2011-01-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Solutions (a Red Hat company).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Work in progress. */
24
25 #include "defs.h"
26 #include "arch-utils.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "gdb_string.h"
30 #include "exceptions.h"
31 #include "top.h"
32 #include "gdbthread.h"
33 #include "mi-cmds.h"
34 #include "mi-parse.h"
35 #include "mi-getopt.h"
36 #include "mi-console.h"
37 #include "ui-out.h"
38 #include "mi-out.h"
39 #include "interps.h"
40 #include "event-loop.h"
41 #include "event-top.h"
42 #include "gdbcore.h" /* For write_memory(). */
43 #include "value.h"
44 #include "regcache.h"
45 #include "gdb.h"
46 #include "frame.h"
47 #include "mi-main.h"
48 #include "mi-common.h"
49 #include "language.h"
50 #include "valprint.h"
51 #include "inferior.h"
52 #include "osdata.h"
53 #include "splay-tree.h"
54 #include "tracepoint.h"
55
56 #include <ctype.h>
57 #include <sys/time.h>
58
59 #if defined HAVE_SYS_RESOURCE_H
60 #include <sys/resource.h>
61 #endif
62
63 #ifdef HAVE_GETRUSAGE
64 struct rusage rusage;
65 #endif
66
67 enum
68 {
69 FROM_TTY = 0
70 };
71
72 int mi_debug_p;
73 struct ui_file *raw_stdout;
74
75 /* This is used to pass the current command timestamp
76 down to continuation routines. */
77 static struct mi_timestamp *current_command_ts;
78
79 static int do_timings = 0;
80
81 char *current_token;
82 /* Few commands would like to know if options like --thread-group
83 were explicitly specified. This variable keeps the current
84 parsed command including all option, and make it possible. */
85 static struct mi_parse *current_context;
86
87 int running_result_record_printed = 1;
88
89 /* Flag indicating that the target has proceeded since the last
90 command was issued. */
91 int mi_proceeded;
92
93 extern void _initialize_mi_main (void);
94 static void mi_cmd_execute (struct mi_parse *parse);
95
96 static void mi_execute_cli_command (const char *cmd, int args_p,
97 const char *args);
98 static void mi_execute_async_cli_command (char *cli_command,
99 char **argv, int argc);
100 static int register_changed_p (int regnum, struct regcache *,
101 struct regcache *);
102 static void get_register (struct frame_info *, int regnum, int format);
103
104 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
105 layer that calls libgdb. Any operation used in the below should be
106 formalized. */
107
108 static void timestamp (struct mi_timestamp *tv);
109
110 static void print_diff_now (struct mi_timestamp *start);
111 static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
112
113 void
114 mi_cmd_gdb_exit (char *command, char **argv, int argc)
115 {
116 /* We have to print everything right here because we never return. */
117 if (current_token)
118 fputs_unfiltered (current_token, raw_stdout);
119 fputs_unfiltered ("^exit\n", raw_stdout);
120 mi_out_put (uiout, raw_stdout);
121 gdb_flush (raw_stdout);
122 /* FIXME: The function called is not yet a formal libgdb function. */
123 quit_force (NULL, FROM_TTY);
124 }
125
126 void
127 mi_cmd_exec_next (char *command, char **argv, int argc)
128 {
129 /* FIXME: Should call a libgdb function, not a cli wrapper. */
130 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
131 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
132 else
133 mi_execute_async_cli_command ("next", argv, argc);
134 }
135
136 void
137 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
138 {
139 /* FIXME: Should call a libgdb function, not a cli wrapper. */
140 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
141 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
142 else
143 mi_execute_async_cli_command ("nexti", argv, argc);
144 }
145
146 void
147 mi_cmd_exec_step (char *command, char **argv, int argc)
148 {
149 /* FIXME: Should call a libgdb function, not a cli wrapper. */
150 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
151 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
152 else
153 mi_execute_async_cli_command ("step", argv, argc);
154 }
155
156 void
157 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
158 {
159 /* FIXME: Should call a libgdb function, not a cli wrapper. */
160 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
161 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
162 else
163 mi_execute_async_cli_command ("stepi", argv, argc);
164 }
165
166 void
167 mi_cmd_exec_finish (char *command, char **argv, int argc)
168 {
169 /* FIXME: Should call a libgdb function, not a cli wrapper. */
170 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
171 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
172 else
173 mi_execute_async_cli_command ("finish", argv, argc);
174 }
175
176 void
177 mi_cmd_exec_return (char *command, char **argv, int argc)
178 {
179 /* This command doesn't really execute the target, it just pops the
180 specified number of frames. */
181 if (argc)
182 /* Call return_command with from_tty argument equal to 0 so as to
183 avoid being queried. */
184 return_command (*argv, 0);
185 else
186 /* Call return_command with from_tty argument equal to 0 so as to
187 avoid being queried. */
188 return_command (NULL, 0);
189
190 /* Because we have called return_command with from_tty = 0, we need
191 to print the frame here. */
192 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS);
193 }
194
195 void
196 mi_cmd_exec_jump (char *args, char **argv, int argc)
197 {
198 /* FIXME: Should call a libgdb function, not a cli wrapper. */
199 mi_execute_async_cli_command ("jump", argv, argc);
200 }
201
202 static void
203 proceed_thread (struct thread_info *thread, int pid)
204 {
205 if (!is_stopped (thread->ptid))
206 return;
207
208 if (pid != 0 && PIDGET (thread->ptid) != pid)
209 return;
210
211 switch_to_thread (thread->ptid);
212 clear_proceed_status ();
213 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
214 }
215
216
217 static int
218 proceed_thread_callback (struct thread_info *thread, void *arg)
219 {
220 int pid = *(int *)arg;
221
222 proceed_thread (thread, pid);
223 return 0;
224 }
225
226 static void
227 exec_continue (char **argv, int argc)
228 {
229 if (non_stop)
230 {
231 /* In non-stop mode, 'resume' always resumes a single thread. Therefore,
232 to resume all threads of the current inferior, or all threads in all
233 inferiors, we need to iterate over threads.
234
235 See comment on infcmd.c:proceed_thread_callback for rationale. */
236 if (current_context->all || current_context->thread_group != -1)
237 {
238 int pid = 0;
239 struct cleanup *back_to = make_cleanup_restore_current_thread ();
240
241 if (!current_context->all)
242 {
243 struct inferior *inf
244 = find_inferior_id (current_context->thread_group);
245
246 pid = inf->pid;
247 }
248 iterate_over_threads (proceed_thread_callback, &pid);
249 do_cleanups (back_to);
250 }
251 else
252 {
253 continue_1 (0);
254 }
255 }
256 else
257 {
258 struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
259
260 if (current_context->all)
261 {
262 sched_multi = 1;
263 continue_1 (0);
264 }
265 else
266 {
267 /* In all-stop mode, -exec-continue traditionally resumed either
268 all threads, or one thread, depending on the 'scheduler-locking'
269 variable. Let's continue to do the same. */
270 continue_1 (1);
271 }
272 do_cleanups (back_to);
273 }
274 }
275
276 static void
277 exec_direction_forward (void *notused)
278 {
279 execution_direction = EXEC_FORWARD;
280 }
281
282 static void
283 exec_reverse_continue (char **argv, int argc)
284 {
285 enum exec_direction_kind dir = execution_direction;
286 struct cleanup *old_chain;
287
288 if (dir == EXEC_ERROR)
289 error (_("Target %s does not support this command."), target_shortname);
290
291 if (dir == EXEC_REVERSE)
292 error (_("Already in reverse mode."));
293
294 if (!target_can_execute_reverse)
295 error (_("Target %s does not support this command."), target_shortname);
296
297 old_chain = make_cleanup (exec_direction_forward, NULL);
298 execution_direction = EXEC_REVERSE;
299 exec_continue (argv, argc);
300 do_cleanups (old_chain);
301 }
302
303 void
304 mi_cmd_exec_continue (char *command, char **argv, int argc)
305 {
306 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
307 exec_reverse_continue (argv + 1, argc - 1);
308 else
309 exec_continue (argv, argc);
310 }
311
312 static int
313 interrupt_thread_callback (struct thread_info *thread, void *arg)
314 {
315 int pid = *(int *)arg;
316
317 if (!is_running (thread->ptid))
318 return 0;
319
320 if (PIDGET (thread->ptid) != pid)
321 return 0;
322
323 target_stop (thread->ptid);
324 return 0;
325 }
326
327 /* Interrupt the execution of the target. Note how we must play around
328 with the token variables, in order to display the current token in
329 the result of the interrupt command, and the previous execution
330 token when the target finally stops. See comments in
331 mi_cmd_execute. */
332 void
333 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
334 {
335 /* In all-stop mode, everything stops, so we don't need to try
336 anything specific. */
337 if (!non_stop)
338 {
339 interrupt_target_1 (0);
340 return;
341 }
342
343 if (current_context->all)
344 {
345 /* This will interrupt all threads in all inferiors. */
346 interrupt_target_1 (1);
347 }
348 else if (current_context->thread_group != -1)
349 {
350 struct inferior *inf = find_inferior_id (current_context->thread_group);
351
352 iterate_over_threads (interrupt_thread_callback, &inf->pid);
353 }
354 else
355 {
356 /* Interrupt just the current thread -- either explicitly
357 specified via --thread or whatever was current before
358 MI command was sent. */
359 interrupt_target_1 (0);
360 }
361 }
362
363 static int
364 run_one_inferior (struct inferior *inf, void *arg)
365 {
366 if (inf->pid != 0)
367 {
368 if (inf->pid != ptid_get_pid (inferior_ptid))
369 {
370 struct thread_info *tp;
371
372 tp = any_thread_of_process (inf->pid);
373 if (!tp)
374 error (_("Inferior has no threads."));
375
376 switch_to_thread (tp->ptid);
377 }
378 }
379 else
380 {
381 set_current_inferior (inf);
382 switch_to_thread (null_ptid);
383 set_current_program_space (inf->pspace);
384 }
385 mi_execute_cli_command ("run", target_can_async_p (),
386 target_can_async_p () ? "&" : NULL);
387 return 0;
388 }
389
390 void
391 mi_cmd_exec_run (char *command, char **argv, int argc)
392 {
393 if (current_context->all)
394 {
395 struct cleanup *back_to = save_current_space_and_thread ();
396
397 iterate_over_inferiors (run_one_inferior, NULL);
398 do_cleanups (back_to);
399 }
400 else
401 {
402 mi_execute_cli_command ("run", target_can_async_p (),
403 target_can_async_p () ? "&" : NULL);
404 }
405 }
406
407
408 static int
409 find_thread_of_process (struct thread_info *ti, void *p)
410 {
411 int pid = *(int *)p;
412
413 if (PIDGET (ti->ptid) == pid && !is_exited (ti->ptid))
414 return 1;
415
416 return 0;
417 }
418
419 void
420 mi_cmd_target_detach (char *command, char **argv, int argc)
421 {
422 if (argc != 0 && argc != 1)
423 error ("Usage: -target-detach [pid | thread-group]");
424
425 if (argc == 1)
426 {
427 struct thread_info *tp;
428 char *end = argv[0];
429 int pid;
430
431 /* First see if we are dealing with a thread-group id. */
432 if (*argv[0] == 'i')
433 {
434 struct inferior *inf;
435 int id = strtoul (argv[0] + 1, &end, 0);
436
437 if (*end != '\0')
438 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
439
440 inf = find_inferior_id (id);
441 if (!inf)
442 error (_("Non-existent thread-group id '%d'"), id);
443
444 pid = inf->pid;
445 }
446 else
447 {
448 /* We must be dealing with a pid. */
449 pid = strtol (argv[0], &end, 10);
450
451 if (*end != '\0')
452 error (_("Invalid identifier '%s'"), argv[0]);
453 }
454
455 /* Pick any thread in the desired process. Current
456 target_detach detaches from the parent of inferior_ptid. */
457 tp = iterate_over_threads (find_thread_of_process, &pid);
458 if (!tp)
459 error (_("Thread group is empty"));
460
461 switch_to_thread (tp->ptid);
462 }
463
464 detach_command (NULL, 0);
465 }
466
467 void
468 mi_cmd_thread_select (char *command, char **argv, int argc)
469 {
470 enum gdb_rc rc;
471 char *mi_error_message;
472
473 if (argc != 1)
474 error ("mi_cmd_thread_select: USAGE: threadnum.");
475
476 rc = gdb_thread_select (uiout, argv[0], &mi_error_message);
477
478 if (rc == GDB_RC_FAIL)
479 {
480 make_cleanup (xfree, mi_error_message);
481 error ("%s", mi_error_message);
482 }
483 }
484
485 void
486 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
487 {
488 enum gdb_rc rc;
489 char *mi_error_message;
490
491 if (argc != 0)
492 error ("mi_cmd_thread_list_ids: No arguments required.");
493
494 rc = gdb_list_thread_ids (uiout, &mi_error_message);
495
496 if (rc == GDB_RC_FAIL)
497 {
498 make_cleanup (xfree, mi_error_message);
499 error ("%s", mi_error_message);
500 }
501 }
502
503 void
504 mi_cmd_thread_info (char *command, char **argv, int argc)
505 {
506 int thread = -1;
507
508 if (argc != 0 && argc != 1)
509 error ("Invalid MI command");
510
511 if (argc == 1)
512 thread = atoi (argv[0]);
513
514 print_thread_info (uiout, thread, -1);
515 }
516
517 struct collect_cores_data
518 {
519 int pid;
520
521 VEC (int) *cores;
522 };
523
524 static int
525 collect_cores (struct thread_info *ti, void *xdata)
526 {
527 struct collect_cores_data *data = xdata;
528
529 if (ptid_get_pid (ti->ptid) == data->pid)
530 {
531 int core = target_core_of_thread (ti->ptid);
532
533 if (core != -1)
534 VEC_safe_push (int, data->cores, core);
535 }
536
537 return 0;
538 }
539
540 static int *
541 unique (int *b, int *e)
542 {
543 int *d = b;
544
545 while (++b != e)
546 if (*d != *b)
547 *++d = *b;
548 return ++d;
549 }
550
551 struct print_one_inferior_data
552 {
553 int recurse;
554 VEC (int) *inferiors;
555 };
556
557 static int
558 print_one_inferior (struct inferior *inferior, void *xdata)
559 {
560 struct print_one_inferior_data *top_data = xdata;
561
562 if (VEC_empty (int, top_data->inferiors)
563 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
564 VEC_length (int, top_data->inferiors), sizeof (int),
565 compare_positive_ints))
566 {
567 struct collect_cores_data data;
568 struct cleanup *back_to
569 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
570
571 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
572 ui_out_field_string (uiout, "type", "process");
573 if (inferior->pid != 0)
574 ui_out_field_int (uiout, "pid", inferior->pid);
575
576 if (inferior->pspace->ebfd)
577 {
578 ui_out_field_string (uiout, "executable",
579 bfd_get_filename (inferior->pspace->ebfd));
580 }
581
582 data.cores = 0;
583 if (inferior->pid != 0)
584 {
585 data.pid = inferior->pid;
586 iterate_over_threads (collect_cores, &data);
587 }
588
589 if (!VEC_empty (int, data.cores))
590 {
591 int *b, *e;
592 struct cleanup *back_to_2 =
593 make_cleanup_ui_out_list_begin_end (uiout, "cores");
594
595 qsort (VEC_address (int, data.cores),
596 VEC_length (int, data.cores), sizeof (int),
597 compare_positive_ints);
598
599 b = VEC_address (int, data.cores);
600 e = b + VEC_length (int, data.cores);
601 e = unique (b, e);
602
603 for (; b != e; ++b)
604 ui_out_field_int (uiout, NULL, *b);
605
606 do_cleanups (back_to_2);
607 }
608
609 if (top_data->recurse)
610 print_thread_info (uiout, -1, inferior->pid);
611
612 do_cleanups (back_to);
613 }
614
615 return 0;
616 }
617
618 /* Output a field named 'cores' with a list as the value. The elements of
619 the list are obtained by splitting 'cores' on comma. */
620
621 static void
622 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
623 {
624 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
625 field_name);
626 char *cores = xstrdup (xcores);
627 char *p = cores;
628
629 make_cleanup (xfree, cores);
630
631 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
632 ui_out_field_string (uiout, NULL, p);
633
634 do_cleanups (back_to);
635 }
636
637 static void
638 free_vector_of_ints (void *xvector)
639 {
640 VEC (int) **vector = xvector;
641
642 VEC_free (int, *vector);
643 }
644
645 static void
646 do_nothing (splay_tree_key k)
647 {
648 }
649
650 static void
651 free_vector_of_osdata_items (splay_tree_value xvalue)
652 {
653 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
654
655 /* We don't free the items itself, it will be done separately. */
656 VEC_free (osdata_item_s, value);
657 }
658
659 static int
660 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
661 {
662 int a = xa;
663 int b = xb;
664
665 return a - b;
666 }
667
668 static void
669 free_splay_tree (void *xt)
670 {
671 splay_tree t = xt;
672 splay_tree_delete (t);
673 }
674
675 static void
676 list_available_thread_groups (VEC (int) *ids, int recurse)
677 {
678 struct osdata *data;
679 struct osdata_item *item;
680 int ix_items;
681
682 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
683 The vector contains information about all threads for the given pid.
684 This is assigned an initial value to avoid "may be used uninitialized"
685 warning from gcc. */
686 splay_tree tree = NULL;
687
688 /* get_osdata will throw if it cannot return data. */
689 data = get_osdata ("processes");
690 make_cleanup_osdata_free (data);
691
692 if (recurse)
693 {
694 struct osdata *threads = get_osdata ("threads");
695
696 make_cleanup_osdata_free (threads);
697 tree = splay_tree_new (splay_tree_int_comparator,
698 do_nothing,
699 free_vector_of_osdata_items);
700 make_cleanup (free_splay_tree, tree);
701
702 for (ix_items = 0;
703 VEC_iterate (osdata_item_s, threads->items,
704 ix_items, item);
705 ix_items++)
706 {
707 const char *pid = get_osdata_column (item, "pid");
708 int pid_i = strtoul (pid, NULL, 0);
709 VEC (osdata_item_s) *vec = 0;
710
711 splay_tree_node n = splay_tree_lookup (tree, pid_i);
712 if (!n)
713 {
714 VEC_safe_push (osdata_item_s, vec, item);
715 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
716 }
717 else
718 {
719 vec = (VEC (osdata_item_s) *) n->value;
720 VEC_safe_push (osdata_item_s, vec, item);
721 n->value = (splay_tree_value) vec;
722 }
723 }
724 }
725
726 make_cleanup_ui_out_list_begin_end (uiout, "groups");
727
728 for (ix_items = 0;
729 VEC_iterate (osdata_item_s, data->items,
730 ix_items, item);
731 ix_items++)
732 {
733 struct cleanup *back_to;
734
735 const char *pid = get_osdata_column (item, "pid");
736 const char *cmd = get_osdata_column (item, "command");
737 const char *user = get_osdata_column (item, "user");
738 const char *cores = get_osdata_column (item, "cores");
739
740 int pid_i = strtoul (pid, NULL, 0);
741
742 /* At present, the target will return all available processes
743 and if information about specific ones was required, we filter
744 undesired processes here. */
745 if (ids && bsearch (&pid_i, VEC_address (int, ids),
746 VEC_length (int, ids),
747 sizeof (int), compare_positive_ints) == NULL)
748 continue;
749
750
751 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
752
753 ui_out_field_fmt (uiout, "id", "%s", pid);
754 ui_out_field_string (uiout, "type", "process");
755 if (cmd)
756 ui_out_field_string (uiout, "description", cmd);
757 if (user)
758 ui_out_field_string (uiout, "user", user);
759 if (cores)
760 output_cores (uiout, "cores", cores);
761
762 if (recurse)
763 {
764 splay_tree_node n = splay_tree_lookup (tree, pid_i);
765 if (n)
766 {
767 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
768 struct osdata_item *child;
769 int ix_child;
770
771 make_cleanup_ui_out_list_begin_end (uiout, "threads");
772
773 for (ix_child = 0;
774 VEC_iterate (osdata_item_s, children, ix_child, child);
775 ++ix_child)
776 {
777 struct cleanup *back_to_2 =
778 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
779 const char *tid = get_osdata_column (child, "tid");
780 const char *tcore = get_osdata_column (child, "core");
781
782 ui_out_field_string (uiout, "id", tid);
783 if (tcore)
784 ui_out_field_string (uiout, "core", tcore);
785
786 do_cleanups (back_to_2);
787 }
788 }
789 }
790
791 do_cleanups (back_to);
792 }
793 }
794
795 void
796 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
797 {
798 struct cleanup *back_to;
799 int available = 0;
800 int recurse = 0;
801 VEC (int) *ids = 0;
802
803 enum opt
804 {
805 AVAILABLE_OPT, RECURSE_OPT
806 };
807 static struct mi_opt opts[] =
808 {
809 {"-available", AVAILABLE_OPT, 0},
810 {"-recurse", RECURSE_OPT, 1},
811 { 0, 0, 0 }
812 };
813
814 int optind = 0;
815 char *optarg;
816
817 while (1)
818 {
819 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
820 &optind, &optarg);
821
822 if (opt < 0)
823 break;
824 switch ((enum opt) opt)
825 {
826 case AVAILABLE_OPT:
827 available = 1;
828 break;
829 case RECURSE_OPT:
830 if (strcmp (optarg, "0") == 0)
831 ;
832 else if (strcmp (optarg, "1") == 0)
833 recurse = 1;
834 else
835 error ("only '0' and '1' are valid values "
836 "for the '--recurse' option");
837 break;
838 }
839 }
840
841 for (; optind < argc; ++optind)
842 {
843 char *end;
844 int inf;
845
846 if (*(argv[optind]) != 'i')
847 error ("invalid syntax of group id '%s'", argv[optind]);
848
849 inf = strtoul (argv[optind] + 1, &end, 0);
850
851 if (*end != '\0')
852 error ("invalid syntax of group id '%s'", argv[optind]);
853 VEC_safe_push (int, ids, inf);
854 }
855 if (VEC_length (int, ids) > 1)
856 qsort (VEC_address (int, ids),
857 VEC_length (int, ids),
858 sizeof (int), compare_positive_ints);
859
860 back_to = make_cleanup (free_vector_of_ints, &ids);
861
862 if (available)
863 {
864 list_available_thread_groups (ids, recurse);
865 }
866 else if (VEC_length (int, ids) == 1)
867 {
868 /* Local thread groups, single id. */
869 int id = *VEC_address (int, ids);
870 struct inferior *inf = find_inferior_id (id);
871
872 if (!inf)
873 error ("Non-existent thread group id '%d'", id);
874
875 print_thread_info (uiout, -1, inf->pid);
876 }
877 else
878 {
879 struct print_one_inferior_data data;
880
881 data.recurse = recurse;
882 data.inferiors = ids;
883
884 /* Local thread groups. Either no explicit ids -- and we
885 print everything, or several explicit ids. In both cases,
886 we print more than one group, and have to use 'groups'
887 as the top-level element. */
888 make_cleanup_ui_out_list_begin_end (uiout, "groups");
889 update_thread_list ();
890 iterate_over_inferiors (print_one_inferior, &data);
891 }
892
893 do_cleanups (back_to);
894 }
895
896 void
897 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
898 {
899 struct gdbarch *gdbarch;
900 int regnum, numregs;
901 int i;
902 struct cleanup *cleanup;
903
904 /* Note that the test for a valid register must include checking the
905 gdbarch_register_name because gdbarch_num_regs may be allocated for
906 the union of the register sets within a family of related processors.
907 In this case, some entries of gdbarch_register_name will change depending
908 upon the particular processor being debugged. */
909
910 gdbarch = get_current_arch ();
911 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
912
913 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
914
915 if (argc == 0) /* No args, just do all the regs. */
916 {
917 for (regnum = 0;
918 regnum < numregs;
919 regnum++)
920 {
921 if (gdbarch_register_name (gdbarch, regnum) == NULL
922 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
923 ui_out_field_string (uiout, NULL, "");
924 else
925 ui_out_field_string (uiout, NULL,
926 gdbarch_register_name (gdbarch, regnum));
927 }
928 }
929
930 /* Else, list of register #s, just do listed regs. */
931 for (i = 0; i < argc; i++)
932 {
933 regnum = atoi (argv[i]);
934 if (regnum < 0 || regnum >= numregs)
935 error ("bad register number");
936
937 if (gdbarch_register_name (gdbarch, regnum) == NULL
938 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
939 ui_out_field_string (uiout, NULL, "");
940 else
941 ui_out_field_string (uiout, NULL,
942 gdbarch_register_name (gdbarch, regnum));
943 }
944 do_cleanups (cleanup);
945 }
946
947 void
948 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
949 {
950 static struct regcache *this_regs = NULL;
951 struct regcache *prev_regs;
952 struct gdbarch *gdbarch;
953 int regnum, numregs, changed;
954 int i;
955 struct cleanup *cleanup;
956
957 /* The last time we visited this function, the current frame's register
958 contents were saved in THIS_REGS. Move THIS_REGS over to PREV_REGS,
959 and refresh THIS_REGS with the now-current register contents. */
960
961 prev_regs = this_regs;
962 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
963 cleanup = make_cleanup_regcache_xfree (prev_regs);
964
965 /* Note that the test for a valid register must include checking the
966 gdbarch_register_name because gdbarch_num_regs may be allocated for
967 the union of the register sets within a family of related processors.
968 In this case, some entries of gdbarch_register_name will change depending
969 upon the particular processor being debugged. */
970
971 gdbarch = get_regcache_arch (this_regs);
972 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
973
974 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
975
976 if (argc == 0) /* No args, just do all the regs. */
977 {
978 for (regnum = 0;
979 regnum < numregs;
980 regnum++)
981 {
982 if (gdbarch_register_name (gdbarch, regnum) == NULL
983 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
984 continue;
985 changed = register_changed_p (regnum, prev_regs, this_regs);
986 if (changed < 0)
987 error ("mi_cmd_data_list_changed_registers: "
988 "Unable to read register contents.");
989 else if (changed)
990 ui_out_field_int (uiout, NULL, regnum);
991 }
992 }
993
994 /* Else, list of register #s, just do listed regs. */
995 for (i = 0; i < argc; i++)
996 {
997 regnum = atoi (argv[i]);
998
999 if (regnum >= 0
1000 && regnum < numregs
1001 && gdbarch_register_name (gdbarch, regnum) != NULL
1002 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1003 {
1004 changed = register_changed_p (regnum, prev_regs, this_regs);
1005 if (changed < 0)
1006 error ("mi_cmd_data_list_register_change: "
1007 "Unable to read register contents.");
1008 else if (changed)
1009 ui_out_field_int (uiout, NULL, regnum);
1010 }
1011 else
1012 error ("bad register number");
1013 }
1014 do_cleanups (cleanup);
1015 }
1016
1017 static int
1018 register_changed_p (int regnum, struct regcache *prev_regs,
1019 struct regcache *this_regs)
1020 {
1021 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1022 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1023 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1024
1025 /* Registers not valid in this frame return count as unchanged. */
1026 if (!regcache_valid_p (this_regs, regnum))
1027 return 0;
1028
1029 /* First time through or after gdbarch change consider all registers as
1030 changed. Same for registers not valid in the previous frame. */
1031 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch
1032 || !regcache_valid_p (prev_regs, regnum))
1033 return 1;
1034
1035 /* Get register contents and compare. */
1036 regcache_cooked_read (prev_regs, regnum, prev_buffer);
1037 regcache_cooked_read (this_regs, regnum, this_buffer);
1038
1039 return memcmp (prev_buffer, this_buffer,
1040 register_size (gdbarch, regnum)) != 0;
1041 }
1042
1043 /* Return a list of register number and value pairs. The valid
1044 arguments expected are: a letter indicating the format in which to
1045 display the registers contents. This can be one of: x (hexadecimal), d
1046 (decimal), N (natural), t (binary), o (octal), r (raw). After the
1047 format argumetn there can be a sequence of numbers, indicating which
1048 registers to fetch the content of. If the format is the only argument,
1049 a list of all the registers with their values is returned. */
1050 void
1051 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1052 {
1053 struct frame_info *frame;
1054 struct gdbarch *gdbarch;
1055 int regnum, numregs, format;
1056 int i;
1057 struct cleanup *list_cleanup, *tuple_cleanup;
1058
1059 /* Note that the test for a valid register must include checking the
1060 gdbarch_register_name because gdbarch_num_regs may be allocated for
1061 the union of the register sets within a family of related processors.
1062 In this case, some entries of gdbarch_register_name will change depending
1063 upon the particular processor being debugged. */
1064
1065 if (argc == 0)
1066 error ("mi_cmd_data_list_register_values: Usage: "
1067 "-data-list-register-values <format> [<regnum1>...<regnumN>]");
1068
1069 format = (int) argv[0][0];
1070
1071 frame = get_selected_frame (NULL);
1072 gdbarch = get_frame_arch (frame);
1073 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1074
1075 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1076
1077 if (argc == 1) /* No args, beside the format: do all the regs. */
1078 {
1079 for (regnum = 0;
1080 regnum < numregs;
1081 regnum++)
1082 {
1083 if (gdbarch_register_name (gdbarch, regnum) == NULL
1084 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1085 continue;
1086 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1087 ui_out_field_int (uiout, "number", regnum);
1088 get_register (frame, regnum, format);
1089 do_cleanups (tuple_cleanup);
1090 }
1091 }
1092
1093 /* Else, list of register #s, just do listed regs. */
1094 for (i = 1; i < argc; i++)
1095 {
1096 regnum = atoi (argv[i]);
1097
1098 if (regnum >= 0
1099 && regnum < numregs
1100 && gdbarch_register_name (gdbarch, regnum) != NULL
1101 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1102 {
1103 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1104 ui_out_field_int (uiout, "number", regnum);
1105 get_register (frame, regnum, format);
1106 do_cleanups (tuple_cleanup);
1107 }
1108 else
1109 error ("bad register number");
1110 }
1111 do_cleanups (list_cleanup);
1112 }
1113
1114 /* Output one register's contents in the desired format. */
1115 static void
1116 get_register (struct frame_info *frame, int regnum, int format)
1117 {
1118 struct gdbarch *gdbarch = get_frame_arch (frame);
1119 gdb_byte buffer[MAX_REGISTER_SIZE];
1120 int optim;
1121 int realnum;
1122 CORE_ADDR addr;
1123 enum lval_type lval;
1124 static struct ui_stream *stb = NULL;
1125
1126 stb = ui_out_stream_new (uiout);
1127
1128 if (format == 'N')
1129 format = 0;
1130
1131 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, buffer);
1132
1133 if (optim)
1134 error ("Optimized out");
1135
1136 if (format == 'r')
1137 {
1138 int j;
1139 char *ptr, buf[1024];
1140
1141 strcpy (buf, "0x");
1142 ptr = buf + 2;
1143 for (j = 0; j < register_size (gdbarch, regnum); j++)
1144 {
1145 int idx = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ?
1146 j : register_size (gdbarch, regnum) - 1 - j;
1147
1148 sprintf (ptr, "%02x", (unsigned char) buffer[idx]);
1149 ptr += 2;
1150 }
1151 ui_out_field_string (uiout, "value", buf);
1152 /*fputs_filtered (buf, gdb_stdout); */
1153 }
1154 else
1155 {
1156 struct value_print_options opts;
1157
1158 get_formatted_print_options (&opts, format);
1159 opts.deref_ref = 1;
1160 val_print (register_type (gdbarch, regnum), buffer, 0, 0,
1161 stb->stream, 0, NULL, &opts, current_language);
1162 ui_out_field_stream (uiout, "value", stb);
1163 ui_out_stream_delete (stb);
1164 }
1165 }
1166
1167 /* Write given values into registers. The registers and values are
1168 given as pairs. The corresponding MI command is
1169 -data-write-register-values <format>
1170 [<regnum1> <value1>...<regnumN> <valueN>] */
1171 void
1172 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1173 {
1174 struct regcache *regcache;
1175 struct gdbarch *gdbarch;
1176 int numregs, i;
1177 char format;
1178
1179 /* Note that the test for a valid register must include checking the
1180 gdbarch_register_name because gdbarch_num_regs may be allocated for
1181 the union of the register sets within a family of related processors.
1182 In this case, some entries of gdbarch_register_name will change depending
1183 upon the particular processor being debugged. */
1184
1185 regcache = get_current_regcache ();
1186 gdbarch = get_regcache_arch (regcache);
1187 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1188
1189 if (argc == 0)
1190 error ("mi_cmd_data_write_register_values: Usage: -data-write-register-"
1191 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]");
1192
1193 format = (int) argv[0][0];
1194
1195 if (!target_has_registers)
1196 error ("mi_cmd_data_write_register_values: No registers.");
1197
1198 if (!(argc - 1))
1199 error ("mi_cmd_data_write_register_values: No regs and values specified.");
1200
1201 if ((argc - 1) % 2)
1202 error ("mi_cmd_data_write_register_values: "
1203 "Regs and vals are not in pairs.");
1204
1205 for (i = 1; i < argc; i = i + 2)
1206 {
1207 int regnum = atoi (argv[i]);
1208
1209 if (regnum >= 0 && regnum < numregs
1210 && gdbarch_register_name (gdbarch, regnum)
1211 && *gdbarch_register_name (gdbarch, regnum))
1212 {
1213 LONGEST value;
1214
1215 /* Get the value as a number. */
1216 value = parse_and_eval_address (argv[i + 1]);
1217
1218 /* Write it down. */
1219 regcache_cooked_write_signed (regcache, regnum, value);
1220 }
1221 else
1222 error ("bad register number");
1223 }
1224 }
1225
1226 /* Evaluate the value of the argument. The argument is an
1227 expression. If the expression contains spaces it needs to be
1228 included in double quotes. */
1229 void
1230 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1231 {
1232 struct expression *expr;
1233 struct cleanup *old_chain = NULL;
1234 struct value *val;
1235 struct ui_stream *stb = NULL;
1236 struct value_print_options opts;
1237
1238 stb = ui_out_stream_new (uiout);
1239
1240 if (argc != 1)
1241 {
1242 ui_out_stream_delete (stb);
1243 error ("mi_cmd_data_evaluate_expression: "
1244 "Usage: -data-evaluate-expression expression");
1245 }
1246
1247 expr = parse_expression (argv[0]);
1248
1249 old_chain = make_cleanup (free_current_contents, &expr);
1250
1251 val = evaluate_expression (expr);
1252
1253 /* Print the result of the expression evaluation. */
1254 get_user_print_options (&opts);
1255 opts.deref_ref = 0;
1256 common_val_print (val, stb->stream, 0, &opts, current_language);
1257
1258 ui_out_field_stream (uiout, "value", stb);
1259 ui_out_stream_delete (stb);
1260
1261 do_cleanups (old_chain);
1262 }
1263
1264 /* DATA-MEMORY-READ:
1265
1266 ADDR: start address of data to be dumped.
1267 WORD-FORMAT: a char indicating format for the ``word''. See
1268 the ``x'' command.
1269 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1270 NR_ROW: Number of rows.
1271 NR_COL: The number of colums (words per row).
1272 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1273 ASCHAR for unprintable characters.
1274
1275 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1276 displayes them. Returns:
1277
1278 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1279
1280 Returns:
1281 The number of bytes read is SIZE*ROW*COL. */
1282
1283 void
1284 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1285 {
1286 struct gdbarch *gdbarch = get_current_arch ();
1287 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1288 CORE_ADDR addr;
1289 long total_bytes;
1290 long nr_cols;
1291 long nr_rows;
1292 char word_format;
1293 struct type *word_type;
1294 long word_size;
1295 char word_asize;
1296 char aschar;
1297 gdb_byte *mbuf;
1298 int nr_bytes;
1299 long offset = 0;
1300 int optind = 0;
1301 char *optarg;
1302 enum opt
1303 {
1304 OFFSET_OPT
1305 };
1306 static struct mi_opt opts[] =
1307 {
1308 {"o", OFFSET_OPT, 1},
1309 { 0, 0, 0 }
1310 };
1311
1312 while (1)
1313 {
1314 int opt = mi_getopt ("mi_cmd_data_read_memory", argc, argv, opts,
1315 &optind, &optarg);
1316
1317 if (opt < 0)
1318 break;
1319 switch ((enum opt) opt)
1320 {
1321 case OFFSET_OPT:
1322 offset = atol (optarg);
1323 break;
1324 }
1325 }
1326 argv += optind;
1327 argc -= optind;
1328
1329 if (argc < 5 || argc > 6)
1330 error ("mi_cmd_data_read_memory: Usage: "
1331 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR].");
1332
1333 /* Extract all the arguments. */
1334
1335 /* Start address of the memory dump. */
1336 addr = parse_and_eval_address (argv[0]) + offset;
1337 /* The format character to use when displaying a memory word. See
1338 the ``x'' command. */
1339 word_format = argv[1][0];
1340 /* The size of the memory word. */
1341 word_size = atol (argv[2]);
1342 switch (word_size)
1343 {
1344 case 1:
1345 word_type = builtin_type (gdbarch)->builtin_int8;
1346 word_asize = 'b';
1347 break;
1348 case 2:
1349 word_type = builtin_type (gdbarch)->builtin_int16;
1350 word_asize = 'h';
1351 break;
1352 case 4:
1353 word_type = builtin_type (gdbarch)->builtin_int32;
1354 word_asize = 'w';
1355 break;
1356 case 8:
1357 word_type = builtin_type (gdbarch)->builtin_int64;
1358 word_asize = 'g';
1359 break;
1360 default:
1361 word_type = builtin_type (gdbarch)->builtin_int8;
1362 word_asize = 'b';
1363 }
1364 /* The number of rows. */
1365 nr_rows = atol (argv[3]);
1366 if (nr_rows <= 0)
1367 error ("mi_cmd_data_read_memory: invalid number of rows.");
1368
1369 /* Number of bytes per row. */
1370 nr_cols = atol (argv[4]);
1371 if (nr_cols <= 0)
1372 error ("mi_cmd_data_read_memory: invalid number of columns.");
1373
1374 /* The un-printable character when printing ascii. */
1375 if (argc == 6)
1376 aschar = *argv[5];
1377 else
1378 aschar = 0;
1379
1380 /* Create a buffer and read it in. */
1381 total_bytes = word_size * nr_rows * nr_cols;
1382 mbuf = xcalloc (total_bytes, 1);
1383 make_cleanup (xfree, mbuf);
1384
1385 /* Dispatch memory reads to the topmost target, not the flattened
1386 current_target. */
1387 nr_bytes = target_read (current_target.beneath,
1388 TARGET_OBJECT_MEMORY, NULL, mbuf,
1389 addr, total_bytes);
1390 if (nr_bytes <= 0)
1391 error ("Unable to read memory.");
1392
1393 /* Output the header information. */
1394 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1395 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1396 ui_out_field_int (uiout, "total-bytes", total_bytes);
1397 ui_out_field_core_addr (uiout, "next-row",
1398 gdbarch, addr + word_size * nr_cols);
1399 ui_out_field_core_addr (uiout, "prev-row",
1400 gdbarch, addr - word_size * nr_cols);
1401 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1402 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1403
1404 /* Build the result as a two dimentional table. */
1405 {
1406 struct ui_stream *stream = ui_out_stream_new (uiout);
1407 struct cleanup *cleanup_list_memory;
1408 int row;
1409 int row_byte;
1410
1411 cleanup_list_memory = make_cleanup_ui_out_list_begin_end (uiout, "memory");
1412 for (row = 0, row_byte = 0;
1413 row < nr_rows;
1414 row++, row_byte += nr_cols * word_size)
1415 {
1416 int col;
1417 int col_byte;
1418 struct cleanup *cleanup_tuple;
1419 struct cleanup *cleanup_list_data;
1420 struct value_print_options opts;
1421
1422 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1423 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1424 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1425 row_byte); */
1426 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1427 get_formatted_print_options (&opts, word_format);
1428 for (col = 0, col_byte = row_byte;
1429 col < nr_cols;
1430 col++, col_byte += word_size)
1431 {
1432 if (col_byte + word_size > nr_bytes)
1433 {
1434 ui_out_field_string (uiout, NULL, "N/A");
1435 }
1436 else
1437 {
1438 ui_file_rewind (stream->stream);
1439 print_scalar_formatted (mbuf + col_byte, word_type, &opts,
1440 word_asize, stream->stream);
1441 ui_out_field_stream (uiout, NULL, stream);
1442 }
1443 }
1444 do_cleanups (cleanup_list_data);
1445 if (aschar)
1446 {
1447 int byte;
1448
1449 ui_file_rewind (stream->stream);
1450 for (byte = row_byte;
1451 byte < row_byte + word_size * nr_cols; byte++)
1452 {
1453 if (byte >= nr_bytes)
1454 {
1455 fputc_unfiltered ('X', stream->stream);
1456 }
1457 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1458 {
1459 fputc_unfiltered (aschar, stream->stream);
1460 }
1461 else
1462 fputc_unfiltered (mbuf[byte], stream->stream);
1463 }
1464 ui_out_field_stream (uiout, "ascii", stream);
1465 }
1466 do_cleanups (cleanup_tuple);
1467 }
1468 ui_out_stream_delete (stream);
1469 do_cleanups (cleanup_list_memory);
1470 }
1471 do_cleanups (cleanups);
1472 }
1473
1474 void
1475 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1476 {
1477 struct gdbarch *gdbarch = get_current_arch ();
1478 struct cleanup *cleanups;
1479 CORE_ADDR addr;
1480 LONGEST length;
1481 memory_read_result_s *read_result;
1482 int ix;
1483 VEC(memory_read_result_s) *result;
1484 long offset = 0;
1485 int optind = 0;
1486 char *optarg;
1487 enum opt
1488 {
1489 OFFSET_OPT
1490 };
1491 static struct mi_opt opts[] =
1492 {
1493 {"o", OFFSET_OPT, 1},
1494 { 0, 0, 0 }
1495 };
1496
1497 while (1)
1498 {
1499 int opt = mi_getopt ("mi_cmd_data_read_memory_bytes", argc, argv, opts,
1500 &optind, &optarg);
1501 if (opt < 0)
1502 break;
1503 switch ((enum opt) opt)
1504 {
1505 case OFFSET_OPT:
1506 offset = atol (optarg);
1507 break;
1508 }
1509 }
1510 argv += optind;
1511 argc -= optind;
1512
1513 if (argc != 2)
1514 error ("Usage: [ -o OFFSET ] ADDR LENGTH.");
1515
1516 addr = parse_and_eval_address (argv[0]) + offset;
1517 length = atol (argv[1]);
1518
1519 result = read_memory_robust (current_target.beneath, addr, length);
1520
1521 cleanups = make_cleanup (free_memory_read_result_vector, result);
1522
1523 if (VEC_length (memory_read_result_s, result) == 0)
1524 error ("Unable to read memory.");
1525
1526 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1527 for (ix = 0;
1528 VEC_iterate (memory_read_result_s, result, ix, read_result);
1529 ++ix)
1530 {
1531 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1532 char *data, *p;
1533 int i;
1534
1535 ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
1536 ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
1537 - addr);
1538 ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
1539
1540 data = xmalloc ((read_result->end - read_result->begin) * 2 + 1);
1541
1542 for (i = 0, p = data;
1543 i < (read_result->end - read_result->begin);
1544 ++i, p += 2)
1545 {
1546 sprintf (p, "%02x", read_result->data[i]);
1547 }
1548 ui_out_field_string (uiout, "contents", data);
1549 xfree (data);
1550 do_cleanups (t);
1551 }
1552 do_cleanups (cleanups);
1553 }
1554
1555
1556 /* DATA-MEMORY-WRITE:
1557
1558 COLUMN_OFFSET: optional argument. Must be preceeded by '-o'. The
1559 offset from the beginning of the memory grid row where the cell to
1560 be written is.
1561 ADDR: start address of the row in the memory grid where the memory
1562 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1563 the location to write to.
1564 FORMAT: a char indicating format for the ``word''. See
1565 the ``x'' command.
1566 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1567 VALUE: value to be written into the memory address.
1568
1569 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1570
1571 Prints nothing. */
1572 void
1573 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1574 {
1575 struct gdbarch *gdbarch = get_current_arch ();
1576 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1577 CORE_ADDR addr;
1578 char word_format;
1579 long word_size;
1580 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1581 enough when using a compiler other than GCC. */
1582 LONGEST value;
1583 void *buffer;
1584 struct cleanup *old_chain;
1585 long offset = 0;
1586 int optind = 0;
1587 char *optarg;
1588 enum opt
1589 {
1590 OFFSET_OPT
1591 };
1592 static struct mi_opt opts[] =
1593 {
1594 {"o", OFFSET_OPT, 1},
1595 { 0, 0, 0 }
1596 };
1597
1598 while (1)
1599 {
1600 int opt = mi_getopt ("mi_cmd_data_write_memory", argc, argv, opts,
1601 &optind, &optarg);
1602
1603 if (opt < 0)
1604 break;
1605 switch ((enum opt) opt)
1606 {
1607 case OFFSET_OPT:
1608 offset = atol (optarg);
1609 break;
1610 }
1611 }
1612 argv += optind;
1613 argc -= optind;
1614
1615 if (argc != 4)
1616 error ("mi_cmd_data_write_memory: Usage: "
1617 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE.");
1618
1619 /* Extract all the arguments. */
1620 /* Start address of the memory dump. */
1621 addr = parse_and_eval_address (argv[0]);
1622 /* The format character to use when displaying a memory word. See
1623 the ``x'' command. */
1624 word_format = argv[1][0];
1625 /* The size of the memory word. */
1626 word_size = atol (argv[2]);
1627
1628 /* Calculate the real address of the write destination. */
1629 addr += (offset * word_size);
1630
1631 /* Get the value as a number. */
1632 value = parse_and_eval_address (argv[3]);
1633 /* Get the value into an array. */
1634 buffer = xmalloc (word_size);
1635 old_chain = make_cleanup (xfree, buffer);
1636 store_signed_integer (buffer, word_size, byte_order, value);
1637 /* Write it down to memory. */
1638 write_memory (addr, buffer, word_size);
1639 /* Free the buffer. */
1640 do_cleanups (old_chain);
1641 }
1642
1643 /* DATA-MEMORY-WRITE-RAW:
1644
1645 ADDR: start address
1646 DATA: string of bytes to write at that address. */
1647 void
1648 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1649 {
1650 CORE_ADDR addr;
1651 char *cdata;
1652 gdb_byte *data;
1653 int len, r, i;
1654 struct cleanup *back_to;
1655
1656 if (argc != 2)
1657 error ("Usage: ADDR DATA.");
1658
1659 addr = parse_and_eval_address (argv[0]);
1660 cdata = argv[1];
1661 len = strlen (cdata)/2;
1662
1663 data = xmalloc (len);
1664 back_to = make_cleanup (xfree, data);
1665
1666 for (i = 0; i < len; ++i)
1667 {
1668 int x;
1669 sscanf (cdata + i * 2, "%02x", &x);
1670 data[i] = (gdb_byte)x;
1671 }
1672
1673 r = target_write_memory (addr, data, len);
1674 if (r != 0)
1675 error (_("Could not write memory"));
1676
1677 do_cleanups (back_to);
1678 }
1679
1680
1681 void
1682 mi_cmd_enable_timings (char *command, char **argv, int argc)
1683 {
1684 if (argc == 0)
1685 do_timings = 1;
1686 else if (argc == 1)
1687 {
1688 if (strcmp (argv[0], "yes") == 0)
1689 do_timings = 1;
1690 else if (strcmp (argv[0], "no") == 0)
1691 do_timings = 0;
1692 else
1693 goto usage_error;
1694 }
1695 else
1696 goto usage_error;
1697
1698 return;
1699
1700 usage_error:
1701 error ("mi_cmd_enable_timings: Usage: %s {yes|no}", command);
1702 }
1703
1704 void
1705 mi_cmd_list_features (char *command, char **argv, int argc)
1706 {
1707 if (argc == 0)
1708 {
1709 struct cleanup *cleanup = NULL;
1710
1711 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1712 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1713 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1714 ui_out_field_string (uiout, NULL, "thread-info");
1715 ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
1716
1717 #if HAVE_PYTHON
1718 ui_out_field_string (uiout, NULL, "python");
1719 #endif
1720
1721 do_cleanups (cleanup);
1722 return;
1723 }
1724
1725 error ("-list-features should be passed no arguments");
1726 }
1727
1728 void
1729 mi_cmd_list_target_features (char *command, char **argv, int argc)
1730 {
1731 if (argc == 0)
1732 {
1733 struct cleanup *cleanup = NULL;
1734
1735 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1736 if (target_can_async_p ())
1737 ui_out_field_string (uiout, NULL, "async");
1738 if (target_can_execute_reverse)
1739 ui_out_field_string (uiout, NULL, "reverse");
1740
1741 do_cleanups (cleanup);
1742 return;
1743 }
1744
1745 error ("-list-target-features should be passed no arguments");
1746 }
1747
1748 void
1749 mi_cmd_add_inferior (char *command, char **argv, int argc)
1750 {
1751 struct inferior *inf;
1752
1753 if (argc != 0)
1754 error (_("-add-inferior should be passed no arguments"));
1755
1756 inf = add_inferior_with_spaces ();
1757
1758 ui_out_field_fmt (uiout, "inferior", "i%d", inf->num);
1759 }
1760
1761 /* Callback used to find the first inferior other than the
1762 current one. */
1763
1764 static int
1765 get_other_inferior (struct inferior *inf, void *arg)
1766 {
1767 if (inf == current_inferior ())
1768 return 0;
1769
1770 return 1;
1771 }
1772
1773 void
1774 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1775 {
1776 int id;
1777 struct inferior *inf;
1778
1779 if (argc != 1)
1780 error ("-remove-inferior should be passed a single argument");
1781
1782 if (sscanf (argv[0], "i%d", &id) != 1)
1783 error ("the thread group id is syntactically invalid");
1784
1785 inf = find_inferior_id (id);
1786 if (!inf)
1787 error ("the specified thread group does not exist");
1788
1789 if (inf->pid != 0)
1790 error (_("cannot remove an active inferior"));
1791
1792 if (inf == current_inferior ())
1793 {
1794 struct thread_info *tp = 0;
1795 struct inferior *new_inferior
1796 = iterate_over_inferiors (get_other_inferior, NULL);
1797
1798 if (new_inferior == NULL)
1799 error (_("Cannot remove last inferior"));
1800
1801 set_current_inferior (new_inferior);
1802 if (new_inferior->pid != 0)
1803 tp = any_thread_of_process (new_inferior->pid);
1804 switch_to_thread (tp ? tp->ptid : null_ptid);
1805 set_current_program_space (new_inferior->pspace);
1806 }
1807
1808 delete_inferior_1 (inf, 1 /* silent */);
1809 }
1810
1811 \f
1812
1813 /* Execute a command within a safe environment.
1814 Return <0 for error; >=0 for ok.
1815
1816 args->action will tell mi_execute_command what action
1817 to perfrom after the given command has executed (display/suppress
1818 prompt, display error). */
1819
1820 static void
1821 captured_mi_execute_command (struct ui_out *uiout, void *data)
1822 {
1823 struct cleanup *cleanup;
1824 struct mi_parse *context = (struct mi_parse *) data;
1825
1826 if (do_timings)
1827 current_command_ts = context->cmd_start;
1828
1829 current_token = xstrdup (context->token);
1830 cleanup = make_cleanup (free_current_contents, &current_token);
1831
1832 running_result_record_printed = 0;
1833 mi_proceeded = 0;
1834 switch (context->op)
1835 {
1836 case MI_COMMAND:
1837 /* A MI command was read from the input stream. */
1838 if (mi_debug_p)
1839 /* FIXME: gdb_???? */
1840 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1841 context->token, context->command, context->args);
1842
1843
1844 mi_cmd_execute (context);
1845
1846 /* Print the result if there were no errors.
1847
1848 Remember that on the way out of executing a command, you have
1849 to directly use the mi_interp's uiout, since the command could
1850 have reset the interpreter, in which case the current uiout
1851 will most likely crash in the mi_out_* routines. */
1852 if (!running_result_record_printed)
1853 {
1854 fputs_unfiltered (context->token, raw_stdout);
1855 /* There's no particularly good reason why target-connect results
1856 in not ^done. Should kill ^connected for MI3. */
1857 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1858 ? "^connected" : "^done", raw_stdout);
1859 mi_out_put (uiout, raw_stdout);
1860 mi_out_rewind (uiout);
1861 mi_print_timing_maybe ();
1862 fputs_unfiltered ("\n", raw_stdout);
1863 }
1864 else
1865 /* The command does not want anything to be printed. In that
1866 case, the command probably should not have written anything
1867 to uiout, but in case it has written something, discard it. */
1868 mi_out_rewind (uiout);
1869 break;
1870
1871 case CLI_COMMAND:
1872 {
1873 char *argv[2];
1874
1875 /* A CLI command was read from the input stream. */
1876 /* This "feature" will be removed as soon as we have a
1877 complete set of mi commands. */
1878 /* Echo the command on the console. */
1879 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1880 /* Call the "console" interpreter. */
1881 argv[0] = "console";
1882 argv[1] = context->command;
1883 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1884
1885 /* If we changed interpreters, DON'T print out anything. */
1886 if (current_interp_named_p (INTERP_MI)
1887 || current_interp_named_p (INTERP_MI1)
1888 || current_interp_named_p (INTERP_MI2)
1889 || current_interp_named_p (INTERP_MI3))
1890 {
1891 if (!running_result_record_printed)
1892 {
1893 fputs_unfiltered (context->token, raw_stdout);
1894 fputs_unfiltered ("^done", raw_stdout);
1895 mi_out_put (uiout, raw_stdout);
1896 mi_out_rewind (uiout);
1897 mi_print_timing_maybe ();
1898 fputs_unfiltered ("\n", raw_stdout);
1899 }
1900 else
1901 mi_out_rewind (uiout);
1902 }
1903 break;
1904 }
1905
1906 }
1907
1908 do_cleanups (cleanup);
1909
1910 return;
1911 }
1912
1913 /* Print a gdb exception to the MI output stream. */
1914
1915 static void
1916 mi_print_exception (const char *token, struct gdb_exception exception)
1917 {
1918 fputs_unfiltered (token, raw_stdout);
1919 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1920 if (exception.message == NULL)
1921 fputs_unfiltered ("unknown error", raw_stdout);
1922 else
1923 fputstr_unfiltered (exception.message, '"', raw_stdout);
1924 fputs_unfiltered ("\"\n", raw_stdout);
1925 }
1926
1927 void
1928 mi_execute_command (char *cmd, int from_tty)
1929 {
1930 char *token;
1931 struct mi_parse *command = NULL;
1932 volatile struct gdb_exception exception;
1933
1934 /* This is to handle EOF (^D). We just quit gdb. */
1935 /* FIXME: we should call some API function here. */
1936 if (cmd == 0)
1937 quit_force (NULL, from_tty);
1938
1939 target_log_command (cmd);
1940
1941 TRY_CATCH (exception, RETURN_MASK_ALL)
1942 {
1943 command = mi_parse (cmd, &token);
1944 }
1945 if (exception.reason < 0)
1946 {
1947 mi_print_exception (token, exception);
1948 xfree (token);
1949 }
1950 else
1951 {
1952 struct gdb_exception result;
1953 ptid_t previous_ptid = inferior_ptid;
1954
1955 command->token = token;
1956
1957 if (do_timings)
1958 {
1959 command->cmd_start = (struct mi_timestamp *)
1960 xmalloc (sizeof (struct mi_timestamp));
1961 timestamp (command->cmd_start);
1962 }
1963
1964 result = catch_exception (uiout, captured_mi_execute_command, command,
1965 RETURN_MASK_ALL);
1966 if (result.reason < 0)
1967 {
1968 /* The command execution failed and error() was called
1969 somewhere. */
1970 mi_print_exception (command->token, result);
1971 mi_out_rewind (uiout);
1972 }
1973
1974 bpstat_do_actions ();
1975
1976 if (/* The notifications are only output when the top-level
1977 interpreter (specified on the command line) is MI. */
1978 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
1979 /* Don't try report anything if there are no threads --
1980 the program is dead. */
1981 && thread_count () != 0
1982 /* -thread-select explicitly changes thread. If frontend uses that
1983 internally, we don't want to emit =thread-selected, since
1984 =thread-selected is supposed to indicate user's intentions. */
1985 && strcmp (command->command, "thread-select") != 0)
1986 {
1987 struct mi_interp *mi = top_level_interpreter_data ();
1988 int report_change = 0;
1989
1990 if (command->thread == -1)
1991 {
1992 report_change = (!ptid_equal (previous_ptid, null_ptid)
1993 && !ptid_equal (inferior_ptid, previous_ptid)
1994 && !ptid_equal (inferior_ptid, null_ptid));
1995 }
1996 else if (!ptid_equal (inferior_ptid, null_ptid))
1997 {
1998 struct thread_info *ti = inferior_thread ();
1999
2000 report_change = (ti->num != command->thread);
2001 }
2002
2003 if (report_change)
2004 {
2005 struct thread_info *ti = inferior_thread ();
2006
2007 target_terminal_ours ();
2008 fprintf_unfiltered (mi->event_channel,
2009 "thread-selected,id=\"%d\"",
2010 ti->num);
2011 gdb_flush (mi->event_channel);
2012 }
2013 }
2014
2015 mi_parse_free (command);
2016 }
2017
2018 fputs_unfiltered ("(gdb) \n", raw_stdout);
2019 gdb_flush (raw_stdout);
2020 /* Print any buffered hook code. */
2021 /* ..... */
2022 }
2023
2024 static void
2025 mi_cmd_execute (struct mi_parse *parse)
2026 {
2027 struct cleanup *cleanup;
2028
2029 prepare_execute_command ();
2030
2031 cleanup = make_cleanup (null_cleanup, NULL);
2032
2033 if (parse->all && parse->thread_group != -1)
2034 error (_("Cannot specify --thread-group together with --all"));
2035
2036 if (parse->all && parse->thread != -1)
2037 error (_("Cannot specify --thread together with --all"));
2038
2039 if (parse->thread_group != -1 && parse->thread != -1)
2040 error (_("Cannot specify --thread together with --thread-group"));
2041
2042 if (parse->frame != -1 && parse->thread == -1)
2043 error (_("Cannot specify --frame without --thread"));
2044
2045 if (parse->thread_group != -1)
2046 {
2047 struct inferior *inf = find_inferior_id (parse->thread_group);
2048 struct thread_info *tp = 0;
2049
2050 if (!inf)
2051 error (_("Invalid thread group for the --thread-group option"));
2052
2053 set_current_inferior (inf);
2054 /* This behaviour means that if --thread-group option identifies
2055 an inferior with multiple threads, then a random one will be picked.
2056 This is not a problem -- frontend should always provide --thread if
2057 it wishes to operate on a specific thread. */
2058 if (inf->pid != 0)
2059 tp = any_thread_of_process (inf->pid);
2060 switch_to_thread (tp ? tp->ptid : null_ptid);
2061 set_current_program_space (inf->pspace);
2062 }
2063
2064 if (parse->thread != -1)
2065 {
2066 struct thread_info *tp = find_thread_id (parse->thread);
2067
2068 if (!tp)
2069 error (_("Invalid thread id: %d"), parse->thread);
2070
2071 if (is_exited (tp->ptid))
2072 error (_("Thread id: %d has terminated"), parse->thread);
2073
2074 switch_to_thread (tp->ptid);
2075 }
2076
2077 if (parse->frame != -1)
2078 {
2079 struct frame_info *fid;
2080 int frame = parse->frame;
2081
2082 fid = find_relative_frame (get_current_frame (), &frame);
2083 if (frame == 0)
2084 /* find_relative_frame was successful */
2085 select_frame (fid);
2086 else
2087 error (_("Invalid frame id: %d"), frame);
2088 }
2089
2090 current_context = parse;
2091
2092 if (parse->cmd->argv_func != NULL)
2093 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2094 else if (parse->cmd->cli.cmd != 0)
2095 {
2096 /* FIXME: DELETE THIS. */
2097 /* The operation is still implemented by a cli command. */
2098 /* Must be a synchronous one. */
2099 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2100 parse->args);
2101 }
2102 else
2103 {
2104 /* FIXME: DELETE THIS. */
2105 struct ui_file *stb;
2106
2107 stb = mem_fileopen ();
2108
2109 fputs_unfiltered ("Undefined mi command: ", stb);
2110 fputstr_unfiltered (parse->command, '"', stb);
2111 fputs_unfiltered (" (missing implementation)", stb);
2112
2113 make_cleanup_ui_file_delete (stb);
2114 error_stream (stb);
2115 }
2116 do_cleanups (cleanup);
2117 }
2118
2119 /* FIXME: This is just a hack so we can get some extra commands going.
2120 We don't want to channel things through the CLI, but call libgdb directly.
2121 Use only for synchronous commands. */
2122
2123 void
2124 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2125 {
2126 if (cmd != 0)
2127 {
2128 struct cleanup *old_cleanups;
2129 char *run;
2130
2131 if (args_p)
2132 run = xstrprintf ("%s %s", cmd, args);
2133 else
2134 run = xstrdup (cmd);
2135 if (mi_debug_p)
2136 /* FIXME: gdb_???? */
2137 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2138 cmd, run);
2139 old_cleanups = make_cleanup (xfree, run);
2140 execute_command ( /*ui */ run, 0 /*from_tty */ );
2141 do_cleanups (old_cleanups);
2142 return;
2143 }
2144 }
2145
2146 void
2147 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2148 {
2149 struct cleanup *old_cleanups;
2150 char *run;
2151
2152 if (target_can_async_p ())
2153 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2154 else
2155 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2156 old_cleanups = make_cleanup (xfree, run);
2157
2158 execute_command ( /*ui */ run, 0 /*from_tty */ );
2159
2160 if (target_can_async_p ())
2161 {
2162 /* If we're not executing, an exception should have been throw. */
2163 gdb_assert (is_running (inferior_ptid));
2164 do_cleanups (old_cleanups);
2165 }
2166 else
2167 {
2168 /* Do this before doing any printing. It would appear that some
2169 print code leaves garbage around in the buffer. */
2170 do_cleanups (old_cleanups);
2171 }
2172 }
2173
2174 void
2175 mi_load_progress (const char *section_name,
2176 unsigned long sent_so_far,
2177 unsigned long total_section,
2178 unsigned long total_sent,
2179 unsigned long grand_total)
2180 {
2181 struct timeval time_now, delta, update_threshold;
2182 static struct timeval last_update;
2183 static char *previous_sect_name = NULL;
2184 int new_section;
2185 struct ui_out *saved_uiout;
2186
2187 /* This function is called through deprecated_show_load_progress
2188 which means uiout may not be correct. Fix it for the duration
2189 of this function. */
2190 saved_uiout = uiout;
2191
2192 if (current_interp_named_p (INTERP_MI)
2193 || current_interp_named_p (INTERP_MI2))
2194 uiout = mi_out_new (2);
2195 else if (current_interp_named_p (INTERP_MI1))
2196 uiout = mi_out_new (1);
2197 else if (current_interp_named_p (INTERP_MI3))
2198 uiout = mi_out_new (3);
2199 else
2200 return;
2201
2202 update_threshold.tv_sec = 0;
2203 update_threshold.tv_usec = 500000;
2204 gettimeofday (&time_now, NULL);
2205
2206 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
2207 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
2208
2209 if (delta.tv_usec < 0)
2210 {
2211 delta.tv_sec -= 1;
2212 delta.tv_usec += 1000000L;
2213 }
2214
2215 new_section = (previous_sect_name ?
2216 strcmp (previous_sect_name, section_name) : 1);
2217 if (new_section)
2218 {
2219 struct cleanup *cleanup_tuple;
2220
2221 xfree (previous_sect_name);
2222 previous_sect_name = xstrdup (section_name);
2223
2224 if (current_token)
2225 fputs_unfiltered (current_token, raw_stdout);
2226 fputs_unfiltered ("+download", raw_stdout);
2227 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2228 ui_out_field_string (uiout, "section", section_name);
2229 ui_out_field_int (uiout, "section-size", total_section);
2230 ui_out_field_int (uiout, "total-size", grand_total);
2231 do_cleanups (cleanup_tuple);
2232 mi_out_put (uiout, raw_stdout);
2233 fputs_unfiltered ("\n", raw_stdout);
2234 gdb_flush (raw_stdout);
2235 }
2236
2237 if (delta.tv_sec >= update_threshold.tv_sec &&
2238 delta.tv_usec >= update_threshold.tv_usec)
2239 {
2240 struct cleanup *cleanup_tuple;
2241
2242 last_update.tv_sec = time_now.tv_sec;
2243 last_update.tv_usec = time_now.tv_usec;
2244 if (current_token)
2245 fputs_unfiltered (current_token, raw_stdout);
2246 fputs_unfiltered ("+download", raw_stdout);
2247 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2248 ui_out_field_string (uiout, "section", section_name);
2249 ui_out_field_int (uiout, "section-sent", sent_so_far);
2250 ui_out_field_int (uiout, "section-size", total_section);
2251 ui_out_field_int (uiout, "total-sent", total_sent);
2252 ui_out_field_int (uiout, "total-size", grand_total);
2253 do_cleanups (cleanup_tuple);
2254 mi_out_put (uiout, raw_stdout);
2255 fputs_unfiltered ("\n", raw_stdout);
2256 gdb_flush (raw_stdout);
2257 }
2258
2259 xfree (uiout);
2260 uiout = saved_uiout;
2261 }
2262
2263 static void
2264 timestamp (struct mi_timestamp *tv)
2265 {
2266 gettimeofday (&tv->wallclock, NULL);
2267 #ifdef HAVE_GETRUSAGE
2268 getrusage (RUSAGE_SELF, &rusage);
2269 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2270 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2271 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2272 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2273 #else
2274 {
2275 long usec = get_run_time ();
2276
2277 tv->utime.tv_sec = usec/1000000L;
2278 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2279 tv->stime.tv_sec = 0;
2280 tv->stime.tv_usec = 0;
2281 }
2282 #endif
2283 }
2284
2285 static void
2286 print_diff_now (struct mi_timestamp *start)
2287 {
2288 struct mi_timestamp now;
2289
2290 timestamp (&now);
2291 print_diff (start, &now);
2292 }
2293
2294 void
2295 mi_print_timing_maybe (void)
2296 {
2297 /* If the command is -enable-timing then do_timings may be
2298 true whilst current_command_ts is not initialized. */
2299 if (do_timings && current_command_ts)
2300 print_diff_now (current_command_ts);
2301 }
2302
2303 static long
2304 timeval_diff (struct timeval start, struct timeval end)
2305 {
2306 return ((end.tv_sec - start.tv_sec) * 1000000L)
2307 + (end.tv_usec - start.tv_usec);
2308 }
2309
2310 static void
2311 print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
2312 {
2313 fprintf_unfiltered
2314 (raw_stdout,
2315 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2316 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2317 timeval_diff (start->utime, end->utime) / 1000000.0,
2318 timeval_diff (start->stime, end->stime) / 1000000.0);
2319 }
2320
2321 void
2322 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2323 {
2324 struct expression *expr;
2325 struct cleanup *back_to;
2326 LONGEST initval = 0;
2327 struct trace_state_variable *tsv;
2328 char *name = 0;
2329
2330 if (argc != 1 && argc != 2)
2331 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2332
2333 expr = parse_expression (argv[0]);
2334 back_to = make_cleanup (xfree, expr);
2335
2336 if (expr->nelts == 3 && expr->elts[0].opcode == OP_INTERNALVAR)
2337 {
2338 struct internalvar *intvar = expr->elts[1].internalvar;
2339
2340 if (intvar)
2341 name = internalvar_name (intvar);
2342 }
2343
2344 if (!name || *name == '\0')
2345 error (_("Invalid name of trace variable"));
2346
2347 tsv = find_trace_state_variable (name);
2348 if (!tsv)
2349 tsv = create_trace_state_variable (name);
2350
2351 if (argc == 2)
2352 initval = value_as_long (parse_and_eval (argv[1]));
2353
2354 tsv->initial_value = initval;
2355
2356 do_cleanups (back_to);
2357 }
2358
2359 void
2360 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2361 {
2362 if (argc != 0)
2363 error (_("-trace-list-variables: no arguments are allowed"));
2364
2365 tvariables_info_1 ();
2366 }
2367
2368 void
2369 mi_cmd_trace_find (char *command, char **argv, int argc)
2370 {
2371 char *mode;
2372
2373 if (argc == 0)
2374 error (_("trace selection mode is required"));
2375
2376 mode = argv[0];
2377
2378 if (strcmp (mode, "none") == 0)
2379 {
2380 tfind_1 (tfind_number, -1, 0, 0, 0);
2381 return;
2382 }
2383
2384 if (current_trace_status ()->running)
2385 error (_("May not look at trace frames while trace is running."));
2386
2387 if (strcmp (mode, "frame-number") == 0)
2388 {
2389 if (argc != 2)
2390 error (_("frame number is required"));
2391 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2392 }
2393 else if (strcmp (mode, "tracepoint-number") == 0)
2394 {
2395 if (argc != 2)
2396 error (_("tracepoint number is required"));
2397 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2398 }
2399 else if (strcmp (mode, "pc") == 0)
2400 {
2401 if (argc != 2)
2402 error (_("PC is required"));
2403 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2404 }
2405 else if (strcmp (mode, "pc-inside-range") == 0)
2406 {
2407 if (argc != 3)
2408 error (_("Start and end PC are required"));
2409 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2410 parse_and_eval_address (argv[2]), 0);
2411 }
2412 else if (strcmp (mode, "pc-outside-range") == 0)
2413 {
2414 if (argc != 3)
2415 error (_("Start and end PC are required"));
2416 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2417 parse_and_eval_address (argv[2]), 0);
2418 }
2419 else if (strcmp (mode, "line") == 0)
2420 {
2421 struct symtabs_and_lines sals;
2422 struct symtab_and_line sal;
2423 static CORE_ADDR start_pc, end_pc;
2424 struct cleanup *back_to;
2425
2426 if (argc != 2)
2427 error (_("Line is required"));
2428
2429 sals = decode_line_spec (argv[1], 1);
2430 back_to = make_cleanup (xfree, sals.sals);
2431
2432 sal = sals.sals[0];
2433
2434 if (sal.symtab == 0)
2435 error (_("Could not find the specified line"));
2436
2437 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2438 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2439 else
2440 error (_("Could not find the specified line"));
2441
2442 do_cleanups (back_to);
2443 }
2444 else
2445 error (_("Invalid mode '%s'"), mode);
2446
2447 if (has_stack_frames () || get_traceframe_number () >= 0)
2448 {
2449 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
2450 }
2451 }
2452
2453 void
2454 mi_cmd_trace_save (char *command, char **argv, int argc)
2455 {
2456 int target_saves = 0;
2457 char *filename;
2458
2459 if (argc != 1 && argc != 2)
2460 error (_("Usage: -trace-save [-r] filename"));
2461
2462 if (argc == 2)
2463 {
2464 filename = argv[1];
2465 if (strcmp (argv[0], "-r") == 0)
2466 target_saves = 1;
2467 else
2468 error (_("Invalid option: %s"), argv[0]);
2469 }
2470 else
2471 {
2472 filename = argv[0];
2473 }
2474
2475 trace_save (filename, target_saves);
2476 }
2477
2478
2479 void
2480 mi_cmd_trace_start (char *command, char **argv, int argc)
2481 {
2482 start_tracing ();
2483 }
2484
2485 void
2486 mi_cmd_trace_status (char *command, char **argv, int argc)
2487 {
2488 trace_status_mi (0);
2489 }
2490
2491 void
2492 mi_cmd_trace_stop (char *command, char **argv, int argc)
2493 {
2494 stop_tracing ();
2495 trace_status_mi (1);
2496 }
This page took 0.128135 seconds and 4 git commands to generate.