Constify execute_command
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "frame.h"
42 #include "mi-main.h"
43 #include "mi-common.h"
44 #include "language.h"
45 #include "valprint.h"
46 #include "inferior.h"
47 #include "osdata.h"
48 #include "common/gdb_splay_tree.h"
49 #include "tracepoint.h"
50 #include "ctf.h"
51 #include "ada-lang.h"
52 #include "linespec.h"
53 #include "extension.h"
54 #include "gdbcmd.h"
55 #include "observer.h"
56 #include "common/gdb_optional.h"
57 #include "common/byte-vector.h"
58
59 #include <ctype.h>
60 #include "run-time-clock.h"
61 #include <chrono>
62 #include "progspace-and-thread.h"
63 #include "common/rsp-low.h"
64 #include <algorithm>
65 #include <set>
66
67 enum
68 {
69 FROM_TTY = 0
70 };
71
72 int mi_debug_p;
73
74 /* This is used to pass the current command timestamp down to
75 continuation routines. */
76 static struct mi_timestamp *current_command_ts;
77
78 static int do_timings = 0;
79
80 char *current_token;
81 /* Few commands would like to know if options like --thread-group were
82 explicitly specified. This variable keeps the current parsed
83 command including all option, and make it possible. */
84 static struct mi_parse *current_context;
85
86 int running_result_record_printed = 1;
87
88 /* Flag indicating that the target has proceeded since the last
89 command was issued. */
90 int mi_proceeded;
91
92 static void mi_cmd_execute (struct mi_parse *parse);
93
94 static void mi_execute_cli_command (const char *cmd, int args_p,
95 const char *args);
96 static void mi_execute_async_cli_command (const char *cli_command,
97 char **argv, int argc);
98 static int register_changed_p (int regnum, struct regcache *,
99 struct regcache *);
100 static void output_register (struct frame_info *, int regnum, int format,
101 int skip_unavailable);
102
103 /* Controls whether the frontend wants MI in async mode. */
104 static int mi_async = 0;
105
106 /* The set command writes to this variable. If the inferior is
107 executing, mi_async is *not* updated. */
108 static int mi_async_1 = 0;
109
110 static void
111 set_mi_async_command (const char *args, int from_tty,
112 struct cmd_list_element *c)
113 {
114 if (have_live_inferiors ())
115 {
116 mi_async_1 = mi_async;
117 error (_("Cannot change this setting while the inferior is running."));
118 }
119
120 mi_async = mi_async_1;
121 }
122
123 static void
124 show_mi_async_command (struct ui_file *file, int from_tty,
125 struct cmd_list_element *c,
126 const char *value)
127 {
128 fprintf_filtered (file,
129 _("Whether MI is in asynchronous mode is %s.\n"),
130 value);
131 }
132
133 /* A wrapper for target_can_async_p that takes the MI setting into
134 account. */
135
136 int
137 mi_async_p (void)
138 {
139 return mi_async && target_can_async_p ();
140 }
141
142 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
143 layer that calls libgdb. Any operation used in the below should be
144 formalized. */
145
146 static void timestamp (struct mi_timestamp *tv);
147
148 static void print_diff (struct ui_file *file, struct mi_timestamp *start,
149 struct mi_timestamp *end);
150
151 void
152 mi_cmd_gdb_exit (const char *command, char **argv, int argc)
153 {
154 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
155
156 /* We have to print everything right here because we never return. */
157 if (current_token)
158 fputs_unfiltered (current_token, mi->raw_stdout);
159 fputs_unfiltered ("^exit\n", mi->raw_stdout);
160 mi_out_put (current_uiout, mi->raw_stdout);
161 gdb_flush (mi->raw_stdout);
162 /* FIXME: The function called is not yet a formal libgdb function. */
163 quit_force (NULL, FROM_TTY);
164 }
165
166 void
167 mi_cmd_exec_next (const char *command, char **argv, int argc)
168 {
169 /* FIXME: Should call a libgdb function, not a cli wrapper. */
170 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
171 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
172 else
173 mi_execute_async_cli_command ("next", argv, argc);
174 }
175
176 void
177 mi_cmd_exec_next_instruction (const char *command, char **argv, int argc)
178 {
179 /* FIXME: Should call a libgdb function, not a cli wrapper. */
180 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
181 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
182 else
183 mi_execute_async_cli_command ("nexti", argv, argc);
184 }
185
186 void
187 mi_cmd_exec_step (const char *command, char **argv, int argc)
188 {
189 /* FIXME: Should call a libgdb function, not a cli wrapper. */
190 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
191 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
192 else
193 mi_execute_async_cli_command ("step", argv, argc);
194 }
195
196 void
197 mi_cmd_exec_step_instruction (const char *command, char **argv, int argc)
198 {
199 /* FIXME: Should call a libgdb function, not a cli wrapper. */
200 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
201 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
202 else
203 mi_execute_async_cli_command ("stepi", argv, argc);
204 }
205
206 void
207 mi_cmd_exec_finish (const char *command, char **argv, int argc)
208 {
209 /* FIXME: Should call a libgdb function, not a cli wrapper. */
210 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
211 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
212 else
213 mi_execute_async_cli_command ("finish", argv, argc);
214 }
215
216 void
217 mi_cmd_exec_return (const char *command, char **argv, int argc)
218 {
219 /* This command doesn't really execute the target, it just pops the
220 specified number of frames. */
221 if (argc)
222 /* Call return_command with from_tty argument equal to 0 so as to
223 avoid being queried. */
224 return_command (*argv, 0);
225 else
226 /* Call return_command with from_tty argument equal to 0 so as to
227 avoid being queried. */
228 return_command (NULL, 0);
229
230 /* Because we have called return_command with from_tty = 0, we need
231 to print the frame here. */
232 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
233 }
234
235 void
236 mi_cmd_exec_jump (const char *args, char **argv, int argc)
237 {
238 /* FIXME: Should call a libgdb function, not a cli wrapper. */
239 mi_execute_async_cli_command ("jump", argv, argc);
240 }
241
242 static void
243 proceed_thread (struct thread_info *thread, int pid)
244 {
245 if (!is_stopped (thread->ptid))
246 return;
247
248 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
249 return;
250
251 switch_to_thread (thread->ptid);
252 clear_proceed_status (0);
253 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
254 }
255
256 static int
257 proceed_thread_callback (struct thread_info *thread, void *arg)
258 {
259 int pid = *(int *)arg;
260
261 proceed_thread (thread, pid);
262 return 0;
263 }
264
265 static void
266 exec_continue (char **argv, int argc)
267 {
268 prepare_execution_command (&current_target, mi_async_p ());
269
270 if (non_stop)
271 {
272 /* In non-stop mode, 'resume' always resumes a single thread.
273 Therefore, to resume all threads of the current inferior, or
274 all threads in all inferiors, we need to iterate over
275 threads.
276
277 See comment on infcmd.c:proceed_thread_callback for rationale. */
278 if (current_context->all || current_context->thread_group != -1)
279 {
280 scoped_restore_current_thread restore_thread;
281 int pid = 0;
282
283 if (!current_context->all)
284 {
285 struct inferior *inf
286 = find_inferior_id (current_context->thread_group);
287
288 pid = inf->pid;
289 }
290 iterate_over_threads (proceed_thread_callback, &pid);
291 }
292 else
293 {
294 continue_1 (0);
295 }
296 }
297 else
298 {
299 scoped_restore save_multi = make_scoped_restore (&sched_multi);
300
301 if (current_context->all)
302 {
303 sched_multi = 1;
304 continue_1 (0);
305 }
306 else
307 {
308 /* In all-stop mode, -exec-continue traditionally resumed
309 either all threads, or one thread, depending on the
310 'scheduler-locking' variable. Let's continue to do the
311 same. */
312 continue_1 (1);
313 }
314 }
315 }
316
317 static void
318 exec_reverse_continue (char **argv, int argc)
319 {
320 enum exec_direction_kind dir = execution_direction;
321
322 if (dir == EXEC_REVERSE)
323 error (_("Already in reverse mode."));
324
325 if (!target_can_execute_reverse)
326 error (_("Target %s does not support this command."), target_shortname);
327
328 scoped_restore save_exec_dir = make_scoped_restore (&execution_direction,
329 EXEC_REVERSE);
330 exec_continue (argv, argc);
331 }
332
333 void
334 mi_cmd_exec_continue (const char *command, char **argv, int argc)
335 {
336 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
337 exec_reverse_continue (argv + 1, argc - 1);
338 else
339 exec_continue (argv, argc);
340 }
341
342 static int
343 interrupt_thread_callback (struct thread_info *thread, void *arg)
344 {
345 int pid = *(int *)arg;
346
347 if (!is_running (thread->ptid))
348 return 0;
349
350 if (ptid_get_pid (thread->ptid) != pid)
351 return 0;
352
353 target_stop (thread->ptid);
354 return 0;
355 }
356
357 /* Interrupt the execution of the target. Note how we must play
358 around with the token variables, in order to display the current
359 token in the result of the interrupt command, and the previous
360 execution token when the target finally stops. See comments in
361 mi_cmd_execute. */
362
363 void
364 mi_cmd_exec_interrupt (const char *command, char **argv, int argc)
365 {
366 /* In all-stop mode, everything stops, so we don't need to try
367 anything specific. */
368 if (!non_stop)
369 {
370 interrupt_target_1 (0);
371 return;
372 }
373
374 if (current_context->all)
375 {
376 /* This will interrupt all threads in all inferiors. */
377 interrupt_target_1 (1);
378 }
379 else if (current_context->thread_group != -1)
380 {
381 struct inferior *inf = find_inferior_id (current_context->thread_group);
382
383 iterate_over_threads (interrupt_thread_callback, &inf->pid);
384 }
385 else
386 {
387 /* Interrupt just the current thread -- either explicitly
388 specified via --thread or whatever was current before
389 MI command was sent. */
390 interrupt_target_1 (0);
391 }
392 }
393
394 /* Callback for iterate_over_inferiors which starts the execution
395 of the given inferior.
396
397 ARG is a pointer to an integer whose value, if non-zero, indicates
398 that the program should be stopped when reaching the main subprogram
399 (similar to what the CLI "start" command does). */
400
401 static int
402 run_one_inferior (struct inferior *inf, void *arg)
403 {
404 int start_p = *(int *) arg;
405 const char *run_cmd = start_p ? "start" : "run";
406 struct target_ops *run_target = find_run_target ();
407 int async_p = mi_async && run_target->to_can_async_p (run_target);
408
409 if (inf->pid != 0)
410 {
411 if (inf->pid != ptid_get_pid (inferior_ptid))
412 {
413 struct thread_info *tp;
414
415 tp = any_thread_of_process (inf->pid);
416 if (!tp)
417 error (_("Inferior has no threads."));
418
419 switch_to_thread (tp->ptid);
420 }
421 }
422 else
423 {
424 set_current_inferior (inf);
425 switch_to_thread (null_ptid);
426 set_current_program_space (inf->pspace);
427 }
428 mi_execute_cli_command (run_cmd, async_p,
429 async_p ? "&" : NULL);
430 return 0;
431 }
432
433 void
434 mi_cmd_exec_run (const char *command, char **argv, int argc)
435 {
436 int start_p = 0;
437
438 /* Parse the command options. */
439 enum opt
440 {
441 START_OPT,
442 };
443 static const struct mi_opt opts[] =
444 {
445 {"-start", START_OPT, 0},
446 {NULL, 0, 0},
447 };
448
449 int oind = 0;
450 char *oarg;
451
452 while (1)
453 {
454 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
455
456 if (opt < 0)
457 break;
458 switch ((enum opt) opt)
459 {
460 case START_OPT:
461 start_p = 1;
462 break;
463 }
464 }
465
466 /* This command does not accept any argument. Make sure the user
467 did not provide any. */
468 if (oind != argc)
469 error (_("Invalid argument: %s"), argv[oind]);
470
471 if (current_context->all)
472 {
473 scoped_restore_current_pspace_and_thread restore_pspace_thread;
474
475 iterate_over_inferiors (run_one_inferior, &start_p);
476 }
477 else
478 {
479 const char *run_cmd = start_p ? "start" : "run";
480 struct target_ops *run_target = find_run_target ();
481 int async_p = mi_async && run_target->to_can_async_p (run_target);
482
483 mi_execute_cli_command (run_cmd, async_p,
484 async_p ? "&" : NULL);
485 }
486 }
487
488
489 static int
490 find_thread_of_process (struct thread_info *ti, void *p)
491 {
492 int pid = *(int *)p;
493
494 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
495 return 1;
496
497 return 0;
498 }
499
500 void
501 mi_cmd_target_detach (const char *command, char **argv, int argc)
502 {
503 if (argc != 0 && argc != 1)
504 error (_("Usage: -target-detach [pid | thread-group]"));
505
506 if (argc == 1)
507 {
508 struct thread_info *tp;
509 char *end = argv[0];
510 int pid;
511
512 /* First see if we are dealing with a thread-group id. */
513 if (*argv[0] == 'i')
514 {
515 struct inferior *inf;
516 int id = strtoul (argv[0] + 1, &end, 0);
517
518 if (*end != '\0')
519 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
520
521 inf = find_inferior_id (id);
522 if (!inf)
523 error (_("Non-existent thread-group id '%d'"), id);
524
525 pid = inf->pid;
526 }
527 else
528 {
529 /* We must be dealing with a pid. */
530 pid = strtol (argv[0], &end, 10);
531
532 if (*end != '\0')
533 error (_("Invalid identifier '%s'"), argv[0]);
534 }
535
536 /* Pick any thread in the desired process. Current
537 target_detach detaches from the parent of inferior_ptid. */
538 tp = iterate_over_threads (find_thread_of_process, &pid);
539 if (!tp)
540 error (_("Thread group is empty"));
541
542 switch_to_thread (tp->ptid);
543 }
544
545 detach_command (NULL, 0);
546 }
547
548 void
549 mi_cmd_target_flash_erase (const char *command, char **argv, int argc)
550 {
551 flash_erase_command (NULL, 0);
552 }
553
554 void
555 mi_cmd_thread_select (const char *command, char **argv, int argc)
556 {
557 if (argc != 1)
558 error (_("-thread-select: USAGE: threadnum."));
559
560 int num = value_as_long (parse_and_eval (argv[0]));
561 thread_info *thr = find_thread_global_id (num);
562 if (thr == NULL)
563 error (_("Thread ID %d not known."), num);
564
565 ptid_t previous_ptid = inferior_ptid;
566
567 thread_select (argv[0], thr);
568
569 print_selected_thread_frame (current_uiout,
570 USER_SELECTED_THREAD | USER_SELECTED_FRAME);
571
572 /* Notify if the thread has effectively changed. */
573 if (!ptid_equal (inferior_ptid, previous_ptid))
574 {
575 observer_notify_user_selected_context_changed (USER_SELECTED_THREAD
576 | USER_SELECTED_FRAME);
577 }
578 }
579
580 void
581 mi_cmd_thread_list_ids (const char *command, char **argv, int argc)
582 {
583 if (argc != 0)
584 error (_("-thread-list-ids: No arguments required."));
585
586 int num = 0;
587 int current_thread = -1;
588
589 update_thread_list ();
590
591 {
592 ui_out_emit_tuple tuple_emitter (current_uiout, "thread-ids");
593
594 struct thread_info *tp;
595 ALL_NON_EXITED_THREADS (tp)
596 {
597 if (tp->ptid == inferior_ptid)
598 current_thread = tp->global_num;
599
600 num++;
601 current_uiout->field_int ("thread-id", tp->global_num);
602 }
603 }
604
605 if (current_thread != -1)
606 current_uiout->field_int ("current-thread-id", current_thread);
607 current_uiout->field_int ("number-of-threads", num);
608 }
609
610 void
611 mi_cmd_thread_info (const char *command, char **argv, int argc)
612 {
613 if (argc != 0 && argc != 1)
614 error (_("Invalid MI command"));
615
616 print_thread_info (current_uiout, argv[0], -1);
617 }
618
619 struct collect_cores_data
620 {
621 int pid;
622 std::set<int> cores;
623 };
624
625 static int
626 collect_cores (struct thread_info *ti, void *xdata)
627 {
628 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
629
630 if (ptid_get_pid (ti->ptid) == data->pid)
631 {
632 int core = target_core_of_thread (ti->ptid);
633
634 if (core != -1)
635 data->cores.insert (core);
636 }
637
638 return 0;
639 }
640
641 struct print_one_inferior_data
642 {
643 int recurse;
644 const std::set<int> *inferiors;
645 };
646
647 static int
648 print_one_inferior (struct inferior *inferior, void *xdata)
649 {
650 struct print_one_inferior_data *top_data
651 = (struct print_one_inferior_data *) xdata;
652 struct ui_out *uiout = current_uiout;
653
654 if (top_data->inferiors->empty ()
655 || (top_data->inferiors->find (inferior->pid)
656 != top_data->inferiors->end ()))
657 {
658 struct collect_cores_data data;
659 ui_out_emit_tuple tuple_emitter (uiout, NULL);
660
661 uiout->field_fmt ("id", "i%d", inferior->num);
662 uiout->field_string ("type", "process");
663 if (inferior->has_exit_code)
664 uiout->field_string ("exit-code",
665 int_string (inferior->exit_code, 8, 0, 0, 1));
666 if (inferior->pid != 0)
667 uiout->field_int ("pid", inferior->pid);
668
669 if (inferior->pspace->pspace_exec_filename != NULL)
670 {
671 uiout->field_string ("executable",
672 inferior->pspace->pspace_exec_filename);
673 }
674
675 if (inferior->pid != 0)
676 {
677 data.pid = inferior->pid;
678 iterate_over_threads (collect_cores, &data);
679 }
680
681 if (!data.cores.empty ())
682 {
683 ui_out_emit_list list_emitter (uiout, "cores");
684
685 for (int b : data.cores)
686 uiout->field_int (NULL, b);
687 }
688
689 if (top_data->recurse)
690 print_thread_info (uiout, NULL, inferior->pid);
691 }
692
693 return 0;
694 }
695
696 /* Output a field named 'cores' with a list as the value. The
697 elements of the list are obtained by splitting 'cores' on
698 comma. */
699
700 static void
701 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
702 {
703 ui_out_emit_list list_emitter (uiout, field_name);
704 gdb::unique_xmalloc_ptr<char> cores (xstrdup (xcores));
705 char *p = cores.get ();
706
707 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
708 uiout->field_string (NULL, p);
709 }
710
711 static void
712 free_vector_of_osdata_items (splay_tree_value xvalue)
713 {
714 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
715
716 /* We don't free the items itself, it will be done separately. */
717 VEC_free (osdata_item_s, value);
718 }
719
720 static int
721 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
722 {
723 int a = xa;
724 int b = xb;
725
726 return a - b;
727 }
728
729 static void
730 list_available_thread_groups (const std::set<int> &ids, int recurse)
731 {
732 struct osdata *data;
733 struct osdata_item *item;
734 int ix_items;
735 struct ui_out *uiout = current_uiout;
736 struct cleanup *cleanup;
737
738 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
739 The vector contains information about all threads for the given pid.
740 This is assigned an initial value to avoid "may be used uninitialized"
741 warning from gcc. */
742 gdb_splay_tree_up tree;
743
744 /* get_osdata will throw if it cannot return data. */
745 data = get_osdata ("processes");
746 cleanup = make_cleanup_osdata_free (data);
747
748 if (recurse)
749 {
750 struct osdata *threads = get_osdata ("threads");
751
752 make_cleanup_osdata_free (threads);
753 tree.reset (splay_tree_new (splay_tree_int_comparator,
754 NULL,
755 free_vector_of_osdata_items));
756
757 for (ix_items = 0;
758 VEC_iterate (osdata_item_s, threads->items,
759 ix_items, item);
760 ix_items++)
761 {
762 const char *pid = get_osdata_column (item, "pid");
763 int pid_i = strtoul (pid, NULL, 0);
764 VEC (osdata_item_s) *vec = 0;
765
766 splay_tree_node n = splay_tree_lookup (tree.get (), pid_i);
767 if (!n)
768 {
769 VEC_safe_push (osdata_item_s, vec, item);
770 splay_tree_insert (tree.get (), pid_i, (splay_tree_value)vec);
771 }
772 else
773 {
774 vec = (VEC (osdata_item_s) *) n->value;
775 VEC_safe_push (osdata_item_s, vec, item);
776 n->value = (splay_tree_value) vec;
777 }
778 }
779 }
780
781 ui_out_emit_list list_emitter (uiout, "groups");
782
783 for (ix_items = 0;
784 VEC_iterate (osdata_item_s, data->items,
785 ix_items, item);
786 ix_items++)
787 {
788 const char *pid = get_osdata_column (item, "pid");
789 const char *cmd = get_osdata_column (item, "command");
790 const char *user = get_osdata_column (item, "user");
791 const char *cores = get_osdata_column (item, "cores");
792
793 int pid_i = strtoul (pid, NULL, 0);
794
795 /* At present, the target will return all available processes
796 and if information about specific ones was required, we filter
797 undesired processes here. */
798 if (!ids.empty () && ids.find (pid_i) == ids.end ())
799 continue;
800
801 ui_out_emit_tuple tuple_emitter (uiout, NULL);
802
803 uiout->field_fmt ("id", "%s", pid);
804 uiout->field_string ("type", "process");
805 if (cmd)
806 uiout->field_string ("description", cmd);
807 if (user)
808 uiout->field_string ("user", user);
809 if (cores)
810 output_cores (uiout, "cores", cores);
811
812 if (recurse)
813 {
814 splay_tree_node n = splay_tree_lookup (tree.get (), pid_i);
815 if (n)
816 {
817 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
818 struct osdata_item *child;
819 int ix_child;
820
821 ui_out_emit_list thread_list_emitter (uiout, "threads");
822
823 for (ix_child = 0;
824 VEC_iterate (osdata_item_s, children, ix_child, child);
825 ++ix_child)
826 {
827 ui_out_emit_tuple tuple_emitter (uiout, NULL);
828 const char *tid = get_osdata_column (child, "tid");
829 const char *tcore = get_osdata_column (child, "core");
830
831 uiout->field_string ("id", tid);
832 if (tcore)
833 uiout->field_string ("core", tcore);
834 }
835 }
836 }
837 }
838
839 do_cleanups (cleanup);
840 }
841
842 void
843 mi_cmd_list_thread_groups (const char *command, char **argv, int argc)
844 {
845 struct ui_out *uiout = current_uiout;
846 int available = 0;
847 int recurse = 0;
848 std::set<int> ids;
849
850 enum opt
851 {
852 AVAILABLE_OPT, RECURSE_OPT
853 };
854 static const struct mi_opt opts[] =
855 {
856 {"-available", AVAILABLE_OPT, 0},
857 {"-recurse", RECURSE_OPT, 1},
858 { 0, 0, 0 }
859 };
860
861 int oind = 0;
862 char *oarg;
863
864 while (1)
865 {
866 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
867 &oind, &oarg);
868
869 if (opt < 0)
870 break;
871 switch ((enum opt) opt)
872 {
873 case AVAILABLE_OPT:
874 available = 1;
875 break;
876 case RECURSE_OPT:
877 if (strcmp (oarg, "0") == 0)
878 ;
879 else if (strcmp (oarg, "1") == 0)
880 recurse = 1;
881 else
882 error (_("only '0' and '1' are valid values "
883 "for the '--recurse' option"));
884 break;
885 }
886 }
887
888 for (; oind < argc; ++oind)
889 {
890 char *end;
891 int inf;
892
893 if (*(argv[oind]) != 'i')
894 error (_("invalid syntax of group id '%s'"), argv[oind]);
895
896 inf = strtoul (argv[oind] + 1, &end, 0);
897
898 if (*end != '\0')
899 error (_("invalid syntax of group id '%s'"), argv[oind]);
900 ids.insert (inf);
901 }
902
903 if (available)
904 {
905 list_available_thread_groups (ids, recurse);
906 }
907 else if (ids.size () == 1)
908 {
909 /* Local thread groups, single id. */
910 int id = *(ids.begin ());
911 struct inferior *inf = find_inferior_id (id);
912
913 if (!inf)
914 error (_("Non-existent thread group id '%d'"), id);
915
916 print_thread_info (uiout, NULL, inf->pid);
917 }
918 else
919 {
920 struct print_one_inferior_data data;
921
922 data.recurse = recurse;
923 data.inferiors = &ids;
924
925 /* Local thread groups. Either no explicit ids -- and we
926 print everything, or several explicit ids. In both cases,
927 we print more than one group, and have to use 'groups'
928 as the top-level element. */
929 ui_out_emit_list list_emitter (uiout, "groups");
930 update_thread_list ();
931 iterate_over_inferiors (print_one_inferior, &data);
932 }
933 }
934
935 void
936 mi_cmd_data_list_register_names (const char *command, char **argv, int argc)
937 {
938 struct gdbarch *gdbarch;
939 struct ui_out *uiout = current_uiout;
940 int regnum, numregs;
941 int i;
942
943 /* Note that the test for a valid register must include checking the
944 gdbarch_register_name because gdbarch_num_regs may be allocated
945 for the union of the register sets within a family of related
946 processors. In this case, some entries of gdbarch_register_name
947 will change depending upon the particular processor being
948 debugged. */
949
950 gdbarch = get_current_arch ();
951 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
952
953 ui_out_emit_list list_emitter (uiout, "register-names");
954
955 if (argc == 0) /* No args, just do all the regs. */
956 {
957 for (regnum = 0;
958 regnum < numregs;
959 regnum++)
960 {
961 if (gdbarch_register_name (gdbarch, regnum) == NULL
962 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
963 uiout->field_string (NULL, "");
964 else
965 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
966 }
967 }
968
969 /* Else, list of register #s, just do listed regs. */
970 for (i = 0; i < argc; i++)
971 {
972 regnum = atoi (argv[i]);
973 if (regnum < 0 || regnum >= numregs)
974 error (_("bad register number"));
975
976 if (gdbarch_register_name (gdbarch, regnum) == NULL
977 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
978 uiout->field_string (NULL, "");
979 else
980 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
981 }
982 }
983
984 void
985 mi_cmd_data_list_changed_registers (const char *command, char **argv, int argc)
986 {
987 static std::unique_ptr<struct regcache> this_regs;
988 struct ui_out *uiout = current_uiout;
989 std::unique_ptr<struct regcache> prev_regs;
990 struct gdbarch *gdbarch;
991 int regnum, numregs, changed;
992 int i;
993
994 /* The last time we visited this function, the current frame's
995 register contents were saved in THIS_REGS. Move THIS_REGS over
996 to PREV_REGS, and refresh THIS_REGS with the now-current register
997 contents. */
998
999 prev_regs = std::move (this_regs);
1000 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1001
1002 /* Note that the test for a valid register must include checking the
1003 gdbarch_register_name because gdbarch_num_regs may be allocated
1004 for the union of the register sets within a family of related
1005 processors. In this case, some entries of gdbarch_register_name
1006 will change depending upon the particular processor being
1007 debugged. */
1008
1009 gdbarch = this_regs->arch ();
1010 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1011
1012 ui_out_emit_list list_emitter (uiout, "changed-registers");
1013
1014 if (argc == 0)
1015 {
1016 /* No args, just do all the regs. */
1017 for (regnum = 0;
1018 regnum < numregs;
1019 regnum++)
1020 {
1021 if (gdbarch_register_name (gdbarch, regnum) == NULL
1022 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1023 continue;
1024 changed = register_changed_p (regnum, prev_regs.get (),
1025 this_regs.get ());
1026 if (changed < 0)
1027 error (_("-data-list-changed-registers: "
1028 "Unable to read register contents."));
1029 else if (changed)
1030 uiout->field_int (NULL, regnum);
1031 }
1032 }
1033
1034 /* Else, list of register #s, just do listed regs. */
1035 for (i = 0; i < argc; i++)
1036 {
1037 regnum = atoi (argv[i]);
1038
1039 if (regnum >= 0
1040 && regnum < numregs
1041 && gdbarch_register_name (gdbarch, regnum) != NULL
1042 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1043 {
1044 changed = register_changed_p (regnum, prev_regs.get (),
1045 this_regs.get ());
1046 if (changed < 0)
1047 error (_("-data-list-changed-registers: "
1048 "Unable to read register contents."));
1049 else if (changed)
1050 uiout->field_int (NULL, regnum);
1051 }
1052 else
1053 error (_("bad register number"));
1054 }
1055 }
1056
1057 static int
1058 register_changed_p (int regnum, struct regcache *prev_regs,
1059 struct regcache *this_regs)
1060 {
1061 struct gdbarch *gdbarch = this_regs->arch ();
1062 struct value *prev_value, *this_value;
1063 int ret;
1064
1065 /* First time through or after gdbarch change consider all registers
1066 as changed. */
1067 if (!prev_regs || prev_regs->arch () != gdbarch)
1068 return 1;
1069
1070 /* Get register contents and compare. */
1071 prev_value = prev_regs->cooked_read_value (regnum);
1072 this_value = this_regs->cooked_read_value (regnum);
1073 gdb_assert (prev_value != NULL);
1074 gdb_assert (this_value != NULL);
1075
1076 ret = value_contents_eq (prev_value, 0, this_value, 0,
1077 register_size (gdbarch, regnum)) == 0;
1078
1079 release_value (prev_value);
1080 release_value (this_value);
1081 value_free (prev_value);
1082 value_free (this_value);
1083 return ret;
1084 }
1085
1086 /* Return a list of register number and value pairs. The valid
1087 arguments expected are: a letter indicating the format in which to
1088 display the registers contents. This can be one of: x
1089 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1090 (raw). After the format argument there can be a sequence of
1091 numbers, indicating which registers to fetch the content of. If
1092 the format is the only argument, a list of all the registers with
1093 their values is returned. */
1094
1095 void
1096 mi_cmd_data_list_register_values (const char *command, char **argv, int argc)
1097 {
1098 struct ui_out *uiout = current_uiout;
1099 struct frame_info *frame;
1100 struct gdbarch *gdbarch;
1101 int regnum, numregs, format;
1102 int i;
1103 int skip_unavailable = 0;
1104 int oind = 0;
1105 enum opt
1106 {
1107 SKIP_UNAVAILABLE,
1108 };
1109 static const struct mi_opt opts[] =
1110 {
1111 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1112 { 0, 0, 0 }
1113 };
1114
1115 /* Note that the test for a valid register must include checking the
1116 gdbarch_register_name because gdbarch_num_regs may be allocated
1117 for the union of the register sets within a family of related
1118 processors. In this case, some entries of gdbarch_register_name
1119 will change depending upon the particular processor being
1120 debugged. */
1121
1122 while (1)
1123 {
1124 char *oarg;
1125 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1126 opts, &oind, &oarg);
1127
1128 if (opt < 0)
1129 break;
1130 switch ((enum opt) opt)
1131 {
1132 case SKIP_UNAVAILABLE:
1133 skip_unavailable = 1;
1134 break;
1135 }
1136 }
1137
1138 if (argc - oind < 1)
1139 error (_("-data-list-register-values: Usage: "
1140 "-data-list-register-values [--skip-unavailable] <format>"
1141 " [<regnum1>...<regnumN>]"));
1142
1143 format = (int) argv[oind][0];
1144
1145 frame = get_selected_frame (NULL);
1146 gdbarch = get_frame_arch (frame);
1147 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1148
1149 ui_out_emit_list list_emitter (uiout, "register-values");
1150
1151 if (argc - oind == 1)
1152 {
1153 /* No args, beside the format: do all the regs. */
1154 for (regnum = 0;
1155 regnum < numregs;
1156 regnum++)
1157 {
1158 if (gdbarch_register_name (gdbarch, regnum) == NULL
1159 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1160 continue;
1161
1162 output_register (frame, regnum, format, skip_unavailable);
1163 }
1164 }
1165
1166 /* Else, list of register #s, just do listed regs. */
1167 for (i = 1 + oind; i < argc; i++)
1168 {
1169 regnum = atoi (argv[i]);
1170
1171 if (regnum >= 0
1172 && regnum < numregs
1173 && gdbarch_register_name (gdbarch, regnum) != NULL
1174 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1175 output_register (frame, regnum, format, skip_unavailable);
1176 else
1177 error (_("bad register number"));
1178 }
1179 }
1180
1181 /* Output one register REGNUM's contents in the desired FORMAT. If
1182 SKIP_UNAVAILABLE is true, skip the register if it is
1183 unavailable. */
1184
1185 static void
1186 output_register (struct frame_info *frame, int regnum, int format,
1187 int skip_unavailable)
1188 {
1189 struct ui_out *uiout = current_uiout;
1190 struct value *val = value_of_register (regnum, frame);
1191 struct value_print_options opts;
1192
1193 if (skip_unavailable && !value_entirely_available (val))
1194 return;
1195
1196 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1197 uiout->field_int ("number", regnum);
1198
1199 if (format == 'N')
1200 format = 0;
1201
1202 if (format == 'r')
1203 format = 'z';
1204
1205 string_file stb;
1206
1207 get_formatted_print_options (&opts, format);
1208 opts.deref_ref = 1;
1209 val_print (value_type (val),
1210 value_embedded_offset (val), 0,
1211 &stb, 0, val, &opts, current_language);
1212 uiout->field_stream ("value", stb);
1213 }
1214
1215 /* Write given values into registers. The registers and values are
1216 given as pairs. The corresponding MI command is
1217 -data-write-register-values <format>
1218 [<regnum1> <value1>...<regnumN> <valueN>] */
1219 void
1220 mi_cmd_data_write_register_values (const char *command, char **argv, int argc)
1221 {
1222 struct regcache *regcache;
1223 struct gdbarch *gdbarch;
1224 int numregs, i;
1225
1226 /* Note that the test for a valid register must include checking the
1227 gdbarch_register_name because gdbarch_num_regs may be allocated
1228 for the union of the register sets within a family of related
1229 processors. In this case, some entries of gdbarch_register_name
1230 will change depending upon the particular processor being
1231 debugged. */
1232
1233 regcache = get_current_regcache ();
1234 gdbarch = regcache->arch ();
1235 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1236
1237 if (argc == 0)
1238 error (_("-data-write-register-values: Usage: -data-write-register-"
1239 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1240
1241 if (!target_has_registers)
1242 error (_("-data-write-register-values: No registers."));
1243
1244 if (!(argc - 1))
1245 error (_("-data-write-register-values: No regs and values specified."));
1246
1247 if ((argc - 1) % 2)
1248 error (_("-data-write-register-values: "
1249 "Regs and vals are not in pairs."));
1250
1251 for (i = 1; i < argc; i = i + 2)
1252 {
1253 int regnum = atoi (argv[i]);
1254
1255 if (regnum >= 0 && regnum < numregs
1256 && gdbarch_register_name (gdbarch, regnum)
1257 && *gdbarch_register_name (gdbarch, regnum))
1258 {
1259 LONGEST value;
1260
1261 /* Get the value as a number. */
1262 value = parse_and_eval_address (argv[i + 1]);
1263
1264 /* Write it down. */
1265 regcache_cooked_write_signed (regcache, regnum, value);
1266 }
1267 else
1268 error (_("bad register number"));
1269 }
1270 }
1271
1272 /* Evaluate the value of the argument. The argument is an
1273 expression. If the expression contains spaces it needs to be
1274 included in double quotes. */
1275
1276 void
1277 mi_cmd_data_evaluate_expression (const char *command, char **argv, int argc)
1278 {
1279 struct value *val;
1280 struct value_print_options opts;
1281 struct ui_out *uiout = current_uiout;
1282
1283 if (argc != 1)
1284 error (_("-data-evaluate-expression: "
1285 "Usage: -data-evaluate-expression expression"));
1286
1287 expression_up expr = parse_expression (argv[0]);
1288
1289 val = evaluate_expression (expr.get ());
1290
1291 string_file stb;
1292
1293 /* Print the result of the expression evaluation. */
1294 get_user_print_options (&opts);
1295 opts.deref_ref = 0;
1296 common_val_print (val, &stb, 0, &opts, current_language);
1297
1298 uiout->field_stream ("value", stb);
1299 }
1300
1301 /* This is the -data-read-memory command.
1302
1303 ADDR: start address of data to be dumped.
1304 WORD-FORMAT: a char indicating format for the ``word''. See
1305 the ``x'' command.
1306 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1307 NR_ROW: Number of rows.
1308 NR_COL: The number of colums (words per row).
1309 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1310 ASCHAR for unprintable characters.
1311
1312 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1313 displayes them. Returns:
1314
1315 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1316
1317 Returns:
1318 The number of bytes read is SIZE*ROW*COL. */
1319
1320 void
1321 mi_cmd_data_read_memory (const char *command, char **argv, int argc)
1322 {
1323 struct gdbarch *gdbarch = get_current_arch ();
1324 struct ui_out *uiout = current_uiout;
1325 CORE_ADDR addr;
1326 long total_bytes, nr_cols, nr_rows;
1327 char word_format;
1328 struct type *word_type;
1329 long word_size;
1330 char word_asize;
1331 char aschar;
1332 int nr_bytes;
1333 long offset = 0;
1334 int oind = 0;
1335 char *oarg;
1336 enum opt
1337 {
1338 OFFSET_OPT
1339 };
1340 static const struct mi_opt opts[] =
1341 {
1342 {"o", OFFSET_OPT, 1},
1343 { 0, 0, 0 }
1344 };
1345
1346 while (1)
1347 {
1348 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1349 &oind, &oarg);
1350
1351 if (opt < 0)
1352 break;
1353 switch ((enum opt) opt)
1354 {
1355 case OFFSET_OPT:
1356 offset = atol (oarg);
1357 break;
1358 }
1359 }
1360 argv += oind;
1361 argc -= oind;
1362
1363 if (argc < 5 || argc > 6)
1364 error (_("-data-read-memory: Usage: "
1365 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1366
1367 /* Extract all the arguments. */
1368
1369 /* Start address of the memory dump. */
1370 addr = parse_and_eval_address (argv[0]) + offset;
1371 /* The format character to use when displaying a memory word. See
1372 the ``x'' command. */
1373 word_format = argv[1][0];
1374 /* The size of the memory word. */
1375 word_size = atol (argv[2]);
1376 switch (word_size)
1377 {
1378 case 1:
1379 word_type = builtin_type (gdbarch)->builtin_int8;
1380 word_asize = 'b';
1381 break;
1382 case 2:
1383 word_type = builtin_type (gdbarch)->builtin_int16;
1384 word_asize = 'h';
1385 break;
1386 case 4:
1387 word_type = builtin_type (gdbarch)->builtin_int32;
1388 word_asize = 'w';
1389 break;
1390 case 8:
1391 word_type = builtin_type (gdbarch)->builtin_int64;
1392 word_asize = 'g';
1393 break;
1394 default:
1395 word_type = builtin_type (gdbarch)->builtin_int8;
1396 word_asize = 'b';
1397 }
1398 /* The number of rows. */
1399 nr_rows = atol (argv[3]);
1400 if (nr_rows <= 0)
1401 error (_("-data-read-memory: invalid number of rows."));
1402
1403 /* Number of bytes per row. */
1404 nr_cols = atol (argv[4]);
1405 if (nr_cols <= 0)
1406 error (_("-data-read-memory: invalid number of columns."));
1407
1408 /* The un-printable character when printing ascii. */
1409 if (argc == 6)
1410 aschar = *argv[5];
1411 else
1412 aschar = 0;
1413
1414 /* Create a buffer and read it in. */
1415 total_bytes = word_size * nr_rows * nr_cols;
1416
1417 gdb::byte_vector mbuf (total_bytes);
1418
1419 /* Dispatch memory reads to the topmost target, not the flattened
1420 current_target. */
1421 nr_bytes = target_read (current_target.beneath,
1422 TARGET_OBJECT_MEMORY, NULL, mbuf.data (),
1423 addr, total_bytes);
1424 if (nr_bytes <= 0)
1425 error (_("Unable to read memory."));
1426
1427 /* Output the header information. */
1428 uiout->field_core_addr ("addr", gdbarch, addr);
1429 uiout->field_int ("nr-bytes", nr_bytes);
1430 uiout->field_int ("total-bytes", total_bytes);
1431 uiout->field_core_addr ("next-row", gdbarch, addr + word_size * nr_cols);
1432 uiout->field_core_addr ("prev-row", gdbarch, addr - word_size * nr_cols);
1433 uiout->field_core_addr ("next-page", gdbarch, addr + total_bytes);
1434 uiout->field_core_addr ("prev-page", gdbarch, addr - total_bytes);
1435
1436 /* Build the result as a two dimentional table. */
1437 {
1438 int row;
1439 int row_byte;
1440
1441 string_file stream;
1442
1443 ui_out_emit_list list_emitter (uiout, "memory");
1444 for (row = 0, row_byte = 0;
1445 row < nr_rows;
1446 row++, row_byte += nr_cols * word_size)
1447 {
1448 int col;
1449 int col_byte;
1450 struct value_print_options opts;
1451
1452 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1453 uiout->field_core_addr ("addr", gdbarch, addr + row_byte);
1454 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1455 row_byte); */
1456 {
1457 ui_out_emit_list list_data_emitter (uiout, "data");
1458 get_formatted_print_options (&opts, word_format);
1459 for (col = 0, col_byte = row_byte;
1460 col < nr_cols;
1461 col++, col_byte += word_size)
1462 {
1463 if (col_byte + word_size > nr_bytes)
1464 {
1465 uiout->field_string (NULL, "N/A");
1466 }
1467 else
1468 {
1469 stream.clear ();
1470 print_scalar_formatted (&mbuf[col_byte], word_type, &opts,
1471 word_asize, &stream);
1472 uiout->field_stream (NULL, stream);
1473 }
1474 }
1475 }
1476
1477 if (aschar)
1478 {
1479 int byte;
1480
1481 stream.clear ();
1482 for (byte = row_byte;
1483 byte < row_byte + word_size * nr_cols; byte++)
1484 {
1485 if (byte >= nr_bytes)
1486 stream.putc ('X');
1487 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1488 stream.putc (aschar);
1489 else
1490 stream.putc (mbuf[byte]);
1491 }
1492 uiout->field_stream ("ascii", stream);
1493 }
1494 }
1495 }
1496 }
1497
1498 void
1499 mi_cmd_data_read_memory_bytes (const char *command, char **argv, int argc)
1500 {
1501 struct gdbarch *gdbarch = get_current_arch ();
1502 struct ui_out *uiout = current_uiout;
1503 CORE_ADDR addr;
1504 LONGEST length;
1505 long offset = 0;
1506 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1507 int oind = 0;
1508 char *oarg;
1509 enum opt
1510 {
1511 OFFSET_OPT
1512 };
1513 static const struct mi_opt opts[] =
1514 {
1515 {"o", OFFSET_OPT, 1},
1516 { 0, 0, 0 }
1517 };
1518
1519 while (1)
1520 {
1521 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1522 &oind, &oarg);
1523 if (opt < 0)
1524 break;
1525 switch ((enum opt) opt)
1526 {
1527 case OFFSET_OPT:
1528 offset = atol (oarg);
1529 break;
1530 }
1531 }
1532 argv += oind;
1533 argc -= oind;
1534
1535 if (argc != 2)
1536 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1537
1538 addr = parse_and_eval_address (argv[0]) + offset;
1539 length = atol (argv[1]);
1540
1541 std::vector<memory_read_result> result
1542 = read_memory_robust (current_target.beneath, addr, length);
1543
1544 if (result.size () == 0)
1545 error (_("Unable to read memory."));
1546
1547 ui_out_emit_list list_emitter (uiout, "memory");
1548 for (const memory_read_result &read_result : result)
1549 {
1550 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1551
1552 uiout->field_core_addr ("begin", gdbarch, read_result.begin);
1553 uiout->field_core_addr ("offset", gdbarch, read_result.begin - addr);
1554 uiout->field_core_addr ("end", gdbarch, read_result.end);
1555
1556 std::string data = bin2hex (read_result.data.get (),
1557 (read_result.end - read_result.begin)
1558 * unit_size);
1559 uiout->field_string ("contents", data.c_str ());
1560 }
1561 }
1562
1563 /* Implementation of the -data-write_memory command.
1564
1565 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1566 offset from the beginning of the memory grid row where the cell to
1567 be written is.
1568 ADDR: start address of the row in the memory grid where the memory
1569 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1570 the location to write to.
1571 FORMAT: a char indicating format for the ``word''. See
1572 the ``x'' command.
1573 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1574 VALUE: value to be written into the memory address.
1575
1576 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1577
1578 Prints nothing. */
1579
1580 void
1581 mi_cmd_data_write_memory (const char *command, char **argv, int argc)
1582 {
1583 struct gdbarch *gdbarch = get_current_arch ();
1584 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1585 CORE_ADDR addr;
1586 long word_size;
1587 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1588 enough when using a compiler other than GCC. */
1589 LONGEST value;
1590 long offset = 0;
1591 int oind = 0;
1592 char *oarg;
1593 enum opt
1594 {
1595 OFFSET_OPT
1596 };
1597 static const struct mi_opt opts[] =
1598 {
1599 {"o", OFFSET_OPT, 1},
1600 { 0, 0, 0 }
1601 };
1602
1603 while (1)
1604 {
1605 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1606 &oind, &oarg);
1607
1608 if (opt < 0)
1609 break;
1610 switch ((enum opt) opt)
1611 {
1612 case OFFSET_OPT:
1613 offset = atol (oarg);
1614 break;
1615 }
1616 }
1617 argv += oind;
1618 argc -= oind;
1619
1620 if (argc != 4)
1621 error (_("-data-write-memory: Usage: "
1622 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1623
1624 /* Extract all the arguments. */
1625 /* Start address of the memory dump. */
1626 addr = parse_and_eval_address (argv[0]);
1627 /* The size of the memory word. */
1628 word_size = atol (argv[2]);
1629
1630 /* Calculate the real address of the write destination. */
1631 addr += (offset * word_size);
1632
1633 /* Get the value as a number. */
1634 value = parse_and_eval_address (argv[3]);
1635 /* Get the value into an array. */
1636 gdb::byte_vector buffer (word_size);
1637 store_signed_integer (buffer.data (), word_size, byte_order, value);
1638 /* Write it down to memory. */
1639 write_memory_with_notification (addr, buffer.data (), word_size);
1640 }
1641
1642 /* Implementation of the -data-write-memory-bytes command.
1643
1644 ADDR: start address
1645 DATA: string of bytes to write at that address
1646 COUNT: number of bytes to be filled (decimal integer). */
1647
1648 void
1649 mi_cmd_data_write_memory_bytes (const char *command, char **argv, int argc)
1650 {
1651 CORE_ADDR addr;
1652 char *cdata;
1653 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1654 long int count_units;
1655 int unit_size;
1656
1657 if (argc != 2 && argc != 3)
1658 error (_("Usage: ADDR DATA [COUNT]."));
1659
1660 addr = parse_and_eval_address (argv[0]);
1661 cdata = argv[1];
1662 len_hex = strlen (cdata);
1663 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1664
1665 if (len_hex % (unit_size * 2) != 0)
1666 error (_("Hex-encoded '%s' must represent an integral number of "
1667 "addressable memory units."),
1668 cdata);
1669
1670 len_bytes = len_hex / 2;
1671 len_units = len_bytes / unit_size;
1672
1673 if (argc == 3)
1674 count_units = strtoul (argv[2], NULL, 10);
1675 else
1676 count_units = len_units;
1677
1678 gdb::byte_vector databuf (len_bytes);
1679
1680 for (i = 0; i < len_bytes; ++i)
1681 {
1682 int x;
1683 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1684 error (_("Invalid argument"));
1685 databuf[i] = (gdb_byte) x;
1686 }
1687
1688 gdb::byte_vector data;
1689 if (len_units < count_units)
1690 {
1691 /* Pattern is made of less units than count:
1692 repeat pattern to fill memory. */
1693 data = gdb::byte_vector (count_units * unit_size);
1694
1695 /* Number of times the pattern is entirely repeated. */
1696 steps = count_units / len_units;
1697 /* Number of remaining addressable memory units. */
1698 remaining_units = count_units % len_units;
1699 for (i = 0; i < steps; i++)
1700 memcpy (&data[i * len_bytes], &databuf[0], len_bytes);
1701
1702 if (remaining_units > 0)
1703 memcpy (&data[steps * len_bytes], &databuf[0],
1704 remaining_units * unit_size);
1705 }
1706 else
1707 {
1708 /* Pattern is longer than or equal to count:
1709 just copy count addressable memory units. */
1710 data = std::move (databuf);
1711 }
1712
1713 write_memory_with_notification (addr, data.data (), count_units);
1714 }
1715
1716 void
1717 mi_cmd_enable_timings (const char *command, char **argv, int argc)
1718 {
1719 if (argc == 0)
1720 do_timings = 1;
1721 else if (argc == 1)
1722 {
1723 if (strcmp (argv[0], "yes") == 0)
1724 do_timings = 1;
1725 else if (strcmp (argv[0], "no") == 0)
1726 do_timings = 0;
1727 else
1728 goto usage_error;
1729 }
1730 else
1731 goto usage_error;
1732
1733 return;
1734
1735 usage_error:
1736 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1737 }
1738
1739 void
1740 mi_cmd_list_features (const char *command, char **argv, int argc)
1741 {
1742 if (argc == 0)
1743 {
1744 struct ui_out *uiout = current_uiout;
1745
1746 ui_out_emit_list list_emitter (uiout, "features");
1747 uiout->field_string (NULL, "frozen-varobjs");
1748 uiout->field_string (NULL, "pending-breakpoints");
1749 uiout->field_string (NULL, "thread-info");
1750 uiout->field_string (NULL, "data-read-memory-bytes");
1751 uiout->field_string (NULL, "breakpoint-notifications");
1752 uiout->field_string (NULL, "ada-task-info");
1753 uiout->field_string (NULL, "language-option");
1754 uiout->field_string (NULL, "info-gdb-mi-command");
1755 uiout->field_string (NULL, "undefined-command-error-code");
1756 uiout->field_string (NULL, "exec-run-start-option");
1757
1758 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1759 uiout->field_string (NULL, "python");
1760
1761 return;
1762 }
1763
1764 error (_("-list-features should be passed no arguments"));
1765 }
1766
1767 void
1768 mi_cmd_list_target_features (const char *command, char **argv, int argc)
1769 {
1770 if (argc == 0)
1771 {
1772 struct ui_out *uiout = current_uiout;
1773
1774 ui_out_emit_list list_emitter (uiout, "features");
1775 if (mi_async_p ())
1776 uiout->field_string (NULL, "async");
1777 if (target_can_execute_reverse)
1778 uiout->field_string (NULL, "reverse");
1779 return;
1780 }
1781
1782 error (_("-list-target-features should be passed no arguments"));
1783 }
1784
1785 void
1786 mi_cmd_add_inferior (const char *command, char **argv, int argc)
1787 {
1788 struct inferior *inf;
1789
1790 if (argc != 0)
1791 error (_("-add-inferior should be passed no arguments"));
1792
1793 inf = add_inferior_with_spaces ();
1794
1795 current_uiout->field_fmt ("inferior", "i%d", inf->num);
1796 }
1797
1798 /* Callback used to find the first inferior other than the current
1799 one. */
1800
1801 static int
1802 get_other_inferior (struct inferior *inf, void *arg)
1803 {
1804 if (inf == current_inferior ())
1805 return 0;
1806
1807 return 1;
1808 }
1809
1810 void
1811 mi_cmd_remove_inferior (const char *command, char **argv, int argc)
1812 {
1813 int id;
1814 struct inferior *inf;
1815
1816 if (argc != 1)
1817 error (_("-remove-inferior should be passed a single argument"));
1818
1819 if (sscanf (argv[0], "i%d", &id) != 1)
1820 error (_("the thread group id is syntactically invalid"));
1821
1822 inf = find_inferior_id (id);
1823 if (!inf)
1824 error (_("the specified thread group does not exist"));
1825
1826 if (inf->pid != 0)
1827 error (_("cannot remove an active inferior"));
1828
1829 if (inf == current_inferior ())
1830 {
1831 struct thread_info *tp = 0;
1832 struct inferior *new_inferior
1833 = iterate_over_inferiors (get_other_inferior, NULL);
1834
1835 if (new_inferior == NULL)
1836 error (_("Cannot remove last inferior"));
1837
1838 set_current_inferior (new_inferior);
1839 if (new_inferior->pid != 0)
1840 tp = any_thread_of_process (new_inferior->pid);
1841 switch_to_thread (tp ? tp->ptid : null_ptid);
1842 set_current_program_space (new_inferior->pspace);
1843 }
1844
1845 delete_inferior (inf);
1846 }
1847
1848 \f
1849
1850 /* Execute a command within a safe environment.
1851 Return <0 for error; >=0 for ok.
1852
1853 args->action will tell mi_execute_command what action
1854 to perform after the given command has executed (display/suppress
1855 prompt, display error). */
1856
1857 static void
1858 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1859 {
1860 struct mi_interp *mi = (struct mi_interp *) command_interp ();
1861
1862 if (do_timings)
1863 current_command_ts = context->cmd_start;
1864
1865 scoped_restore save_token = make_scoped_restore (&current_token,
1866 context->token);
1867
1868 running_result_record_printed = 0;
1869 mi_proceeded = 0;
1870 switch (context->op)
1871 {
1872 case MI_COMMAND:
1873 /* A MI command was read from the input stream. */
1874 if (mi_debug_p)
1875 /* FIXME: gdb_???? */
1876 fprintf_unfiltered (mi->raw_stdout,
1877 " token=`%s' command=`%s' args=`%s'\n",
1878 context->token, context->command, context->args);
1879
1880 mi_cmd_execute (context);
1881
1882 /* Print the result if there were no errors.
1883
1884 Remember that on the way out of executing a command, you have
1885 to directly use the mi_interp's uiout, since the command
1886 could have reset the interpreter, in which case the current
1887 uiout will most likely crash in the mi_out_* routines. */
1888 if (!running_result_record_printed)
1889 {
1890 fputs_unfiltered (context->token, mi->raw_stdout);
1891 /* There's no particularly good reason why target-connect results
1892 in not ^done. Should kill ^connected for MI3. */
1893 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1894 ? "^connected" : "^done", mi->raw_stdout);
1895 mi_out_put (uiout, mi->raw_stdout);
1896 mi_out_rewind (uiout);
1897 mi_print_timing_maybe (mi->raw_stdout);
1898 fputs_unfiltered ("\n", mi->raw_stdout);
1899 }
1900 else
1901 /* The command does not want anything to be printed. In that
1902 case, the command probably should not have written anything
1903 to uiout, but in case it has written something, discard it. */
1904 mi_out_rewind (uiout);
1905 break;
1906
1907 case CLI_COMMAND:
1908 {
1909 char *argv[2];
1910
1911 /* A CLI command was read from the input stream. */
1912 /* This "feature" will be removed as soon as we have a
1913 complete set of mi commands. */
1914 /* Echo the command on the console. */
1915 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1916 /* Call the "console" interpreter. */
1917 argv[0] = (char *) INTERP_CONSOLE;
1918 argv[1] = context->command;
1919 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1920
1921 /* If we changed interpreters, DON'T print out anything. */
1922 if (current_interp_named_p (INTERP_MI)
1923 || current_interp_named_p (INTERP_MI1)
1924 || current_interp_named_p (INTERP_MI2)
1925 || current_interp_named_p (INTERP_MI3))
1926 {
1927 if (!running_result_record_printed)
1928 {
1929 fputs_unfiltered (context->token, mi->raw_stdout);
1930 fputs_unfiltered ("^done", mi->raw_stdout);
1931 mi_out_put (uiout, mi->raw_stdout);
1932 mi_out_rewind (uiout);
1933 mi_print_timing_maybe (mi->raw_stdout);
1934 fputs_unfiltered ("\n", mi->raw_stdout);
1935 }
1936 else
1937 mi_out_rewind (uiout);
1938 }
1939 break;
1940 }
1941 }
1942 }
1943
1944 /* Print a gdb exception to the MI output stream. */
1945
1946 static void
1947 mi_print_exception (const char *token, struct gdb_exception exception)
1948 {
1949 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
1950
1951 fputs_unfiltered (token, mi->raw_stdout);
1952 fputs_unfiltered ("^error,msg=\"", mi->raw_stdout);
1953 if (exception.message == NULL)
1954 fputs_unfiltered ("unknown error", mi->raw_stdout);
1955 else
1956 fputstr_unfiltered (exception.message, '"', mi->raw_stdout);
1957 fputs_unfiltered ("\"", mi->raw_stdout);
1958
1959 switch (exception.error)
1960 {
1961 case UNDEFINED_COMMAND_ERROR:
1962 fputs_unfiltered (",code=\"undefined-command\"", mi->raw_stdout);
1963 break;
1964 }
1965
1966 fputs_unfiltered ("\n", mi->raw_stdout);
1967 }
1968
1969 /* Determine whether the parsed command already notifies the
1970 user_selected_context_changed observer. */
1971
1972 static int
1973 command_notifies_uscc_observer (struct mi_parse *command)
1974 {
1975 if (command->op == CLI_COMMAND)
1976 {
1977 /* CLI commands "thread" and "inferior" already send it. */
1978 return (strncmp (command->command, "thread ", 7) == 0
1979 || strncmp (command->command, "inferior ", 9) == 0);
1980 }
1981 else /* MI_COMMAND */
1982 {
1983 if (strcmp (command->command, "interpreter-exec") == 0
1984 && command->argc > 1)
1985 {
1986 /* "thread" and "inferior" again, but through -interpreter-exec. */
1987 return (strncmp (command->argv[1], "thread ", 7) == 0
1988 || strncmp (command->argv[1], "inferior ", 9) == 0);
1989 }
1990
1991 else
1992 /* -thread-select already sends it. */
1993 return strcmp (command->command, "thread-select") == 0;
1994 }
1995 }
1996
1997 void
1998 mi_execute_command (const char *cmd, int from_tty)
1999 {
2000 char *token;
2001 std::unique_ptr<struct mi_parse> command;
2002
2003 /* This is to handle EOF (^D). We just quit gdb. */
2004 /* FIXME: we should call some API function here. */
2005 if (cmd == 0)
2006 quit_force (NULL, from_tty);
2007
2008 target_log_command (cmd);
2009
2010 TRY
2011 {
2012 command = mi_parse (cmd, &token);
2013 }
2014 CATCH (exception, RETURN_MASK_ALL)
2015 {
2016 mi_print_exception (token, exception);
2017 xfree (token);
2018 }
2019 END_CATCH
2020
2021 if (command != NULL)
2022 {
2023 ptid_t previous_ptid = inferior_ptid;
2024
2025 gdb::optional<scoped_restore_tmpl<int>> restore_suppress;
2026
2027 if (command->cmd != NULL && command->cmd->suppress_notification != NULL)
2028 restore_suppress.emplace (command->cmd->suppress_notification, 1);
2029
2030 command->token = token;
2031
2032 if (do_timings)
2033 {
2034 command->cmd_start = new mi_timestamp ();
2035 timestamp (command->cmd_start);
2036 }
2037
2038 TRY
2039 {
2040 captured_mi_execute_command (current_uiout, command.get ());
2041 }
2042 CATCH (result, RETURN_MASK_ALL)
2043 {
2044 /* Like in start_event_loop, enable input and force display
2045 of the prompt. Otherwise, any command that calls
2046 async_disable_stdin, and then throws, will leave input
2047 disabled. */
2048 async_enable_stdin ();
2049 current_ui->prompt_state = PROMPT_NEEDED;
2050
2051 /* The command execution failed and error() was called
2052 somewhere. */
2053 mi_print_exception (command->token, result);
2054 mi_out_rewind (current_uiout);
2055 }
2056 END_CATCH
2057
2058 bpstat_do_actions ();
2059
2060 if (/* The notifications are only output when the top-level
2061 interpreter (specified on the command line) is MI. */
2062 interp_ui_out (top_level_interpreter ())->is_mi_like_p ()
2063 /* Don't try report anything if there are no threads --
2064 the program is dead. */
2065 && thread_count () != 0
2066 /* If the command already reports the thread change, no need to do it
2067 again. */
2068 && !command_notifies_uscc_observer (command.get ()))
2069 {
2070 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter ();
2071 int report_change = 0;
2072
2073 if (command->thread == -1)
2074 {
2075 report_change = (!ptid_equal (previous_ptid, null_ptid)
2076 && !ptid_equal (inferior_ptid, previous_ptid)
2077 && !ptid_equal (inferior_ptid, null_ptid));
2078 }
2079 else if (!ptid_equal (inferior_ptid, null_ptid))
2080 {
2081 struct thread_info *ti = inferior_thread ();
2082
2083 report_change = (ti->global_num != command->thread);
2084 }
2085
2086 if (report_change)
2087 {
2088 observer_notify_user_selected_context_changed
2089 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
2090 }
2091 }
2092 }
2093 }
2094
2095 static void
2096 mi_cmd_execute (struct mi_parse *parse)
2097 {
2098 scoped_value_mark cleanup = prepare_execute_command ();
2099
2100 if (parse->all && parse->thread_group != -1)
2101 error (_("Cannot specify --thread-group together with --all"));
2102
2103 if (parse->all && parse->thread != -1)
2104 error (_("Cannot specify --thread together with --all"));
2105
2106 if (parse->thread_group != -1 && parse->thread != -1)
2107 error (_("Cannot specify --thread together with --thread-group"));
2108
2109 if (parse->frame != -1 && parse->thread == -1)
2110 error (_("Cannot specify --frame without --thread"));
2111
2112 if (parse->thread_group != -1)
2113 {
2114 struct inferior *inf = find_inferior_id (parse->thread_group);
2115 struct thread_info *tp = 0;
2116
2117 if (!inf)
2118 error (_("Invalid thread group for the --thread-group option"));
2119
2120 set_current_inferior (inf);
2121 /* This behaviour means that if --thread-group option identifies
2122 an inferior with multiple threads, then a random one will be
2123 picked. This is not a problem -- frontend should always
2124 provide --thread if it wishes to operate on a specific
2125 thread. */
2126 if (inf->pid != 0)
2127 tp = any_live_thread_of_process (inf->pid);
2128 switch_to_thread (tp ? tp->ptid : null_ptid);
2129 set_current_program_space (inf->pspace);
2130 }
2131
2132 if (parse->thread != -1)
2133 {
2134 struct thread_info *tp = find_thread_global_id (parse->thread);
2135
2136 if (!tp)
2137 error (_("Invalid thread id: %d"), parse->thread);
2138
2139 if (is_exited (tp->ptid))
2140 error (_("Thread id: %d has terminated"), parse->thread);
2141
2142 switch_to_thread (tp->ptid);
2143 }
2144
2145 if (parse->frame != -1)
2146 {
2147 struct frame_info *fid;
2148 int frame = parse->frame;
2149
2150 fid = find_relative_frame (get_current_frame (), &frame);
2151 if (frame == 0)
2152 /* find_relative_frame was successful */
2153 select_frame (fid);
2154 else
2155 error (_("Invalid frame id: %d"), frame);
2156 }
2157
2158 gdb::optional<scoped_restore_current_language> lang_saver;
2159 if (parse->language != language_unknown)
2160 {
2161 lang_saver.emplace ();
2162 set_language (parse->language);
2163 }
2164
2165 current_context = parse;
2166
2167 if (parse->cmd->argv_func != NULL)
2168 {
2169 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2170 }
2171 else if (parse->cmd->cli.cmd != 0)
2172 {
2173 /* FIXME: DELETE THIS. */
2174 /* The operation is still implemented by a cli command. */
2175 /* Must be a synchronous one. */
2176 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2177 parse->args);
2178 }
2179 else
2180 {
2181 /* FIXME: DELETE THIS. */
2182 string_file stb;
2183
2184 stb.puts ("Undefined mi command: ");
2185 stb.putstr (parse->command, '"');
2186 stb.puts (" (missing implementation)");
2187
2188 error_stream (stb);
2189 }
2190 }
2191
2192 /* FIXME: This is just a hack so we can get some extra commands going.
2193 We don't want to channel things through the CLI, but call libgdb directly.
2194 Use only for synchronous commands. */
2195
2196 void
2197 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2198 {
2199 if (cmd != 0)
2200 {
2201 std::string run = cmd;
2202
2203 if (args_p)
2204 run = run + " " + args;
2205 if (mi_debug_p)
2206 /* FIXME: gdb_???? */
2207 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2208 cmd, run.c_str ());
2209 execute_command (run.c_str (), 0 /* from_tty */ );
2210 }
2211 }
2212
2213 void
2214 mi_execute_async_cli_command (const char *cli_command, char **argv, int argc)
2215 {
2216 std::string run = cli_command;
2217
2218 if (argc)
2219 run = run + " " + *argv;
2220 if (mi_async_p ())
2221 run += "&";
2222
2223 execute_command (run.c_str (), 0 /* from_tty */ );
2224 }
2225
2226 void
2227 mi_load_progress (const char *section_name,
2228 unsigned long sent_so_far,
2229 unsigned long total_section,
2230 unsigned long total_sent,
2231 unsigned long grand_total)
2232 {
2233 using namespace std::chrono;
2234 static steady_clock::time_point last_update;
2235 static char *previous_sect_name = NULL;
2236 int new_section;
2237 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
2238
2239 /* This function is called through deprecated_show_load_progress
2240 which means uiout may not be correct. Fix it for the duration
2241 of this function. */
2242
2243 std::unique_ptr<ui_out> uiout;
2244
2245 if (current_interp_named_p (INTERP_MI)
2246 || current_interp_named_p (INTERP_MI2))
2247 uiout.reset (mi_out_new (2));
2248 else if (current_interp_named_p (INTERP_MI1))
2249 uiout.reset (mi_out_new (1));
2250 else if (current_interp_named_p (INTERP_MI3))
2251 uiout.reset (mi_out_new (3));
2252 else
2253 return;
2254
2255 scoped_restore save_uiout
2256 = make_scoped_restore (&current_uiout, uiout.get ());
2257
2258 new_section = (previous_sect_name ?
2259 strcmp (previous_sect_name, section_name) : 1);
2260 if (new_section)
2261 {
2262 xfree (previous_sect_name);
2263 previous_sect_name = xstrdup (section_name);
2264
2265 if (current_token)
2266 fputs_unfiltered (current_token, mi->raw_stdout);
2267 fputs_unfiltered ("+download", mi->raw_stdout);
2268 {
2269 ui_out_emit_tuple tuple_emitter (uiout.get (), NULL);
2270 uiout->field_string ("section", section_name);
2271 uiout->field_int ("section-size", total_section);
2272 uiout->field_int ("total-size", grand_total);
2273 }
2274 mi_out_put (uiout.get (), mi->raw_stdout);
2275 fputs_unfiltered ("\n", mi->raw_stdout);
2276 gdb_flush (mi->raw_stdout);
2277 }
2278
2279 steady_clock::time_point time_now = steady_clock::now ();
2280 if (time_now - last_update > milliseconds (500))
2281 {
2282 last_update = time_now;
2283 if (current_token)
2284 fputs_unfiltered (current_token, mi->raw_stdout);
2285 fputs_unfiltered ("+download", mi->raw_stdout);
2286 {
2287 ui_out_emit_tuple tuple_emitter (uiout.get (), NULL);
2288 uiout->field_string ("section", section_name);
2289 uiout->field_int ("section-sent", sent_so_far);
2290 uiout->field_int ("section-size", total_section);
2291 uiout->field_int ("total-sent", total_sent);
2292 uiout->field_int ("total-size", grand_total);
2293 }
2294 mi_out_put (uiout.get (), mi->raw_stdout);
2295 fputs_unfiltered ("\n", mi->raw_stdout);
2296 gdb_flush (mi->raw_stdout);
2297 }
2298 }
2299
2300 static void
2301 timestamp (struct mi_timestamp *tv)
2302 {
2303 using namespace std::chrono;
2304
2305 tv->wallclock = steady_clock::now ();
2306 run_time_clock::now (tv->utime, tv->stime);
2307 }
2308
2309 static void
2310 print_diff_now (struct ui_file *file, struct mi_timestamp *start)
2311 {
2312 struct mi_timestamp now;
2313
2314 timestamp (&now);
2315 print_diff (file, start, &now);
2316 }
2317
2318 void
2319 mi_print_timing_maybe (struct ui_file *file)
2320 {
2321 /* If the command is -enable-timing then do_timings may be true
2322 whilst current_command_ts is not initialized. */
2323 if (do_timings && current_command_ts)
2324 print_diff_now (file, current_command_ts);
2325 }
2326
2327 static void
2328 print_diff (struct ui_file *file, struct mi_timestamp *start,
2329 struct mi_timestamp *end)
2330 {
2331 using namespace std::chrono;
2332
2333 duration<double> wallclock = end->wallclock - start->wallclock;
2334 duration<double> utime = end->utime - start->utime;
2335 duration<double> stime = end->stime - start->stime;
2336
2337 fprintf_unfiltered
2338 (file,
2339 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2340 wallclock.count (), utime.count (), stime.count ());
2341 }
2342
2343 void
2344 mi_cmd_trace_define_variable (const char *command, char **argv, int argc)
2345 {
2346 LONGEST initval = 0;
2347 struct trace_state_variable *tsv;
2348 char *name = 0;
2349
2350 if (argc != 1 && argc != 2)
2351 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2352
2353 name = argv[0];
2354 if (*name++ != '$')
2355 error (_("Name of trace variable should start with '$'"));
2356
2357 validate_trace_state_variable_name (name);
2358
2359 tsv = find_trace_state_variable (name);
2360 if (!tsv)
2361 tsv = create_trace_state_variable (name);
2362
2363 if (argc == 2)
2364 initval = value_as_long (parse_and_eval (argv[1]));
2365
2366 tsv->initial_value = initval;
2367 }
2368
2369 void
2370 mi_cmd_trace_list_variables (const char *command, char **argv, int argc)
2371 {
2372 if (argc != 0)
2373 error (_("-trace-list-variables: no arguments allowed"));
2374
2375 tvariables_info_1 ();
2376 }
2377
2378 void
2379 mi_cmd_trace_find (const char *command, char **argv, int argc)
2380 {
2381 char *mode;
2382
2383 if (argc == 0)
2384 error (_("trace selection mode is required"));
2385
2386 mode = argv[0];
2387
2388 if (strcmp (mode, "none") == 0)
2389 {
2390 tfind_1 (tfind_number, -1, 0, 0, 0);
2391 return;
2392 }
2393
2394 check_trace_running (current_trace_status ());
2395
2396 if (strcmp (mode, "frame-number") == 0)
2397 {
2398 if (argc != 2)
2399 error (_("frame number is required"));
2400 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2401 }
2402 else if (strcmp (mode, "tracepoint-number") == 0)
2403 {
2404 if (argc != 2)
2405 error (_("tracepoint number is required"));
2406 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2407 }
2408 else if (strcmp (mode, "pc") == 0)
2409 {
2410 if (argc != 2)
2411 error (_("PC is required"));
2412 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2413 }
2414 else if (strcmp (mode, "pc-inside-range") == 0)
2415 {
2416 if (argc != 3)
2417 error (_("Start and end PC are required"));
2418 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2419 parse_and_eval_address (argv[2]), 0);
2420 }
2421 else if (strcmp (mode, "pc-outside-range") == 0)
2422 {
2423 if (argc != 3)
2424 error (_("Start and end PC are required"));
2425 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2426 parse_and_eval_address (argv[2]), 0);
2427 }
2428 else if (strcmp (mode, "line") == 0)
2429 {
2430 if (argc != 2)
2431 error (_("Line is required"));
2432
2433 std::vector<symtab_and_line> sals
2434 = decode_line_with_current_source (argv[1],
2435 DECODE_LINE_FUNFIRSTLINE);
2436 const symtab_and_line &sal = sals[0];
2437
2438 if (sal.symtab == 0)
2439 error (_("Could not find the specified line"));
2440
2441 CORE_ADDR start_pc, end_pc;
2442 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2443 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2444 else
2445 error (_("Could not find the specified line"));
2446 }
2447 else
2448 error (_("Invalid mode '%s'"), mode);
2449
2450 if (has_stack_frames () || get_traceframe_number () >= 0)
2451 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2452 }
2453
2454 void
2455 mi_cmd_trace_save (const char *command, char **argv, int argc)
2456 {
2457 int target_saves = 0;
2458 int generate_ctf = 0;
2459 char *filename;
2460 int oind = 0;
2461 char *oarg;
2462
2463 enum opt
2464 {
2465 TARGET_SAVE_OPT, CTF_OPT
2466 };
2467 static const struct mi_opt opts[] =
2468 {
2469 {"r", TARGET_SAVE_OPT, 0},
2470 {"ctf", CTF_OPT, 0},
2471 { 0, 0, 0 }
2472 };
2473
2474 while (1)
2475 {
2476 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2477 &oind, &oarg);
2478
2479 if (opt < 0)
2480 break;
2481 switch ((enum opt) opt)
2482 {
2483 case TARGET_SAVE_OPT:
2484 target_saves = 1;
2485 break;
2486 case CTF_OPT:
2487 generate_ctf = 1;
2488 break;
2489 }
2490 }
2491
2492 if (argc - oind != 1)
2493 error (_("Exactly one argument required "
2494 "(file in which to save trace data)"));
2495
2496 filename = argv[oind];
2497
2498 if (generate_ctf)
2499 trace_save_ctf (filename, target_saves);
2500 else
2501 trace_save_tfile (filename, target_saves);
2502 }
2503
2504 void
2505 mi_cmd_trace_start (const char *command, char **argv, int argc)
2506 {
2507 start_tracing (NULL);
2508 }
2509
2510 void
2511 mi_cmd_trace_status (const char *command, char **argv, int argc)
2512 {
2513 trace_status_mi (0);
2514 }
2515
2516 void
2517 mi_cmd_trace_stop (const char *command, char **argv, int argc)
2518 {
2519 stop_tracing (NULL);
2520 trace_status_mi (1);
2521 }
2522
2523 /* Implement the "-ada-task-info" command. */
2524
2525 void
2526 mi_cmd_ada_task_info (const char *command, char **argv, int argc)
2527 {
2528 if (argc != 0 && argc != 1)
2529 error (_("Invalid MI command"));
2530
2531 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2532 }
2533
2534 /* Print EXPRESSION according to VALUES. */
2535
2536 static void
2537 print_variable_or_computed (const char *expression, enum print_values values)
2538 {
2539 struct value *val;
2540 struct type *type;
2541 struct ui_out *uiout = current_uiout;
2542
2543 string_file stb;
2544
2545 expression_up expr = parse_expression (expression);
2546
2547 if (values == PRINT_SIMPLE_VALUES)
2548 val = evaluate_type (expr.get ());
2549 else
2550 val = evaluate_expression (expr.get ());
2551
2552 gdb::optional<ui_out_emit_tuple> tuple_emitter;
2553 if (values != PRINT_NO_VALUES)
2554 tuple_emitter.emplace (uiout, nullptr);
2555 uiout->field_string ("name", expression);
2556
2557 switch (values)
2558 {
2559 case PRINT_SIMPLE_VALUES:
2560 type = check_typedef (value_type (val));
2561 type_print (value_type (val), "", &stb, -1);
2562 uiout->field_stream ("type", stb);
2563 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2564 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2565 && TYPE_CODE (type) != TYPE_CODE_UNION)
2566 {
2567 struct value_print_options opts;
2568
2569 get_no_prettyformat_print_options (&opts);
2570 opts.deref_ref = 1;
2571 common_val_print (val, &stb, 0, &opts, current_language);
2572 uiout->field_stream ("value", stb);
2573 }
2574 break;
2575 case PRINT_ALL_VALUES:
2576 {
2577 struct value_print_options opts;
2578
2579 get_no_prettyformat_print_options (&opts);
2580 opts.deref_ref = 1;
2581 common_val_print (val, &stb, 0, &opts, current_language);
2582 uiout->field_stream ("value", stb);
2583 }
2584 break;
2585 }
2586 }
2587
2588 /* Implement the "-trace-frame-collected" command. */
2589
2590 void
2591 mi_cmd_trace_frame_collected (const char *command, char **argv, int argc)
2592 {
2593 struct bp_location *tloc;
2594 int stepping_frame;
2595 struct collection_list *clist;
2596 struct collection_list tracepoint_list, stepping_list;
2597 struct traceframe_info *tinfo;
2598 int oind = 0;
2599 enum print_values var_print_values = PRINT_ALL_VALUES;
2600 enum print_values comp_print_values = PRINT_ALL_VALUES;
2601 int registers_format = 'x';
2602 int memory_contents = 0;
2603 struct ui_out *uiout = current_uiout;
2604 enum opt
2605 {
2606 VAR_PRINT_VALUES,
2607 COMP_PRINT_VALUES,
2608 REGISTERS_FORMAT,
2609 MEMORY_CONTENTS,
2610 };
2611 static const struct mi_opt opts[] =
2612 {
2613 {"-var-print-values", VAR_PRINT_VALUES, 1},
2614 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2615 {"-registers-format", REGISTERS_FORMAT, 1},
2616 {"-memory-contents", MEMORY_CONTENTS, 0},
2617 { 0, 0, 0 }
2618 };
2619
2620 while (1)
2621 {
2622 char *oarg;
2623 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2624 &oind, &oarg);
2625 if (opt < 0)
2626 break;
2627 switch ((enum opt) opt)
2628 {
2629 case VAR_PRINT_VALUES:
2630 var_print_values = mi_parse_print_values (oarg);
2631 break;
2632 case COMP_PRINT_VALUES:
2633 comp_print_values = mi_parse_print_values (oarg);
2634 break;
2635 case REGISTERS_FORMAT:
2636 registers_format = oarg[0];
2637 case MEMORY_CONTENTS:
2638 memory_contents = 1;
2639 break;
2640 }
2641 }
2642
2643 if (oind != argc)
2644 error (_("Usage: -trace-frame-collected "
2645 "[--var-print-values PRINT_VALUES] "
2646 "[--comp-print-values PRINT_VALUES] "
2647 "[--registers-format FORMAT]"
2648 "[--memory-contents]"));
2649
2650 /* This throws an error is not inspecting a trace frame. */
2651 tloc = get_traceframe_location (&stepping_frame);
2652
2653 /* This command only makes sense for the current frame, not the
2654 selected frame. */
2655 scoped_restore_current_thread restore_thread;
2656 select_frame (get_current_frame ());
2657
2658 encode_actions (tloc, &tracepoint_list, &stepping_list);
2659
2660 if (stepping_frame)
2661 clist = &stepping_list;
2662 else
2663 clist = &tracepoint_list;
2664
2665 tinfo = get_traceframe_info ();
2666
2667 /* Explicitly wholly collected variables. */
2668 {
2669 int i;
2670
2671 ui_out_emit_list list_emitter (uiout, "explicit-variables");
2672 const std::vector<std::string> &wholly_collected
2673 = clist->wholly_collected ();
2674 for (size_t i = 0; i < wholly_collected.size (); i++)
2675 {
2676 const std::string &str = wholly_collected[i];
2677 print_variable_or_computed (str.c_str (), var_print_values);
2678 }
2679 }
2680
2681 /* Computed expressions. */
2682 {
2683 char *p;
2684 int i;
2685
2686 ui_out_emit_list list_emitter (uiout, "computed-expressions");
2687
2688 const std::vector<std::string> &computed = clist->computed ();
2689 for (size_t i = 0; i < computed.size (); i++)
2690 {
2691 const std::string &str = computed[i];
2692 print_variable_or_computed (str.c_str (), comp_print_values);
2693 }
2694 }
2695
2696 /* Registers. Given pseudo-registers, and that some architectures
2697 (like MIPS) actually hide the raw registers, we don't go through
2698 the trace frame info, but instead consult the register cache for
2699 register availability. */
2700 {
2701 struct frame_info *frame;
2702 struct gdbarch *gdbarch;
2703 int regnum;
2704 int numregs;
2705
2706 ui_out_emit_list list_emitter (uiout, "registers");
2707
2708 frame = get_selected_frame (NULL);
2709 gdbarch = get_frame_arch (frame);
2710 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2711
2712 for (regnum = 0; regnum < numregs; regnum++)
2713 {
2714 if (gdbarch_register_name (gdbarch, regnum) == NULL
2715 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2716 continue;
2717
2718 output_register (frame, regnum, registers_format, 1);
2719 }
2720 }
2721
2722 /* Trace state variables. */
2723 {
2724 ui_out_emit_list list_emitter (uiout, "tvars");
2725
2726 for (int tvar : tinfo->tvars)
2727 {
2728 struct trace_state_variable *tsv;
2729
2730 tsv = find_trace_state_variable_by_number (tvar);
2731
2732 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2733
2734 if (tsv != NULL)
2735 {
2736 uiout->field_fmt ("name", "$%s", tsv->name);
2737
2738 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2739 &tsv->value);
2740 uiout->field_int ("current", tsv->value);
2741 }
2742 else
2743 {
2744 uiout->field_skip ("name");
2745 uiout->field_skip ("current");
2746 }
2747 }
2748 }
2749
2750 /* Memory. */
2751 {
2752 std::vector<mem_range> available_memory;
2753
2754 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2755
2756 ui_out_emit_list list_emitter (uiout, "memory");
2757
2758 for (const mem_range &r : available_memory)
2759 {
2760 struct gdbarch *gdbarch = target_gdbarch ();
2761
2762 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2763
2764 uiout->field_core_addr ("address", gdbarch, r.start);
2765 uiout->field_int ("length", r.length);
2766
2767 gdb::byte_vector data (r.length);
2768
2769 if (memory_contents)
2770 {
2771 if (target_read_memory (r.start, data.data (), r.length) == 0)
2772 {
2773 std::string data_str = bin2hex (data.data (), r.length);
2774 uiout->field_string ("contents", data_str.c_str ());
2775 }
2776 else
2777 uiout->field_skip ("contents");
2778 }
2779 }
2780 }
2781 }
2782
2783 void
2784 _initialize_mi_main (void)
2785 {
2786 struct cmd_list_element *c;
2787
2788 add_setshow_boolean_cmd ("mi-async", class_run,
2789 &mi_async_1, _("\
2790 Set whether MI asynchronous mode is enabled."), _("\
2791 Show whether MI asynchronous mode is enabled."), _("\
2792 Tells GDB whether MI should be in asynchronous mode."),
2793 set_mi_async_command,
2794 show_mi_async_command,
2795 &setlist,
2796 &showlist);
2797
2798 /* Alias old "target-async" to "mi-async". */
2799 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
2800 deprecate_cmd (c, "set mi-async");
2801 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
2802 deprecate_cmd (c, "show mi-async");
2803 }
This page took 0.151974 seconds and 4 git commands to generate.