Update years in copyright notice for the GDB files.
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "gdb_string.h"
27 #include "exceptions.h"
28 #include "top.h"
29 #include "gdbthread.h"
30 #include "mi-cmds.h"
31 #include "mi-parse.h"
32 #include "mi-getopt.h"
33 #include "mi-console.h"
34 #include "ui-out.h"
35 #include "mi-out.h"
36 #include "interps.h"
37 #include "event-loop.h"
38 #include "event-top.h"
39 #include "gdbcore.h" /* For write_memory(). */
40 #include "value.h"
41 #include "regcache.h"
42 #include "gdb.h"
43 #include "frame.h"
44 #include "mi-main.h"
45 #include "mi-common.h"
46 #include "language.h"
47 #include "valprint.h"
48 #include "inferior.h"
49 #include "osdata.h"
50 #include "splay-tree.h"
51 #include "tracepoint.h"
52 #include "ada-lang.h"
53 #include "linespec.h"
54
55 #include <ctype.h>
56 #include <sys/time.h>
57
58 #if defined HAVE_SYS_RESOURCE_H
59 #include <sys/resource.h>
60 #endif
61
62 #ifdef HAVE_GETRUSAGE
63 struct rusage rusage;
64 #endif
65
66 enum
67 {
68 FROM_TTY = 0
69 };
70
71 int mi_debug_p;
72
73 struct ui_file *raw_stdout;
74
75 /* This is used to pass the current command timestamp down to
76 continuation routines. */
77 static struct mi_timestamp *current_command_ts;
78
79 static int do_timings = 0;
80
81 char *current_token;
82 /* Few commands would like to know if options like --thread-group were
83 explicitly specified. This variable keeps the current parsed
84 command including all option, and make it possible. */
85 static struct mi_parse *current_context;
86
87 int running_result_record_printed = 1;
88
89 /* Flag indicating that the target has proceeded since the last
90 command was issued. */
91 int mi_proceeded;
92
93 extern void _initialize_mi_main (void);
94 static void mi_cmd_execute (struct mi_parse *parse);
95
96 static void mi_execute_cli_command (const char *cmd, int args_p,
97 const char *args);
98 static void mi_execute_async_cli_command (char *cli_command,
99 char **argv, int argc);
100 static int register_changed_p (int regnum, struct regcache *,
101 struct regcache *);
102 static void get_register (struct frame_info *, int regnum, int format);
103
104 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
105 layer that calls libgdb. Any operation used in the below should be
106 formalized. */
107
108 static void timestamp (struct mi_timestamp *tv);
109
110 static void print_diff_now (struct mi_timestamp *start);
111 static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
112
113 void
114 mi_cmd_gdb_exit (char *command, char **argv, int argc)
115 {
116 /* We have to print everything right here because we never return. */
117 if (current_token)
118 fputs_unfiltered (current_token, raw_stdout);
119 fputs_unfiltered ("^exit\n", raw_stdout);
120 mi_out_put (current_uiout, raw_stdout);
121 gdb_flush (raw_stdout);
122 /* FIXME: The function called is not yet a formal libgdb function. */
123 quit_force (NULL, FROM_TTY);
124 }
125
126 void
127 mi_cmd_exec_next (char *command, char **argv, int argc)
128 {
129 /* FIXME: Should call a libgdb function, not a cli wrapper. */
130 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
131 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
132 else
133 mi_execute_async_cli_command ("next", argv, argc);
134 }
135
136 void
137 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
138 {
139 /* FIXME: Should call a libgdb function, not a cli wrapper. */
140 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
141 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
142 else
143 mi_execute_async_cli_command ("nexti", argv, argc);
144 }
145
146 void
147 mi_cmd_exec_step (char *command, char **argv, int argc)
148 {
149 /* FIXME: Should call a libgdb function, not a cli wrapper. */
150 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
151 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
152 else
153 mi_execute_async_cli_command ("step", argv, argc);
154 }
155
156 void
157 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
158 {
159 /* FIXME: Should call a libgdb function, not a cli wrapper. */
160 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
161 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
162 else
163 mi_execute_async_cli_command ("stepi", argv, argc);
164 }
165
166 void
167 mi_cmd_exec_finish (char *command, char **argv, int argc)
168 {
169 /* FIXME: Should call a libgdb function, not a cli wrapper. */
170 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
171 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
172 else
173 mi_execute_async_cli_command ("finish", argv, argc);
174 }
175
176 void
177 mi_cmd_exec_return (char *command, char **argv, int argc)
178 {
179 /* This command doesn't really execute the target, it just pops the
180 specified number of frames. */
181 if (argc)
182 /* Call return_command with from_tty argument equal to 0 so as to
183 avoid being queried. */
184 return_command (*argv, 0);
185 else
186 /* Call return_command with from_tty argument equal to 0 so as to
187 avoid being queried. */
188 return_command (NULL, 0);
189
190 /* Because we have called return_command with from_tty = 0, we need
191 to print the frame here. */
192 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS);
193 }
194
195 void
196 mi_cmd_exec_jump (char *args, char **argv, int argc)
197 {
198 /* FIXME: Should call a libgdb function, not a cli wrapper. */
199 mi_execute_async_cli_command ("jump", argv, argc);
200 }
201
202 static void
203 proceed_thread (struct thread_info *thread, int pid)
204 {
205 if (!is_stopped (thread->ptid))
206 return;
207
208 if (pid != 0 && PIDGET (thread->ptid) != pid)
209 return;
210
211 switch_to_thread (thread->ptid);
212 clear_proceed_status ();
213 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
214 }
215
216 static int
217 proceed_thread_callback (struct thread_info *thread, void *arg)
218 {
219 int pid = *(int *)arg;
220
221 proceed_thread (thread, pid);
222 return 0;
223 }
224
225 static void
226 exec_continue (char **argv, int argc)
227 {
228 if (non_stop)
229 {
230 /* In non-stop mode, 'resume' always resumes a single thread.
231 Therefore, to resume all threads of the current inferior, or
232 all threads in all inferiors, we need to iterate over
233 threads.
234
235 See comment on infcmd.c:proceed_thread_callback for rationale. */
236 if (current_context->all || current_context->thread_group != -1)
237 {
238 int pid = 0;
239 struct cleanup *back_to = make_cleanup_restore_current_thread ();
240
241 if (!current_context->all)
242 {
243 struct inferior *inf
244 = find_inferior_id (current_context->thread_group);
245
246 pid = inf->pid;
247 }
248 iterate_over_threads (proceed_thread_callback, &pid);
249 do_cleanups (back_to);
250 }
251 else
252 {
253 continue_1 (0);
254 }
255 }
256 else
257 {
258 struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
259
260 if (current_context->all)
261 {
262 sched_multi = 1;
263 continue_1 (0);
264 }
265 else
266 {
267 /* In all-stop mode, -exec-continue traditionally resumed
268 either all threads, or one thread, depending on the
269 'scheduler-locking' variable. Let's continue to do the
270 same. */
271 continue_1 (1);
272 }
273 do_cleanups (back_to);
274 }
275 }
276
277 static void
278 exec_direction_forward (void *notused)
279 {
280 execution_direction = EXEC_FORWARD;
281 }
282
283 static void
284 exec_reverse_continue (char **argv, int argc)
285 {
286 enum exec_direction_kind dir = execution_direction;
287 struct cleanup *old_chain;
288
289 if (dir == EXEC_REVERSE)
290 error (_("Already in reverse mode."));
291
292 if (!target_can_execute_reverse)
293 error (_("Target %s does not support this command."), target_shortname);
294
295 old_chain = make_cleanup (exec_direction_forward, NULL);
296 execution_direction = EXEC_REVERSE;
297 exec_continue (argv, argc);
298 do_cleanups (old_chain);
299 }
300
301 void
302 mi_cmd_exec_continue (char *command, char **argv, int argc)
303 {
304 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
305 exec_reverse_continue (argv + 1, argc - 1);
306 else
307 exec_continue (argv, argc);
308 }
309
310 static int
311 interrupt_thread_callback (struct thread_info *thread, void *arg)
312 {
313 int pid = *(int *)arg;
314
315 if (!is_running (thread->ptid))
316 return 0;
317
318 if (PIDGET (thread->ptid) != pid)
319 return 0;
320
321 target_stop (thread->ptid);
322 return 0;
323 }
324
325 /* Interrupt the execution of the target. Note how we must play
326 around with the token variables, in order to display the current
327 token in the result of the interrupt command, and the previous
328 execution token when the target finally stops. See comments in
329 mi_cmd_execute. */
330
331 void
332 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
333 {
334 /* In all-stop mode, everything stops, so we don't need to try
335 anything specific. */
336 if (!non_stop)
337 {
338 interrupt_target_1 (0);
339 return;
340 }
341
342 if (current_context->all)
343 {
344 /* This will interrupt all threads in all inferiors. */
345 interrupt_target_1 (1);
346 }
347 else if (current_context->thread_group != -1)
348 {
349 struct inferior *inf = find_inferior_id (current_context->thread_group);
350
351 iterate_over_threads (interrupt_thread_callback, &inf->pid);
352 }
353 else
354 {
355 /* Interrupt just the current thread -- either explicitly
356 specified via --thread or whatever was current before
357 MI command was sent. */
358 interrupt_target_1 (0);
359 }
360 }
361
362 static int
363 run_one_inferior (struct inferior *inf, void *arg)
364 {
365 if (inf->pid != 0)
366 {
367 if (inf->pid != ptid_get_pid (inferior_ptid))
368 {
369 struct thread_info *tp;
370
371 tp = any_thread_of_process (inf->pid);
372 if (!tp)
373 error (_("Inferior has no threads."));
374
375 switch_to_thread (tp->ptid);
376 }
377 }
378 else
379 {
380 set_current_inferior (inf);
381 switch_to_thread (null_ptid);
382 set_current_program_space (inf->pspace);
383 }
384 mi_execute_cli_command ("run", target_can_async_p (),
385 target_can_async_p () ? "&" : NULL);
386 return 0;
387 }
388
389 void
390 mi_cmd_exec_run (char *command, char **argv, int argc)
391 {
392 if (current_context->all)
393 {
394 struct cleanup *back_to = save_current_space_and_thread ();
395
396 iterate_over_inferiors (run_one_inferior, NULL);
397 do_cleanups (back_to);
398 }
399 else
400 {
401 mi_execute_cli_command ("run", target_can_async_p (),
402 target_can_async_p () ? "&" : NULL);
403 }
404 }
405
406
407 static int
408 find_thread_of_process (struct thread_info *ti, void *p)
409 {
410 int pid = *(int *)p;
411
412 if (PIDGET (ti->ptid) == pid && !is_exited (ti->ptid))
413 return 1;
414
415 return 0;
416 }
417
418 void
419 mi_cmd_target_detach (char *command, char **argv, int argc)
420 {
421 if (argc != 0 && argc != 1)
422 error (_("Usage: -target-detach [pid | thread-group]"));
423
424 if (argc == 1)
425 {
426 struct thread_info *tp;
427 char *end = argv[0];
428 int pid;
429
430 /* First see if we are dealing with a thread-group id. */
431 if (*argv[0] == 'i')
432 {
433 struct inferior *inf;
434 int id = strtoul (argv[0] + 1, &end, 0);
435
436 if (*end != '\0')
437 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
438
439 inf = find_inferior_id (id);
440 if (!inf)
441 error (_("Non-existent thread-group id '%d'"), id);
442
443 pid = inf->pid;
444 }
445 else
446 {
447 /* We must be dealing with a pid. */
448 pid = strtol (argv[0], &end, 10);
449
450 if (*end != '\0')
451 error (_("Invalid identifier '%s'"), argv[0]);
452 }
453
454 /* Pick any thread in the desired process. Current
455 target_detach detaches from the parent of inferior_ptid. */
456 tp = iterate_over_threads (find_thread_of_process, &pid);
457 if (!tp)
458 error (_("Thread group is empty"));
459
460 switch_to_thread (tp->ptid);
461 }
462
463 detach_command (NULL, 0);
464 }
465
466 void
467 mi_cmd_thread_select (char *command, char **argv, int argc)
468 {
469 enum gdb_rc rc;
470 char *mi_error_message;
471
472 if (argc != 1)
473 error (_("-thread-select: USAGE: threadnum."));
474
475 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
476
477 if (rc == GDB_RC_FAIL)
478 {
479 make_cleanup (xfree, mi_error_message);
480 error ("%s", mi_error_message);
481 }
482 }
483
484 void
485 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
486 {
487 enum gdb_rc rc;
488 char *mi_error_message;
489
490 if (argc != 0)
491 error (_("-thread-list-ids: No arguments required."));
492
493 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
494
495 if (rc == GDB_RC_FAIL)
496 {
497 make_cleanup (xfree, mi_error_message);
498 error ("%s", mi_error_message);
499 }
500 }
501
502 void
503 mi_cmd_thread_info (char *command, char **argv, int argc)
504 {
505 if (argc != 0 && argc != 1)
506 error (_("Invalid MI command"));
507
508 print_thread_info (current_uiout, argv[0], -1);
509 }
510
511 DEF_VEC_I(int);
512
513 struct collect_cores_data
514 {
515 int pid;
516
517 VEC (int) *cores;
518 };
519
520 static int
521 collect_cores (struct thread_info *ti, void *xdata)
522 {
523 struct collect_cores_data *data = xdata;
524
525 if (ptid_get_pid (ti->ptid) == data->pid)
526 {
527 int core = target_core_of_thread (ti->ptid);
528
529 if (core != -1)
530 VEC_safe_push (int, data->cores, core);
531 }
532
533 return 0;
534 }
535
536 static int *
537 unique (int *b, int *e)
538 {
539 int *d = b;
540
541 while (++b != e)
542 if (*d != *b)
543 *++d = *b;
544 return ++d;
545 }
546
547 struct print_one_inferior_data
548 {
549 int recurse;
550 VEC (int) *inferiors;
551 };
552
553 static int
554 print_one_inferior (struct inferior *inferior, void *xdata)
555 {
556 struct print_one_inferior_data *top_data = xdata;
557 struct ui_out *uiout = current_uiout;
558
559 if (VEC_empty (int, top_data->inferiors)
560 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
561 VEC_length (int, top_data->inferiors), sizeof (int),
562 compare_positive_ints))
563 {
564 struct collect_cores_data data;
565 struct cleanup *back_to
566 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
567
568 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
569 ui_out_field_string (uiout, "type", "process");
570 if (inferior->pid != 0)
571 ui_out_field_int (uiout, "pid", inferior->pid);
572
573 if (inferior->pspace->ebfd)
574 {
575 ui_out_field_string (uiout, "executable",
576 bfd_get_filename (inferior->pspace->ebfd));
577 }
578
579 data.cores = 0;
580 if (inferior->pid != 0)
581 {
582 data.pid = inferior->pid;
583 iterate_over_threads (collect_cores, &data);
584 }
585
586 if (!VEC_empty (int, data.cores))
587 {
588 int *b, *e;
589 struct cleanup *back_to_2 =
590 make_cleanup_ui_out_list_begin_end (uiout, "cores");
591
592 qsort (VEC_address (int, data.cores),
593 VEC_length (int, data.cores), sizeof (int),
594 compare_positive_ints);
595
596 b = VEC_address (int, data.cores);
597 e = b + VEC_length (int, data.cores);
598 e = unique (b, e);
599
600 for (; b != e; ++b)
601 ui_out_field_int (uiout, NULL, *b);
602
603 do_cleanups (back_to_2);
604 }
605
606 if (top_data->recurse)
607 print_thread_info (uiout, NULL, inferior->pid);
608
609 do_cleanups (back_to);
610 }
611
612 return 0;
613 }
614
615 /* Output a field named 'cores' with a list as the value. The
616 elements of the list are obtained by splitting 'cores' on
617 comma. */
618
619 static void
620 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
621 {
622 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
623 field_name);
624 char *cores = xstrdup (xcores);
625 char *p = cores;
626
627 make_cleanup (xfree, cores);
628
629 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
630 ui_out_field_string (uiout, NULL, p);
631
632 do_cleanups (back_to);
633 }
634
635 static void
636 free_vector_of_ints (void *xvector)
637 {
638 VEC (int) **vector = xvector;
639
640 VEC_free (int, *vector);
641 }
642
643 static void
644 do_nothing (splay_tree_key k)
645 {
646 }
647
648 static void
649 free_vector_of_osdata_items (splay_tree_value xvalue)
650 {
651 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
652
653 /* We don't free the items itself, it will be done separately. */
654 VEC_free (osdata_item_s, value);
655 }
656
657 static int
658 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
659 {
660 int a = xa;
661 int b = xb;
662
663 return a - b;
664 }
665
666 static void
667 free_splay_tree (void *xt)
668 {
669 splay_tree t = xt;
670 splay_tree_delete (t);
671 }
672
673 static void
674 list_available_thread_groups (VEC (int) *ids, int recurse)
675 {
676 struct osdata *data;
677 struct osdata_item *item;
678 int ix_items;
679 struct ui_out *uiout = current_uiout;
680
681 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
682 The vector contains information about all threads for the given pid.
683 This is assigned an initial value to avoid "may be used uninitialized"
684 warning from gcc. */
685 splay_tree tree = NULL;
686
687 /* get_osdata will throw if it cannot return data. */
688 data = get_osdata ("processes");
689 make_cleanup_osdata_free (data);
690
691 if (recurse)
692 {
693 struct osdata *threads = get_osdata ("threads");
694
695 make_cleanup_osdata_free (threads);
696 tree = splay_tree_new (splay_tree_int_comparator,
697 do_nothing,
698 free_vector_of_osdata_items);
699 make_cleanup (free_splay_tree, tree);
700
701 for (ix_items = 0;
702 VEC_iterate (osdata_item_s, threads->items,
703 ix_items, item);
704 ix_items++)
705 {
706 const char *pid = get_osdata_column (item, "pid");
707 int pid_i = strtoul (pid, NULL, 0);
708 VEC (osdata_item_s) *vec = 0;
709
710 splay_tree_node n = splay_tree_lookup (tree, pid_i);
711 if (!n)
712 {
713 VEC_safe_push (osdata_item_s, vec, item);
714 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
715 }
716 else
717 {
718 vec = (VEC (osdata_item_s) *) n->value;
719 VEC_safe_push (osdata_item_s, vec, item);
720 n->value = (splay_tree_value) vec;
721 }
722 }
723 }
724
725 make_cleanup_ui_out_list_begin_end (uiout, "groups");
726
727 for (ix_items = 0;
728 VEC_iterate (osdata_item_s, data->items,
729 ix_items, item);
730 ix_items++)
731 {
732 struct cleanup *back_to;
733
734 const char *pid = get_osdata_column (item, "pid");
735 const char *cmd = get_osdata_column (item, "command");
736 const char *user = get_osdata_column (item, "user");
737 const char *cores = get_osdata_column (item, "cores");
738
739 int pid_i = strtoul (pid, NULL, 0);
740
741 /* At present, the target will return all available processes
742 and if information about specific ones was required, we filter
743 undesired processes here. */
744 if (ids && bsearch (&pid_i, VEC_address (int, ids),
745 VEC_length (int, ids),
746 sizeof (int), compare_positive_ints) == NULL)
747 continue;
748
749
750 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
751
752 ui_out_field_fmt (uiout, "id", "%s", pid);
753 ui_out_field_string (uiout, "type", "process");
754 if (cmd)
755 ui_out_field_string (uiout, "description", cmd);
756 if (user)
757 ui_out_field_string (uiout, "user", user);
758 if (cores)
759 output_cores (uiout, "cores", cores);
760
761 if (recurse)
762 {
763 splay_tree_node n = splay_tree_lookup (tree, pid_i);
764 if (n)
765 {
766 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
767 struct osdata_item *child;
768 int ix_child;
769
770 make_cleanup_ui_out_list_begin_end (uiout, "threads");
771
772 for (ix_child = 0;
773 VEC_iterate (osdata_item_s, children, ix_child, child);
774 ++ix_child)
775 {
776 struct cleanup *back_to_2 =
777 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
778 const char *tid = get_osdata_column (child, "tid");
779 const char *tcore = get_osdata_column (child, "core");
780
781 ui_out_field_string (uiout, "id", tid);
782 if (tcore)
783 ui_out_field_string (uiout, "core", tcore);
784
785 do_cleanups (back_to_2);
786 }
787 }
788 }
789
790 do_cleanups (back_to);
791 }
792 }
793
794 void
795 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
796 {
797 struct ui_out *uiout = current_uiout;
798 struct cleanup *back_to;
799 int available = 0;
800 int recurse = 0;
801 VEC (int) *ids = 0;
802
803 enum opt
804 {
805 AVAILABLE_OPT, RECURSE_OPT
806 };
807 static const struct mi_opt opts[] =
808 {
809 {"-available", AVAILABLE_OPT, 0},
810 {"-recurse", RECURSE_OPT, 1},
811 { 0, 0, 0 }
812 };
813
814 int oind = 0;
815 char *oarg;
816
817 while (1)
818 {
819 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
820 &oind, &oarg);
821
822 if (opt < 0)
823 break;
824 switch ((enum opt) opt)
825 {
826 case AVAILABLE_OPT:
827 available = 1;
828 break;
829 case RECURSE_OPT:
830 if (strcmp (oarg, "0") == 0)
831 ;
832 else if (strcmp (oarg, "1") == 0)
833 recurse = 1;
834 else
835 error (_("only '0' and '1' are valid values "
836 "for the '--recurse' option"));
837 break;
838 }
839 }
840
841 for (; oind < argc; ++oind)
842 {
843 char *end;
844 int inf;
845
846 if (*(argv[oind]) != 'i')
847 error (_("invalid syntax of group id '%s'"), argv[oind]);
848
849 inf = strtoul (argv[oind] + 1, &end, 0);
850
851 if (*end != '\0')
852 error (_("invalid syntax of group id '%s'"), argv[oind]);
853 VEC_safe_push (int, ids, inf);
854 }
855 if (VEC_length (int, ids) > 1)
856 qsort (VEC_address (int, ids),
857 VEC_length (int, ids),
858 sizeof (int), compare_positive_ints);
859
860 back_to = make_cleanup (free_vector_of_ints, &ids);
861
862 if (available)
863 {
864 list_available_thread_groups (ids, recurse);
865 }
866 else if (VEC_length (int, ids) == 1)
867 {
868 /* Local thread groups, single id. */
869 int id = *VEC_address (int, ids);
870 struct inferior *inf = find_inferior_id (id);
871
872 if (!inf)
873 error (_("Non-existent thread group id '%d'"), id);
874
875 print_thread_info (uiout, NULL, inf->pid);
876 }
877 else
878 {
879 struct print_one_inferior_data data;
880
881 data.recurse = recurse;
882 data.inferiors = ids;
883
884 /* Local thread groups. Either no explicit ids -- and we
885 print everything, or several explicit ids. In both cases,
886 we print more than one group, and have to use 'groups'
887 as the top-level element. */
888 make_cleanup_ui_out_list_begin_end (uiout, "groups");
889 update_thread_list ();
890 iterate_over_inferiors (print_one_inferior, &data);
891 }
892
893 do_cleanups (back_to);
894 }
895
896 void
897 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
898 {
899 struct gdbarch *gdbarch;
900 struct ui_out *uiout = current_uiout;
901 int regnum, numregs;
902 int i;
903 struct cleanup *cleanup;
904
905 /* Note that the test for a valid register must include checking the
906 gdbarch_register_name because gdbarch_num_regs may be allocated
907 for the union of the register sets within a family of related
908 processors. In this case, some entries of gdbarch_register_name
909 will change depending upon the particular processor being
910 debugged. */
911
912 gdbarch = get_current_arch ();
913 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
914
915 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
916
917 if (argc == 0) /* No args, just do all the regs. */
918 {
919 for (regnum = 0;
920 regnum < numregs;
921 regnum++)
922 {
923 if (gdbarch_register_name (gdbarch, regnum) == NULL
924 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
925 ui_out_field_string (uiout, NULL, "");
926 else
927 ui_out_field_string (uiout, NULL,
928 gdbarch_register_name (gdbarch, regnum));
929 }
930 }
931
932 /* Else, list of register #s, just do listed regs. */
933 for (i = 0; i < argc; i++)
934 {
935 regnum = atoi (argv[i]);
936 if (regnum < 0 || regnum >= numregs)
937 error (_("bad register number"));
938
939 if (gdbarch_register_name (gdbarch, regnum) == NULL
940 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
941 ui_out_field_string (uiout, NULL, "");
942 else
943 ui_out_field_string (uiout, NULL,
944 gdbarch_register_name (gdbarch, regnum));
945 }
946 do_cleanups (cleanup);
947 }
948
949 void
950 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
951 {
952 static struct regcache *this_regs = NULL;
953 struct ui_out *uiout = current_uiout;
954 struct regcache *prev_regs;
955 struct gdbarch *gdbarch;
956 int regnum, numregs, changed;
957 int i;
958 struct cleanup *cleanup;
959
960 /* The last time we visited this function, the current frame's
961 register contents were saved in THIS_REGS. Move THIS_REGS over
962 to PREV_REGS, and refresh THIS_REGS with the now-current register
963 contents. */
964
965 prev_regs = this_regs;
966 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
967 cleanup = make_cleanup_regcache_xfree (prev_regs);
968
969 /* Note that the test for a valid register must include checking the
970 gdbarch_register_name because gdbarch_num_regs may be allocated
971 for the union of the register sets within a family of related
972 processors. In this case, some entries of gdbarch_register_name
973 will change depending upon the particular processor being
974 debugged. */
975
976 gdbarch = get_regcache_arch (this_regs);
977 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
978
979 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
980
981 if (argc == 0)
982 {
983 /* No args, just do all the regs. */
984 for (regnum = 0;
985 regnum < numregs;
986 regnum++)
987 {
988 if (gdbarch_register_name (gdbarch, regnum) == NULL
989 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
990 continue;
991 changed = register_changed_p (regnum, prev_regs, this_regs);
992 if (changed < 0)
993 error (_("-data-list-changed-registers: "
994 "Unable to read register contents."));
995 else if (changed)
996 ui_out_field_int (uiout, NULL, regnum);
997 }
998 }
999
1000 /* Else, list of register #s, just do listed regs. */
1001 for (i = 0; i < argc; i++)
1002 {
1003 regnum = atoi (argv[i]);
1004
1005 if (regnum >= 0
1006 && regnum < numregs
1007 && gdbarch_register_name (gdbarch, regnum) != NULL
1008 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1009 {
1010 changed = register_changed_p (regnum, prev_regs, this_regs);
1011 if (changed < 0)
1012 error (_("-data-list-changed-registers: "
1013 "Unable to read register contents."));
1014 else if (changed)
1015 ui_out_field_int (uiout, NULL, regnum);
1016 }
1017 else
1018 error (_("bad register number"));
1019 }
1020 do_cleanups (cleanup);
1021 }
1022
1023 static int
1024 register_changed_p (int regnum, struct regcache *prev_regs,
1025 struct regcache *this_regs)
1026 {
1027 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1028 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1029 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1030 enum register_status prev_status;
1031 enum register_status this_status;
1032
1033 /* First time through or after gdbarch change consider all registers
1034 as changed. */
1035 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1036 return 1;
1037
1038 /* Get register contents and compare. */
1039 prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
1040 this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
1041
1042 if (this_status != prev_status)
1043 return 1;
1044 else if (this_status == REG_VALID)
1045 return memcmp (prev_buffer, this_buffer,
1046 register_size (gdbarch, regnum)) != 0;
1047 else
1048 return 0;
1049 }
1050
1051 /* Return a list of register number and value pairs. The valid
1052 arguments expected are: a letter indicating the format in which to
1053 display the registers contents. This can be one of: x
1054 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1055 (raw). After the format argument there can be a sequence of
1056 numbers, indicating which registers to fetch the content of. If
1057 the format is the only argument, a list of all the registers with
1058 their values is returned. */
1059
1060 void
1061 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1062 {
1063 struct ui_out *uiout = current_uiout;
1064 struct frame_info *frame;
1065 struct gdbarch *gdbarch;
1066 int regnum, numregs, format;
1067 int i;
1068 struct cleanup *list_cleanup, *tuple_cleanup;
1069
1070 /* Note that the test for a valid register must include checking the
1071 gdbarch_register_name because gdbarch_num_regs may be allocated
1072 for the union of the register sets within a family of related
1073 processors. In this case, some entries of gdbarch_register_name
1074 will change depending upon the particular processor being
1075 debugged. */
1076
1077 if (argc == 0)
1078 error (_("-data-list-register-values: Usage: "
1079 "-data-list-register-values <format> [<regnum1>...<regnumN>]"));
1080
1081 format = (int) argv[0][0];
1082
1083 frame = get_selected_frame (NULL);
1084 gdbarch = get_frame_arch (frame);
1085 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1086
1087 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1088
1089 if (argc == 1)
1090 {
1091 /* No args, beside the format: do all the regs. */
1092 for (regnum = 0;
1093 regnum < numregs;
1094 regnum++)
1095 {
1096 if (gdbarch_register_name (gdbarch, regnum) == NULL
1097 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1098 continue;
1099 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1100 ui_out_field_int (uiout, "number", regnum);
1101 get_register (frame, regnum, format);
1102 do_cleanups (tuple_cleanup);
1103 }
1104 }
1105
1106 /* Else, list of register #s, just do listed regs. */
1107 for (i = 1; i < argc; i++)
1108 {
1109 regnum = atoi (argv[i]);
1110
1111 if (regnum >= 0
1112 && regnum < numregs
1113 && gdbarch_register_name (gdbarch, regnum) != NULL
1114 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1115 {
1116 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1117 ui_out_field_int (uiout, "number", regnum);
1118 get_register (frame, regnum, format);
1119 do_cleanups (tuple_cleanup);
1120 }
1121 else
1122 error (_("bad register number"));
1123 }
1124 do_cleanups (list_cleanup);
1125 }
1126
1127 /* Output one register's contents in the desired format. */
1128
1129 static void
1130 get_register (struct frame_info *frame, int regnum, int format)
1131 {
1132 struct gdbarch *gdbarch = get_frame_arch (frame);
1133 struct ui_out *uiout = current_uiout;
1134 struct value *val;
1135
1136 if (format == 'N')
1137 format = 0;
1138
1139 val = get_frame_register_value (frame, regnum);
1140
1141 if (value_optimized_out (val))
1142 error (_("Optimized out"));
1143
1144 if (format == 'r')
1145 {
1146 int j;
1147 char *ptr, buf[1024];
1148 const gdb_byte *valaddr = value_contents_for_printing (val);
1149
1150 strcpy (buf, "0x");
1151 ptr = buf + 2;
1152 for (j = 0; j < register_size (gdbarch, regnum); j++)
1153 {
1154 int idx = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ?
1155 j : register_size (gdbarch, regnum) - 1 - j;
1156
1157 sprintf (ptr, "%02x", (unsigned char) valaddr[idx]);
1158 ptr += 2;
1159 }
1160 ui_out_field_string (uiout, "value", buf);
1161 }
1162 else
1163 {
1164 struct value_print_options opts;
1165 struct ui_file *stb;
1166 struct cleanup *old_chain;
1167
1168 stb = mem_fileopen ();
1169 old_chain = make_cleanup_ui_file_delete (stb);
1170
1171 get_formatted_print_options (&opts, format);
1172 opts.deref_ref = 1;
1173 val_print (value_type (val),
1174 value_contents_for_printing (val),
1175 value_embedded_offset (val), 0,
1176 stb, 0, val, &opts, current_language);
1177 ui_out_field_stream (uiout, "value", stb);
1178 do_cleanups (old_chain);
1179 }
1180 }
1181
1182 /* Write given values into registers. The registers and values are
1183 given as pairs. The corresponding MI command is
1184 -data-write-register-values <format>
1185 [<regnum1> <value1>...<regnumN> <valueN>] */
1186 void
1187 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1188 {
1189 struct regcache *regcache;
1190 struct gdbarch *gdbarch;
1191 int numregs, i;
1192 char format;
1193
1194 /* Note that the test for a valid register must include checking the
1195 gdbarch_register_name because gdbarch_num_regs may be allocated
1196 for the union of the register sets within a family of related
1197 processors. In this case, some entries of gdbarch_register_name
1198 will change depending upon the particular processor being
1199 debugged. */
1200
1201 regcache = get_current_regcache ();
1202 gdbarch = get_regcache_arch (regcache);
1203 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1204
1205 if (argc == 0)
1206 error (_("-data-write-register-values: Usage: -data-write-register-"
1207 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1208
1209 format = (int) argv[0][0];
1210
1211 if (!target_has_registers)
1212 error (_("-data-write-register-values: No registers."));
1213
1214 if (!(argc - 1))
1215 error (_("-data-write-register-values: No regs and values specified."));
1216
1217 if ((argc - 1) % 2)
1218 error (_("-data-write-register-values: "
1219 "Regs and vals are not in pairs."));
1220
1221 for (i = 1; i < argc; i = i + 2)
1222 {
1223 int regnum = atoi (argv[i]);
1224
1225 if (regnum >= 0 && regnum < numregs
1226 && gdbarch_register_name (gdbarch, regnum)
1227 && *gdbarch_register_name (gdbarch, regnum))
1228 {
1229 LONGEST value;
1230
1231 /* Get the value as a number. */
1232 value = parse_and_eval_address (argv[i + 1]);
1233
1234 /* Write it down. */
1235 regcache_cooked_write_signed (regcache, regnum, value);
1236 }
1237 else
1238 error (_("bad register number"));
1239 }
1240 }
1241
1242 /* Evaluate the value of the argument. The argument is an
1243 expression. If the expression contains spaces it needs to be
1244 included in double quotes. */
1245
1246 void
1247 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1248 {
1249 struct expression *expr;
1250 struct cleanup *old_chain;
1251 struct value *val;
1252 struct ui_file *stb;
1253 struct value_print_options opts;
1254 struct ui_out *uiout = current_uiout;
1255
1256 stb = mem_fileopen ();
1257 old_chain = make_cleanup_ui_file_delete (stb);
1258
1259 if (argc != 1)
1260 error (_("-data-evaluate-expression: "
1261 "Usage: -data-evaluate-expression expression"));
1262
1263 expr = parse_expression (argv[0]);
1264
1265 make_cleanup (free_current_contents, &expr);
1266
1267 val = evaluate_expression (expr);
1268
1269 /* Print the result of the expression evaluation. */
1270 get_user_print_options (&opts);
1271 opts.deref_ref = 0;
1272 common_val_print (val, stb, 0, &opts, current_language);
1273
1274 ui_out_field_stream (uiout, "value", stb);
1275
1276 do_cleanups (old_chain);
1277 }
1278
1279 /* This is the -data-read-memory command.
1280
1281 ADDR: start address of data to be dumped.
1282 WORD-FORMAT: a char indicating format for the ``word''. See
1283 the ``x'' command.
1284 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1285 NR_ROW: Number of rows.
1286 NR_COL: The number of colums (words per row).
1287 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1288 ASCHAR for unprintable characters.
1289
1290 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1291 displayes them. Returns:
1292
1293 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1294
1295 Returns:
1296 The number of bytes read is SIZE*ROW*COL. */
1297
1298 void
1299 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1300 {
1301 struct gdbarch *gdbarch = get_current_arch ();
1302 struct ui_out *uiout = current_uiout;
1303 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1304 CORE_ADDR addr;
1305 long total_bytes, nr_cols, nr_rows;
1306 char word_format;
1307 struct type *word_type;
1308 long word_size;
1309 char word_asize;
1310 char aschar;
1311 gdb_byte *mbuf;
1312 int nr_bytes;
1313 long offset = 0;
1314 int oind = 0;
1315 char *oarg;
1316 enum opt
1317 {
1318 OFFSET_OPT
1319 };
1320 static const struct mi_opt opts[] =
1321 {
1322 {"o", OFFSET_OPT, 1},
1323 { 0, 0, 0 }
1324 };
1325
1326 while (1)
1327 {
1328 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1329 &oind, &oarg);
1330
1331 if (opt < 0)
1332 break;
1333 switch ((enum opt) opt)
1334 {
1335 case OFFSET_OPT:
1336 offset = atol (oarg);
1337 break;
1338 }
1339 }
1340 argv += oind;
1341 argc -= oind;
1342
1343 if (argc < 5 || argc > 6)
1344 error (_("-data-read-memory: Usage: "
1345 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1346
1347 /* Extract all the arguments. */
1348
1349 /* Start address of the memory dump. */
1350 addr = parse_and_eval_address (argv[0]) + offset;
1351 /* The format character to use when displaying a memory word. See
1352 the ``x'' command. */
1353 word_format = argv[1][0];
1354 /* The size of the memory word. */
1355 word_size = atol (argv[2]);
1356 switch (word_size)
1357 {
1358 case 1:
1359 word_type = builtin_type (gdbarch)->builtin_int8;
1360 word_asize = 'b';
1361 break;
1362 case 2:
1363 word_type = builtin_type (gdbarch)->builtin_int16;
1364 word_asize = 'h';
1365 break;
1366 case 4:
1367 word_type = builtin_type (gdbarch)->builtin_int32;
1368 word_asize = 'w';
1369 break;
1370 case 8:
1371 word_type = builtin_type (gdbarch)->builtin_int64;
1372 word_asize = 'g';
1373 break;
1374 default:
1375 word_type = builtin_type (gdbarch)->builtin_int8;
1376 word_asize = 'b';
1377 }
1378 /* The number of rows. */
1379 nr_rows = atol (argv[3]);
1380 if (nr_rows <= 0)
1381 error (_("-data-read-memory: invalid number of rows."));
1382
1383 /* Number of bytes per row. */
1384 nr_cols = atol (argv[4]);
1385 if (nr_cols <= 0)
1386 error (_("-data-read-memory: invalid number of columns."));
1387
1388 /* The un-printable character when printing ascii. */
1389 if (argc == 6)
1390 aschar = *argv[5];
1391 else
1392 aschar = 0;
1393
1394 /* Create a buffer and read it in. */
1395 total_bytes = word_size * nr_rows * nr_cols;
1396 mbuf = xcalloc (total_bytes, 1);
1397 make_cleanup (xfree, mbuf);
1398
1399 /* Dispatch memory reads to the topmost target, not the flattened
1400 current_target. */
1401 nr_bytes = target_read (current_target.beneath,
1402 TARGET_OBJECT_MEMORY, NULL, mbuf,
1403 addr, total_bytes);
1404 if (nr_bytes <= 0)
1405 error (_("Unable to read memory."));
1406
1407 /* Output the header information. */
1408 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1409 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1410 ui_out_field_int (uiout, "total-bytes", total_bytes);
1411 ui_out_field_core_addr (uiout, "next-row",
1412 gdbarch, addr + word_size * nr_cols);
1413 ui_out_field_core_addr (uiout, "prev-row",
1414 gdbarch, addr - word_size * nr_cols);
1415 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1416 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1417
1418 /* Build the result as a two dimentional table. */
1419 {
1420 struct ui_file *stream;
1421 struct cleanup *cleanup_stream;
1422 int row;
1423 int row_byte;
1424
1425 stream = mem_fileopen ();
1426 cleanup_stream = make_cleanup_ui_file_delete (stream);
1427
1428 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1429 for (row = 0, row_byte = 0;
1430 row < nr_rows;
1431 row++, row_byte += nr_cols * word_size)
1432 {
1433 int col;
1434 int col_byte;
1435 struct cleanup *cleanup_tuple;
1436 struct cleanup *cleanup_list_data;
1437 struct value_print_options opts;
1438
1439 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1440 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1441 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1442 row_byte); */
1443 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1444 get_formatted_print_options (&opts, word_format);
1445 for (col = 0, col_byte = row_byte;
1446 col < nr_cols;
1447 col++, col_byte += word_size)
1448 {
1449 if (col_byte + word_size > nr_bytes)
1450 {
1451 ui_out_field_string (uiout, NULL, "N/A");
1452 }
1453 else
1454 {
1455 ui_file_rewind (stream);
1456 print_scalar_formatted (mbuf + col_byte, word_type, &opts,
1457 word_asize, stream);
1458 ui_out_field_stream (uiout, NULL, stream);
1459 }
1460 }
1461 do_cleanups (cleanup_list_data);
1462 if (aschar)
1463 {
1464 int byte;
1465
1466 ui_file_rewind (stream);
1467 for (byte = row_byte;
1468 byte < row_byte + word_size * nr_cols; byte++)
1469 {
1470 if (byte >= nr_bytes)
1471 fputc_unfiltered ('X', stream);
1472 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1473 fputc_unfiltered (aschar, stream);
1474 else
1475 fputc_unfiltered (mbuf[byte], stream);
1476 }
1477 ui_out_field_stream (uiout, "ascii", stream);
1478 }
1479 do_cleanups (cleanup_tuple);
1480 }
1481 do_cleanups (cleanup_stream);
1482 }
1483 do_cleanups (cleanups);
1484 }
1485
1486 void
1487 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1488 {
1489 struct gdbarch *gdbarch = get_current_arch ();
1490 struct ui_out *uiout = current_uiout;
1491 struct cleanup *cleanups;
1492 CORE_ADDR addr;
1493 LONGEST length;
1494 memory_read_result_s *read_result;
1495 int ix;
1496 VEC(memory_read_result_s) *result;
1497 long offset = 0;
1498 int oind = 0;
1499 char *oarg;
1500 enum opt
1501 {
1502 OFFSET_OPT
1503 };
1504 static const struct mi_opt opts[] =
1505 {
1506 {"o", OFFSET_OPT, 1},
1507 { 0, 0, 0 }
1508 };
1509
1510 while (1)
1511 {
1512 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1513 &oind, &oarg);
1514 if (opt < 0)
1515 break;
1516 switch ((enum opt) opt)
1517 {
1518 case OFFSET_OPT:
1519 offset = atol (oarg);
1520 break;
1521 }
1522 }
1523 argv += oind;
1524 argc -= oind;
1525
1526 if (argc != 2)
1527 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1528
1529 addr = parse_and_eval_address (argv[0]) + offset;
1530 length = atol (argv[1]);
1531
1532 result = read_memory_robust (current_target.beneath, addr, length);
1533
1534 cleanups = make_cleanup (free_memory_read_result_vector, result);
1535
1536 if (VEC_length (memory_read_result_s, result) == 0)
1537 error (_("Unable to read memory."));
1538
1539 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1540 for (ix = 0;
1541 VEC_iterate (memory_read_result_s, result, ix, read_result);
1542 ++ix)
1543 {
1544 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1545 char *data, *p;
1546 int i;
1547
1548 ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
1549 ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
1550 - addr);
1551 ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
1552
1553 data = xmalloc ((read_result->end - read_result->begin) * 2 + 1);
1554
1555 for (i = 0, p = data;
1556 i < (read_result->end - read_result->begin);
1557 ++i, p += 2)
1558 {
1559 sprintf (p, "%02x", read_result->data[i]);
1560 }
1561 ui_out_field_string (uiout, "contents", data);
1562 xfree (data);
1563 do_cleanups (t);
1564 }
1565 do_cleanups (cleanups);
1566 }
1567
1568 /* Implementation of the -data-write_memory command.
1569
1570 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1571 offset from the beginning of the memory grid row where the cell to
1572 be written is.
1573 ADDR: start address of the row in the memory grid where the memory
1574 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1575 the location to write to.
1576 FORMAT: a char indicating format for the ``word''. See
1577 the ``x'' command.
1578 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1579 VALUE: value to be written into the memory address.
1580
1581 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1582
1583 Prints nothing. */
1584
1585 void
1586 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1587 {
1588 struct gdbarch *gdbarch = get_current_arch ();
1589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1590 CORE_ADDR addr;
1591 char word_format;
1592 long word_size;
1593 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1594 enough when using a compiler other than GCC. */
1595 LONGEST value;
1596 void *buffer;
1597 struct cleanup *old_chain;
1598 long offset = 0;
1599 int oind = 0;
1600 char *oarg;
1601 enum opt
1602 {
1603 OFFSET_OPT
1604 };
1605 static const struct mi_opt opts[] =
1606 {
1607 {"o", OFFSET_OPT, 1},
1608 { 0, 0, 0 }
1609 };
1610
1611 while (1)
1612 {
1613 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1614 &oind, &oarg);
1615
1616 if (opt < 0)
1617 break;
1618 switch ((enum opt) opt)
1619 {
1620 case OFFSET_OPT:
1621 offset = atol (oarg);
1622 break;
1623 }
1624 }
1625 argv += oind;
1626 argc -= oind;
1627
1628 if (argc != 4)
1629 error (_("-data-write-memory: Usage: "
1630 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1631
1632 /* Extract all the arguments. */
1633 /* Start address of the memory dump. */
1634 addr = parse_and_eval_address (argv[0]);
1635 /* The format character to use when displaying a memory word. See
1636 the ``x'' command. */
1637 word_format = argv[1][0];
1638 /* The size of the memory word. */
1639 word_size = atol (argv[2]);
1640
1641 /* Calculate the real address of the write destination. */
1642 addr += (offset * word_size);
1643
1644 /* Get the value as a number. */
1645 value = parse_and_eval_address (argv[3]);
1646 /* Get the value into an array. */
1647 buffer = xmalloc (word_size);
1648 old_chain = make_cleanup (xfree, buffer);
1649 store_signed_integer (buffer, word_size, byte_order, value);
1650 /* Write it down to memory. */
1651 write_memory_with_notification (addr, buffer, word_size);
1652 /* Free the buffer. */
1653 do_cleanups (old_chain);
1654 }
1655
1656 /* Implementation of the -data-write-memory-bytes command.
1657
1658 ADDR: start address
1659 DATA: string of bytes to write at that address
1660 COUNT: number of bytes to be filled (decimal integer). */
1661
1662 void
1663 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1664 {
1665 CORE_ADDR addr;
1666 char *cdata;
1667 gdb_byte *data;
1668 gdb_byte *databuf;
1669 size_t len, r, i, steps, remainder;
1670 long int count, j;
1671 struct cleanup *back_to;
1672
1673 if (argc != 2 && argc != 3)
1674 error (_("Usage: ADDR DATA [COUNT]."));
1675
1676 addr = parse_and_eval_address (argv[0]);
1677 cdata = argv[1];
1678 if (strlen (cdata) % 2)
1679 error (_("Hex-encoded '%s' must have an even number of characters."),
1680 cdata);
1681
1682 len = strlen (cdata)/2;
1683 if (argc == 3)
1684 count = strtoul (argv[2], NULL, 10);
1685 else
1686 count = len;
1687
1688 databuf = xmalloc (len * sizeof (gdb_byte));
1689 back_to = make_cleanup (xfree, databuf);
1690
1691 for (i = 0; i < len; ++i)
1692 {
1693 int x;
1694 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1695 error (_("Invalid argument"));
1696 databuf[i] = (gdb_byte) x;
1697 }
1698
1699 if (len < count)
1700 {
1701 /* Pattern is made of less bytes than count:
1702 repeat pattern to fill memory. */
1703 data = xmalloc (count);
1704 make_cleanup (xfree, data);
1705
1706 steps = count / len;
1707 remainder = count % len;
1708 for (j = 0; j < steps; j++)
1709 memcpy (data + j * len, databuf, len);
1710
1711 if (remainder > 0)
1712 memcpy (data + steps * len, databuf, remainder);
1713 }
1714 else
1715 {
1716 /* Pattern is longer than or equal to count:
1717 just copy len bytes. */
1718 data = databuf;
1719 }
1720
1721 write_memory_with_notification (addr, data, count);
1722
1723 do_cleanups (back_to);
1724 }
1725
1726 void
1727 mi_cmd_enable_timings (char *command, char **argv, int argc)
1728 {
1729 if (argc == 0)
1730 do_timings = 1;
1731 else if (argc == 1)
1732 {
1733 if (strcmp (argv[0], "yes") == 0)
1734 do_timings = 1;
1735 else if (strcmp (argv[0], "no") == 0)
1736 do_timings = 0;
1737 else
1738 goto usage_error;
1739 }
1740 else
1741 goto usage_error;
1742
1743 return;
1744
1745 usage_error:
1746 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1747 }
1748
1749 void
1750 mi_cmd_list_features (char *command, char **argv, int argc)
1751 {
1752 if (argc == 0)
1753 {
1754 struct cleanup *cleanup = NULL;
1755 struct ui_out *uiout = current_uiout;
1756
1757 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1758 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1759 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1760 ui_out_field_string (uiout, NULL, "thread-info");
1761 ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
1762 ui_out_field_string (uiout, NULL, "breakpoint-notifications");
1763 ui_out_field_string (uiout, NULL, "ada-task-info");
1764
1765 #if HAVE_PYTHON
1766 ui_out_field_string (uiout, NULL, "python");
1767 #endif
1768
1769 do_cleanups (cleanup);
1770 return;
1771 }
1772
1773 error (_("-list-features should be passed no arguments"));
1774 }
1775
1776 void
1777 mi_cmd_list_target_features (char *command, char **argv, int argc)
1778 {
1779 if (argc == 0)
1780 {
1781 struct cleanup *cleanup = NULL;
1782 struct ui_out *uiout = current_uiout;
1783
1784 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1785 if (target_can_async_p ())
1786 ui_out_field_string (uiout, NULL, "async");
1787 if (target_can_execute_reverse)
1788 ui_out_field_string (uiout, NULL, "reverse");
1789
1790 do_cleanups (cleanup);
1791 return;
1792 }
1793
1794 error (_("-list-target-features should be passed no arguments"));
1795 }
1796
1797 void
1798 mi_cmd_add_inferior (char *command, char **argv, int argc)
1799 {
1800 struct inferior *inf;
1801
1802 if (argc != 0)
1803 error (_("-add-inferior should be passed no arguments"));
1804
1805 inf = add_inferior_with_spaces ();
1806
1807 ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num);
1808 }
1809
1810 /* Callback used to find the first inferior other than the current
1811 one. */
1812
1813 static int
1814 get_other_inferior (struct inferior *inf, void *arg)
1815 {
1816 if (inf == current_inferior ())
1817 return 0;
1818
1819 return 1;
1820 }
1821
1822 void
1823 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1824 {
1825 int id;
1826 struct inferior *inf;
1827
1828 if (argc != 1)
1829 error (_("-remove-inferior should be passed a single argument"));
1830
1831 if (sscanf (argv[0], "i%d", &id) != 1)
1832 error (_("the thread group id is syntactically invalid"));
1833
1834 inf = find_inferior_id (id);
1835 if (!inf)
1836 error (_("the specified thread group does not exist"));
1837
1838 if (inf->pid != 0)
1839 error (_("cannot remove an active inferior"));
1840
1841 if (inf == current_inferior ())
1842 {
1843 struct thread_info *tp = 0;
1844 struct inferior *new_inferior
1845 = iterate_over_inferiors (get_other_inferior, NULL);
1846
1847 if (new_inferior == NULL)
1848 error (_("Cannot remove last inferior"));
1849
1850 set_current_inferior (new_inferior);
1851 if (new_inferior->pid != 0)
1852 tp = any_thread_of_process (new_inferior->pid);
1853 switch_to_thread (tp ? tp->ptid : null_ptid);
1854 set_current_program_space (new_inferior->pspace);
1855 }
1856
1857 delete_inferior_1 (inf, 1 /* silent */);
1858 }
1859
1860 \f
1861
1862 /* Execute a command within a safe environment.
1863 Return <0 for error; >=0 for ok.
1864
1865 args->action will tell mi_execute_command what action
1866 to perfrom after the given command has executed (display/suppress
1867 prompt, display error). */
1868
1869 static void
1870 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1871 {
1872 struct cleanup *cleanup;
1873
1874 if (do_timings)
1875 current_command_ts = context->cmd_start;
1876
1877 current_token = xstrdup (context->token);
1878 cleanup = make_cleanup (free_current_contents, &current_token);
1879
1880 running_result_record_printed = 0;
1881 mi_proceeded = 0;
1882 switch (context->op)
1883 {
1884 case MI_COMMAND:
1885 /* A MI command was read from the input stream. */
1886 if (mi_debug_p)
1887 /* FIXME: gdb_???? */
1888 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1889 context->token, context->command, context->args);
1890
1891 mi_cmd_execute (context);
1892
1893 /* Print the result if there were no errors.
1894
1895 Remember that on the way out of executing a command, you have
1896 to directly use the mi_interp's uiout, since the command
1897 could have reset the interpreter, in which case the current
1898 uiout will most likely crash in the mi_out_* routines. */
1899 if (!running_result_record_printed)
1900 {
1901 fputs_unfiltered (context->token, raw_stdout);
1902 /* There's no particularly good reason why target-connect results
1903 in not ^done. Should kill ^connected for MI3. */
1904 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1905 ? "^connected" : "^done", raw_stdout);
1906 mi_out_put (uiout, raw_stdout);
1907 mi_out_rewind (uiout);
1908 mi_print_timing_maybe ();
1909 fputs_unfiltered ("\n", raw_stdout);
1910 }
1911 else
1912 /* The command does not want anything to be printed. In that
1913 case, the command probably should not have written anything
1914 to uiout, but in case it has written something, discard it. */
1915 mi_out_rewind (uiout);
1916 break;
1917
1918 case CLI_COMMAND:
1919 {
1920 char *argv[2];
1921
1922 /* A CLI command was read from the input stream. */
1923 /* This "feature" will be removed as soon as we have a
1924 complete set of mi commands. */
1925 /* Echo the command on the console. */
1926 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1927 /* Call the "console" interpreter. */
1928 argv[0] = "console";
1929 argv[1] = context->command;
1930 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1931
1932 /* If we changed interpreters, DON'T print out anything. */
1933 if (current_interp_named_p (INTERP_MI)
1934 || current_interp_named_p (INTERP_MI1)
1935 || current_interp_named_p (INTERP_MI2)
1936 || current_interp_named_p (INTERP_MI3))
1937 {
1938 if (!running_result_record_printed)
1939 {
1940 fputs_unfiltered (context->token, raw_stdout);
1941 fputs_unfiltered ("^done", raw_stdout);
1942 mi_out_put (uiout, raw_stdout);
1943 mi_out_rewind (uiout);
1944 mi_print_timing_maybe ();
1945 fputs_unfiltered ("\n", raw_stdout);
1946 }
1947 else
1948 mi_out_rewind (uiout);
1949 }
1950 break;
1951 }
1952 }
1953
1954 do_cleanups (cleanup);
1955 }
1956
1957 /* Print a gdb exception to the MI output stream. */
1958
1959 static void
1960 mi_print_exception (const char *token, struct gdb_exception exception)
1961 {
1962 fputs_unfiltered (token, raw_stdout);
1963 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1964 if (exception.message == NULL)
1965 fputs_unfiltered ("unknown error", raw_stdout);
1966 else
1967 fputstr_unfiltered (exception.message, '"', raw_stdout);
1968 fputs_unfiltered ("\"\n", raw_stdout);
1969 }
1970
1971 void
1972 mi_execute_command (char *cmd, int from_tty)
1973 {
1974 char *token;
1975 struct mi_parse *command = NULL;
1976 volatile struct gdb_exception exception;
1977
1978 /* This is to handle EOF (^D). We just quit gdb. */
1979 /* FIXME: we should call some API function here. */
1980 if (cmd == 0)
1981 quit_force (NULL, from_tty);
1982
1983 target_log_command (cmd);
1984
1985 TRY_CATCH (exception, RETURN_MASK_ALL)
1986 {
1987 command = mi_parse (cmd, &token);
1988 }
1989 if (exception.reason < 0)
1990 {
1991 mi_print_exception (token, exception);
1992 xfree (token);
1993 }
1994 else
1995 {
1996 volatile struct gdb_exception result;
1997 ptid_t previous_ptid = inferior_ptid;
1998
1999 command->token = token;
2000
2001 if (do_timings)
2002 {
2003 command->cmd_start = (struct mi_timestamp *)
2004 xmalloc (sizeof (struct mi_timestamp));
2005 timestamp (command->cmd_start);
2006 }
2007
2008 TRY_CATCH (result, RETURN_MASK_ALL)
2009 {
2010 captured_mi_execute_command (current_uiout, command);
2011 }
2012 if (result.reason < 0)
2013 {
2014 /* The command execution failed and error() was called
2015 somewhere. */
2016 mi_print_exception (command->token, result);
2017 mi_out_rewind (current_uiout);
2018 }
2019
2020 bpstat_do_actions ();
2021
2022 if (/* The notifications are only output when the top-level
2023 interpreter (specified on the command line) is MI. */
2024 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
2025 /* Don't try report anything if there are no threads --
2026 the program is dead. */
2027 && thread_count () != 0
2028 /* -thread-select explicitly changes thread. If frontend uses that
2029 internally, we don't want to emit =thread-selected, since
2030 =thread-selected is supposed to indicate user's intentions. */
2031 && strcmp (command->command, "thread-select") != 0)
2032 {
2033 struct mi_interp *mi = top_level_interpreter_data ();
2034 int report_change = 0;
2035
2036 if (command->thread == -1)
2037 {
2038 report_change = (!ptid_equal (previous_ptid, null_ptid)
2039 && !ptid_equal (inferior_ptid, previous_ptid)
2040 && !ptid_equal (inferior_ptid, null_ptid));
2041 }
2042 else if (!ptid_equal (inferior_ptid, null_ptid))
2043 {
2044 struct thread_info *ti = inferior_thread ();
2045
2046 report_change = (ti->num != command->thread);
2047 }
2048
2049 if (report_change)
2050 {
2051 struct thread_info *ti = inferior_thread ();
2052
2053 target_terminal_ours ();
2054 fprintf_unfiltered (mi->event_channel,
2055 "thread-selected,id=\"%d\"",
2056 ti->num);
2057 gdb_flush (mi->event_channel);
2058 }
2059 }
2060
2061 mi_parse_free (command);
2062 }
2063 }
2064
2065 static void
2066 mi_cmd_execute (struct mi_parse *parse)
2067 {
2068 struct cleanup *cleanup;
2069
2070 cleanup = prepare_execute_command ();
2071
2072 if (parse->all && parse->thread_group != -1)
2073 error (_("Cannot specify --thread-group together with --all"));
2074
2075 if (parse->all && parse->thread != -1)
2076 error (_("Cannot specify --thread together with --all"));
2077
2078 if (parse->thread_group != -1 && parse->thread != -1)
2079 error (_("Cannot specify --thread together with --thread-group"));
2080
2081 if (parse->frame != -1 && parse->thread == -1)
2082 error (_("Cannot specify --frame without --thread"));
2083
2084 if (parse->thread_group != -1)
2085 {
2086 struct inferior *inf = find_inferior_id (parse->thread_group);
2087 struct thread_info *tp = 0;
2088
2089 if (!inf)
2090 error (_("Invalid thread group for the --thread-group option"));
2091
2092 set_current_inferior (inf);
2093 /* This behaviour means that if --thread-group option identifies
2094 an inferior with multiple threads, then a random one will be
2095 picked. This is not a problem -- frontend should always
2096 provide --thread if it wishes to operate on a specific
2097 thread. */
2098 if (inf->pid != 0)
2099 tp = any_live_thread_of_process (inf->pid);
2100 switch_to_thread (tp ? tp->ptid : null_ptid);
2101 set_current_program_space (inf->pspace);
2102 }
2103
2104 if (parse->thread != -1)
2105 {
2106 struct thread_info *tp = find_thread_id (parse->thread);
2107
2108 if (!tp)
2109 error (_("Invalid thread id: %d"), parse->thread);
2110
2111 if (is_exited (tp->ptid))
2112 error (_("Thread id: %d has terminated"), parse->thread);
2113
2114 switch_to_thread (tp->ptid);
2115 }
2116
2117 if (parse->frame != -1)
2118 {
2119 struct frame_info *fid;
2120 int frame = parse->frame;
2121
2122 fid = find_relative_frame (get_current_frame (), &frame);
2123 if (frame == 0)
2124 /* find_relative_frame was successful */
2125 select_frame (fid);
2126 else
2127 error (_("Invalid frame id: %d"), frame);
2128 }
2129
2130 current_context = parse;
2131
2132 if (parse->cmd->suppress_notification != NULL)
2133 {
2134 make_cleanup_restore_integer (parse->cmd->suppress_notification);
2135 *parse->cmd->suppress_notification = 1;
2136 }
2137
2138 if (parse->cmd->argv_func != NULL)
2139 {
2140 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2141 }
2142 else if (parse->cmd->cli.cmd != 0)
2143 {
2144 /* FIXME: DELETE THIS. */
2145 /* The operation is still implemented by a cli command. */
2146 /* Must be a synchronous one. */
2147 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2148 parse->args);
2149 }
2150 else
2151 {
2152 /* FIXME: DELETE THIS. */
2153 struct ui_file *stb;
2154
2155 stb = mem_fileopen ();
2156
2157 fputs_unfiltered ("Undefined mi command: ", stb);
2158 fputstr_unfiltered (parse->command, '"', stb);
2159 fputs_unfiltered (" (missing implementation)", stb);
2160
2161 make_cleanup_ui_file_delete (stb);
2162 error_stream (stb);
2163 }
2164 do_cleanups (cleanup);
2165 }
2166
2167 /* FIXME: This is just a hack so we can get some extra commands going.
2168 We don't want to channel things through the CLI, but call libgdb directly.
2169 Use only for synchronous commands. */
2170
2171 void
2172 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2173 {
2174 if (cmd != 0)
2175 {
2176 struct cleanup *old_cleanups;
2177 char *run;
2178
2179 if (args_p)
2180 run = xstrprintf ("%s %s", cmd, args);
2181 else
2182 run = xstrdup (cmd);
2183 if (mi_debug_p)
2184 /* FIXME: gdb_???? */
2185 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2186 cmd, run);
2187 old_cleanups = make_cleanup (xfree, run);
2188 execute_command (run, 0 /* from_tty */ );
2189 do_cleanups (old_cleanups);
2190 return;
2191 }
2192 }
2193
2194 void
2195 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2196 {
2197 struct cleanup *old_cleanups;
2198 char *run;
2199
2200 if (target_can_async_p ())
2201 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2202 else
2203 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2204 old_cleanups = make_cleanup (xfree, run);
2205
2206 execute_command (run, 0 /* from_tty */ );
2207
2208 /* Do this before doing any printing. It would appear that some
2209 print code leaves garbage around in the buffer. */
2210 do_cleanups (old_cleanups);
2211 }
2212
2213 void
2214 mi_load_progress (const char *section_name,
2215 unsigned long sent_so_far,
2216 unsigned long total_section,
2217 unsigned long total_sent,
2218 unsigned long grand_total)
2219 {
2220 struct timeval time_now, delta, update_threshold;
2221 static struct timeval last_update;
2222 static char *previous_sect_name = NULL;
2223 int new_section;
2224 struct ui_out *saved_uiout;
2225 struct ui_out *uiout;
2226
2227 /* This function is called through deprecated_show_load_progress
2228 which means uiout may not be correct. Fix it for the duration
2229 of this function. */
2230 saved_uiout = current_uiout;
2231
2232 if (current_interp_named_p (INTERP_MI)
2233 || current_interp_named_p (INTERP_MI2))
2234 current_uiout = mi_out_new (2);
2235 else if (current_interp_named_p (INTERP_MI1))
2236 current_uiout = mi_out_new (1);
2237 else if (current_interp_named_p (INTERP_MI3))
2238 current_uiout = mi_out_new (3);
2239 else
2240 return;
2241
2242 uiout = current_uiout;
2243
2244 update_threshold.tv_sec = 0;
2245 update_threshold.tv_usec = 500000;
2246 gettimeofday (&time_now, NULL);
2247
2248 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
2249 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
2250
2251 if (delta.tv_usec < 0)
2252 {
2253 delta.tv_sec -= 1;
2254 delta.tv_usec += 1000000L;
2255 }
2256
2257 new_section = (previous_sect_name ?
2258 strcmp (previous_sect_name, section_name) : 1);
2259 if (new_section)
2260 {
2261 struct cleanup *cleanup_tuple;
2262
2263 xfree (previous_sect_name);
2264 previous_sect_name = xstrdup (section_name);
2265
2266 if (current_token)
2267 fputs_unfiltered (current_token, raw_stdout);
2268 fputs_unfiltered ("+download", raw_stdout);
2269 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2270 ui_out_field_string (uiout, "section", section_name);
2271 ui_out_field_int (uiout, "section-size", total_section);
2272 ui_out_field_int (uiout, "total-size", grand_total);
2273 do_cleanups (cleanup_tuple);
2274 mi_out_put (uiout, raw_stdout);
2275 fputs_unfiltered ("\n", raw_stdout);
2276 gdb_flush (raw_stdout);
2277 }
2278
2279 if (delta.tv_sec >= update_threshold.tv_sec &&
2280 delta.tv_usec >= update_threshold.tv_usec)
2281 {
2282 struct cleanup *cleanup_tuple;
2283
2284 last_update.tv_sec = time_now.tv_sec;
2285 last_update.tv_usec = time_now.tv_usec;
2286 if (current_token)
2287 fputs_unfiltered (current_token, raw_stdout);
2288 fputs_unfiltered ("+download", raw_stdout);
2289 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2290 ui_out_field_string (uiout, "section", section_name);
2291 ui_out_field_int (uiout, "section-sent", sent_so_far);
2292 ui_out_field_int (uiout, "section-size", total_section);
2293 ui_out_field_int (uiout, "total-sent", total_sent);
2294 ui_out_field_int (uiout, "total-size", grand_total);
2295 do_cleanups (cleanup_tuple);
2296 mi_out_put (uiout, raw_stdout);
2297 fputs_unfiltered ("\n", raw_stdout);
2298 gdb_flush (raw_stdout);
2299 }
2300
2301 xfree (uiout);
2302 current_uiout = saved_uiout;
2303 }
2304
2305 static void
2306 timestamp (struct mi_timestamp *tv)
2307 {
2308 gettimeofday (&tv->wallclock, NULL);
2309 #ifdef HAVE_GETRUSAGE
2310 getrusage (RUSAGE_SELF, &rusage);
2311 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2312 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2313 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2314 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2315 #else
2316 {
2317 long usec = get_run_time ();
2318
2319 tv->utime.tv_sec = usec/1000000L;
2320 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2321 tv->stime.tv_sec = 0;
2322 tv->stime.tv_usec = 0;
2323 }
2324 #endif
2325 }
2326
2327 static void
2328 print_diff_now (struct mi_timestamp *start)
2329 {
2330 struct mi_timestamp now;
2331
2332 timestamp (&now);
2333 print_diff (start, &now);
2334 }
2335
2336 void
2337 mi_print_timing_maybe (void)
2338 {
2339 /* If the command is -enable-timing then do_timings may be true
2340 whilst current_command_ts is not initialized. */
2341 if (do_timings && current_command_ts)
2342 print_diff_now (current_command_ts);
2343 }
2344
2345 static long
2346 timeval_diff (struct timeval start, struct timeval end)
2347 {
2348 return ((end.tv_sec - start.tv_sec) * 1000000L)
2349 + (end.tv_usec - start.tv_usec);
2350 }
2351
2352 static void
2353 print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
2354 {
2355 fprintf_unfiltered
2356 (raw_stdout,
2357 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2358 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2359 timeval_diff (start->utime, end->utime) / 1000000.0,
2360 timeval_diff (start->stime, end->stime) / 1000000.0);
2361 }
2362
2363 void
2364 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2365 {
2366 struct expression *expr;
2367 struct cleanup *back_to;
2368 LONGEST initval = 0;
2369 struct trace_state_variable *tsv;
2370 char *name = 0;
2371
2372 if (argc != 1 && argc != 2)
2373 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2374
2375 expr = parse_expression (argv[0]);
2376 back_to = make_cleanup (xfree, expr);
2377
2378 if (expr->nelts == 3 && expr->elts[0].opcode == OP_INTERNALVAR)
2379 {
2380 struct internalvar *intvar = expr->elts[1].internalvar;
2381
2382 if (intvar)
2383 name = internalvar_name (intvar);
2384 }
2385
2386 if (!name || *name == '\0')
2387 error (_("Invalid name of trace variable"));
2388
2389 tsv = find_trace_state_variable (name);
2390 if (!tsv)
2391 tsv = create_trace_state_variable (name);
2392
2393 if (argc == 2)
2394 initval = value_as_long (parse_and_eval (argv[1]));
2395
2396 tsv->initial_value = initval;
2397
2398 do_cleanups (back_to);
2399 }
2400
2401 void
2402 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2403 {
2404 if (argc != 0)
2405 error (_("-trace-list-variables: no arguments allowed"));
2406
2407 tvariables_info_1 ();
2408 }
2409
2410 void
2411 mi_cmd_trace_find (char *command, char **argv, int argc)
2412 {
2413 char *mode;
2414
2415 if (argc == 0)
2416 error (_("trace selection mode is required"));
2417
2418 mode = argv[0];
2419
2420 if (strcmp (mode, "none") == 0)
2421 {
2422 tfind_1 (tfind_number, -1, 0, 0, 0);
2423 return;
2424 }
2425
2426 if (current_trace_status ()->running)
2427 error (_("May not look at trace frames while trace is running."));
2428
2429 if (strcmp (mode, "frame-number") == 0)
2430 {
2431 if (argc != 2)
2432 error (_("frame number is required"));
2433 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2434 }
2435 else if (strcmp (mode, "tracepoint-number") == 0)
2436 {
2437 if (argc != 2)
2438 error (_("tracepoint number is required"));
2439 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2440 }
2441 else if (strcmp (mode, "pc") == 0)
2442 {
2443 if (argc != 2)
2444 error (_("PC is required"));
2445 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2446 }
2447 else if (strcmp (mode, "pc-inside-range") == 0)
2448 {
2449 if (argc != 3)
2450 error (_("Start and end PC are required"));
2451 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2452 parse_and_eval_address (argv[2]), 0);
2453 }
2454 else if (strcmp (mode, "pc-outside-range") == 0)
2455 {
2456 if (argc != 3)
2457 error (_("Start and end PC are required"));
2458 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2459 parse_and_eval_address (argv[2]), 0);
2460 }
2461 else if (strcmp (mode, "line") == 0)
2462 {
2463 struct symtabs_and_lines sals;
2464 struct symtab_and_line sal;
2465 static CORE_ADDR start_pc, end_pc;
2466 struct cleanup *back_to;
2467
2468 if (argc != 2)
2469 error (_("Line is required"));
2470
2471 sals = decode_line_with_current_source (argv[1],
2472 DECODE_LINE_FUNFIRSTLINE);
2473 back_to = make_cleanup (xfree, sals.sals);
2474
2475 sal = sals.sals[0];
2476
2477 if (sal.symtab == 0)
2478 error (_("Could not find the specified line"));
2479
2480 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2481 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2482 else
2483 error (_("Could not find the specified line"));
2484
2485 do_cleanups (back_to);
2486 }
2487 else
2488 error (_("Invalid mode '%s'"), mode);
2489
2490 if (has_stack_frames () || get_traceframe_number () >= 0)
2491 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
2492 }
2493
2494 void
2495 mi_cmd_trace_save (char *command, char **argv, int argc)
2496 {
2497 int target_saves = 0;
2498 char *filename;
2499
2500 if (argc != 1 && argc != 2)
2501 error (_("Usage: -trace-save [-r] filename"));
2502
2503 if (argc == 2)
2504 {
2505 filename = argv[1];
2506 if (strcmp (argv[0], "-r") == 0)
2507 target_saves = 1;
2508 else
2509 error (_("Invalid option: %s"), argv[0]);
2510 }
2511 else
2512 {
2513 filename = argv[0];
2514 }
2515
2516 trace_save (filename, target_saves);
2517 }
2518
2519 void
2520 mi_cmd_trace_start (char *command, char **argv, int argc)
2521 {
2522 start_tracing (NULL);
2523 }
2524
2525 void
2526 mi_cmd_trace_status (char *command, char **argv, int argc)
2527 {
2528 trace_status_mi (0);
2529 }
2530
2531 void
2532 mi_cmd_trace_stop (char *command, char **argv, int argc)
2533 {
2534 stop_tracing (NULL);
2535 trace_status_mi (1);
2536 }
2537
2538 /* Implement the "-ada-task-info" command. */
2539
2540 void
2541 mi_cmd_ada_task_info (char *command, char **argv, int argc)
2542 {
2543 if (argc != 0 && argc != 1)
2544 error (_("Invalid MI command"));
2545
2546 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2547 }
This page took 0.118766 seconds and 4 git commands to generate.