28de126aa9b4e80204ec42096d81908a89f0f24c
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "gdb_string.h"
27 #include "exceptions.h"
28 #include "top.h"
29 #include "gdbthread.h"
30 #include "mi-cmds.h"
31 #include "mi-parse.h"
32 #include "mi-getopt.h"
33 #include "mi-console.h"
34 #include "ui-out.h"
35 #include "mi-out.h"
36 #include "interps.h"
37 #include "event-loop.h"
38 #include "event-top.h"
39 #include "gdbcore.h" /* For write_memory(). */
40 #include "value.h"
41 #include "regcache.h"
42 #include "gdb.h"
43 #include "frame.h"
44 #include "mi-main.h"
45 #include "mi-common.h"
46 #include "language.h"
47 #include "valprint.h"
48 #include "inferior.h"
49 #include "osdata.h"
50 #include "splay-tree.h"
51 #include "tracepoint.h"
52 #include "ada-lang.h"
53 #include "linespec.h"
54
55 #include <ctype.h>
56 #include <sys/time.h>
57
58 #if defined HAVE_SYS_RESOURCE_H
59 #include <sys/resource.h>
60 #endif
61
62 #ifdef HAVE_GETRUSAGE
63 struct rusage rusage;
64 #endif
65
66 enum
67 {
68 FROM_TTY = 0
69 };
70
71 int mi_debug_p;
72
73 struct ui_file *raw_stdout;
74
75 /* This is used to pass the current command timestamp down to
76 continuation routines. */
77 static struct mi_timestamp *current_command_ts;
78
79 static int do_timings = 0;
80
81 char *current_token;
82 /* Few commands would like to know if options like --thread-group were
83 explicitly specified. This variable keeps the current parsed
84 command including all option, and make it possible. */
85 static struct mi_parse *current_context;
86
87 int running_result_record_printed = 1;
88
89 /* Flag indicating that the target has proceeded since the last
90 command was issued. */
91 int mi_proceeded;
92
93 extern void _initialize_mi_main (void);
94 static void mi_cmd_execute (struct mi_parse *parse);
95
96 static void mi_execute_cli_command (const char *cmd, int args_p,
97 const char *args);
98 static void mi_execute_async_cli_command (char *cli_command,
99 char **argv, int argc);
100 static int register_changed_p (int regnum, struct regcache *,
101 struct regcache *);
102 static void get_register (struct frame_info *, int regnum, int format);
103
104 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
105 layer that calls libgdb. Any operation used in the below should be
106 formalized. */
107
108 static void timestamp (struct mi_timestamp *tv);
109
110 static void print_diff_now (struct mi_timestamp *start);
111 static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
112
113 void
114 mi_cmd_gdb_exit (char *command, char **argv, int argc)
115 {
116 /* We have to print everything right here because we never return. */
117 if (current_token)
118 fputs_unfiltered (current_token, raw_stdout);
119 fputs_unfiltered ("^exit\n", raw_stdout);
120 mi_out_put (current_uiout, raw_stdout);
121 gdb_flush (raw_stdout);
122 /* FIXME: The function called is not yet a formal libgdb function. */
123 quit_force (NULL, FROM_TTY);
124 }
125
126 void
127 mi_cmd_exec_next (char *command, char **argv, int argc)
128 {
129 /* FIXME: Should call a libgdb function, not a cli wrapper. */
130 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
131 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
132 else
133 mi_execute_async_cli_command ("next", argv, argc);
134 }
135
136 void
137 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
138 {
139 /* FIXME: Should call a libgdb function, not a cli wrapper. */
140 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
141 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
142 else
143 mi_execute_async_cli_command ("nexti", argv, argc);
144 }
145
146 void
147 mi_cmd_exec_step (char *command, char **argv, int argc)
148 {
149 /* FIXME: Should call a libgdb function, not a cli wrapper. */
150 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
151 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
152 else
153 mi_execute_async_cli_command ("step", argv, argc);
154 }
155
156 void
157 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
158 {
159 /* FIXME: Should call a libgdb function, not a cli wrapper. */
160 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
161 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
162 else
163 mi_execute_async_cli_command ("stepi", argv, argc);
164 }
165
166 void
167 mi_cmd_exec_finish (char *command, char **argv, int argc)
168 {
169 /* FIXME: Should call a libgdb function, not a cli wrapper. */
170 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
171 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
172 else
173 mi_execute_async_cli_command ("finish", argv, argc);
174 }
175
176 void
177 mi_cmd_exec_return (char *command, char **argv, int argc)
178 {
179 /* This command doesn't really execute the target, it just pops the
180 specified number of frames. */
181 if (argc)
182 /* Call return_command with from_tty argument equal to 0 so as to
183 avoid being queried. */
184 return_command (*argv, 0);
185 else
186 /* Call return_command with from_tty argument equal to 0 so as to
187 avoid being queried. */
188 return_command (NULL, 0);
189
190 /* Because we have called return_command with from_tty = 0, we need
191 to print the frame here. */
192 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS);
193 }
194
195 void
196 mi_cmd_exec_jump (char *args, char **argv, int argc)
197 {
198 /* FIXME: Should call a libgdb function, not a cli wrapper. */
199 mi_execute_async_cli_command ("jump", argv, argc);
200 }
201
202 static void
203 proceed_thread (struct thread_info *thread, int pid)
204 {
205 if (!is_stopped (thread->ptid))
206 return;
207
208 if (pid != 0 && PIDGET (thread->ptid) != pid)
209 return;
210
211 switch_to_thread (thread->ptid);
212 clear_proceed_status ();
213 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
214 }
215
216 static int
217 proceed_thread_callback (struct thread_info *thread, void *arg)
218 {
219 int pid = *(int *)arg;
220
221 proceed_thread (thread, pid);
222 return 0;
223 }
224
225 static void
226 exec_continue (char **argv, int argc)
227 {
228 if (non_stop)
229 {
230 /* In non-stop mode, 'resume' always resumes a single thread.
231 Therefore, to resume all threads of the current inferior, or
232 all threads in all inferiors, we need to iterate over
233 threads.
234
235 See comment on infcmd.c:proceed_thread_callback for rationale. */
236 if (current_context->all || current_context->thread_group != -1)
237 {
238 int pid = 0;
239 struct cleanup *back_to = make_cleanup_restore_current_thread ();
240
241 if (!current_context->all)
242 {
243 struct inferior *inf
244 = find_inferior_id (current_context->thread_group);
245
246 pid = inf->pid;
247 }
248 iterate_over_threads (proceed_thread_callback, &pid);
249 do_cleanups (back_to);
250 }
251 else
252 {
253 continue_1 (0);
254 }
255 }
256 else
257 {
258 struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
259
260 if (current_context->all)
261 {
262 sched_multi = 1;
263 continue_1 (0);
264 }
265 else
266 {
267 /* In all-stop mode, -exec-continue traditionally resumed
268 either all threads, or one thread, depending on the
269 'scheduler-locking' variable. Let's continue to do the
270 same. */
271 continue_1 (1);
272 }
273 do_cleanups (back_to);
274 }
275 }
276
277 static void
278 exec_direction_forward (void *notused)
279 {
280 execution_direction = EXEC_FORWARD;
281 }
282
283 static void
284 exec_reverse_continue (char **argv, int argc)
285 {
286 enum exec_direction_kind dir = execution_direction;
287 struct cleanup *old_chain;
288
289 if (dir == EXEC_REVERSE)
290 error (_("Already in reverse mode."));
291
292 if (!target_can_execute_reverse)
293 error (_("Target %s does not support this command."), target_shortname);
294
295 old_chain = make_cleanup (exec_direction_forward, NULL);
296 execution_direction = EXEC_REVERSE;
297 exec_continue (argv, argc);
298 do_cleanups (old_chain);
299 }
300
301 void
302 mi_cmd_exec_continue (char *command, char **argv, int argc)
303 {
304 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
305 exec_reverse_continue (argv + 1, argc - 1);
306 else
307 exec_continue (argv, argc);
308 }
309
310 static int
311 interrupt_thread_callback (struct thread_info *thread, void *arg)
312 {
313 int pid = *(int *)arg;
314
315 if (!is_running (thread->ptid))
316 return 0;
317
318 if (PIDGET (thread->ptid) != pid)
319 return 0;
320
321 target_stop (thread->ptid);
322 return 0;
323 }
324
325 /* Interrupt the execution of the target. Note how we must play
326 around with the token variables, in order to display the current
327 token in the result of the interrupt command, and the previous
328 execution token when the target finally stops. See comments in
329 mi_cmd_execute. */
330
331 void
332 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
333 {
334 /* In all-stop mode, everything stops, so we don't need to try
335 anything specific. */
336 if (!non_stop)
337 {
338 interrupt_target_1 (0);
339 return;
340 }
341
342 if (current_context->all)
343 {
344 /* This will interrupt all threads in all inferiors. */
345 interrupt_target_1 (1);
346 }
347 else if (current_context->thread_group != -1)
348 {
349 struct inferior *inf = find_inferior_id (current_context->thread_group);
350
351 iterate_over_threads (interrupt_thread_callback, &inf->pid);
352 }
353 else
354 {
355 /* Interrupt just the current thread -- either explicitly
356 specified via --thread or whatever was current before
357 MI command was sent. */
358 interrupt_target_1 (0);
359 }
360 }
361
362 static int
363 run_one_inferior (struct inferior *inf, void *arg)
364 {
365 if (inf->pid != 0)
366 {
367 if (inf->pid != ptid_get_pid (inferior_ptid))
368 {
369 struct thread_info *tp;
370
371 tp = any_thread_of_process (inf->pid);
372 if (!tp)
373 error (_("Inferior has no threads."));
374
375 switch_to_thread (tp->ptid);
376 }
377 }
378 else
379 {
380 set_current_inferior (inf);
381 switch_to_thread (null_ptid);
382 set_current_program_space (inf->pspace);
383 }
384 mi_execute_cli_command ("run", target_can_async_p (),
385 target_can_async_p () ? "&" : NULL);
386 return 0;
387 }
388
389 void
390 mi_cmd_exec_run (char *command, char **argv, int argc)
391 {
392 if (current_context->all)
393 {
394 struct cleanup *back_to = save_current_space_and_thread ();
395
396 iterate_over_inferiors (run_one_inferior, NULL);
397 do_cleanups (back_to);
398 }
399 else
400 {
401 mi_execute_cli_command ("run", target_can_async_p (),
402 target_can_async_p () ? "&" : NULL);
403 }
404 }
405
406
407 static int
408 find_thread_of_process (struct thread_info *ti, void *p)
409 {
410 int pid = *(int *)p;
411
412 if (PIDGET (ti->ptid) == pid && !is_exited (ti->ptid))
413 return 1;
414
415 return 0;
416 }
417
418 void
419 mi_cmd_target_detach (char *command, char **argv, int argc)
420 {
421 if (argc != 0 && argc != 1)
422 error (_("Usage: -target-detach [pid | thread-group]"));
423
424 if (argc == 1)
425 {
426 struct thread_info *tp;
427 char *end = argv[0];
428 int pid;
429
430 /* First see if we are dealing with a thread-group id. */
431 if (*argv[0] == 'i')
432 {
433 struct inferior *inf;
434 int id = strtoul (argv[0] + 1, &end, 0);
435
436 if (*end != '\0')
437 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
438
439 inf = find_inferior_id (id);
440 if (!inf)
441 error (_("Non-existent thread-group id '%d'"), id);
442
443 pid = inf->pid;
444 }
445 else
446 {
447 /* We must be dealing with a pid. */
448 pid = strtol (argv[0], &end, 10);
449
450 if (*end != '\0')
451 error (_("Invalid identifier '%s'"), argv[0]);
452 }
453
454 /* Pick any thread in the desired process. Current
455 target_detach detaches from the parent of inferior_ptid. */
456 tp = iterate_over_threads (find_thread_of_process, &pid);
457 if (!tp)
458 error (_("Thread group is empty"));
459
460 switch_to_thread (tp->ptid);
461 }
462
463 detach_command (NULL, 0);
464 }
465
466 void
467 mi_cmd_thread_select (char *command, char **argv, int argc)
468 {
469 enum gdb_rc rc;
470 char *mi_error_message;
471
472 if (argc != 1)
473 error (_("-thread-select: USAGE: threadnum."));
474
475 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
476
477 if (rc == GDB_RC_FAIL)
478 {
479 make_cleanup (xfree, mi_error_message);
480 error ("%s", mi_error_message);
481 }
482 }
483
484 void
485 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
486 {
487 enum gdb_rc rc;
488 char *mi_error_message;
489
490 if (argc != 0)
491 error (_("-thread-list-ids: No arguments required."));
492
493 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
494
495 if (rc == GDB_RC_FAIL)
496 {
497 make_cleanup (xfree, mi_error_message);
498 error ("%s", mi_error_message);
499 }
500 }
501
502 void
503 mi_cmd_thread_info (char *command, char **argv, int argc)
504 {
505 if (argc != 0 && argc != 1)
506 error (_("Invalid MI command"));
507
508 print_thread_info (current_uiout, argv[0], -1);
509 }
510
511 DEF_VEC_I(int);
512
513 struct collect_cores_data
514 {
515 int pid;
516
517 VEC (int) *cores;
518 };
519
520 static int
521 collect_cores (struct thread_info *ti, void *xdata)
522 {
523 struct collect_cores_data *data = xdata;
524
525 if (ptid_get_pid (ti->ptid) == data->pid)
526 {
527 int core = target_core_of_thread (ti->ptid);
528
529 if (core != -1)
530 VEC_safe_push (int, data->cores, core);
531 }
532
533 return 0;
534 }
535
536 static int *
537 unique (int *b, int *e)
538 {
539 int *d = b;
540
541 while (++b != e)
542 if (*d != *b)
543 *++d = *b;
544 return ++d;
545 }
546
547 struct print_one_inferior_data
548 {
549 int recurse;
550 VEC (int) *inferiors;
551 };
552
553 static int
554 print_one_inferior (struct inferior *inferior, void *xdata)
555 {
556 struct print_one_inferior_data *top_data = xdata;
557 struct ui_out *uiout = current_uiout;
558
559 if (VEC_empty (int, top_data->inferiors)
560 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
561 VEC_length (int, top_data->inferiors), sizeof (int),
562 compare_positive_ints))
563 {
564 struct collect_cores_data data;
565 struct cleanup *back_to
566 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
567
568 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
569 ui_out_field_string (uiout, "type", "process");
570 if (inferior->pid != 0)
571 ui_out_field_int (uiout, "pid", inferior->pid);
572
573 if (inferior->pspace->ebfd)
574 {
575 ui_out_field_string (uiout, "executable",
576 bfd_get_filename (inferior->pspace->ebfd));
577 }
578
579 data.cores = 0;
580 if (inferior->pid != 0)
581 {
582 data.pid = inferior->pid;
583 iterate_over_threads (collect_cores, &data);
584 }
585
586 if (!VEC_empty (int, data.cores))
587 {
588 int *b, *e;
589 struct cleanup *back_to_2 =
590 make_cleanup_ui_out_list_begin_end (uiout, "cores");
591
592 qsort (VEC_address (int, data.cores),
593 VEC_length (int, data.cores), sizeof (int),
594 compare_positive_ints);
595
596 b = VEC_address (int, data.cores);
597 e = b + VEC_length (int, data.cores);
598 e = unique (b, e);
599
600 for (; b != e; ++b)
601 ui_out_field_int (uiout, NULL, *b);
602
603 do_cleanups (back_to_2);
604 }
605
606 if (top_data->recurse)
607 print_thread_info (uiout, NULL, inferior->pid);
608
609 do_cleanups (back_to);
610 }
611
612 return 0;
613 }
614
615 /* Output a field named 'cores' with a list as the value. The
616 elements of the list are obtained by splitting 'cores' on
617 comma. */
618
619 static void
620 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
621 {
622 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
623 field_name);
624 char *cores = xstrdup (xcores);
625 char *p = cores;
626
627 make_cleanup (xfree, cores);
628
629 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
630 ui_out_field_string (uiout, NULL, p);
631
632 do_cleanups (back_to);
633 }
634
635 static void
636 free_vector_of_ints (void *xvector)
637 {
638 VEC (int) **vector = xvector;
639
640 VEC_free (int, *vector);
641 }
642
643 static void
644 do_nothing (splay_tree_key k)
645 {
646 }
647
648 static void
649 free_vector_of_osdata_items (splay_tree_value xvalue)
650 {
651 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
652
653 /* We don't free the items itself, it will be done separately. */
654 VEC_free (osdata_item_s, value);
655 }
656
657 static int
658 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
659 {
660 int a = xa;
661 int b = xb;
662
663 return a - b;
664 }
665
666 static void
667 free_splay_tree (void *xt)
668 {
669 splay_tree t = xt;
670 splay_tree_delete (t);
671 }
672
673 static void
674 list_available_thread_groups (VEC (int) *ids, int recurse)
675 {
676 struct osdata *data;
677 struct osdata_item *item;
678 int ix_items;
679 struct ui_out *uiout = current_uiout;
680
681 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
682 The vector contains information about all threads for the given pid.
683 This is assigned an initial value to avoid "may be used uninitialized"
684 warning from gcc. */
685 splay_tree tree = NULL;
686
687 /* get_osdata will throw if it cannot return data. */
688 data = get_osdata ("processes");
689 make_cleanup_osdata_free (data);
690
691 if (recurse)
692 {
693 struct osdata *threads = get_osdata ("threads");
694
695 make_cleanup_osdata_free (threads);
696 tree = splay_tree_new (splay_tree_int_comparator,
697 do_nothing,
698 free_vector_of_osdata_items);
699 make_cleanup (free_splay_tree, tree);
700
701 for (ix_items = 0;
702 VEC_iterate (osdata_item_s, threads->items,
703 ix_items, item);
704 ix_items++)
705 {
706 const char *pid = get_osdata_column (item, "pid");
707 int pid_i = strtoul (pid, NULL, 0);
708 VEC (osdata_item_s) *vec = 0;
709
710 splay_tree_node n = splay_tree_lookup (tree, pid_i);
711 if (!n)
712 {
713 VEC_safe_push (osdata_item_s, vec, item);
714 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
715 }
716 else
717 {
718 vec = (VEC (osdata_item_s) *) n->value;
719 VEC_safe_push (osdata_item_s, vec, item);
720 n->value = (splay_tree_value) vec;
721 }
722 }
723 }
724
725 make_cleanup_ui_out_list_begin_end (uiout, "groups");
726
727 for (ix_items = 0;
728 VEC_iterate (osdata_item_s, data->items,
729 ix_items, item);
730 ix_items++)
731 {
732 struct cleanup *back_to;
733
734 const char *pid = get_osdata_column (item, "pid");
735 const char *cmd = get_osdata_column (item, "command");
736 const char *user = get_osdata_column (item, "user");
737 const char *cores = get_osdata_column (item, "cores");
738
739 int pid_i = strtoul (pid, NULL, 0);
740
741 /* At present, the target will return all available processes
742 and if information about specific ones was required, we filter
743 undesired processes here. */
744 if (ids && bsearch (&pid_i, VEC_address (int, ids),
745 VEC_length (int, ids),
746 sizeof (int), compare_positive_ints) == NULL)
747 continue;
748
749
750 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
751
752 ui_out_field_fmt (uiout, "id", "%s", pid);
753 ui_out_field_string (uiout, "type", "process");
754 if (cmd)
755 ui_out_field_string (uiout, "description", cmd);
756 if (user)
757 ui_out_field_string (uiout, "user", user);
758 if (cores)
759 output_cores (uiout, "cores", cores);
760
761 if (recurse)
762 {
763 splay_tree_node n = splay_tree_lookup (tree, pid_i);
764 if (n)
765 {
766 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
767 struct osdata_item *child;
768 int ix_child;
769
770 make_cleanup_ui_out_list_begin_end (uiout, "threads");
771
772 for (ix_child = 0;
773 VEC_iterate (osdata_item_s, children, ix_child, child);
774 ++ix_child)
775 {
776 struct cleanup *back_to_2 =
777 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
778 const char *tid = get_osdata_column (child, "tid");
779 const char *tcore = get_osdata_column (child, "core");
780
781 ui_out_field_string (uiout, "id", tid);
782 if (tcore)
783 ui_out_field_string (uiout, "core", tcore);
784
785 do_cleanups (back_to_2);
786 }
787 }
788 }
789
790 do_cleanups (back_to);
791 }
792 }
793
794 void
795 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
796 {
797 struct ui_out *uiout = current_uiout;
798 struct cleanup *back_to;
799 int available = 0;
800 int recurse = 0;
801 VEC (int) *ids = 0;
802
803 enum opt
804 {
805 AVAILABLE_OPT, RECURSE_OPT
806 };
807 static const struct mi_opt opts[] =
808 {
809 {"-available", AVAILABLE_OPT, 0},
810 {"-recurse", RECURSE_OPT, 1},
811 { 0, 0, 0 }
812 };
813
814 int oind = 0;
815 char *oarg;
816
817 while (1)
818 {
819 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
820 &oind, &oarg);
821
822 if (opt < 0)
823 break;
824 switch ((enum opt) opt)
825 {
826 case AVAILABLE_OPT:
827 available = 1;
828 break;
829 case RECURSE_OPT:
830 if (strcmp (oarg, "0") == 0)
831 ;
832 else if (strcmp (oarg, "1") == 0)
833 recurse = 1;
834 else
835 error (_("only '0' and '1' are valid values "
836 "for the '--recurse' option"));
837 break;
838 }
839 }
840
841 for (; oind < argc; ++oind)
842 {
843 char *end;
844 int inf;
845
846 if (*(argv[oind]) != 'i')
847 error (_("invalid syntax of group id '%s'"), argv[oind]);
848
849 inf = strtoul (argv[oind] + 1, &end, 0);
850
851 if (*end != '\0')
852 error (_("invalid syntax of group id '%s'"), argv[oind]);
853 VEC_safe_push (int, ids, inf);
854 }
855 if (VEC_length (int, ids) > 1)
856 qsort (VEC_address (int, ids),
857 VEC_length (int, ids),
858 sizeof (int), compare_positive_ints);
859
860 back_to = make_cleanup (free_vector_of_ints, &ids);
861
862 if (available)
863 {
864 list_available_thread_groups (ids, recurse);
865 }
866 else if (VEC_length (int, ids) == 1)
867 {
868 /* Local thread groups, single id. */
869 int id = *VEC_address (int, ids);
870 struct inferior *inf = find_inferior_id (id);
871
872 if (!inf)
873 error (_("Non-existent thread group id '%d'"), id);
874
875 print_thread_info (uiout, NULL, inf->pid);
876 }
877 else
878 {
879 struct print_one_inferior_data data;
880
881 data.recurse = recurse;
882 data.inferiors = ids;
883
884 /* Local thread groups. Either no explicit ids -- and we
885 print everything, or several explicit ids. In both cases,
886 we print more than one group, and have to use 'groups'
887 as the top-level element. */
888 make_cleanup_ui_out_list_begin_end (uiout, "groups");
889 update_thread_list ();
890 iterate_over_inferiors (print_one_inferior, &data);
891 }
892
893 do_cleanups (back_to);
894 }
895
896 void
897 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
898 {
899 struct gdbarch *gdbarch;
900 struct ui_out *uiout = current_uiout;
901 int regnum, numregs;
902 int i;
903 struct cleanup *cleanup;
904
905 /* Note that the test for a valid register must include checking the
906 gdbarch_register_name because gdbarch_num_regs may be allocated
907 for the union of the register sets within a family of related
908 processors. In this case, some entries of gdbarch_register_name
909 will change depending upon the particular processor being
910 debugged. */
911
912 gdbarch = get_current_arch ();
913 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
914
915 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
916
917 if (argc == 0) /* No args, just do all the regs. */
918 {
919 for (regnum = 0;
920 regnum < numregs;
921 regnum++)
922 {
923 if (gdbarch_register_name (gdbarch, regnum) == NULL
924 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
925 ui_out_field_string (uiout, NULL, "");
926 else
927 ui_out_field_string (uiout, NULL,
928 gdbarch_register_name (gdbarch, regnum));
929 }
930 }
931
932 /* Else, list of register #s, just do listed regs. */
933 for (i = 0; i < argc; i++)
934 {
935 regnum = atoi (argv[i]);
936 if (regnum < 0 || regnum >= numregs)
937 error (_("bad register number"));
938
939 if (gdbarch_register_name (gdbarch, regnum) == NULL
940 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
941 ui_out_field_string (uiout, NULL, "");
942 else
943 ui_out_field_string (uiout, NULL,
944 gdbarch_register_name (gdbarch, regnum));
945 }
946 do_cleanups (cleanup);
947 }
948
949 void
950 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
951 {
952 static struct regcache *this_regs = NULL;
953 struct ui_out *uiout = current_uiout;
954 struct regcache *prev_regs;
955 struct gdbarch *gdbarch;
956 int regnum, numregs, changed;
957 int i;
958 struct cleanup *cleanup;
959
960 /* The last time we visited this function, the current frame's
961 register contents were saved in THIS_REGS. Move THIS_REGS over
962 to PREV_REGS, and refresh THIS_REGS with the now-current register
963 contents. */
964
965 prev_regs = this_regs;
966 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
967 cleanup = make_cleanup_regcache_xfree (prev_regs);
968
969 /* Note that the test for a valid register must include checking the
970 gdbarch_register_name because gdbarch_num_regs may be allocated
971 for the union of the register sets within a family of related
972 processors. In this case, some entries of gdbarch_register_name
973 will change depending upon the particular processor being
974 debugged. */
975
976 gdbarch = get_regcache_arch (this_regs);
977 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
978
979 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
980
981 if (argc == 0)
982 {
983 /* No args, just do all the regs. */
984 for (regnum = 0;
985 regnum < numregs;
986 regnum++)
987 {
988 if (gdbarch_register_name (gdbarch, regnum) == NULL
989 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
990 continue;
991 changed = register_changed_p (regnum, prev_regs, this_regs);
992 if (changed < 0)
993 error (_("-data-list-changed-registers: "
994 "Unable to read register contents."));
995 else if (changed)
996 ui_out_field_int (uiout, NULL, regnum);
997 }
998 }
999
1000 /* Else, list of register #s, just do listed regs. */
1001 for (i = 0; i < argc; i++)
1002 {
1003 regnum = atoi (argv[i]);
1004
1005 if (regnum >= 0
1006 && regnum < numregs
1007 && gdbarch_register_name (gdbarch, regnum) != NULL
1008 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1009 {
1010 changed = register_changed_p (regnum, prev_regs, this_regs);
1011 if (changed < 0)
1012 error (_("-data-list-changed-registers: "
1013 "Unable to read register contents."));
1014 else if (changed)
1015 ui_out_field_int (uiout, NULL, regnum);
1016 }
1017 else
1018 error (_("bad register number"));
1019 }
1020 do_cleanups (cleanup);
1021 }
1022
1023 static int
1024 register_changed_p (int regnum, struct regcache *prev_regs,
1025 struct regcache *this_regs)
1026 {
1027 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1028 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1029 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1030 enum register_status prev_status;
1031 enum register_status this_status;
1032
1033 /* First time through or after gdbarch change consider all registers
1034 as changed. */
1035 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1036 return 1;
1037
1038 /* Get register contents and compare. */
1039 prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
1040 this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
1041
1042 if (this_status != prev_status)
1043 return 1;
1044 else if (this_status == REG_VALID)
1045 return memcmp (prev_buffer, this_buffer,
1046 register_size (gdbarch, regnum)) != 0;
1047 else
1048 return 0;
1049 }
1050
1051 /* Return a list of register number and value pairs. The valid
1052 arguments expected are: a letter indicating the format in which to
1053 display the registers contents. This can be one of: x
1054 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1055 (raw). After the format argument there can be a sequence of
1056 numbers, indicating which registers to fetch the content of. If
1057 the format is the only argument, a list of all the registers with
1058 their values is returned. */
1059
1060 void
1061 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1062 {
1063 struct ui_out *uiout = current_uiout;
1064 struct frame_info *frame;
1065 struct gdbarch *gdbarch;
1066 int regnum, numregs, format;
1067 int i;
1068 struct cleanup *list_cleanup, *tuple_cleanup;
1069
1070 /* Note that the test for a valid register must include checking the
1071 gdbarch_register_name because gdbarch_num_regs may be allocated
1072 for the union of the register sets within a family of related
1073 processors. In this case, some entries of gdbarch_register_name
1074 will change depending upon the particular processor being
1075 debugged. */
1076
1077 if (argc == 0)
1078 error (_("-data-list-register-values: Usage: "
1079 "-data-list-register-values <format> [<regnum1>...<regnumN>]"));
1080
1081 format = (int) argv[0][0];
1082
1083 frame = get_selected_frame (NULL);
1084 gdbarch = get_frame_arch (frame);
1085 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1086
1087 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1088
1089 if (argc == 1)
1090 {
1091 /* No args, beside the format: do all the regs. */
1092 for (regnum = 0;
1093 regnum < numregs;
1094 regnum++)
1095 {
1096 if (gdbarch_register_name (gdbarch, regnum) == NULL
1097 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1098 continue;
1099 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1100 ui_out_field_int (uiout, "number", regnum);
1101 get_register (frame, regnum, format);
1102 do_cleanups (tuple_cleanup);
1103 }
1104 }
1105
1106 /* Else, list of register #s, just do listed regs. */
1107 for (i = 1; i < argc; i++)
1108 {
1109 regnum = atoi (argv[i]);
1110
1111 if (regnum >= 0
1112 && regnum < numregs
1113 && gdbarch_register_name (gdbarch, regnum) != NULL
1114 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1115 {
1116 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1117 ui_out_field_int (uiout, "number", regnum);
1118 get_register (frame, regnum, format);
1119 do_cleanups (tuple_cleanup);
1120 }
1121 else
1122 error (_("bad register number"));
1123 }
1124 do_cleanups (list_cleanup);
1125 }
1126
1127 /* Output one register's contents in the desired format. */
1128
1129 static void
1130 get_register (struct frame_info *frame, int regnum, int format)
1131 {
1132 struct gdbarch *gdbarch = get_frame_arch (frame);
1133 struct ui_out *uiout = current_uiout;
1134 struct value *val;
1135
1136 if (format == 'N')
1137 format = 0;
1138
1139 val = get_frame_register_value (frame, regnum);
1140
1141 if (value_optimized_out (val))
1142 error (_("Optimized out"));
1143
1144 if (format == 'r')
1145 {
1146 int j;
1147 char *ptr, buf[1024];
1148 const gdb_byte *valaddr = value_contents_for_printing (val);
1149
1150 strcpy (buf, "0x");
1151 ptr = buf + 2;
1152 for (j = 0; j < register_size (gdbarch, regnum); j++)
1153 {
1154 int idx = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ?
1155 j : register_size (gdbarch, regnum) - 1 - j;
1156
1157 sprintf (ptr, "%02x", (unsigned char) valaddr[idx]);
1158 ptr += 2;
1159 }
1160 ui_out_field_string (uiout, "value", buf);
1161 }
1162 else
1163 {
1164 struct value_print_options opts;
1165 struct ui_file *stb;
1166 struct cleanup *old_chain;
1167
1168 stb = mem_fileopen ();
1169 old_chain = make_cleanup_ui_file_delete (stb);
1170
1171 get_formatted_print_options (&opts, format);
1172 opts.deref_ref = 1;
1173 val_print (value_type (val),
1174 value_contents_for_printing (val),
1175 value_embedded_offset (val), 0,
1176 stb, 0, val, &opts, current_language);
1177 ui_out_field_stream (uiout, "value", stb);
1178 do_cleanups (old_chain);
1179 }
1180 }
1181
1182 /* Write given values into registers. The registers and values are
1183 given as pairs. The corresponding MI command is
1184 -data-write-register-values <format>
1185 [<regnum1> <value1>...<regnumN> <valueN>] */
1186 void
1187 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1188 {
1189 struct regcache *regcache;
1190 struct gdbarch *gdbarch;
1191 int numregs, i;
1192
1193 /* Note that the test for a valid register must include checking the
1194 gdbarch_register_name because gdbarch_num_regs may be allocated
1195 for the union of the register sets within a family of related
1196 processors. In this case, some entries of gdbarch_register_name
1197 will change depending upon the particular processor being
1198 debugged. */
1199
1200 regcache = get_current_regcache ();
1201 gdbarch = get_regcache_arch (regcache);
1202 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1203
1204 if (argc == 0)
1205 error (_("-data-write-register-values: Usage: -data-write-register-"
1206 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1207
1208 if (!target_has_registers)
1209 error (_("-data-write-register-values: No registers."));
1210
1211 if (!(argc - 1))
1212 error (_("-data-write-register-values: No regs and values specified."));
1213
1214 if ((argc - 1) % 2)
1215 error (_("-data-write-register-values: "
1216 "Regs and vals are not in pairs."));
1217
1218 for (i = 1; i < argc; i = i + 2)
1219 {
1220 int regnum = atoi (argv[i]);
1221
1222 if (regnum >= 0 && regnum < numregs
1223 && gdbarch_register_name (gdbarch, regnum)
1224 && *gdbarch_register_name (gdbarch, regnum))
1225 {
1226 LONGEST value;
1227
1228 /* Get the value as a number. */
1229 value = parse_and_eval_address (argv[i + 1]);
1230
1231 /* Write it down. */
1232 regcache_cooked_write_signed (regcache, regnum, value);
1233 }
1234 else
1235 error (_("bad register number"));
1236 }
1237 }
1238
1239 /* Evaluate the value of the argument. The argument is an
1240 expression. If the expression contains spaces it needs to be
1241 included in double quotes. */
1242
1243 void
1244 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1245 {
1246 struct expression *expr;
1247 struct cleanup *old_chain;
1248 struct value *val;
1249 struct ui_file *stb;
1250 struct value_print_options opts;
1251 struct ui_out *uiout = current_uiout;
1252
1253 stb = mem_fileopen ();
1254 old_chain = make_cleanup_ui_file_delete (stb);
1255
1256 if (argc != 1)
1257 error (_("-data-evaluate-expression: "
1258 "Usage: -data-evaluate-expression expression"));
1259
1260 expr = parse_expression (argv[0]);
1261
1262 make_cleanup (free_current_contents, &expr);
1263
1264 val = evaluate_expression (expr);
1265
1266 /* Print the result of the expression evaluation. */
1267 get_user_print_options (&opts);
1268 opts.deref_ref = 0;
1269 common_val_print (val, stb, 0, &opts, current_language);
1270
1271 ui_out_field_stream (uiout, "value", stb);
1272
1273 do_cleanups (old_chain);
1274 }
1275
1276 /* This is the -data-read-memory command.
1277
1278 ADDR: start address of data to be dumped.
1279 WORD-FORMAT: a char indicating format for the ``word''. See
1280 the ``x'' command.
1281 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1282 NR_ROW: Number of rows.
1283 NR_COL: The number of colums (words per row).
1284 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1285 ASCHAR for unprintable characters.
1286
1287 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1288 displayes them. Returns:
1289
1290 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1291
1292 Returns:
1293 The number of bytes read is SIZE*ROW*COL. */
1294
1295 void
1296 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1297 {
1298 struct gdbarch *gdbarch = get_current_arch ();
1299 struct ui_out *uiout = current_uiout;
1300 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1301 CORE_ADDR addr;
1302 long total_bytes, nr_cols, nr_rows;
1303 char word_format;
1304 struct type *word_type;
1305 long word_size;
1306 char word_asize;
1307 char aschar;
1308 gdb_byte *mbuf;
1309 int nr_bytes;
1310 long offset = 0;
1311 int oind = 0;
1312 char *oarg;
1313 enum opt
1314 {
1315 OFFSET_OPT
1316 };
1317 static const struct mi_opt opts[] =
1318 {
1319 {"o", OFFSET_OPT, 1},
1320 { 0, 0, 0 }
1321 };
1322
1323 while (1)
1324 {
1325 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1326 &oind, &oarg);
1327
1328 if (opt < 0)
1329 break;
1330 switch ((enum opt) opt)
1331 {
1332 case OFFSET_OPT:
1333 offset = atol (oarg);
1334 break;
1335 }
1336 }
1337 argv += oind;
1338 argc -= oind;
1339
1340 if (argc < 5 || argc > 6)
1341 error (_("-data-read-memory: Usage: "
1342 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1343
1344 /* Extract all the arguments. */
1345
1346 /* Start address of the memory dump. */
1347 addr = parse_and_eval_address (argv[0]) + offset;
1348 /* The format character to use when displaying a memory word. See
1349 the ``x'' command. */
1350 word_format = argv[1][0];
1351 /* The size of the memory word. */
1352 word_size = atol (argv[2]);
1353 switch (word_size)
1354 {
1355 case 1:
1356 word_type = builtin_type (gdbarch)->builtin_int8;
1357 word_asize = 'b';
1358 break;
1359 case 2:
1360 word_type = builtin_type (gdbarch)->builtin_int16;
1361 word_asize = 'h';
1362 break;
1363 case 4:
1364 word_type = builtin_type (gdbarch)->builtin_int32;
1365 word_asize = 'w';
1366 break;
1367 case 8:
1368 word_type = builtin_type (gdbarch)->builtin_int64;
1369 word_asize = 'g';
1370 break;
1371 default:
1372 word_type = builtin_type (gdbarch)->builtin_int8;
1373 word_asize = 'b';
1374 }
1375 /* The number of rows. */
1376 nr_rows = atol (argv[3]);
1377 if (nr_rows <= 0)
1378 error (_("-data-read-memory: invalid number of rows."));
1379
1380 /* Number of bytes per row. */
1381 nr_cols = atol (argv[4]);
1382 if (nr_cols <= 0)
1383 error (_("-data-read-memory: invalid number of columns."));
1384
1385 /* The un-printable character when printing ascii. */
1386 if (argc == 6)
1387 aschar = *argv[5];
1388 else
1389 aschar = 0;
1390
1391 /* Create a buffer and read it in. */
1392 total_bytes = word_size * nr_rows * nr_cols;
1393 mbuf = xcalloc (total_bytes, 1);
1394 make_cleanup (xfree, mbuf);
1395
1396 /* Dispatch memory reads to the topmost target, not the flattened
1397 current_target. */
1398 nr_bytes = target_read (current_target.beneath,
1399 TARGET_OBJECT_MEMORY, NULL, mbuf,
1400 addr, total_bytes);
1401 if (nr_bytes <= 0)
1402 error (_("Unable to read memory."));
1403
1404 /* Output the header information. */
1405 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1406 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1407 ui_out_field_int (uiout, "total-bytes", total_bytes);
1408 ui_out_field_core_addr (uiout, "next-row",
1409 gdbarch, addr + word_size * nr_cols);
1410 ui_out_field_core_addr (uiout, "prev-row",
1411 gdbarch, addr - word_size * nr_cols);
1412 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1413 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1414
1415 /* Build the result as a two dimentional table. */
1416 {
1417 struct ui_file *stream;
1418 struct cleanup *cleanup_stream;
1419 int row;
1420 int row_byte;
1421
1422 stream = mem_fileopen ();
1423 cleanup_stream = make_cleanup_ui_file_delete (stream);
1424
1425 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1426 for (row = 0, row_byte = 0;
1427 row < nr_rows;
1428 row++, row_byte += nr_cols * word_size)
1429 {
1430 int col;
1431 int col_byte;
1432 struct cleanup *cleanup_tuple;
1433 struct cleanup *cleanup_list_data;
1434 struct value_print_options opts;
1435
1436 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1437 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1438 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1439 row_byte); */
1440 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1441 get_formatted_print_options (&opts, word_format);
1442 for (col = 0, col_byte = row_byte;
1443 col < nr_cols;
1444 col++, col_byte += word_size)
1445 {
1446 if (col_byte + word_size > nr_bytes)
1447 {
1448 ui_out_field_string (uiout, NULL, "N/A");
1449 }
1450 else
1451 {
1452 ui_file_rewind (stream);
1453 print_scalar_formatted (mbuf + col_byte, word_type, &opts,
1454 word_asize, stream);
1455 ui_out_field_stream (uiout, NULL, stream);
1456 }
1457 }
1458 do_cleanups (cleanup_list_data);
1459 if (aschar)
1460 {
1461 int byte;
1462
1463 ui_file_rewind (stream);
1464 for (byte = row_byte;
1465 byte < row_byte + word_size * nr_cols; byte++)
1466 {
1467 if (byte >= nr_bytes)
1468 fputc_unfiltered ('X', stream);
1469 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1470 fputc_unfiltered (aschar, stream);
1471 else
1472 fputc_unfiltered (mbuf[byte], stream);
1473 }
1474 ui_out_field_stream (uiout, "ascii", stream);
1475 }
1476 do_cleanups (cleanup_tuple);
1477 }
1478 do_cleanups (cleanup_stream);
1479 }
1480 do_cleanups (cleanups);
1481 }
1482
1483 void
1484 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1485 {
1486 struct gdbarch *gdbarch = get_current_arch ();
1487 struct ui_out *uiout = current_uiout;
1488 struct cleanup *cleanups;
1489 CORE_ADDR addr;
1490 LONGEST length;
1491 memory_read_result_s *read_result;
1492 int ix;
1493 VEC(memory_read_result_s) *result;
1494 long offset = 0;
1495 int oind = 0;
1496 char *oarg;
1497 enum opt
1498 {
1499 OFFSET_OPT
1500 };
1501 static const struct mi_opt opts[] =
1502 {
1503 {"o", OFFSET_OPT, 1},
1504 { 0, 0, 0 }
1505 };
1506
1507 while (1)
1508 {
1509 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1510 &oind, &oarg);
1511 if (opt < 0)
1512 break;
1513 switch ((enum opt) opt)
1514 {
1515 case OFFSET_OPT:
1516 offset = atol (oarg);
1517 break;
1518 }
1519 }
1520 argv += oind;
1521 argc -= oind;
1522
1523 if (argc != 2)
1524 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1525
1526 addr = parse_and_eval_address (argv[0]) + offset;
1527 length = atol (argv[1]);
1528
1529 result = read_memory_robust (current_target.beneath, addr, length);
1530
1531 cleanups = make_cleanup (free_memory_read_result_vector, result);
1532
1533 if (VEC_length (memory_read_result_s, result) == 0)
1534 error (_("Unable to read memory."));
1535
1536 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1537 for (ix = 0;
1538 VEC_iterate (memory_read_result_s, result, ix, read_result);
1539 ++ix)
1540 {
1541 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1542 char *data, *p;
1543 int i;
1544
1545 ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
1546 ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
1547 - addr);
1548 ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
1549
1550 data = xmalloc ((read_result->end - read_result->begin) * 2 + 1);
1551
1552 for (i = 0, p = data;
1553 i < (read_result->end - read_result->begin);
1554 ++i, p += 2)
1555 {
1556 sprintf (p, "%02x", read_result->data[i]);
1557 }
1558 ui_out_field_string (uiout, "contents", data);
1559 xfree (data);
1560 do_cleanups (t);
1561 }
1562 do_cleanups (cleanups);
1563 }
1564
1565 /* Implementation of the -data-write_memory command.
1566
1567 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1568 offset from the beginning of the memory grid row where the cell to
1569 be written is.
1570 ADDR: start address of the row in the memory grid where the memory
1571 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1572 the location to write to.
1573 FORMAT: a char indicating format for the ``word''. See
1574 the ``x'' command.
1575 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1576 VALUE: value to be written into the memory address.
1577
1578 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1579
1580 Prints nothing. */
1581
1582 void
1583 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1584 {
1585 struct gdbarch *gdbarch = get_current_arch ();
1586 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1587 CORE_ADDR addr;
1588 long word_size;
1589 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1590 enough when using a compiler other than GCC. */
1591 LONGEST value;
1592 void *buffer;
1593 struct cleanup *old_chain;
1594 long offset = 0;
1595 int oind = 0;
1596 char *oarg;
1597 enum opt
1598 {
1599 OFFSET_OPT
1600 };
1601 static const struct mi_opt opts[] =
1602 {
1603 {"o", OFFSET_OPT, 1},
1604 { 0, 0, 0 }
1605 };
1606
1607 while (1)
1608 {
1609 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1610 &oind, &oarg);
1611
1612 if (opt < 0)
1613 break;
1614 switch ((enum opt) opt)
1615 {
1616 case OFFSET_OPT:
1617 offset = atol (oarg);
1618 break;
1619 }
1620 }
1621 argv += oind;
1622 argc -= oind;
1623
1624 if (argc != 4)
1625 error (_("-data-write-memory: Usage: "
1626 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1627
1628 /* Extract all the arguments. */
1629 /* Start address of the memory dump. */
1630 addr = parse_and_eval_address (argv[0]);
1631 /* The size of the memory word. */
1632 word_size = atol (argv[2]);
1633
1634 /* Calculate the real address of the write destination. */
1635 addr += (offset * word_size);
1636
1637 /* Get the value as a number. */
1638 value = parse_and_eval_address (argv[3]);
1639 /* Get the value into an array. */
1640 buffer = xmalloc (word_size);
1641 old_chain = make_cleanup (xfree, buffer);
1642 store_signed_integer (buffer, word_size, byte_order, value);
1643 /* Write it down to memory. */
1644 write_memory_with_notification (addr, buffer, word_size);
1645 /* Free the buffer. */
1646 do_cleanups (old_chain);
1647 }
1648
1649 /* Implementation of the -data-write-memory-bytes command.
1650
1651 ADDR: start address
1652 DATA: string of bytes to write at that address
1653 COUNT: number of bytes to be filled (decimal integer). */
1654
1655 void
1656 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1657 {
1658 CORE_ADDR addr;
1659 char *cdata;
1660 gdb_byte *data;
1661 gdb_byte *databuf;
1662 size_t len, i, steps, remainder;
1663 long int count, j;
1664 struct cleanup *back_to;
1665
1666 if (argc != 2 && argc != 3)
1667 error (_("Usage: ADDR DATA [COUNT]."));
1668
1669 addr = parse_and_eval_address (argv[0]);
1670 cdata = argv[1];
1671 if (strlen (cdata) % 2)
1672 error (_("Hex-encoded '%s' must have an even number of characters."),
1673 cdata);
1674
1675 len = strlen (cdata)/2;
1676 if (argc == 3)
1677 count = strtoul (argv[2], NULL, 10);
1678 else
1679 count = len;
1680
1681 databuf = xmalloc (len * sizeof (gdb_byte));
1682 back_to = make_cleanup (xfree, databuf);
1683
1684 for (i = 0; i < len; ++i)
1685 {
1686 int x;
1687 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1688 error (_("Invalid argument"));
1689 databuf[i] = (gdb_byte) x;
1690 }
1691
1692 if (len < count)
1693 {
1694 /* Pattern is made of less bytes than count:
1695 repeat pattern to fill memory. */
1696 data = xmalloc (count);
1697 make_cleanup (xfree, data);
1698
1699 steps = count / len;
1700 remainder = count % len;
1701 for (j = 0; j < steps; j++)
1702 memcpy (data + j * len, databuf, len);
1703
1704 if (remainder > 0)
1705 memcpy (data + steps * len, databuf, remainder);
1706 }
1707 else
1708 {
1709 /* Pattern is longer than or equal to count:
1710 just copy len bytes. */
1711 data = databuf;
1712 }
1713
1714 write_memory_with_notification (addr, data, count);
1715
1716 do_cleanups (back_to);
1717 }
1718
1719 void
1720 mi_cmd_enable_timings (char *command, char **argv, int argc)
1721 {
1722 if (argc == 0)
1723 do_timings = 1;
1724 else if (argc == 1)
1725 {
1726 if (strcmp (argv[0], "yes") == 0)
1727 do_timings = 1;
1728 else if (strcmp (argv[0], "no") == 0)
1729 do_timings = 0;
1730 else
1731 goto usage_error;
1732 }
1733 else
1734 goto usage_error;
1735
1736 return;
1737
1738 usage_error:
1739 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1740 }
1741
1742 void
1743 mi_cmd_list_features (char *command, char **argv, int argc)
1744 {
1745 if (argc == 0)
1746 {
1747 struct cleanup *cleanup = NULL;
1748 struct ui_out *uiout = current_uiout;
1749
1750 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1751 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1752 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1753 ui_out_field_string (uiout, NULL, "thread-info");
1754 ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
1755 ui_out_field_string (uiout, NULL, "breakpoint-notifications");
1756 ui_out_field_string (uiout, NULL, "ada-task-info");
1757
1758 #if HAVE_PYTHON
1759 ui_out_field_string (uiout, NULL, "python");
1760 #endif
1761
1762 do_cleanups (cleanup);
1763 return;
1764 }
1765
1766 error (_("-list-features should be passed no arguments"));
1767 }
1768
1769 void
1770 mi_cmd_list_target_features (char *command, char **argv, int argc)
1771 {
1772 if (argc == 0)
1773 {
1774 struct cleanup *cleanup = NULL;
1775 struct ui_out *uiout = current_uiout;
1776
1777 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1778 if (target_can_async_p ())
1779 ui_out_field_string (uiout, NULL, "async");
1780 if (target_can_execute_reverse)
1781 ui_out_field_string (uiout, NULL, "reverse");
1782
1783 do_cleanups (cleanup);
1784 return;
1785 }
1786
1787 error (_("-list-target-features should be passed no arguments"));
1788 }
1789
1790 void
1791 mi_cmd_add_inferior (char *command, char **argv, int argc)
1792 {
1793 struct inferior *inf;
1794
1795 if (argc != 0)
1796 error (_("-add-inferior should be passed no arguments"));
1797
1798 inf = add_inferior_with_spaces ();
1799
1800 ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num);
1801 }
1802
1803 /* Callback used to find the first inferior other than the current
1804 one. */
1805
1806 static int
1807 get_other_inferior (struct inferior *inf, void *arg)
1808 {
1809 if (inf == current_inferior ())
1810 return 0;
1811
1812 return 1;
1813 }
1814
1815 void
1816 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1817 {
1818 int id;
1819 struct inferior *inf;
1820
1821 if (argc != 1)
1822 error (_("-remove-inferior should be passed a single argument"));
1823
1824 if (sscanf (argv[0], "i%d", &id) != 1)
1825 error (_("the thread group id is syntactically invalid"));
1826
1827 inf = find_inferior_id (id);
1828 if (!inf)
1829 error (_("the specified thread group does not exist"));
1830
1831 if (inf->pid != 0)
1832 error (_("cannot remove an active inferior"));
1833
1834 if (inf == current_inferior ())
1835 {
1836 struct thread_info *tp = 0;
1837 struct inferior *new_inferior
1838 = iterate_over_inferiors (get_other_inferior, NULL);
1839
1840 if (new_inferior == NULL)
1841 error (_("Cannot remove last inferior"));
1842
1843 set_current_inferior (new_inferior);
1844 if (new_inferior->pid != 0)
1845 tp = any_thread_of_process (new_inferior->pid);
1846 switch_to_thread (tp ? tp->ptid : null_ptid);
1847 set_current_program_space (new_inferior->pspace);
1848 }
1849
1850 delete_inferior_1 (inf, 1 /* silent */);
1851 }
1852
1853 \f
1854
1855 /* Execute a command within a safe environment.
1856 Return <0 for error; >=0 for ok.
1857
1858 args->action will tell mi_execute_command what action
1859 to perfrom after the given command has executed (display/suppress
1860 prompt, display error). */
1861
1862 static void
1863 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1864 {
1865 struct cleanup *cleanup;
1866
1867 if (do_timings)
1868 current_command_ts = context->cmd_start;
1869
1870 current_token = xstrdup (context->token);
1871 cleanup = make_cleanup (free_current_contents, &current_token);
1872
1873 running_result_record_printed = 0;
1874 mi_proceeded = 0;
1875 switch (context->op)
1876 {
1877 case MI_COMMAND:
1878 /* A MI command was read from the input stream. */
1879 if (mi_debug_p)
1880 /* FIXME: gdb_???? */
1881 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1882 context->token, context->command, context->args);
1883
1884 mi_cmd_execute (context);
1885
1886 /* Print the result if there were no errors.
1887
1888 Remember that on the way out of executing a command, you have
1889 to directly use the mi_interp's uiout, since the command
1890 could have reset the interpreter, in which case the current
1891 uiout will most likely crash in the mi_out_* routines. */
1892 if (!running_result_record_printed)
1893 {
1894 fputs_unfiltered (context->token, raw_stdout);
1895 /* There's no particularly good reason why target-connect results
1896 in not ^done. Should kill ^connected for MI3. */
1897 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1898 ? "^connected" : "^done", raw_stdout);
1899 mi_out_put (uiout, raw_stdout);
1900 mi_out_rewind (uiout);
1901 mi_print_timing_maybe ();
1902 fputs_unfiltered ("\n", raw_stdout);
1903 }
1904 else
1905 /* The command does not want anything to be printed. In that
1906 case, the command probably should not have written anything
1907 to uiout, but in case it has written something, discard it. */
1908 mi_out_rewind (uiout);
1909 break;
1910
1911 case CLI_COMMAND:
1912 {
1913 char *argv[2];
1914
1915 /* A CLI command was read from the input stream. */
1916 /* This "feature" will be removed as soon as we have a
1917 complete set of mi commands. */
1918 /* Echo the command on the console. */
1919 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1920 /* Call the "console" interpreter. */
1921 argv[0] = "console";
1922 argv[1] = context->command;
1923 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1924
1925 /* If we changed interpreters, DON'T print out anything. */
1926 if (current_interp_named_p (INTERP_MI)
1927 || current_interp_named_p (INTERP_MI1)
1928 || current_interp_named_p (INTERP_MI2)
1929 || current_interp_named_p (INTERP_MI3))
1930 {
1931 if (!running_result_record_printed)
1932 {
1933 fputs_unfiltered (context->token, raw_stdout);
1934 fputs_unfiltered ("^done", raw_stdout);
1935 mi_out_put (uiout, raw_stdout);
1936 mi_out_rewind (uiout);
1937 mi_print_timing_maybe ();
1938 fputs_unfiltered ("\n", raw_stdout);
1939 }
1940 else
1941 mi_out_rewind (uiout);
1942 }
1943 break;
1944 }
1945 }
1946
1947 do_cleanups (cleanup);
1948 }
1949
1950 /* Print a gdb exception to the MI output stream. */
1951
1952 static void
1953 mi_print_exception (const char *token, struct gdb_exception exception)
1954 {
1955 fputs_unfiltered (token, raw_stdout);
1956 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1957 if (exception.message == NULL)
1958 fputs_unfiltered ("unknown error", raw_stdout);
1959 else
1960 fputstr_unfiltered (exception.message, '"', raw_stdout);
1961 fputs_unfiltered ("\"\n", raw_stdout);
1962 }
1963
1964 void
1965 mi_execute_command (char *cmd, int from_tty)
1966 {
1967 char *token;
1968 struct mi_parse *command = NULL;
1969 volatile struct gdb_exception exception;
1970
1971 /* This is to handle EOF (^D). We just quit gdb. */
1972 /* FIXME: we should call some API function here. */
1973 if (cmd == 0)
1974 quit_force (NULL, from_tty);
1975
1976 target_log_command (cmd);
1977
1978 TRY_CATCH (exception, RETURN_MASK_ALL)
1979 {
1980 command = mi_parse (cmd, &token);
1981 }
1982 if (exception.reason < 0)
1983 {
1984 mi_print_exception (token, exception);
1985 xfree (token);
1986 }
1987 else
1988 {
1989 volatile struct gdb_exception result;
1990 ptid_t previous_ptid = inferior_ptid;
1991
1992 command->token = token;
1993
1994 if (do_timings)
1995 {
1996 command->cmd_start = (struct mi_timestamp *)
1997 xmalloc (sizeof (struct mi_timestamp));
1998 timestamp (command->cmd_start);
1999 }
2000
2001 TRY_CATCH (result, RETURN_MASK_ALL)
2002 {
2003 captured_mi_execute_command (current_uiout, command);
2004 }
2005 if (result.reason < 0)
2006 {
2007 /* The command execution failed and error() was called
2008 somewhere. */
2009 mi_print_exception (command->token, result);
2010 mi_out_rewind (current_uiout);
2011 }
2012
2013 bpstat_do_actions ();
2014
2015 if (/* The notifications are only output when the top-level
2016 interpreter (specified on the command line) is MI. */
2017 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
2018 /* Don't try report anything if there are no threads --
2019 the program is dead. */
2020 && thread_count () != 0
2021 /* -thread-select explicitly changes thread. If frontend uses that
2022 internally, we don't want to emit =thread-selected, since
2023 =thread-selected is supposed to indicate user's intentions. */
2024 && strcmp (command->command, "thread-select") != 0)
2025 {
2026 struct mi_interp *mi = top_level_interpreter_data ();
2027 int report_change = 0;
2028
2029 if (command->thread == -1)
2030 {
2031 report_change = (!ptid_equal (previous_ptid, null_ptid)
2032 && !ptid_equal (inferior_ptid, previous_ptid)
2033 && !ptid_equal (inferior_ptid, null_ptid));
2034 }
2035 else if (!ptid_equal (inferior_ptid, null_ptid))
2036 {
2037 struct thread_info *ti = inferior_thread ();
2038
2039 report_change = (ti->num != command->thread);
2040 }
2041
2042 if (report_change)
2043 {
2044 struct thread_info *ti = inferior_thread ();
2045
2046 target_terminal_ours ();
2047 fprintf_unfiltered (mi->event_channel,
2048 "thread-selected,id=\"%d\"",
2049 ti->num);
2050 gdb_flush (mi->event_channel);
2051 }
2052 }
2053
2054 mi_parse_free (command);
2055 }
2056 }
2057
2058 static void
2059 mi_cmd_execute (struct mi_parse *parse)
2060 {
2061 struct cleanup *cleanup;
2062
2063 cleanup = prepare_execute_command ();
2064
2065 if (parse->all && parse->thread_group != -1)
2066 error (_("Cannot specify --thread-group together with --all"));
2067
2068 if (parse->all && parse->thread != -1)
2069 error (_("Cannot specify --thread together with --all"));
2070
2071 if (parse->thread_group != -1 && parse->thread != -1)
2072 error (_("Cannot specify --thread together with --thread-group"));
2073
2074 if (parse->frame != -1 && parse->thread == -1)
2075 error (_("Cannot specify --frame without --thread"));
2076
2077 if (parse->thread_group != -1)
2078 {
2079 struct inferior *inf = find_inferior_id (parse->thread_group);
2080 struct thread_info *tp = 0;
2081
2082 if (!inf)
2083 error (_("Invalid thread group for the --thread-group option"));
2084
2085 set_current_inferior (inf);
2086 /* This behaviour means that if --thread-group option identifies
2087 an inferior with multiple threads, then a random one will be
2088 picked. This is not a problem -- frontend should always
2089 provide --thread if it wishes to operate on a specific
2090 thread. */
2091 if (inf->pid != 0)
2092 tp = any_live_thread_of_process (inf->pid);
2093 switch_to_thread (tp ? tp->ptid : null_ptid);
2094 set_current_program_space (inf->pspace);
2095 }
2096
2097 if (parse->thread != -1)
2098 {
2099 struct thread_info *tp = find_thread_id (parse->thread);
2100
2101 if (!tp)
2102 error (_("Invalid thread id: %d"), parse->thread);
2103
2104 if (is_exited (tp->ptid))
2105 error (_("Thread id: %d has terminated"), parse->thread);
2106
2107 switch_to_thread (tp->ptid);
2108 }
2109
2110 if (parse->frame != -1)
2111 {
2112 struct frame_info *fid;
2113 int frame = parse->frame;
2114
2115 fid = find_relative_frame (get_current_frame (), &frame);
2116 if (frame == 0)
2117 /* find_relative_frame was successful */
2118 select_frame (fid);
2119 else
2120 error (_("Invalid frame id: %d"), frame);
2121 }
2122
2123 current_context = parse;
2124
2125 if (parse->cmd->suppress_notification != NULL)
2126 {
2127 make_cleanup_restore_integer (parse->cmd->suppress_notification);
2128 *parse->cmd->suppress_notification = 1;
2129 }
2130
2131 if (parse->cmd->argv_func != NULL)
2132 {
2133 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2134 }
2135 else if (parse->cmd->cli.cmd != 0)
2136 {
2137 /* FIXME: DELETE THIS. */
2138 /* The operation is still implemented by a cli command. */
2139 /* Must be a synchronous one. */
2140 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2141 parse->args);
2142 }
2143 else
2144 {
2145 /* FIXME: DELETE THIS. */
2146 struct ui_file *stb;
2147
2148 stb = mem_fileopen ();
2149
2150 fputs_unfiltered ("Undefined mi command: ", stb);
2151 fputstr_unfiltered (parse->command, '"', stb);
2152 fputs_unfiltered (" (missing implementation)", stb);
2153
2154 make_cleanup_ui_file_delete (stb);
2155 error_stream (stb);
2156 }
2157 do_cleanups (cleanup);
2158 }
2159
2160 /* FIXME: This is just a hack so we can get some extra commands going.
2161 We don't want to channel things through the CLI, but call libgdb directly.
2162 Use only for synchronous commands. */
2163
2164 void
2165 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2166 {
2167 if (cmd != 0)
2168 {
2169 struct cleanup *old_cleanups;
2170 char *run;
2171
2172 if (args_p)
2173 run = xstrprintf ("%s %s", cmd, args);
2174 else
2175 run = xstrdup (cmd);
2176 if (mi_debug_p)
2177 /* FIXME: gdb_???? */
2178 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2179 cmd, run);
2180 old_cleanups = make_cleanup (xfree, run);
2181 execute_command (run, 0 /* from_tty */ );
2182 do_cleanups (old_cleanups);
2183 return;
2184 }
2185 }
2186
2187 void
2188 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2189 {
2190 struct cleanup *old_cleanups;
2191 char *run;
2192
2193 if (target_can_async_p ())
2194 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2195 else
2196 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2197 old_cleanups = make_cleanup (xfree, run);
2198
2199 execute_command (run, 0 /* from_tty */ );
2200
2201 /* Do this before doing any printing. It would appear that some
2202 print code leaves garbage around in the buffer. */
2203 do_cleanups (old_cleanups);
2204 }
2205
2206 void
2207 mi_load_progress (const char *section_name,
2208 unsigned long sent_so_far,
2209 unsigned long total_section,
2210 unsigned long total_sent,
2211 unsigned long grand_total)
2212 {
2213 struct timeval time_now, delta, update_threshold;
2214 static struct timeval last_update;
2215 static char *previous_sect_name = NULL;
2216 int new_section;
2217 struct ui_out *saved_uiout;
2218 struct ui_out *uiout;
2219
2220 /* This function is called through deprecated_show_load_progress
2221 which means uiout may not be correct. Fix it for the duration
2222 of this function. */
2223 saved_uiout = current_uiout;
2224
2225 if (current_interp_named_p (INTERP_MI)
2226 || current_interp_named_p (INTERP_MI2))
2227 current_uiout = mi_out_new (2);
2228 else if (current_interp_named_p (INTERP_MI1))
2229 current_uiout = mi_out_new (1);
2230 else if (current_interp_named_p (INTERP_MI3))
2231 current_uiout = mi_out_new (3);
2232 else
2233 return;
2234
2235 uiout = current_uiout;
2236
2237 update_threshold.tv_sec = 0;
2238 update_threshold.tv_usec = 500000;
2239 gettimeofday (&time_now, NULL);
2240
2241 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
2242 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
2243
2244 if (delta.tv_usec < 0)
2245 {
2246 delta.tv_sec -= 1;
2247 delta.tv_usec += 1000000L;
2248 }
2249
2250 new_section = (previous_sect_name ?
2251 strcmp (previous_sect_name, section_name) : 1);
2252 if (new_section)
2253 {
2254 struct cleanup *cleanup_tuple;
2255
2256 xfree (previous_sect_name);
2257 previous_sect_name = xstrdup (section_name);
2258
2259 if (current_token)
2260 fputs_unfiltered (current_token, raw_stdout);
2261 fputs_unfiltered ("+download", raw_stdout);
2262 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2263 ui_out_field_string (uiout, "section", section_name);
2264 ui_out_field_int (uiout, "section-size", total_section);
2265 ui_out_field_int (uiout, "total-size", grand_total);
2266 do_cleanups (cleanup_tuple);
2267 mi_out_put (uiout, raw_stdout);
2268 fputs_unfiltered ("\n", raw_stdout);
2269 gdb_flush (raw_stdout);
2270 }
2271
2272 if (delta.tv_sec >= update_threshold.tv_sec &&
2273 delta.tv_usec >= update_threshold.tv_usec)
2274 {
2275 struct cleanup *cleanup_tuple;
2276
2277 last_update.tv_sec = time_now.tv_sec;
2278 last_update.tv_usec = time_now.tv_usec;
2279 if (current_token)
2280 fputs_unfiltered (current_token, raw_stdout);
2281 fputs_unfiltered ("+download", raw_stdout);
2282 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2283 ui_out_field_string (uiout, "section", section_name);
2284 ui_out_field_int (uiout, "section-sent", sent_so_far);
2285 ui_out_field_int (uiout, "section-size", total_section);
2286 ui_out_field_int (uiout, "total-sent", total_sent);
2287 ui_out_field_int (uiout, "total-size", grand_total);
2288 do_cleanups (cleanup_tuple);
2289 mi_out_put (uiout, raw_stdout);
2290 fputs_unfiltered ("\n", raw_stdout);
2291 gdb_flush (raw_stdout);
2292 }
2293
2294 xfree (uiout);
2295 current_uiout = saved_uiout;
2296 }
2297
2298 static void
2299 timestamp (struct mi_timestamp *tv)
2300 {
2301 gettimeofday (&tv->wallclock, NULL);
2302 #ifdef HAVE_GETRUSAGE
2303 getrusage (RUSAGE_SELF, &rusage);
2304 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2305 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2306 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2307 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2308 #else
2309 {
2310 long usec = get_run_time ();
2311
2312 tv->utime.tv_sec = usec/1000000L;
2313 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2314 tv->stime.tv_sec = 0;
2315 tv->stime.tv_usec = 0;
2316 }
2317 #endif
2318 }
2319
2320 static void
2321 print_diff_now (struct mi_timestamp *start)
2322 {
2323 struct mi_timestamp now;
2324
2325 timestamp (&now);
2326 print_diff (start, &now);
2327 }
2328
2329 void
2330 mi_print_timing_maybe (void)
2331 {
2332 /* If the command is -enable-timing then do_timings may be true
2333 whilst current_command_ts is not initialized. */
2334 if (do_timings && current_command_ts)
2335 print_diff_now (current_command_ts);
2336 }
2337
2338 static long
2339 timeval_diff (struct timeval start, struct timeval end)
2340 {
2341 return ((end.tv_sec - start.tv_sec) * 1000000L)
2342 + (end.tv_usec - start.tv_usec);
2343 }
2344
2345 static void
2346 print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
2347 {
2348 fprintf_unfiltered
2349 (raw_stdout,
2350 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2351 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2352 timeval_diff (start->utime, end->utime) / 1000000.0,
2353 timeval_diff (start->stime, end->stime) / 1000000.0);
2354 }
2355
2356 void
2357 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2358 {
2359 struct expression *expr;
2360 struct cleanup *back_to;
2361 LONGEST initval = 0;
2362 struct trace_state_variable *tsv;
2363 char *name = 0;
2364
2365 if (argc != 1 && argc != 2)
2366 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2367
2368 expr = parse_expression (argv[0]);
2369 back_to = make_cleanup (xfree, expr);
2370
2371 if (expr->nelts == 3 && expr->elts[0].opcode == OP_INTERNALVAR)
2372 {
2373 struct internalvar *intvar = expr->elts[1].internalvar;
2374
2375 if (intvar)
2376 name = internalvar_name (intvar);
2377 }
2378
2379 if (!name || *name == '\0')
2380 error (_("Invalid name of trace variable"));
2381
2382 tsv = find_trace_state_variable (name);
2383 if (!tsv)
2384 tsv = create_trace_state_variable (name);
2385
2386 if (argc == 2)
2387 initval = value_as_long (parse_and_eval (argv[1]));
2388
2389 tsv->initial_value = initval;
2390
2391 do_cleanups (back_to);
2392 }
2393
2394 void
2395 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2396 {
2397 if (argc != 0)
2398 error (_("-trace-list-variables: no arguments allowed"));
2399
2400 tvariables_info_1 ();
2401 }
2402
2403 void
2404 mi_cmd_trace_find (char *command, char **argv, int argc)
2405 {
2406 char *mode;
2407
2408 if (argc == 0)
2409 error (_("trace selection mode is required"));
2410
2411 mode = argv[0];
2412
2413 if (strcmp (mode, "none") == 0)
2414 {
2415 tfind_1 (tfind_number, -1, 0, 0, 0);
2416 return;
2417 }
2418
2419 if (current_trace_status ()->running)
2420 error (_("May not look at trace frames while trace is running."));
2421
2422 if (strcmp (mode, "frame-number") == 0)
2423 {
2424 if (argc != 2)
2425 error (_("frame number is required"));
2426 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2427 }
2428 else if (strcmp (mode, "tracepoint-number") == 0)
2429 {
2430 if (argc != 2)
2431 error (_("tracepoint number is required"));
2432 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2433 }
2434 else if (strcmp (mode, "pc") == 0)
2435 {
2436 if (argc != 2)
2437 error (_("PC is required"));
2438 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2439 }
2440 else if (strcmp (mode, "pc-inside-range") == 0)
2441 {
2442 if (argc != 3)
2443 error (_("Start and end PC are required"));
2444 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2445 parse_and_eval_address (argv[2]), 0);
2446 }
2447 else if (strcmp (mode, "pc-outside-range") == 0)
2448 {
2449 if (argc != 3)
2450 error (_("Start and end PC are required"));
2451 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2452 parse_and_eval_address (argv[2]), 0);
2453 }
2454 else if (strcmp (mode, "line") == 0)
2455 {
2456 struct symtabs_and_lines sals;
2457 struct symtab_and_line sal;
2458 static CORE_ADDR start_pc, end_pc;
2459 struct cleanup *back_to;
2460
2461 if (argc != 2)
2462 error (_("Line is required"));
2463
2464 sals = decode_line_with_current_source (argv[1],
2465 DECODE_LINE_FUNFIRSTLINE);
2466 back_to = make_cleanup (xfree, sals.sals);
2467
2468 sal = sals.sals[0];
2469
2470 if (sal.symtab == 0)
2471 error (_("Could not find the specified line"));
2472
2473 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2474 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2475 else
2476 error (_("Could not find the specified line"));
2477
2478 do_cleanups (back_to);
2479 }
2480 else
2481 error (_("Invalid mode '%s'"), mode);
2482
2483 if (has_stack_frames () || get_traceframe_number () >= 0)
2484 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
2485 }
2486
2487 void
2488 mi_cmd_trace_save (char *command, char **argv, int argc)
2489 {
2490 int target_saves = 0;
2491 char *filename;
2492
2493 if (argc != 1 && argc != 2)
2494 error (_("Usage: -trace-save [-r] filename"));
2495
2496 if (argc == 2)
2497 {
2498 filename = argv[1];
2499 if (strcmp (argv[0], "-r") == 0)
2500 target_saves = 1;
2501 else
2502 error (_("Invalid option: %s"), argv[0]);
2503 }
2504 else
2505 {
2506 filename = argv[0];
2507 }
2508
2509 trace_save (filename, target_saves);
2510 }
2511
2512 void
2513 mi_cmd_trace_start (char *command, char **argv, int argc)
2514 {
2515 start_tracing (NULL);
2516 }
2517
2518 void
2519 mi_cmd_trace_status (char *command, char **argv, int argc)
2520 {
2521 trace_status_mi (0);
2522 }
2523
2524 void
2525 mi_cmd_trace_stop (char *command, char **argv, int argc)
2526 {
2527 stop_tracing (NULL);
2528 trace_status_mi (1);
2529 }
2530
2531 /* Implement the "-ada-task-info" command. */
2532
2533 void
2534 mi_cmd_ada_task_info (char *command, char **argv, int argc)
2535 {
2536 if (argc != 0 && argc != 1)
2537 error (_("Invalid MI command"));
2538
2539 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2540 }
This page took 0.087587 seconds and 4 git commands to generate.