8;
1294 word_asize = 'b';
1295 break;
1296 case 2:
1297 word_type = builtin_type (gdbarch)->builtin_int16;
1298 word_asize = 'h';
1299 break;
1300 case 4:
1301 word_type = builtin_type (gdbarch)->builtin_int32;
1302 word_asize = 'w';
1303 break;
1304 case 8:
1305 word_type = builtin_type (gdbarch)->builtin_int64;
1306 word_asize = 'g';
1307 break;
1308 default:
1309 word_type = builtin_type (gdbarch)->builtin_int8;
1310 word_asize = 'b';
1311 }
1312 /* The number of rows. */
1313 nr_rows = atol (argv[3]);
1314 if (nr_rows <= 0)
1315 error ("mi_cmd_data_read_memory: invalid number of rows.");
1316
1317 /* Number of bytes per row. */
1318 nr_cols = atol (argv[4]);
1319 if (nr_cols <= 0)
1320 error ("mi_cmd_data_read_memory: invalid number of columns.");
1321
1322 /* The un-printable character when printing ascii. */
1323 if (argc == 6)
1324 aschar = *argv[5];
1325 else
1326 aschar = 0;
1327
1328 /* Create a buffer and read it in. */
1329 total_bytes = word_size * nr_rows * nr_cols;
1330 mbuf = xcalloc (total_bytes, 1);
1331 make_cleanup (xfree, mbuf);
1332
1333 /* Dispatch memory reads to the topmost target, not the flattened
1334 current_target. */
1335 nr_bytes = target_read_until_error (current_target.beneath,
1336 TARGET_OBJECT_MEMORY, NULL, mbuf,
1337 addr, total_bytes);
1338 if (nr_bytes <= 0)
1339 error ("Unable to read memory.");
1340
1341 /* Output the header information. */
1342 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1343 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1344 ui_out_field_int (uiout, "total-bytes", total_bytes);
1345 ui_out_field_core_addr (uiout, "next-row",
1346 gdbarch, addr + word_size * nr_cols);
1347 ui_out_field_core_addr (uiout, "prev-row",
1348 gdbarch, addr - word_size * nr_cols);
1349 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1350 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1351
1352 /* Build the result as a two dimentional table. */
1353 {
1354 struct ui_stream *stream = ui_out_stream_new (uiout);
1355 struct cleanup *cleanup_list_memory;
1356 int row;
1357 int row_byte;
1358 cleanup_list_memory = make_cleanup_ui_out_list_begin_end (uiout, "memory");
1359 for (row = 0, row_byte = 0;
1360 row < nr_rows;
1361 row++, row_byte += nr_cols * word_size)
1362 {
1363 int col;
1364 int col_byte;
1365 struct cleanup *cleanup_tuple;
1366 struct cleanup *cleanup_list_data;
1367 struct value_print_options opts;
1368
1369 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1370 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1371 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr + row_byte); */
1372 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1373 get_formatted_print_options (&opts, word_format);
1374 for (col = 0, col_byte = row_byte;
1375 col < nr_cols;
1376 col++, col_byte += word_size)
1377 {
1378 if (col_byte + word_size > nr_bytes)
1379 {
1380 ui_out_field_string (uiout, NULL, "N/A");
1381 }
1382 else
1383 {
1384 ui_file_rewind (stream->stream);
1385 print_scalar_formatted (mbuf + col_byte, word_type, &opts,
1386 word_asize, stream->stream);
1387 ui_out_field_stream (uiout, NULL, stream);
1388 }
1389 }
1390 do_cleanups (cleanup_list_data);
1391 if (aschar)
1392 {
1393 int byte;
1394 ui_file_rewind (stream->stream);
1395 for (byte = row_byte; byte < row_byte + word_size * nr_cols; byte++)
1396 {
1397 if (byte >= nr_bytes)
1398 {
1399 fputc_unfiltered ('X', stream->stream);
1400 }
1401 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1402 {
1403 fputc_unfiltered (aschar, stream->stream);
1404 }
1405 else
1406 fputc_unfiltered (mbuf[byte], stream->stream);
1407 }
1408 ui_out_field_stream (uiout, "ascii", stream);
1409 }
1410 do_cleanups (cleanup_tuple);
1411 }
1412 ui_out_stream_delete (stream);
1413 do_cleanups (cleanup_list_memory);
1414 }
1415 do_cleanups (cleanups);
1416 }
1417
1418 /* DATA-MEMORY-WRITE:
1419
1420 COLUMN_OFFSET: optional argument. Must be preceeded by '-o'. The
1421 offset from the beginning of the memory grid row where the cell to
1422 be written is.
1423 ADDR: start address of the row in the memory grid where the memory
1424 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1425 the location to write to.
1426 FORMAT: a char indicating format for the ``word''. See
1427 the ``x'' command.
1428 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1429 VALUE: value to be written into the memory address.
1430
1431 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1432
1433 Prints nothing. */
1434 void
1435 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1436 {
1437 struct gdbarch *gdbarch = get_current_arch ();
1438 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1439 CORE_ADDR addr;
1440 char word_format;
1441 long word_size;
1442 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1443 enough when using a compiler other than GCC. */
1444 LONGEST value;
1445 void *buffer;
1446 struct cleanup *old_chain;
1447 long offset = 0;
1448 int optind = 0;
1449 char *optarg;
1450 enum opt
1451 {
1452 OFFSET_OPT
1453 };
1454 static struct mi_opt opts[] =
1455 {
1456 {"o", OFFSET_OPT, 1},
1457 { 0, 0, 0 }
1458 };
1459
1460 while (1)
1461 {
1462 int opt = mi_getopt ("mi_cmd_data_write_memory", argc, argv, opts,
1463 &optind, &optarg);
1464 if (opt < 0)
1465 break;
1466 switch ((enum opt) opt)
1467 {
1468 case OFFSET_OPT:
1469 offset = atol (optarg);
1470 break;
1471 }
1472 }
1473 argv += optind;
1474 argc -= optind;
1475
1476 if (argc != 4)
1477 error ("mi_cmd_data_write_memory: Usage: [-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE.");
1478
1479 /* Extract all the arguments. */
1480 /* Start address of the memory dump. */
1481 addr = parse_and_eval_address (argv[0]);
1482 /* The format character to use when displaying a memory word. See
1483 the ``x'' command. */
1484 word_format = argv[1][0];
1485 /* The size of the memory word. */
1486 word_size = atol (argv[2]);
1487
1488 /* Calculate the real address of the write destination. */
1489 addr += (offset * word_size);
1490
1491 /* Get the value as a number. */
1492 value = parse_and_eval_address (argv[3]);
1493 /* Get the value into an array. */
1494 buffer = xmalloc (word_size);
1495 old_chain = make_cleanup (xfree, buffer);
1496 store_signed_integer (buffer, word_size, byte_order, value);
1497 /* Write it down to memory. */
1498 write_memory (addr, buffer, word_size);
1499 /* Free the buffer. */
1500 do_cleanups (old_chain);
1501 }
1502
1503 void
1504 mi_cmd_enable_timings (char *command, char **argv, int argc)
1505 {
1506 if (argc == 0)
1507 do_timings = 1;
1508 else if (argc == 1)
1509 {
1510 if (strcmp (argv[0], "yes") == 0)
1511 do_timings = 1;
1512 else if (strcmp (argv[0], "no") == 0)
1513 do_timings = 0;
1514 else
1515 goto usage_error;
1516 }
1517 else
1518 goto usage_error;
1519
1520 return;
1521
1522 usage_error:
1523 error ("mi_cmd_enable_timings: Usage: %s {yes|no}", command);
1524 }
1525
1526 void
1527 mi_cmd_list_features (char *command, char **argv, int argc)
1528 {
1529 if (argc == 0)
1530 {
1531 struct cleanup *cleanup = NULL;
1532 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1533
1534 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1535 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1536 ui_out_field_string (uiout, NULL, "thread-info");
1537
1538 #if HAVE_PYTHON
1539 ui_out_field_string (uiout, NULL, "python");
1540 #endif
1541
1542 do_cleanups (cleanup);
1543 return;
1544 }
1545
1546 error ("-list-features should be passed no arguments");
1547 }
1548
1549 void
1550 mi_cmd_list_target_features (char *command, char **argv, int argc)
1551 {
1552 if (argc == 0)
1553 {
1554 struct cleanup *cleanup = NULL;
1555 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1556
1557 if (target_can_async_p ())
1558 ui_out_field_string (uiout, NULL, "async");
1559
1560 do_cleanups (cleanup);
1561 return;
1562 }
1563
1564 error ("-list-target-features should be passed no arguments");
1565 }
1566
1567 void
1568 mi_cmd_add_inferior (char *command, char **argv, int argc)
1569 {
1570 struct inferior *inf;
1571
1572 if (argc != 0)
1573 error (_("-add-inferior should be passed no arguments"));
1574
1575 inf = add_inferior_with_spaces ();
1576
1577 ui_out_field_fmt (uiout, "inferior", "i%d", inf->num);
1578 }
1579
1580 void
1581 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1582 {
1583 int id;
1584 struct inferior *inf;
1585
1586 if (argc != 1)
1587 error ("-remove-inferior should be passed a single argument");
1588
1589 if (sscanf (argv[1], "i%d", &id) != 1)
1590 error ("the thread group id is syntactically invalid");
1591
1592 inf = find_inferior_id (id);
1593 if (!inf)
1594 error ("the specified thread group does not exist");
1595
1596 delete_inferior_1 (inf, 1 /* silent */);
1597 }
1598
1599 \f
1600
1601 /* Execute a command within a safe environment.
1602 Return <0 for error; >=0 for ok.
1603
1604 args->action will tell mi_execute_command what action
1605 to perfrom after the given command has executed (display/suppress
1606 prompt, display error). */
1607
1608 static void
1609 captured_mi_execute_command (struct ui_out *uiout, void *data)
1610 {
1611 struct cleanup *cleanup;
1612 struct mi_parse *context = (struct mi_parse *) data;
1613
1614 if (do_timings)
1615 current_command_ts = context->cmd_start;
1616
1617 current_token = xstrdup (context->token);
1618 cleanup = make_cleanup (free_current_contents, &current_token);
1619
1620 running_result_record_printed = 0;
1621 mi_proceeded = 0;
1622 switch (context->op)
1623 {
1624 case MI_COMMAND:
1625 /* A MI command was read from the input stream. */
1626 if (mi_debug_p)
1627 /* FIXME: gdb_???? */
1628 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1629 context->token, context->command, context->args);
1630
1631
1632 mi_cmd_execute (context);
1633
1634 /* Print the result if there were no errors.
1635
1636 Remember that on the way out of executing a command, you have
1637 to directly use the mi_interp's uiout, since the command could
1638 have reset the interpreter, in which case the current uiout
1639 will most likely crash in the mi_out_* routines. */
1640 if (!running_result_record_printed)
1641 {
1642 fputs_unfiltered (context->token, raw_stdout);
1643 /* There's no particularly good reason why target-connect results
1644 in not ^done. Should kill ^connected for MI3. */
1645 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1646 ? "^connected" : "^done", raw_stdout);
1647 mi_out_put (uiout, raw_stdout);
1648 mi_out_rewind (uiout);
1649 mi_print_timing_maybe ();
1650 fputs_unfiltered ("\n", raw_stdout);
1651 }
1652 else
1653 /* The command does not want anything to be printed. In that
1654 case, the command probably should not have written anything
1655 to uiout, but in case it has written something, discard it. */
1656 mi_out_rewind (uiout);
1657 break;
1658
1659 case CLI_COMMAND:
1660 {
1661 char *argv[2];
1662 /* A CLI command was read from the input stream. */
1663 /* This "feature" will be removed as soon as we have a
1664 complete set of mi commands. */
1665 /* Echo the command on the console. */
1666 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1667 /* Call the "console" interpreter. */
1668 argv[0] = "console";
1669 argv[1] = context->command;
1670 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1671
1672 /* If we changed interpreters, DON'T print out anything. */
1673 if (current_interp_named_p (INTERP_MI)
1674 || current_interp_named_p (INTERP_MI1)
1675 || current_interp_named_p (INTERP_MI2)
1676 || current_interp_named_p (INTERP_MI3))
1677 {
1678 if (!running_result_record_printed)
1679 {
1680 fputs_unfiltered (context->token, raw_stdout);
1681 fputs_unfiltered ("^done", raw_stdout);
1682 mi_out_put (uiout, raw_stdout);
1683 mi_out_rewind (uiout);
1684 mi_print_timing_maybe ();
1685 fputs_unfiltered ("\n", raw_stdout);
1686 }
1687 else
1688 mi_out_rewind (uiout);
1689 }
1690 break;
1691 }
1692
1693 }
1694
1695 do_cleanups (cleanup);
1696
1697 return;
1698 }
1699
1700
1701 void
1702 mi_execute_command (char *cmd, int from_tty)
1703 {
1704 struct mi_parse *command;
1705 struct ui_out *saved_uiout = uiout;
1706
1707 /* This is to handle EOF (^D). We just quit gdb. */
1708 /* FIXME: we should call some API function here. */
1709 if (cmd == 0)
1710 quit_force (NULL, from_tty);
1711
1712 target_log_command (cmd);
1713
1714 command = mi_parse (cmd);
1715
1716 if (command != NULL)
1717 {
1718 struct gdb_exception result;
1719 ptid_t previous_ptid = inferior_ptid;
1720
1721 if (do_timings)
1722 {
1723 command->cmd_start = (struct mi_timestamp *)
1724 xmalloc (sizeof (struct mi_timestamp));
1725 timestamp (command->cmd_start);
1726 }
1727
1728 result = catch_exception (uiout, captured_mi_execute_command, command,
1729 RETURN_MASK_ALL);
1730 if (result.reason < 0)
1731 {
1732 /* The command execution failed and error() was called
1733 somewhere. */
1734 fputs_unfiltered (command->token, raw_stdout);
1735 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1736 if (result.message == NULL)
1737 fputs_unfiltered ("unknown error", raw_stdout);
1738 else
1739 fputstr_unfiltered (result.message, '"', raw_stdout);
1740 fputs_unfiltered ("\"\n", raw_stdout);
1741 mi_out_rewind (uiout);
1742 }
1743
1744 bpstat_do_actions ();
1745
1746 if (/* The notifications are only output when the top-level
1747 interpreter (specified on the command line) is MI. */
1748 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
1749 /* Don't try report anything if there are no threads --
1750 the program is dead. */
1751 && thread_count () != 0
1752 /* -thread-select explicitly changes thread. If frontend uses that
1753 internally, we don't want to emit =thread-selected, since
1754 =thread-selected is supposed to indicate user's intentions. */
1755 && strcmp (command->command, "thread-select") != 0)
1756 {
1757 struct mi_interp *mi = top_level_interpreter_data ();
1758 int report_change = 0;
1759
1760 if (command->thread == -1)
1761 {
1762 report_change = (!ptid_equal (previous_ptid, null_ptid)
1763 && !ptid_equal (inferior_ptid, previous_ptid)
1764 && !ptid_equal (inferior_ptid, null_ptid));
1765 }
1766 else if (!ptid_equal (inferior_ptid, null_ptid))
1767 {
1768 struct thread_info *ti = inferior_thread ();
1769 report_change = (ti->num != command->thread);
1770 }
1771
1772 if (report_change)
1773 {
1774 struct thread_info *ti = inferior_thread ();
1775 target_terminal_ours ();
1776 fprintf_unfiltered (mi->event_channel,
1777 "thread-selected,id=\"%d\"",
1778 ti->num);
1779 gdb_flush (mi->event_channel);
1780 }
1781 }
1782
1783 mi_parse_free (command);
1784 }
1785
1786 fputs_unfiltered ("(gdb) \n", raw_stdout);
1787 gdb_flush (raw_stdout);
1788 /* Print any buffered hook code. */
1789 /* ..... */
1790 }
1791
1792 static void
1793 mi_cmd_execute (struct mi_parse *parse)
1794 {
1795 struct cleanup *cleanup;
1796 int i;
1797
1798 prepare_execute_command ();
1799
1800 cleanup = make_cleanup (null_cleanup, NULL);
1801
1802 if (parse->all && parse->thread_group != -1)
1803 error (_("Cannot specify --thread-group together with --all"));
1804
1805 if (parse->all && parse->thread != -1)
1806 error (_("Cannot specify --thread together with --all"));
1807
1808 if (parse->thread_group != -1 && parse->thread != -1)
1809 error (_("Cannot specify --thread together with --thread-group"));
1810
1811 if (parse->frame != -1 && parse->thread == -1)
1812 error (_("Cannot specify --frame without --thread"));
1813
1814 if (parse->thread_group != -1)
1815 {
1816 struct inferior *inf = find_inferior_id (parse->thread_group);
1817 struct thread_info *tp = 0;
1818
1819 if (!inf)
1820 error (_("Invalid thread group for the --thread-group option"));
1821
1822 set_current_inferior (inf);
1823 /* This behaviour means that if --thread-group option identifies
1824 an inferior with multiple threads, then a random one will be picked.
1825 This is not a problem -- frontend should always provide --thread if
1826 it wishes to operate on a specific thread. */
1827 if (inf->pid != 0)
1828 tp = any_thread_of_process (inf->pid);
1829 switch_to_thread (tp ? tp->ptid : null_ptid);
1830 set_current_program_space (inf->pspace);
1831 }
1832
1833 if (parse->thread != -1)
1834 {
1835 struct thread_info *tp = find_thread_id (parse->thread);
1836 if (!tp)
1837 error (_("Invalid thread id: %d"), parse->thread);
1838
1839 if (is_exited (tp->ptid))
1840 error (_("Thread id: %d has terminated"), parse->thread);
1841
1842 switch_to_thread (tp->ptid);
1843 }
1844
1845 if (parse->frame != -1)
1846 {
1847 struct frame_info *fid;
1848 int frame = parse->frame;
1849 fid = find_relative_frame (get_current_frame (), &frame);
1850 if (frame == 0)
1851 /* find_relative_frame was successful */
1852 select_frame (fid);
1853 else
1854 error (_("Invalid frame id: %d"), frame);
1855 }
1856
1857 current_context = parse;
1858
1859 if (parse->cmd->argv_func != NULL)
1860 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
1861 else if (parse->cmd->cli.cmd != 0)
1862 {
1863 /* FIXME: DELETE THIS. */
1864 /* The operation is still implemented by a cli command. */
1865 /* Must be a synchronous one. */
1866 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
1867 parse->args);
1868 }
1869 else
1870 {
1871 /* FIXME: DELETE THIS. */
1872 struct ui_file *stb;
1873
1874 stb = mem_fileopen ();
1875
1876 fputs_unfiltered ("Undefined mi command: ", stb);
1877 fputstr_unfiltered (parse->command, '"', stb);
1878 fputs_unfiltered (" (missing implementation)", stb);
1879
1880 make_cleanup_ui_file_delete (stb);
1881 error_stream (stb);
1882 }
1883 do_cleanups (cleanup);
1884 }
1885
1886 /* FIXME: This is just a hack so we can get some extra commands going.
1887 We don't want to channel things through the CLI, but call libgdb directly.
1888 Use only for synchronous commands. */
1889
1890 void
1891 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
1892 {
1893 if (cmd != 0)
1894 {
1895 struct cleanup *old_cleanups;
1896 char *run;
1897 if (args_p)
1898 run = xstrprintf ("%s %s", cmd, args);
1899 else
1900 run = xstrdup (cmd);
1901 if (mi_debug_p)
1902 /* FIXME: gdb_???? */
1903 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
1904 cmd, run);
1905 old_cleanups = make_cleanup (xfree, run);
1906 execute_command ( /*ui */ run, 0 /*from_tty */ );
1907 do_cleanups (old_cleanups);
1908 return;
1909 }
1910 }
1911
1912 void
1913 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
1914 {
1915 struct cleanup *old_cleanups;
1916 char *run;
1917
1918 if (target_can_async_p ())
1919 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
1920 else
1921 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
1922 old_cleanups = make_cleanup (xfree, run);
1923
1924 execute_command ( /*ui */ run, 0 /*from_tty */ );
1925
1926 if (target_can_async_p ())
1927 {
1928 /* If we're not executing, an exception should have been throw. */
1929 gdb_assert (is_running (inferior_ptid));
1930 do_cleanups (old_cleanups);
1931 }
1932 else
1933 {
1934 /* Do this before doing any printing. It would appear that some
1935 print code leaves garbage around in the buffer. */
1936 do_cleanups (old_cleanups);
1937 }
1938 }
1939
1940 void
1941 mi_load_progress (const char *section_name,
1942 unsigned long sent_so_far,
1943 unsigned long total_section,
1944 unsigned long total_sent,
1945 unsigned long grand_total)
1946 {
1947 struct timeval time_now, delta, update_threshold;
1948 static struct timeval last_update;
1949 static char *previous_sect_name = NULL;
1950 int new_section;
1951 struct ui_out *saved_uiout;
1952
1953 /* This function is called through deprecated_show_load_progress
1954 which means uiout may not be correct. Fix it for the duration
1955 of this function. */
1956 saved_uiout = uiout;
1957
1958 if (current_interp_named_p (INTERP_MI)
1959 || current_interp_named_p (INTERP_MI2))
1960 uiout = mi_out_new (2);
1961 else if (current_interp_named_p (INTERP_MI1))
1962 uiout = mi_out_new (1);
1963 else if (current_interp_named_p (INTERP_MI3))
1964 uiout = mi_out_new (3);
1965 else
1966 return;
1967
1968 update_threshold.tv_sec = 0;
1969 update_threshold.tv_usec = 500000;
1970 gettimeofday (&time_now, NULL);
1971
1972 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
1973 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
1974
1975 if (delta.tv_usec < 0)
1976 {
1977 delta.tv_sec -= 1;
1978 delta.tv_usec += 1000000L;
1979 }
1980
1981 new_section = (previous_sect_name ?
1982 strcmp (previous_sect_name, section_name) : 1);
1983 if (new_section)
1984 {
1985 struct cleanup *cleanup_tuple;
1986 xfree (previous_sect_name);
1987 previous_sect_name = xstrdup (section_name);
1988
1989 if (current_token)
1990 fputs_unfiltered (current_token, raw_stdout);
1991 fputs_unfiltered ("+download", raw_stdout);
1992 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1993 ui_out_field_string (uiout, "section", section_name);
1994 ui_out_field_int (uiout, "section-size", total_section);
1995 ui_out_field_int (uiout, "total-size", grand_total);
1996 do_cleanups (cleanup_tuple);
1997 mi_out_put (uiout, raw_stdout);
1998 fputs_unfiltered ("\n", raw_stdout);
1999 gdb_flush (raw_stdout);
2000 }
2001
2002 if (delta.tv_sec >= update_threshold.tv_sec &&
2003 delta.tv_usec >= update_threshold.tv_usec)
2004 {
2005 struct cleanup *cleanup_tuple;
2006 last_update.tv_sec = time_now.tv_sec;
2007 last_update.tv_usec = time_now.tv_usec;
2008 if (current_token)
2009 fputs_unfiltered (current_token, raw_stdout);
2010 fputs_unfiltered ("+download", raw_stdout);
2011 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2012 ui_out_field_string (uiout, "section", section_name);
2013 ui_out_field_int (uiout, "section-sent", sent_so_far);
2014 ui_out_field_int (uiout, "section-size", total_section);
2015 ui_out_field_int (uiout, "total-sent", total_sent);
2016 ui_out_field_int (uiout, "total-size", grand_total);
2017 do_cleanups (cleanup_tuple);
2018 mi_out_put (uiout, raw_stdout);
2019 fputs_unfiltered ("\n", raw_stdout);
2020 gdb_flush (raw_stdout);
2021 }
2022
2023 xfree (uiout);
2024 uiout = saved_uiout;
2025 }
2026
2027 static void
2028 timestamp (struct mi_timestamp *tv)
2029 {
2030 long usec;
2031 gettimeofday (&tv->wallclock, NULL);
2032 #ifdef HAVE_GETRUSAGE
2033 getrusage (RUSAGE_SELF, &rusage);
2034 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2035 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2036 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2037 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2038 #else
2039 usec = get_run_time ();
2040 tv->utime.tv_sec = usec/1000000L;
2041 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2042 tv->stime.tv_sec = 0;
2043 tv->stime.tv_usec = 0;
2044 #endif
2045 }
2046
2047 static void
2048 print_diff_now (struct mi_timestamp *start)
2049 {
2050 struct mi_timestamp now;
2051 timestamp (&now);
2052 print_diff (start, &now);
2053 }
2054
2055 void
2056 mi_print_timing_maybe (void)
2057 {
2058 /* If the command is -enable-timing then do_timings may be
2059 true whilst current_command_ts is not initialized. */
2060 if (do_timings && current_command_ts)
2061 print_diff_now (current_command_ts);
2062 }
2063
2064 static long
2065 timeval_diff (struct timeval start, struct timeval end)
2066 {
2067 return ((end.tv_sec - start.tv_sec) * 1000000L)
2068 + (end.tv_usec - start.tv_usec);
2069 }
2070
2071 static void
2072 print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
2073 {
2074 fprintf_unfiltered
2075 (raw_stdout,
2076 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2077 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2078 timeval_diff (start->utime, end->utime) / 1000000.0,
2079 timeval_diff (start->stime, end->stime) / 1000000.0);
2080 }
2081
2082 void
2083 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2084 {
2085 struct expression *expr;
2086 struct cleanup *back_to;
2087 LONGEST initval = 0;
2088 struct trace_state_variable *tsv;
2089 char *name = 0;
2090
2091 if (argc != 1 && argc != 2)
2092 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2093
2094 expr = parse_expression (argv[0]);
2095 back_to = make_cleanup (xfree, expr);
2096
2097 if (expr->nelts == 3 && expr->elts[0].opcode == OP_INTERNALVAR)
2098 {
2099 struct internalvar *intvar = expr->elts[1].internalvar;
2100 if (intvar)
2101 name = internalvar_name (intvar);
2102 }
2103
2104 if (!name || *name == '\0')
2105 error (_("Invalid name of trace variable"));
2106
2107 tsv = find_trace_state_variable (name);
2108 if (!tsv)
2109 tsv = create_trace_state_variable (name);
2110
2111 if (argc == 2)
2112 initval = value_as_long (parse_and_eval (argv[1]));
2113
2114 tsv->initial_value = initval;
2115
2116 do_cleanups (back_to);
2117 }
2118
2119 void
2120 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2121 {
2122 if (argc != 0)
2123 error (_("-trace-list-variables: no arguments are allowed"));
2124
2125 tvariables_info_1 ();
2126 }
2127
2128 void
2129 mi_cmd_trace_start (char *command, char **argv, int argc)
2130 {
2131 start_tracing ();
2132 }
2133
2134 void
2135 mi_cmd_trace_status (char *command, char **argv, int argc)
2136 {
2137 trace_status_mi (0);
2138 }
2139
2140 void
2141 mi_cmd_trace_stop (char *command, char **argv, int argc)
2142 {
2143 stop_tracing ();
2144 trace_status_mi (1);
2145 }
This page took 0.116213 seconds and 4 git commands to generate.