Use gdb::byte_vector in mi_cmd_data_write_memory_bytes
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "gdb.h"
42 #include "frame.h"
43 #include "mi-main.h"
44 #include "mi-common.h"
45 #include "language.h"
46 #include "valprint.h"
47 #include "inferior.h"
48 #include "osdata.h"
49 #include "splay-tree.h"
50 #include "tracepoint.h"
51 #include "ctf.h"
52 #include "ada-lang.h"
53 #include "linespec.h"
54 #include "extension.h"
55 #include "gdbcmd.h"
56 #include "observer.h"
57 #include "common/gdb_optional.h"
58 #include "common/byte-vector.h"
59
60 #include <ctype.h>
61 #include "run-time-clock.h"
62 #include <chrono>
63 #include "progspace-and-thread.h"
64 #include "common/rsp-low.h"
65
66 enum
67 {
68 FROM_TTY = 0
69 };
70
71 int mi_debug_p;
72
73 /* This is used to pass the current command timestamp down to
74 continuation routines. */
75 static struct mi_timestamp *current_command_ts;
76
77 static int do_timings = 0;
78
79 char *current_token;
80 /* Few commands would like to know if options like --thread-group were
81 explicitly specified. This variable keeps the current parsed
82 command including all option, and make it possible. */
83 static struct mi_parse *current_context;
84
85 int running_result_record_printed = 1;
86
87 /* Flag indicating that the target has proceeded since the last
88 command was issued. */
89 int mi_proceeded;
90
91 static void mi_cmd_execute (struct mi_parse *parse);
92
93 static void mi_execute_cli_command (const char *cmd, int args_p,
94 const char *args);
95 static void mi_execute_async_cli_command (const char *cli_command,
96 char **argv, int argc);
97 static int register_changed_p (int regnum, struct regcache *,
98 struct regcache *);
99 static void output_register (struct frame_info *, int regnum, int format,
100 int skip_unavailable);
101
102 /* Controls whether the frontend wants MI in async mode. */
103 static int mi_async = 0;
104
105 /* The set command writes to this variable. If the inferior is
106 executing, mi_async is *not* updated. */
107 static int mi_async_1 = 0;
108
109 static void
110 set_mi_async_command (char *args, int from_tty,
111 struct cmd_list_element *c)
112 {
113 if (have_live_inferiors ())
114 {
115 mi_async_1 = mi_async;
116 error (_("Cannot change this setting while the inferior is running."));
117 }
118
119 mi_async = mi_async_1;
120 }
121
122 static void
123 show_mi_async_command (struct ui_file *file, int from_tty,
124 struct cmd_list_element *c,
125 const char *value)
126 {
127 fprintf_filtered (file,
128 _("Whether MI is in asynchronous mode is %s.\n"),
129 value);
130 }
131
132 /* A wrapper for target_can_async_p that takes the MI setting into
133 account. */
134
135 int
136 mi_async_p (void)
137 {
138 return mi_async && target_can_async_p ();
139 }
140
141 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
142 layer that calls libgdb. Any operation used in the below should be
143 formalized. */
144
145 static void timestamp (struct mi_timestamp *tv);
146
147 static void print_diff (struct ui_file *file, struct mi_timestamp *start,
148 struct mi_timestamp *end);
149
150 void
151 mi_cmd_gdb_exit (const char *command, char **argv, int argc)
152 {
153 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
154
155 /* We have to print everything right here because we never return. */
156 if (current_token)
157 fputs_unfiltered (current_token, mi->raw_stdout);
158 fputs_unfiltered ("^exit\n", mi->raw_stdout);
159 mi_out_put (current_uiout, mi->raw_stdout);
160 gdb_flush (mi->raw_stdout);
161 /* FIXME: The function called is not yet a formal libgdb function. */
162 quit_force (NULL, FROM_TTY);
163 }
164
165 void
166 mi_cmd_exec_next (const char *command, char **argv, int argc)
167 {
168 /* FIXME: Should call a libgdb function, not a cli wrapper. */
169 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
170 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
171 else
172 mi_execute_async_cli_command ("next", argv, argc);
173 }
174
175 void
176 mi_cmd_exec_next_instruction (const char *command, char **argv, int argc)
177 {
178 /* FIXME: Should call a libgdb function, not a cli wrapper. */
179 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
180 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
181 else
182 mi_execute_async_cli_command ("nexti", argv, argc);
183 }
184
185 void
186 mi_cmd_exec_step (const char *command, char **argv, int argc)
187 {
188 /* FIXME: Should call a libgdb function, not a cli wrapper. */
189 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
190 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
191 else
192 mi_execute_async_cli_command ("step", argv, argc);
193 }
194
195 void
196 mi_cmd_exec_step_instruction (const char *command, char **argv, int argc)
197 {
198 /* FIXME: Should call a libgdb function, not a cli wrapper. */
199 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
200 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
201 else
202 mi_execute_async_cli_command ("stepi", argv, argc);
203 }
204
205 void
206 mi_cmd_exec_finish (const char *command, char **argv, int argc)
207 {
208 /* FIXME: Should call a libgdb function, not a cli wrapper. */
209 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
210 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
211 else
212 mi_execute_async_cli_command ("finish", argv, argc);
213 }
214
215 void
216 mi_cmd_exec_return (const char *command, char **argv, int argc)
217 {
218 /* This command doesn't really execute the target, it just pops the
219 specified number of frames. */
220 if (argc)
221 /* Call return_command with from_tty argument equal to 0 so as to
222 avoid being queried. */
223 return_command (*argv, 0);
224 else
225 /* Call return_command with from_tty argument equal to 0 so as to
226 avoid being queried. */
227 return_command (NULL, 0);
228
229 /* Because we have called return_command with from_tty = 0, we need
230 to print the frame here. */
231 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
232 }
233
234 void
235 mi_cmd_exec_jump (const char *args, char **argv, int argc)
236 {
237 /* FIXME: Should call a libgdb function, not a cli wrapper. */
238 mi_execute_async_cli_command ("jump", argv, argc);
239 }
240
241 static void
242 proceed_thread (struct thread_info *thread, int pid)
243 {
244 if (!is_stopped (thread->ptid))
245 return;
246
247 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
248 return;
249
250 switch_to_thread (thread->ptid);
251 clear_proceed_status (0);
252 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
253 }
254
255 static int
256 proceed_thread_callback (struct thread_info *thread, void *arg)
257 {
258 int pid = *(int *)arg;
259
260 proceed_thread (thread, pid);
261 return 0;
262 }
263
264 static void
265 exec_continue (char **argv, int argc)
266 {
267 prepare_execution_command (&current_target, mi_async_p ());
268
269 if (non_stop)
270 {
271 /* In non-stop mode, 'resume' always resumes a single thread.
272 Therefore, to resume all threads of the current inferior, or
273 all threads in all inferiors, we need to iterate over
274 threads.
275
276 See comment on infcmd.c:proceed_thread_callback for rationale. */
277 if (current_context->all || current_context->thread_group != -1)
278 {
279 scoped_restore_current_thread restore_thread;
280 int pid = 0;
281
282 if (!current_context->all)
283 {
284 struct inferior *inf
285 = find_inferior_id (current_context->thread_group);
286
287 pid = inf->pid;
288 }
289 iterate_over_threads (proceed_thread_callback, &pid);
290 }
291 else
292 {
293 continue_1 (0);
294 }
295 }
296 else
297 {
298 scoped_restore save_multi = make_scoped_restore (&sched_multi);
299
300 if (current_context->all)
301 {
302 sched_multi = 1;
303 continue_1 (0);
304 }
305 else
306 {
307 /* In all-stop mode, -exec-continue traditionally resumed
308 either all threads, or one thread, depending on the
309 'scheduler-locking' variable. Let's continue to do the
310 same. */
311 continue_1 (1);
312 }
313 }
314 }
315
316 static void
317 exec_reverse_continue (char **argv, int argc)
318 {
319 enum exec_direction_kind dir = execution_direction;
320
321 if (dir == EXEC_REVERSE)
322 error (_("Already in reverse mode."));
323
324 if (!target_can_execute_reverse)
325 error (_("Target %s does not support this command."), target_shortname);
326
327 scoped_restore save_exec_dir = make_scoped_restore (&execution_direction,
328 EXEC_REVERSE);
329 exec_continue (argv, argc);
330 }
331
332 void
333 mi_cmd_exec_continue (const char *command, char **argv, int argc)
334 {
335 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
336 exec_reverse_continue (argv + 1, argc - 1);
337 else
338 exec_continue (argv, argc);
339 }
340
341 static int
342 interrupt_thread_callback (struct thread_info *thread, void *arg)
343 {
344 int pid = *(int *)arg;
345
346 if (!is_running (thread->ptid))
347 return 0;
348
349 if (ptid_get_pid (thread->ptid) != pid)
350 return 0;
351
352 target_stop (thread->ptid);
353 return 0;
354 }
355
356 /* Interrupt the execution of the target. Note how we must play
357 around with the token variables, in order to display the current
358 token in the result of the interrupt command, and the previous
359 execution token when the target finally stops. See comments in
360 mi_cmd_execute. */
361
362 void
363 mi_cmd_exec_interrupt (const char *command, char **argv, int argc)
364 {
365 /* In all-stop mode, everything stops, so we don't need to try
366 anything specific. */
367 if (!non_stop)
368 {
369 interrupt_target_1 (0);
370 return;
371 }
372
373 if (current_context->all)
374 {
375 /* This will interrupt all threads in all inferiors. */
376 interrupt_target_1 (1);
377 }
378 else if (current_context->thread_group != -1)
379 {
380 struct inferior *inf = find_inferior_id (current_context->thread_group);
381
382 iterate_over_threads (interrupt_thread_callback, &inf->pid);
383 }
384 else
385 {
386 /* Interrupt just the current thread -- either explicitly
387 specified via --thread or whatever was current before
388 MI command was sent. */
389 interrupt_target_1 (0);
390 }
391 }
392
393 /* Callback for iterate_over_inferiors which starts the execution
394 of the given inferior.
395
396 ARG is a pointer to an integer whose value, if non-zero, indicates
397 that the program should be stopped when reaching the main subprogram
398 (similar to what the CLI "start" command does). */
399
400 static int
401 run_one_inferior (struct inferior *inf, void *arg)
402 {
403 int start_p = *(int *) arg;
404 const char *run_cmd = start_p ? "start" : "run";
405 struct target_ops *run_target = find_run_target ();
406 int async_p = mi_async && run_target->to_can_async_p (run_target);
407
408 if (inf->pid != 0)
409 {
410 if (inf->pid != ptid_get_pid (inferior_ptid))
411 {
412 struct thread_info *tp;
413
414 tp = any_thread_of_process (inf->pid);
415 if (!tp)
416 error (_("Inferior has no threads."));
417
418 switch_to_thread (tp->ptid);
419 }
420 }
421 else
422 {
423 set_current_inferior (inf);
424 switch_to_thread (null_ptid);
425 set_current_program_space (inf->pspace);
426 }
427 mi_execute_cli_command (run_cmd, async_p,
428 async_p ? "&" : NULL);
429 return 0;
430 }
431
432 void
433 mi_cmd_exec_run (const char *command, char **argv, int argc)
434 {
435 int start_p = 0;
436
437 /* Parse the command options. */
438 enum opt
439 {
440 START_OPT,
441 };
442 static const struct mi_opt opts[] =
443 {
444 {"-start", START_OPT, 0},
445 {NULL, 0, 0},
446 };
447
448 int oind = 0;
449 char *oarg;
450
451 while (1)
452 {
453 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
454
455 if (opt < 0)
456 break;
457 switch ((enum opt) opt)
458 {
459 case START_OPT:
460 start_p = 1;
461 break;
462 }
463 }
464
465 /* This command does not accept any argument. Make sure the user
466 did not provide any. */
467 if (oind != argc)
468 error (_("Invalid argument: %s"), argv[oind]);
469
470 if (current_context->all)
471 {
472 scoped_restore_current_pspace_and_thread restore_pspace_thread;
473
474 iterate_over_inferiors (run_one_inferior, &start_p);
475 }
476 else
477 {
478 const char *run_cmd = start_p ? "start" : "run";
479 struct target_ops *run_target = find_run_target ();
480 int async_p = mi_async && run_target->to_can_async_p (run_target);
481
482 mi_execute_cli_command (run_cmd, async_p,
483 async_p ? "&" : NULL);
484 }
485 }
486
487
488 static int
489 find_thread_of_process (struct thread_info *ti, void *p)
490 {
491 int pid = *(int *)p;
492
493 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
494 return 1;
495
496 return 0;
497 }
498
499 void
500 mi_cmd_target_detach (const char *command, char **argv, int argc)
501 {
502 if (argc != 0 && argc != 1)
503 error (_("Usage: -target-detach [pid | thread-group]"));
504
505 if (argc == 1)
506 {
507 struct thread_info *tp;
508 char *end = argv[0];
509 int pid;
510
511 /* First see if we are dealing with a thread-group id. */
512 if (*argv[0] == 'i')
513 {
514 struct inferior *inf;
515 int id = strtoul (argv[0] + 1, &end, 0);
516
517 if (*end != '\0')
518 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
519
520 inf = find_inferior_id (id);
521 if (!inf)
522 error (_("Non-existent thread-group id '%d'"), id);
523
524 pid = inf->pid;
525 }
526 else
527 {
528 /* We must be dealing with a pid. */
529 pid = strtol (argv[0], &end, 10);
530
531 if (*end != '\0')
532 error (_("Invalid identifier '%s'"), argv[0]);
533 }
534
535 /* Pick any thread in the desired process. Current
536 target_detach detaches from the parent of inferior_ptid. */
537 tp = iterate_over_threads (find_thread_of_process, &pid);
538 if (!tp)
539 error (_("Thread group is empty"));
540
541 switch_to_thread (tp->ptid);
542 }
543
544 detach_command (NULL, 0);
545 }
546
547 void
548 mi_cmd_target_flash_erase (const char *command, char **argv, int argc)
549 {
550 flash_erase_command (NULL, 0);
551 }
552
553 void
554 mi_cmd_thread_select (const char *command, char **argv, int argc)
555 {
556 enum gdb_rc rc;
557 char *mi_error_message;
558 ptid_t previous_ptid = inferior_ptid;
559
560 if (argc != 1)
561 error (_("-thread-select: USAGE: threadnum."));
562
563 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
564
565 /* If thread switch did not succeed don't notify or print. */
566 if (rc == GDB_RC_FAIL)
567 {
568 make_cleanup (xfree, mi_error_message);
569 error ("%s", mi_error_message);
570 }
571
572 print_selected_thread_frame (current_uiout,
573 USER_SELECTED_THREAD | USER_SELECTED_FRAME);
574
575 /* Notify if the thread has effectively changed. */
576 if (!ptid_equal (inferior_ptid, previous_ptid))
577 {
578 observer_notify_user_selected_context_changed (USER_SELECTED_THREAD
579 | USER_SELECTED_FRAME);
580 }
581 }
582
583 void
584 mi_cmd_thread_list_ids (const char *command, char **argv, int argc)
585 {
586 enum gdb_rc rc;
587 char *mi_error_message;
588
589 if (argc != 0)
590 error (_("-thread-list-ids: No arguments required."));
591
592 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
593
594 if (rc == GDB_RC_FAIL)
595 {
596 make_cleanup (xfree, mi_error_message);
597 error ("%s", mi_error_message);
598 }
599 }
600
601 void
602 mi_cmd_thread_info (const char *command, char **argv, int argc)
603 {
604 if (argc != 0 && argc != 1)
605 error (_("Invalid MI command"));
606
607 print_thread_info (current_uiout, argv[0], -1);
608 }
609
610 struct collect_cores_data
611 {
612 int pid;
613
614 VEC (int) *cores;
615 };
616
617 static int
618 collect_cores (struct thread_info *ti, void *xdata)
619 {
620 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
621
622 if (ptid_get_pid (ti->ptid) == data->pid)
623 {
624 int core = target_core_of_thread (ti->ptid);
625
626 if (core != -1)
627 VEC_safe_push (int, data->cores, core);
628 }
629
630 return 0;
631 }
632
633 static int *
634 unique (int *b, int *e)
635 {
636 int *d = b;
637
638 while (++b != e)
639 if (*d != *b)
640 *++d = *b;
641 return ++d;
642 }
643
644 struct print_one_inferior_data
645 {
646 int recurse;
647 VEC (int) *inferiors;
648 };
649
650 static int
651 print_one_inferior (struct inferior *inferior, void *xdata)
652 {
653 struct print_one_inferior_data *top_data
654 = (struct print_one_inferior_data *) xdata;
655 struct ui_out *uiout = current_uiout;
656
657 if (VEC_empty (int, top_data->inferiors)
658 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
659 VEC_length (int, top_data->inferiors), sizeof (int),
660 compare_positive_ints))
661 {
662 struct collect_cores_data data;
663 ui_out_emit_tuple tuple_emitter (uiout, NULL);
664
665 uiout->field_fmt ("id", "i%d", inferior->num);
666 uiout->field_string ("type", "process");
667 if (inferior->has_exit_code)
668 uiout->field_string ("exit-code",
669 int_string (inferior->exit_code, 8, 0, 0, 1));
670 if (inferior->pid != 0)
671 uiout->field_int ("pid", inferior->pid);
672
673 if (inferior->pspace->pspace_exec_filename != NULL)
674 {
675 uiout->field_string ("executable",
676 inferior->pspace->pspace_exec_filename);
677 }
678
679 data.cores = 0;
680 if (inferior->pid != 0)
681 {
682 data.pid = inferior->pid;
683 iterate_over_threads (collect_cores, &data);
684 }
685
686 if (!VEC_empty (int, data.cores))
687 {
688 int *b, *e;
689 ui_out_emit_list list_emitter (uiout, "cores");
690
691 qsort (VEC_address (int, data.cores),
692 VEC_length (int, data.cores), sizeof (int),
693 compare_positive_ints);
694
695 b = VEC_address (int, data.cores);
696 e = b + VEC_length (int, data.cores);
697 e = unique (b, e);
698
699 for (; b != e; ++b)
700 uiout->field_int (NULL, *b);
701 }
702
703 if (top_data->recurse)
704 print_thread_info (uiout, NULL, inferior->pid);
705 }
706
707 return 0;
708 }
709
710 /* Output a field named 'cores' with a list as the value. The
711 elements of the list are obtained by splitting 'cores' on
712 comma. */
713
714 static void
715 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
716 {
717 ui_out_emit_list list_emitter (uiout, field_name);
718 gdb::unique_xmalloc_ptr<char> cores (xstrdup (xcores));
719 char *p = cores.get ();
720
721 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
722 uiout->field_string (NULL, p);
723 }
724
725 static void
726 free_vector_of_ints (void *xvector)
727 {
728 VEC (int) **vector = (VEC (int) **) xvector;
729
730 VEC_free (int, *vector);
731 }
732
733 static void
734 do_nothing (splay_tree_key k)
735 {
736 }
737
738 static void
739 free_vector_of_osdata_items (splay_tree_value xvalue)
740 {
741 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
742
743 /* We don't free the items itself, it will be done separately. */
744 VEC_free (osdata_item_s, value);
745 }
746
747 static int
748 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
749 {
750 int a = xa;
751 int b = xb;
752
753 return a - b;
754 }
755
756 static void
757 free_splay_tree (void *xt)
758 {
759 splay_tree t = (splay_tree) xt;
760 splay_tree_delete (t);
761 }
762
763 static void
764 list_available_thread_groups (VEC (int) *ids, int recurse)
765 {
766 struct osdata *data;
767 struct osdata_item *item;
768 int ix_items;
769 struct ui_out *uiout = current_uiout;
770 struct cleanup *cleanup;
771
772 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
773 The vector contains information about all threads for the given pid.
774 This is assigned an initial value to avoid "may be used uninitialized"
775 warning from gcc. */
776 splay_tree tree = NULL;
777
778 /* get_osdata will throw if it cannot return data. */
779 data = get_osdata ("processes");
780 cleanup = make_cleanup_osdata_free (data);
781
782 if (recurse)
783 {
784 struct osdata *threads = get_osdata ("threads");
785
786 make_cleanup_osdata_free (threads);
787 tree = splay_tree_new (splay_tree_int_comparator,
788 do_nothing,
789 free_vector_of_osdata_items);
790 make_cleanup (free_splay_tree, tree);
791
792 for (ix_items = 0;
793 VEC_iterate (osdata_item_s, threads->items,
794 ix_items, item);
795 ix_items++)
796 {
797 const char *pid = get_osdata_column (item, "pid");
798 int pid_i = strtoul (pid, NULL, 0);
799 VEC (osdata_item_s) *vec = 0;
800
801 splay_tree_node n = splay_tree_lookup (tree, pid_i);
802 if (!n)
803 {
804 VEC_safe_push (osdata_item_s, vec, item);
805 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
806 }
807 else
808 {
809 vec = (VEC (osdata_item_s) *) n->value;
810 VEC_safe_push (osdata_item_s, vec, item);
811 n->value = (splay_tree_value) vec;
812 }
813 }
814 }
815
816 ui_out_emit_list list_emitter (uiout, "groups");
817
818 for (ix_items = 0;
819 VEC_iterate (osdata_item_s, data->items,
820 ix_items, item);
821 ix_items++)
822 {
823 const char *pid = get_osdata_column (item, "pid");
824 const char *cmd = get_osdata_column (item, "command");
825 const char *user = get_osdata_column (item, "user");
826 const char *cores = get_osdata_column (item, "cores");
827
828 int pid_i = strtoul (pid, NULL, 0);
829
830 /* At present, the target will return all available processes
831 and if information about specific ones was required, we filter
832 undesired processes here. */
833 if (ids && bsearch (&pid_i, VEC_address (int, ids),
834 VEC_length (int, ids),
835 sizeof (int), compare_positive_ints) == NULL)
836 continue;
837
838
839 ui_out_emit_tuple tuple_emitter (uiout, NULL);
840
841 uiout->field_fmt ("id", "%s", pid);
842 uiout->field_string ("type", "process");
843 if (cmd)
844 uiout->field_string ("description", cmd);
845 if (user)
846 uiout->field_string ("user", user);
847 if (cores)
848 output_cores (uiout, "cores", cores);
849
850 if (recurse)
851 {
852 splay_tree_node n = splay_tree_lookup (tree, pid_i);
853 if (n)
854 {
855 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
856 struct osdata_item *child;
857 int ix_child;
858
859 ui_out_emit_list thread_list_emitter (uiout, "threads");
860
861 for (ix_child = 0;
862 VEC_iterate (osdata_item_s, children, ix_child, child);
863 ++ix_child)
864 {
865 ui_out_emit_tuple tuple_emitter (uiout, NULL);
866 const char *tid = get_osdata_column (child, "tid");
867 const char *tcore = get_osdata_column (child, "core");
868
869 uiout->field_string ("id", tid);
870 if (tcore)
871 uiout->field_string ("core", tcore);
872 }
873 }
874 }
875 }
876
877 do_cleanups (cleanup);
878 }
879
880 void
881 mi_cmd_list_thread_groups (const char *command, char **argv, int argc)
882 {
883 struct ui_out *uiout = current_uiout;
884 struct cleanup *back_to;
885 int available = 0;
886 int recurse = 0;
887 VEC (int) *ids = 0;
888
889 enum opt
890 {
891 AVAILABLE_OPT, RECURSE_OPT
892 };
893 static const struct mi_opt opts[] =
894 {
895 {"-available", AVAILABLE_OPT, 0},
896 {"-recurse", RECURSE_OPT, 1},
897 { 0, 0, 0 }
898 };
899
900 int oind = 0;
901 char *oarg;
902
903 while (1)
904 {
905 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
906 &oind, &oarg);
907
908 if (opt < 0)
909 break;
910 switch ((enum opt) opt)
911 {
912 case AVAILABLE_OPT:
913 available = 1;
914 break;
915 case RECURSE_OPT:
916 if (strcmp (oarg, "0") == 0)
917 ;
918 else if (strcmp (oarg, "1") == 0)
919 recurse = 1;
920 else
921 error (_("only '0' and '1' are valid values "
922 "for the '--recurse' option"));
923 break;
924 }
925 }
926
927 for (; oind < argc; ++oind)
928 {
929 char *end;
930 int inf;
931
932 if (*(argv[oind]) != 'i')
933 error (_("invalid syntax of group id '%s'"), argv[oind]);
934
935 inf = strtoul (argv[oind] + 1, &end, 0);
936
937 if (*end != '\0')
938 error (_("invalid syntax of group id '%s'"), argv[oind]);
939 VEC_safe_push (int, ids, inf);
940 }
941 if (VEC_length (int, ids) > 1)
942 qsort (VEC_address (int, ids),
943 VEC_length (int, ids),
944 sizeof (int), compare_positive_ints);
945
946 back_to = make_cleanup (free_vector_of_ints, &ids);
947
948 if (available)
949 {
950 list_available_thread_groups (ids, recurse);
951 }
952 else if (VEC_length (int, ids) == 1)
953 {
954 /* Local thread groups, single id. */
955 int id = *VEC_address (int, ids);
956 struct inferior *inf = find_inferior_id (id);
957
958 if (!inf)
959 error (_("Non-existent thread group id '%d'"), id);
960
961 print_thread_info (uiout, NULL, inf->pid);
962 }
963 else
964 {
965 struct print_one_inferior_data data;
966
967 data.recurse = recurse;
968 data.inferiors = ids;
969
970 /* Local thread groups. Either no explicit ids -- and we
971 print everything, or several explicit ids. In both cases,
972 we print more than one group, and have to use 'groups'
973 as the top-level element. */
974 ui_out_emit_list list_emitter (uiout, "groups");
975 update_thread_list ();
976 iterate_over_inferiors (print_one_inferior, &data);
977 }
978
979 do_cleanups (back_to);
980 }
981
982 void
983 mi_cmd_data_list_register_names (const char *command, char **argv, int argc)
984 {
985 struct gdbarch *gdbarch;
986 struct ui_out *uiout = current_uiout;
987 int regnum, numregs;
988 int i;
989
990 /* Note that the test for a valid register must include checking the
991 gdbarch_register_name because gdbarch_num_regs may be allocated
992 for the union of the register sets within a family of related
993 processors. In this case, some entries of gdbarch_register_name
994 will change depending upon the particular processor being
995 debugged. */
996
997 gdbarch = get_current_arch ();
998 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
999
1000 ui_out_emit_list list_emitter (uiout, "register-names");
1001
1002 if (argc == 0) /* No args, just do all the regs. */
1003 {
1004 for (regnum = 0;
1005 regnum < numregs;
1006 regnum++)
1007 {
1008 if (gdbarch_register_name (gdbarch, regnum) == NULL
1009 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1010 uiout->field_string (NULL, "");
1011 else
1012 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
1013 }
1014 }
1015
1016 /* Else, list of register #s, just do listed regs. */
1017 for (i = 0; i < argc; i++)
1018 {
1019 regnum = atoi (argv[i]);
1020 if (regnum < 0 || regnum >= numregs)
1021 error (_("bad register number"));
1022
1023 if (gdbarch_register_name (gdbarch, regnum) == NULL
1024 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1025 uiout->field_string (NULL, "");
1026 else
1027 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
1028 }
1029 }
1030
1031 void
1032 mi_cmd_data_list_changed_registers (const char *command, char **argv, int argc)
1033 {
1034 static std::unique_ptr<struct regcache> this_regs;
1035 struct ui_out *uiout = current_uiout;
1036 std::unique_ptr<struct regcache> prev_regs;
1037 struct gdbarch *gdbarch;
1038 int regnum, numregs, changed;
1039 int i;
1040
1041 /* The last time we visited this function, the current frame's
1042 register contents were saved in THIS_REGS. Move THIS_REGS over
1043 to PREV_REGS, and refresh THIS_REGS with the now-current register
1044 contents. */
1045
1046 prev_regs = std::move (this_regs);
1047 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1048
1049 /* Note that the test for a valid register must include checking the
1050 gdbarch_register_name because gdbarch_num_regs may be allocated
1051 for the union of the register sets within a family of related
1052 processors. In this case, some entries of gdbarch_register_name
1053 will change depending upon the particular processor being
1054 debugged. */
1055
1056 gdbarch = get_regcache_arch (this_regs.get ());
1057 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1058
1059 ui_out_emit_list list_emitter (uiout, "changed-registers");
1060
1061 if (argc == 0)
1062 {
1063 /* No args, just do all the regs. */
1064 for (regnum = 0;
1065 regnum < numregs;
1066 regnum++)
1067 {
1068 if (gdbarch_register_name (gdbarch, regnum) == NULL
1069 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1070 continue;
1071 changed = register_changed_p (regnum, prev_regs.get (),
1072 this_regs.get ());
1073 if (changed < 0)
1074 error (_("-data-list-changed-registers: "
1075 "Unable to read register contents."));
1076 else if (changed)
1077 uiout->field_int (NULL, regnum);
1078 }
1079 }
1080
1081 /* Else, list of register #s, just do listed regs. */
1082 for (i = 0; i < argc; i++)
1083 {
1084 regnum = atoi (argv[i]);
1085
1086 if (regnum >= 0
1087 && regnum < numregs
1088 && gdbarch_register_name (gdbarch, regnum) != NULL
1089 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1090 {
1091 changed = register_changed_p (regnum, prev_regs.get (),
1092 this_regs.get ());
1093 if (changed < 0)
1094 error (_("-data-list-changed-registers: "
1095 "Unable to read register contents."));
1096 else if (changed)
1097 uiout->field_int (NULL, regnum);
1098 }
1099 else
1100 error (_("bad register number"));
1101 }
1102 }
1103
1104 static int
1105 register_changed_p (int regnum, struct regcache *prev_regs,
1106 struct regcache *this_regs)
1107 {
1108 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1109 struct value *prev_value, *this_value;
1110 int ret;
1111
1112 /* First time through or after gdbarch change consider all registers
1113 as changed. */
1114 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1115 return 1;
1116
1117 /* Get register contents and compare. */
1118 prev_value = prev_regs->cooked_read_value (regnum);
1119 this_value = this_regs->cooked_read_value (regnum);
1120 gdb_assert (prev_value != NULL);
1121 gdb_assert (this_value != NULL);
1122
1123 ret = value_contents_eq (prev_value, 0, this_value, 0,
1124 register_size (gdbarch, regnum)) == 0;
1125
1126 release_value (prev_value);
1127 release_value (this_value);
1128 value_free (prev_value);
1129 value_free (this_value);
1130 return ret;
1131 }
1132
1133 /* Return a list of register number and value pairs. The valid
1134 arguments expected are: a letter indicating the format in which to
1135 display the registers contents. This can be one of: x
1136 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1137 (raw). After the format argument there can be a sequence of
1138 numbers, indicating which registers to fetch the content of. If
1139 the format is the only argument, a list of all the registers with
1140 their values is returned. */
1141
1142 void
1143 mi_cmd_data_list_register_values (const char *command, char **argv, int argc)
1144 {
1145 struct ui_out *uiout = current_uiout;
1146 struct frame_info *frame;
1147 struct gdbarch *gdbarch;
1148 int regnum, numregs, format;
1149 int i;
1150 int skip_unavailable = 0;
1151 int oind = 0;
1152 enum opt
1153 {
1154 SKIP_UNAVAILABLE,
1155 };
1156 static const struct mi_opt opts[] =
1157 {
1158 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1159 { 0, 0, 0 }
1160 };
1161
1162 /* Note that the test for a valid register must include checking the
1163 gdbarch_register_name because gdbarch_num_regs may be allocated
1164 for the union of the register sets within a family of related
1165 processors. In this case, some entries of gdbarch_register_name
1166 will change depending upon the particular processor being
1167 debugged. */
1168
1169 while (1)
1170 {
1171 char *oarg;
1172 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1173 opts, &oind, &oarg);
1174
1175 if (opt < 0)
1176 break;
1177 switch ((enum opt) opt)
1178 {
1179 case SKIP_UNAVAILABLE:
1180 skip_unavailable = 1;
1181 break;
1182 }
1183 }
1184
1185 if (argc - oind < 1)
1186 error (_("-data-list-register-values: Usage: "
1187 "-data-list-register-values [--skip-unavailable] <format>"
1188 " [<regnum1>...<regnumN>]"));
1189
1190 format = (int) argv[oind][0];
1191
1192 frame = get_selected_frame (NULL);
1193 gdbarch = get_frame_arch (frame);
1194 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1195
1196 ui_out_emit_list list_emitter (uiout, "register-values");
1197
1198 if (argc - oind == 1)
1199 {
1200 /* No args, beside the format: do all the regs. */
1201 for (regnum = 0;
1202 regnum < numregs;
1203 regnum++)
1204 {
1205 if (gdbarch_register_name (gdbarch, regnum) == NULL
1206 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1207 continue;
1208
1209 output_register (frame, regnum, format, skip_unavailable);
1210 }
1211 }
1212
1213 /* Else, list of register #s, just do listed regs. */
1214 for (i = 1 + oind; i < argc; i++)
1215 {
1216 regnum = atoi (argv[i]);
1217
1218 if (regnum >= 0
1219 && regnum < numregs
1220 && gdbarch_register_name (gdbarch, regnum) != NULL
1221 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1222 output_register (frame, regnum, format, skip_unavailable);
1223 else
1224 error (_("bad register number"));
1225 }
1226 }
1227
1228 /* Output one register REGNUM's contents in the desired FORMAT. If
1229 SKIP_UNAVAILABLE is true, skip the register if it is
1230 unavailable. */
1231
1232 static void
1233 output_register (struct frame_info *frame, int regnum, int format,
1234 int skip_unavailable)
1235 {
1236 struct ui_out *uiout = current_uiout;
1237 struct value *val = value_of_register (regnum, frame);
1238 struct value_print_options opts;
1239
1240 if (skip_unavailable && !value_entirely_available (val))
1241 return;
1242
1243 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1244 uiout->field_int ("number", regnum);
1245
1246 if (format == 'N')
1247 format = 0;
1248
1249 if (format == 'r')
1250 format = 'z';
1251
1252 string_file stb;
1253
1254 get_formatted_print_options (&opts, format);
1255 opts.deref_ref = 1;
1256 val_print (value_type (val),
1257 value_embedded_offset (val), 0,
1258 &stb, 0, val, &opts, current_language);
1259 uiout->field_stream ("value", stb);
1260 }
1261
1262 /* Write given values into registers. The registers and values are
1263 given as pairs. The corresponding MI command is
1264 -data-write-register-values <format>
1265 [<regnum1> <value1>...<regnumN> <valueN>] */
1266 void
1267 mi_cmd_data_write_register_values (const char *command, char **argv, int argc)
1268 {
1269 struct regcache *regcache;
1270 struct gdbarch *gdbarch;
1271 int numregs, i;
1272
1273 /* Note that the test for a valid register must include checking the
1274 gdbarch_register_name because gdbarch_num_regs may be allocated
1275 for the union of the register sets within a family of related
1276 processors. In this case, some entries of gdbarch_register_name
1277 will change depending upon the particular processor being
1278 debugged. */
1279
1280 regcache = get_current_regcache ();
1281 gdbarch = get_regcache_arch (regcache);
1282 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1283
1284 if (argc == 0)
1285 error (_("-data-write-register-values: Usage: -data-write-register-"
1286 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1287
1288 if (!target_has_registers)
1289 error (_("-data-write-register-values: No registers."));
1290
1291 if (!(argc - 1))
1292 error (_("-data-write-register-values: No regs and values specified."));
1293
1294 if ((argc - 1) % 2)
1295 error (_("-data-write-register-values: "
1296 "Regs and vals are not in pairs."));
1297
1298 for (i = 1; i < argc; i = i + 2)
1299 {
1300 int regnum = atoi (argv[i]);
1301
1302 if (regnum >= 0 && regnum < numregs
1303 && gdbarch_register_name (gdbarch, regnum)
1304 && *gdbarch_register_name (gdbarch, regnum))
1305 {
1306 LONGEST value;
1307
1308 /* Get the value as a number. */
1309 value = parse_and_eval_address (argv[i + 1]);
1310
1311 /* Write it down. */
1312 regcache_cooked_write_signed (regcache, regnum, value);
1313 }
1314 else
1315 error (_("bad register number"));
1316 }
1317 }
1318
1319 /* Evaluate the value of the argument. The argument is an
1320 expression. If the expression contains spaces it needs to be
1321 included in double quotes. */
1322
1323 void
1324 mi_cmd_data_evaluate_expression (const char *command, char **argv, int argc)
1325 {
1326 struct value *val;
1327 struct value_print_options opts;
1328 struct ui_out *uiout = current_uiout;
1329
1330 if (argc != 1)
1331 error (_("-data-evaluate-expression: "
1332 "Usage: -data-evaluate-expression expression"));
1333
1334 expression_up expr = parse_expression (argv[0]);
1335
1336 val = evaluate_expression (expr.get ());
1337
1338 string_file stb;
1339
1340 /* Print the result of the expression evaluation. */
1341 get_user_print_options (&opts);
1342 opts.deref_ref = 0;
1343 common_val_print (val, &stb, 0, &opts, current_language);
1344
1345 uiout->field_stream ("value", stb);
1346 }
1347
1348 /* This is the -data-read-memory command.
1349
1350 ADDR: start address of data to be dumped.
1351 WORD-FORMAT: a char indicating format for the ``word''. See
1352 the ``x'' command.
1353 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1354 NR_ROW: Number of rows.
1355 NR_COL: The number of colums (words per row).
1356 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1357 ASCHAR for unprintable characters.
1358
1359 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1360 displayes them. Returns:
1361
1362 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1363
1364 Returns:
1365 The number of bytes read is SIZE*ROW*COL. */
1366
1367 void
1368 mi_cmd_data_read_memory (const char *command, char **argv, int argc)
1369 {
1370 struct gdbarch *gdbarch = get_current_arch ();
1371 struct ui_out *uiout = current_uiout;
1372 CORE_ADDR addr;
1373 long total_bytes, nr_cols, nr_rows;
1374 char word_format;
1375 struct type *word_type;
1376 long word_size;
1377 char word_asize;
1378 char aschar;
1379 int nr_bytes;
1380 long offset = 0;
1381 int oind = 0;
1382 char *oarg;
1383 enum opt
1384 {
1385 OFFSET_OPT
1386 };
1387 static const struct mi_opt opts[] =
1388 {
1389 {"o", OFFSET_OPT, 1},
1390 { 0, 0, 0 }
1391 };
1392
1393 while (1)
1394 {
1395 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1396 &oind, &oarg);
1397
1398 if (opt < 0)
1399 break;
1400 switch ((enum opt) opt)
1401 {
1402 case OFFSET_OPT:
1403 offset = atol (oarg);
1404 break;
1405 }
1406 }
1407 argv += oind;
1408 argc -= oind;
1409
1410 if (argc < 5 || argc > 6)
1411 error (_("-data-read-memory: Usage: "
1412 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1413
1414 /* Extract all the arguments. */
1415
1416 /* Start address of the memory dump. */
1417 addr = parse_and_eval_address (argv[0]) + offset;
1418 /* The format character to use when displaying a memory word. See
1419 the ``x'' command. */
1420 word_format = argv[1][0];
1421 /* The size of the memory word. */
1422 word_size = atol (argv[2]);
1423 switch (word_size)
1424 {
1425 case 1:
1426 word_type = builtin_type (gdbarch)->builtin_int8;
1427 word_asize = 'b';
1428 break;
1429 case 2:
1430 word_type = builtin_type (gdbarch)->builtin_int16;
1431 word_asize = 'h';
1432 break;
1433 case 4:
1434 word_type = builtin_type (gdbarch)->builtin_int32;
1435 word_asize = 'w';
1436 break;
1437 case 8:
1438 word_type = builtin_type (gdbarch)->builtin_int64;
1439 word_asize = 'g';
1440 break;
1441 default:
1442 word_type = builtin_type (gdbarch)->builtin_int8;
1443 word_asize = 'b';
1444 }
1445 /* The number of rows. */
1446 nr_rows = atol (argv[3]);
1447 if (nr_rows <= 0)
1448 error (_("-data-read-memory: invalid number of rows."));
1449
1450 /* Number of bytes per row. */
1451 nr_cols = atol (argv[4]);
1452 if (nr_cols <= 0)
1453 error (_("-data-read-memory: invalid number of columns."));
1454
1455 /* The un-printable character when printing ascii. */
1456 if (argc == 6)
1457 aschar = *argv[5];
1458 else
1459 aschar = 0;
1460
1461 /* Create a buffer and read it in. */
1462 total_bytes = word_size * nr_rows * nr_cols;
1463
1464 gdb::byte_vector mbuf (total_bytes);
1465
1466 /* Dispatch memory reads to the topmost target, not the flattened
1467 current_target. */
1468 nr_bytes = target_read (current_target.beneath,
1469 TARGET_OBJECT_MEMORY, NULL, mbuf.data (),
1470 addr, total_bytes);
1471 if (nr_bytes <= 0)
1472 error (_("Unable to read memory."));
1473
1474 /* Output the header information. */
1475 uiout->field_core_addr ("addr", gdbarch, addr);
1476 uiout->field_int ("nr-bytes", nr_bytes);
1477 uiout->field_int ("total-bytes", total_bytes);
1478 uiout->field_core_addr ("next-row", gdbarch, addr + word_size * nr_cols);
1479 uiout->field_core_addr ("prev-row", gdbarch, addr - word_size * nr_cols);
1480 uiout->field_core_addr ("next-page", gdbarch, addr + total_bytes);
1481 uiout->field_core_addr ("prev-page", gdbarch, addr - total_bytes);
1482
1483 /* Build the result as a two dimentional table. */
1484 {
1485 int row;
1486 int row_byte;
1487
1488 string_file stream;
1489
1490 ui_out_emit_list list_emitter (uiout, "memory");
1491 for (row = 0, row_byte = 0;
1492 row < nr_rows;
1493 row++, row_byte += nr_cols * word_size)
1494 {
1495 int col;
1496 int col_byte;
1497 struct value_print_options opts;
1498
1499 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1500 uiout->field_core_addr ("addr", gdbarch, addr + row_byte);
1501 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1502 row_byte); */
1503 {
1504 ui_out_emit_list list_data_emitter (uiout, "data");
1505 get_formatted_print_options (&opts, word_format);
1506 for (col = 0, col_byte = row_byte;
1507 col < nr_cols;
1508 col++, col_byte += word_size)
1509 {
1510 if (col_byte + word_size > nr_bytes)
1511 {
1512 uiout->field_string (NULL, "N/A");
1513 }
1514 else
1515 {
1516 stream.clear ();
1517 print_scalar_formatted (&mbuf[col_byte], word_type, &opts,
1518 word_asize, &stream);
1519 uiout->field_stream (NULL, stream);
1520 }
1521 }
1522 }
1523
1524 if (aschar)
1525 {
1526 int byte;
1527
1528 stream.clear ();
1529 for (byte = row_byte;
1530 byte < row_byte + word_size * nr_cols; byte++)
1531 {
1532 if (byte >= nr_bytes)
1533 stream.putc ('X');
1534 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1535 stream.putc (aschar);
1536 else
1537 stream.putc (mbuf[byte]);
1538 }
1539 uiout->field_stream ("ascii", stream);
1540 }
1541 }
1542 }
1543 }
1544
1545 void
1546 mi_cmd_data_read_memory_bytes (const char *command, char **argv, int argc)
1547 {
1548 struct gdbarch *gdbarch = get_current_arch ();
1549 struct ui_out *uiout = current_uiout;
1550 struct cleanup *cleanups;
1551 CORE_ADDR addr;
1552 LONGEST length;
1553 memory_read_result_s *read_result;
1554 int ix;
1555 VEC(memory_read_result_s) *result;
1556 long offset = 0;
1557 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1558 int oind = 0;
1559 char *oarg;
1560 enum opt
1561 {
1562 OFFSET_OPT
1563 };
1564 static const struct mi_opt opts[] =
1565 {
1566 {"o", OFFSET_OPT, 1},
1567 { 0, 0, 0 }
1568 };
1569
1570 while (1)
1571 {
1572 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1573 &oind, &oarg);
1574 if (opt < 0)
1575 break;
1576 switch ((enum opt) opt)
1577 {
1578 case OFFSET_OPT:
1579 offset = atol (oarg);
1580 break;
1581 }
1582 }
1583 argv += oind;
1584 argc -= oind;
1585
1586 if (argc != 2)
1587 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1588
1589 addr = parse_and_eval_address (argv[0]) + offset;
1590 length = atol (argv[1]);
1591
1592 result = read_memory_robust (current_target.beneath, addr, length);
1593
1594 cleanups = make_cleanup (free_memory_read_result_vector, &result);
1595
1596 if (VEC_length (memory_read_result_s, result) == 0)
1597 error (_("Unable to read memory."));
1598
1599 ui_out_emit_list list_emitter (uiout, "memory");
1600 for (ix = 0;
1601 VEC_iterate (memory_read_result_s, result, ix, read_result);
1602 ++ix)
1603 {
1604 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1605 char *data, *p;
1606 int i;
1607 int alloc_len;
1608
1609 uiout->field_core_addr ("begin", gdbarch, read_result->begin);
1610 uiout->field_core_addr ("offset", gdbarch, read_result->begin - addr);
1611 uiout->field_core_addr ("end", gdbarch, read_result->end);
1612
1613 alloc_len = (read_result->end - read_result->begin) * 2 * unit_size + 1;
1614 data = (char *) xmalloc (alloc_len);
1615
1616 for (i = 0, p = data;
1617 i < ((read_result->end - read_result->begin) * unit_size);
1618 ++i, p += 2)
1619 {
1620 sprintf (p, "%02x", read_result->data[i]);
1621 }
1622 uiout->field_string ("contents", data);
1623 xfree (data);
1624 }
1625 do_cleanups (cleanups);
1626 }
1627
1628 /* Implementation of the -data-write_memory command.
1629
1630 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1631 offset from the beginning of the memory grid row where the cell to
1632 be written is.
1633 ADDR: start address of the row in the memory grid where the memory
1634 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1635 the location to write to.
1636 FORMAT: a char indicating format for the ``word''. See
1637 the ``x'' command.
1638 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1639 VALUE: value to be written into the memory address.
1640
1641 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1642
1643 Prints nothing. */
1644
1645 void
1646 mi_cmd_data_write_memory (const char *command, char **argv, int argc)
1647 {
1648 struct gdbarch *gdbarch = get_current_arch ();
1649 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1650 CORE_ADDR addr;
1651 long word_size;
1652 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1653 enough when using a compiler other than GCC. */
1654 LONGEST value;
1655 long offset = 0;
1656 int oind = 0;
1657 char *oarg;
1658 enum opt
1659 {
1660 OFFSET_OPT
1661 };
1662 static const struct mi_opt opts[] =
1663 {
1664 {"o", OFFSET_OPT, 1},
1665 { 0, 0, 0 }
1666 };
1667
1668 while (1)
1669 {
1670 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1671 &oind, &oarg);
1672
1673 if (opt < 0)
1674 break;
1675 switch ((enum opt) opt)
1676 {
1677 case OFFSET_OPT:
1678 offset = atol (oarg);
1679 break;
1680 }
1681 }
1682 argv += oind;
1683 argc -= oind;
1684
1685 if (argc != 4)
1686 error (_("-data-write-memory: Usage: "
1687 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1688
1689 /* Extract all the arguments. */
1690 /* Start address of the memory dump. */
1691 addr = parse_and_eval_address (argv[0]);
1692 /* The size of the memory word. */
1693 word_size = atol (argv[2]);
1694
1695 /* Calculate the real address of the write destination. */
1696 addr += (offset * word_size);
1697
1698 /* Get the value as a number. */
1699 value = parse_and_eval_address (argv[3]);
1700 /* Get the value into an array. */
1701 gdb::byte_vector buffer (word_size);
1702 store_signed_integer (buffer.data (), word_size, byte_order, value);
1703 /* Write it down to memory. */
1704 write_memory_with_notification (addr, buffer.data (), word_size);
1705 }
1706
1707 /* Implementation of the -data-write-memory-bytes command.
1708
1709 ADDR: start address
1710 DATA: string of bytes to write at that address
1711 COUNT: number of bytes to be filled (decimal integer). */
1712
1713 void
1714 mi_cmd_data_write_memory_bytes (const char *command, char **argv, int argc)
1715 {
1716 CORE_ADDR addr;
1717 char *cdata;
1718 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1719 long int count_units;
1720 int unit_size;
1721
1722 if (argc != 2 && argc != 3)
1723 error (_("Usage: ADDR DATA [COUNT]."));
1724
1725 addr = parse_and_eval_address (argv[0]);
1726 cdata = argv[1];
1727 len_hex = strlen (cdata);
1728 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1729
1730 if (len_hex % (unit_size * 2) != 0)
1731 error (_("Hex-encoded '%s' must represent an integral number of "
1732 "addressable memory units."),
1733 cdata);
1734
1735 len_bytes = len_hex / 2;
1736 len_units = len_bytes / unit_size;
1737
1738 if (argc == 3)
1739 count_units = strtoul (argv[2], NULL, 10);
1740 else
1741 count_units = len_units;
1742
1743 gdb::byte_vector databuf (len_bytes);
1744
1745 for (i = 0; i < len_bytes; ++i)
1746 {
1747 int x;
1748 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1749 error (_("Invalid argument"));
1750 databuf[i] = (gdb_byte) x;
1751 }
1752
1753 gdb::byte_vector data;
1754 if (len_units < count_units)
1755 {
1756 /* Pattern is made of less units than count:
1757 repeat pattern to fill memory. */
1758 data = gdb::byte_vector (count_units * unit_size);
1759
1760 /* Number of times the pattern is entirely repeated. */
1761 steps = count_units / len_units;
1762 /* Number of remaining addressable memory units. */
1763 remaining_units = count_units % len_units;
1764 for (i = 0; i < steps; i++)
1765 memcpy (&data[i * len_bytes], &databuf[0], len_bytes);
1766
1767 if (remaining_units > 0)
1768 memcpy (&data[steps * len_bytes], &databuf[0],
1769 remaining_units * unit_size);
1770 }
1771 else
1772 {
1773 /* Pattern is longer than or equal to count:
1774 just copy count addressable memory units. */
1775 data = std::move (databuf);
1776 }
1777
1778 write_memory_with_notification (addr, data.data (), count_units);
1779 }
1780
1781 void
1782 mi_cmd_enable_timings (const char *command, char **argv, int argc)
1783 {
1784 if (argc == 0)
1785 do_timings = 1;
1786 else if (argc == 1)
1787 {
1788 if (strcmp (argv[0], "yes") == 0)
1789 do_timings = 1;
1790 else if (strcmp (argv[0], "no") == 0)
1791 do_timings = 0;
1792 else
1793 goto usage_error;
1794 }
1795 else
1796 goto usage_error;
1797
1798 return;
1799
1800 usage_error:
1801 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1802 }
1803
1804 void
1805 mi_cmd_list_features (const char *command, char **argv, int argc)
1806 {
1807 if (argc == 0)
1808 {
1809 struct ui_out *uiout = current_uiout;
1810
1811 ui_out_emit_list list_emitter (uiout, "features");
1812 uiout->field_string (NULL, "frozen-varobjs");
1813 uiout->field_string (NULL, "pending-breakpoints");
1814 uiout->field_string (NULL, "thread-info");
1815 uiout->field_string (NULL, "data-read-memory-bytes");
1816 uiout->field_string (NULL, "breakpoint-notifications");
1817 uiout->field_string (NULL, "ada-task-info");
1818 uiout->field_string (NULL, "language-option");
1819 uiout->field_string (NULL, "info-gdb-mi-command");
1820 uiout->field_string (NULL, "undefined-command-error-code");
1821 uiout->field_string (NULL, "exec-run-start-option");
1822
1823 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1824 uiout->field_string (NULL, "python");
1825
1826 return;
1827 }
1828
1829 error (_("-list-features should be passed no arguments"));
1830 }
1831
1832 void
1833 mi_cmd_list_target_features (const char *command, char **argv, int argc)
1834 {
1835 if (argc == 0)
1836 {
1837 struct ui_out *uiout = current_uiout;
1838
1839 ui_out_emit_list list_emitter (uiout, "features");
1840 if (mi_async_p ())
1841 uiout->field_string (NULL, "async");
1842 if (target_can_execute_reverse)
1843 uiout->field_string (NULL, "reverse");
1844 return;
1845 }
1846
1847 error (_("-list-target-features should be passed no arguments"));
1848 }
1849
1850 void
1851 mi_cmd_add_inferior (const char *command, char **argv, int argc)
1852 {
1853 struct inferior *inf;
1854
1855 if (argc != 0)
1856 error (_("-add-inferior should be passed no arguments"));
1857
1858 inf = add_inferior_with_spaces ();
1859
1860 current_uiout->field_fmt ("inferior", "i%d", inf->num);
1861 }
1862
1863 /* Callback used to find the first inferior other than the current
1864 one. */
1865
1866 static int
1867 get_other_inferior (struct inferior *inf, void *arg)
1868 {
1869 if (inf == current_inferior ())
1870 return 0;
1871
1872 return 1;
1873 }
1874
1875 void
1876 mi_cmd_remove_inferior (const char *command, char **argv, int argc)
1877 {
1878 int id;
1879 struct inferior *inf;
1880
1881 if (argc != 1)
1882 error (_("-remove-inferior should be passed a single argument"));
1883
1884 if (sscanf (argv[0], "i%d", &id) != 1)
1885 error (_("the thread group id is syntactically invalid"));
1886
1887 inf = find_inferior_id (id);
1888 if (!inf)
1889 error (_("the specified thread group does not exist"));
1890
1891 if (inf->pid != 0)
1892 error (_("cannot remove an active inferior"));
1893
1894 if (inf == current_inferior ())
1895 {
1896 struct thread_info *tp = 0;
1897 struct inferior *new_inferior
1898 = iterate_over_inferiors (get_other_inferior, NULL);
1899
1900 if (new_inferior == NULL)
1901 error (_("Cannot remove last inferior"));
1902
1903 set_current_inferior (new_inferior);
1904 if (new_inferior->pid != 0)
1905 tp = any_thread_of_process (new_inferior->pid);
1906 switch_to_thread (tp ? tp->ptid : null_ptid);
1907 set_current_program_space (new_inferior->pspace);
1908 }
1909
1910 delete_inferior (inf);
1911 }
1912
1913 \f
1914
1915 /* Execute a command within a safe environment.
1916 Return <0 for error; >=0 for ok.
1917
1918 args->action will tell mi_execute_command what action
1919 to perfrom after the given command has executed (display/suppress
1920 prompt, display error). */
1921
1922 static void
1923 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1924 {
1925 struct mi_interp *mi = (struct mi_interp *) command_interp ();
1926 struct cleanup *cleanup;
1927
1928 if (do_timings)
1929 current_command_ts = context->cmd_start;
1930
1931 current_token = xstrdup (context->token);
1932 cleanup = make_cleanup (free_current_contents, &current_token);
1933
1934 running_result_record_printed = 0;
1935 mi_proceeded = 0;
1936 switch (context->op)
1937 {
1938 case MI_COMMAND:
1939 /* A MI command was read from the input stream. */
1940 if (mi_debug_p)
1941 /* FIXME: gdb_???? */
1942 fprintf_unfiltered (mi->raw_stdout,
1943 " token=`%s' command=`%s' args=`%s'\n",
1944 context->token, context->command, context->args);
1945
1946 mi_cmd_execute (context);
1947
1948 /* Print the result if there were no errors.
1949
1950 Remember that on the way out of executing a command, you have
1951 to directly use the mi_interp's uiout, since the command
1952 could have reset the interpreter, in which case the current
1953 uiout will most likely crash in the mi_out_* routines. */
1954 if (!running_result_record_printed)
1955 {
1956 fputs_unfiltered (context->token, mi->raw_stdout);
1957 /* There's no particularly good reason why target-connect results
1958 in not ^done. Should kill ^connected for MI3. */
1959 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1960 ? "^connected" : "^done", mi->raw_stdout);
1961 mi_out_put (uiout, mi->raw_stdout);
1962 mi_out_rewind (uiout);
1963 mi_print_timing_maybe (mi->raw_stdout);
1964 fputs_unfiltered ("\n", mi->raw_stdout);
1965 }
1966 else
1967 /* The command does not want anything to be printed. In that
1968 case, the command probably should not have written anything
1969 to uiout, but in case it has written something, discard it. */
1970 mi_out_rewind (uiout);
1971 break;
1972
1973 case CLI_COMMAND:
1974 {
1975 char *argv[2];
1976
1977 /* A CLI command was read from the input stream. */
1978 /* This "feature" will be removed as soon as we have a
1979 complete set of mi commands. */
1980 /* Echo the command on the console. */
1981 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1982 /* Call the "console" interpreter. */
1983 argv[0] = (char *) INTERP_CONSOLE;
1984 argv[1] = context->command;
1985 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1986
1987 /* If we changed interpreters, DON'T print out anything. */
1988 if (current_interp_named_p (INTERP_MI)
1989 || current_interp_named_p (INTERP_MI1)
1990 || current_interp_named_p (INTERP_MI2)
1991 || current_interp_named_p (INTERP_MI3))
1992 {
1993 if (!running_result_record_printed)
1994 {
1995 fputs_unfiltered (context->token, mi->raw_stdout);
1996 fputs_unfiltered ("^done", mi->raw_stdout);
1997 mi_out_put (uiout, mi->raw_stdout);
1998 mi_out_rewind (uiout);
1999 mi_print_timing_maybe (mi->raw_stdout);
2000 fputs_unfiltered ("\n", mi->raw_stdout);
2001 }
2002 else
2003 mi_out_rewind (uiout);
2004 }
2005 break;
2006 }
2007 }
2008
2009 do_cleanups (cleanup);
2010 }
2011
2012 /* Print a gdb exception to the MI output stream. */
2013
2014 static void
2015 mi_print_exception (const char *token, struct gdb_exception exception)
2016 {
2017 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
2018
2019 fputs_unfiltered (token, mi->raw_stdout);
2020 fputs_unfiltered ("^error,msg=\"", mi->raw_stdout);
2021 if (exception.message == NULL)
2022 fputs_unfiltered ("unknown error", mi->raw_stdout);
2023 else
2024 fputstr_unfiltered (exception.message, '"', mi->raw_stdout);
2025 fputs_unfiltered ("\"", mi->raw_stdout);
2026
2027 switch (exception.error)
2028 {
2029 case UNDEFINED_COMMAND_ERROR:
2030 fputs_unfiltered (",code=\"undefined-command\"", mi->raw_stdout);
2031 break;
2032 }
2033
2034 fputs_unfiltered ("\n", mi->raw_stdout);
2035 }
2036
2037 /* Determine whether the parsed command already notifies the
2038 user_selected_context_changed observer. */
2039
2040 static int
2041 command_notifies_uscc_observer (struct mi_parse *command)
2042 {
2043 if (command->op == CLI_COMMAND)
2044 {
2045 /* CLI commands "thread" and "inferior" already send it. */
2046 return (strncmp (command->command, "thread ", 7) == 0
2047 || strncmp (command->command, "inferior ", 9) == 0);
2048 }
2049 else /* MI_COMMAND */
2050 {
2051 if (strcmp (command->command, "interpreter-exec") == 0
2052 && command->argc > 1)
2053 {
2054 /* "thread" and "inferior" again, but through -interpreter-exec. */
2055 return (strncmp (command->argv[1], "thread ", 7) == 0
2056 || strncmp (command->argv[1], "inferior ", 9) == 0);
2057 }
2058
2059 else
2060 /* -thread-select already sends it. */
2061 return strcmp (command->command, "thread-select") == 0;
2062 }
2063 }
2064
2065 void
2066 mi_execute_command (const char *cmd, int from_tty)
2067 {
2068 char *token;
2069 std::unique_ptr<struct mi_parse> command;
2070
2071 /* This is to handle EOF (^D). We just quit gdb. */
2072 /* FIXME: we should call some API function here. */
2073 if (cmd == 0)
2074 quit_force (NULL, from_tty);
2075
2076 target_log_command (cmd);
2077
2078 TRY
2079 {
2080 command = mi_parse (cmd, &token);
2081 }
2082 CATCH (exception, RETURN_MASK_ALL)
2083 {
2084 mi_print_exception (token, exception);
2085 xfree (token);
2086 }
2087 END_CATCH
2088
2089 if (command != NULL)
2090 {
2091 ptid_t previous_ptid = inferior_ptid;
2092
2093 gdb::optional<scoped_restore_tmpl<int>> restore_suppress;
2094
2095 if (command->cmd != NULL && command->cmd->suppress_notification != NULL)
2096 restore_suppress.emplace (command->cmd->suppress_notification, 1);
2097
2098 command->token = token;
2099
2100 if (do_timings)
2101 {
2102 command->cmd_start = new mi_timestamp ();
2103 timestamp (command->cmd_start);
2104 }
2105
2106 TRY
2107 {
2108 captured_mi_execute_command (current_uiout, command.get ());
2109 }
2110 CATCH (result, RETURN_MASK_ALL)
2111 {
2112 /* Like in start_event_loop, enable input and force display
2113 of the prompt. Otherwise, any command that calls
2114 async_disable_stdin, and then throws, will leave input
2115 disabled. */
2116 async_enable_stdin ();
2117 current_ui->prompt_state = PROMPT_NEEDED;
2118
2119 /* The command execution failed and error() was called
2120 somewhere. */
2121 mi_print_exception (command->token, result);
2122 mi_out_rewind (current_uiout);
2123 }
2124 END_CATCH
2125
2126 bpstat_do_actions ();
2127
2128 if (/* The notifications are only output when the top-level
2129 interpreter (specified on the command line) is MI. */
2130 interp_ui_out (top_level_interpreter ())->is_mi_like_p ()
2131 /* Don't try report anything if there are no threads --
2132 the program is dead. */
2133 && thread_count () != 0
2134 /* If the command already reports the thread change, no need to do it
2135 again. */
2136 && !command_notifies_uscc_observer (command.get ()))
2137 {
2138 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter ();
2139 int report_change = 0;
2140
2141 if (command->thread == -1)
2142 {
2143 report_change = (!ptid_equal (previous_ptid, null_ptid)
2144 && !ptid_equal (inferior_ptid, previous_ptid)
2145 && !ptid_equal (inferior_ptid, null_ptid));
2146 }
2147 else if (!ptid_equal (inferior_ptid, null_ptid))
2148 {
2149 struct thread_info *ti = inferior_thread ();
2150
2151 report_change = (ti->global_num != command->thread);
2152 }
2153
2154 if (report_change)
2155 {
2156 observer_notify_user_selected_context_changed
2157 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
2158 }
2159 }
2160 }
2161 }
2162
2163 static void
2164 mi_cmd_execute (struct mi_parse *parse)
2165 {
2166 struct cleanup *cleanup;
2167
2168 cleanup = prepare_execute_command ();
2169
2170 if (parse->all && parse->thread_group != -1)
2171 error (_("Cannot specify --thread-group together with --all"));
2172
2173 if (parse->all && parse->thread != -1)
2174 error (_("Cannot specify --thread together with --all"));
2175
2176 if (parse->thread_group != -1 && parse->thread != -1)
2177 error (_("Cannot specify --thread together with --thread-group"));
2178
2179 if (parse->frame != -1 && parse->thread == -1)
2180 error (_("Cannot specify --frame without --thread"));
2181
2182 if (parse->thread_group != -1)
2183 {
2184 struct inferior *inf = find_inferior_id (parse->thread_group);
2185 struct thread_info *tp = 0;
2186
2187 if (!inf)
2188 error (_("Invalid thread group for the --thread-group option"));
2189
2190 set_current_inferior (inf);
2191 /* This behaviour means that if --thread-group option identifies
2192 an inferior with multiple threads, then a random one will be
2193 picked. This is not a problem -- frontend should always
2194 provide --thread if it wishes to operate on a specific
2195 thread. */
2196 if (inf->pid != 0)
2197 tp = any_live_thread_of_process (inf->pid);
2198 switch_to_thread (tp ? tp->ptid : null_ptid);
2199 set_current_program_space (inf->pspace);
2200 }
2201
2202 if (parse->thread != -1)
2203 {
2204 struct thread_info *tp = find_thread_global_id (parse->thread);
2205
2206 if (!tp)
2207 error (_("Invalid thread id: %d"), parse->thread);
2208
2209 if (is_exited (tp->ptid))
2210 error (_("Thread id: %d has terminated"), parse->thread);
2211
2212 switch_to_thread (tp->ptid);
2213 }
2214
2215 if (parse->frame != -1)
2216 {
2217 struct frame_info *fid;
2218 int frame = parse->frame;
2219
2220 fid = find_relative_frame (get_current_frame (), &frame);
2221 if (frame == 0)
2222 /* find_relative_frame was successful */
2223 select_frame (fid);
2224 else
2225 error (_("Invalid frame id: %d"), frame);
2226 }
2227
2228 gdb::optional<scoped_restore_current_language> lang_saver;
2229 if (parse->language != language_unknown)
2230 {
2231 lang_saver.emplace ();
2232 set_language (parse->language);
2233 }
2234
2235 current_context = parse;
2236
2237 if (parse->cmd->argv_func != NULL)
2238 {
2239 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2240 }
2241 else if (parse->cmd->cli.cmd != 0)
2242 {
2243 /* FIXME: DELETE THIS. */
2244 /* The operation is still implemented by a cli command. */
2245 /* Must be a synchronous one. */
2246 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2247 parse->args);
2248 }
2249 else
2250 {
2251 /* FIXME: DELETE THIS. */
2252 string_file stb;
2253
2254 stb.puts ("Undefined mi command: ");
2255 stb.putstr (parse->command, '"');
2256 stb.puts (" (missing implementation)");
2257
2258 error_stream (stb);
2259 }
2260 do_cleanups (cleanup);
2261 }
2262
2263 /* FIXME: This is just a hack so we can get some extra commands going.
2264 We don't want to channel things through the CLI, but call libgdb directly.
2265 Use only for synchronous commands. */
2266
2267 void
2268 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2269 {
2270 if (cmd != 0)
2271 {
2272 struct cleanup *old_cleanups;
2273 char *run;
2274
2275 if (args_p)
2276 run = xstrprintf ("%s %s", cmd, args);
2277 else
2278 run = xstrdup (cmd);
2279 if (mi_debug_p)
2280 /* FIXME: gdb_???? */
2281 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2282 cmd, run);
2283 old_cleanups = make_cleanup (xfree, run);
2284 execute_command (run, 0 /* from_tty */ );
2285 do_cleanups (old_cleanups);
2286 return;
2287 }
2288 }
2289
2290 void
2291 mi_execute_async_cli_command (const char *cli_command, char **argv, int argc)
2292 {
2293 struct cleanup *old_cleanups;
2294 char *run;
2295
2296 if (mi_async_p ())
2297 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2298 else
2299 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2300 old_cleanups = make_cleanup (xfree, run);
2301
2302 execute_command (run, 0 /* from_tty */ );
2303
2304 /* Do this before doing any printing. It would appear that some
2305 print code leaves garbage around in the buffer. */
2306 do_cleanups (old_cleanups);
2307 }
2308
2309 void
2310 mi_load_progress (const char *section_name,
2311 unsigned long sent_so_far,
2312 unsigned long total_section,
2313 unsigned long total_sent,
2314 unsigned long grand_total)
2315 {
2316 using namespace std::chrono;
2317 static steady_clock::time_point last_update;
2318 static char *previous_sect_name = NULL;
2319 int new_section;
2320 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
2321
2322 /* This function is called through deprecated_show_load_progress
2323 which means uiout may not be correct. Fix it for the duration
2324 of this function. */
2325
2326 std::unique_ptr<ui_out> uiout;
2327
2328 if (current_interp_named_p (INTERP_MI)
2329 || current_interp_named_p (INTERP_MI2))
2330 uiout.reset (mi_out_new (2));
2331 else if (current_interp_named_p (INTERP_MI1))
2332 uiout.reset (mi_out_new (1));
2333 else if (current_interp_named_p (INTERP_MI3))
2334 uiout.reset (mi_out_new (3));
2335 else
2336 return;
2337
2338 scoped_restore save_uiout
2339 = make_scoped_restore (&current_uiout, uiout.get ());
2340
2341 new_section = (previous_sect_name ?
2342 strcmp (previous_sect_name, section_name) : 1);
2343 if (new_section)
2344 {
2345 xfree (previous_sect_name);
2346 previous_sect_name = xstrdup (section_name);
2347
2348 if (current_token)
2349 fputs_unfiltered (current_token, mi->raw_stdout);
2350 fputs_unfiltered ("+download", mi->raw_stdout);
2351 {
2352 ui_out_emit_tuple tuple_emitter (uiout.get (), NULL);
2353 uiout->field_string ("section", section_name);
2354 uiout->field_int ("section-size", total_section);
2355 uiout->field_int ("total-size", grand_total);
2356 }
2357 mi_out_put (uiout.get (), mi->raw_stdout);
2358 fputs_unfiltered ("\n", mi->raw_stdout);
2359 gdb_flush (mi->raw_stdout);
2360 }
2361
2362 steady_clock::time_point time_now = steady_clock::now ();
2363 if (time_now - last_update > milliseconds (500))
2364 {
2365 last_update = time_now;
2366 if (current_token)
2367 fputs_unfiltered (current_token, mi->raw_stdout);
2368 fputs_unfiltered ("+download", mi->raw_stdout);
2369 {
2370 ui_out_emit_tuple tuple_emitter (uiout.get (), NULL);
2371 uiout->field_string ("section", section_name);
2372 uiout->field_int ("section-sent", sent_so_far);
2373 uiout->field_int ("section-size", total_section);
2374 uiout->field_int ("total-sent", total_sent);
2375 uiout->field_int ("total-size", grand_total);
2376 }
2377 mi_out_put (uiout.get (), mi->raw_stdout);
2378 fputs_unfiltered ("\n", mi->raw_stdout);
2379 gdb_flush (mi->raw_stdout);
2380 }
2381 }
2382
2383 static void
2384 timestamp (struct mi_timestamp *tv)
2385 {
2386 using namespace std::chrono;
2387
2388 tv->wallclock = steady_clock::now ();
2389 run_time_clock::now (tv->utime, tv->stime);
2390 }
2391
2392 static void
2393 print_diff_now (struct ui_file *file, struct mi_timestamp *start)
2394 {
2395 struct mi_timestamp now;
2396
2397 timestamp (&now);
2398 print_diff (file, start, &now);
2399 }
2400
2401 void
2402 mi_print_timing_maybe (struct ui_file *file)
2403 {
2404 /* If the command is -enable-timing then do_timings may be true
2405 whilst current_command_ts is not initialized. */
2406 if (do_timings && current_command_ts)
2407 print_diff_now (file, current_command_ts);
2408 }
2409
2410 static void
2411 print_diff (struct ui_file *file, struct mi_timestamp *start,
2412 struct mi_timestamp *end)
2413 {
2414 using namespace std::chrono;
2415
2416 duration<double> wallclock = end->wallclock - start->wallclock;
2417 duration<double> utime = end->utime - start->utime;
2418 duration<double> stime = end->stime - start->stime;
2419
2420 fprintf_unfiltered
2421 (file,
2422 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2423 wallclock.count (), utime.count (), stime.count ());
2424 }
2425
2426 void
2427 mi_cmd_trace_define_variable (const char *command, char **argv, int argc)
2428 {
2429 LONGEST initval = 0;
2430 struct trace_state_variable *tsv;
2431 char *name = 0;
2432
2433 if (argc != 1 && argc != 2)
2434 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2435
2436 name = argv[0];
2437 if (*name++ != '$')
2438 error (_("Name of trace variable should start with '$'"));
2439
2440 validate_trace_state_variable_name (name);
2441
2442 tsv = find_trace_state_variable (name);
2443 if (!tsv)
2444 tsv = create_trace_state_variable (name);
2445
2446 if (argc == 2)
2447 initval = value_as_long (parse_and_eval (argv[1]));
2448
2449 tsv->initial_value = initval;
2450 }
2451
2452 void
2453 mi_cmd_trace_list_variables (const char *command, char **argv, int argc)
2454 {
2455 if (argc != 0)
2456 error (_("-trace-list-variables: no arguments allowed"));
2457
2458 tvariables_info_1 ();
2459 }
2460
2461 void
2462 mi_cmd_trace_find (const char *command, char **argv, int argc)
2463 {
2464 char *mode;
2465
2466 if (argc == 0)
2467 error (_("trace selection mode is required"));
2468
2469 mode = argv[0];
2470
2471 if (strcmp (mode, "none") == 0)
2472 {
2473 tfind_1 (tfind_number, -1, 0, 0, 0);
2474 return;
2475 }
2476
2477 check_trace_running (current_trace_status ());
2478
2479 if (strcmp (mode, "frame-number") == 0)
2480 {
2481 if (argc != 2)
2482 error (_("frame number is required"));
2483 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2484 }
2485 else if (strcmp (mode, "tracepoint-number") == 0)
2486 {
2487 if (argc != 2)
2488 error (_("tracepoint number is required"));
2489 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2490 }
2491 else if (strcmp (mode, "pc") == 0)
2492 {
2493 if (argc != 2)
2494 error (_("PC is required"));
2495 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2496 }
2497 else if (strcmp (mode, "pc-inside-range") == 0)
2498 {
2499 if (argc != 3)
2500 error (_("Start and end PC are required"));
2501 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2502 parse_and_eval_address (argv[2]), 0);
2503 }
2504 else if (strcmp (mode, "pc-outside-range") == 0)
2505 {
2506 if (argc != 3)
2507 error (_("Start and end PC are required"));
2508 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2509 parse_and_eval_address (argv[2]), 0);
2510 }
2511 else if (strcmp (mode, "line") == 0)
2512 {
2513 if (argc != 2)
2514 error (_("Line is required"));
2515
2516 std::vector<symtab_and_line> sals
2517 = decode_line_with_current_source (argv[1],
2518 DECODE_LINE_FUNFIRSTLINE);
2519 const symtab_and_line &sal = sals[0];
2520
2521 if (sal.symtab == 0)
2522 error (_("Could not find the specified line"));
2523
2524 CORE_ADDR start_pc, end_pc;
2525 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2526 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2527 else
2528 error (_("Could not find the specified line"));
2529 }
2530 else
2531 error (_("Invalid mode '%s'"), mode);
2532
2533 if (has_stack_frames () || get_traceframe_number () >= 0)
2534 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2535 }
2536
2537 void
2538 mi_cmd_trace_save (const char *command, char **argv, int argc)
2539 {
2540 int target_saves = 0;
2541 int generate_ctf = 0;
2542 char *filename;
2543 int oind = 0;
2544 char *oarg;
2545
2546 enum opt
2547 {
2548 TARGET_SAVE_OPT, CTF_OPT
2549 };
2550 static const struct mi_opt opts[] =
2551 {
2552 {"r", TARGET_SAVE_OPT, 0},
2553 {"ctf", CTF_OPT, 0},
2554 { 0, 0, 0 }
2555 };
2556
2557 while (1)
2558 {
2559 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2560 &oind, &oarg);
2561
2562 if (opt < 0)
2563 break;
2564 switch ((enum opt) opt)
2565 {
2566 case TARGET_SAVE_OPT:
2567 target_saves = 1;
2568 break;
2569 case CTF_OPT:
2570 generate_ctf = 1;
2571 break;
2572 }
2573 }
2574
2575 if (argc - oind != 1)
2576 error (_("Exactly one argument required "
2577 "(file in which to save trace data)"));
2578
2579 filename = argv[oind];
2580
2581 if (generate_ctf)
2582 trace_save_ctf (filename, target_saves);
2583 else
2584 trace_save_tfile (filename, target_saves);
2585 }
2586
2587 void
2588 mi_cmd_trace_start (const char *command, char **argv, int argc)
2589 {
2590 start_tracing (NULL);
2591 }
2592
2593 void
2594 mi_cmd_trace_status (const char *command, char **argv, int argc)
2595 {
2596 trace_status_mi (0);
2597 }
2598
2599 void
2600 mi_cmd_trace_stop (const char *command, char **argv, int argc)
2601 {
2602 stop_tracing (NULL);
2603 trace_status_mi (1);
2604 }
2605
2606 /* Implement the "-ada-task-info" command. */
2607
2608 void
2609 mi_cmd_ada_task_info (const char *command, char **argv, int argc)
2610 {
2611 if (argc != 0 && argc != 1)
2612 error (_("Invalid MI command"));
2613
2614 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2615 }
2616
2617 /* Print EXPRESSION according to VALUES. */
2618
2619 static void
2620 print_variable_or_computed (const char *expression, enum print_values values)
2621 {
2622 struct value *val;
2623 struct type *type;
2624 struct ui_out *uiout = current_uiout;
2625
2626 string_file stb;
2627
2628 expression_up expr = parse_expression (expression);
2629
2630 if (values == PRINT_SIMPLE_VALUES)
2631 val = evaluate_type (expr.get ());
2632 else
2633 val = evaluate_expression (expr.get ());
2634
2635 gdb::optional<ui_out_emit_tuple> tuple_emitter;
2636 if (values != PRINT_NO_VALUES)
2637 tuple_emitter.emplace (uiout, nullptr);
2638 uiout->field_string ("name", expression);
2639
2640 switch (values)
2641 {
2642 case PRINT_SIMPLE_VALUES:
2643 type = check_typedef (value_type (val));
2644 type_print (value_type (val), "", &stb, -1);
2645 uiout->field_stream ("type", stb);
2646 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2647 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2648 && TYPE_CODE (type) != TYPE_CODE_UNION)
2649 {
2650 struct value_print_options opts;
2651
2652 get_no_prettyformat_print_options (&opts);
2653 opts.deref_ref = 1;
2654 common_val_print (val, &stb, 0, &opts, current_language);
2655 uiout->field_stream ("value", stb);
2656 }
2657 break;
2658 case PRINT_ALL_VALUES:
2659 {
2660 struct value_print_options opts;
2661
2662 get_no_prettyformat_print_options (&opts);
2663 opts.deref_ref = 1;
2664 common_val_print (val, &stb, 0, &opts, current_language);
2665 uiout->field_stream ("value", stb);
2666 }
2667 break;
2668 }
2669 }
2670
2671 /* Implement the "-trace-frame-collected" command. */
2672
2673 void
2674 mi_cmd_trace_frame_collected (const char *command, char **argv, int argc)
2675 {
2676 struct bp_location *tloc;
2677 int stepping_frame;
2678 struct collection_list *clist;
2679 struct collection_list tracepoint_list, stepping_list;
2680 struct traceframe_info *tinfo;
2681 int oind = 0;
2682 enum print_values var_print_values = PRINT_ALL_VALUES;
2683 enum print_values comp_print_values = PRINT_ALL_VALUES;
2684 int registers_format = 'x';
2685 int memory_contents = 0;
2686 struct ui_out *uiout = current_uiout;
2687 enum opt
2688 {
2689 VAR_PRINT_VALUES,
2690 COMP_PRINT_VALUES,
2691 REGISTERS_FORMAT,
2692 MEMORY_CONTENTS,
2693 };
2694 static const struct mi_opt opts[] =
2695 {
2696 {"-var-print-values", VAR_PRINT_VALUES, 1},
2697 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2698 {"-registers-format", REGISTERS_FORMAT, 1},
2699 {"-memory-contents", MEMORY_CONTENTS, 0},
2700 { 0, 0, 0 }
2701 };
2702
2703 while (1)
2704 {
2705 char *oarg;
2706 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2707 &oind, &oarg);
2708 if (opt < 0)
2709 break;
2710 switch ((enum opt) opt)
2711 {
2712 case VAR_PRINT_VALUES:
2713 var_print_values = mi_parse_print_values (oarg);
2714 break;
2715 case COMP_PRINT_VALUES:
2716 comp_print_values = mi_parse_print_values (oarg);
2717 break;
2718 case REGISTERS_FORMAT:
2719 registers_format = oarg[0];
2720 case MEMORY_CONTENTS:
2721 memory_contents = 1;
2722 break;
2723 }
2724 }
2725
2726 if (oind != argc)
2727 error (_("Usage: -trace-frame-collected "
2728 "[--var-print-values PRINT_VALUES] "
2729 "[--comp-print-values PRINT_VALUES] "
2730 "[--registers-format FORMAT]"
2731 "[--memory-contents]"));
2732
2733 /* This throws an error is not inspecting a trace frame. */
2734 tloc = get_traceframe_location (&stepping_frame);
2735
2736 /* This command only makes sense for the current frame, not the
2737 selected frame. */
2738 scoped_restore_current_thread restore_thread;
2739 select_frame (get_current_frame ());
2740
2741 encode_actions (tloc, &tracepoint_list, &stepping_list);
2742
2743 if (stepping_frame)
2744 clist = &stepping_list;
2745 else
2746 clist = &tracepoint_list;
2747
2748 tinfo = get_traceframe_info ();
2749
2750 /* Explicitly wholly collected variables. */
2751 {
2752 int i;
2753
2754 ui_out_emit_list list_emitter (uiout, "explicit-variables");
2755 const std::vector<std::string> &wholly_collected
2756 = clist->wholly_collected ();
2757 for (size_t i = 0; i < wholly_collected.size (); i++)
2758 {
2759 const std::string &str = wholly_collected[i];
2760 print_variable_or_computed (str.c_str (), var_print_values);
2761 }
2762 }
2763
2764 /* Computed expressions. */
2765 {
2766 char *p;
2767 int i;
2768
2769 ui_out_emit_list list_emitter (uiout, "computed-expressions");
2770
2771 const std::vector<std::string> &computed = clist->computed ();
2772 for (size_t i = 0; i < computed.size (); i++)
2773 {
2774 const std::string &str = computed[i];
2775 print_variable_or_computed (str.c_str (), comp_print_values);
2776 }
2777 }
2778
2779 /* Registers. Given pseudo-registers, and that some architectures
2780 (like MIPS) actually hide the raw registers, we don't go through
2781 the trace frame info, but instead consult the register cache for
2782 register availability. */
2783 {
2784 struct frame_info *frame;
2785 struct gdbarch *gdbarch;
2786 int regnum;
2787 int numregs;
2788
2789 ui_out_emit_list list_emitter (uiout, "registers");
2790
2791 frame = get_selected_frame (NULL);
2792 gdbarch = get_frame_arch (frame);
2793 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2794
2795 for (regnum = 0; regnum < numregs; regnum++)
2796 {
2797 if (gdbarch_register_name (gdbarch, regnum) == NULL
2798 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2799 continue;
2800
2801 output_register (frame, regnum, registers_format, 1);
2802 }
2803 }
2804
2805 /* Trace state variables. */
2806 {
2807 struct cleanup *cleanups;
2808 int tvar;
2809 char *tsvname;
2810 int i;
2811
2812 ui_out_emit_list list_emitter (uiout, "tvars");
2813
2814 tsvname = NULL;
2815 cleanups = make_cleanup (free_current_contents, &tsvname);
2816
2817 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2818 {
2819 struct trace_state_variable *tsv;
2820
2821 tsv = find_trace_state_variable_by_number (tvar);
2822
2823 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2824
2825 if (tsv != NULL)
2826 {
2827 tsvname = (char *) xrealloc (tsvname, strlen (tsv->name) + 2);
2828 tsvname[0] = '$';
2829 strcpy (tsvname + 1, tsv->name);
2830 uiout->field_string ("name", tsvname);
2831
2832 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2833 &tsv->value);
2834 uiout->field_int ("current", tsv->value);
2835 }
2836 else
2837 {
2838 uiout->field_skip ("name");
2839 uiout->field_skip ("current");
2840 }
2841 }
2842
2843 do_cleanups (cleanups);
2844 }
2845
2846 /* Memory. */
2847 {
2848 struct cleanup *cleanups;
2849 VEC(mem_range_s) *available_memory = NULL;
2850 struct mem_range *r;
2851 int i;
2852
2853 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2854 cleanups = make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2855
2856 ui_out_emit_list list_emitter (uiout, "memory");
2857
2858 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2859 {
2860 struct gdbarch *gdbarch = target_gdbarch ();
2861
2862 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2863
2864 uiout->field_core_addr ("address", gdbarch, r->start);
2865 uiout->field_int ("length", r->length);
2866
2867 gdb::byte_vector data (r->length);
2868
2869 if (memory_contents)
2870 {
2871 if (target_read_memory (r->start, data.data (), r->length) == 0)
2872 {
2873 std::string data_str = bin2hex (data.data (), r->length);
2874 uiout->field_string ("contents", data_str.c_str ());
2875 }
2876 else
2877 uiout->field_skip ("contents");
2878 }
2879 }
2880
2881 do_cleanups (cleanups);
2882 }
2883 }
2884
2885 void
2886 _initialize_mi_main (void)
2887 {
2888 struct cmd_list_element *c;
2889
2890 add_setshow_boolean_cmd ("mi-async", class_run,
2891 &mi_async_1, _("\
2892 Set whether MI asynchronous mode is enabled."), _("\
2893 Show whether MI asynchronous mode is enabled."), _("\
2894 Tells GDB whether MI should be in asynchronous mode."),
2895 set_mi_async_command,
2896 show_mi_async_command,
2897 &setlist,
2898 &showlist);
2899
2900 /* Alias old "target-async" to "mi-async". */
2901 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
2902 deprecate_cmd (c, "set mi-async");
2903 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
2904 deprecate_cmd (c, "show mi-async");
2905 }
This page took 0.110441 seconds and 5 git commands to generate.