bbf944a0a316da1b40c11f82ee09f92b6a3424ea
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "gdb_string.h"
27 #include "exceptions.h"
28 #include "top.h"
29 #include "gdbthread.h"
30 #include "mi-cmds.h"
31 #include "mi-parse.h"
32 #include "mi-getopt.h"
33 #include "mi-console.h"
34 #include "ui-out.h"
35 #include "mi-out.h"
36 #include "interps.h"
37 #include "event-loop.h"
38 #include "event-top.h"
39 #include "gdbcore.h" /* For write_memory(). */
40 #include "value.h"
41 #include "regcache.h"
42 #include "gdb.h"
43 #include "frame.h"
44 #include "mi-main.h"
45 #include "mi-common.h"
46 #include "language.h"
47 #include "valprint.h"
48 #include "inferior.h"
49 #include "osdata.h"
50 #include "splay-tree.h"
51 #include "tracepoint.h"
52 #include "ctf.h"
53 #include "ada-lang.h"
54 #include "linespec.h"
55 #ifdef HAVE_PYTHON
56 #include "python/python-internal.h"
57 #endif
58
59 #include <ctype.h>
60 #include <sys/time.h>
61
62 #if defined HAVE_SYS_RESOURCE_H
63 #include <sys/resource.h>
64 #endif
65
66 #ifdef HAVE_GETRUSAGE
67 struct rusage rusage;
68 #endif
69
70 enum
71 {
72 FROM_TTY = 0
73 };
74
75 int mi_debug_p;
76
77 struct ui_file *raw_stdout;
78
79 /* This is used to pass the current command timestamp down to
80 continuation routines. */
81 static struct mi_timestamp *current_command_ts;
82
83 static int do_timings = 0;
84
85 char *current_token;
86 /* Few commands would like to know if options like --thread-group were
87 explicitly specified. This variable keeps the current parsed
88 command including all option, and make it possible. */
89 static struct mi_parse *current_context;
90
91 int running_result_record_printed = 1;
92
93 /* Flag indicating that the target has proceeded since the last
94 command was issued. */
95 int mi_proceeded;
96
97 extern void _initialize_mi_main (void);
98 static void mi_cmd_execute (struct mi_parse *parse);
99
100 static void mi_execute_cli_command (const char *cmd, int args_p,
101 const char *args);
102 static void mi_execute_async_cli_command (char *cli_command,
103 char **argv, int argc);
104 static int register_changed_p (int regnum, struct regcache *,
105 struct regcache *);
106 static void output_register (struct frame_info *, int regnum, int format,
107 int skip_unavailable);
108
109 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
110 layer that calls libgdb. Any operation used in the below should be
111 formalized. */
112
113 static void timestamp (struct mi_timestamp *tv);
114
115 static void print_diff_now (struct mi_timestamp *start);
116 static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
117
118 void
119 mi_cmd_gdb_exit (char *command, char **argv, int argc)
120 {
121 /* We have to print everything right here because we never return. */
122 if (current_token)
123 fputs_unfiltered (current_token, raw_stdout);
124 fputs_unfiltered ("^exit\n", raw_stdout);
125 mi_out_put (current_uiout, raw_stdout);
126 gdb_flush (raw_stdout);
127 /* FIXME: The function called is not yet a formal libgdb function. */
128 quit_force (NULL, FROM_TTY);
129 }
130
131 void
132 mi_cmd_exec_next (char *command, char **argv, int argc)
133 {
134 /* FIXME: Should call a libgdb function, not a cli wrapper. */
135 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
136 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
137 else
138 mi_execute_async_cli_command ("next", argv, argc);
139 }
140
141 void
142 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
143 {
144 /* FIXME: Should call a libgdb function, not a cli wrapper. */
145 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
146 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
147 else
148 mi_execute_async_cli_command ("nexti", argv, argc);
149 }
150
151 void
152 mi_cmd_exec_step (char *command, char **argv, int argc)
153 {
154 /* FIXME: Should call a libgdb function, not a cli wrapper. */
155 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
156 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
157 else
158 mi_execute_async_cli_command ("step", argv, argc);
159 }
160
161 void
162 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
163 {
164 /* FIXME: Should call a libgdb function, not a cli wrapper. */
165 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
166 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
167 else
168 mi_execute_async_cli_command ("stepi", argv, argc);
169 }
170
171 void
172 mi_cmd_exec_finish (char *command, char **argv, int argc)
173 {
174 /* FIXME: Should call a libgdb function, not a cli wrapper. */
175 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
176 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
177 else
178 mi_execute_async_cli_command ("finish", argv, argc);
179 }
180
181 void
182 mi_cmd_exec_return (char *command, char **argv, int argc)
183 {
184 /* This command doesn't really execute the target, it just pops the
185 specified number of frames. */
186 if (argc)
187 /* Call return_command with from_tty argument equal to 0 so as to
188 avoid being queried. */
189 return_command (*argv, 0);
190 else
191 /* Call return_command with from_tty argument equal to 0 so as to
192 avoid being queried. */
193 return_command (NULL, 0);
194
195 /* Because we have called return_command with from_tty = 0, we need
196 to print the frame here. */
197 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
198 }
199
200 void
201 mi_cmd_exec_jump (char *args, char **argv, int argc)
202 {
203 /* FIXME: Should call a libgdb function, not a cli wrapper. */
204 mi_execute_async_cli_command ("jump", argv, argc);
205 }
206
207 static void
208 proceed_thread (struct thread_info *thread, int pid)
209 {
210 if (!is_stopped (thread->ptid))
211 return;
212
213 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
214 return;
215
216 switch_to_thread (thread->ptid);
217 clear_proceed_status ();
218 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
219 }
220
221 static int
222 proceed_thread_callback (struct thread_info *thread, void *arg)
223 {
224 int pid = *(int *)arg;
225
226 proceed_thread (thread, pid);
227 return 0;
228 }
229
230 static void
231 exec_continue (char **argv, int argc)
232 {
233 if (non_stop)
234 {
235 /* In non-stop mode, 'resume' always resumes a single thread.
236 Therefore, to resume all threads of the current inferior, or
237 all threads in all inferiors, we need to iterate over
238 threads.
239
240 See comment on infcmd.c:proceed_thread_callback for rationale. */
241 if (current_context->all || current_context->thread_group != -1)
242 {
243 int pid = 0;
244 struct cleanup *back_to = make_cleanup_restore_current_thread ();
245
246 if (!current_context->all)
247 {
248 struct inferior *inf
249 = find_inferior_id (current_context->thread_group);
250
251 pid = inf->pid;
252 }
253 iterate_over_threads (proceed_thread_callback, &pid);
254 do_cleanups (back_to);
255 }
256 else
257 {
258 continue_1 (0);
259 }
260 }
261 else
262 {
263 struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
264
265 if (current_context->all)
266 {
267 sched_multi = 1;
268 continue_1 (0);
269 }
270 else
271 {
272 /* In all-stop mode, -exec-continue traditionally resumed
273 either all threads, or one thread, depending on the
274 'scheduler-locking' variable. Let's continue to do the
275 same. */
276 continue_1 (1);
277 }
278 do_cleanups (back_to);
279 }
280 }
281
282 static void
283 exec_direction_forward (void *notused)
284 {
285 execution_direction = EXEC_FORWARD;
286 }
287
288 static void
289 exec_reverse_continue (char **argv, int argc)
290 {
291 enum exec_direction_kind dir = execution_direction;
292 struct cleanup *old_chain;
293
294 if (dir == EXEC_REVERSE)
295 error (_("Already in reverse mode."));
296
297 if (!target_can_execute_reverse)
298 error (_("Target %s does not support this command."), target_shortname);
299
300 old_chain = make_cleanup (exec_direction_forward, NULL);
301 execution_direction = EXEC_REVERSE;
302 exec_continue (argv, argc);
303 do_cleanups (old_chain);
304 }
305
306 void
307 mi_cmd_exec_continue (char *command, char **argv, int argc)
308 {
309 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
310 exec_reverse_continue (argv + 1, argc - 1);
311 else
312 exec_continue (argv, argc);
313 }
314
315 static int
316 interrupt_thread_callback (struct thread_info *thread, void *arg)
317 {
318 int pid = *(int *)arg;
319
320 if (!is_running (thread->ptid))
321 return 0;
322
323 if (ptid_get_pid (thread->ptid) != pid)
324 return 0;
325
326 target_stop (thread->ptid);
327 return 0;
328 }
329
330 /* Interrupt the execution of the target. Note how we must play
331 around with the token variables, in order to display the current
332 token in the result of the interrupt command, and the previous
333 execution token when the target finally stops. See comments in
334 mi_cmd_execute. */
335
336 void
337 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
338 {
339 /* In all-stop mode, everything stops, so we don't need to try
340 anything specific. */
341 if (!non_stop)
342 {
343 interrupt_target_1 (0);
344 return;
345 }
346
347 if (current_context->all)
348 {
349 /* This will interrupt all threads in all inferiors. */
350 interrupt_target_1 (1);
351 }
352 else if (current_context->thread_group != -1)
353 {
354 struct inferior *inf = find_inferior_id (current_context->thread_group);
355
356 iterate_over_threads (interrupt_thread_callback, &inf->pid);
357 }
358 else
359 {
360 /* Interrupt just the current thread -- either explicitly
361 specified via --thread or whatever was current before
362 MI command was sent. */
363 interrupt_target_1 (0);
364 }
365 }
366
367 /* Callback for iterate_over_inferiors which starts the execution
368 of the given inferior.
369
370 ARG is a pointer to an integer whose value, if non-zero, indicates
371 that the program should be stopped when reaching the main subprogram
372 (similar to what the CLI "start" command does). */
373
374 static int
375 run_one_inferior (struct inferior *inf, void *arg)
376 {
377 int start_p = *(int *) arg;
378 const char *run_cmd = start_p ? "start" : "run";
379
380 if (inf->pid != 0)
381 {
382 if (inf->pid != ptid_get_pid (inferior_ptid))
383 {
384 struct thread_info *tp;
385
386 tp = any_thread_of_process (inf->pid);
387 if (!tp)
388 error (_("Inferior has no threads."));
389
390 switch_to_thread (tp->ptid);
391 }
392 }
393 else
394 {
395 set_current_inferior (inf);
396 switch_to_thread (null_ptid);
397 set_current_program_space (inf->pspace);
398 }
399 mi_execute_cli_command (run_cmd, target_can_async_p (),
400 target_can_async_p () ? "&" : NULL);
401 return 0;
402 }
403
404 void
405 mi_cmd_exec_run (char *command, char **argv, int argc)
406 {
407 int i;
408 int start_p = 0;
409
410 /* Parse the command options. */
411 enum opt
412 {
413 START_OPT,
414 };
415 static const struct mi_opt opts[] =
416 {
417 {"-start", START_OPT, 0},
418 {NULL, 0, 0},
419 };
420
421 int oind = 0;
422 char *oarg;
423
424 while (1)
425 {
426 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
427
428 if (opt < 0)
429 break;
430 switch ((enum opt) opt)
431 {
432 case START_OPT:
433 start_p = 1;
434 break;
435 }
436 }
437
438 /* This command does not accept any argument. Make sure the user
439 did not provide any. */
440 if (oind != argc)
441 error (_("Invalid argument: %s"), argv[oind]);
442
443 if (current_context->all)
444 {
445 struct cleanup *back_to = save_current_space_and_thread ();
446
447 iterate_over_inferiors (run_one_inferior, &start_p);
448 do_cleanups (back_to);
449 }
450 else
451 {
452 const char *run_cmd = start_p ? "start" : "run";
453
454 mi_execute_cli_command (run_cmd, target_can_async_p (),
455 target_can_async_p () ? "&" : NULL);
456 }
457 }
458
459
460 static int
461 find_thread_of_process (struct thread_info *ti, void *p)
462 {
463 int pid = *(int *)p;
464
465 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
466 return 1;
467
468 return 0;
469 }
470
471 void
472 mi_cmd_target_detach (char *command, char **argv, int argc)
473 {
474 if (argc != 0 && argc != 1)
475 error (_("Usage: -target-detach [pid | thread-group]"));
476
477 if (argc == 1)
478 {
479 struct thread_info *tp;
480 char *end = argv[0];
481 int pid;
482
483 /* First see if we are dealing with a thread-group id. */
484 if (*argv[0] == 'i')
485 {
486 struct inferior *inf;
487 int id = strtoul (argv[0] + 1, &end, 0);
488
489 if (*end != '\0')
490 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
491
492 inf = find_inferior_id (id);
493 if (!inf)
494 error (_("Non-existent thread-group id '%d'"), id);
495
496 pid = inf->pid;
497 }
498 else
499 {
500 /* We must be dealing with a pid. */
501 pid = strtol (argv[0], &end, 10);
502
503 if (*end != '\0')
504 error (_("Invalid identifier '%s'"), argv[0]);
505 }
506
507 /* Pick any thread in the desired process. Current
508 target_detach detaches from the parent of inferior_ptid. */
509 tp = iterate_over_threads (find_thread_of_process, &pid);
510 if (!tp)
511 error (_("Thread group is empty"));
512
513 switch_to_thread (tp->ptid);
514 }
515
516 detach_command (NULL, 0);
517 }
518
519 void
520 mi_cmd_thread_select (char *command, char **argv, int argc)
521 {
522 enum gdb_rc rc;
523 char *mi_error_message;
524
525 if (argc != 1)
526 error (_("-thread-select: USAGE: threadnum."));
527
528 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
529
530 if (rc == GDB_RC_FAIL)
531 {
532 make_cleanup (xfree, mi_error_message);
533 error ("%s", mi_error_message);
534 }
535 }
536
537 void
538 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
539 {
540 enum gdb_rc rc;
541 char *mi_error_message;
542
543 if (argc != 0)
544 error (_("-thread-list-ids: No arguments required."));
545
546 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
547
548 if (rc == GDB_RC_FAIL)
549 {
550 make_cleanup (xfree, mi_error_message);
551 error ("%s", mi_error_message);
552 }
553 }
554
555 void
556 mi_cmd_thread_info (char *command, char **argv, int argc)
557 {
558 if (argc != 0 && argc != 1)
559 error (_("Invalid MI command"));
560
561 print_thread_info (current_uiout, argv[0], -1);
562 }
563
564 struct collect_cores_data
565 {
566 int pid;
567
568 VEC (int) *cores;
569 };
570
571 static int
572 collect_cores (struct thread_info *ti, void *xdata)
573 {
574 struct collect_cores_data *data = xdata;
575
576 if (ptid_get_pid (ti->ptid) == data->pid)
577 {
578 int core = target_core_of_thread (ti->ptid);
579
580 if (core != -1)
581 VEC_safe_push (int, data->cores, core);
582 }
583
584 return 0;
585 }
586
587 static int *
588 unique (int *b, int *e)
589 {
590 int *d = b;
591
592 while (++b != e)
593 if (*d != *b)
594 *++d = *b;
595 return ++d;
596 }
597
598 struct print_one_inferior_data
599 {
600 int recurse;
601 VEC (int) *inferiors;
602 };
603
604 static int
605 print_one_inferior (struct inferior *inferior, void *xdata)
606 {
607 struct print_one_inferior_data *top_data = xdata;
608 struct ui_out *uiout = current_uiout;
609
610 if (VEC_empty (int, top_data->inferiors)
611 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
612 VEC_length (int, top_data->inferiors), sizeof (int),
613 compare_positive_ints))
614 {
615 struct collect_cores_data data;
616 struct cleanup *back_to
617 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
618
619 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
620 ui_out_field_string (uiout, "type", "process");
621 if (inferior->pid != 0)
622 ui_out_field_int (uiout, "pid", inferior->pid);
623
624 if (inferior->pspace->pspace_exec_filename != NULL)
625 {
626 ui_out_field_string (uiout, "executable",
627 inferior->pspace->pspace_exec_filename);
628 }
629
630 data.cores = 0;
631 if (inferior->pid != 0)
632 {
633 data.pid = inferior->pid;
634 iterate_over_threads (collect_cores, &data);
635 }
636
637 if (!VEC_empty (int, data.cores))
638 {
639 int *b, *e;
640 struct cleanup *back_to_2 =
641 make_cleanup_ui_out_list_begin_end (uiout, "cores");
642
643 qsort (VEC_address (int, data.cores),
644 VEC_length (int, data.cores), sizeof (int),
645 compare_positive_ints);
646
647 b = VEC_address (int, data.cores);
648 e = b + VEC_length (int, data.cores);
649 e = unique (b, e);
650
651 for (; b != e; ++b)
652 ui_out_field_int (uiout, NULL, *b);
653
654 do_cleanups (back_to_2);
655 }
656
657 if (top_data->recurse)
658 print_thread_info (uiout, NULL, inferior->pid);
659
660 do_cleanups (back_to);
661 }
662
663 return 0;
664 }
665
666 /* Output a field named 'cores' with a list as the value. The
667 elements of the list are obtained by splitting 'cores' on
668 comma. */
669
670 static void
671 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
672 {
673 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
674 field_name);
675 char *cores = xstrdup (xcores);
676 char *p = cores;
677
678 make_cleanup (xfree, cores);
679
680 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
681 ui_out_field_string (uiout, NULL, p);
682
683 do_cleanups (back_to);
684 }
685
686 static void
687 free_vector_of_ints (void *xvector)
688 {
689 VEC (int) **vector = xvector;
690
691 VEC_free (int, *vector);
692 }
693
694 static void
695 do_nothing (splay_tree_key k)
696 {
697 }
698
699 static void
700 free_vector_of_osdata_items (splay_tree_value xvalue)
701 {
702 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
703
704 /* We don't free the items itself, it will be done separately. */
705 VEC_free (osdata_item_s, value);
706 }
707
708 static int
709 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
710 {
711 int a = xa;
712 int b = xb;
713
714 return a - b;
715 }
716
717 static void
718 free_splay_tree (void *xt)
719 {
720 splay_tree t = xt;
721 splay_tree_delete (t);
722 }
723
724 static void
725 list_available_thread_groups (VEC (int) *ids, int recurse)
726 {
727 struct osdata *data;
728 struct osdata_item *item;
729 int ix_items;
730 struct ui_out *uiout = current_uiout;
731 struct cleanup *cleanup;
732
733 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
734 The vector contains information about all threads for the given pid.
735 This is assigned an initial value to avoid "may be used uninitialized"
736 warning from gcc. */
737 splay_tree tree = NULL;
738
739 /* get_osdata will throw if it cannot return data. */
740 data = get_osdata ("processes");
741 cleanup = make_cleanup_osdata_free (data);
742
743 if (recurse)
744 {
745 struct osdata *threads = get_osdata ("threads");
746
747 make_cleanup_osdata_free (threads);
748 tree = splay_tree_new (splay_tree_int_comparator,
749 do_nothing,
750 free_vector_of_osdata_items);
751 make_cleanup (free_splay_tree, tree);
752
753 for (ix_items = 0;
754 VEC_iterate (osdata_item_s, threads->items,
755 ix_items, item);
756 ix_items++)
757 {
758 const char *pid = get_osdata_column (item, "pid");
759 int pid_i = strtoul (pid, NULL, 0);
760 VEC (osdata_item_s) *vec = 0;
761
762 splay_tree_node n = splay_tree_lookup (tree, pid_i);
763 if (!n)
764 {
765 VEC_safe_push (osdata_item_s, vec, item);
766 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
767 }
768 else
769 {
770 vec = (VEC (osdata_item_s) *) n->value;
771 VEC_safe_push (osdata_item_s, vec, item);
772 n->value = (splay_tree_value) vec;
773 }
774 }
775 }
776
777 make_cleanup_ui_out_list_begin_end (uiout, "groups");
778
779 for (ix_items = 0;
780 VEC_iterate (osdata_item_s, data->items,
781 ix_items, item);
782 ix_items++)
783 {
784 struct cleanup *back_to;
785
786 const char *pid = get_osdata_column (item, "pid");
787 const char *cmd = get_osdata_column (item, "command");
788 const char *user = get_osdata_column (item, "user");
789 const char *cores = get_osdata_column (item, "cores");
790
791 int pid_i = strtoul (pid, NULL, 0);
792
793 /* At present, the target will return all available processes
794 and if information about specific ones was required, we filter
795 undesired processes here. */
796 if (ids && bsearch (&pid_i, VEC_address (int, ids),
797 VEC_length (int, ids),
798 sizeof (int), compare_positive_ints) == NULL)
799 continue;
800
801
802 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
803
804 ui_out_field_fmt (uiout, "id", "%s", pid);
805 ui_out_field_string (uiout, "type", "process");
806 if (cmd)
807 ui_out_field_string (uiout, "description", cmd);
808 if (user)
809 ui_out_field_string (uiout, "user", user);
810 if (cores)
811 output_cores (uiout, "cores", cores);
812
813 if (recurse)
814 {
815 splay_tree_node n = splay_tree_lookup (tree, pid_i);
816 if (n)
817 {
818 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
819 struct osdata_item *child;
820 int ix_child;
821
822 make_cleanup_ui_out_list_begin_end (uiout, "threads");
823
824 for (ix_child = 0;
825 VEC_iterate (osdata_item_s, children, ix_child, child);
826 ++ix_child)
827 {
828 struct cleanup *back_to_2 =
829 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
830 const char *tid = get_osdata_column (child, "tid");
831 const char *tcore = get_osdata_column (child, "core");
832
833 ui_out_field_string (uiout, "id", tid);
834 if (tcore)
835 ui_out_field_string (uiout, "core", tcore);
836
837 do_cleanups (back_to_2);
838 }
839 }
840 }
841
842 do_cleanups (back_to);
843 }
844
845 do_cleanups (cleanup);
846 }
847
848 void
849 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
850 {
851 struct ui_out *uiout = current_uiout;
852 struct cleanup *back_to;
853 int available = 0;
854 int recurse = 0;
855 VEC (int) *ids = 0;
856
857 enum opt
858 {
859 AVAILABLE_OPT, RECURSE_OPT
860 };
861 static const struct mi_opt opts[] =
862 {
863 {"-available", AVAILABLE_OPT, 0},
864 {"-recurse", RECURSE_OPT, 1},
865 { 0, 0, 0 }
866 };
867
868 int oind = 0;
869 char *oarg;
870
871 while (1)
872 {
873 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
874 &oind, &oarg);
875
876 if (opt < 0)
877 break;
878 switch ((enum opt) opt)
879 {
880 case AVAILABLE_OPT:
881 available = 1;
882 break;
883 case RECURSE_OPT:
884 if (strcmp (oarg, "0") == 0)
885 ;
886 else if (strcmp (oarg, "1") == 0)
887 recurse = 1;
888 else
889 error (_("only '0' and '1' are valid values "
890 "for the '--recurse' option"));
891 break;
892 }
893 }
894
895 for (; oind < argc; ++oind)
896 {
897 char *end;
898 int inf;
899
900 if (*(argv[oind]) != 'i')
901 error (_("invalid syntax of group id '%s'"), argv[oind]);
902
903 inf = strtoul (argv[oind] + 1, &end, 0);
904
905 if (*end != '\0')
906 error (_("invalid syntax of group id '%s'"), argv[oind]);
907 VEC_safe_push (int, ids, inf);
908 }
909 if (VEC_length (int, ids) > 1)
910 qsort (VEC_address (int, ids),
911 VEC_length (int, ids),
912 sizeof (int), compare_positive_ints);
913
914 back_to = make_cleanup (free_vector_of_ints, &ids);
915
916 if (available)
917 {
918 list_available_thread_groups (ids, recurse);
919 }
920 else if (VEC_length (int, ids) == 1)
921 {
922 /* Local thread groups, single id. */
923 int id = *VEC_address (int, ids);
924 struct inferior *inf = find_inferior_id (id);
925
926 if (!inf)
927 error (_("Non-existent thread group id '%d'"), id);
928
929 print_thread_info (uiout, NULL, inf->pid);
930 }
931 else
932 {
933 struct print_one_inferior_data data;
934
935 data.recurse = recurse;
936 data.inferiors = ids;
937
938 /* Local thread groups. Either no explicit ids -- and we
939 print everything, or several explicit ids. In both cases,
940 we print more than one group, and have to use 'groups'
941 as the top-level element. */
942 make_cleanup_ui_out_list_begin_end (uiout, "groups");
943 update_thread_list ();
944 iterate_over_inferiors (print_one_inferior, &data);
945 }
946
947 do_cleanups (back_to);
948 }
949
950 void
951 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
952 {
953 struct gdbarch *gdbarch;
954 struct ui_out *uiout = current_uiout;
955 int regnum, numregs;
956 int i;
957 struct cleanup *cleanup;
958
959 /* Note that the test for a valid register must include checking the
960 gdbarch_register_name because gdbarch_num_regs may be allocated
961 for the union of the register sets within a family of related
962 processors. In this case, some entries of gdbarch_register_name
963 will change depending upon the particular processor being
964 debugged. */
965
966 gdbarch = get_current_arch ();
967 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
968
969 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
970
971 if (argc == 0) /* No args, just do all the regs. */
972 {
973 for (regnum = 0;
974 regnum < numregs;
975 regnum++)
976 {
977 if (gdbarch_register_name (gdbarch, regnum) == NULL
978 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
979 ui_out_field_string (uiout, NULL, "");
980 else
981 ui_out_field_string (uiout, NULL,
982 gdbarch_register_name (gdbarch, regnum));
983 }
984 }
985
986 /* Else, list of register #s, just do listed regs. */
987 for (i = 0; i < argc; i++)
988 {
989 regnum = atoi (argv[i]);
990 if (regnum < 0 || regnum >= numregs)
991 error (_("bad register number"));
992
993 if (gdbarch_register_name (gdbarch, regnum) == NULL
994 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
995 ui_out_field_string (uiout, NULL, "");
996 else
997 ui_out_field_string (uiout, NULL,
998 gdbarch_register_name (gdbarch, regnum));
999 }
1000 do_cleanups (cleanup);
1001 }
1002
1003 void
1004 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
1005 {
1006 static struct regcache *this_regs = NULL;
1007 struct ui_out *uiout = current_uiout;
1008 struct regcache *prev_regs;
1009 struct gdbarch *gdbarch;
1010 int regnum, numregs, changed;
1011 int i;
1012 struct cleanup *cleanup;
1013
1014 /* The last time we visited this function, the current frame's
1015 register contents were saved in THIS_REGS. Move THIS_REGS over
1016 to PREV_REGS, and refresh THIS_REGS with the now-current register
1017 contents. */
1018
1019 prev_regs = this_regs;
1020 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1021 cleanup = make_cleanup_regcache_xfree (prev_regs);
1022
1023 /* Note that the test for a valid register must include checking the
1024 gdbarch_register_name because gdbarch_num_regs may be allocated
1025 for the union of the register sets within a family of related
1026 processors. In this case, some entries of gdbarch_register_name
1027 will change depending upon the particular processor being
1028 debugged. */
1029
1030 gdbarch = get_regcache_arch (this_regs);
1031 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1032
1033 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
1034
1035 if (argc == 0)
1036 {
1037 /* No args, just do all the regs. */
1038 for (regnum = 0;
1039 regnum < numregs;
1040 regnum++)
1041 {
1042 if (gdbarch_register_name (gdbarch, regnum) == NULL
1043 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1044 continue;
1045 changed = register_changed_p (regnum, prev_regs, this_regs);
1046 if (changed < 0)
1047 error (_("-data-list-changed-registers: "
1048 "Unable to read register contents."));
1049 else if (changed)
1050 ui_out_field_int (uiout, NULL, regnum);
1051 }
1052 }
1053
1054 /* Else, list of register #s, just do listed regs. */
1055 for (i = 0; i < argc; i++)
1056 {
1057 regnum = atoi (argv[i]);
1058
1059 if (regnum >= 0
1060 && regnum < numregs
1061 && gdbarch_register_name (gdbarch, regnum) != NULL
1062 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1063 {
1064 changed = register_changed_p (regnum, prev_regs, this_regs);
1065 if (changed < 0)
1066 error (_("-data-list-changed-registers: "
1067 "Unable to read register contents."));
1068 else if (changed)
1069 ui_out_field_int (uiout, NULL, regnum);
1070 }
1071 else
1072 error (_("bad register number"));
1073 }
1074 do_cleanups (cleanup);
1075 }
1076
1077 static int
1078 register_changed_p (int regnum, struct regcache *prev_regs,
1079 struct regcache *this_regs)
1080 {
1081 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1082 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1083 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1084 enum register_status prev_status;
1085 enum register_status this_status;
1086
1087 /* First time through or after gdbarch change consider all registers
1088 as changed. */
1089 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1090 return 1;
1091
1092 /* Get register contents and compare. */
1093 prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
1094 this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
1095
1096 if (this_status != prev_status)
1097 return 1;
1098 else if (this_status == REG_VALID)
1099 return memcmp (prev_buffer, this_buffer,
1100 register_size (gdbarch, regnum)) != 0;
1101 else
1102 return 0;
1103 }
1104
1105 /* Return a list of register number and value pairs. The valid
1106 arguments expected are: a letter indicating the format in which to
1107 display the registers contents. This can be one of: x
1108 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1109 (raw). After the format argument there can be a sequence of
1110 numbers, indicating which registers to fetch the content of. If
1111 the format is the only argument, a list of all the registers with
1112 their values is returned. */
1113
1114 void
1115 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1116 {
1117 struct ui_out *uiout = current_uiout;
1118 struct frame_info *frame;
1119 struct gdbarch *gdbarch;
1120 int regnum, numregs, format;
1121 int i;
1122 struct cleanup *list_cleanup;
1123 int skip_unavailable = 0;
1124 int oind = 0;
1125 enum opt
1126 {
1127 SKIP_UNAVAILABLE,
1128 };
1129 static const struct mi_opt opts[] =
1130 {
1131 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1132 { 0, 0, 0 }
1133 };
1134
1135 /* Note that the test for a valid register must include checking the
1136 gdbarch_register_name because gdbarch_num_regs may be allocated
1137 for the union of the register sets within a family of related
1138 processors. In this case, some entries of gdbarch_register_name
1139 will change depending upon the particular processor being
1140 debugged. */
1141
1142 while (1)
1143 {
1144 char *oarg;
1145 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1146 opts, &oind, &oarg);
1147
1148 if (opt < 0)
1149 break;
1150 switch ((enum opt) opt)
1151 {
1152 case SKIP_UNAVAILABLE:
1153 skip_unavailable = 1;
1154 break;
1155 }
1156 }
1157
1158 if (argc - oind < 1)
1159 error (_("-data-list-register-values: Usage: "
1160 "-data-list-register-values [--skip-unavailable] <format>"
1161 " [<regnum1>...<regnumN>]"));
1162
1163 format = (int) argv[oind][0];
1164
1165 frame = get_selected_frame (NULL);
1166 gdbarch = get_frame_arch (frame);
1167 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1168
1169 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1170
1171 if (argc - oind == 1)
1172 {
1173 /* No args, beside the format: do all the regs. */
1174 for (regnum = 0;
1175 regnum < numregs;
1176 regnum++)
1177 {
1178 if (gdbarch_register_name (gdbarch, regnum) == NULL
1179 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1180 continue;
1181
1182 output_register (frame, regnum, format, skip_unavailable);
1183 }
1184 }
1185
1186 /* Else, list of register #s, just do listed regs. */
1187 for (i = 1 + oind; i < argc; i++)
1188 {
1189 regnum = atoi (argv[i]);
1190
1191 if (regnum >= 0
1192 && regnum < numregs
1193 && gdbarch_register_name (gdbarch, regnum) != NULL
1194 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1195 output_register (frame, regnum, format, skip_unavailable);
1196 else
1197 error (_("bad register number"));
1198 }
1199 do_cleanups (list_cleanup);
1200 }
1201
1202 /* Output one register REGNUM's contents in the desired FORMAT. If
1203 SKIP_UNAVAILABLE is true, skip the register if it is
1204 unavailable. */
1205
1206 static void
1207 output_register (struct frame_info *frame, int regnum, int format,
1208 int skip_unavailable)
1209 {
1210 struct gdbarch *gdbarch = get_frame_arch (frame);
1211 struct ui_out *uiout = current_uiout;
1212 struct value *val = value_of_register (regnum, frame);
1213 struct cleanup *tuple_cleanup;
1214 struct value_print_options opts;
1215 struct ui_file *stb;
1216
1217 if (skip_unavailable && !value_entirely_available (val))
1218 return;
1219
1220 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1221 ui_out_field_int (uiout, "number", regnum);
1222
1223 if (format == 'N')
1224 format = 0;
1225
1226 if (format == 'r')
1227 format = 'z';
1228
1229 stb = mem_fileopen ();
1230 make_cleanup_ui_file_delete (stb);
1231
1232 get_formatted_print_options (&opts, format);
1233 opts.deref_ref = 1;
1234 val_print (value_type (val),
1235 value_contents_for_printing (val),
1236 value_embedded_offset (val), 0,
1237 stb, 0, val, &opts, current_language);
1238 ui_out_field_stream (uiout, "value", stb);
1239
1240 do_cleanups (tuple_cleanup);
1241 }
1242
1243 /* Write given values into registers. The registers and values are
1244 given as pairs. The corresponding MI command is
1245 -data-write-register-values <format>
1246 [<regnum1> <value1>...<regnumN> <valueN>] */
1247 void
1248 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1249 {
1250 struct regcache *regcache;
1251 struct gdbarch *gdbarch;
1252 int numregs, i;
1253
1254 /* Note that the test for a valid register must include checking the
1255 gdbarch_register_name because gdbarch_num_regs may be allocated
1256 for the union of the register sets within a family of related
1257 processors. In this case, some entries of gdbarch_register_name
1258 will change depending upon the particular processor being
1259 debugged. */
1260
1261 regcache = get_current_regcache ();
1262 gdbarch = get_regcache_arch (regcache);
1263 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1264
1265 if (argc == 0)
1266 error (_("-data-write-register-values: Usage: -data-write-register-"
1267 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1268
1269 if (!target_has_registers)
1270 error (_("-data-write-register-values: No registers."));
1271
1272 if (!(argc - 1))
1273 error (_("-data-write-register-values: No regs and values specified."));
1274
1275 if ((argc - 1) % 2)
1276 error (_("-data-write-register-values: "
1277 "Regs and vals are not in pairs."));
1278
1279 for (i = 1; i < argc; i = i + 2)
1280 {
1281 int regnum = atoi (argv[i]);
1282
1283 if (regnum >= 0 && regnum < numregs
1284 && gdbarch_register_name (gdbarch, regnum)
1285 && *gdbarch_register_name (gdbarch, regnum))
1286 {
1287 LONGEST value;
1288
1289 /* Get the value as a number. */
1290 value = parse_and_eval_address (argv[i + 1]);
1291
1292 /* Write it down. */
1293 regcache_cooked_write_signed (regcache, regnum, value);
1294 }
1295 else
1296 error (_("bad register number"));
1297 }
1298 }
1299
1300 /* Evaluate the value of the argument. The argument is an
1301 expression. If the expression contains spaces it needs to be
1302 included in double quotes. */
1303
1304 void
1305 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1306 {
1307 struct expression *expr;
1308 struct cleanup *old_chain;
1309 struct value *val;
1310 struct ui_file *stb;
1311 struct value_print_options opts;
1312 struct ui_out *uiout = current_uiout;
1313
1314 stb = mem_fileopen ();
1315 old_chain = make_cleanup_ui_file_delete (stb);
1316
1317 if (argc != 1)
1318 error (_("-data-evaluate-expression: "
1319 "Usage: -data-evaluate-expression expression"));
1320
1321 expr = parse_expression (argv[0]);
1322
1323 make_cleanup (free_current_contents, &expr);
1324
1325 val = evaluate_expression (expr);
1326
1327 /* Print the result of the expression evaluation. */
1328 get_user_print_options (&opts);
1329 opts.deref_ref = 0;
1330 common_val_print (val, stb, 0, &opts, current_language);
1331
1332 ui_out_field_stream (uiout, "value", stb);
1333
1334 do_cleanups (old_chain);
1335 }
1336
1337 /* This is the -data-read-memory command.
1338
1339 ADDR: start address of data to be dumped.
1340 WORD-FORMAT: a char indicating format for the ``word''. See
1341 the ``x'' command.
1342 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1343 NR_ROW: Number of rows.
1344 NR_COL: The number of colums (words per row).
1345 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1346 ASCHAR for unprintable characters.
1347
1348 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1349 displayes them. Returns:
1350
1351 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1352
1353 Returns:
1354 The number of bytes read is SIZE*ROW*COL. */
1355
1356 void
1357 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1358 {
1359 struct gdbarch *gdbarch = get_current_arch ();
1360 struct ui_out *uiout = current_uiout;
1361 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1362 CORE_ADDR addr;
1363 long total_bytes, nr_cols, nr_rows;
1364 char word_format;
1365 struct type *word_type;
1366 long word_size;
1367 char word_asize;
1368 char aschar;
1369 gdb_byte *mbuf;
1370 int nr_bytes;
1371 long offset = 0;
1372 int oind = 0;
1373 char *oarg;
1374 enum opt
1375 {
1376 OFFSET_OPT
1377 };
1378 static const struct mi_opt opts[] =
1379 {
1380 {"o", OFFSET_OPT, 1},
1381 { 0, 0, 0 }
1382 };
1383
1384 while (1)
1385 {
1386 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1387 &oind, &oarg);
1388
1389 if (opt < 0)
1390 break;
1391 switch ((enum opt) opt)
1392 {
1393 case OFFSET_OPT:
1394 offset = atol (oarg);
1395 break;
1396 }
1397 }
1398 argv += oind;
1399 argc -= oind;
1400
1401 if (argc < 5 || argc > 6)
1402 error (_("-data-read-memory: Usage: "
1403 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1404
1405 /* Extract all the arguments. */
1406
1407 /* Start address of the memory dump. */
1408 addr = parse_and_eval_address (argv[0]) + offset;
1409 /* The format character to use when displaying a memory word. See
1410 the ``x'' command. */
1411 word_format = argv[1][0];
1412 /* The size of the memory word. */
1413 word_size = atol (argv[2]);
1414 switch (word_size)
1415 {
1416 case 1:
1417 word_type = builtin_type (gdbarch)->builtin_int8;
1418 word_asize = 'b';
1419 break;
1420 case 2:
1421 word_type = builtin_type (gdbarch)->builtin_int16;
1422 word_asize = 'h';
1423 break;
1424 case 4:
1425 word_type = builtin_type (gdbarch)->builtin_int32;
1426 word_asize = 'w';
1427 break;
1428 case 8:
1429 word_type = builtin_type (gdbarch)->builtin_int64;
1430 word_asize = 'g';
1431 break;
1432 default:
1433 word_type = builtin_type (gdbarch)->builtin_int8;
1434 word_asize = 'b';
1435 }
1436 /* The number of rows. */
1437 nr_rows = atol (argv[3]);
1438 if (nr_rows <= 0)
1439 error (_("-data-read-memory: invalid number of rows."));
1440
1441 /* Number of bytes per row. */
1442 nr_cols = atol (argv[4]);
1443 if (nr_cols <= 0)
1444 error (_("-data-read-memory: invalid number of columns."));
1445
1446 /* The un-printable character when printing ascii. */
1447 if (argc == 6)
1448 aschar = *argv[5];
1449 else
1450 aschar = 0;
1451
1452 /* Create a buffer and read it in. */
1453 total_bytes = word_size * nr_rows * nr_cols;
1454 mbuf = xcalloc (total_bytes, 1);
1455 make_cleanup (xfree, mbuf);
1456
1457 /* Dispatch memory reads to the topmost target, not the flattened
1458 current_target. */
1459 nr_bytes = target_read (current_target.beneath,
1460 TARGET_OBJECT_MEMORY, NULL, mbuf,
1461 addr, total_bytes);
1462 if (nr_bytes <= 0)
1463 error (_("Unable to read memory."));
1464
1465 /* Output the header information. */
1466 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1467 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1468 ui_out_field_int (uiout, "total-bytes", total_bytes);
1469 ui_out_field_core_addr (uiout, "next-row",
1470 gdbarch, addr + word_size * nr_cols);
1471 ui_out_field_core_addr (uiout, "prev-row",
1472 gdbarch, addr - word_size * nr_cols);
1473 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1474 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1475
1476 /* Build the result as a two dimentional table. */
1477 {
1478 struct ui_file *stream;
1479 struct cleanup *cleanup_stream;
1480 int row;
1481 int row_byte;
1482
1483 stream = mem_fileopen ();
1484 cleanup_stream = make_cleanup_ui_file_delete (stream);
1485
1486 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1487 for (row = 0, row_byte = 0;
1488 row < nr_rows;
1489 row++, row_byte += nr_cols * word_size)
1490 {
1491 int col;
1492 int col_byte;
1493 struct cleanup *cleanup_tuple;
1494 struct cleanup *cleanup_list_data;
1495 struct value_print_options opts;
1496
1497 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1498 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1499 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1500 row_byte); */
1501 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1502 get_formatted_print_options (&opts, word_format);
1503 for (col = 0, col_byte = row_byte;
1504 col < nr_cols;
1505 col++, col_byte += word_size)
1506 {
1507 if (col_byte + word_size > nr_bytes)
1508 {
1509 ui_out_field_string (uiout, NULL, "N/A");
1510 }
1511 else
1512 {
1513 ui_file_rewind (stream);
1514 print_scalar_formatted (mbuf + col_byte, word_type, &opts,
1515 word_asize, stream);
1516 ui_out_field_stream (uiout, NULL, stream);
1517 }
1518 }
1519 do_cleanups (cleanup_list_data);
1520 if (aschar)
1521 {
1522 int byte;
1523
1524 ui_file_rewind (stream);
1525 for (byte = row_byte;
1526 byte < row_byte + word_size * nr_cols; byte++)
1527 {
1528 if (byte >= nr_bytes)
1529 fputc_unfiltered ('X', stream);
1530 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1531 fputc_unfiltered (aschar, stream);
1532 else
1533 fputc_unfiltered (mbuf[byte], stream);
1534 }
1535 ui_out_field_stream (uiout, "ascii", stream);
1536 }
1537 do_cleanups (cleanup_tuple);
1538 }
1539 do_cleanups (cleanup_stream);
1540 }
1541 do_cleanups (cleanups);
1542 }
1543
1544 void
1545 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1546 {
1547 struct gdbarch *gdbarch = get_current_arch ();
1548 struct ui_out *uiout = current_uiout;
1549 struct cleanup *cleanups;
1550 CORE_ADDR addr;
1551 LONGEST length;
1552 memory_read_result_s *read_result;
1553 int ix;
1554 VEC(memory_read_result_s) *result;
1555 long offset = 0;
1556 int oind = 0;
1557 char *oarg;
1558 enum opt
1559 {
1560 OFFSET_OPT
1561 };
1562 static const struct mi_opt opts[] =
1563 {
1564 {"o", OFFSET_OPT, 1},
1565 { 0, 0, 0 }
1566 };
1567
1568 while (1)
1569 {
1570 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1571 &oind, &oarg);
1572 if (opt < 0)
1573 break;
1574 switch ((enum opt) opt)
1575 {
1576 case OFFSET_OPT:
1577 offset = atol (oarg);
1578 break;
1579 }
1580 }
1581 argv += oind;
1582 argc -= oind;
1583
1584 if (argc != 2)
1585 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1586
1587 addr = parse_and_eval_address (argv[0]) + offset;
1588 length = atol (argv[1]);
1589
1590 result = read_memory_robust (current_target.beneath, addr, length);
1591
1592 cleanups = make_cleanup (free_memory_read_result_vector, result);
1593
1594 if (VEC_length (memory_read_result_s, result) == 0)
1595 error (_("Unable to read memory."));
1596
1597 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1598 for (ix = 0;
1599 VEC_iterate (memory_read_result_s, result, ix, read_result);
1600 ++ix)
1601 {
1602 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1603 char *data, *p;
1604 int i;
1605
1606 ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
1607 ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
1608 - addr);
1609 ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
1610
1611 data = xmalloc ((read_result->end - read_result->begin) * 2 + 1);
1612
1613 for (i = 0, p = data;
1614 i < (read_result->end - read_result->begin);
1615 ++i, p += 2)
1616 {
1617 sprintf (p, "%02x", read_result->data[i]);
1618 }
1619 ui_out_field_string (uiout, "contents", data);
1620 xfree (data);
1621 do_cleanups (t);
1622 }
1623 do_cleanups (cleanups);
1624 }
1625
1626 /* Implementation of the -data-write_memory command.
1627
1628 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1629 offset from the beginning of the memory grid row where the cell to
1630 be written is.
1631 ADDR: start address of the row in the memory grid where the memory
1632 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1633 the location to write to.
1634 FORMAT: a char indicating format for the ``word''. See
1635 the ``x'' command.
1636 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1637 VALUE: value to be written into the memory address.
1638
1639 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1640
1641 Prints nothing. */
1642
1643 void
1644 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1645 {
1646 struct gdbarch *gdbarch = get_current_arch ();
1647 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1648 CORE_ADDR addr;
1649 long word_size;
1650 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1651 enough when using a compiler other than GCC. */
1652 LONGEST value;
1653 void *buffer;
1654 struct cleanup *old_chain;
1655 long offset = 0;
1656 int oind = 0;
1657 char *oarg;
1658 enum opt
1659 {
1660 OFFSET_OPT
1661 };
1662 static const struct mi_opt opts[] =
1663 {
1664 {"o", OFFSET_OPT, 1},
1665 { 0, 0, 0 }
1666 };
1667
1668 while (1)
1669 {
1670 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1671 &oind, &oarg);
1672
1673 if (opt < 0)
1674 break;
1675 switch ((enum opt) opt)
1676 {
1677 case OFFSET_OPT:
1678 offset = atol (oarg);
1679 break;
1680 }
1681 }
1682 argv += oind;
1683 argc -= oind;
1684
1685 if (argc != 4)
1686 error (_("-data-write-memory: Usage: "
1687 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1688
1689 /* Extract all the arguments. */
1690 /* Start address of the memory dump. */
1691 addr = parse_and_eval_address (argv[0]);
1692 /* The size of the memory word. */
1693 word_size = atol (argv[2]);
1694
1695 /* Calculate the real address of the write destination. */
1696 addr += (offset * word_size);
1697
1698 /* Get the value as a number. */
1699 value = parse_and_eval_address (argv[3]);
1700 /* Get the value into an array. */
1701 buffer = xmalloc (word_size);
1702 old_chain = make_cleanup (xfree, buffer);
1703 store_signed_integer (buffer, word_size, byte_order, value);
1704 /* Write it down to memory. */
1705 write_memory_with_notification (addr, buffer, word_size);
1706 /* Free the buffer. */
1707 do_cleanups (old_chain);
1708 }
1709
1710 /* Implementation of the -data-write-memory-bytes command.
1711
1712 ADDR: start address
1713 DATA: string of bytes to write at that address
1714 COUNT: number of bytes to be filled (decimal integer). */
1715
1716 void
1717 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1718 {
1719 CORE_ADDR addr;
1720 char *cdata;
1721 gdb_byte *data;
1722 gdb_byte *databuf;
1723 size_t len, i, steps, remainder;
1724 long int count, j;
1725 struct cleanup *back_to;
1726
1727 if (argc != 2 && argc != 3)
1728 error (_("Usage: ADDR DATA [COUNT]."));
1729
1730 addr = parse_and_eval_address (argv[0]);
1731 cdata = argv[1];
1732 if (strlen (cdata) % 2)
1733 error (_("Hex-encoded '%s' must have an even number of characters."),
1734 cdata);
1735
1736 len = strlen (cdata)/2;
1737 if (argc == 3)
1738 count = strtoul (argv[2], NULL, 10);
1739 else
1740 count = len;
1741
1742 databuf = xmalloc (len * sizeof (gdb_byte));
1743 back_to = make_cleanup (xfree, databuf);
1744
1745 for (i = 0; i < len; ++i)
1746 {
1747 int x;
1748 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1749 error (_("Invalid argument"));
1750 databuf[i] = (gdb_byte) x;
1751 }
1752
1753 if (len < count)
1754 {
1755 /* Pattern is made of less bytes than count:
1756 repeat pattern to fill memory. */
1757 data = xmalloc (count);
1758 make_cleanup (xfree, data);
1759
1760 steps = count / len;
1761 remainder = count % len;
1762 for (j = 0; j < steps; j++)
1763 memcpy (data + j * len, databuf, len);
1764
1765 if (remainder > 0)
1766 memcpy (data + steps * len, databuf, remainder);
1767 }
1768 else
1769 {
1770 /* Pattern is longer than or equal to count:
1771 just copy len bytes. */
1772 data = databuf;
1773 }
1774
1775 write_memory_with_notification (addr, data, count);
1776
1777 do_cleanups (back_to);
1778 }
1779
1780 void
1781 mi_cmd_enable_timings (char *command, char **argv, int argc)
1782 {
1783 if (argc == 0)
1784 do_timings = 1;
1785 else if (argc == 1)
1786 {
1787 if (strcmp (argv[0], "yes") == 0)
1788 do_timings = 1;
1789 else if (strcmp (argv[0], "no") == 0)
1790 do_timings = 0;
1791 else
1792 goto usage_error;
1793 }
1794 else
1795 goto usage_error;
1796
1797 return;
1798
1799 usage_error:
1800 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1801 }
1802
1803 void
1804 mi_cmd_list_features (char *command, char **argv, int argc)
1805 {
1806 if (argc == 0)
1807 {
1808 struct cleanup *cleanup = NULL;
1809 struct ui_out *uiout = current_uiout;
1810
1811 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1812 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1813 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1814 ui_out_field_string (uiout, NULL, "thread-info");
1815 ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
1816 ui_out_field_string (uiout, NULL, "breakpoint-notifications");
1817 ui_out_field_string (uiout, NULL, "ada-task-info");
1818 ui_out_field_string (uiout, NULL, "ada-exceptions");
1819
1820 #if HAVE_PYTHON
1821 if (gdb_python_initialized)
1822 ui_out_field_string (uiout, NULL, "python");
1823 #endif
1824
1825 do_cleanups (cleanup);
1826 return;
1827 }
1828
1829 error (_("-list-features should be passed no arguments"));
1830 }
1831
1832 void
1833 mi_cmd_list_target_features (char *command, char **argv, int argc)
1834 {
1835 if (argc == 0)
1836 {
1837 struct cleanup *cleanup = NULL;
1838 struct ui_out *uiout = current_uiout;
1839
1840 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1841 if (target_can_async_p ())
1842 ui_out_field_string (uiout, NULL, "async");
1843 if (target_can_execute_reverse)
1844 ui_out_field_string (uiout, NULL, "reverse");
1845
1846 do_cleanups (cleanup);
1847 return;
1848 }
1849
1850 error (_("-list-target-features should be passed no arguments"));
1851 }
1852
1853 void
1854 mi_cmd_add_inferior (char *command, char **argv, int argc)
1855 {
1856 struct inferior *inf;
1857
1858 if (argc != 0)
1859 error (_("-add-inferior should be passed no arguments"));
1860
1861 inf = add_inferior_with_spaces ();
1862
1863 ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num);
1864 }
1865
1866 /* Callback used to find the first inferior other than the current
1867 one. */
1868
1869 static int
1870 get_other_inferior (struct inferior *inf, void *arg)
1871 {
1872 if (inf == current_inferior ())
1873 return 0;
1874
1875 return 1;
1876 }
1877
1878 void
1879 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1880 {
1881 int id;
1882 struct inferior *inf;
1883
1884 if (argc != 1)
1885 error (_("-remove-inferior should be passed a single argument"));
1886
1887 if (sscanf (argv[0], "i%d", &id) != 1)
1888 error (_("the thread group id is syntactically invalid"));
1889
1890 inf = find_inferior_id (id);
1891 if (!inf)
1892 error (_("the specified thread group does not exist"));
1893
1894 if (inf->pid != 0)
1895 error (_("cannot remove an active inferior"));
1896
1897 if (inf == current_inferior ())
1898 {
1899 struct thread_info *tp = 0;
1900 struct inferior *new_inferior
1901 = iterate_over_inferiors (get_other_inferior, NULL);
1902
1903 if (new_inferior == NULL)
1904 error (_("Cannot remove last inferior"));
1905
1906 set_current_inferior (new_inferior);
1907 if (new_inferior->pid != 0)
1908 tp = any_thread_of_process (new_inferior->pid);
1909 switch_to_thread (tp ? tp->ptid : null_ptid);
1910 set_current_program_space (new_inferior->pspace);
1911 }
1912
1913 delete_inferior_1 (inf, 1 /* silent */);
1914 }
1915
1916 \f
1917
1918 /* Execute a command within a safe environment.
1919 Return <0 for error; >=0 for ok.
1920
1921 args->action will tell mi_execute_command what action
1922 to perfrom after the given command has executed (display/suppress
1923 prompt, display error). */
1924
1925 static void
1926 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1927 {
1928 struct cleanup *cleanup;
1929
1930 if (do_timings)
1931 current_command_ts = context->cmd_start;
1932
1933 current_token = xstrdup (context->token);
1934 cleanup = make_cleanup (free_current_contents, &current_token);
1935
1936 running_result_record_printed = 0;
1937 mi_proceeded = 0;
1938 switch (context->op)
1939 {
1940 case MI_COMMAND:
1941 /* A MI command was read from the input stream. */
1942 if (mi_debug_p)
1943 /* FIXME: gdb_???? */
1944 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1945 context->token, context->command, context->args);
1946
1947 mi_cmd_execute (context);
1948
1949 /* Print the result if there were no errors.
1950
1951 Remember that on the way out of executing a command, you have
1952 to directly use the mi_interp's uiout, since the command
1953 could have reset the interpreter, in which case the current
1954 uiout will most likely crash in the mi_out_* routines. */
1955 if (!running_result_record_printed)
1956 {
1957 fputs_unfiltered (context->token, raw_stdout);
1958 /* There's no particularly good reason why target-connect results
1959 in not ^done. Should kill ^connected for MI3. */
1960 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1961 ? "^connected" : "^done", raw_stdout);
1962 mi_out_put (uiout, raw_stdout);
1963 mi_out_rewind (uiout);
1964 mi_print_timing_maybe ();
1965 fputs_unfiltered ("\n", raw_stdout);
1966 }
1967 else
1968 /* The command does not want anything to be printed. In that
1969 case, the command probably should not have written anything
1970 to uiout, but in case it has written something, discard it. */
1971 mi_out_rewind (uiout);
1972 break;
1973
1974 case CLI_COMMAND:
1975 {
1976 char *argv[2];
1977
1978 /* A CLI command was read from the input stream. */
1979 /* This "feature" will be removed as soon as we have a
1980 complete set of mi commands. */
1981 /* Echo the command on the console. */
1982 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1983 /* Call the "console" interpreter. */
1984 argv[0] = "console";
1985 argv[1] = context->command;
1986 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1987
1988 /* If we changed interpreters, DON'T print out anything. */
1989 if (current_interp_named_p (INTERP_MI)
1990 || current_interp_named_p (INTERP_MI1)
1991 || current_interp_named_p (INTERP_MI2)
1992 || current_interp_named_p (INTERP_MI3))
1993 {
1994 if (!running_result_record_printed)
1995 {
1996 fputs_unfiltered (context->token, raw_stdout);
1997 fputs_unfiltered ("^done", raw_stdout);
1998 mi_out_put (uiout, raw_stdout);
1999 mi_out_rewind (uiout);
2000 mi_print_timing_maybe ();
2001 fputs_unfiltered ("\n", raw_stdout);
2002 }
2003 else
2004 mi_out_rewind (uiout);
2005 }
2006 break;
2007 }
2008 }
2009
2010 do_cleanups (cleanup);
2011 }
2012
2013 /* Print a gdb exception to the MI output stream. */
2014
2015 static void
2016 mi_print_exception (const char *token, struct gdb_exception exception)
2017 {
2018 fputs_unfiltered (token, raw_stdout);
2019 fputs_unfiltered ("^error,msg=\"", raw_stdout);
2020 if (exception.message == NULL)
2021 fputs_unfiltered ("unknown error", raw_stdout);
2022 else
2023 fputstr_unfiltered (exception.message, '"', raw_stdout);
2024 fputs_unfiltered ("\"\n", raw_stdout);
2025 }
2026
2027 void
2028 mi_execute_command (const char *cmd, int from_tty)
2029 {
2030 char *token;
2031 struct mi_parse *command = NULL;
2032 volatile struct gdb_exception exception;
2033
2034 /* This is to handle EOF (^D). We just quit gdb. */
2035 /* FIXME: we should call some API function here. */
2036 if (cmd == 0)
2037 quit_force (NULL, from_tty);
2038
2039 target_log_command (cmd);
2040
2041 TRY_CATCH (exception, RETURN_MASK_ALL)
2042 {
2043 command = mi_parse (cmd, &token);
2044 }
2045 if (exception.reason < 0)
2046 {
2047 mi_print_exception (token, exception);
2048 xfree (token);
2049 }
2050 else
2051 {
2052 volatile struct gdb_exception result;
2053 ptid_t previous_ptid = inferior_ptid;
2054
2055 command->token = token;
2056
2057 if (do_timings)
2058 {
2059 command->cmd_start = (struct mi_timestamp *)
2060 xmalloc (sizeof (struct mi_timestamp));
2061 timestamp (command->cmd_start);
2062 }
2063
2064 TRY_CATCH (result, RETURN_MASK_ALL)
2065 {
2066 captured_mi_execute_command (current_uiout, command);
2067 }
2068 if (result.reason < 0)
2069 {
2070 /* The command execution failed and error() was called
2071 somewhere. */
2072 mi_print_exception (command->token, result);
2073 mi_out_rewind (current_uiout);
2074 }
2075
2076 bpstat_do_actions ();
2077
2078 if (/* The notifications are only output when the top-level
2079 interpreter (specified on the command line) is MI. */
2080 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
2081 /* Don't try report anything if there are no threads --
2082 the program is dead. */
2083 && thread_count () != 0
2084 /* -thread-select explicitly changes thread. If frontend uses that
2085 internally, we don't want to emit =thread-selected, since
2086 =thread-selected is supposed to indicate user's intentions. */
2087 && strcmp (command->command, "thread-select") != 0)
2088 {
2089 struct mi_interp *mi = top_level_interpreter_data ();
2090 int report_change = 0;
2091
2092 if (command->thread == -1)
2093 {
2094 report_change = (!ptid_equal (previous_ptid, null_ptid)
2095 && !ptid_equal (inferior_ptid, previous_ptid)
2096 && !ptid_equal (inferior_ptid, null_ptid));
2097 }
2098 else if (!ptid_equal (inferior_ptid, null_ptid))
2099 {
2100 struct thread_info *ti = inferior_thread ();
2101
2102 report_change = (ti->num != command->thread);
2103 }
2104
2105 if (report_change)
2106 {
2107 struct thread_info *ti = inferior_thread ();
2108
2109 target_terminal_ours ();
2110 fprintf_unfiltered (mi->event_channel,
2111 "thread-selected,id=\"%d\"",
2112 ti->num);
2113 gdb_flush (mi->event_channel);
2114 }
2115 }
2116
2117 mi_parse_free (command);
2118 }
2119 }
2120
2121 static void
2122 mi_cmd_execute (struct mi_parse *parse)
2123 {
2124 struct cleanup *cleanup;
2125 enum language saved_language;
2126
2127 cleanup = prepare_execute_command ();
2128
2129 if (parse->all && parse->thread_group != -1)
2130 error (_("Cannot specify --thread-group together with --all"));
2131
2132 if (parse->all && parse->thread != -1)
2133 error (_("Cannot specify --thread together with --all"));
2134
2135 if (parse->thread_group != -1 && parse->thread != -1)
2136 error (_("Cannot specify --thread together with --thread-group"));
2137
2138 if (parse->frame != -1 && parse->thread == -1)
2139 error (_("Cannot specify --frame without --thread"));
2140
2141 if (parse->thread_group != -1)
2142 {
2143 struct inferior *inf = find_inferior_id (parse->thread_group);
2144 struct thread_info *tp = 0;
2145
2146 if (!inf)
2147 error (_("Invalid thread group for the --thread-group option"));
2148
2149 set_current_inferior (inf);
2150 /* This behaviour means that if --thread-group option identifies
2151 an inferior with multiple threads, then a random one will be
2152 picked. This is not a problem -- frontend should always
2153 provide --thread if it wishes to operate on a specific
2154 thread. */
2155 if (inf->pid != 0)
2156 tp = any_live_thread_of_process (inf->pid);
2157 switch_to_thread (tp ? tp->ptid : null_ptid);
2158 set_current_program_space (inf->pspace);
2159 }
2160
2161 if (parse->thread != -1)
2162 {
2163 struct thread_info *tp = find_thread_id (parse->thread);
2164
2165 if (!tp)
2166 error (_("Invalid thread id: %d"), parse->thread);
2167
2168 if (is_exited (tp->ptid))
2169 error (_("Thread id: %d has terminated"), parse->thread);
2170
2171 switch_to_thread (tp->ptid);
2172 }
2173
2174 if (parse->frame != -1)
2175 {
2176 struct frame_info *fid;
2177 int frame = parse->frame;
2178
2179 fid = find_relative_frame (get_current_frame (), &frame);
2180 if (frame == 0)
2181 /* find_relative_frame was successful */
2182 select_frame (fid);
2183 else
2184 error (_("Invalid frame id: %d"), frame);
2185 }
2186
2187 if (parse->language != language_unknown)
2188 {
2189 make_cleanup_restore_current_language ();
2190 set_language (parse->language);
2191 }
2192
2193 current_context = parse;
2194
2195 if (parse->cmd->suppress_notification != NULL)
2196 {
2197 make_cleanup_restore_integer (parse->cmd->suppress_notification);
2198 *parse->cmd->suppress_notification = 1;
2199 }
2200
2201 if (parse->cmd->argv_func != NULL)
2202 {
2203 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2204 }
2205 else if (parse->cmd->cli.cmd != 0)
2206 {
2207 /* FIXME: DELETE THIS. */
2208 /* The operation is still implemented by a cli command. */
2209 /* Must be a synchronous one. */
2210 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2211 parse->args);
2212 }
2213 else
2214 {
2215 /* FIXME: DELETE THIS. */
2216 struct ui_file *stb;
2217
2218 stb = mem_fileopen ();
2219
2220 fputs_unfiltered ("Undefined mi command: ", stb);
2221 fputstr_unfiltered (parse->command, '"', stb);
2222 fputs_unfiltered (" (missing implementation)", stb);
2223
2224 make_cleanup_ui_file_delete (stb);
2225 error_stream (stb);
2226 }
2227 do_cleanups (cleanup);
2228 }
2229
2230 /* FIXME: This is just a hack so we can get some extra commands going.
2231 We don't want to channel things through the CLI, but call libgdb directly.
2232 Use only for synchronous commands. */
2233
2234 void
2235 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2236 {
2237 if (cmd != 0)
2238 {
2239 struct cleanup *old_cleanups;
2240 char *run;
2241
2242 if (args_p)
2243 run = xstrprintf ("%s %s", cmd, args);
2244 else
2245 run = xstrdup (cmd);
2246 if (mi_debug_p)
2247 /* FIXME: gdb_???? */
2248 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2249 cmd, run);
2250 old_cleanups = make_cleanup (xfree, run);
2251 execute_command (run, 0 /* from_tty */ );
2252 do_cleanups (old_cleanups);
2253 return;
2254 }
2255 }
2256
2257 void
2258 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2259 {
2260 struct cleanup *old_cleanups;
2261 char *run;
2262
2263 if (target_can_async_p ())
2264 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2265 else
2266 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2267 old_cleanups = make_cleanup (xfree, run);
2268
2269 execute_command (run, 0 /* from_tty */ );
2270
2271 /* Do this before doing any printing. It would appear that some
2272 print code leaves garbage around in the buffer. */
2273 do_cleanups (old_cleanups);
2274 }
2275
2276 void
2277 mi_load_progress (const char *section_name,
2278 unsigned long sent_so_far,
2279 unsigned long total_section,
2280 unsigned long total_sent,
2281 unsigned long grand_total)
2282 {
2283 struct timeval time_now, delta, update_threshold;
2284 static struct timeval last_update;
2285 static char *previous_sect_name = NULL;
2286 int new_section;
2287 struct ui_out *saved_uiout;
2288 struct ui_out *uiout;
2289
2290 /* This function is called through deprecated_show_load_progress
2291 which means uiout may not be correct. Fix it for the duration
2292 of this function. */
2293 saved_uiout = current_uiout;
2294
2295 if (current_interp_named_p (INTERP_MI)
2296 || current_interp_named_p (INTERP_MI2))
2297 current_uiout = mi_out_new (2);
2298 else if (current_interp_named_p (INTERP_MI1))
2299 current_uiout = mi_out_new (1);
2300 else if (current_interp_named_p (INTERP_MI3))
2301 current_uiout = mi_out_new (3);
2302 else
2303 return;
2304
2305 uiout = current_uiout;
2306
2307 update_threshold.tv_sec = 0;
2308 update_threshold.tv_usec = 500000;
2309 gettimeofday (&time_now, NULL);
2310
2311 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
2312 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
2313
2314 if (delta.tv_usec < 0)
2315 {
2316 delta.tv_sec -= 1;
2317 delta.tv_usec += 1000000L;
2318 }
2319
2320 new_section = (previous_sect_name ?
2321 strcmp (previous_sect_name, section_name) : 1);
2322 if (new_section)
2323 {
2324 struct cleanup *cleanup_tuple;
2325
2326 xfree (previous_sect_name);
2327 previous_sect_name = xstrdup (section_name);
2328
2329 if (current_token)
2330 fputs_unfiltered (current_token, raw_stdout);
2331 fputs_unfiltered ("+download", raw_stdout);
2332 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2333 ui_out_field_string (uiout, "section", section_name);
2334 ui_out_field_int (uiout, "section-size", total_section);
2335 ui_out_field_int (uiout, "total-size", grand_total);
2336 do_cleanups (cleanup_tuple);
2337 mi_out_put (uiout, raw_stdout);
2338 fputs_unfiltered ("\n", raw_stdout);
2339 gdb_flush (raw_stdout);
2340 }
2341
2342 if (delta.tv_sec >= update_threshold.tv_sec &&
2343 delta.tv_usec >= update_threshold.tv_usec)
2344 {
2345 struct cleanup *cleanup_tuple;
2346
2347 last_update.tv_sec = time_now.tv_sec;
2348 last_update.tv_usec = time_now.tv_usec;
2349 if (current_token)
2350 fputs_unfiltered (current_token, raw_stdout);
2351 fputs_unfiltered ("+download", raw_stdout);
2352 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2353 ui_out_field_string (uiout, "section", section_name);
2354 ui_out_field_int (uiout, "section-sent", sent_so_far);
2355 ui_out_field_int (uiout, "section-size", total_section);
2356 ui_out_field_int (uiout, "total-sent", total_sent);
2357 ui_out_field_int (uiout, "total-size", grand_total);
2358 do_cleanups (cleanup_tuple);
2359 mi_out_put (uiout, raw_stdout);
2360 fputs_unfiltered ("\n", raw_stdout);
2361 gdb_flush (raw_stdout);
2362 }
2363
2364 xfree (uiout);
2365 current_uiout = saved_uiout;
2366 }
2367
2368 static void
2369 timestamp (struct mi_timestamp *tv)
2370 {
2371 gettimeofday (&tv->wallclock, NULL);
2372 #ifdef HAVE_GETRUSAGE
2373 getrusage (RUSAGE_SELF, &rusage);
2374 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2375 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2376 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2377 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2378 #else
2379 {
2380 long usec = get_run_time ();
2381
2382 tv->utime.tv_sec = usec/1000000L;
2383 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2384 tv->stime.tv_sec = 0;
2385 tv->stime.tv_usec = 0;
2386 }
2387 #endif
2388 }
2389
2390 static void
2391 print_diff_now (struct mi_timestamp *start)
2392 {
2393 struct mi_timestamp now;
2394
2395 timestamp (&now);
2396 print_diff (start, &now);
2397 }
2398
2399 void
2400 mi_print_timing_maybe (void)
2401 {
2402 /* If the command is -enable-timing then do_timings may be true
2403 whilst current_command_ts is not initialized. */
2404 if (do_timings && current_command_ts)
2405 print_diff_now (current_command_ts);
2406 }
2407
2408 static long
2409 timeval_diff (struct timeval start, struct timeval end)
2410 {
2411 return ((end.tv_sec - start.tv_sec) * 1000000L)
2412 + (end.tv_usec - start.tv_usec);
2413 }
2414
2415 static void
2416 print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
2417 {
2418 fprintf_unfiltered
2419 (raw_stdout,
2420 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2421 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2422 timeval_diff (start->utime, end->utime) / 1000000.0,
2423 timeval_diff (start->stime, end->stime) / 1000000.0);
2424 }
2425
2426 void
2427 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2428 {
2429 struct expression *expr;
2430 LONGEST initval = 0;
2431 struct trace_state_variable *tsv;
2432 char *name = 0;
2433
2434 if (argc != 1 && argc != 2)
2435 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2436
2437 name = argv[0];
2438 if (*name++ != '$')
2439 error (_("Name of trace variable should start with '$'"));
2440
2441 validate_trace_state_variable_name (name);
2442
2443 tsv = find_trace_state_variable (name);
2444 if (!tsv)
2445 tsv = create_trace_state_variable (name);
2446
2447 if (argc == 2)
2448 initval = value_as_long (parse_and_eval (argv[1]));
2449
2450 tsv->initial_value = initval;
2451 }
2452
2453 void
2454 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2455 {
2456 if (argc != 0)
2457 error (_("-trace-list-variables: no arguments allowed"));
2458
2459 tvariables_info_1 ();
2460 }
2461
2462 void
2463 mi_cmd_trace_find (char *command, char **argv, int argc)
2464 {
2465 char *mode;
2466
2467 if (argc == 0)
2468 error (_("trace selection mode is required"));
2469
2470 mode = argv[0];
2471
2472 if (strcmp (mode, "none") == 0)
2473 {
2474 tfind_1 (tfind_number, -1, 0, 0, 0);
2475 return;
2476 }
2477
2478 if (current_trace_status ()->running)
2479 error (_("May not look at trace frames while trace is running."));
2480
2481 if (strcmp (mode, "frame-number") == 0)
2482 {
2483 if (argc != 2)
2484 error (_("frame number is required"));
2485 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2486 }
2487 else if (strcmp (mode, "tracepoint-number") == 0)
2488 {
2489 if (argc != 2)
2490 error (_("tracepoint number is required"));
2491 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2492 }
2493 else if (strcmp (mode, "pc") == 0)
2494 {
2495 if (argc != 2)
2496 error (_("PC is required"));
2497 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2498 }
2499 else if (strcmp (mode, "pc-inside-range") == 0)
2500 {
2501 if (argc != 3)
2502 error (_("Start and end PC are required"));
2503 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2504 parse_and_eval_address (argv[2]), 0);
2505 }
2506 else if (strcmp (mode, "pc-outside-range") == 0)
2507 {
2508 if (argc != 3)
2509 error (_("Start and end PC are required"));
2510 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2511 parse_and_eval_address (argv[2]), 0);
2512 }
2513 else if (strcmp (mode, "line") == 0)
2514 {
2515 struct symtabs_and_lines sals;
2516 struct symtab_and_line sal;
2517 static CORE_ADDR start_pc, end_pc;
2518 struct cleanup *back_to;
2519
2520 if (argc != 2)
2521 error (_("Line is required"));
2522
2523 sals = decode_line_with_current_source (argv[1],
2524 DECODE_LINE_FUNFIRSTLINE);
2525 back_to = make_cleanup (xfree, sals.sals);
2526
2527 sal = sals.sals[0];
2528
2529 if (sal.symtab == 0)
2530 error (_("Could not find the specified line"));
2531
2532 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2533 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2534 else
2535 error (_("Could not find the specified line"));
2536
2537 do_cleanups (back_to);
2538 }
2539 else
2540 error (_("Invalid mode '%s'"), mode);
2541
2542 if (has_stack_frames () || get_traceframe_number () >= 0)
2543 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2544 }
2545
2546 void
2547 mi_cmd_trace_save (char *command, char **argv, int argc)
2548 {
2549 int target_saves = 0;
2550 int generate_ctf = 0;
2551 char *filename;
2552 int oind = 0;
2553 char *oarg;
2554
2555 enum opt
2556 {
2557 TARGET_SAVE_OPT, CTF_OPT
2558 };
2559 static const struct mi_opt opts[] =
2560 {
2561 {"r", TARGET_SAVE_OPT, 0},
2562 {"ctf", CTF_OPT, 0},
2563 { 0, 0, 0 }
2564 };
2565
2566 while (1)
2567 {
2568 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2569 &oind, &oarg);
2570
2571 if (opt < 0)
2572 break;
2573 switch ((enum opt) opt)
2574 {
2575 case TARGET_SAVE_OPT:
2576 target_saves = 1;
2577 break;
2578 case CTF_OPT:
2579 generate_ctf = 1;
2580 break;
2581 }
2582 }
2583 filename = argv[oind];
2584
2585 if (generate_ctf)
2586 trace_save_ctf (filename, target_saves);
2587 else
2588 trace_save_tfile (filename, target_saves);
2589 }
2590
2591 void
2592 mi_cmd_trace_start (char *command, char **argv, int argc)
2593 {
2594 start_tracing (NULL);
2595 }
2596
2597 void
2598 mi_cmd_trace_status (char *command, char **argv, int argc)
2599 {
2600 trace_status_mi (0);
2601 }
2602
2603 void
2604 mi_cmd_trace_stop (char *command, char **argv, int argc)
2605 {
2606 stop_tracing (NULL);
2607 trace_status_mi (1);
2608 }
2609
2610 /* Implement the "-ada-task-info" command. */
2611
2612 void
2613 mi_cmd_ada_task_info (char *command, char **argv, int argc)
2614 {
2615 if (argc != 0 && argc != 1)
2616 error (_("Invalid MI command"));
2617
2618 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2619 }
2620
2621 /* Print EXPRESSION according to VALUES. */
2622
2623 static void
2624 print_variable_or_computed (char *expression, enum print_values values)
2625 {
2626 struct expression *expr;
2627 struct cleanup *old_chain;
2628 struct value *val;
2629 struct ui_file *stb;
2630 struct value_print_options opts;
2631 struct type *type;
2632 struct ui_out *uiout = current_uiout;
2633
2634 stb = mem_fileopen ();
2635 old_chain = make_cleanup_ui_file_delete (stb);
2636
2637 expr = parse_expression (expression);
2638
2639 make_cleanup (free_current_contents, &expr);
2640
2641 if (values == PRINT_SIMPLE_VALUES)
2642 val = evaluate_type (expr);
2643 else
2644 val = evaluate_expression (expr);
2645
2646 if (values != PRINT_NO_VALUES)
2647 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2648 ui_out_field_string (uiout, "name", expression);
2649
2650 switch (values)
2651 {
2652 case PRINT_SIMPLE_VALUES:
2653 type = check_typedef (value_type (val));
2654 type_print (value_type (val), "", stb, -1);
2655 ui_out_field_stream (uiout, "type", stb);
2656 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2657 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2658 && TYPE_CODE (type) != TYPE_CODE_UNION)
2659 {
2660 struct value_print_options opts;
2661
2662 get_no_prettyformat_print_options (&opts);
2663 opts.deref_ref = 1;
2664 common_val_print (val, stb, 0, &opts, current_language);
2665 ui_out_field_stream (uiout, "value", stb);
2666 }
2667 break;
2668 case PRINT_ALL_VALUES:
2669 {
2670 struct value_print_options opts;
2671
2672 get_no_prettyformat_print_options (&opts);
2673 opts.deref_ref = 1;
2674 common_val_print (val, stb, 0, &opts, current_language);
2675 ui_out_field_stream (uiout, "value", stb);
2676 }
2677 break;
2678 }
2679
2680 do_cleanups (old_chain);
2681 }
2682
2683 /* Implement the "-trace-frame-collected" command. */
2684
2685 void
2686 mi_cmd_trace_frame_collected (char *command, char **argv, int argc)
2687 {
2688 struct cleanup *old_chain;
2689 struct bp_location *tloc;
2690 int stepping_frame;
2691 struct collection_list *clist;
2692 struct collection_list tracepoint_list, stepping_list;
2693 struct traceframe_info *tinfo;
2694 int oind = 0;
2695 int var_print_values = PRINT_ALL_VALUES;
2696 int comp_print_values = PRINT_ALL_VALUES;
2697 int registers_format = 'x';
2698 int memory_contents = 0;
2699 struct ui_out *uiout = current_uiout;
2700 enum opt
2701 {
2702 VAR_PRINT_VALUES,
2703 COMP_PRINT_VALUES,
2704 REGISTERS_FORMAT,
2705 MEMORY_CONTENTS,
2706 };
2707 static const struct mi_opt opts[] =
2708 {
2709 {"-var-print-values", VAR_PRINT_VALUES, 1},
2710 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2711 {"-registers-format", REGISTERS_FORMAT, 1},
2712 {"-memory-contents", MEMORY_CONTENTS, 0},
2713 { 0, 0, 0 }
2714 };
2715
2716 while (1)
2717 {
2718 char *oarg;
2719 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2720 &oind, &oarg);
2721 if (opt < 0)
2722 break;
2723 switch ((enum opt) opt)
2724 {
2725 case VAR_PRINT_VALUES:
2726 var_print_values = mi_parse_print_values (oarg);
2727 break;
2728 case COMP_PRINT_VALUES:
2729 comp_print_values = mi_parse_print_values (oarg);
2730 break;
2731 case REGISTERS_FORMAT:
2732 registers_format = oarg[0];
2733 case MEMORY_CONTENTS:
2734 memory_contents = 1;
2735 break;
2736 }
2737 }
2738
2739 if (oind != argc)
2740 error (_("Usage: -trace-frame-collected "
2741 "[--var-print-values PRINT_VALUES] "
2742 "[--comp-print-values PRINT_VALUES] "
2743 "[--registers-format FORMAT]"
2744 "[--memory-contents]"));
2745
2746 /* This throws an error is not inspecting a trace frame. */
2747 tloc = get_traceframe_location (&stepping_frame);
2748
2749 /* This command only makes sense for the current frame, not the
2750 selected frame. */
2751 old_chain = make_cleanup_restore_current_thread ();
2752 select_frame (get_current_frame ());
2753
2754 encode_actions_and_make_cleanup (tloc, &tracepoint_list,
2755 &stepping_list);
2756
2757 if (stepping_frame)
2758 clist = &stepping_list;
2759 else
2760 clist = &tracepoint_list;
2761
2762 tinfo = get_traceframe_info ();
2763
2764 /* Explicitly wholly collected variables. */
2765 {
2766 struct cleanup *list_cleanup;
2767 char *p;
2768 int i;
2769
2770 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout,
2771 "explicit-variables");
2772 for (i = 0; VEC_iterate (char_ptr, clist->wholly_collected, i, p); i++)
2773 print_variable_or_computed (p, var_print_values);
2774 do_cleanups (list_cleanup);
2775 }
2776
2777 /* Computed expressions. */
2778 {
2779 struct cleanup *list_cleanup;
2780 char *p;
2781 int i;
2782
2783 list_cleanup
2784 = make_cleanup_ui_out_list_begin_end (uiout,
2785 "computed-expressions");
2786 for (i = 0; VEC_iterate (char_ptr, clist->computed, i, p); i++)
2787 print_variable_or_computed (p, comp_print_values);
2788 do_cleanups (list_cleanup);
2789 }
2790
2791 /* Registers. Given pseudo-registers, and that some architectures
2792 (like MIPS) actually hide the raw registers, we don't go through
2793 the trace frame info, but instead consult the register cache for
2794 register availability. */
2795 {
2796 struct cleanup *list_cleanup;
2797 struct frame_info *frame;
2798 struct gdbarch *gdbarch;
2799 int regnum;
2800 int numregs;
2801
2802 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "registers");
2803
2804 frame = get_selected_frame (NULL);
2805 gdbarch = get_frame_arch (frame);
2806 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2807
2808 for (regnum = 0; regnum < numregs; regnum++)
2809 {
2810 if (gdbarch_register_name (gdbarch, regnum) == NULL
2811 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2812 continue;
2813
2814 output_register (frame, regnum, registers_format, 1);
2815 }
2816
2817 do_cleanups (list_cleanup);
2818 }
2819
2820 /* Trace state variables. */
2821 {
2822 struct cleanup *list_cleanup;
2823 int tvar;
2824 char *tsvname;
2825 int i;
2826
2827 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "tvars");
2828
2829 tsvname = NULL;
2830 make_cleanup (free_current_contents, &tsvname);
2831
2832 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2833 {
2834 struct cleanup *cleanup_child;
2835 struct trace_state_variable *tsv;
2836
2837 tsv = find_trace_state_variable_by_number (tvar);
2838
2839 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2840
2841 if (tsv != NULL)
2842 {
2843 tsvname = xrealloc (tsvname, strlen (tsv->name) + 2);
2844 tsvname[0] = '$';
2845 strcpy (tsvname + 1, tsv->name);
2846 ui_out_field_string (uiout, "name", tsvname);
2847
2848 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2849 &tsv->value);
2850 ui_out_field_int (uiout, "current", tsv->value);
2851 }
2852 else
2853 {
2854 ui_out_field_skip (uiout, "name");
2855 ui_out_field_skip (uiout, "current");
2856 }
2857
2858 do_cleanups (cleanup_child);
2859 }
2860
2861 do_cleanups (list_cleanup);
2862 }
2863
2864 /* Memory. */
2865 {
2866 struct cleanup *list_cleanup;
2867 VEC(mem_range_s) *available_memory = NULL;
2868 struct mem_range *r;
2869 int i;
2870
2871 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2872 make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2873
2874 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "memory");
2875
2876 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2877 {
2878 struct cleanup *cleanup_child;
2879 gdb_byte *data;
2880 struct gdbarch *gdbarch = target_gdbarch ();
2881
2882 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2883
2884 ui_out_field_core_addr (uiout, "address", gdbarch, r->start);
2885 ui_out_field_int (uiout, "length", r->length);
2886
2887 data = xmalloc (r->length);
2888 make_cleanup (xfree, data);
2889
2890 if (memory_contents)
2891 {
2892 if (target_read_memory (r->start, data, r->length) == 0)
2893 {
2894 int m;
2895 char *data_str, *p;
2896
2897 data_str = xmalloc (r->length * 2 + 1);
2898 make_cleanup (xfree, data_str);
2899
2900 for (m = 0, p = data_str; m < r->length; ++m, p += 2)
2901 sprintf (p, "%02x", data[m]);
2902 ui_out_field_string (uiout, "contents", data_str);
2903 }
2904 else
2905 ui_out_field_skip (uiout, "contents");
2906 }
2907 do_cleanups (cleanup_child);
2908 }
2909
2910 do_cleanups (list_cleanup);
2911 }
2912
2913 do_cleanups (old_chain);
2914 }
This page took 0.113966 seconds and 4 git commands to generate.