gas: fix a few omissions in .cfi_label handling
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "gdb.h"
42 #include "frame.h"
43 #include "mi-main.h"
44 #include "mi-common.h"
45 #include "language.h"
46 #include "valprint.h"
47 #include "inferior.h"
48 #include "osdata.h"
49 #include "splay-tree.h"
50 #include "tracepoint.h"
51 #include "ctf.h"
52 #include "ada-lang.h"
53 #include "linespec.h"
54 #include "extension.h"
55 #include "gdbcmd.h"
56
57 #include <ctype.h>
58 #include <sys/time.h>
59
60 #if defined HAVE_SYS_RESOURCE_H
61 #include <sys/resource.h>
62 #endif
63
64 #ifdef HAVE_GETRUSAGE
65 struct rusage rusage;
66 #endif
67
68 enum
69 {
70 FROM_TTY = 0
71 };
72
73 int mi_debug_p;
74
75 struct ui_file *raw_stdout;
76
77 /* This is used to pass the current command timestamp down to
78 continuation routines. */
79 static struct mi_timestamp *current_command_ts;
80
81 static int do_timings = 0;
82
83 char *current_token;
84 /* Few commands would like to know if options like --thread-group were
85 explicitly specified. This variable keeps the current parsed
86 command including all option, and make it possible. */
87 static struct mi_parse *current_context;
88
89 int running_result_record_printed = 1;
90
91 /* Flag indicating that the target has proceeded since the last
92 command was issued. */
93 int mi_proceeded;
94
95 extern void _initialize_mi_main (void);
96 static void mi_cmd_execute (struct mi_parse *parse);
97
98 static void mi_execute_cli_command (const char *cmd, int args_p,
99 const char *args);
100 static void mi_execute_async_cli_command (char *cli_command,
101 char **argv, int argc);
102 static int register_changed_p (int regnum, struct regcache *,
103 struct regcache *);
104 static void output_register (struct frame_info *, int regnum, int format,
105 int skip_unavailable);
106
107 /* Controls whether the frontend wants MI in async mode. */
108 static int mi_async = 0;
109
110 /* The set command writes to this variable. If the inferior is
111 executing, mi_async is *not* updated. */
112 static int mi_async_1 = 0;
113
114 static void
115 set_mi_async_command (char *args, int from_tty,
116 struct cmd_list_element *c)
117 {
118 if (have_live_inferiors ())
119 {
120 mi_async_1 = mi_async;
121 error (_("Cannot change this setting while the inferior is running."));
122 }
123
124 mi_async = mi_async_1;
125 }
126
127 static void
128 show_mi_async_command (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c,
130 const char *value)
131 {
132 fprintf_filtered (file,
133 _("Whether MI is in asynchronous mode is %s.\n"),
134 value);
135 }
136
137 /* A wrapper for target_can_async_p that takes the MI setting into
138 account. */
139
140 int
141 mi_async_p (void)
142 {
143 return mi_async && target_can_async_p ();
144 }
145
146 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
147 layer that calls libgdb. Any operation used in the below should be
148 formalized. */
149
150 static void timestamp (struct mi_timestamp *tv);
151
152 static void print_diff_now (struct mi_timestamp *start);
153 static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
154
155 void
156 mi_cmd_gdb_exit (char *command, char **argv, int argc)
157 {
158 /* We have to print everything right here because we never return. */
159 if (current_token)
160 fputs_unfiltered (current_token, raw_stdout);
161 fputs_unfiltered ("^exit\n", raw_stdout);
162 mi_out_put (current_uiout, raw_stdout);
163 gdb_flush (raw_stdout);
164 /* FIXME: The function called is not yet a formal libgdb function. */
165 quit_force (NULL, FROM_TTY);
166 }
167
168 void
169 mi_cmd_exec_next (char *command, char **argv, int argc)
170 {
171 /* FIXME: Should call a libgdb function, not a cli wrapper. */
172 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
173 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
174 else
175 mi_execute_async_cli_command ("next", argv, argc);
176 }
177
178 void
179 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
180 {
181 /* FIXME: Should call a libgdb function, not a cli wrapper. */
182 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
183 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
184 else
185 mi_execute_async_cli_command ("nexti", argv, argc);
186 }
187
188 void
189 mi_cmd_exec_step (char *command, char **argv, int argc)
190 {
191 /* FIXME: Should call a libgdb function, not a cli wrapper. */
192 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
193 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
194 else
195 mi_execute_async_cli_command ("step", argv, argc);
196 }
197
198 void
199 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
200 {
201 /* FIXME: Should call a libgdb function, not a cli wrapper. */
202 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
203 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
204 else
205 mi_execute_async_cli_command ("stepi", argv, argc);
206 }
207
208 void
209 mi_cmd_exec_finish (char *command, char **argv, int argc)
210 {
211 /* FIXME: Should call a libgdb function, not a cli wrapper. */
212 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
213 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
214 else
215 mi_execute_async_cli_command ("finish", argv, argc);
216 }
217
218 void
219 mi_cmd_exec_return (char *command, char **argv, int argc)
220 {
221 /* This command doesn't really execute the target, it just pops the
222 specified number of frames. */
223 if (argc)
224 /* Call return_command with from_tty argument equal to 0 so as to
225 avoid being queried. */
226 return_command (*argv, 0);
227 else
228 /* Call return_command with from_tty argument equal to 0 so as to
229 avoid being queried. */
230 return_command (NULL, 0);
231
232 /* Because we have called return_command with from_tty = 0, we need
233 to print the frame here. */
234 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
235 }
236
237 void
238 mi_cmd_exec_jump (char *args, char **argv, int argc)
239 {
240 /* FIXME: Should call a libgdb function, not a cli wrapper. */
241 mi_execute_async_cli_command ("jump", argv, argc);
242 }
243
244 static void
245 proceed_thread (struct thread_info *thread, int pid)
246 {
247 if (!is_stopped (thread->ptid))
248 return;
249
250 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
251 return;
252
253 switch_to_thread (thread->ptid);
254 clear_proceed_status (0);
255 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
256 }
257
258 static int
259 proceed_thread_callback (struct thread_info *thread, void *arg)
260 {
261 int pid = *(int *)arg;
262
263 proceed_thread (thread, pid);
264 return 0;
265 }
266
267 static void
268 exec_continue (char **argv, int argc)
269 {
270 prepare_execution_command (&current_target, mi_async_p ());
271
272 if (non_stop)
273 {
274 /* In non-stop mode, 'resume' always resumes a single thread.
275 Therefore, to resume all threads of the current inferior, or
276 all threads in all inferiors, we need to iterate over
277 threads.
278
279 See comment on infcmd.c:proceed_thread_callback for rationale. */
280 if (current_context->all || current_context->thread_group != -1)
281 {
282 int pid = 0;
283 struct cleanup *back_to = make_cleanup_restore_current_thread ();
284
285 if (!current_context->all)
286 {
287 struct inferior *inf
288 = find_inferior_id (current_context->thread_group);
289
290 pid = inf->pid;
291 }
292 iterate_over_threads (proceed_thread_callback, &pid);
293 do_cleanups (back_to);
294 }
295 else
296 {
297 continue_1 (0);
298 }
299 }
300 else
301 {
302 struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
303
304 if (current_context->all)
305 {
306 sched_multi = 1;
307 continue_1 (0);
308 }
309 else
310 {
311 /* In all-stop mode, -exec-continue traditionally resumed
312 either all threads, or one thread, depending on the
313 'scheduler-locking' variable. Let's continue to do the
314 same. */
315 continue_1 (1);
316 }
317 do_cleanups (back_to);
318 }
319 }
320
321 static void
322 exec_direction_forward (void *notused)
323 {
324 execution_direction = EXEC_FORWARD;
325 }
326
327 static void
328 exec_reverse_continue (char **argv, int argc)
329 {
330 enum exec_direction_kind dir = execution_direction;
331 struct cleanup *old_chain;
332
333 if (dir == EXEC_REVERSE)
334 error (_("Already in reverse mode."));
335
336 if (!target_can_execute_reverse)
337 error (_("Target %s does not support this command."), target_shortname);
338
339 old_chain = make_cleanup (exec_direction_forward, NULL);
340 execution_direction = EXEC_REVERSE;
341 exec_continue (argv, argc);
342 do_cleanups (old_chain);
343 }
344
345 void
346 mi_cmd_exec_continue (char *command, char **argv, int argc)
347 {
348 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
349 exec_reverse_continue (argv + 1, argc - 1);
350 else
351 exec_continue (argv, argc);
352 }
353
354 static int
355 interrupt_thread_callback (struct thread_info *thread, void *arg)
356 {
357 int pid = *(int *)arg;
358
359 if (!is_running (thread->ptid))
360 return 0;
361
362 if (ptid_get_pid (thread->ptid) != pid)
363 return 0;
364
365 target_stop (thread->ptid);
366 return 0;
367 }
368
369 /* Interrupt the execution of the target. Note how we must play
370 around with the token variables, in order to display the current
371 token in the result of the interrupt command, and the previous
372 execution token when the target finally stops. See comments in
373 mi_cmd_execute. */
374
375 void
376 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
377 {
378 /* In all-stop mode, everything stops, so we don't need to try
379 anything specific. */
380 if (!non_stop)
381 {
382 interrupt_target_1 (0);
383 return;
384 }
385
386 if (current_context->all)
387 {
388 /* This will interrupt all threads in all inferiors. */
389 interrupt_target_1 (1);
390 }
391 else if (current_context->thread_group != -1)
392 {
393 struct inferior *inf = find_inferior_id (current_context->thread_group);
394
395 iterate_over_threads (interrupt_thread_callback, &inf->pid);
396 }
397 else
398 {
399 /* Interrupt just the current thread -- either explicitly
400 specified via --thread or whatever was current before
401 MI command was sent. */
402 interrupt_target_1 (0);
403 }
404 }
405
406 /* Callback for iterate_over_inferiors which starts the execution
407 of the given inferior.
408
409 ARG is a pointer to an integer whose value, if non-zero, indicates
410 that the program should be stopped when reaching the main subprogram
411 (similar to what the CLI "start" command does). */
412
413 static int
414 run_one_inferior (struct inferior *inf, void *arg)
415 {
416 int start_p = *(int *) arg;
417 const char *run_cmd = start_p ? "start" : "run";
418
419 if (inf->pid != 0)
420 {
421 if (inf->pid != ptid_get_pid (inferior_ptid))
422 {
423 struct thread_info *tp;
424
425 tp = any_thread_of_process (inf->pid);
426 if (!tp)
427 error (_("Inferior has no threads."));
428
429 switch_to_thread (tp->ptid);
430 }
431 }
432 else
433 {
434 set_current_inferior (inf);
435 switch_to_thread (null_ptid);
436 set_current_program_space (inf->pspace);
437 }
438 mi_execute_cli_command (run_cmd, mi_async_p (),
439 mi_async_p () ? "&" : NULL);
440 return 0;
441 }
442
443 void
444 mi_cmd_exec_run (char *command, char **argv, int argc)
445 {
446 int i;
447 int start_p = 0;
448
449 /* Parse the command options. */
450 enum opt
451 {
452 START_OPT,
453 };
454 static const struct mi_opt opts[] =
455 {
456 {"-start", START_OPT, 0},
457 {NULL, 0, 0},
458 };
459
460 int oind = 0;
461 char *oarg;
462
463 while (1)
464 {
465 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
466
467 if (opt < 0)
468 break;
469 switch ((enum opt) opt)
470 {
471 case START_OPT:
472 start_p = 1;
473 break;
474 }
475 }
476
477 /* This command does not accept any argument. Make sure the user
478 did not provide any. */
479 if (oind != argc)
480 error (_("Invalid argument: %s"), argv[oind]);
481
482 if (current_context->all)
483 {
484 struct cleanup *back_to = save_current_space_and_thread ();
485
486 iterate_over_inferiors (run_one_inferior, &start_p);
487 do_cleanups (back_to);
488 }
489 else
490 {
491 const char *run_cmd = start_p ? "start" : "run";
492
493 mi_execute_cli_command (run_cmd, mi_async_p (),
494 mi_async_p () ? "&" : NULL);
495 }
496 }
497
498
499 static int
500 find_thread_of_process (struct thread_info *ti, void *p)
501 {
502 int pid = *(int *)p;
503
504 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
505 return 1;
506
507 return 0;
508 }
509
510 void
511 mi_cmd_target_detach (char *command, char **argv, int argc)
512 {
513 if (argc != 0 && argc != 1)
514 error (_("Usage: -target-detach [pid | thread-group]"));
515
516 if (argc == 1)
517 {
518 struct thread_info *tp;
519 char *end = argv[0];
520 int pid;
521
522 /* First see if we are dealing with a thread-group id. */
523 if (*argv[0] == 'i')
524 {
525 struct inferior *inf;
526 int id = strtoul (argv[0] + 1, &end, 0);
527
528 if (*end != '\0')
529 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
530
531 inf = find_inferior_id (id);
532 if (!inf)
533 error (_("Non-existent thread-group id '%d'"), id);
534
535 pid = inf->pid;
536 }
537 else
538 {
539 /* We must be dealing with a pid. */
540 pid = strtol (argv[0], &end, 10);
541
542 if (*end != '\0')
543 error (_("Invalid identifier '%s'"), argv[0]);
544 }
545
546 /* Pick any thread in the desired process. Current
547 target_detach detaches from the parent of inferior_ptid. */
548 tp = iterate_over_threads (find_thread_of_process, &pid);
549 if (!tp)
550 error (_("Thread group is empty"));
551
552 switch_to_thread (tp->ptid);
553 }
554
555 detach_command (NULL, 0);
556 }
557
558 void
559 mi_cmd_thread_select (char *command, char **argv, int argc)
560 {
561 enum gdb_rc rc;
562 char *mi_error_message;
563
564 if (argc != 1)
565 error (_("-thread-select: USAGE: threadnum."));
566
567 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
568
569 if (rc == GDB_RC_FAIL)
570 {
571 make_cleanup (xfree, mi_error_message);
572 error ("%s", mi_error_message);
573 }
574 }
575
576 void
577 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
578 {
579 enum gdb_rc rc;
580 char *mi_error_message;
581
582 if (argc != 0)
583 error (_("-thread-list-ids: No arguments required."));
584
585 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
586
587 if (rc == GDB_RC_FAIL)
588 {
589 make_cleanup (xfree, mi_error_message);
590 error ("%s", mi_error_message);
591 }
592 }
593
594 void
595 mi_cmd_thread_info (char *command, char **argv, int argc)
596 {
597 if (argc != 0 && argc != 1)
598 error (_("Invalid MI command"));
599
600 print_thread_info (current_uiout, argv[0], -1);
601 }
602
603 struct collect_cores_data
604 {
605 int pid;
606
607 VEC (int) *cores;
608 };
609
610 static int
611 collect_cores (struct thread_info *ti, void *xdata)
612 {
613 struct collect_cores_data *data = xdata;
614
615 if (ptid_get_pid (ti->ptid) == data->pid)
616 {
617 int core = target_core_of_thread (ti->ptid);
618
619 if (core != -1)
620 VEC_safe_push (int, data->cores, core);
621 }
622
623 return 0;
624 }
625
626 static int *
627 unique (int *b, int *e)
628 {
629 int *d = b;
630
631 while (++b != e)
632 if (*d != *b)
633 *++d = *b;
634 return ++d;
635 }
636
637 struct print_one_inferior_data
638 {
639 int recurse;
640 VEC (int) *inferiors;
641 };
642
643 static int
644 print_one_inferior (struct inferior *inferior, void *xdata)
645 {
646 struct print_one_inferior_data *top_data = xdata;
647 struct ui_out *uiout = current_uiout;
648
649 if (VEC_empty (int, top_data->inferiors)
650 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
651 VEC_length (int, top_data->inferiors), sizeof (int),
652 compare_positive_ints))
653 {
654 struct collect_cores_data data;
655 struct cleanup *back_to
656 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
657
658 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
659 ui_out_field_string (uiout, "type", "process");
660 if (inferior->has_exit_code)
661 ui_out_field_string (uiout, "exit-code",
662 int_string (inferior->exit_code, 8, 0, 0, 1));
663 if (inferior->pid != 0)
664 ui_out_field_int (uiout, "pid", inferior->pid);
665
666 if (inferior->pspace->pspace_exec_filename != NULL)
667 {
668 ui_out_field_string (uiout, "executable",
669 inferior->pspace->pspace_exec_filename);
670 }
671
672 data.cores = 0;
673 if (inferior->pid != 0)
674 {
675 data.pid = inferior->pid;
676 iterate_over_threads (collect_cores, &data);
677 }
678
679 if (!VEC_empty (int, data.cores))
680 {
681 int *b, *e;
682 struct cleanup *back_to_2 =
683 make_cleanup_ui_out_list_begin_end (uiout, "cores");
684
685 qsort (VEC_address (int, data.cores),
686 VEC_length (int, data.cores), sizeof (int),
687 compare_positive_ints);
688
689 b = VEC_address (int, data.cores);
690 e = b + VEC_length (int, data.cores);
691 e = unique (b, e);
692
693 for (; b != e; ++b)
694 ui_out_field_int (uiout, NULL, *b);
695
696 do_cleanups (back_to_2);
697 }
698
699 if (top_data->recurse)
700 print_thread_info (uiout, NULL, inferior->pid);
701
702 do_cleanups (back_to);
703 }
704
705 return 0;
706 }
707
708 /* Output a field named 'cores' with a list as the value. The
709 elements of the list are obtained by splitting 'cores' on
710 comma. */
711
712 static void
713 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
714 {
715 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
716 field_name);
717 char *cores = xstrdup (xcores);
718 char *p = cores;
719
720 make_cleanup (xfree, cores);
721
722 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
723 ui_out_field_string (uiout, NULL, p);
724
725 do_cleanups (back_to);
726 }
727
728 static void
729 free_vector_of_ints (void *xvector)
730 {
731 VEC (int) **vector = xvector;
732
733 VEC_free (int, *vector);
734 }
735
736 static void
737 do_nothing (splay_tree_key k)
738 {
739 }
740
741 static void
742 free_vector_of_osdata_items (splay_tree_value xvalue)
743 {
744 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
745
746 /* We don't free the items itself, it will be done separately. */
747 VEC_free (osdata_item_s, value);
748 }
749
750 static int
751 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
752 {
753 int a = xa;
754 int b = xb;
755
756 return a - b;
757 }
758
759 static void
760 free_splay_tree (void *xt)
761 {
762 splay_tree t = xt;
763 splay_tree_delete (t);
764 }
765
766 static void
767 list_available_thread_groups (VEC (int) *ids, int recurse)
768 {
769 struct osdata *data;
770 struct osdata_item *item;
771 int ix_items;
772 struct ui_out *uiout = current_uiout;
773 struct cleanup *cleanup;
774
775 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
776 The vector contains information about all threads for the given pid.
777 This is assigned an initial value to avoid "may be used uninitialized"
778 warning from gcc. */
779 splay_tree tree = NULL;
780
781 /* get_osdata will throw if it cannot return data. */
782 data = get_osdata ("processes");
783 cleanup = make_cleanup_osdata_free (data);
784
785 if (recurse)
786 {
787 struct osdata *threads = get_osdata ("threads");
788
789 make_cleanup_osdata_free (threads);
790 tree = splay_tree_new (splay_tree_int_comparator,
791 do_nothing,
792 free_vector_of_osdata_items);
793 make_cleanup (free_splay_tree, tree);
794
795 for (ix_items = 0;
796 VEC_iterate (osdata_item_s, threads->items,
797 ix_items, item);
798 ix_items++)
799 {
800 const char *pid = get_osdata_column (item, "pid");
801 int pid_i = strtoul (pid, NULL, 0);
802 VEC (osdata_item_s) *vec = 0;
803
804 splay_tree_node n = splay_tree_lookup (tree, pid_i);
805 if (!n)
806 {
807 VEC_safe_push (osdata_item_s, vec, item);
808 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
809 }
810 else
811 {
812 vec = (VEC (osdata_item_s) *) n->value;
813 VEC_safe_push (osdata_item_s, vec, item);
814 n->value = (splay_tree_value) vec;
815 }
816 }
817 }
818
819 make_cleanup_ui_out_list_begin_end (uiout, "groups");
820
821 for (ix_items = 0;
822 VEC_iterate (osdata_item_s, data->items,
823 ix_items, item);
824 ix_items++)
825 {
826 struct cleanup *back_to;
827
828 const char *pid = get_osdata_column (item, "pid");
829 const char *cmd = get_osdata_column (item, "command");
830 const char *user = get_osdata_column (item, "user");
831 const char *cores = get_osdata_column (item, "cores");
832
833 int pid_i = strtoul (pid, NULL, 0);
834
835 /* At present, the target will return all available processes
836 and if information about specific ones was required, we filter
837 undesired processes here. */
838 if (ids && bsearch (&pid_i, VEC_address (int, ids),
839 VEC_length (int, ids),
840 sizeof (int), compare_positive_ints) == NULL)
841 continue;
842
843
844 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
845
846 ui_out_field_fmt (uiout, "id", "%s", pid);
847 ui_out_field_string (uiout, "type", "process");
848 if (cmd)
849 ui_out_field_string (uiout, "description", cmd);
850 if (user)
851 ui_out_field_string (uiout, "user", user);
852 if (cores)
853 output_cores (uiout, "cores", cores);
854
855 if (recurse)
856 {
857 splay_tree_node n = splay_tree_lookup (tree, pid_i);
858 if (n)
859 {
860 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
861 struct osdata_item *child;
862 int ix_child;
863
864 make_cleanup_ui_out_list_begin_end (uiout, "threads");
865
866 for (ix_child = 0;
867 VEC_iterate (osdata_item_s, children, ix_child, child);
868 ++ix_child)
869 {
870 struct cleanup *back_to_2 =
871 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
872 const char *tid = get_osdata_column (child, "tid");
873 const char *tcore = get_osdata_column (child, "core");
874
875 ui_out_field_string (uiout, "id", tid);
876 if (tcore)
877 ui_out_field_string (uiout, "core", tcore);
878
879 do_cleanups (back_to_2);
880 }
881 }
882 }
883
884 do_cleanups (back_to);
885 }
886
887 do_cleanups (cleanup);
888 }
889
890 void
891 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
892 {
893 struct ui_out *uiout = current_uiout;
894 struct cleanup *back_to;
895 int available = 0;
896 int recurse = 0;
897 VEC (int) *ids = 0;
898
899 enum opt
900 {
901 AVAILABLE_OPT, RECURSE_OPT
902 };
903 static const struct mi_opt opts[] =
904 {
905 {"-available", AVAILABLE_OPT, 0},
906 {"-recurse", RECURSE_OPT, 1},
907 { 0, 0, 0 }
908 };
909
910 int oind = 0;
911 char *oarg;
912
913 while (1)
914 {
915 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
916 &oind, &oarg);
917
918 if (opt < 0)
919 break;
920 switch ((enum opt) opt)
921 {
922 case AVAILABLE_OPT:
923 available = 1;
924 break;
925 case RECURSE_OPT:
926 if (strcmp (oarg, "0") == 0)
927 ;
928 else if (strcmp (oarg, "1") == 0)
929 recurse = 1;
930 else
931 error (_("only '0' and '1' are valid values "
932 "for the '--recurse' option"));
933 break;
934 }
935 }
936
937 for (; oind < argc; ++oind)
938 {
939 char *end;
940 int inf;
941
942 if (*(argv[oind]) != 'i')
943 error (_("invalid syntax of group id '%s'"), argv[oind]);
944
945 inf = strtoul (argv[oind] + 1, &end, 0);
946
947 if (*end != '\0')
948 error (_("invalid syntax of group id '%s'"), argv[oind]);
949 VEC_safe_push (int, ids, inf);
950 }
951 if (VEC_length (int, ids) > 1)
952 qsort (VEC_address (int, ids),
953 VEC_length (int, ids),
954 sizeof (int), compare_positive_ints);
955
956 back_to = make_cleanup (free_vector_of_ints, &ids);
957
958 if (available)
959 {
960 list_available_thread_groups (ids, recurse);
961 }
962 else if (VEC_length (int, ids) == 1)
963 {
964 /* Local thread groups, single id. */
965 int id = *VEC_address (int, ids);
966 struct inferior *inf = find_inferior_id (id);
967
968 if (!inf)
969 error (_("Non-existent thread group id '%d'"), id);
970
971 print_thread_info (uiout, NULL, inf->pid);
972 }
973 else
974 {
975 struct print_one_inferior_data data;
976
977 data.recurse = recurse;
978 data.inferiors = ids;
979
980 /* Local thread groups. Either no explicit ids -- and we
981 print everything, or several explicit ids. In both cases,
982 we print more than one group, and have to use 'groups'
983 as the top-level element. */
984 make_cleanup_ui_out_list_begin_end (uiout, "groups");
985 update_thread_list ();
986 iterate_over_inferiors (print_one_inferior, &data);
987 }
988
989 do_cleanups (back_to);
990 }
991
992 void
993 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
994 {
995 struct gdbarch *gdbarch;
996 struct ui_out *uiout = current_uiout;
997 int regnum, numregs;
998 int i;
999 struct cleanup *cleanup;
1000
1001 /* Note that the test for a valid register must include checking the
1002 gdbarch_register_name because gdbarch_num_regs may be allocated
1003 for the union of the register sets within a family of related
1004 processors. In this case, some entries of gdbarch_register_name
1005 will change depending upon the particular processor being
1006 debugged. */
1007
1008 gdbarch = get_current_arch ();
1009 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1010
1011 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
1012
1013 if (argc == 0) /* No args, just do all the regs. */
1014 {
1015 for (regnum = 0;
1016 regnum < numregs;
1017 regnum++)
1018 {
1019 if (gdbarch_register_name (gdbarch, regnum) == NULL
1020 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1021 ui_out_field_string (uiout, NULL, "");
1022 else
1023 ui_out_field_string (uiout, NULL,
1024 gdbarch_register_name (gdbarch, regnum));
1025 }
1026 }
1027
1028 /* Else, list of register #s, just do listed regs. */
1029 for (i = 0; i < argc; i++)
1030 {
1031 regnum = atoi (argv[i]);
1032 if (regnum < 0 || regnum >= numregs)
1033 error (_("bad register number"));
1034
1035 if (gdbarch_register_name (gdbarch, regnum) == NULL
1036 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1037 ui_out_field_string (uiout, NULL, "");
1038 else
1039 ui_out_field_string (uiout, NULL,
1040 gdbarch_register_name (gdbarch, regnum));
1041 }
1042 do_cleanups (cleanup);
1043 }
1044
1045 void
1046 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
1047 {
1048 static struct regcache *this_regs = NULL;
1049 struct ui_out *uiout = current_uiout;
1050 struct regcache *prev_regs;
1051 struct gdbarch *gdbarch;
1052 int regnum, numregs, changed;
1053 int i;
1054 struct cleanup *cleanup;
1055
1056 /* The last time we visited this function, the current frame's
1057 register contents were saved in THIS_REGS. Move THIS_REGS over
1058 to PREV_REGS, and refresh THIS_REGS with the now-current register
1059 contents. */
1060
1061 prev_regs = this_regs;
1062 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1063 cleanup = make_cleanup_regcache_xfree (prev_regs);
1064
1065 /* Note that the test for a valid register must include checking the
1066 gdbarch_register_name because gdbarch_num_regs may be allocated
1067 for the union of the register sets within a family of related
1068 processors. In this case, some entries of gdbarch_register_name
1069 will change depending upon the particular processor being
1070 debugged. */
1071
1072 gdbarch = get_regcache_arch (this_regs);
1073 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1074
1075 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
1076
1077 if (argc == 0)
1078 {
1079 /* No args, just do all the regs. */
1080 for (regnum = 0;
1081 regnum < numregs;
1082 regnum++)
1083 {
1084 if (gdbarch_register_name (gdbarch, regnum) == NULL
1085 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1086 continue;
1087 changed = register_changed_p (regnum, prev_regs, this_regs);
1088 if (changed < 0)
1089 error (_("-data-list-changed-registers: "
1090 "Unable to read register contents."));
1091 else if (changed)
1092 ui_out_field_int (uiout, NULL, regnum);
1093 }
1094 }
1095
1096 /* Else, list of register #s, just do listed regs. */
1097 for (i = 0; i < argc; i++)
1098 {
1099 regnum = atoi (argv[i]);
1100
1101 if (regnum >= 0
1102 && regnum < numregs
1103 && gdbarch_register_name (gdbarch, regnum) != NULL
1104 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1105 {
1106 changed = register_changed_p (regnum, prev_regs, this_regs);
1107 if (changed < 0)
1108 error (_("-data-list-changed-registers: "
1109 "Unable to read register contents."));
1110 else if (changed)
1111 ui_out_field_int (uiout, NULL, regnum);
1112 }
1113 else
1114 error (_("bad register number"));
1115 }
1116 do_cleanups (cleanup);
1117 }
1118
1119 static int
1120 register_changed_p (int regnum, struct regcache *prev_regs,
1121 struct regcache *this_regs)
1122 {
1123 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1124 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1125 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1126 enum register_status prev_status;
1127 enum register_status this_status;
1128
1129 /* First time through or after gdbarch change consider all registers
1130 as changed. */
1131 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1132 return 1;
1133
1134 /* Get register contents and compare. */
1135 prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
1136 this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
1137
1138 if (this_status != prev_status)
1139 return 1;
1140 else if (this_status == REG_VALID)
1141 return memcmp (prev_buffer, this_buffer,
1142 register_size (gdbarch, regnum)) != 0;
1143 else
1144 return 0;
1145 }
1146
1147 /* Return a list of register number and value pairs. The valid
1148 arguments expected are: a letter indicating the format in which to
1149 display the registers contents. This can be one of: x
1150 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1151 (raw). After the format argument there can be a sequence of
1152 numbers, indicating which registers to fetch the content of. If
1153 the format is the only argument, a list of all the registers with
1154 their values is returned. */
1155
1156 void
1157 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1158 {
1159 struct ui_out *uiout = current_uiout;
1160 struct frame_info *frame;
1161 struct gdbarch *gdbarch;
1162 int regnum, numregs, format;
1163 int i;
1164 struct cleanup *list_cleanup;
1165 int skip_unavailable = 0;
1166 int oind = 0;
1167 enum opt
1168 {
1169 SKIP_UNAVAILABLE,
1170 };
1171 static const struct mi_opt opts[] =
1172 {
1173 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1174 { 0, 0, 0 }
1175 };
1176
1177 /* Note that the test for a valid register must include checking the
1178 gdbarch_register_name because gdbarch_num_regs may be allocated
1179 for the union of the register sets within a family of related
1180 processors. In this case, some entries of gdbarch_register_name
1181 will change depending upon the particular processor being
1182 debugged. */
1183
1184 while (1)
1185 {
1186 char *oarg;
1187 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1188 opts, &oind, &oarg);
1189
1190 if (opt < 0)
1191 break;
1192 switch ((enum opt) opt)
1193 {
1194 case SKIP_UNAVAILABLE:
1195 skip_unavailable = 1;
1196 break;
1197 }
1198 }
1199
1200 if (argc - oind < 1)
1201 error (_("-data-list-register-values: Usage: "
1202 "-data-list-register-values [--skip-unavailable] <format>"
1203 " [<regnum1>...<regnumN>]"));
1204
1205 format = (int) argv[oind][0];
1206
1207 frame = get_selected_frame (NULL);
1208 gdbarch = get_frame_arch (frame);
1209 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1210
1211 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1212
1213 if (argc - oind == 1)
1214 {
1215 /* No args, beside the format: do all the regs. */
1216 for (regnum = 0;
1217 regnum < numregs;
1218 regnum++)
1219 {
1220 if (gdbarch_register_name (gdbarch, regnum) == NULL
1221 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1222 continue;
1223
1224 output_register (frame, regnum, format, skip_unavailable);
1225 }
1226 }
1227
1228 /* Else, list of register #s, just do listed regs. */
1229 for (i = 1 + oind; i < argc; i++)
1230 {
1231 regnum = atoi (argv[i]);
1232
1233 if (regnum >= 0
1234 && regnum < numregs
1235 && gdbarch_register_name (gdbarch, regnum) != NULL
1236 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1237 output_register (frame, regnum, format, skip_unavailable);
1238 else
1239 error (_("bad register number"));
1240 }
1241 do_cleanups (list_cleanup);
1242 }
1243
1244 /* Output one register REGNUM's contents in the desired FORMAT. If
1245 SKIP_UNAVAILABLE is true, skip the register if it is
1246 unavailable. */
1247
1248 static void
1249 output_register (struct frame_info *frame, int regnum, int format,
1250 int skip_unavailable)
1251 {
1252 struct gdbarch *gdbarch = get_frame_arch (frame);
1253 struct ui_out *uiout = current_uiout;
1254 struct value *val = value_of_register (regnum, frame);
1255 struct cleanup *tuple_cleanup;
1256 struct value_print_options opts;
1257 struct ui_file *stb;
1258
1259 if (skip_unavailable && !value_entirely_available (val))
1260 return;
1261
1262 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1263 ui_out_field_int (uiout, "number", regnum);
1264
1265 if (format == 'N')
1266 format = 0;
1267
1268 if (format == 'r')
1269 format = 'z';
1270
1271 stb = mem_fileopen ();
1272 make_cleanup_ui_file_delete (stb);
1273
1274 get_formatted_print_options (&opts, format);
1275 opts.deref_ref = 1;
1276 val_print (value_type (val),
1277 value_contents_for_printing (val),
1278 value_embedded_offset (val), 0,
1279 stb, 0, val, &opts, current_language);
1280 ui_out_field_stream (uiout, "value", stb);
1281
1282 do_cleanups (tuple_cleanup);
1283 }
1284
1285 /* Write given values into registers. The registers and values are
1286 given as pairs. The corresponding MI command is
1287 -data-write-register-values <format>
1288 [<regnum1> <value1>...<regnumN> <valueN>] */
1289 void
1290 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1291 {
1292 struct regcache *regcache;
1293 struct gdbarch *gdbarch;
1294 int numregs, i;
1295
1296 /* Note that the test for a valid register must include checking the
1297 gdbarch_register_name because gdbarch_num_regs may be allocated
1298 for the union of the register sets within a family of related
1299 processors. In this case, some entries of gdbarch_register_name
1300 will change depending upon the particular processor being
1301 debugged. */
1302
1303 regcache = get_current_regcache ();
1304 gdbarch = get_regcache_arch (regcache);
1305 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1306
1307 if (argc == 0)
1308 error (_("-data-write-register-values: Usage: -data-write-register-"
1309 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1310
1311 if (!target_has_registers)
1312 error (_("-data-write-register-values: No registers."));
1313
1314 if (!(argc - 1))
1315 error (_("-data-write-register-values: No regs and values specified."));
1316
1317 if ((argc - 1) % 2)
1318 error (_("-data-write-register-values: "
1319 "Regs and vals are not in pairs."));
1320
1321 for (i = 1; i < argc; i = i + 2)
1322 {
1323 int regnum = atoi (argv[i]);
1324
1325 if (regnum >= 0 && regnum < numregs
1326 && gdbarch_register_name (gdbarch, regnum)
1327 && *gdbarch_register_name (gdbarch, regnum))
1328 {
1329 LONGEST value;
1330
1331 /* Get the value as a number. */
1332 value = parse_and_eval_address (argv[i + 1]);
1333
1334 /* Write it down. */
1335 regcache_cooked_write_signed (regcache, regnum, value);
1336 }
1337 else
1338 error (_("bad register number"));
1339 }
1340 }
1341
1342 /* Evaluate the value of the argument. The argument is an
1343 expression. If the expression contains spaces it needs to be
1344 included in double quotes. */
1345
1346 void
1347 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1348 {
1349 struct expression *expr;
1350 struct cleanup *old_chain;
1351 struct value *val;
1352 struct ui_file *stb;
1353 struct value_print_options opts;
1354 struct ui_out *uiout = current_uiout;
1355
1356 stb = mem_fileopen ();
1357 old_chain = make_cleanup_ui_file_delete (stb);
1358
1359 if (argc != 1)
1360 error (_("-data-evaluate-expression: "
1361 "Usage: -data-evaluate-expression expression"));
1362
1363 expr = parse_expression (argv[0]);
1364
1365 make_cleanup (free_current_contents, &expr);
1366
1367 val = evaluate_expression (expr);
1368
1369 /* Print the result of the expression evaluation. */
1370 get_user_print_options (&opts);
1371 opts.deref_ref = 0;
1372 common_val_print (val, stb, 0, &opts, current_language);
1373
1374 ui_out_field_stream (uiout, "value", stb);
1375
1376 do_cleanups (old_chain);
1377 }
1378
1379 /* This is the -data-read-memory command.
1380
1381 ADDR: start address of data to be dumped.
1382 WORD-FORMAT: a char indicating format for the ``word''. See
1383 the ``x'' command.
1384 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1385 NR_ROW: Number of rows.
1386 NR_COL: The number of colums (words per row).
1387 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1388 ASCHAR for unprintable characters.
1389
1390 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1391 displayes them. Returns:
1392
1393 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1394
1395 Returns:
1396 The number of bytes read is SIZE*ROW*COL. */
1397
1398 void
1399 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1400 {
1401 struct gdbarch *gdbarch = get_current_arch ();
1402 struct ui_out *uiout = current_uiout;
1403 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1404 CORE_ADDR addr;
1405 long total_bytes, nr_cols, nr_rows;
1406 char word_format;
1407 struct type *word_type;
1408 long word_size;
1409 char word_asize;
1410 char aschar;
1411 gdb_byte *mbuf;
1412 int nr_bytes;
1413 long offset = 0;
1414 int oind = 0;
1415 char *oarg;
1416 enum opt
1417 {
1418 OFFSET_OPT
1419 };
1420 static const struct mi_opt opts[] =
1421 {
1422 {"o", OFFSET_OPT, 1},
1423 { 0, 0, 0 }
1424 };
1425
1426 while (1)
1427 {
1428 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1429 &oind, &oarg);
1430
1431 if (opt < 0)
1432 break;
1433 switch ((enum opt) opt)
1434 {
1435 case OFFSET_OPT:
1436 offset = atol (oarg);
1437 break;
1438 }
1439 }
1440 argv += oind;
1441 argc -= oind;
1442
1443 if (argc < 5 || argc > 6)
1444 error (_("-data-read-memory: Usage: "
1445 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1446
1447 /* Extract all the arguments. */
1448
1449 /* Start address of the memory dump. */
1450 addr = parse_and_eval_address (argv[0]) + offset;
1451 /* The format character to use when displaying a memory word. See
1452 the ``x'' command. */
1453 word_format = argv[1][0];
1454 /* The size of the memory word. */
1455 word_size = atol (argv[2]);
1456 switch (word_size)
1457 {
1458 case 1:
1459 word_type = builtin_type (gdbarch)->builtin_int8;
1460 word_asize = 'b';
1461 break;
1462 case 2:
1463 word_type = builtin_type (gdbarch)->builtin_int16;
1464 word_asize = 'h';
1465 break;
1466 case 4:
1467 word_type = builtin_type (gdbarch)->builtin_int32;
1468 word_asize = 'w';
1469 break;
1470 case 8:
1471 word_type = builtin_type (gdbarch)->builtin_int64;
1472 word_asize = 'g';
1473 break;
1474 default:
1475 word_type = builtin_type (gdbarch)->builtin_int8;
1476 word_asize = 'b';
1477 }
1478 /* The number of rows. */
1479 nr_rows = atol (argv[3]);
1480 if (nr_rows <= 0)
1481 error (_("-data-read-memory: invalid number of rows."));
1482
1483 /* Number of bytes per row. */
1484 nr_cols = atol (argv[4]);
1485 if (nr_cols <= 0)
1486 error (_("-data-read-memory: invalid number of columns."));
1487
1488 /* The un-printable character when printing ascii. */
1489 if (argc == 6)
1490 aschar = *argv[5];
1491 else
1492 aschar = 0;
1493
1494 /* Create a buffer and read it in. */
1495 total_bytes = word_size * nr_rows * nr_cols;
1496 mbuf = xcalloc (total_bytes, 1);
1497 make_cleanup (xfree, mbuf);
1498
1499 /* Dispatch memory reads to the topmost target, not the flattened
1500 current_target. */
1501 nr_bytes = target_read (current_target.beneath,
1502 TARGET_OBJECT_MEMORY, NULL, mbuf,
1503 addr, total_bytes);
1504 if (nr_bytes <= 0)
1505 error (_("Unable to read memory."));
1506
1507 /* Output the header information. */
1508 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1509 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1510 ui_out_field_int (uiout, "total-bytes", total_bytes);
1511 ui_out_field_core_addr (uiout, "next-row",
1512 gdbarch, addr + word_size * nr_cols);
1513 ui_out_field_core_addr (uiout, "prev-row",
1514 gdbarch, addr - word_size * nr_cols);
1515 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1516 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1517
1518 /* Build the result as a two dimentional table. */
1519 {
1520 struct ui_file *stream;
1521 struct cleanup *cleanup_stream;
1522 int row;
1523 int row_byte;
1524
1525 stream = mem_fileopen ();
1526 cleanup_stream = make_cleanup_ui_file_delete (stream);
1527
1528 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1529 for (row = 0, row_byte = 0;
1530 row < nr_rows;
1531 row++, row_byte += nr_cols * word_size)
1532 {
1533 int col;
1534 int col_byte;
1535 struct cleanup *cleanup_tuple;
1536 struct cleanup *cleanup_list_data;
1537 struct value_print_options opts;
1538
1539 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1540 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1541 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1542 row_byte); */
1543 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1544 get_formatted_print_options (&opts, word_format);
1545 for (col = 0, col_byte = row_byte;
1546 col < nr_cols;
1547 col++, col_byte += word_size)
1548 {
1549 if (col_byte + word_size > nr_bytes)
1550 {
1551 ui_out_field_string (uiout, NULL, "N/A");
1552 }
1553 else
1554 {
1555 ui_file_rewind (stream);
1556 print_scalar_formatted (mbuf + col_byte, word_type, &opts,
1557 word_asize, stream);
1558 ui_out_field_stream (uiout, NULL, stream);
1559 }
1560 }
1561 do_cleanups (cleanup_list_data);
1562 if (aschar)
1563 {
1564 int byte;
1565
1566 ui_file_rewind (stream);
1567 for (byte = row_byte;
1568 byte < row_byte + word_size * nr_cols; byte++)
1569 {
1570 if (byte >= nr_bytes)
1571 fputc_unfiltered ('X', stream);
1572 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1573 fputc_unfiltered (aschar, stream);
1574 else
1575 fputc_unfiltered (mbuf[byte], stream);
1576 }
1577 ui_out_field_stream (uiout, "ascii", stream);
1578 }
1579 do_cleanups (cleanup_tuple);
1580 }
1581 do_cleanups (cleanup_stream);
1582 }
1583 do_cleanups (cleanups);
1584 }
1585
1586 void
1587 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1588 {
1589 struct gdbarch *gdbarch = get_current_arch ();
1590 struct ui_out *uiout = current_uiout;
1591 struct cleanup *cleanups;
1592 CORE_ADDR addr;
1593 LONGEST length;
1594 memory_read_result_s *read_result;
1595 int ix;
1596 VEC(memory_read_result_s) *result;
1597 long offset = 0;
1598 int oind = 0;
1599 char *oarg;
1600 enum opt
1601 {
1602 OFFSET_OPT
1603 };
1604 static const struct mi_opt opts[] =
1605 {
1606 {"o", OFFSET_OPT, 1},
1607 { 0, 0, 0 }
1608 };
1609
1610 while (1)
1611 {
1612 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1613 &oind, &oarg);
1614 if (opt < 0)
1615 break;
1616 switch ((enum opt) opt)
1617 {
1618 case OFFSET_OPT:
1619 offset = atol (oarg);
1620 break;
1621 }
1622 }
1623 argv += oind;
1624 argc -= oind;
1625
1626 if (argc != 2)
1627 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1628
1629 addr = parse_and_eval_address (argv[0]) + offset;
1630 length = atol (argv[1]);
1631
1632 result = read_memory_robust (current_target.beneath, addr, length);
1633
1634 cleanups = make_cleanup (free_memory_read_result_vector, result);
1635
1636 if (VEC_length (memory_read_result_s, result) == 0)
1637 error (_("Unable to read memory."));
1638
1639 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1640 for (ix = 0;
1641 VEC_iterate (memory_read_result_s, result, ix, read_result);
1642 ++ix)
1643 {
1644 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1645 char *data, *p;
1646 int i;
1647
1648 ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
1649 ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
1650 - addr);
1651 ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
1652
1653 data = xmalloc ((read_result->end - read_result->begin) * 2 + 1);
1654
1655 for (i = 0, p = data;
1656 i < (read_result->end - read_result->begin);
1657 ++i, p += 2)
1658 {
1659 sprintf (p, "%02x", read_result->data[i]);
1660 }
1661 ui_out_field_string (uiout, "contents", data);
1662 xfree (data);
1663 do_cleanups (t);
1664 }
1665 do_cleanups (cleanups);
1666 }
1667
1668 /* Implementation of the -data-write_memory command.
1669
1670 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1671 offset from the beginning of the memory grid row where the cell to
1672 be written is.
1673 ADDR: start address of the row in the memory grid where the memory
1674 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1675 the location to write to.
1676 FORMAT: a char indicating format for the ``word''. See
1677 the ``x'' command.
1678 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1679 VALUE: value to be written into the memory address.
1680
1681 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1682
1683 Prints nothing. */
1684
1685 void
1686 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1687 {
1688 struct gdbarch *gdbarch = get_current_arch ();
1689 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1690 CORE_ADDR addr;
1691 long word_size;
1692 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1693 enough when using a compiler other than GCC. */
1694 LONGEST value;
1695 void *buffer;
1696 struct cleanup *old_chain;
1697 long offset = 0;
1698 int oind = 0;
1699 char *oarg;
1700 enum opt
1701 {
1702 OFFSET_OPT
1703 };
1704 static const struct mi_opt opts[] =
1705 {
1706 {"o", OFFSET_OPT, 1},
1707 { 0, 0, 0 }
1708 };
1709
1710 while (1)
1711 {
1712 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1713 &oind, &oarg);
1714
1715 if (opt < 0)
1716 break;
1717 switch ((enum opt) opt)
1718 {
1719 case OFFSET_OPT:
1720 offset = atol (oarg);
1721 break;
1722 }
1723 }
1724 argv += oind;
1725 argc -= oind;
1726
1727 if (argc != 4)
1728 error (_("-data-write-memory: Usage: "
1729 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1730
1731 /* Extract all the arguments. */
1732 /* Start address of the memory dump. */
1733 addr = parse_and_eval_address (argv[0]);
1734 /* The size of the memory word. */
1735 word_size = atol (argv[2]);
1736
1737 /* Calculate the real address of the write destination. */
1738 addr += (offset * word_size);
1739
1740 /* Get the value as a number. */
1741 value = parse_and_eval_address (argv[3]);
1742 /* Get the value into an array. */
1743 buffer = xmalloc (word_size);
1744 old_chain = make_cleanup (xfree, buffer);
1745 store_signed_integer (buffer, word_size, byte_order, value);
1746 /* Write it down to memory. */
1747 write_memory_with_notification (addr, buffer, word_size);
1748 /* Free the buffer. */
1749 do_cleanups (old_chain);
1750 }
1751
1752 /* Implementation of the -data-write-memory-bytes command.
1753
1754 ADDR: start address
1755 DATA: string of bytes to write at that address
1756 COUNT: number of bytes to be filled (decimal integer). */
1757
1758 void
1759 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1760 {
1761 CORE_ADDR addr;
1762 char *cdata;
1763 gdb_byte *data;
1764 gdb_byte *databuf;
1765 size_t len, i, steps, remainder;
1766 long int count, j;
1767 struct cleanup *back_to;
1768
1769 if (argc != 2 && argc != 3)
1770 error (_("Usage: ADDR DATA [COUNT]."));
1771
1772 addr = parse_and_eval_address (argv[0]);
1773 cdata = argv[1];
1774 if (strlen (cdata) % 2)
1775 error (_("Hex-encoded '%s' must have an even number of characters."),
1776 cdata);
1777
1778 len = strlen (cdata)/2;
1779 if (argc == 3)
1780 count = strtoul (argv[2], NULL, 10);
1781 else
1782 count = len;
1783
1784 databuf = xmalloc (len * sizeof (gdb_byte));
1785 back_to = make_cleanup (xfree, databuf);
1786
1787 for (i = 0; i < len; ++i)
1788 {
1789 int x;
1790 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1791 error (_("Invalid argument"));
1792 databuf[i] = (gdb_byte) x;
1793 }
1794
1795 if (len < count)
1796 {
1797 /* Pattern is made of less bytes than count:
1798 repeat pattern to fill memory. */
1799 data = xmalloc (count);
1800 make_cleanup (xfree, data);
1801
1802 steps = count / len;
1803 remainder = count % len;
1804 for (j = 0; j < steps; j++)
1805 memcpy (data + j * len, databuf, len);
1806
1807 if (remainder > 0)
1808 memcpy (data + steps * len, databuf, remainder);
1809 }
1810 else
1811 {
1812 /* Pattern is longer than or equal to count:
1813 just copy count bytes. */
1814 data = databuf;
1815 }
1816
1817 write_memory_with_notification (addr, data, count);
1818
1819 do_cleanups (back_to);
1820 }
1821
1822 void
1823 mi_cmd_enable_timings (char *command, char **argv, int argc)
1824 {
1825 if (argc == 0)
1826 do_timings = 1;
1827 else if (argc == 1)
1828 {
1829 if (strcmp (argv[0], "yes") == 0)
1830 do_timings = 1;
1831 else if (strcmp (argv[0], "no") == 0)
1832 do_timings = 0;
1833 else
1834 goto usage_error;
1835 }
1836 else
1837 goto usage_error;
1838
1839 return;
1840
1841 usage_error:
1842 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1843 }
1844
1845 void
1846 mi_cmd_list_features (char *command, char **argv, int argc)
1847 {
1848 if (argc == 0)
1849 {
1850 struct cleanup *cleanup = NULL;
1851 struct ui_out *uiout = current_uiout;
1852
1853 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1854 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1855 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1856 ui_out_field_string (uiout, NULL, "thread-info");
1857 ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
1858 ui_out_field_string (uiout, NULL, "breakpoint-notifications");
1859 ui_out_field_string (uiout, NULL, "ada-task-info");
1860 ui_out_field_string (uiout, NULL, "language-option");
1861 ui_out_field_string (uiout, NULL, "info-gdb-mi-command");
1862 ui_out_field_string (uiout, NULL, "undefined-command-error-code");
1863 ui_out_field_string (uiout, NULL, "exec-run-start-option");
1864
1865 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1866 ui_out_field_string (uiout, NULL, "python");
1867
1868 do_cleanups (cleanup);
1869 return;
1870 }
1871
1872 error (_("-list-features should be passed no arguments"));
1873 }
1874
1875 void
1876 mi_cmd_list_target_features (char *command, char **argv, int argc)
1877 {
1878 if (argc == 0)
1879 {
1880 struct cleanup *cleanup = NULL;
1881 struct ui_out *uiout = current_uiout;
1882
1883 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1884 if (mi_async_p ())
1885 ui_out_field_string (uiout, NULL, "async");
1886 if (target_can_execute_reverse)
1887 ui_out_field_string (uiout, NULL, "reverse");
1888 do_cleanups (cleanup);
1889 return;
1890 }
1891
1892 error (_("-list-target-features should be passed no arguments"));
1893 }
1894
1895 void
1896 mi_cmd_add_inferior (char *command, char **argv, int argc)
1897 {
1898 struct inferior *inf;
1899
1900 if (argc != 0)
1901 error (_("-add-inferior should be passed no arguments"));
1902
1903 inf = add_inferior_with_spaces ();
1904
1905 ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num);
1906 }
1907
1908 /* Callback used to find the first inferior other than the current
1909 one. */
1910
1911 static int
1912 get_other_inferior (struct inferior *inf, void *arg)
1913 {
1914 if (inf == current_inferior ())
1915 return 0;
1916
1917 return 1;
1918 }
1919
1920 void
1921 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1922 {
1923 int id;
1924 struct inferior *inf;
1925
1926 if (argc != 1)
1927 error (_("-remove-inferior should be passed a single argument"));
1928
1929 if (sscanf (argv[0], "i%d", &id) != 1)
1930 error (_("the thread group id is syntactically invalid"));
1931
1932 inf = find_inferior_id (id);
1933 if (!inf)
1934 error (_("the specified thread group does not exist"));
1935
1936 if (inf->pid != 0)
1937 error (_("cannot remove an active inferior"));
1938
1939 if (inf == current_inferior ())
1940 {
1941 struct thread_info *tp = 0;
1942 struct inferior *new_inferior
1943 = iterate_over_inferiors (get_other_inferior, NULL);
1944
1945 if (new_inferior == NULL)
1946 error (_("Cannot remove last inferior"));
1947
1948 set_current_inferior (new_inferior);
1949 if (new_inferior->pid != 0)
1950 tp = any_thread_of_process (new_inferior->pid);
1951 switch_to_thread (tp ? tp->ptid : null_ptid);
1952 set_current_program_space (new_inferior->pspace);
1953 }
1954
1955 delete_inferior_1 (inf, 1 /* silent */);
1956 }
1957
1958 \f
1959
1960 /* Execute a command within a safe environment.
1961 Return <0 for error; >=0 for ok.
1962
1963 args->action will tell mi_execute_command what action
1964 to perfrom after the given command has executed (display/suppress
1965 prompt, display error). */
1966
1967 static void
1968 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1969 {
1970 struct cleanup *cleanup;
1971
1972 if (do_timings)
1973 current_command_ts = context->cmd_start;
1974
1975 current_token = xstrdup (context->token);
1976 cleanup = make_cleanup (free_current_contents, &current_token);
1977
1978 running_result_record_printed = 0;
1979 mi_proceeded = 0;
1980 switch (context->op)
1981 {
1982 case MI_COMMAND:
1983 /* A MI command was read from the input stream. */
1984 if (mi_debug_p)
1985 /* FIXME: gdb_???? */
1986 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1987 context->token, context->command, context->args);
1988
1989 mi_cmd_execute (context);
1990
1991 /* Print the result if there were no errors.
1992
1993 Remember that on the way out of executing a command, you have
1994 to directly use the mi_interp's uiout, since the command
1995 could have reset the interpreter, in which case the current
1996 uiout will most likely crash in the mi_out_* routines. */
1997 if (!running_result_record_printed)
1998 {
1999 fputs_unfiltered (context->token, raw_stdout);
2000 /* There's no particularly good reason why target-connect results
2001 in not ^done. Should kill ^connected for MI3. */
2002 fputs_unfiltered (strcmp (context->command, "target-select") == 0
2003 ? "^connected" : "^done", raw_stdout);
2004 mi_out_put (uiout, raw_stdout);
2005 mi_out_rewind (uiout);
2006 mi_print_timing_maybe ();
2007 fputs_unfiltered ("\n", raw_stdout);
2008 }
2009 else
2010 /* The command does not want anything to be printed. In that
2011 case, the command probably should not have written anything
2012 to uiout, but in case it has written something, discard it. */
2013 mi_out_rewind (uiout);
2014 break;
2015
2016 case CLI_COMMAND:
2017 {
2018 char *argv[2];
2019
2020 /* A CLI command was read from the input stream. */
2021 /* This "feature" will be removed as soon as we have a
2022 complete set of mi commands. */
2023 /* Echo the command on the console. */
2024 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
2025 /* Call the "console" interpreter. */
2026 argv[0] = "console";
2027 argv[1] = context->command;
2028 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
2029
2030 /* If we changed interpreters, DON'T print out anything. */
2031 if (current_interp_named_p (INTERP_MI)
2032 || current_interp_named_p (INTERP_MI1)
2033 || current_interp_named_p (INTERP_MI2)
2034 || current_interp_named_p (INTERP_MI3))
2035 {
2036 if (!running_result_record_printed)
2037 {
2038 fputs_unfiltered (context->token, raw_stdout);
2039 fputs_unfiltered ("^done", raw_stdout);
2040 mi_out_put (uiout, raw_stdout);
2041 mi_out_rewind (uiout);
2042 mi_print_timing_maybe ();
2043 fputs_unfiltered ("\n", raw_stdout);
2044 }
2045 else
2046 mi_out_rewind (uiout);
2047 }
2048 break;
2049 }
2050 }
2051
2052 do_cleanups (cleanup);
2053 }
2054
2055 /* Print a gdb exception to the MI output stream. */
2056
2057 static void
2058 mi_print_exception (const char *token, struct gdb_exception exception)
2059 {
2060 fputs_unfiltered (token, raw_stdout);
2061 fputs_unfiltered ("^error,msg=\"", raw_stdout);
2062 if (exception.message == NULL)
2063 fputs_unfiltered ("unknown error", raw_stdout);
2064 else
2065 fputstr_unfiltered (exception.message, '"', raw_stdout);
2066 fputs_unfiltered ("\"", raw_stdout);
2067
2068 switch (exception.error)
2069 {
2070 case UNDEFINED_COMMAND_ERROR:
2071 fputs_unfiltered (",code=\"undefined-command\"", raw_stdout);
2072 break;
2073 }
2074
2075 fputs_unfiltered ("\n", raw_stdout);
2076 }
2077
2078 void
2079 mi_execute_command (const char *cmd, int from_tty)
2080 {
2081 char *token;
2082 struct mi_parse *command = NULL;
2083 volatile struct gdb_exception exception;
2084
2085 /* This is to handle EOF (^D). We just quit gdb. */
2086 /* FIXME: we should call some API function here. */
2087 if (cmd == 0)
2088 quit_force (NULL, from_tty);
2089
2090 target_log_command (cmd);
2091
2092 TRY_CATCH (exception, RETURN_MASK_ALL)
2093 {
2094 command = mi_parse (cmd, &token);
2095 }
2096 if (exception.reason < 0)
2097 {
2098 mi_print_exception (token, exception);
2099 xfree (token);
2100 }
2101 else
2102 {
2103 volatile struct gdb_exception result;
2104 ptid_t previous_ptid = inferior_ptid;
2105
2106 command->token = token;
2107
2108 if (do_timings)
2109 {
2110 command->cmd_start = (struct mi_timestamp *)
2111 xmalloc (sizeof (struct mi_timestamp));
2112 timestamp (command->cmd_start);
2113 }
2114
2115 TRY_CATCH (result, RETURN_MASK_ALL)
2116 {
2117 captured_mi_execute_command (current_uiout, command);
2118 }
2119 if (result.reason < 0)
2120 {
2121 /* The command execution failed and error() was called
2122 somewhere. */
2123 mi_print_exception (command->token, result);
2124 mi_out_rewind (current_uiout);
2125 }
2126
2127 bpstat_do_actions ();
2128
2129 if (/* The notifications are only output when the top-level
2130 interpreter (specified on the command line) is MI. */
2131 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
2132 /* Don't try report anything if there are no threads --
2133 the program is dead. */
2134 && thread_count () != 0
2135 /* -thread-select explicitly changes thread. If frontend uses that
2136 internally, we don't want to emit =thread-selected, since
2137 =thread-selected is supposed to indicate user's intentions. */
2138 && strcmp (command->command, "thread-select") != 0)
2139 {
2140 struct mi_interp *mi = top_level_interpreter_data ();
2141 int report_change = 0;
2142
2143 if (command->thread == -1)
2144 {
2145 report_change = (!ptid_equal (previous_ptid, null_ptid)
2146 && !ptid_equal (inferior_ptid, previous_ptid)
2147 && !ptid_equal (inferior_ptid, null_ptid));
2148 }
2149 else if (!ptid_equal (inferior_ptid, null_ptid))
2150 {
2151 struct thread_info *ti = inferior_thread ();
2152
2153 report_change = (ti->num != command->thread);
2154 }
2155
2156 if (report_change)
2157 {
2158 struct thread_info *ti = inferior_thread ();
2159
2160 target_terminal_ours ();
2161 fprintf_unfiltered (mi->event_channel,
2162 "thread-selected,id=\"%d\"",
2163 ti->num);
2164 gdb_flush (mi->event_channel);
2165 }
2166 }
2167
2168 mi_parse_free (command);
2169 }
2170 }
2171
2172 static void
2173 mi_cmd_execute (struct mi_parse *parse)
2174 {
2175 struct cleanup *cleanup;
2176 enum language saved_language;
2177
2178 cleanup = prepare_execute_command ();
2179
2180 if (parse->all && parse->thread_group != -1)
2181 error (_("Cannot specify --thread-group together with --all"));
2182
2183 if (parse->all && parse->thread != -1)
2184 error (_("Cannot specify --thread together with --all"));
2185
2186 if (parse->thread_group != -1 && parse->thread != -1)
2187 error (_("Cannot specify --thread together with --thread-group"));
2188
2189 if (parse->frame != -1 && parse->thread == -1)
2190 error (_("Cannot specify --frame without --thread"));
2191
2192 if (parse->thread_group != -1)
2193 {
2194 struct inferior *inf = find_inferior_id (parse->thread_group);
2195 struct thread_info *tp = 0;
2196
2197 if (!inf)
2198 error (_("Invalid thread group for the --thread-group option"));
2199
2200 set_current_inferior (inf);
2201 /* This behaviour means that if --thread-group option identifies
2202 an inferior with multiple threads, then a random one will be
2203 picked. This is not a problem -- frontend should always
2204 provide --thread if it wishes to operate on a specific
2205 thread. */
2206 if (inf->pid != 0)
2207 tp = any_live_thread_of_process (inf->pid);
2208 switch_to_thread (tp ? tp->ptid : null_ptid);
2209 set_current_program_space (inf->pspace);
2210 }
2211
2212 if (parse->thread != -1)
2213 {
2214 struct thread_info *tp = find_thread_id (parse->thread);
2215
2216 if (!tp)
2217 error (_("Invalid thread id: %d"), parse->thread);
2218
2219 if (is_exited (tp->ptid))
2220 error (_("Thread id: %d has terminated"), parse->thread);
2221
2222 switch_to_thread (tp->ptid);
2223 }
2224
2225 if (parse->frame != -1)
2226 {
2227 struct frame_info *fid;
2228 int frame = parse->frame;
2229
2230 fid = find_relative_frame (get_current_frame (), &frame);
2231 if (frame == 0)
2232 /* find_relative_frame was successful */
2233 select_frame (fid);
2234 else
2235 error (_("Invalid frame id: %d"), frame);
2236 }
2237
2238 if (parse->language != language_unknown)
2239 {
2240 make_cleanup_restore_current_language ();
2241 set_language (parse->language);
2242 }
2243
2244 current_context = parse;
2245
2246 if (parse->cmd->suppress_notification != NULL)
2247 {
2248 make_cleanup_restore_integer (parse->cmd->suppress_notification);
2249 *parse->cmd->suppress_notification = 1;
2250 }
2251
2252 if (parse->cmd->argv_func != NULL)
2253 {
2254 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2255 }
2256 else if (parse->cmd->cli.cmd != 0)
2257 {
2258 /* FIXME: DELETE THIS. */
2259 /* The operation is still implemented by a cli command. */
2260 /* Must be a synchronous one. */
2261 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2262 parse->args);
2263 }
2264 else
2265 {
2266 /* FIXME: DELETE THIS. */
2267 struct ui_file *stb;
2268
2269 stb = mem_fileopen ();
2270
2271 fputs_unfiltered ("Undefined mi command: ", stb);
2272 fputstr_unfiltered (parse->command, '"', stb);
2273 fputs_unfiltered (" (missing implementation)", stb);
2274
2275 make_cleanup_ui_file_delete (stb);
2276 error_stream (stb);
2277 }
2278 do_cleanups (cleanup);
2279 }
2280
2281 /* FIXME: This is just a hack so we can get some extra commands going.
2282 We don't want to channel things through the CLI, but call libgdb directly.
2283 Use only for synchronous commands. */
2284
2285 void
2286 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2287 {
2288 if (cmd != 0)
2289 {
2290 struct cleanup *old_cleanups;
2291 char *run;
2292
2293 if (args_p)
2294 run = xstrprintf ("%s %s", cmd, args);
2295 else
2296 run = xstrdup (cmd);
2297 if (mi_debug_p)
2298 /* FIXME: gdb_???? */
2299 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2300 cmd, run);
2301 old_cleanups = make_cleanup (xfree, run);
2302 execute_command (run, 0 /* from_tty */ );
2303 do_cleanups (old_cleanups);
2304 return;
2305 }
2306 }
2307
2308 void
2309 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2310 {
2311 struct cleanup *old_cleanups;
2312 char *run;
2313
2314 if (mi_async_p ())
2315 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2316 else
2317 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2318 old_cleanups = make_cleanup (xfree, run);
2319
2320 execute_command (run, 0 /* from_tty */ );
2321
2322 /* Do this before doing any printing. It would appear that some
2323 print code leaves garbage around in the buffer. */
2324 do_cleanups (old_cleanups);
2325 }
2326
2327 void
2328 mi_load_progress (const char *section_name,
2329 unsigned long sent_so_far,
2330 unsigned long total_section,
2331 unsigned long total_sent,
2332 unsigned long grand_total)
2333 {
2334 struct timeval time_now, delta, update_threshold;
2335 static struct timeval last_update;
2336 static char *previous_sect_name = NULL;
2337 int new_section;
2338 struct ui_out *saved_uiout;
2339 struct ui_out *uiout;
2340
2341 /* This function is called through deprecated_show_load_progress
2342 which means uiout may not be correct. Fix it for the duration
2343 of this function. */
2344 saved_uiout = current_uiout;
2345
2346 if (current_interp_named_p (INTERP_MI)
2347 || current_interp_named_p (INTERP_MI2))
2348 current_uiout = mi_out_new (2);
2349 else if (current_interp_named_p (INTERP_MI1))
2350 current_uiout = mi_out_new (1);
2351 else if (current_interp_named_p (INTERP_MI3))
2352 current_uiout = mi_out_new (3);
2353 else
2354 return;
2355
2356 uiout = current_uiout;
2357
2358 update_threshold.tv_sec = 0;
2359 update_threshold.tv_usec = 500000;
2360 gettimeofday (&time_now, NULL);
2361
2362 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
2363 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
2364
2365 if (delta.tv_usec < 0)
2366 {
2367 delta.tv_sec -= 1;
2368 delta.tv_usec += 1000000L;
2369 }
2370
2371 new_section = (previous_sect_name ?
2372 strcmp (previous_sect_name, section_name) : 1);
2373 if (new_section)
2374 {
2375 struct cleanup *cleanup_tuple;
2376
2377 xfree (previous_sect_name);
2378 previous_sect_name = xstrdup (section_name);
2379
2380 if (current_token)
2381 fputs_unfiltered (current_token, raw_stdout);
2382 fputs_unfiltered ("+download", raw_stdout);
2383 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2384 ui_out_field_string (uiout, "section", section_name);
2385 ui_out_field_int (uiout, "section-size", total_section);
2386 ui_out_field_int (uiout, "total-size", grand_total);
2387 do_cleanups (cleanup_tuple);
2388 mi_out_put (uiout, raw_stdout);
2389 fputs_unfiltered ("\n", raw_stdout);
2390 gdb_flush (raw_stdout);
2391 }
2392
2393 if (delta.tv_sec >= update_threshold.tv_sec &&
2394 delta.tv_usec >= update_threshold.tv_usec)
2395 {
2396 struct cleanup *cleanup_tuple;
2397
2398 last_update.tv_sec = time_now.tv_sec;
2399 last_update.tv_usec = time_now.tv_usec;
2400 if (current_token)
2401 fputs_unfiltered (current_token, raw_stdout);
2402 fputs_unfiltered ("+download", raw_stdout);
2403 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2404 ui_out_field_string (uiout, "section", section_name);
2405 ui_out_field_int (uiout, "section-sent", sent_so_far);
2406 ui_out_field_int (uiout, "section-size", total_section);
2407 ui_out_field_int (uiout, "total-sent", total_sent);
2408 ui_out_field_int (uiout, "total-size", grand_total);
2409 do_cleanups (cleanup_tuple);
2410 mi_out_put (uiout, raw_stdout);
2411 fputs_unfiltered ("\n", raw_stdout);
2412 gdb_flush (raw_stdout);
2413 }
2414
2415 xfree (uiout);
2416 current_uiout = saved_uiout;
2417 }
2418
2419 static void
2420 timestamp (struct mi_timestamp *tv)
2421 {
2422 gettimeofday (&tv->wallclock, NULL);
2423 #ifdef HAVE_GETRUSAGE
2424 getrusage (RUSAGE_SELF, &rusage);
2425 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2426 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2427 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2428 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2429 #else
2430 {
2431 long usec = get_run_time ();
2432
2433 tv->utime.tv_sec = usec/1000000L;
2434 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2435 tv->stime.tv_sec = 0;
2436 tv->stime.tv_usec = 0;
2437 }
2438 #endif
2439 }
2440
2441 static void
2442 print_diff_now (struct mi_timestamp *start)
2443 {
2444 struct mi_timestamp now;
2445
2446 timestamp (&now);
2447 print_diff (start, &now);
2448 }
2449
2450 void
2451 mi_print_timing_maybe (void)
2452 {
2453 /* If the command is -enable-timing then do_timings may be true
2454 whilst current_command_ts is not initialized. */
2455 if (do_timings && current_command_ts)
2456 print_diff_now (current_command_ts);
2457 }
2458
2459 static long
2460 timeval_diff (struct timeval start, struct timeval end)
2461 {
2462 return ((end.tv_sec - start.tv_sec) * 1000000L)
2463 + (end.tv_usec - start.tv_usec);
2464 }
2465
2466 static void
2467 print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
2468 {
2469 fprintf_unfiltered
2470 (raw_stdout,
2471 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2472 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2473 timeval_diff (start->utime, end->utime) / 1000000.0,
2474 timeval_diff (start->stime, end->stime) / 1000000.0);
2475 }
2476
2477 void
2478 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2479 {
2480 struct expression *expr;
2481 LONGEST initval = 0;
2482 struct trace_state_variable *tsv;
2483 char *name = 0;
2484
2485 if (argc != 1 && argc != 2)
2486 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2487
2488 name = argv[0];
2489 if (*name++ != '$')
2490 error (_("Name of trace variable should start with '$'"));
2491
2492 validate_trace_state_variable_name (name);
2493
2494 tsv = find_trace_state_variable (name);
2495 if (!tsv)
2496 tsv = create_trace_state_variable (name);
2497
2498 if (argc == 2)
2499 initval = value_as_long (parse_and_eval (argv[1]));
2500
2501 tsv->initial_value = initval;
2502 }
2503
2504 void
2505 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2506 {
2507 if (argc != 0)
2508 error (_("-trace-list-variables: no arguments allowed"));
2509
2510 tvariables_info_1 ();
2511 }
2512
2513 void
2514 mi_cmd_trace_find (char *command, char **argv, int argc)
2515 {
2516 char *mode;
2517
2518 if (argc == 0)
2519 error (_("trace selection mode is required"));
2520
2521 mode = argv[0];
2522
2523 if (strcmp (mode, "none") == 0)
2524 {
2525 tfind_1 (tfind_number, -1, 0, 0, 0);
2526 return;
2527 }
2528
2529 check_trace_running (current_trace_status ());
2530
2531 if (strcmp (mode, "frame-number") == 0)
2532 {
2533 if (argc != 2)
2534 error (_("frame number is required"));
2535 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2536 }
2537 else if (strcmp (mode, "tracepoint-number") == 0)
2538 {
2539 if (argc != 2)
2540 error (_("tracepoint number is required"));
2541 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2542 }
2543 else if (strcmp (mode, "pc") == 0)
2544 {
2545 if (argc != 2)
2546 error (_("PC is required"));
2547 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2548 }
2549 else if (strcmp (mode, "pc-inside-range") == 0)
2550 {
2551 if (argc != 3)
2552 error (_("Start and end PC are required"));
2553 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2554 parse_and_eval_address (argv[2]), 0);
2555 }
2556 else if (strcmp (mode, "pc-outside-range") == 0)
2557 {
2558 if (argc != 3)
2559 error (_("Start and end PC are required"));
2560 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2561 parse_and_eval_address (argv[2]), 0);
2562 }
2563 else if (strcmp (mode, "line") == 0)
2564 {
2565 struct symtabs_and_lines sals;
2566 struct symtab_and_line sal;
2567 static CORE_ADDR start_pc, end_pc;
2568 struct cleanup *back_to;
2569
2570 if (argc != 2)
2571 error (_("Line is required"));
2572
2573 sals = decode_line_with_current_source (argv[1],
2574 DECODE_LINE_FUNFIRSTLINE);
2575 back_to = make_cleanup (xfree, sals.sals);
2576
2577 sal = sals.sals[0];
2578
2579 if (sal.symtab == 0)
2580 error (_("Could not find the specified line"));
2581
2582 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2583 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2584 else
2585 error (_("Could not find the specified line"));
2586
2587 do_cleanups (back_to);
2588 }
2589 else
2590 error (_("Invalid mode '%s'"), mode);
2591
2592 if (has_stack_frames () || get_traceframe_number () >= 0)
2593 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2594 }
2595
2596 void
2597 mi_cmd_trace_save (char *command, char **argv, int argc)
2598 {
2599 int target_saves = 0;
2600 int generate_ctf = 0;
2601 char *filename;
2602 int oind = 0;
2603 char *oarg;
2604
2605 enum opt
2606 {
2607 TARGET_SAVE_OPT, CTF_OPT
2608 };
2609 static const struct mi_opt opts[] =
2610 {
2611 {"r", TARGET_SAVE_OPT, 0},
2612 {"ctf", CTF_OPT, 0},
2613 { 0, 0, 0 }
2614 };
2615
2616 while (1)
2617 {
2618 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2619 &oind, &oarg);
2620
2621 if (opt < 0)
2622 break;
2623 switch ((enum opt) opt)
2624 {
2625 case TARGET_SAVE_OPT:
2626 target_saves = 1;
2627 break;
2628 case CTF_OPT:
2629 generate_ctf = 1;
2630 break;
2631 }
2632 }
2633 filename = argv[oind];
2634
2635 if (generate_ctf)
2636 trace_save_ctf (filename, target_saves);
2637 else
2638 trace_save_tfile (filename, target_saves);
2639 }
2640
2641 void
2642 mi_cmd_trace_start (char *command, char **argv, int argc)
2643 {
2644 start_tracing (NULL);
2645 }
2646
2647 void
2648 mi_cmd_trace_status (char *command, char **argv, int argc)
2649 {
2650 trace_status_mi (0);
2651 }
2652
2653 void
2654 mi_cmd_trace_stop (char *command, char **argv, int argc)
2655 {
2656 stop_tracing (NULL);
2657 trace_status_mi (1);
2658 }
2659
2660 /* Implement the "-ada-task-info" command. */
2661
2662 void
2663 mi_cmd_ada_task_info (char *command, char **argv, int argc)
2664 {
2665 if (argc != 0 && argc != 1)
2666 error (_("Invalid MI command"));
2667
2668 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2669 }
2670
2671 /* Print EXPRESSION according to VALUES. */
2672
2673 static void
2674 print_variable_or_computed (char *expression, enum print_values values)
2675 {
2676 struct expression *expr;
2677 struct cleanup *old_chain;
2678 struct value *val;
2679 struct ui_file *stb;
2680 struct value_print_options opts;
2681 struct type *type;
2682 struct ui_out *uiout = current_uiout;
2683
2684 stb = mem_fileopen ();
2685 old_chain = make_cleanup_ui_file_delete (stb);
2686
2687 expr = parse_expression (expression);
2688
2689 make_cleanup (free_current_contents, &expr);
2690
2691 if (values == PRINT_SIMPLE_VALUES)
2692 val = evaluate_type (expr);
2693 else
2694 val = evaluate_expression (expr);
2695
2696 if (values != PRINT_NO_VALUES)
2697 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2698 ui_out_field_string (uiout, "name", expression);
2699
2700 switch (values)
2701 {
2702 case PRINT_SIMPLE_VALUES:
2703 type = check_typedef (value_type (val));
2704 type_print (value_type (val), "", stb, -1);
2705 ui_out_field_stream (uiout, "type", stb);
2706 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2707 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2708 && TYPE_CODE (type) != TYPE_CODE_UNION)
2709 {
2710 struct value_print_options opts;
2711
2712 get_no_prettyformat_print_options (&opts);
2713 opts.deref_ref = 1;
2714 common_val_print (val, stb, 0, &opts, current_language);
2715 ui_out_field_stream (uiout, "value", stb);
2716 }
2717 break;
2718 case PRINT_ALL_VALUES:
2719 {
2720 struct value_print_options opts;
2721
2722 get_no_prettyformat_print_options (&opts);
2723 opts.deref_ref = 1;
2724 common_val_print (val, stb, 0, &opts, current_language);
2725 ui_out_field_stream (uiout, "value", stb);
2726 }
2727 break;
2728 }
2729
2730 do_cleanups (old_chain);
2731 }
2732
2733 /* Implement the "-trace-frame-collected" command. */
2734
2735 void
2736 mi_cmd_trace_frame_collected (char *command, char **argv, int argc)
2737 {
2738 struct cleanup *old_chain;
2739 struct bp_location *tloc;
2740 int stepping_frame;
2741 struct collection_list *clist;
2742 struct collection_list tracepoint_list, stepping_list;
2743 struct traceframe_info *tinfo;
2744 int oind = 0;
2745 int var_print_values = PRINT_ALL_VALUES;
2746 int comp_print_values = PRINT_ALL_VALUES;
2747 int registers_format = 'x';
2748 int memory_contents = 0;
2749 struct ui_out *uiout = current_uiout;
2750 enum opt
2751 {
2752 VAR_PRINT_VALUES,
2753 COMP_PRINT_VALUES,
2754 REGISTERS_FORMAT,
2755 MEMORY_CONTENTS,
2756 };
2757 static const struct mi_opt opts[] =
2758 {
2759 {"-var-print-values", VAR_PRINT_VALUES, 1},
2760 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2761 {"-registers-format", REGISTERS_FORMAT, 1},
2762 {"-memory-contents", MEMORY_CONTENTS, 0},
2763 { 0, 0, 0 }
2764 };
2765
2766 while (1)
2767 {
2768 char *oarg;
2769 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2770 &oind, &oarg);
2771 if (opt < 0)
2772 break;
2773 switch ((enum opt) opt)
2774 {
2775 case VAR_PRINT_VALUES:
2776 var_print_values = mi_parse_print_values (oarg);
2777 break;
2778 case COMP_PRINT_VALUES:
2779 comp_print_values = mi_parse_print_values (oarg);
2780 break;
2781 case REGISTERS_FORMAT:
2782 registers_format = oarg[0];
2783 case MEMORY_CONTENTS:
2784 memory_contents = 1;
2785 break;
2786 }
2787 }
2788
2789 if (oind != argc)
2790 error (_("Usage: -trace-frame-collected "
2791 "[--var-print-values PRINT_VALUES] "
2792 "[--comp-print-values PRINT_VALUES] "
2793 "[--registers-format FORMAT]"
2794 "[--memory-contents]"));
2795
2796 /* This throws an error is not inspecting a trace frame. */
2797 tloc = get_traceframe_location (&stepping_frame);
2798
2799 /* This command only makes sense for the current frame, not the
2800 selected frame. */
2801 old_chain = make_cleanup_restore_current_thread ();
2802 select_frame (get_current_frame ());
2803
2804 encode_actions_and_make_cleanup (tloc, &tracepoint_list,
2805 &stepping_list);
2806
2807 if (stepping_frame)
2808 clist = &stepping_list;
2809 else
2810 clist = &tracepoint_list;
2811
2812 tinfo = get_traceframe_info ();
2813
2814 /* Explicitly wholly collected variables. */
2815 {
2816 struct cleanup *list_cleanup;
2817 char *p;
2818 int i;
2819
2820 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout,
2821 "explicit-variables");
2822 for (i = 0; VEC_iterate (char_ptr, clist->wholly_collected, i, p); i++)
2823 print_variable_or_computed (p, var_print_values);
2824 do_cleanups (list_cleanup);
2825 }
2826
2827 /* Computed expressions. */
2828 {
2829 struct cleanup *list_cleanup;
2830 char *p;
2831 int i;
2832
2833 list_cleanup
2834 = make_cleanup_ui_out_list_begin_end (uiout,
2835 "computed-expressions");
2836 for (i = 0; VEC_iterate (char_ptr, clist->computed, i, p); i++)
2837 print_variable_or_computed (p, comp_print_values);
2838 do_cleanups (list_cleanup);
2839 }
2840
2841 /* Registers. Given pseudo-registers, and that some architectures
2842 (like MIPS) actually hide the raw registers, we don't go through
2843 the trace frame info, but instead consult the register cache for
2844 register availability. */
2845 {
2846 struct cleanup *list_cleanup;
2847 struct frame_info *frame;
2848 struct gdbarch *gdbarch;
2849 int regnum;
2850 int numregs;
2851
2852 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "registers");
2853
2854 frame = get_selected_frame (NULL);
2855 gdbarch = get_frame_arch (frame);
2856 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2857
2858 for (regnum = 0; regnum < numregs; regnum++)
2859 {
2860 if (gdbarch_register_name (gdbarch, regnum) == NULL
2861 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2862 continue;
2863
2864 output_register (frame, regnum, registers_format, 1);
2865 }
2866
2867 do_cleanups (list_cleanup);
2868 }
2869
2870 /* Trace state variables. */
2871 {
2872 struct cleanup *list_cleanup;
2873 int tvar;
2874 char *tsvname;
2875 int i;
2876
2877 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "tvars");
2878
2879 tsvname = NULL;
2880 make_cleanup (free_current_contents, &tsvname);
2881
2882 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2883 {
2884 struct cleanup *cleanup_child;
2885 struct trace_state_variable *tsv;
2886
2887 tsv = find_trace_state_variable_by_number (tvar);
2888
2889 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2890
2891 if (tsv != NULL)
2892 {
2893 tsvname = xrealloc (tsvname, strlen (tsv->name) + 2);
2894 tsvname[0] = '$';
2895 strcpy (tsvname + 1, tsv->name);
2896 ui_out_field_string (uiout, "name", tsvname);
2897
2898 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2899 &tsv->value);
2900 ui_out_field_int (uiout, "current", tsv->value);
2901 }
2902 else
2903 {
2904 ui_out_field_skip (uiout, "name");
2905 ui_out_field_skip (uiout, "current");
2906 }
2907
2908 do_cleanups (cleanup_child);
2909 }
2910
2911 do_cleanups (list_cleanup);
2912 }
2913
2914 /* Memory. */
2915 {
2916 struct cleanup *list_cleanup;
2917 VEC(mem_range_s) *available_memory = NULL;
2918 struct mem_range *r;
2919 int i;
2920
2921 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2922 make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2923
2924 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "memory");
2925
2926 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2927 {
2928 struct cleanup *cleanup_child;
2929 gdb_byte *data;
2930 struct gdbarch *gdbarch = target_gdbarch ();
2931
2932 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2933
2934 ui_out_field_core_addr (uiout, "address", gdbarch, r->start);
2935 ui_out_field_int (uiout, "length", r->length);
2936
2937 data = xmalloc (r->length);
2938 make_cleanup (xfree, data);
2939
2940 if (memory_contents)
2941 {
2942 if (target_read_memory (r->start, data, r->length) == 0)
2943 {
2944 int m;
2945 char *data_str, *p;
2946
2947 data_str = xmalloc (r->length * 2 + 1);
2948 make_cleanup (xfree, data_str);
2949
2950 for (m = 0, p = data_str; m < r->length; ++m, p += 2)
2951 sprintf (p, "%02x", data[m]);
2952 ui_out_field_string (uiout, "contents", data_str);
2953 }
2954 else
2955 ui_out_field_skip (uiout, "contents");
2956 }
2957 do_cleanups (cleanup_child);
2958 }
2959
2960 do_cleanups (list_cleanup);
2961 }
2962
2963 do_cleanups (old_chain);
2964 }
2965
2966 void
2967 _initialize_mi_main (void)
2968 {
2969 struct cmd_list_element *c;
2970
2971 add_setshow_boolean_cmd ("mi-async", class_run,
2972 &mi_async_1, _("\
2973 Set whether MI asynchronous mode is enabled."), _("\
2974 Show whether MI asynchronous mode is enabled."), _("\
2975 Tells GDB whether MI should be in asynchronous mode."),
2976 set_mi_async_command,
2977 show_mi_async_command,
2978 &setlist,
2979 &showlist);
2980
2981 /* Alias old "target-async" to "mi-async". */
2982 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
2983 deprecate_cmd (c, "set mi-async");
2984 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
2985 deprecate_cmd (c, "show mi-async");
2986 }
This page took 0.095937 seconds and 4 git commands to generate.