Simple unused variable removals
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "frame.h"
42 #include "mi-main.h"
43 #include "mi-common.h"
44 #include "language.h"
45 #include "valprint.h"
46 #include "inferior.h"
47 #include "osdata.h"
48 #include "common/gdb_splay_tree.h"
49 #include "tracepoint.h"
50 #include "ctf.h"
51 #include "ada-lang.h"
52 #include "linespec.h"
53 #include "extension.h"
54 #include "gdbcmd.h"
55 #include "observable.h"
56 #include "common/gdb_optional.h"
57 #include "common/byte-vector.h"
58
59 #include <ctype.h>
60 #include "run-time-clock.h"
61 #include <chrono>
62 #include "progspace-and-thread.h"
63 #include "common/rsp-low.h"
64 #include <algorithm>
65 #include <set>
66 #include <map>
67
68 enum
69 {
70 FROM_TTY = 0
71 };
72
73 int mi_debug_p;
74
75 /* This is used to pass the current command timestamp down to
76 continuation routines. */
77 static struct mi_timestamp *current_command_ts;
78
79 static int do_timings = 0;
80
81 char *current_token;
82 /* Few commands would like to know if options like --thread-group were
83 explicitly specified. This variable keeps the current parsed
84 command including all option, and make it possible. */
85 static struct mi_parse *current_context;
86
87 int running_result_record_printed = 1;
88
89 /* Flag indicating that the target has proceeded since the last
90 command was issued. */
91 int mi_proceeded;
92
93 static void mi_cmd_execute (struct mi_parse *parse);
94
95 static void mi_execute_cli_command (const char *cmd, int args_p,
96 const char *args);
97 static void mi_execute_async_cli_command (const char *cli_command,
98 char **argv, int argc);
99 static bool register_changed_p (int regnum, readonly_detached_regcache *,
100 readonly_detached_regcache *);
101 static void output_register (struct frame_info *, int regnum, int format,
102 int skip_unavailable);
103
104 /* Controls whether the frontend wants MI in async mode. */
105 static int mi_async = 0;
106
107 /* The set command writes to this variable. If the inferior is
108 executing, mi_async is *not* updated. */
109 static int mi_async_1 = 0;
110
111 static void
112 set_mi_async_command (const char *args, int from_tty,
113 struct cmd_list_element *c)
114 {
115 if (have_live_inferiors ())
116 {
117 mi_async_1 = mi_async;
118 error (_("Cannot change this setting while the inferior is running."));
119 }
120
121 mi_async = mi_async_1;
122 }
123
124 static void
125 show_mi_async_command (struct ui_file *file, int from_tty,
126 struct cmd_list_element *c,
127 const char *value)
128 {
129 fprintf_filtered (file,
130 _("Whether MI is in asynchronous mode is %s.\n"),
131 value);
132 }
133
134 /* A wrapper for target_can_async_p that takes the MI setting into
135 account. */
136
137 int
138 mi_async_p (void)
139 {
140 return mi_async && target_can_async_p ();
141 }
142
143 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
144 layer that calls libgdb. Any operation used in the below should be
145 formalized. */
146
147 static void timestamp (struct mi_timestamp *tv);
148
149 static void print_diff (struct ui_file *file, struct mi_timestamp *start,
150 struct mi_timestamp *end);
151
152 void
153 mi_cmd_gdb_exit (const char *command, char **argv, int argc)
154 {
155 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
156
157 /* We have to print everything right here because we never return. */
158 if (current_token)
159 fputs_unfiltered (current_token, mi->raw_stdout);
160 fputs_unfiltered ("^exit\n", mi->raw_stdout);
161 mi_out_put (current_uiout, mi->raw_stdout);
162 gdb_flush (mi->raw_stdout);
163 /* FIXME: The function called is not yet a formal libgdb function. */
164 quit_force (NULL, FROM_TTY);
165 }
166
167 void
168 mi_cmd_exec_next (const char *command, char **argv, int argc)
169 {
170 /* FIXME: Should call a libgdb function, not a cli wrapper. */
171 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
172 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
173 else
174 mi_execute_async_cli_command ("next", argv, argc);
175 }
176
177 void
178 mi_cmd_exec_next_instruction (const char *command, char **argv, int argc)
179 {
180 /* FIXME: Should call a libgdb function, not a cli wrapper. */
181 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
182 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
183 else
184 mi_execute_async_cli_command ("nexti", argv, argc);
185 }
186
187 void
188 mi_cmd_exec_step (const char *command, char **argv, int argc)
189 {
190 /* FIXME: Should call a libgdb function, not a cli wrapper. */
191 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
192 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
193 else
194 mi_execute_async_cli_command ("step", argv, argc);
195 }
196
197 void
198 mi_cmd_exec_step_instruction (const char *command, char **argv, int argc)
199 {
200 /* FIXME: Should call a libgdb function, not a cli wrapper. */
201 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
202 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
203 else
204 mi_execute_async_cli_command ("stepi", argv, argc);
205 }
206
207 void
208 mi_cmd_exec_finish (const char *command, char **argv, int argc)
209 {
210 /* FIXME: Should call a libgdb function, not a cli wrapper. */
211 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
212 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
213 else
214 mi_execute_async_cli_command ("finish", argv, argc);
215 }
216
217 void
218 mi_cmd_exec_return (const char *command, char **argv, int argc)
219 {
220 /* This command doesn't really execute the target, it just pops the
221 specified number of frames. */
222 if (argc)
223 /* Call return_command with from_tty argument equal to 0 so as to
224 avoid being queried. */
225 return_command (*argv, 0);
226 else
227 /* Call return_command with from_tty argument equal to 0 so as to
228 avoid being queried. */
229 return_command (NULL, 0);
230
231 /* Because we have called return_command with from_tty = 0, we need
232 to print the frame here. */
233 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
234 }
235
236 void
237 mi_cmd_exec_jump (const char *args, char **argv, int argc)
238 {
239 /* FIXME: Should call a libgdb function, not a cli wrapper. */
240 mi_execute_async_cli_command ("jump", argv, argc);
241 }
242
243 static void
244 proceed_thread (struct thread_info *thread, int pid)
245 {
246 if (thread->state != THREAD_STOPPED)
247 return;
248
249 if (pid != 0 && thread->ptid.pid () != pid)
250 return;
251
252 switch_to_thread (thread);
253 clear_proceed_status (0);
254 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
255 }
256
257 static int
258 proceed_thread_callback (struct thread_info *thread, void *arg)
259 {
260 int pid = *(int *)arg;
261
262 proceed_thread (thread, pid);
263 return 0;
264 }
265
266 static void
267 exec_continue (char **argv, int argc)
268 {
269 prepare_execution_command (current_top_target (), mi_async_p ());
270
271 if (non_stop)
272 {
273 /* In non-stop mode, 'resume' always resumes a single thread.
274 Therefore, to resume all threads of the current inferior, or
275 all threads in all inferiors, we need to iterate over
276 threads.
277
278 See comment on infcmd.c:proceed_thread_callback for rationale. */
279 if (current_context->all || current_context->thread_group != -1)
280 {
281 scoped_restore_current_thread restore_thread;
282 int pid = 0;
283
284 if (!current_context->all)
285 {
286 struct inferior *inf
287 = find_inferior_id (current_context->thread_group);
288
289 pid = inf->pid;
290 }
291 iterate_over_threads (proceed_thread_callback, &pid);
292 }
293 else
294 {
295 continue_1 (0);
296 }
297 }
298 else
299 {
300 scoped_restore save_multi = make_scoped_restore (&sched_multi);
301
302 if (current_context->all)
303 {
304 sched_multi = 1;
305 continue_1 (0);
306 }
307 else
308 {
309 /* In all-stop mode, -exec-continue traditionally resumed
310 either all threads, or one thread, depending on the
311 'scheduler-locking' variable. Let's continue to do the
312 same. */
313 continue_1 (1);
314 }
315 }
316 }
317
318 static void
319 exec_reverse_continue (char **argv, int argc)
320 {
321 enum exec_direction_kind dir = execution_direction;
322
323 if (dir == EXEC_REVERSE)
324 error (_("Already in reverse mode."));
325
326 if (!target_can_execute_reverse)
327 error (_("Target %s does not support this command."), target_shortname);
328
329 scoped_restore save_exec_dir = make_scoped_restore (&execution_direction,
330 EXEC_REVERSE);
331 exec_continue (argv, argc);
332 }
333
334 void
335 mi_cmd_exec_continue (const char *command, char **argv, int argc)
336 {
337 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
338 exec_reverse_continue (argv + 1, argc - 1);
339 else
340 exec_continue (argv, argc);
341 }
342
343 static int
344 interrupt_thread_callback (struct thread_info *thread, void *arg)
345 {
346 int pid = *(int *)arg;
347
348 if (thread->state != THREAD_RUNNING)
349 return 0;
350
351 if (thread->ptid.pid () != pid)
352 return 0;
353
354 target_stop (thread->ptid);
355 return 0;
356 }
357
358 /* Interrupt the execution of the target. Note how we must play
359 around with the token variables, in order to display the current
360 token in the result of the interrupt command, and the previous
361 execution token when the target finally stops. See comments in
362 mi_cmd_execute. */
363
364 void
365 mi_cmd_exec_interrupt (const char *command, char **argv, int argc)
366 {
367 /* In all-stop mode, everything stops, so we don't need to try
368 anything specific. */
369 if (!non_stop)
370 {
371 interrupt_target_1 (0);
372 return;
373 }
374
375 if (current_context->all)
376 {
377 /* This will interrupt all threads in all inferiors. */
378 interrupt_target_1 (1);
379 }
380 else if (current_context->thread_group != -1)
381 {
382 struct inferior *inf = find_inferior_id (current_context->thread_group);
383
384 iterate_over_threads (interrupt_thread_callback, &inf->pid);
385 }
386 else
387 {
388 /* Interrupt just the current thread -- either explicitly
389 specified via --thread or whatever was current before
390 MI command was sent. */
391 interrupt_target_1 (0);
392 }
393 }
394
395 /* Callback for iterate_over_inferiors which starts the execution
396 of the given inferior.
397
398 ARG is a pointer to an integer whose value, if non-zero, indicates
399 that the program should be stopped when reaching the main subprogram
400 (similar to what the CLI "start" command does). */
401
402 static int
403 run_one_inferior (struct inferior *inf, void *arg)
404 {
405 int start_p = *(int *) arg;
406 const char *run_cmd = start_p ? "start" : "run";
407 struct target_ops *run_target = find_run_target ();
408 int async_p = mi_async && run_target->can_async_p ();
409
410 if (inf->pid != 0)
411 {
412 thread_info *tp = any_thread_of_inferior (inf);
413 if (tp == NULL)
414 error (_("Inferior has no threads."));
415
416 switch_to_thread (tp);
417 }
418 else
419 {
420 set_current_inferior (inf);
421 switch_to_no_thread ();
422 set_current_program_space (inf->pspace);
423 }
424 mi_execute_cli_command (run_cmd, async_p,
425 async_p ? "&" : NULL);
426 return 0;
427 }
428
429 void
430 mi_cmd_exec_run (const char *command, char **argv, int argc)
431 {
432 int start_p = 0;
433
434 /* Parse the command options. */
435 enum opt
436 {
437 START_OPT,
438 };
439 static const struct mi_opt opts[] =
440 {
441 {"-start", START_OPT, 0},
442 {NULL, 0, 0},
443 };
444
445 int oind = 0;
446 char *oarg;
447
448 while (1)
449 {
450 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
451
452 if (opt < 0)
453 break;
454 switch ((enum opt) opt)
455 {
456 case START_OPT:
457 start_p = 1;
458 break;
459 }
460 }
461
462 /* This command does not accept any argument. Make sure the user
463 did not provide any. */
464 if (oind != argc)
465 error (_("Invalid argument: %s"), argv[oind]);
466
467 if (current_context->all)
468 {
469 scoped_restore_current_pspace_and_thread restore_pspace_thread;
470
471 iterate_over_inferiors (run_one_inferior, &start_p);
472 }
473 else
474 {
475 const char *run_cmd = start_p ? "start" : "run";
476 struct target_ops *run_target = find_run_target ();
477 int async_p = mi_async && run_target->can_async_p ();
478
479 mi_execute_cli_command (run_cmd, async_p,
480 async_p ? "&" : NULL);
481 }
482 }
483
484
485 static int
486 find_thread_of_process (struct thread_info *ti, void *p)
487 {
488 int pid = *(int *)p;
489
490 if (ti->ptid.pid () == pid && ti->state != THREAD_EXITED)
491 return 1;
492
493 return 0;
494 }
495
496 void
497 mi_cmd_target_detach (const char *command, char **argv, int argc)
498 {
499 if (argc != 0 && argc != 1)
500 error (_("Usage: -target-detach [pid | thread-group]"));
501
502 if (argc == 1)
503 {
504 struct thread_info *tp;
505 char *end = argv[0];
506 int pid;
507
508 /* First see if we are dealing with a thread-group id. */
509 if (*argv[0] == 'i')
510 {
511 struct inferior *inf;
512 int id = strtoul (argv[0] + 1, &end, 0);
513
514 if (*end != '\0')
515 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
516
517 inf = find_inferior_id (id);
518 if (!inf)
519 error (_("Non-existent thread-group id '%d'"), id);
520
521 pid = inf->pid;
522 }
523 else
524 {
525 /* We must be dealing with a pid. */
526 pid = strtol (argv[0], &end, 10);
527
528 if (*end != '\0')
529 error (_("Invalid identifier '%s'"), argv[0]);
530 }
531
532 /* Pick any thread in the desired process. Current
533 target_detach detaches from the parent of inferior_ptid. */
534 tp = iterate_over_threads (find_thread_of_process, &pid);
535 if (!tp)
536 error (_("Thread group is empty"));
537
538 switch_to_thread (tp);
539 }
540
541 detach_command (NULL, 0);
542 }
543
544 void
545 mi_cmd_target_flash_erase (const char *command, char **argv, int argc)
546 {
547 flash_erase_command (NULL, 0);
548 }
549
550 void
551 mi_cmd_thread_select (const char *command, char **argv, int argc)
552 {
553 if (argc != 1)
554 error (_("-thread-select: USAGE: threadnum."));
555
556 int num = value_as_long (parse_and_eval (argv[0]));
557 thread_info *thr = find_thread_global_id (num);
558 if (thr == NULL)
559 error (_("Thread ID %d not known."), num);
560
561 ptid_t previous_ptid = inferior_ptid;
562
563 thread_select (argv[0], thr);
564
565 print_selected_thread_frame (current_uiout,
566 USER_SELECTED_THREAD | USER_SELECTED_FRAME);
567
568 /* Notify if the thread has effectively changed. */
569 if (inferior_ptid != previous_ptid)
570 {
571 gdb::observers::user_selected_context_changed.notify
572 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
573 }
574 }
575
576 void
577 mi_cmd_thread_list_ids (const char *command, char **argv, int argc)
578 {
579 if (argc != 0)
580 error (_("-thread-list-ids: No arguments required."));
581
582 int num = 0;
583 int current_thread = -1;
584
585 update_thread_list ();
586
587 {
588 ui_out_emit_tuple tuple_emitter (current_uiout, "thread-ids");
589
590 struct thread_info *tp;
591 ALL_NON_EXITED_THREADS (tp)
592 {
593 if (tp->ptid == inferior_ptid)
594 current_thread = tp->global_num;
595
596 num++;
597 current_uiout->field_int ("thread-id", tp->global_num);
598 }
599 }
600
601 if (current_thread != -1)
602 current_uiout->field_int ("current-thread-id", current_thread);
603 current_uiout->field_int ("number-of-threads", num);
604 }
605
606 void
607 mi_cmd_thread_info (const char *command, char **argv, int argc)
608 {
609 if (argc != 0 && argc != 1)
610 error (_("Invalid MI command"));
611
612 print_thread_info (current_uiout, argv[0], -1);
613 }
614
615 struct collect_cores_data
616 {
617 int pid;
618 std::set<int> cores;
619 };
620
621 static int
622 collect_cores (struct thread_info *ti, void *xdata)
623 {
624 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
625
626 if (ti->ptid.pid () == data->pid)
627 {
628 int core = target_core_of_thread (ti->ptid);
629
630 if (core != -1)
631 data->cores.insert (core);
632 }
633
634 return 0;
635 }
636
637 struct print_one_inferior_data
638 {
639 int recurse;
640 const std::set<int> *inferiors;
641 };
642
643 static int
644 print_one_inferior (struct inferior *inferior, void *xdata)
645 {
646 struct print_one_inferior_data *top_data
647 = (struct print_one_inferior_data *) xdata;
648 struct ui_out *uiout = current_uiout;
649
650 if (top_data->inferiors->empty ()
651 || (top_data->inferiors->find (inferior->pid)
652 != top_data->inferiors->end ()))
653 {
654 struct collect_cores_data data;
655 ui_out_emit_tuple tuple_emitter (uiout, NULL);
656
657 uiout->field_fmt ("id", "i%d", inferior->num);
658 uiout->field_string ("type", "process");
659 if (inferior->has_exit_code)
660 uiout->field_string ("exit-code",
661 int_string (inferior->exit_code, 8, 0, 0, 1));
662 if (inferior->pid != 0)
663 uiout->field_int ("pid", inferior->pid);
664
665 if (inferior->pspace->pspace_exec_filename != NULL)
666 {
667 uiout->field_string ("executable",
668 inferior->pspace->pspace_exec_filename);
669 }
670
671 if (inferior->pid != 0)
672 {
673 data.pid = inferior->pid;
674 iterate_over_threads (collect_cores, &data);
675 }
676
677 if (!data.cores.empty ())
678 {
679 ui_out_emit_list list_emitter (uiout, "cores");
680
681 for (int b : data.cores)
682 uiout->field_int (NULL, b);
683 }
684
685 if (top_data->recurse)
686 print_thread_info (uiout, NULL, inferior->pid);
687 }
688
689 return 0;
690 }
691
692 /* Output a field named 'cores' with a list as the value. The
693 elements of the list are obtained by splitting 'cores' on
694 comma. */
695
696 static void
697 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
698 {
699 ui_out_emit_list list_emitter (uiout, field_name);
700 gdb::unique_xmalloc_ptr<char> cores (xstrdup (xcores));
701 char *p = cores.get ();
702
703 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
704 uiout->field_string (NULL, p);
705 }
706
707 static void
708 list_available_thread_groups (const std::set<int> &ids, int recurse)
709 {
710 struct ui_out *uiout = current_uiout;
711
712 /* This keeps a map from integer (pid) to vector of struct osdata_item.
713 The vector contains information about all threads for the given pid. */
714 std::map<int, std::vector<osdata_item>> tree;
715
716 /* get_osdata will throw if it cannot return data. */
717 std::unique_ptr<osdata> data = get_osdata ("processes");
718
719 if (recurse)
720 {
721 std::unique_ptr<osdata> threads = get_osdata ("threads");
722
723 for (const osdata_item &item : threads->items)
724 {
725 const std::string *pid = get_osdata_column (item, "pid");
726 int pid_i = strtoul (pid->c_str (), NULL, 0);
727
728 tree[pid_i].push_back (item);
729 }
730 }
731
732 ui_out_emit_list list_emitter (uiout, "groups");
733
734 for (const osdata_item &item : data->items)
735 {
736 const std::string *pid = get_osdata_column (item, "pid");
737 const std::string *cmd = get_osdata_column (item, "command");
738 const std::string *user = get_osdata_column (item, "user");
739 const std::string *cores = get_osdata_column (item, "cores");
740
741 int pid_i = strtoul (pid->c_str (), NULL, 0);
742
743 /* At present, the target will return all available processes
744 and if information about specific ones was required, we filter
745 undesired processes here. */
746 if (!ids.empty () && ids.find (pid_i) == ids.end ())
747 continue;
748
749 ui_out_emit_tuple tuple_emitter (uiout, NULL);
750
751 uiout->field_fmt ("id", "%s", pid->c_str ());
752 uiout->field_string ("type", "process");
753 if (cmd)
754 uiout->field_string ("description", cmd->c_str ());
755 if (user)
756 uiout->field_string ("user", user->c_str ());
757 if (cores)
758 output_cores (uiout, "cores", cores->c_str ());
759
760 if (recurse)
761 {
762 auto n = tree.find (pid_i);
763 if (n != tree.end ())
764 {
765 std::vector<osdata_item> &children = n->second;
766
767 ui_out_emit_list thread_list_emitter (uiout, "threads");
768
769 for (const osdata_item &child : children)
770 {
771 ui_out_emit_tuple tuple_emitter (uiout, NULL);
772 const std::string *tid = get_osdata_column (child, "tid");
773 const std::string *tcore = get_osdata_column (child, "core");
774
775 uiout->field_string ("id", tid->c_str ());
776 if (tcore)
777 uiout->field_string ("core", tcore->c_str ());
778 }
779 }
780 }
781 }
782 }
783
784 void
785 mi_cmd_list_thread_groups (const char *command, char **argv, int argc)
786 {
787 struct ui_out *uiout = current_uiout;
788 int available = 0;
789 int recurse = 0;
790 std::set<int> ids;
791
792 enum opt
793 {
794 AVAILABLE_OPT, RECURSE_OPT
795 };
796 static const struct mi_opt opts[] =
797 {
798 {"-available", AVAILABLE_OPT, 0},
799 {"-recurse", RECURSE_OPT, 1},
800 { 0, 0, 0 }
801 };
802
803 int oind = 0;
804 char *oarg;
805
806 while (1)
807 {
808 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
809 &oind, &oarg);
810
811 if (opt < 0)
812 break;
813 switch ((enum opt) opt)
814 {
815 case AVAILABLE_OPT:
816 available = 1;
817 break;
818 case RECURSE_OPT:
819 if (strcmp (oarg, "0") == 0)
820 ;
821 else if (strcmp (oarg, "1") == 0)
822 recurse = 1;
823 else
824 error (_("only '0' and '1' are valid values "
825 "for the '--recurse' option"));
826 break;
827 }
828 }
829
830 for (; oind < argc; ++oind)
831 {
832 char *end;
833 int inf;
834
835 if (*(argv[oind]) != 'i')
836 error (_("invalid syntax of group id '%s'"), argv[oind]);
837
838 inf = strtoul (argv[oind] + 1, &end, 0);
839
840 if (*end != '\0')
841 error (_("invalid syntax of group id '%s'"), argv[oind]);
842 ids.insert (inf);
843 }
844
845 if (available)
846 {
847 list_available_thread_groups (ids, recurse);
848 }
849 else if (ids.size () == 1)
850 {
851 /* Local thread groups, single id. */
852 int id = *(ids.begin ());
853 struct inferior *inf = find_inferior_id (id);
854
855 if (!inf)
856 error (_("Non-existent thread group id '%d'"), id);
857
858 print_thread_info (uiout, NULL, inf->pid);
859 }
860 else
861 {
862 struct print_one_inferior_data data;
863
864 data.recurse = recurse;
865 data.inferiors = &ids;
866
867 /* Local thread groups. Either no explicit ids -- and we
868 print everything, or several explicit ids. In both cases,
869 we print more than one group, and have to use 'groups'
870 as the top-level element. */
871 ui_out_emit_list list_emitter (uiout, "groups");
872 update_thread_list ();
873 iterate_over_inferiors (print_one_inferior, &data);
874 }
875 }
876
877 void
878 mi_cmd_data_list_register_names (const char *command, char **argv, int argc)
879 {
880 struct gdbarch *gdbarch;
881 struct ui_out *uiout = current_uiout;
882 int regnum, numregs;
883 int i;
884
885 /* Note that the test for a valid register must include checking the
886 gdbarch_register_name because gdbarch_num_regs may be allocated
887 for the union of the register sets within a family of related
888 processors. In this case, some entries of gdbarch_register_name
889 will change depending upon the particular processor being
890 debugged. */
891
892 gdbarch = get_current_arch ();
893 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
894
895 ui_out_emit_list list_emitter (uiout, "register-names");
896
897 if (argc == 0) /* No args, just do all the regs. */
898 {
899 for (regnum = 0;
900 regnum < numregs;
901 regnum++)
902 {
903 if (gdbarch_register_name (gdbarch, regnum) == NULL
904 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
905 uiout->field_string (NULL, "");
906 else
907 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
908 }
909 }
910
911 /* Else, list of register #s, just do listed regs. */
912 for (i = 0; i < argc; i++)
913 {
914 regnum = atoi (argv[i]);
915 if (regnum < 0 || regnum >= numregs)
916 error (_("bad register number"));
917
918 if (gdbarch_register_name (gdbarch, regnum) == NULL
919 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
920 uiout->field_string (NULL, "");
921 else
922 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
923 }
924 }
925
926 void
927 mi_cmd_data_list_changed_registers (const char *command, char **argv, int argc)
928 {
929 static std::unique_ptr<readonly_detached_regcache> this_regs;
930 struct ui_out *uiout = current_uiout;
931 std::unique_ptr<readonly_detached_regcache> prev_regs;
932 struct gdbarch *gdbarch;
933 int regnum, numregs;
934 int i;
935
936 /* The last time we visited this function, the current frame's
937 register contents were saved in THIS_REGS. Move THIS_REGS over
938 to PREV_REGS, and refresh THIS_REGS with the now-current register
939 contents. */
940
941 prev_regs = std::move (this_regs);
942 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
943
944 /* Note that the test for a valid register must include checking the
945 gdbarch_register_name because gdbarch_num_regs may be allocated
946 for the union of the register sets within a family of related
947 processors. In this case, some entries of gdbarch_register_name
948 will change depending upon the particular processor being
949 debugged. */
950
951 gdbarch = this_regs->arch ();
952 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
953
954 ui_out_emit_list list_emitter (uiout, "changed-registers");
955
956 if (argc == 0)
957 {
958 /* No args, just do all the regs. */
959 for (regnum = 0;
960 regnum < numregs;
961 regnum++)
962 {
963 if (gdbarch_register_name (gdbarch, regnum) == NULL
964 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
965 continue;
966
967 if (register_changed_p (regnum, prev_regs.get (),
968 this_regs.get ()))
969 uiout->field_int (NULL, regnum);
970 }
971 }
972
973 /* Else, list of register #s, just do listed regs. */
974 for (i = 0; i < argc; i++)
975 {
976 regnum = atoi (argv[i]);
977
978 if (regnum >= 0
979 && regnum < numregs
980 && gdbarch_register_name (gdbarch, regnum) != NULL
981 && *gdbarch_register_name (gdbarch, regnum) != '\000')
982 {
983 if (register_changed_p (regnum, prev_regs.get (),
984 this_regs.get ()))
985 uiout->field_int (NULL, regnum);
986 }
987 else
988 error (_("bad register number"));
989 }
990 }
991
992 static bool
993 register_changed_p (int regnum, readonly_detached_regcache *prev_regs,
994 readonly_detached_regcache *this_regs)
995 {
996 struct gdbarch *gdbarch = this_regs->arch ();
997 struct value *prev_value, *this_value;
998
999 /* First time through or after gdbarch change consider all registers
1000 as changed. */
1001 if (!prev_regs || prev_regs->arch () != gdbarch)
1002 return true;
1003
1004 /* Get register contents and compare. */
1005 prev_value = prev_regs->cooked_read_value (regnum);
1006 this_value = this_regs->cooked_read_value (regnum);
1007 gdb_assert (prev_value != NULL);
1008 gdb_assert (this_value != NULL);
1009
1010 auto ret = !value_contents_eq (prev_value, 0, this_value, 0,
1011 register_size (gdbarch, regnum));
1012
1013 release_value (prev_value);
1014 release_value (this_value);
1015 return ret;
1016 }
1017
1018 /* Return a list of register number and value pairs. The valid
1019 arguments expected are: a letter indicating the format in which to
1020 display the registers contents. This can be one of: x
1021 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1022 (raw). After the format argument there can be a sequence of
1023 numbers, indicating which registers to fetch the content of. If
1024 the format is the only argument, a list of all the registers with
1025 their values is returned. */
1026
1027 void
1028 mi_cmd_data_list_register_values (const char *command, char **argv, int argc)
1029 {
1030 struct ui_out *uiout = current_uiout;
1031 struct frame_info *frame;
1032 struct gdbarch *gdbarch;
1033 int regnum, numregs, format;
1034 int i;
1035 int skip_unavailable = 0;
1036 int oind = 0;
1037 enum opt
1038 {
1039 SKIP_UNAVAILABLE,
1040 };
1041 static const struct mi_opt opts[] =
1042 {
1043 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1044 { 0, 0, 0 }
1045 };
1046
1047 /* Note that the test for a valid register must include checking the
1048 gdbarch_register_name because gdbarch_num_regs may be allocated
1049 for the union of the register sets within a family of related
1050 processors. In this case, some entries of gdbarch_register_name
1051 will change depending upon the particular processor being
1052 debugged. */
1053
1054 while (1)
1055 {
1056 char *oarg;
1057 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1058 opts, &oind, &oarg);
1059
1060 if (opt < 0)
1061 break;
1062 switch ((enum opt) opt)
1063 {
1064 case SKIP_UNAVAILABLE:
1065 skip_unavailable = 1;
1066 break;
1067 }
1068 }
1069
1070 if (argc - oind < 1)
1071 error (_("-data-list-register-values: Usage: "
1072 "-data-list-register-values [--skip-unavailable] <format>"
1073 " [<regnum1>...<regnumN>]"));
1074
1075 format = (int) argv[oind][0];
1076
1077 frame = get_selected_frame (NULL);
1078 gdbarch = get_frame_arch (frame);
1079 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1080
1081 ui_out_emit_list list_emitter (uiout, "register-values");
1082
1083 if (argc - oind == 1)
1084 {
1085 /* No args, beside the format: do all the regs. */
1086 for (regnum = 0;
1087 regnum < numregs;
1088 regnum++)
1089 {
1090 if (gdbarch_register_name (gdbarch, regnum) == NULL
1091 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1092 continue;
1093
1094 output_register (frame, regnum, format, skip_unavailable);
1095 }
1096 }
1097
1098 /* Else, list of register #s, just do listed regs. */
1099 for (i = 1 + oind; i < argc; i++)
1100 {
1101 regnum = atoi (argv[i]);
1102
1103 if (regnum >= 0
1104 && regnum < numregs
1105 && gdbarch_register_name (gdbarch, regnum) != NULL
1106 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1107 output_register (frame, regnum, format, skip_unavailable);
1108 else
1109 error (_("bad register number"));
1110 }
1111 }
1112
1113 /* Output one register REGNUM's contents in the desired FORMAT. If
1114 SKIP_UNAVAILABLE is true, skip the register if it is
1115 unavailable. */
1116
1117 static void
1118 output_register (struct frame_info *frame, int regnum, int format,
1119 int skip_unavailable)
1120 {
1121 struct ui_out *uiout = current_uiout;
1122 struct value *val = value_of_register (regnum, frame);
1123 struct value_print_options opts;
1124
1125 if (skip_unavailable && !value_entirely_available (val))
1126 return;
1127
1128 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1129 uiout->field_int ("number", regnum);
1130
1131 if (format == 'N')
1132 format = 0;
1133
1134 if (format == 'r')
1135 format = 'z';
1136
1137 string_file stb;
1138
1139 get_formatted_print_options (&opts, format);
1140 opts.deref_ref = 1;
1141 val_print (value_type (val),
1142 value_embedded_offset (val), 0,
1143 &stb, 0, val, &opts, current_language);
1144 uiout->field_stream ("value", stb);
1145 }
1146
1147 /* Write given values into registers. The registers and values are
1148 given as pairs. The corresponding MI command is
1149 -data-write-register-values <format>
1150 [<regnum1> <value1>...<regnumN> <valueN>] */
1151 void
1152 mi_cmd_data_write_register_values (const char *command, char **argv, int argc)
1153 {
1154 struct regcache *regcache;
1155 struct gdbarch *gdbarch;
1156 int numregs, i;
1157
1158 /* Note that the test for a valid register must include checking the
1159 gdbarch_register_name because gdbarch_num_regs may be allocated
1160 for the union of the register sets within a family of related
1161 processors. In this case, some entries of gdbarch_register_name
1162 will change depending upon the particular processor being
1163 debugged. */
1164
1165 regcache = get_current_regcache ();
1166 gdbarch = regcache->arch ();
1167 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1168
1169 if (argc == 0)
1170 error (_("-data-write-register-values: Usage: -data-write-register-"
1171 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1172
1173 if (!target_has_registers)
1174 error (_("-data-write-register-values: No registers."));
1175
1176 if (!(argc - 1))
1177 error (_("-data-write-register-values: No regs and values specified."));
1178
1179 if ((argc - 1) % 2)
1180 error (_("-data-write-register-values: "
1181 "Regs and vals are not in pairs."));
1182
1183 for (i = 1; i < argc; i = i + 2)
1184 {
1185 int regnum = atoi (argv[i]);
1186
1187 if (regnum >= 0 && regnum < numregs
1188 && gdbarch_register_name (gdbarch, regnum)
1189 && *gdbarch_register_name (gdbarch, regnum))
1190 {
1191 LONGEST value;
1192
1193 /* Get the value as a number. */
1194 value = parse_and_eval_address (argv[i + 1]);
1195
1196 /* Write it down. */
1197 regcache_cooked_write_signed (regcache, regnum, value);
1198 }
1199 else
1200 error (_("bad register number"));
1201 }
1202 }
1203
1204 /* Evaluate the value of the argument. The argument is an
1205 expression. If the expression contains spaces it needs to be
1206 included in double quotes. */
1207
1208 void
1209 mi_cmd_data_evaluate_expression (const char *command, char **argv, int argc)
1210 {
1211 struct value *val;
1212 struct value_print_options opts;
1213 struct ui_out *uiout = current_uiout;
1214
1215 if (argc != 1)
1216 error (_("-data-evaluate-expression: "
1217 "Usage: -data-evaluate-expression expression"));
1218
1219 expression_up expr = parse_expression (argv[0]);
1220
1221 val = evaluate_expression (expr.get ());
1222
1223 string_file stb;
1224
1225 /* Print the result of the expression evaluation. */
1226 get_user_print_options (&opts);
1227 opts.deref_ref = 0;
1228 common_val_print (val, &stb, 0, &opts, current_language);
1229
1230 uiout->field_stream ("value", stb);
1231 }
1232
1233 /* This is the -data-read-memory command.
1234
1235 ADDR: start address of data to be dumped.
1236 WORD-FORMAT: a char indicating format for the ``word''. See
1237 the ``x'' command.
1238 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1239 NR_ROW: Number of rows.
1240 NR_COL: The number of colums (words per row).
1241 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1242 ASCHAR for unprintable characters.
1243
1244 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1245 displayes them. Returns:
1246
1247 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1248
1249 Returns:
1250 The number of bytes read is SIZE*ROW*COL. */
1251
1252 void
1253 mi_cmd_data_read_memory (const char *command, char **argv, int argc)
1254 {
1255 struct gdbarch *gdbarch = get_current_arch ();
1256 struct ui_out *uiout = current_uiout;
1257 CORE_ADDR addr;
1258 long total_bytes, nr_cols, nr_rows;
1259 char word_format;
1260 struct type *word_type;
1261 long word_size;
1262 char word_asize;
1263 char aschar;
1264 int nr_bytes;
1265 long offset = 0;
1266 int oind = 0;
1267 char *oarg;
1268 enum opt
1269 {
1270 OFFSET_OPT
1271 };
1272 static const struct mi_opt opts[] =
1273 {
1274 {"o", OFFSET_OPT, 1},
1275 { 0, 0, 0 }
1276 };
1277
1278 while (1)
1279 {
1280 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1281 &oind, &oarg);
1282
1283 if (opt < 0)
1284 break;
1285 switch ((enum opt) opt)
1286 {
1287 case OFFSET_OPT:
1288 offset = atol (oarg);
1289 break;
1290 }
1291 }
1292 argv += oind;
1293 argc -= oind;
1294
1295 if (argc < 5 || argc > 6)
1296 error (_("-data-read-memory: Usage: "
1297 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1298
1299 /* Extract all the arguments. */
1300
1301 /* Start address of the memory dump. */
1302 addr = parse_and_eval_address (argv[0]) + offset;
1303 /* The format character to use when displaying a memory word. See
1304 the ``x'' command. */
1305 word_format = argv[1][0];
1306 /* The size of the memory word. */
1307 word_size = atol (argv[2]);
1308 switch (word_size)
1309 {
1310 case 1:
1311 word_type = builtin_type (gdbarch)->builtin_int8;
1312 word_asize = 'b';
1313 break;
1314 case 2:
1315 word_type = builtin_type (gdbarch)->builtin_int16;
1316 word_asize = 'h';
1317 break;
1318 case 4:
1319 word_type = builtin_type (gdbarch)->builtin_int32;
1320 word_asize = 'w';
1321 break;
1322 case 8:
1323 word_type = builtin_type (gdbarch)->builtin_int64;
1324 word_asize = 'g';
1325 break;
1326 default:
1327 word_type = builtin_type (gdbarch)->builtin_int8;
1328 word_asize = 'b';
1329 }
1330 /* The number of rows. */
1331 nr_rows = atol (argv[3]);
1332 if (nr_rows <= 0)
1333 error (_("-data-read-memory: invalid number of rows."));
1334
1335 /* Number of bytes per row. */
1336 nr_cols = atol (argv[4]);
1337 if (nr_cols <= 0)
1338 error (_("-data-read-memory: invalid number of columns."));
1339
1340 /* The un-printable character when printing ascii. */
1341 if (argc == 6)
1342 aschar = *argv[5];
1343 else
1344 aschar = 0;
1345
1346 /* Create a buffer and read it in. */
1347 total_bytes = word_size * nr_rows * nr_cols;
1348
1349 gdb::byte_vector mbuf (total_bytes);
1350
1351 nr_bytes = target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1352 mbuf.data (), addr, total_bytes);
1353 if (nr_bytes <= 0)
1354 error (_("Unable to read memory."));
1355
1356 /* Output the header information. */
1357 uiout->field_core_addr ("addr", gdbarch, addr);
1358 uiout->field_int ("nr-bytes", nr_bytes);
1359 uiout->field_int ("total-bytes", total_bytes);
1360 uiout->field_core_addr ("next-row", gdbarch, addr + word_size * nr_cols);
1361 uiout->field_core_addr ("prev-row", gdbarch, addr - word_size * nr_cols);
1362 uiout->field_core_addr ("next-page", gdbarch, addr + total_bytes);
1363 uiout->field_core_addr ("prev-page", gdbarch, addr - total_bytes);
1364
1365 /* Build the result as a two dimentional table. */
1366 {
1367 int row;
1368 int row_byte;
1369
1370 string_file stream;
1371
1372 ui_out_emit_list list_emitter (uiout, "memory");
1373 for (row = 0, row_byte = 0;
1374 row < nr_rows;
1375 row++, row_byte += nr_cols * word_size)
1376 {
1377 int col;
1378 int col_byte;
1379 struct value_print_options opts;
1380
1381 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1382 uiout->field_core_addr ("addr", gdbarch, addr + row_byte);
1383 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1384 row_byte); */
1385 {
1386 ui_out_emit_list list_data_emitter (uiout, "data");
1387 get_formatted_print_options (&opts, word_format);
1388 for (col = 0, col_byte = row_byte;
1389 col < nr_cols;
1390 col++, col_byte += word_size)
1391 {
1392 if (col_byte + word_size > nr_bytes)
1393 {
1394 uiout->field_string (NULL, "N/A");
1395 }
1396 else
1397 {
1398 stream.clear ();
1399 print_scalar_formatted (&mbuf[col_byte], word_type, &opts,
1400 word_asize, &stream);
1401 uiout->field_stream (NULL, stream);
1402 }
1403 }
1404 }
1405
1406 if (aschar)
1407 {
1408 int byte;
1409
1410 stream.clear ();
1411 for (byte = row_byte;
1412 byte < row_byte + word_size * nr_cols; byte++)
1413 {
1414 if (byte >= nr_bytes)
1415 stream.putc ('X');
1416 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1417 stream.putc (aschar);
1418 else
1419 stream.putc (mbuf[byte]);
1420 }
1421 uiout->field_stream ("ascii", stream);
1422 }
1423 }
1424 }
1425 }
1426
1427 void
1428 mi_cmd_data_read_memory_bytes (const char *command, char **argv, int argc)
1429 {
1430 struct gdbarch *gdbarch = get_current_arch ();
1431 struct ui_out *uiout = current_uiout;
1432 CORE_ADDR addr;
1433 LONGEST length;
1434 long offset = 0;
1435 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1436 int oind = 0;
1437 char *oarg;
1438 enum opt
1439 {
1440 OFFSET_OPT
1441 };
1442 static const struct mi_opt opts[] =
1443 {
1444 {"o", OFFSET_OPT, 1},
1445 { 0, 0, 0 }
1446 };
1447
1448 while (1)
1449 {
1450 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1451 &oind, &oarg);
1452 if (opt < 0)
1453 break;
1454 switch ((enum opt) opt)
1455 {
1456 case OFFSET_OPT:
1457 offset = atol (oarg);
1458 break;
1459 }
1460 }
1461 argv += oind;
1462 argc -= oind;
1463
1464 if (argc != 2)
1465 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1466
1467 addr = parse_and_eval_address (argv[0]) + offset;
1468 length = atol (argv[1]);
1469
1470 std::vector<memory_read_result> result
1471 = read_memory_robust (current_top_target (), addr, length);
1472
1473 if (result.size () == 0)
1474 error (_("Unable to read memory."));
1475
1476 ui_out_emit_list list_emitter (uiout, "memory");
1477 for (const memory_read_result &read_result : result)
1478 {
1479 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1480
1481 uiout->field_core_addr ("begin", gdbarch, read_result.begin);
1482 uiout->field_core_addr ("offset", gdbarch, read_result.begin - addr);
1483 uiout->field_core_addr ("end", gdbarch, read_result.end);
1484
1485 std::string data = bin2hex (read_result.data.get (),
1486 (read_result.end - read_result.begin)
1487 * unit_size);
1488 uiout->field_string ("contents", data.c_str ());
1489 }
1490 }
1491
1492 /* Implementation of the -data-write_memory command.
1493
1494 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1495 offset from the beginning of the memory grid row where the cell to
1496 be written is.
1497 ADDR: start address of the row in the memory grid where the memory
1498 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1499 the location to write to.
1500 FORMAT: a char indicating format for the ``word''. See
1501 the ``x'' command.
1502 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1503 VALUE: value to be written into the memory address.
1504
1505 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1506
1507 Prints nothing. */
1508
1509 void
1510 mi_cmd_data_write_memory (const char *command, char **argv, int argc)
1511 {
1512 struct gdbarch *gdbarch = get_current_arch ();
1513 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1514 CORE_ADDR addr;
1515 long word_size;
1516 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1517 enough when using a compiler other than GCC. */
1518 LONGEST value;
1519 long offset = 0;
1520 int oind = 0;
1521 char *oarg;
1522 enum opt
1523 {
1524 OFFSET_OPT
1525 };
1526 static const struct mi_opt opts[] =
1527 {
1528 {"o", OFFSET_OPT, 1},
1529 { 0, 0, 0 }
1530 };
1531
1532 while (1)
1533 {
1534 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1535 &oind, &oarg);
1536
1537 if (opt < 0)
1538 break;
1539 switch ((enum opt) opt)
1540 {
1541 case OFFSET_OPT:
1542 offset = atol (oarg);
1543 break;
1544 }
1545 }
1546 argv += oind;
1547 argc -= oind;
1548
1549 if (argc != 4)
1550 error (_("-data-write-memory: Usage: "
1551 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1552
1553 /* Extract all the arguments. */
1554 /* Start address of the memory dump. */
1555 addr = parse_and_eval_address (argv[0]);
1556 /* The size of the memory word. */
1557 word_size = atol (argv[2]);
1558
1559 /* Calculate the real address of the write destination. */
1560 addr += (offset * word_size);
1561
1562 /* Get the value as a number. */
1563 value = parse_and_eval_address (argv[3]);
1564 /* Get the value into an array. */
1565 gdb::byte_vector buffer (word_size);
1566 store_signed_integer (buffer.data (), word_size, byte_order, value);
1567 /* Write it down to memory. */
1568 write_memory_with_notification (addr, buffer.data (), word_size);
1569 }
1570
1571 /* Implementation of the -data-write-memory-bytes command.
1572
1573 ADDR: start address
1574 DATA: string of bytes to write at that address
1575 COUNT: number of bytes to be filled (decimal integer). */
1576
1577 void
1578 mi_cmd_data_write_memory_bytes (const char *command, char **argv, int argc)
1579 {
1580 CORE_ADDR addr;
1581 char *cdata;
1582 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1583 long int count_units;
1584 int unit_size;
1585
1586 if (argc != 2 && argc != 3)
1587 error (_("Usage: ADDR DATA [COUNT]."));
1588
1589 addr = parse_and_eval_address (argv[0]);
1590 cdata = argv[1];
1591 len_hex = strlen (cdata);
1592 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1593
1594 if (len_hex % (unit_size * 2) != 0)
1595 error (_("Hex-encoded '%s' must represent an integral number of "
1596 "addressable memory units."),
1597 cdata);
1598
1599 len_bytes = len_hex / 2;
1600 len_units = len_bytes / unit_size;
1601
1602 if (argc == 3)
1603 count_units = strtoul (argv[2], NULL, 10);
1604 else
1605 count_units = len_units;
1606
1607 gdb::byte_vector databuf (len_bytes);
1608
1609 for (i = 0; i < len_bytes; ++i)
1610 {
1611 int x;
1612 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1613 error (_("Invalid argument"));
1614 databuf[i] = (gdb_byte) x;
1615 }
1616
1617 gdb::byte_vector data;
1618 if (len_units < count_units)
1619 {
1620 /* Pattern is made of less units than count:
1621 repeat pattern to fill memory. */
1622 data = gdb::byte_vector (count_units * unit_size);
1623
1624 /* Number of times the pattern is entirely repeated. */
1625 steps = count_units / len_units;
1626 /* Number of remaining addressable memory units. */
1627 remaining_units = count_units % len_units;
1628 for (i = 0; i < steps; i++)
1629 memcpy (&data[i * len_bytes], &databuf[0], len_bytes);
1630
1631 if (remaining_units > 0)
1632 memcpy (&data[steps * len_bytes], &databuf[0],
1633 remaining_units * unit_size);
1634 }
1635 else
1636 {
1637 /* Pattern is longer than or equal to count:
1638 just copy count addressable memory units. */
1639 data = std::move (databuf);
1640 }
1641
1642 write_memory_with_notification (addr, data.data (), count_units);
1643 }
1644
1645 void
1646 mi_cmd_enable_timings (const char *command, char **argv, int argc)
1647 {
1648 if (argc == 0)
1649 do_timings = 1;
1650 else if (argc == 1)
1651 {
1652 if (strcmp (argv[0], "yes") == 0)
1653 do_timings = 1;
1654 else if (strcmp (argv[0], "no") == 0)
1655 do_timings = 0;
1656 else
1657 goto usage_error;
1658 }
1659 else
1660 goto usage_error;
1661
1662 return;
1663
1664 usage_error:
1665 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1666 }
1667
1668 void
1669 mi_cmd_list_features (const char *command, char **argv, int argc)
1670 {
1671 if (argc == 0)
1672 {
1673 struct ui_out *uiout = current_uiout;
1674
1675 ui_out_emit_list list_emitter (uiout, "features");
1676 uiout->field_string (NULL, "frozen-varobjs");
1677 uiout->field_string (NULL, "pending-breakpoints");
1678 uiout->field_string (NULL, "thread-info");
1679 uiout->field_string (NULL, "data-read-memory-bytes");
1680 uiout->field_string (NULL, "breakpoint-notifications");
1681 uiout->field_string (NULL, "ada-task-info");
1682 uiout->field_string (NULL, "language-option");
1683 uiout->field_string (NULL, "info-gdb-mi-command");
1684 uiout->field_string (NULL, "undefined-command-error-code");
1685 uiout->field_string (NULL, "exec-run-start-option");
1686
1687 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1688 uiout->field_string (NULL, "python");
1689
1690 return;
1691 }
1692
1693 error (_("-list-features should be passed no arguments"));
1694 }
1695
1696 void
1697 mi_cmd_list_target_features (const char *command, char **argv, int argc)
1698 {
1699 if (argc == 0)
1700 {
1701 struct ui_out *uiout = current_uiout;
1702
1703 ui_out_emit_list list_emitter (uiout, "features");
1704 if (mi_async_p ())
1705 uiout->field_string (NULL, "async");
1706 if (target_can_execute_reverse)
1707 uiout->field_string (NULL, "reverse");
1708 return;
1709 }
1710
1711 error (_("-list-target-features should be passed no arguments"));
1712 }
1713
1714 void
1715 mi_cmd_add_inferior (const char *command, char **argv, int argc)
1716 {
1717 struct inferior *inf;
1718
1719 if (argc != 0)
1720 error (_("-add-inferior should be passed no arguments"));
1721
1722 inf = add_inferior_with_spaces ();
1723
1724 current_uiout->field_fmt ("inferior", "i%d", inf->num);
1725 }
1726
1727 /* Callback used to find the first inferior other than the current
1728 one. */
1729
1730 static int
1731 get_other_inferior (struct inferior *inf, void *arg)
1732 {
1733 if (inf == current_inferior ())
1734 return 0;
1735
1736 return 1;
1737 }
1738
1739 void
1740 mi_cmd_remove_inferior (const char *command, char **argv, int argc)
1741 {
1742 int id;
1743 struct inferior *inf;
1744
1745 if (argc != 1)
1746 error (_("-remove-inferior should be passed a single argument"));
1747
1748 if (sscanf (argv[0], "i%d", &id) != 1)
1749 error (_("the thread group id is syntactically invalid"));
1750
1751 inf = find_inferior_id (id);
1752 if (!inf)
1753 error (_("the specified thread group does not exist"));
1754
1755 if (inf->pid != 0)
1756 error (_("cannot remove an active inferior"));
1757
1758 if (inf == current_inferior ())
1759 {
1760 struct thread_info *tp = 0;
1761 struct inferior *new_inferior
1762 = iterate_over_inferiors (get_other_inferior, NULL);
1763
1764 if (new_inferior == NULL)
1765 error (_("Cannot remove last inferior"));
1766
1767 set_current_inferior (new_inferior);
1768 if (new_inferior->pid != 0)
1769 tp = any_thread_of_inferior (new_inferior);
1770 if (tp != NULL)
1771 switch_to_thread (tp);
1772 else
1773 switch_to_no_thread ();
1774 set_current_program_space (new_inferior->pspace);
1775 }
1776
1777 delete_inferior (inf);
1778 }
1779
1780 \f
1781
1782 /* Execute a command within a safe environment.
1783 Return <0 for error; >=0 for ok.
1784
1785 args->action will tell mi_execute_command what action
1786 to perform after the given command has executed (display/suppress
1787 prompt, display error). */
1788
1789 static void
1790 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1791 {
1792 struct mi_interp *mi = (struct mi_interp *) command_interp ();
1793
1794 if (do_timings)
1795 current_command_ts = context->cmd_start;
1796
1797 scoped_restore save_token = make_scoped_restore (&current_token,
1798 context->token);
1799
1800 running_result_record_printed = 0;
1801 mi_proceeded = 0;
1802 switch (context->op)
1803 {
1804 case MI_COMMAND:
1805 /* A MI command was read from the input stream. */
1806 if (mi_debug_p)
1807 /* FIXME: gdb_???? */
1808 fprintf_unfiltered (mi->raw_stdout,
1809 " token=`%s' command=`%s' args=`%s'\n",
1810 context->token, context->command, context->args);
1811
1812 mi_cmd_execute (context);
1813
1814 /* Print the result if there were no errors.
1815
1816 Remember that on the way out of executing a command, you have
1817 to directly use the mi_interp's uiout, since the command
1818 could have reset the interpreter, in which case the current
1819 uiout will most likely crash in the mi_out_* routines. */
1820 if (!running_result_record_printed)
1821 {
1822 fputs_unfiltered (context->token, mi->raw_stdout);
1823 /* There's no particularly good reason why target-connect results
1824 in not ^done. Should kill ^connected for MI3. */
1825 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1826 ? "^connected" : "^done", mi->raw_stdout);
1827 mi_out_put (uiout, mi->raw_stdout);
1828 mi_out_rewind (uiout);
1829 mi_print_timing_maybe (mi->raw_stdout);
1830 fputs_unfiltered ("\n", mi->raw_stdout);
1831 }
1832 else
1833 /* The command does not want anything to be printed. In that
1834 case, the command probably should not have written anything
1835 to uiout, but in case it has written something, discard it. */
1836 mi_out_rewind (uiout);
1837 break;
1838
1839 case CLI_COMMAND:
1840 {
1841 char *argv[2];
1842
1843 /* A CLI command was read from the input stream. */
1844 /* This "feature" will be removed as soon as we have a
1845 complete set of mi commands. */
1846 /* Echo the command on the console. */
1847 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1848 /* Call the "console" interpreter. */
1849 argv[0] = (char *) INTERP_CONSOLE;
1850 argv[1] = context->command;
1851 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1852
1853 /* If we changed interpreters, DON'T print out anything. */
1854 if (current_interp_named_p (INTERP_MI)
1855 || current_interp_named_p (INTERP_MI1)
1856 || current_interp_named_p (INTERP_MI2)
1857 || current_interp_named_p (INTERP_MI3))
1858 {
1859 if (!running_result_record_printed)
1860 {
1861 fputs_unfiltered (context->token, mi->raw_stdout);
1862 fputs_unfiltered ("^done", mi->raw_stdout);
1863 mi_out_put (uiout, mi->raw_stdout);
1864 mi_out_rewind (uiout);
1865 mi_print_timing_maybe (mi->raw_stdout);
1866 fputs_unfiltered ("\n", mi->raw_stdout);
1867 }
1868 else
1869 mi_out_rewind (uiout);
1870 }
1871 break;
1872 }
1873 }
1874 }
1875
1876 /* Print a gdb exception to the MI output stream. */
1877
1878 static void
1879 mi_print_exception (const char *token, struct gdb_exception exception)
1880 {
1881 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
1882
1883 fputs_unfiltered (token, mi->raw_stdout);
1884 fputs_unfiltered ("^error,msg=\"", mi->raw_stdout);
1885 if (exception.message == NULL)
1886 fputs_unfiltered ("unknown error", mi->raw_stdout);
1887 else
1888 fputstr_unfiltered (exception.message, '"', mi->raw_stdout);
1889 fputs_unfiltered ("\"", mi->raw_stdout);
1890
1891 switch (exception.error)
1892 {
1893 case UNDEFINED_COMMAND_ERROR:
1894 fputs_unfiltered (",code=\"undefined-command\"", mi->raw_stdout);
1895 break;
1896 }
1897
1898 fputs_unfiltered ("\n", mi->raw_stdout);
1899 }
1900
1901 /* Determine whether the parsed command already notifies the
1902 user_selected_context_changed observer. */
1903
1904 static int
1905 command_notifies_uscc_observer (struct mi_parse *command)
1906 {
1907 if (command->op == CLI_COMMAND)
1908 {
1909 /* CLI commands "thread" and "inferior" already send it. */
1910 return (strncmp (command->command, "thread ", 7) == 0
1911 || strncmp (command->command, "inferior ", 9) == 0);
1912 }
1913 else /* MI_COMMAND */
1914 {
1915 if (strcmp (command->command, "interpreter-exec") == 0
1916 && command->argc > 1)
1917 {
1918 /* "thread" and "inferior" again, but through -interpreter-exec. */
1919 return (strncmp (command->argv[1], "thread ", 7) == 0
1920 || strncmp (command->argv[1], "inferior ", 9) == 0);
1921 }
1922
1923 else
1924 /* -thread-select already sends it. */
1925 return strcmp (command->command, "thread-select") == 0;
1926 }
1927 }
1928
1929 void
1930 mi_execute_command (const char *cmd, int from_tty)
1931 {
1932 char *token;
1933 std::unique_ptr<struct mi_parse> command;
1934
1935 /* This is to handle EOF (^D). We just quit gdb. */
1936 /* FIXME: we should call some API function here. */
1937 if (cmd == 0)
1938 quit_force (NULL, from_tty);
1939
1940 target_log_command (cmd);
1941
1942 TRY
1943 {
1944 command = mi_parse (cmd, &token);
1945 }
1946 CATCH (exception, RETURN_MASK_ALL)
1947 {
1948 mi_print_exception (token, exception);
1949 xfree (token);
1950 }
1951 END_CATCH
1952
1953 if (command != NULL)
1954 {
1955 ptid_t previous_ptid = inferior_ptid;
1956
1957 gdb::optional<scoped_restore_tmpl<int>> restore_suppress;
1958
1959 if (command->cmd != NULL && command->cmd->suppress_notification != NULL)
1960 restore_suppress.emplace (command->cmd->suppress_notification, 1);
1961
1962 command->token = token;
1963
1964 if (do_timings)
1965 {
1966 command->cmd_start = new mi_timestamp ();
1967 timestamp (command->cmd_start);
1968 }
1969
1970 TRY
1971 {
1972 captured_mi_execute_command (current_uiout, command.get ());
1973 }
1974 CATCH (result, RETURN_MASK_ALL)
1975 {
1976 /* Like in start_event_loop, enable input and force display
1977 of the prompt. Otherwise, any command that calls
1978 async_disable_stdin, and then throws, will leave input
1979 disabled. */
1980 async_enable_stdin ();
1981 current_ui->prompt_state = PROMPT_NEEDED;
1982
1983 /* The command execution failed and error() was called
1984 somewhere. */
1985 mi_print_exception (command->token, result);
1986 mi_out_rewind (current_uiout);
1987 }
1988 END_CATCH
1989
1990 bpstat_do_actions ();
1991
1992 if (/* The notifications are only output when the top-level
1993 interpreter (specified on the command line) is MI. */
1994 top_level_interpreter ()->interp_ui_out ()->is_mi_like_p ()
1995 /* Don't try report anything if there are no threads --
1996 the program is dead. */
1997 && thread_count () != 0
1998 /* If the command already reports the thread change, no need to do it
1999 again. */
2000 && !command_notifies_uscc_observer (command.get ()))
2001 {
2002 int report_change = 0;
2003
2004 if (command->thread == -1)
2005 {
2006 report_change = (previous_ptid != null_ptid
2007 && inferior_ptid != previous_ptid
2008 && inferior_ptid != null_ptid);
2009 }
2010 else if (inferior_ptid != null_ptid)
2011 {
2012 struct thread_info *ti = inferior_thread ();
2013
2014 report_change = (ti->global_num != command->thread);
2015 }
2016
2017 if (report_change)
2018 {
2019 gdb::observers::user_selected_context_changed.notify
2020 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
2021 }
2022 }
2023 }
2024 }
2025
2026 static void
2027 mi_cmd_execute (struct mi_parse *parse)
2028 {
2029 scoped_value_mark cleanup = prepare_execute_command ();
2030
2031 if (parse->all && parse->thread_group != -1)
2032 error (_("Cannot specify --thread-group together with --all"));
2033
2034 if (parse->all && parse->thread != -1)
2035 error (_("Cannot specify --thread together with --all"));
2036
2037 if (parse->thread_group != -1 && parse->thread != -1)
2038 error (_("Cannot specify --thread together with --thread-group"));
2039
2040 if (parse->frame != -1 && parse->thread == -1)
2041 error (_("Cannot specify --frame without --thread"));
2042
2043 if (parse->thread_group != -1)
2044 {
2045 struct inferior *inf = find_inferior_id (parse->thread_group);
2046 struct thread_info *tp = 0;
2047
2048 if (!inf)
2049 error (_("Invalid thread group for the --thread-group option"));
2050
2051 set_current_inferior (inf);
2052 /* This behaviour means that if --thread-group option identifies
2053 an inferior with multiple threads, then a random one will be
2054 picked. This is not a problem -- frontend should always
2055 provide --thread if it wishes to operate on a specific
2056 thread. */
2057 if (inf->pid != 0)
2058 tp = any_live_thread_of_inferior (inf);
2059 if (tp != NULL)
2060 switch_to_thread (tp);
2061 else
2062 switch_to_no_thread ();
2063 set_current_program_space (inf->pspace);
2064 }
2065
2066 if (parse->thread != -1)
2067 {
2068 thread_info *tp = find_thread_global_id (parse->thread);
2069
2070 if (tp == NULL)
2071 error (_("Invalid thread id: %d"), parse->thread);
2072
2073 if (tp->state == THREAD_EXITED)
2074 error (_("Thread id: %d has terminated"), parse->thread);
2075
2076 switch_to_thread (tp);
2077 }
2078
2079 if (parse->frame != -1)
2080 {
2081 struct frame_info *fid;
2082 int frame = parse->frame;
2083
2084 fid = find_relative_frame (get_current_frame (), &frame);
2085 if (frame == 0)
2086 /* find_relative_frame was successful */
2087 select_frame (fid);
2088 else
2089 error (_("Invalid frame id: %d"), frame);
2090 }
2091
2092 gdb::optional<scoped_restore_current_language> lang_saver;
2093 if (parse->language != language_unknown)
2094 {
2095 lang_saver.emplace ();
2096 set_language (parse->language);
2097 }
2098
2099 current_context = parse;
2100
2101 if (parse->cmd->argv_func != NULL)
2102 {
2103 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2104 }
2105 else if (parse->cmd->cli.cmd != 0)
2106 {
2107 /* FIXME: DELETE THIS. */
2108 /* The operation is still implemented by a cli command. */
2109 /* Must be a synchronous one. */
2110 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2111 parse->args);
2112 }
2113 else
2114 {
2115 /* FIXME: DELETE THIS. */
2116 string_file stb;
2117
2118 stb.puts ("Undefined mi command: ");
2119 stb.putstr (parse->command, '"');
2120 stb.puts (" (missing implementation)");
2121
2122 error_stream (stb);
2123 }
2124 }
2125
2126 /* FIXME: This is just a hack so we can get some extra commands going.
2127 We don't want to channel things through the CLI, but call libgdb directly.
2128 Use only for synchronous commands. */
2129
2130 void
2131 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2132 {
2133 if (cmd != 0)
2134 {
2135 std::string run = cmd;
2136
2137 if (args_p)
2138 run = run + " " + args;
2139 if (mi_debug_p)
2140 /* FIXME: gdb_???? */
2141 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2142 cmd, run.c_str ());
2143 execute_command (run.c_str (), 0 /* from_tty */ );
2144 }
2145 }
2146
2147 void
2148 mi_execute_async_cli_command (const char *cli_command, char **argv, int argc)
2149 {
2150 std::string run = cli_command;
2151
2152 if (argc)
2153 run = run + " " + *argv;
2154 if (mi_async_p ())
2155 run += "&";
2156
2157 execute_command (run.c_str (), 0 /* from_tty */ );
2158 }
2159
2160 void
2161 mi_load_progress (const char *section_name,
2162 unsigned long sent_so_far,
2163 unsigned long total_section,
2164 unsigned long total_sent,
2165 unsigned long grand_total)
2166 {
2167 using namespace std::chrono;
2168 static steady_clock::time_point last_update;
2169 static char *previous_sect_name = NULL;
2170 int new_section;
2171 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
2172
2173 /* This function is called through deprecated_show_load_progress
2174 which means uiout may not be correct. Fix it for the duration
2175 of this function. */
2176
2177 std::unique_ptr<ui_out> uiout;
2178
2179 if (current_interp_named_p (INTERP_MI)
2180 || current_interp_named_p (INTERP_MI2))
2181 uiout.reset (mi_out_new (2));
2182 else if (current_interp_named_p (INTERP_MI1))
2183 uiout.reset (mi_out_new (1));
2184 else if (current_interp_named_p (INTERP_MI3))
2185 uiout.reset (mi_out_new (3));
2186 else
2187 return;
2188
2189 scoped_restore save_uiout
2190 = make_scoped_restore (&current_uiout, uiout.get ());
2191
2192 new_section = (previous_sect_name ?
2193 strcmp (previous_sect_name, section_name) : 1);
2194 if (new_section)
2195 {
2196 xfree (previous_sect_name);
2197 previous_sect_name = xstrdup (section_name);
2198
2199 if (current_token)
2200 fputs_unfiltered (current_token, mi->raw_stdout);
2201 fputs_unfiltered ("+download", mi->raw_stdout);
2202 {
2203 ui_out_emit_tuple tuple_emitter (uiout.get (), NULL);
2204 uiout->field_string ("section", section_name);
2205 uiout->field_int ("section-size", total_section);
2206 uiout->field_int ("total-size", grand_total);
2207 }
2208 mi_out_put (uiout.get (), mi->raw_stdout);
2209 fputs_unfiltered ("\n", mi->raw_stdout);
2210 gdb_flush (mi->raw_stdout);
2211 }
2212
2213 steady_clock::time_point time_now = steady_clock::now ();
2214 if (time_now - last_update > milliseconds (500))
2215 {
2216 last_update = time_now;
2217 if (current_token)
2218 fputs_unfiltered (current_token, mi->raw_stdout);
2219 fputs_unfiltered ("+download", mi->raw_stdout);
2220 {
2221 ui_out_emit_tuple tuple_emitter (uiout.get (), NULL);
2222 uiout->field_string ("section", section_name);
2223 uiout->field_int ("section-sent", sent_so_far);
2224 uiout->field_int ("section-size", total_section);
2225 uiout->field_int ("total-sent", total_sent);
2226 uiout->field_int ("total-size", grand_total);
2227 }
2228 mi_out_put (uiout.get (), mi->raw_stdout);
2229 fputs_unfiltered ("\n", mi->raw_stdout);
2230 gdb_flush (mi->raw_stdout);
2231 }
2232 }
2233
2234 static void
2235 timestamp (struct mi_timestamp *tv)
2236 {
2237 using namespace std::chrono;
2238
2239 tv->wallclock = steady_clock::now ();
2240 run_time_clock::now (tv->utime, tv->stime);
2241 }
2242
2243 static void
2244 print_diff_now (struct ui_file *file, struct mi_timestamp *start)
2245 {
2246 struct mi_timestamp now;
2247
2248 timestamp (&now);
2249 print_diff (file, start, &now);
2250 }
2251
2252 void
2253 mi_print_timing_maybe (struct ui_file *file)
2254 {
2255 /* If the command is -enable-timing then do_timings may be true
2256 whilst current_command_ts is not initialized. */
2257 if (do_timings && current_command_ts)
2258 print_diff_now (file, current_command_ts);
2259 }
2260
2261 static void
2262 print_diff (struct ui_file *file, struct mi_timestamp *start,
2263 struct mi_timestamp *end)
2264 {
2265 using namespace std::chrono;
2266
2267 duration<double> wallclock = end->wallclock - start->wallclock;
2268 duration<double> utime = end->utime - start->utime;
2269 duration<double> stime = end->stime - start->stime;
2270
2271 fprintf_unfiltered
2272 (file,
2273 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2274 wallclock.count (), utime.count (), stime.count ());
2275 }
2276
2277 void
2278 mi_cmd_trace_define_variable (const char *command, char **argv, int argc)
2279 {
2280 LONGEST initval = 0;
2281 struct trace_state_variable *tsv;
2282 char *name = 0;
2283
2284 if (argc != 1 && argc != 2)
2285 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2286
2287 name = argv[0];
2288 if (*name++ != '$')
2289 error (_("Name of trace variable should start with '$'"));
2290
2291 validate_trace_state_variable_name (name);
2292
2293 tsv = find_trace_state_variable (name);
2294 if (!tsv)
2295 tsv = create_trace_state_variable (name);
2296
2297 if (argc == 2)
2298 initval = value_as_long (parse_and_eval (argv[1]));
2299
2300 tsv->initial_value = initval;
2301 }
2302
2303 void
2304 mi_cmd_trace_list_variables (const char *command, char **argv, int argc)
2305 {
2306 if (argc != 0)
2307 error (_("-trace-list-variables: no arguments allowed"));
2308
2309 tvariables_info_1 ();
2310 }
2311
2312 void
2313 mi_cmd_trace_find (const char *command, char **argv, int argc)
2314 {
2315 char *mode;
2316
2317 if (argc == 0)
2318 error (_("trace selection mode is required"));
2319
2320 mode = argv[0];
2321
2322 if (strcmp (mode, "none") == 0)
2323 {
2324 tfind_1 (tfind_number, -1, 0, 0, 0);
2325 return;
2326 }
2327
2328 check_trace_running (current_trace_status ());
2329
2330 if (strcmp (mode, "frame-number") == 0)
2331 {
2332 if (argc != 2)
2333 error (_("frame number is required"));
2334 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2335 }
2336 else if (strcmp (mode, "tracepoint-number") == 0)
2337 {
2338 if (argc != 2)
2339 error (_("tracepoint number is required"));
2340 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2341 }
2342 else if (strcmp (mode, "pc") == 0)
2343 {
2344 if (argc != 2)
2345 error (_("PC is required"));
2346 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2347 }
2348 else if (strcmp (mode, "pc-inside-range") == 0)
2349 {
2350 if (argc != 3)
2351 error (_("Start and end PC are required"));
2352 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2353 parse_and_eval_address (argv[2]), 0);
2354 }
2355 else if (strcmp (mode, "pc-outside-range") == 0)
2356 {
2357 if (argc != 3)
2358 error (_("Start and end PC are required"));
2359 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2360 parse_and_eval_address (argv[2]), 0);
2361 }
2362 else if (strcmp (mode, "line") == 0)
2363 {
2364 if (argc != 2)
2365 error (_("Line is required"));
2366
2367 std::vector<symtab_and_line> sals
2368 = decode_line_with_current_source (argv[1],
2369 DECODE_LINE_FUNFIRSTLINE);
2370 const symtab_and_line &sal = sals[0];
2371
2372 if (sal.symtab == 0)
2373 error (_("Could not find the specified line"));
2374
2375 CORE_ADDR start_pc, end_pc;
2376 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2377 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2378 else
2379 error (_("Could not find the specified line"));
2380 }
2381 else
2382 error (_("Invalid mode '%s'"), mode);
2383
2384 if (has_stack_frames () || get_traceframe_number () >= 0)
2385 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2386 }
2387
2388 void
2389 mi_cmd_trace_save (const char *command, char **argv, int argc)
2390 {
2391 int target_saves = 0;
2392 int generate_ctf = 0;
2393 char *filename;
2394 int oind = 0;
2395 char *oarg;
2396
2397 enum opt
2398 {
2399 TARGET_SAVE_OPT, CTF_OPT
2400 };
2401 static const struct mi_opt opts[] =
2402 {
2403 {"r", TARGET_SAVE_OPT, 0},
2404 {"ctf", CTF_OPT, 0},
2405 { 0, 0, 0 }
2406 };
2407
2408 while (1)
2409 {
2410 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2411 &oind, &oarg);
2412
2413 if (opt < 0)
2414 break;
2415 switch ((enum opt) opt)
2416 {
2417 case TARGET_SAVE_OPT:
2418 target_saves = 1;
2419 break;
2420 case CTF_OPT:
2421 generate_ctf = 1;
2422 break;
2423 }
2424 }
2425
2426 if (argc - oind != 1)
2427 error (_("Exactly one argument required "
2428 "(file in which to save trace data)"));
2429
2430 filename = argv[oind];
2431
2432 if (generate_ctf)
2433 trace_save_ctf (filename, target_saves);
2434 else
2435 trace_save_tfile (filename, target_saves);
2436 }
2437
2438 void
2439 mi_cmd_trace_start (const char *command, char **argv, int argc)
2440 {
2441 start_tracing (NULL);
2442 }
2443
2444 void
2445 mi_cmd_trace_status (const char *command, char **argv, int argc)
2446 {
2447 trace_status_mi (0);
2448 }
2449
2450 void
2451 mi_cmd_trace_stop (const char *command, char **argv, int argc)
2452 {
2453 stop_tracing (NULL);
2454 trace_status_mi (1);
2455 }
2456
2457 /* Implement the "-ada-task-info" command. */
2458
2459 void
2460 mi_cmd_ada_task_info (const char *command, char **argv, int argc)
2461 {
2462 if (argc != 0 && argc != 1)
2463 error (_("Invalid MI command"));
2464
2465 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2466 }
2467
2468 /* Print EXPRESSION according to VALUES. */
2469
2470 static void
2471 print_variable_or_computed (const char *expression, enum print_values values)
2472 {
2473 struct value *val;
2474 struct type *type;
2475 struct ui_out *uiout = current_uiout;
2476
2477 string_file stb;
2478
2479 expression_up expr = parse_expression (expression);
2480
2481 if (values == PRINT_SIMPLE_VALUES)
2482 val = evaluate_type (expr.get ());
2483 else
2484 val = evaluate_expression (expr.get ());
2485
2486 gdb::optional<ui_out_emit_tuple> tuple_emitter;
2487 if (values != PRINT_NO_VALUES)
2488 tuple_emitter.emplace (uiout, nullptr);
2489 uiout->field_string ("name", expression);
2490
2491 switch (values)
2492 {
2493 case PRINT_SIMPLE_VALUES:
2494 type = check_typedef (value_type (val));
2495 type_print (value_type (val), "", &stb, -1);
2496 uiout->field_stream ("type", stb);
2497 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2498 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2499 && TYPE_CODE (type) != TYPE_CODE_UNION)
2500 {
2501 struct value_print_options opts;
2502
2503 get_no_prettyformat_print_options (&opts);
2504 opts.deref_ref = 1;
2505 common_val_print (val, &stb, 0, &opts, current_language);
2506 uiout->field_stream ("value", stb);
2507 }
2508 break;
2509 case PRINT_ALL_VALUES:
2510 {
2511 struct value_print_options opts;
2512
2513 get_no_prettyformat_print_options (&opts);
2514 opts.deref_ref = 1;
2515 common_val_print (val, &stb, 0, &opts, current_language);
2516 uiout->field_stream ("value", stb);
2517 }
2518 break;
2519 }
2520 }
2521
2522 /* Implement the "-trace-frame-collected" command. */
2523
2524 void
2525 mi_cmd_trace_frame_collected (const char *command, char **argv, int argc)
2526 {
2527 struct bp_location *tloc;
2528 int stepping_frame;
2529 struct collection_list *clist;
2530 struct collection_list tracepoint_list, stepping_list;
2531 struct traceframe_info *tinfo;
2532 int oind = 0;
2533 enum print_values var_print_values = PRINT_ALL_VALUES;
2534 enum print_values comp_print_values = PRINT_ALL_VALUES;
2535 int registers_format = 'x';
2536 int memory_contents = 0;
2537 struct ui_out *uiout = current_uiout;
2538 enum opt
2539 {
2540 VAR_PRINT_VALUES,
2541 COMP_PRINT_VALUES,
2542 REGISTERS_FORMAT,
2543 MEMORY_CONTENTS,
2544 };
2545 static const struct mi_opt opts[] =
2546 {
2547 {"-var-print-values", VAR_PRINT_VALUES, 1},
2548 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2549 {"-registers-format", REGISTERS_FORMAT, 1},
2550 {"-memory-contents", MEMORY_CONTENTS, 0},
2551 { 0, 0, 0 }
2552 };
2553
2554 while (1)
2555 {
2556 char *oarg;
2557 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2558 &oind, &oarg);
2559 if (opt < 0)
2560 break;
2561 switch ((enum opt) opt)
2562 {
2563 case VAR_PRINT_VALUES:
2564 var_print_values = mi_parse_print_values (oarg);
2565 break;
2566 case COMP_PRINT_VALUES:
2567 comp_print_values = mi_parse_print_values (oarg);
2568 break;
2569 case REGISTERS_FORMAT:
2570 registers_format = oarg[0];
2571 break;
2572 case MEMORY_CONTENTS:
2573 memory_contents = 1;
2574 break;
2575 }
2576 }
2577
2578 if (oind != argc)
2579 error (_("Usage: -trace-frame-collected "
2580 "[--var-print-values PRINT_VALUES] "
2581 "[--comp-print-values PRINT_VALUES] "
2582 "[--registers-format FORMAT]"
2583 "[--memory-contents]"));
2584
2585 /* This throws an error is not inspecting a trace frame. */
2586 tloc = get_traceframe_location (&stepping_frame);
2587
2588 /* This command only makes sense for the current frame, not the
2589 selected frame. */
2590 scoped_restore_current_thread restore_thread;
2591 select_frame (get_current_frame ());
2592
2593 encode_actions (tloc, &tracepoint_list, &stepping_list);
2594
2595 if (stepping_frame)
2596 clist = &stepping_list;
2597 else
2598 clist = &tracepoint_list;
2599
2600 tinfo = get_traceframe_info ();
2601
2602 /* Explicitly wholly collected variables. */
2603 {
2604 ui_out_emit_list list_emitter (uiout, "explicit-variables");
2605 const std::vector<std::string> &wholly_collected
2606 = clist->wholly_collected ();
2607 for (size_t i = 0; i < wholly_collected.size (); i++)
2608 {
2609 const std::string &str = wholly_collected[i];
2610 print_variable_or_computed (str.c_str (), var_print_values);
2611 }
2612 }
2613
2614 /* Computed expressions. */
2615 {
2616 ui_out_emit_list list_emitter (uiout, "computed-expressions");
2617
2618 const std::vector<std::string> &computed = clist->computed ();
2619 for (size_t i = 0; i < computed.size (); i++)
2620 {
2621 const std::string &str = computed[i];
2622 print_variable_or_computed (str.c_str (), comp_print_values);
2623 }
2624 }
2625
2626 /* Registers. Given pseudo-registers, and that some architectures
2627 (like MIPS) actually hide the raw registers, we don't go through
2628 the trace frame info, but instead consult the register cache for
2629 register availability. */
2630 {
2631 struct frame_info *frame;
2632 struct gdbarch *gdbarch;
2633 int regnum;
2634 int numregs;
2635
2636 ui_out_emit_list list_emitter (uiout, "registers");
2637
2638 frame = get_selected_frame (NULL);
2639 gdbarch = get_frame_arch (frame);
2640 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2641
2642 for (regnum = 0; regnum < numregs; regnum++)
2643 {
2644 if (gdbarch_register_name (gdbarch, regnum) == NULL
2645 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2646 continue;
2647
2648 output_register (frame, regnum, registers_format, 1);
2649 }
2650 }
2651
2652 /* Trace state variables. */
2653 {
2654 ui_out_emit_list list_emitter (uiout, "tvars");
2655
2656 for (int tvar : tinfo->tvars)
2657 {
2658 struct trace_state_variable *tsv;
2659
2660 tsv = find_trace_state_variable_by_number (tvar);
2661
2662 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2663
2664 if (tsv != NULL)
2665 {
2666 uiout->field_fmt ("name", "$%s", tsv->name.c_str ());
2667
2668 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2669 &tsv->value);
2670 uiout->field_int ("current", tsv->value);
2671 }
2672 else
2673 {
2674 uiout->field_skip ("name");
2675 uiout->field_skip ("current");
2676 }
2677 }
2678 }
2679
2680 /* Memory. */
2681 {
2682 std::vector<mem_range> available_memory;
2683
2684 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2685
2686 ui_out_emit_list list_emitter (uiout, "memory");
2687
2688 for (const mem_range &r : available_memory)
2689 {
2690 struct gdbarch *gdbarch = target_gdbarch ();
2691
2692 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2693
2694 uiout->field_core_addr ("address", gdbarch, r.start);
2695 uiout->field_int ("length", r.length);
2696
2697 gdb::byte_vector data (r.length);
2698
2699 if (memory_contents)
2700 {
2701 if (target_read_memory (r.start, data.data (), r.length) == 0)
2702 {
2703 std::string data_str = bin2hex (data.data (), r.length);
2704 uiout->field_string ("contents", data_str.c_str ());
2705 }
2706 else
2707 uiout->field_skip ("contents");
2708 }
2709 }
2710 }
2711 }
2712
2713 void
2714 _initialize_mi_main (void)
2715 {
2716 struct cmd_list_element *c;
2717
2718 add_setshow_boolean_cmd ("mi-async", class_run,
2719 &mi_async_1, _("\
2720 Set whether MI asynchronous mode is enabled."), _("\
2721 Show whether MI asynchronous mode is enabled."), _("\
2722 Tells GDB whether MI should be in asynchronous mode."),
2723 set_mi_async_command,
2724 show_mi_async_command,
2725 &setlist,
2726 &showlist);
2727
2728 /* Alias old "target-async" to "mi-async". */
2729 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
2730 deprecate_cmd (c, "set mi-async");
2731 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
2732 deprecate_cmd (c, "show mi-async");
2733 }
This page took 0.094379 seconds and 4 git commands to generate.