Use target_terminal_ours_for_output in MI
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "gdb.h"
42 #include "frame.h"
43 #include "mi-main.h"
44 #include "mi-common.h"
45 #include "language.h"
46 #include "valprint.h"
47 #include "inferior.h"
48 #include "osdata.h"
49 #include "splay-tree.h"
50 #include "tracepoint.h"
51 #include "ctf.h"
52 #include "ada-lang.h"
53 #include "linespec.h"
54 #include "extension.h"
55 #include "gdbcmd.h"
56
57 #include <ctype.h>
58 #include "gdb_sys_time.h"
59
60 #if defined HAVE_SYS_RESOURCE_H
61 #include <sys/resource.h>
62 #endif
63
64 #ifdef HAVE_GETRUSAGE
65 struct rusage rusage;
66 #endif
67
68 enum
69 {
70 FROM_TTY = 0
71 };
72
73 int mi_debug_p;
74
75 struct ui_file *raw_stdout;
76
77 /* This is used to pass the current command timestamp down to
78 continuation routines. */
79 static struct mi_timestamp *current_command_ts;
80
81 static int do_timings = 0;
82
83 char *current_token;
84 /* Few commands would like to know if options like --thread-group were
85 explicitly specified. This variable keeps the current parsed
86 command including all option, and make it possible. */
87 static struct mi_parse *current_context;
88
89 int running_result_record_printed = 1;
90
91 /* Flag indicating that the target has proceeded since the last
92 command was issued. */
93 int mi_proceeded;
94
95 extern void _initialize_mi_main (void);
96 static void mi_cmd_execute (struct mi_parse *parse);
97
98 static void mi_execute_cli_command (const char *cmd, int args_p,
99 const char *args);
100 static void mi_execute_async_cli_command (char *cli_command,
101 char **argv, int argc);
102 static int register_changed_p (int regnum, struct regcache *,
103 struct regcache *);
104 static void output_register (struct frame_info *, int regnum, int format,
105 int skip_unavailable);
106
107 /* Controls whether the frontend wants MI in async mode. */
108 static int mi_async = 0;
109
110 /* The set command writes to this variable. If the inferior is
111 executing, mi_async is *not* updated. */
112 static int mi_async_1 = 0;
113
114 static void
115 set_mi_async_command (char *args, int from_tty,
116 struct cmd_list_element *c)
117 {
118 if (have_live_inferiors ())
119 {
120 mi_async_1 = mi_async;
121 error (_("Cannot change this setting while the inferior is running."));
122 }
123
124 mi_async = mi_async_1;
125 }
126
127 static void
128 show_mi_async_command (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c,
130 const char *value)
131 {
132 fprintf_filtered (file,
133 _("Whether MI is in asynchronous mode is %s.\n"),
134 value);
135 }
136
137 /* A wrapper for target_can_async_p that takes the MI setting into
138 account. */
139
140 int
141 mi_async_p (void)
142 {
143 return mi_async && target_can_async_p ();
144 }
145
146 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
147 layer that calls libgdb. Any operation used in the below should be
148 formalized. */
149
150 static void timestamp (struct mi_timestamp *tv);
151
152 static void print_diff_now (struct mi_timestamp *start);
153 static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
154
155 void
156 mi_cmd_gdb_exit (char *command, char **argv, int argc)
157 {
158 /* We have to print everything right here because we never return. */
159 if (current_token)
160 fputs_unfiltered (current_token, raw_stdout);
161 fputs_unfiltered ("^exit\n", raw_stdout);
162 mi_out_put (current_uiout, raw_stdout);
163 gdb_flush (raw_stdout);
164 /* FIXME: The function called is not yet a formal libgdb function. */
165 quit_force (NULL, FROM_TTY);
166 }
167
168 void
169 mi_cmd_exec_next (char *command, char **argv, int argc)
170 {
171 /* FIXME: Should call a libgdb function, not a cli wrapper. */
172 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
173 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
174 else
175 mi_execute_async_cli_command ("next", argv, argc);
176 }
177
178 void
179 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
180 {
181 /* FIXME: Should call a libgdb function, not a cli wrapper. */
182 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
183 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
184 else
185 mi_execute_async_cli_command ("nexti", argv, argc);
186 }
187
188 void
189 mi_cmd_exec_step (char *command, char **argv, int argc)
190 {
191 /* FIXME: Should call a libgdb function, not a cli wrapper. */
192 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
193 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
194 else
195 mi_execute_async_cli_command ("step", argv, argc);
196 }
197
198 void
199 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
200 {
201 /* FIXME: Should call a libgdb function, not a cli wrapper. */
202 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
203 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
204 else
205 mi_execute_async_cli_command ("stepi", argv, argc);
206 }
207
208 void
209 mi_cmd_exec_finish (char *command, char **argv, int argc)
210 {
211 /* FIXME: Should call a libgdb function, not a cli wrapper. */
212 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
213 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
214 else
215 mi_execute_async_cli_command ("finish", argv, argc);
216 }
217
218 void
219 mi_cmd_exec_return (char *command, char **argv, int argc)
220 {
221 /* This command doesn't really execute the target, it just pops the
222 specified number of frames. */
223 if (argc)
224 /* Call return_command with from_tty argument equal to 0 so as to
225 avoid being queried. */
226 return_command (*argv, 0);
227 else
228 /* Call return_command with from_tty argument equal to 0 so as to
229 avoid being queried. */
230 return_command (NULL, 0);
231
232 /* Because we have called return_command with from_tty = 0, we need
233 to print the frame here. */
234 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
235 }
236
237 void
238 mi_cmd_exec_jump (char *args, char **argv, int argc)
239 {
240 /* FIXME: Should call a libgdb function, not a cli wrapper. */
241 mi_execute_async_cli_command ("jump", argv, argc);
242 }
243
244 static void
245 proceed_thread (struct thread_info *thread, int pid)
246 {
247 if (!is_stopped (thread->ptid))
248 return;
249
250 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
251 return;
252
253 switch_to_thread (thread->ptid);
254 clear_proceed_status (0);
255 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
256 }
257
258 static int
259 proceed_thread_callback (struct thread_info *thread, void *arg)
260 {
261 int pid = *(int *)arg;
262
263 proceed_thread (thread, pid);
264 return 0;
265 }
266
267 static void
268 exec_continue (char **argv, int argc)
269 {
270 prepare_execution_command (&current_target, mi_async_p ());
271
272 if (non_stop)
273 {
274 /* In non-stop mode, 'resume' always resumes a single thread.
275 Therefore, to resume all threads of the current inferior, or
276 all threads in all inferiors, we need to iterate over
277 threads.
278
279 See comment on infcmd.c:proceed_thread_callback for rationale. */
280 if (current_context->all || current_context->thread_group != -1)
281 {
282 int pid = 0;
283 struct cleanup *back_to = make_cleanup_restore_current_thread ();
284
285 if (!current_context->all)
286 {
287 struct inferior *inf
288 = find_inferior_id (current_context->thread_group);
289
290 pid = inf->pid;
291 }
292 iterate_over_threads (proceed_thread_callback, &pid);
293 do_cleanups (back_to);
294 }
295 else
296 {
297 continue_1 (0);
298 }
299 }
300 else
301 {
302 struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
303
304 if (current_context->all)
305 {
306 sched_multi = 1;
307 continue_1 (0);
308 }
309 else
310 {
311 /* In all-stop mode, -exec-continue traditionally resumed
312 either all threads, or one thread, depending on the
313 'scheduler-locking' variable. Let's continue to do the
314 same. */
315 continue_1 (1);
316 }
317 do_cleanups (back_to);
318 }
319 }
320
321 static void
322 exec_direction_forward (void *notused)
323 {
324 execution_direction = EXEC_FORWARD;
325 }
326
327 static void
328 exec_reverse_continue (char **argv, int argc)
329 {
330 enum exec_direction_kind dir = execution_direction;
331 struct cleanup *old_chain;
332
333 if (dir == EXEC_REVERSE)
334 error (_("Already in reverse mode."));
335
336 if (!target_can_execute_reverse)
337 error (_("Target %s does not support this command."), target_shortname);
338
339 old_chain = make_cleanup (exec_direction_forward, NULL);
340 execution_direction = EXEC_REVERSE;
341 exec_continue (argv, argc);
342 do_cleanups (old_chain);
343 }
344
345 void
346 mi_cmd_exec_continue (char *command, char **argv, int argc)
347 {
348 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
349 exec_reverse_continue (argv + 1, argc - 1);
350 else
351 exec_continue (argv, argc);
352 }
353
354 static int
355 interrupt_thread_callback (struct thread_info *thread, void *arg)
356 {
357 int pid = *(int *)arg;
358
359 if (!is_running (thread->ptid))
360 return 0;
361
362 if (ptid_get_pid (thread->ptid) != pid)
363 return 0;
364
365 target_stop (thread->ptid);
366 return 0;
367 }
368
369 /* Interrupt the execution of the target. Note how we must play
370 around with the token variables, in order to display the current
371 token in the result of the interrupt command, and the previous
372 execution token when the target finally stops. See comments in
373 mi_cmd_execute. */
374
375 void
376 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
377 {
378 /* In all-stop mode, everything stops, so we don't need to try
379 anything specific. */
380 if (!non_stop)
381 {
382 interrupt_target_1 (0);
383 return;
384 }
385
386 if (current_context->all)
387 {
388 /* This will interrupt all threads in all inferiors. */
389 interrupt_target_1 (1);
390 }
391 else if (current_context->thread_group != -1)
392 {
393 struct inferior *inf = find_inferior_id (current_context->thread_group);
394
395 iterate_over_threads (interrupt_thread_callback, &inf->pid);
396 }
397 else
398 {
399 /* Interrupt just the current thread -- either explicitly
400 specified via --thread or whatever was current before
401 MI command was sent. */
402 interrupt_target_1 (0);
403 }
404 }
405
406 /* Callback for iterate_over_inferiors which starts the execution
407 of the given inferior.
408
409 ARG is a pointer to an integer whose value, if non-zero, indicates
410 that the program should be stopped when reaching the main subprogram
411 (similar to what the CLI "start" command does). */
412
413 static int
414 run_one_inferior (struct inferior *inf, void *arg)
415 {
416 int start_p = *(int *) arg;
417 const char *run_cmd = start_p ? "start" : "run";
418
419 if (inf->pid != 0)
420 {
421 if (inf->pid != ptid_get_pid (inferior_ptid))
422 {
423 struct thread_info *tp;
424
425 tp = any_thread_of_process (inf->pid);
426 if (!tp)
427 error (_("Inferior has no threads."));
428
429 switch_to_thread (tp->ptid);
430 }
431 }
432 else
433 {
434 set_current_inferior (inf);
435 switch_to_thread (null_ptid);
436 set_current_program_space (inf->pspace);
437 }
438 mi_execute_cli_command (run_cmd, mi_async_p (),
439 mi_async_p () ? "&" : NULL);
440 return 0;
441 }
442
443 void
444 mi_cmd_exec_run (char *command, char **argv, int argc)
445 {
446 int i;
447 int start_p = 0;
448
449 /* Parse the command options. */
450 enum opt
451 {
452 START_OPT,
453 };
454 static const struct mi_opt opts[] =
455 {
456 {"-start", START_OPT, 0},
457 {NULL, 0, 0},
458 };
459
460 int oind = 0;
461 char *oarg;
462
463 while (1)
464 {
465 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
466
467 if (opt < 0)
468 break;
469 switch ((enum opt) opt)
470 {
471 case START_OPT:
472 start_p = 1;
473 break;
474 }
475 }
476
477 /* This command does not accept any argument. Make sure the user
478 did not provide any. */
479 if (oind != argc)
480 error (_("Invalid argument: %s"), argv[oind]);
481
482 if (current_context->all)
483 {
484 struct cleanup *back_to = save_current_space_and_thread ();
485
486 iterate_over_inferiors (run_one_inferior, &start_p);
487 do_cleanups (back_to);
488 }
489 else
490 {
491 const char *run_cmd = start_p ? "start" : "run";
492
493 mi_execute_cli_command (run_cmd, mi_async_p (),
494 mi_async_p () ? "&" : NULL);
495 }
496 }
497
498
499 static int
500 find_thread_of_process (struct thread_info *ti, void *p)
501 {
502 int pid = *(int *)p;
503
504 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
505 return 1;
506
507 return 0;
508 }
509
510 void
511 mi_cmd_target_detach (char *command, char **argv, int argc)
512 {
513 if (argc != 0 && argc != 1)
514 error (_("Usage: -target-detach [pid | thread-group]"));
515
516 if (argc == 1)
517 {
518 struct thread_info *tp;
519 char *end = argv[0];
520 int pid;
521
522 /* First see if we are dealing with a thread-group id. */
523 if (*argv[0] == 'i')
524 {
525 struct inferior *inf;
526 int id = strtoul (argv[0] + 1, &end, 0);
527
528 if (*end != '\0')
529 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
530
531 inf = find_inferior_id (id);
532 if (!inf)
533 error (_("Non-existent thread-group id '%d'"), id);
534
535 pid = inf->pid;
536 }
537 else
538 {
539 /* We must be dealing with a pid. */
540 pid = strtol (argv[0], &end, 10);
541
542 if (*end != '\0')
543 error (_("Invalid identifier '%s'"), argv[0]);
544 }
545
546 /* Pick any thread in the desired process. Current
547 target_detach detaches from the parent of inferior_ptid. */
548 tp = iterate_over_threads (find_thread_of_process, &pid);
549 if (!tp)
550 error (_("Thread group is empty"));
551
552 switch_to_thread (tp->ptid);
553 }
554
555 detach_command (NULL, 0);
556 }
557
558 void
559 mi_cmd_thread_select (char *command, char **argv, int argc)
560 {
561 enum gdb_rc rc;
562 char *mi_error_message;
563
564 if (argc != 1)
565 error (_("-thread-select: USAGE: threadnum."));
566
567 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
568
569 if (rc == GDB_RC_FAIL)
570 {
571 make_cleanup (xfree, mi_error_message);
572 error ("%s", mi_error_message);
573 }
574 }
575
576 void
577 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
578 {
579 enum gdb_rc rc;
580 char *mi_error_message;
581
582 if (argc != 0)
583 error (_("-thread-list-ids: No arguments required."));
584
585 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
586
587 if (rc == GDB_RC_FAIL)
588 {
589 make_cleanup (xfree, mi_error_message);
590 error ("%s", mi_error_message);
591 }
592 }
593
594 void
595 mi_cmd_thread_info (char *command, char **argv, int argc)
596 {
597 if (argc != 0 && argc != 1)
598 error (_("Invalid MI command"));
599
600 print_thread_info (current_uiout, argv[0], -1);
601 }
602
603 struct collect_cores_data
604 {
605 int pid;
606
607 VEC (int) *cores;
608 };
609
610 static int
611 collect_cores (struct thread_info *ti, void *xdata)
612 {
613 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
614
615 if (ptid_get_pid (ti->ptid) == data->pid)
616 {
617 int core = target_core_of_thread (ti->ptid);
618
619 if (core != -1)
620 VEC_safe_push (int, data->cores, core);
621 }
622
623 return 0;
624 }
625
626 static int *
627 unique (int *b, int *e)
628 {
629 int *d = b;
630
631 while (++b != e)
632 if (*d != *b)
633 *++d = *b;
634 return ++d;
635 }
636
637 struct print_one_inferior_data
638 {
639 int recurse;
640 VEC (int) *inferiors;
641 };
642
643 static int
644 print_one_inferior (struct inferior *inferior, void *xdata)
645 {
646 struct print_one_inferior_data *top_data
647 = (struct print_one_inferior_data *) xdata;
648 struct ui_out *uiout = current_uiout;
649
650 if (VEC_empty (int, top_data->inferiors)
651 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
652 VEC_length (int, top_data->inferiors), sizeof (int),
653 compare_positive_ints))
654 {
655 struct collect_cores_data data;
656 struct cleanup *back_to
657 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
658
659 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
660 ui_out_field_string (uiout, "type", "process");
661 if (inferior->has_exit_code)
662 ui_out_field_string (uiout, "exit-code",
663 int_string (inferior->exit_code, 8, 0, 0, 1));
664 if (inferior->pid != 0)
665 ui_out_field_int (uiout, "pid", inferior->pid);
666
667 if (inferior->pspace->pspace_exec_filename != NULL)
668 {
669 ui_out_field_string (uiout, "executable",
670 inferior->pspace->pspace_exec_filename);
671 }
672
673 data.cores = 0;
674 if (inferior->pid != 0)
675 {
676 data.pid = inferior->pid;
677 iterate_over_threads (collect_cores, &data);
678 }
679
680 if (!VEC_empty (int, data.cores))
681 {
682 int *b, *e;
683 struct cleanup *back_to_2 =
684 make_cleanup_ui_out_list_begin_end (uiout, "cores");
685
686 qsort (VEC_address (int, data.cores),
687 VEC_length (int, data.cores), sizeof (int),
688 compare_positive_ints);
689
690 b = VEC_address (int, data.cores);
691 e = b + VEC_length (int, data.cores);
692 e = unique (b, e);
693
694 for (; b != e; ++b)
695 ui_out_field_int (uiout, NULL, *b);
696
697 do_cleanups (back_to_2);
698 }
699
700 if (top_data->recurse)
701 print_thread_info (uiout, NULL, inferior->pid);
702
703 do_cleanups (back_to);
704 }
705
706 return 0;
707 }
708
709 /* Output a field named 'cores' with a list as the value. The
710 elements of the list are obtained by splitting 'cores' on
711 comma. */
712
713 static void
714 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
715 {
716 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
717 field_name);
718 char *cores = xstrdup (xcores);
719 char *p = cores;
720
721 make_cleanup (xfree, cores);
722
723 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
724 ui_out_field_string (uiout, NULL, p);
725
726 do_cleanups (back_to);
727 }
728
729 static void
730 free_vector_of_ints (void *xvector)
731 {
732 VEC (int) **vector = (VEC (int) **) xvector;
733
734 VEC_free (int, *vector);
735 }
736
737 static void
738 do_nothing (splay_tree_key k)
739 {
740 }
741
742 static void
743 free_vector_of_osdata_items (splay_tree_value xvalue)
744 {
745 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
746
747 /* We don't free the items itself, it will be done separately. */
748 VEC_free (osdata_item_s, value);
749 }
750
751 static int
752 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
753 {
754 int a = xa;
755 int b = xb;
756
757 return a - b;
758 }
759
760 static void
761 free_splay_tree (void *xt)
762 {
763 splay_tree t = (splay_tree) xt;
764 splay_tree_delete (t);
765 }
766
767 static void
768 list_available_thread_groups (VEC (int) *ids, int recurse)
769 {
770 struct osdata *data;
771 struct osdata_item *item;
772 int ix_items;
773 struct ui_out *uiout = current_uiout;
774 struct cleanup *cleanup;
775
776 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
777 The vector contains information about all threads for the given pid.
778 This is assigned an initial value to avoid "may be used uninitialized"
779 warning from gcc. */
780 splay_tree tree = NULL;
781
782 /* get_osdata will throw if it cannot return data. */
783 data = get_osdata ("processes");
784 cleanup = make_cleanup_osdata_free (data);
785
786 if (recurse)
787 {
788 struct osdata *threads = get_osdata ("threads");
789
790 make_cleanup_osdata_free (threads);
791 tree = splay_tree_new (splay_tree_int_comparator,
792 do_nothing,
793 free_vector_of_osdata_items);
794 make_cleanup (free_splay_tree, tree);
795
796 for (ix_items = 0;
797 VEC_iterate (osdata_item_s, threads->items,
798 ix_items, item);
799 ix_items++)
800 {
801 const char *pid = get_osdata_column (item, "pid");
802 int pid_i = strtoul (pid, NULL, 0);
803 VEC (osdata_item_s) *vec = 0;
804
805 splay_tree_node n = splay_tree_lookup (tree, pid_i);
806 if (!n)
807 {
808 VEC_safe_push (osdata_item_s, vec, item);
809 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
810 }
811 else
812 {
813 vec = (VEC (osdata_item_s) *) n->value;
814 VEC_safe_push (osdata_item_s, vec, item);
815 n->value = (splay_tree_value) vec;
816 }
817 }
818 }
819
820 make_cleanup_ui_out_list_begin_end (uiout, "groups");
821
822 for (ix_items = 0;
823 VEC_iterate (osdata_item_s, data->items,
824 ix_items, item);
825 ix_items++)
826 {
827 struct cleanup *back_to;
828
829 const char *pid = get_osdata_column (item, "pid");
830 const char *cmd = get_osdata_column (item, "command");
831 const char *user = get_osdata_column (item, "user");
832 const char *cores = get_osdata_column (item, "cores");
833
834 int pid_i = strtoul (pid, NULL, 0);
835
836 /* At present, the target will return all available processes
837 and if information about specific ones was required, we filter
838 undesired processes here. */
839 if (ids && bsearch (&pid_i, VEC_address (int, ids),
840 VEC_length (int, ids),
841 sizeof (int), compare_positive_ints) == NULL)
842 continue;
843
844
845 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
846
847 ui_out_field_fmt (uiout, "id", "%s", pid);
848 ui_out_field_string (uiout, "type", "process");
849 if (cmd)
850 ui_out_field_string (uiout, "description", cmd);
851 if (user)
852 ui_out_field_string (uiout, "user", user);
853 if (cores)
854 output_cores (uiout, "cores", cores);
855
856 if (recurse)
857 {
858 splay_tree_node n = splay_tree_lookup (tree, pid_i);
859 if (n)
860 {
861 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
862 struct osdata_item *child;
863 int ix_child;
864
865 make_cleanup_ui_out_list_begin_end (uiout, "threads");
866
867 for (ix_child = 0;
868 VEC_iterate (osdata_item_s, children, ix_child, child);
869 ++ix_child)
870 {
871 struct cleanup *back_to_2 =
872 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
873 const char *tid = get_osdata_column (child, "tid");
874 const char *tcore = get_osdata_column (child, "core");
875
876 ui_out_field_string (uiout, "id", tid);
877 if (tcore)
878 ui_out_field_string (uiout, "core", tcore);
879
880 do_cleanups (back_to_2);
881 }
882 }
883 }
884
885 do_cleanups (back_to);
886 }
887
888 do_cleanups (cleanup);
889 }
890
891 void
892 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
893 {
894 struct ui_out *uiout = current_uiout;
895 struct cleanup *back_to;
896 int available = 0;
897 int recurse = 0;
898 VEC (int) *ids = 0;
899
900 enum opt
901 {
902 AVAILABLE_OPT, RECURSE_OPT
903 };
904 static const struct mi_opt opts[] =
905 {
906 {"-available", AVAILABLE_OPT, 0},
907 {"-recurse", RECURSE_OPT, 1},
908 { 0, 0, 0 }
909 };
910
911 int oind = 0;
912 char *oarg;
913
914 while (1)
915 {
916 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
917 &oind, &oarg);
918
919 if (opt < 0)
920 break;
921 switch ((enum opt) opt)
922 {
923 case AVAILABLE_OPT:
924 available = 1;
925 break;
926 case RECURSE_OPT:
927 if (strcmp (oarg, "0") == 0)
928 ;
929 else if (strcmp (oarg, "1") == 0)
930 recurse = 1;
931 else
932 error (_("only '0' and '1' are valid values "
933 "for the '--recurse' option"));
934 break;
935 }
936 }
937
938 for (; oind < argc; ++oind)
939 {
940 char *end;
941 int inf;
942
943 if (*(argv[oind]) != 'i')
944 error (_("invalid syntax of group id '%s'"), argv[oind]);
945
946 inf = strtoul (argv[oind] + 1, &end, 0);
947
948 if (*end != '\0')
949 error (_("invalid syntax of group id '%s'"), argv[oind]);
950 VEC_safe_push (int, ids, inf);
951 }
952 if (VEC_length (int, ids) > 1)
953 qsort (VEC_address (int, ids),
954 VEC_length (int, ids),
955 sizeof (int), compare_positive_ints);
956
957 back_to = make_cleanup (free_vector_of_ints, &ids);
958
959 if (available)
960 {
961 list_available_thread_groups (ids, recurse);
962 }
963 else if (VEC_length (int, ids) == 1)
964 {
965 /* Local thread groups, single id. */
966 int id = *VEC_address (int, ids);
967 struct inferior *inf = find_inferior_id (id);
968
969 if (!inf)
970 error (_("Non-existent thread group id '%d'"), id);
971
972 print_thread_info (uiout, NULL, inf->pid);
973 }
974 else
975 {
976 struct print_one_inferior_data data;
977
978 data.recurse = recurse;
979 data.inferiors = ids;
980
981 /* Local thread groups. Either no explicit ids -- and we
982 print everything, or several explicit ids. In both cases,
983 we print more than one group, and have to use 'groups'
984 as the top-level element. */
985 make_cleanup_ui_out_list_begin_end (uiout, "groups");
986 update_thread_list ();
987 iterate_over_inferiors (print_one_inferior, &data);
988 }
989
990 do_cleanups (back_to);
991 }
992
993 void
994 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
995 {
996 struct gdbarch *gdbarch;
997 struct ui_out *uiout = current_uiout;
998 int regnum, numregs;
999 int i;
1000 struct cleanup *cleanup;
1001
1002 /* Note that the test for a valid register must include checking the
1003 gdbarch_register_name because gdbarch_num_regs may be allocated
1004 for the union of the register sets within a family of related
1005 processors. In this case, some entries of gdbarch_register_name
1006 will change depending upon the particular processor being
1007 debugged. */
1008
1009 gdbarch = get_current_arch ();
1010 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1011
1012 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
1013
1014 if (argc == 0) /* No args, just do all the regs. */
1015 {
1016 for (regnum = 0;
1017 regnum < numregs;
1018 regnum++)
1019 {
1020 if (gdbarch_register_name (gdbarch, regnum) == NULL
1021 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1022 ui_out_field_string (uiout, NULL, "");
1023 else
1024 ui_out_field_string (uiout, NULL,
1025 gdbarch_register_name (gdbarch, regnum));
1026 }
1027 }
1028
1029 /* Else, list of register #s, just do listed regs. */
1030 for (i = 0; i < argc; i++)
1031 {
1032 regnum = atoi (argv[i]);
1033 if (regnum < 0 || regnum >= numregs)
1034 error (_("bad register number"));
1035
1036 if (gdbarch_register_name (gdbarch, regnum) == NULL
1037 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1038 ui_out_field_string (uiout, NULL, "");
1039 else
1040 ui_out_field_string (uiout, NULL,
1041 gdbarch_register_name (gdbarch, regnum));
1042 }
1043 do_cleanups (cleanup);
1044 }
1045
1046 void
1047 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
1048 {
1049 static struct regcache *this_regs = NULL;
1050 struct ui_out *uiout = current_uiout;
1051 struct regcache *prev_regs;
1052 struct gdbarch *gdbarch;
1053 int regnum, numregs, changed;
1054 int i;
1055 struct cleanup *cleanup;
1056
1057 /* The last time we visited this function, the current frame's
1058 register contents were saved in THIS_REGS. Move THIS_REGS over
1059 to PREV_REGS, and refresh THIS_REGS with the now-current register
1060 contents. */
1061
1062 prev_regs = this_regs;
1063 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1064 cleanup = make_cleanup_regcache_xfree (prev_regs);
1065
1066 /* Note that the test for a valid register must include checking the
1067 gdbarch_register_name because gdbarch_num_regs may be allocated
1068 for the union of the register sets within a family of related
1069 processors. In this case, some entries of gdbarch_register_name
1070 will change depending upon the particular processor being
1071 debugged. */
1072
1073 gdbarch = get_regcache_arch (this_regs);
1074 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1075
1076 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
1077
1078 if (argc == 0)
1079 {
1080 /* No args, just do all the regs. */
1081 for (regnum = 0;
1082 regnum < numregs;
1083 regnum++)
1084 {
1085 if (gdbarch_register_name (gdbarch, regnum) == NULL
1086 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1087 continue;
1088 changed = register_changed_p (regnum, prev_regs, this_regs);
1089 if (changed < 0)
1090 error (_("-data-list-changed-registers: "
1091 "Unable to read register contents."));
1092 else if (changed)
1093 ui_out_field_int (uiout, NULL, regnum);
1094 }
1095 }
1096
1097 /* Else, list of register #s, just do listed regs. */
1098 for (i = 0; i < argc; i++)
1099 {
1100 regnum = atoi (argv[i]);
1101
1102 if (regnum >= 0
1103 && regnum < numregs
1104 && gdbarch_register_name (gdbarch, regnum) != NULL
1105 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1106 {
1107 changed = register_changed_p (regnum, prev_regs, this_regs);
1108 if (changed < 0)
1109 error (_("-data-list-changed-registers: "
1110 "Unable to read register contents."));
1111 else if (changed)
1112 ui_out_field_int (uiout, NULL, regnum);
1113 }
1114 else
1115 error (_("bad register number"));
1116 }
1117 do_cleanups (cleanup);
1118 }
1119
1120 static int
1121 register_changed_p (int regnum, struct regcache *prev_regs,
1122 struct regcache *this_regs)
1123 {
1124 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1125 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1126 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1127 enum register_status prev_status;
1128 enum register_status this_status;
1129
1130 /* First time through or after gdbarch change consider all registers
1131 as changed. */
1132 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1133 return 1;
1134
1135 /* Get register contents and compare. */
1136 prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
1137 this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
1138
1139 if (this_status != prev_status)
1140 return 1;
1141 else if (this_status == REG_VALID)
1142 return memcmp (prev_buffer, this_buffer,
1143 register_size (gdbarch, regnum)) != 0;
1144 else
1145 return 0;
1146 }
1147
1148 /* Return a list of register number and value pairs. The valid
1149 arguments expected are: a letter indicating the format in which to
1150 display the registers contents. This can be one of: x
1151 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1152 (raw). After the format argument there can be a sequence of
1153 numbers, indicating which registers to fetch the content of. If
1154 the format is the only argument, a list of all the registers with
1155 their values is returned. */
1156
1157 void
1158 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1159 {
1160 struct ui_out *uiout = current_uiout;
1161 struct frame_info *frame;
1162 struct gdbarch *gdbarch;
1163 int regnum, numregs, format;
1164 int i;
1165 struct cleanup *list_cleanup;
1166 int skip_unavailable = 0;
1167 int oind = 0;
1168 enum opt
1169 {
1170 SKIP_UNAVAILABLE,
1171 };
1172 static const struct mi_opt opts[] =
1173 {
1174 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1175 { 0, 0, 0 }
1176 };
1177
1178 /* Note that the test for a valid register must include checking the
1179 gdbarch_register_name because gdbarch_num_regs may be allocated
1180 for the union of the register sets within a family of related
1181 processors. In this case, some entries of gdbarch_register_name
1182 will change depending upon the particular processor being
1183 debugged. */
1184
1185 while (1)
1186 {
1187 char *oarg;
1188 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1189 opts, &oind, &oarg);
1190
1191 if (opt < 0)
1192 break;
1193 switch ((enum opt) opt)
1194 {
1195 case SKIP_UNAVAILABLE:
1196 skip_unavailable = 1;
1197 break;
1198 }
1199 }
1200
1201 if (argc - oind < 1)
1202 error (_("-data-list-register-values: Usage: "
1203 "-data-list-register-values [--skip-unavailable] <format>"
1204 " [<regnum1>...<regnumN>]"));
1205
1206 format = (int) argv[oind][0];
1207
1208 frame = get_selected_frame (NULL);
1209 gdbarch = get_frame_arch (frame);
1210 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1211
1212 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1213
1214 if (argc - oind == 1)
1215 {
1216 /* No args, beside the format: do all the regs. */
1217 for (regnum = 0;
1218 regnum < numregs;
1219 regnum++)
1220 {
1221 if (gdbarch_register_name (gdbarch, regnum) == NULL
1222 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1223 continue;
1224
1225 output_register (frame, regnum, format, skip_unavailable);
1226 }
1227 }
1228
1229 /* Else, list of register #s, just do listed regs. */
1230 for (i = 1 + oind; i < argc; i++)
1231 {
1232 regnum = atoi (argv[i]);
1233
1234 if (regnum >= 0
1235 && regnum < numregs
1236 && gdbarch_register_name (gdbarch, regnum) != NULL
1237 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1238 output_register (frame, regnum, format, skip_unavailable);
1239 else
1240 error (_("bad register number"));
1241 }
1242 do_cleanups (list_cleanup);
1243 }
1244
1245 /* Output one register REGNUM's contents in the desired FORMAT. If
1246 SKIP_UNAVAILABLE is true, skip the register if it is
1247 unavailable. */
1248
1249 static void
1250 output_register (struct frame_info *frame, int regnum, int format,
1251 int skip_unavailable)
1252 {
1253 struct gdbarch *gdbarch = get_frame_arch (frame);
1254 struct ui_out *uiout = current_uiout;
1255 struct value *val = value_of_register (regnum, frame);
1256 struct cleanup *tuple_cleanup;
1257 struct value_print_options opts;
1258 struct ui_file *stb;
1259
1260 if (skip_unavailable && !value_entirely_available (val))
1261 return;
1262
1263 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1264 ui_out_field_int (uiout, "number", regnum);
1265
1266 if (format == 'N')
1267 format = 0;
1268
1269 if (format == 'r')
1270 format = 'z';
1271
1272 stb = mem_fileopen ();
1273 make_cleanup_ui_file_delete (stb);
1274
1275 get_formatted_print_options (&opts, format);
1276 opts.deref_ref = 1;
1277 val_print (value_type (val),
1278 value_contents_for_printing (val),
1279 value_embedded_offset (val), 0,
1280 stb, 0, val, &opts, current_language);
1281 ui_out_field_stream (uiout, "value", stb);
1282
1283 do_cleanups (tuple_cleanup);
1284 }
1285
1286 /* Write given values into registers. The registers and values are
1287 given as pairs. The corresponding MI command is
1288 -data-write-register-values <format>
1289 [<regnum1> <value1>...<regnumN> <valueN>] */
1290 void
1291 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1292 {
1293 struct regcache *regcache;
1294 struct gdbarch *gdbarch;
1295 int numregs, i;
1296
1297 /* Note that the test for a valid register must include checking the
1298 gdbarch_register_name because gdbarch_num_regs may be allocated
1299 for the union of the register sets within a family of related
1300 processors. In this case, some entries of gdbarch_register_name
1301 will change depending upon the particular processor being
1302 debugged. */
1303
1304 regcache = get_current_regcache ();
1305 gdbarch = get_regcache_arch (regcache);
1306 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1307
1308 if (argc == 0)
1309 error (_("-data-write-register-values: Usage: -data-write-register-"
1310 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1311
1312 if (!target_has_registers)
1313 error (_("-data-write-register-values: No registers."));
1314
1315 if (!(argc - 1))
1316 error (_("-data-write-register-values: No regs and values specified."));
1317
1318 if ((argc - 1) % 2)
1319 error (_("-data-write-register-values: "
1320 "Regs and vals are not in pairs."));
1321
1322 for (i = 1; i < argc; i = i + 2)
1323 {
1324 int regnum = atoi (argv[i]);
1325
1326 if (regnum >= 0 && regnum < numregs
1327 && gdbarch_register_name (gdbarch, regnum)
1328 && *gdbarch_register_name (gdbarch, regnum))
1329 {
1330 LONGEST value;
1331
1332 /* Get the value as a number. */
1333 value = parse_and_eval_address (argv[i + 1]);
1334
1335 /* Write it down. */
1336 regcache_cooked_write_signed (regcache, regnum, value);
1337 }
1338 else
1339 error (_("bad register number"));
1340 }
1341 }
1342
1343 /* Evaluate the value of the argument. The argument is an
1344 expression. If the expression contains spaces it needs to be
1345 included in double quotes. */
1346
1347 void
1348 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1349 {
1350 struct expression *expr;
1351 struct cleanup *old_chain;
1352 struct value *val;
1353 struct ui_file *stb;
1354 struct value_print_options opts;
1355 struct ui_out *uiout = current_uiout;
1356
1357 stb = mem_fileopen ();
1358 old_chain = make_cleanup_ui_file_delete (stb);
1359
1360 if (argc != 1)
1361 error (_("-data-evaluate-expression: "
1362 "Usage: -data-evaluate-expression expression"));
1363
1364 expr = parse_expression (argv[0]);
1365
1366 make_cleanup (free_current_contents, &expr);
1367
1368 val = evaluate_expression (expr);
1369
1370 /* Print the result of the expression evaluation. */
1371 get_user_print_options (&opts);
1372 opts.deref_ref = 0;
1373 common_val_print (val, stb, 0, &opts, current_language);
1374
1375 ui_out_field_stream (uiout, "value", stb);
1376
1377 do_cleanups (old_chain);
1378 }
1379
1380 /* This is the -data-read-memory command.
1381
1382 ADDR: start address of data to be dumped.
1383 WORD-FORMAT: a char indicating format for the ``word''. See
1384 the ``x'' command.
1385 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1386 NR_ROW: Number of rows.
1387 NR_COL: The number of colums (words per row).
1388 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1389 ASCHAR for unprintable characters.
1390
1391 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1392 displayes them. Returns:
1393
1394 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1395
1396 Returns:
1397 The number of bytes read is SIZE*ROW*COL. */
1398
1399 void
1400 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1401 {
1402 struct gdbarch *gdbarch = get_current_arch ();
1403 struct ui_out *uiout = current_uiout;
1404 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1405 CORE_ADDR addr;
1406 long total_bytes, nr_cols, nr_rows;
1407 char word_format;
1408 struct type *word_type;
1409 long word_size;
1410 char word_asize;
1411 char aschar;
1412 gdb_byte *mbuf;
1413 int nr_bytes;
1414 long offset = 0;
1415 int oind = 0;
1416 char *oarg;
1417 enum opt
1418 {
1419 OFFSET_OPT
1420 };
1421 static const struct mi_opt opts[] =
1422 {
1423 {"o", OFFSET_OPT, 1},
1424 { 0, 0, 0 }
1425 };
1426
1427 while (1)
1428 {
1429 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1430 &oind, &oarg);
1431
1432 if (opt < 0)
1433 break;
1434 switch ((enum opt) opt)
1435 {
1436 case OFFSET_OPT:
1437 offset = atol (oarg);
1438 break;
1439 }
1440 }
1441 argv += oind;
1442 argc -= oind;
1443
1444 if (argc < 5 || argc > 6)
1445 error (_("-data-read-memory: Usage: "
1446 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1447
1448 /* Extract all the arguments. */
1449
1450 /* Start address of the memory dump. */
1451 addr = parse_and_eval_address (argv[0]) + offset;
1452 /* The format character to use when displaying a memory word. See
1453 the ``x'' command. */
1454 word_format = argv[1][0];
1455 /* The size of the memory word. */
1456 word_size = atol (argv[2]);
1457 switch (word_size)
1458 {
1459 case 1:
1460 word_type = builtin_type (gdbarch)->builtin_int8;
1461 word_asize = 'b';
1462 break;
1463 case 2:
1464 word_type = builtin_type (gdbarch)->builtin_int16;
1465 word_asize = 'h';
1466 break;
1467 case 4:
1468 word_type = builtin_type (gdbarch)->builtin_int32;
1469 word_asize = 'w';
1470 break;
1471 case 8:
1472 word_type = builtin_type (gdbarch)->builtin_int64;
1473 word_asize = 'g';
1474 break;
1475 default:
1476 word_type = builtin_type (gdbarch)->builtin_int8;
1477 word_asize = 'b';
1478 }
1479 /* The number of rows. */
1480 nr_rows = atol (argv[3]);
1481 if (nr_rows <= 0)
1482 error (_("-data-read-memory: invalid number of rows."));
1483
1484 /* Number of bytes per row. */
1485 nr_cols = atol (argv[4]);
1486 if (nr_cols <= 0)
1487 error (_("-data-read-memory: invalid number of columns."));
1488
1489 /* The un-printable character when printing ascii. */
1490 if (argc == 6)
1491 aschar = *argv[5];
1492 else
1493 aschar = 0;
1494
1495 /* Create a buffer and read it in. */
1496 total_bytes = word_size * nr_rows * nr_cols;
1497 mbuf = XCNEWVEC (gdb_byte, total_bytes);
1498 make_cleanup (xfree, mbuf);
1499
1500 /* Dispatch memory reads to the topmost target, not the flattened
1501 current_target. */
1502 nr_bytes = target_read (current_target.beneath,
1503 TARGET_OBJECT_MEMORY, NULL, mbuf,
1504 addr, total_bytes);
1505 if (nr_bytes <= 0)
1506 error (_("Unable to read memory."));
1507
1508 /* Output the header information. */
1509 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1510 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1511 ui_out_field_int (uiout, "total-bytes", total_bytes);
1512 ui_out_field_core_addr (uiout, "next-row",
1513 gdbarch, addr + word_size * nr_cols);
1514 ui_out_field_core_addr (uiout, "prev-row",
1515 gdbarch, addr - word_size * nr_cols);
1516 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1517 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1518
1519 /* Build the result as a two dimentional table. */
1520 {
1521 struct ui_file *stream;
1522 struct cleanup *cleanup_stream;
1523 int row;
1524 int row_byte;
1525
1526 stream = mem_fileopen ();
1527 cleanup_stream = make_cleanup_ui_file_delete (stream);
1528
1529 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1530 for (row = 0, row_byte = 0;
1531 row < nr_rows;
1532 row++, row_byte += nr_cols * word_size)
1533 {
1534 int col;
1535 int col_byte;
1536 struct cleanup *cleanup_tuple;
1537 struct cleanup *cleanup_list_data;
1538 struct value_print_options opts;
1539
1540 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1541 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1542 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1543 row_byte); */
1544 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1545 get_formatted_print_options (&opts, word_format);
1546 for (col = 0, col_byte = row_byte;
1547 col < nr_cols;
1548 col++, col_byte += word_size)
1549 {
1550 if (col_byte + word_size > nr_bytes)
1551 {
1552 ui_out_field_string (uiout, NULL, "N/A");
1553 }
1554 else
1555 {
1556 ui_file_rewind (stream);
1557 print_scalar_formatted (mbuf + col_byte, word_type, &opts,
1558 word_asize, stream);
1559 ui_out_field_stream (uiout, NULL, stream);
1560 }
1561 }
1562 do_cleanups (cleanup_list_data);
1563 if (aschar)
1564 {
1565 int byte;
1566
1567 ui_file_rewind (stream);
1568 for (byte = row_byte;
1569 byte < row_byte + word_size * nr_cols; byte++)
1570 {
1571 if (byte >= nr_bytes)
1572 fputc_unfiltered ('X', stream);
1573 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1574 fputc_unfiltered (aschar, stream);
1575 else
1576 fputc_unfiltered (mbuf[byte], stream);
1577 }
1578 ui_out_field_stream (uiout, "ascii", stream);
1579 }
1580 do_cleanups (cleanup_tuple);
1581 }
1582 do_cleanups (cleanup_stream);
1583 }
1584 do_cleanups (cleanups);
1585 }
1586
1587 void
1588 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1589 {
1590 struct gdbarch *gdbarch = get_current_arch ();
1591 struct ui_out *uiout = current_uiout;
1592 struct cleanup *cleanups;
1593 CORE_ADDR addr;
1594 LONGEST length;
1595 memory_read_result_s *read_result;
1596 int ix;
1597 VEC(memory_read_result_s) *result;
1598 long offset = 0;
1599 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1600 int oind = 0;
1601 char *oarg;
1602 enum opt
1603 {
1604 OFFSET_OPT
1605 };
1606 static const struct mi_opt opts[] =
1607 {
1608 {"o", OFFSET_OPT, 1},
1609 { 0, 0, 0 }
1610 };
1611
1612 while (1)
1613 {
1614 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1615 &oind, &oarg);
1616 if (opt < 0)
1617 break;
1618 switch ((enum opt) opt)
1619 {
1620 case OFFSET_OPT:
1621 offset = atol (oarg);
1622 break;
1623 }
1624 }
1625 argv += oind;
1626 argc -= oind;
1627
1628 if (argc != 2)
1629 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1630
1631 addr = parse_and_eval_address (argv[0]) + offset;
1632 length = atol (argv[1]);
1633
1634 result = read_memory_robust (current_target.beneath, addr, length);
1635
1636 cleanups = make_cleanup (free_memory_read_result_vector, result);
1637
1638 if (VEC_length (memory_read_result_s, result) == 0)
1639 error (_("Unable to read memory."));
1640
1641 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1642 for (ix = 0;
1643 VEC_iterate (memory_read_result_s, result, ix, read_result);
1644 ++ix)
1645 {
1646 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1647 char *data, *p;
1648 int i;
1649 int alloc_len;
1650
1651 ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
1652 ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
1653 - addr);
1654 ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
1655
1656 alloc_len = (read_result->end - read_result->begin) * 2 * unit_size + 1;
1657 data = (char *) xmalloc (alloc_len);
1658
1659 for (i = 0, p = data;
1660 i < ((read_result->end - read_result->begin) * unit_size);
1661 ++i, p += 2)
1662 {
1663 sprintf (p, "%02x", read_result->data[i]);
1664 }
1665 ui_out_field_string (uiout, "contents", data);
1666 xfree (data);
1667 do_cleanups (t);
1668 }
1669 do_cleanups (cleanups);
1670 }
1671
1672 /* Implementation of the -data-write_memory command.
1673
1674 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1675 offset from the beginning of the memory grid row where the cell to
1676 be written is.
1677 ADDR: start address of the row in the memory grid where the memory
1678 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1679 the location to write to.
1680 FORMAT: a char indicating format for the ``word''. See
1681 the ``x'' command.
1682 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1683 VALUE: value to be written into the memory address.
1684
1685 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1686
1687 Prints nothing. */
1688
1689 void
1690 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1691 {
1692 struct gdbarch *gdbarch = get_current_arch ();
1693 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1694 CORE_ADDR addr;
1695 long word_size;
1696 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1697 enough when using a compiler other than GCC. */
1698 LONGEST value;
1699 gdb_byte *buffer;
1700 struct cleanup *old_chain;
1701 long offset = 0;
1702 int oind = 0;
1703 char *oarg;
1704 enum opt
1705 {
1706 OFFSET_OPT
1707 };
1708 static const struct mi_opt opts[] =
1709 {
1710 {"o", OFFSET_OPT, 1},
1711 { 0, 0, 0 }
1712 };
1713
1714 while (1)
1715 {
1716 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1717 &oind, &oarg);
1718
1719 if (opt < 0)
1720 break;
1721 switch ((enum opt) opt)
1722 {
1723 case OFFSET_OPT:
1724 offset = atol (oarg);
1725 break;
1726 }
1727 }
1728 argv += oind;
1729 argc -= oind;
1730
1731 if (argc != 4)
1732 error (_("-data-write-memory: Usage: "
1733 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1734
1735 /* Extract all the arguments. */
1736 /* Start address of the memory dump. */
1737 addr = parse_and_eval_address (argv[0]);
1738 /* The size of the memory word. */
1739 word_size = atol (argv[2]);
1740
1741 /* Calculate the real address of the write destination. */
1742 addr += (offset * word_size);
1743
1744 /* Get the value as a number. */
1745 value = parse_and_eval_address (argv[3]);
1746 /* Get the value into an array. */
1747 buffer = (gdb_byte *) xmalloc (word_size);
1748 old_chain = make_cleanup (xfree, buffer);
1749 store_signed_integer (buffer, word_size, byte_order, value);
1750 /* Write it down to memory. */
1751 write_memory_with_notification (addr, buffer, word_size);
1752 /* Free the buffer. */
1753 do_cleanups (old_chain);
1754 }
1755
1756 /* Implementation of the -data-write-memory-bytes command.
1757
1758 ADDR: start address
1759 DATA: string of bytes to write at that address
1760 COUNT: number of bytes to be filled (decimal integer). */
1761
1762 void
1763 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1764 {
1765 CORE_ADDR addr;
1766 char *cdata;
1767 gdb_byte *data;
1768 gdb_byte *databuf;
1769 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1770 long int count_units;
1771 struct cleanup *back_to;
1772 int unit_size;
1773
1774 if (argc != 2 && argc != 3)
1775 error (_("Usage: ADDR DATA [COUNT]."));
1776
1777 addr = parse_and_eval_address (argv[0]);
1778 cdata = argv[1];
1779 len_hex = strlen (cdata);
1780 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1781
1782 if (len_hex % (unit_size * 2) != 0)
1783 error (_("Hex-encoded '%s' must represent an integral number of "
1784 "addressable memory units."),
1785 cdata);
1786
1787 len_bytes = len_hex / 2;
1788 len_units = len_bytes / unit_size;
1789
1790 if (argc == 3)
1791 count_units = strtoul (argv[2], NULL, 10);
1792 else
1793 count_units = len_units;
1794
1795 databuf = XNEWVEC (gdb_byte, len_bytes);
1796 back_to = make_cleanup (xfree, databuf);
1797
1798 for (i = 0; i < len_bytes; ++i)
1799 {
1800 int x;
1801 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1802 error (_("Invalid argument"));
1803 databuf[i] = (gdb_byte) x;
1804 }
1805
1806 if (len_units < count_units)
1807 {
1808 /* Pattern is made of less units than count:
1809 repeat pattern to fill memory. */
1810 data = (gdb_byte *) xmalloc (count_units * unit_size);
1811 make_cleanup (xfree, data);
1812
1813 /* Number of times the pattern is entirely repeated. */
1814 steps = count_units / len_units;
1815 /* Number of remaining addressable memory units. */
1816 remaining_units = count_units % len_units;
1817 for (i = 0; i < steps; i++)
1818 memcpy (data + i * len_bytes, databuf, len_bytes);
1819
1820 if (remaining_units > 0)
1821 memcpy (data + steps * len_bytes, databuf,
1822 remaining_units * unit_size);
1823 }
1824 else
1825 {
1826 /* Pattern is longer than or equal to count:
1827 just copy count addressable memory units. */
1828 data = databuf;
1829 }
1830
1831 write_memory_with_notification (addr, data, count_units);
1832
1833 do_cleanups (back_to);
1834 }
1835
1836 void
1837 mi_cmd_enable_timings (char *command, char **argv, int argc)
1838 {
1839 if (argc == 0)
1840 do_timings = 1;
1841 else if (argc == 1)
1842 {
1843 if (strcmp (argv[0], "yes") == 0)
1844 do_timings = 1;
1845 else if (strcmp (argv[0], "no") == 0)
1846 do_timings = 0;
1847 else
1848 goto usage_error;
1849 }
1850 else
1851 goto usage_error;
1852
1853 return;
1854
1855 usage_error:
1856 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1857 }
1858
1859 void
1860 mi_cmd_list_features (char *command, char **argv, int argc)
1861 {
1862 if (argc == 0)
1863 {
1864 struct cleanup *cleanup = NULL;
1865 struct ui_out *uiout = current_uiout;
1866
1867 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1868 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1869 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1870 ui_out_field_string (uiout, NULL, "thread-info");
1871 ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
1872 ui_out_field_string (uiout, NULL, "breakpoint-notifications");
1873 ui_out_field_string (uiout, NULL, "ada-task-info");
1874 ui_out_field_string (uiout, NULL, "language-option");
1875 ui_out_field_string (uiout, NULL, "info-gdb-mi-command");
1876 ui_out_field_string (uiout, NULL, "undefined-command-error-code");
1877 ui_out_field_string (uiout, NULL, "exec-run-start-option");
1878
1879 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1880 ui_out_field_string (uiout, NULL, "python");
1881
1882 do_cleanups (cleanup);
1883 return;
1884 }
1885
1886 error (_("-list-features should be passed no arguments"));
1887 }
1888
1889 void
1890 mi_cmd_list_target_features (char *command, char **argv, int argc)
1891 {
1892 if (argc == 0)
1893 {
1894 struct cleanup *cleanup = NULL;
1895 struct ui_out *uiout = current_uiout;
1896
1897 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1898 if (mi_async_p ())
1899 ui_out_field_string (uiout, NULL, "async");
1900 if (target_can_execute_reverse)
1901 ui_out_field_string (uiout, NULL, "reverse");
1902 do_cleanups (cleanup);
1903 return;
1904 }
1905
1906 error (_("-list-target-features should be passed no arguments"));
1907 }
1908
1909 void
1910 mi_cmd_add_inferior (char *command, char **argv, int argc)
1911 {
1912 struct inferior *inf;
1913
1914 if (argc != 0)
1915 error (_("-add-inferior should be passed no arguments"));
1916
1917 inf = add_inferior_with_spaces ();
1918
1919 ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num);
1920 }
1921
1922 /* Callback used to find the first inferior other than the current
1923 one. */
1924
1925 static int
1926 get_other_inferior (struct inferior *inf, void *arg)
1927 {
1928 if (inf == current_inferior ())
1929 return 0;
1930
1931 return 1;
1932 }
1933
1934 void
1935 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1936 {
1937 int id;
1938 struct inferior *inf;
1939
1940 if (argc != 1)
1941 error (_("-remove-inferior should be passed a single argument"));
1942
1943 if (sscanf (argv[0], "i%d", &id) != 1)
1944 error (_("the thread group id is syntactically invalid"));
1945
1946 inf = find_inferior_id (id);
1947 if (!inf)
1948 error (_("the specified thread group does not exist"));
1949
1950 if (inf->pid != 0)
1951 error (_("cannot remove an active inferior"));
1952
1953 if (inf == current_inferior ())
1954 {
1955 struct thread_info *tp = 0;
1956 struct inferior *new_inferior
1957 = iterate_over_inferiors (get_other_inferior, NULL);
1958
1959 if (new_inferior == NULL)
1960 error (_("Cannot remove last inferior"));
1961
1962 set_current_inferior (new_inferior);
1963 if (new_inferior->pid != 0)
1964 tp = any_thread_of_process (new_inferior->pid);
1965 switch_to_thread (tp ? tp->ptid : null_ptid);
1966 set_current_program_space (new_inferior->pspace);
1967 }
1968
1969 delete_inferior (inf);
1970 }
1971
1972 \f
1973
1974 /* Execute a command within a safe environment.
1975 Return <0 for error; >=0 for ok.
1976
1977 args->action will tell mi_execute_command what action
1978 to perfrom after the given command has executed (display/suppress
1979 prompt, display error). */
1980
1981 static void
1982 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1983 {
1984 struct cleanup *cleanup;
1985
1986 if (do_timings)
1987 current_command_ts = context->cmd_start;
1988
1989 current_token = xstrdup (context->token);
1990 cleanup = make_cleanup (free_current_contents, &current_token);
1991
1992 running_result_record_printed = 0;
1993 mi_proceeded = 0;
1994 switch (context->op)
1995 {
1996 case MI_COMMAND:
1997 /* A MI command was read from the input stream. */
1998 if (mi_debug_p)
1999 /* FIXME: gdb_???? */
2000 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
2001 context->token, context->command, context->args);
2002
2003 mi_cmd_execute (context);
2004
2005 /* Print the result if there were no errors.
2006
2007 Remember that on the way out of executing a command, you have
2008 to directly use the mi_interp's uiout, since the command
2009 could have reset the interpreter, in which case the current
2010 uiout will most likely crash in the mi_out_* routines. */
2011 if (!running_result_record_printed)
2012 {
2013 fputs_unfiltered (context->token, raw_stdout);
2014 /* There's no particularly good reason why target-connect results
2015 in not ^done. Should kill ^connected for MI3. */
2016 fputs_unfiltered (strcmp (context->command, "target-select") == 0
2017 ? "^connected" : "^done", raw_stdout);
2018 mi_out_put (uiout, raw_stdout);
2019 mi_out_rewind (uiout);
2020 mi_print_timing_maybe ();
2021 fputs_unfiltered ("\n", raw_stdout);
2022 }
2023 else
2024 /* The command does not want anything to be printed. In that
2025 case, the command probably should not have written anything
2026 to uiout, but in case it has written something, discard it. */
2027 mi_out_rewind (uiout);
2028 break;
2029
2030 case CLI_COMMAND:
2031 {
2032 char *argv[2];
2033
2034 /* A CLI command was read from the input stream. */
2035 /* This "feature" will be removed as soon as we have a
2036 complete set of mi commands. */
2037 /* Echo the command on the console. */
2038 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
2039 /* Call the "console" interpreter. */
2040 argv[0] = "console";
2041 argv[1] = context->command;
2042 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
2043
2044 /* If we changed interpreters, DON'T print out anything. */
2045 if (current_interp_named_p (INTERP_MI)
2046 || current_interp_named_p (INTERP_MI1)
2047 || current_interp_named_p (INTERP_MI2)
2048 || current_interp_named_p (INTERP_MI3))
2049 {
2050 if (!running_result_record_printed)
2051 {
2052 fputs_unfiltered (context->token, raw_stdout);
2053 fputs_unfiltered ("^done", raw_stdout);
2054 mi_out_put (uiout, raw_stdout);
2055 mi_out_rewind (uiout);
2056 mi_print_timing_maybe ();
2057 fputs_unfiltered ("\n", raw_stdout);
2058 }
2059 else
2060 mi_out_rewind (uiout);
2061 }
2062 break;
2063 }
2064 }
2065
2066 do_cleanups (cleanup);
2067 }
2068
2069 /* Print a gdb exception to the MI output stream. */
2070
2071 static void
2072 mi_print_exception (const char *token, struct gdb_exception exception)
2073 {
2074 fputs_unfiltered (token, raw_stdout);
2075 fputs_unfiltered ("^error,msg=\"", raw_stdout);
2076 if (exception.message == NULL)
2077 fputs_unfiltered ("unknown error", raw_stdout);
2078 else
2079 fputstr_unfiltered (exception.message, '"', raw_stdout);
2080 fputs_unfiltered ("\"", raw_stdout);
2081
2082 switch (exception.error)
2083 {
2084 case UNDEFINED_COMMAND_ERROR:
2085 fputs_unfiltered (",code=\"undefined-command\"", raw_stdout);
2086 break;
2087 }
2088
2089 fputs_unfiltered ("\n", raw_stdout);
2090 }
2091
2092 void
2093 mi_execute_command (const char *cmd, int from_tty)
2094 {
2095 char *token;
2096 struct mi_parse *command = NULL;
2097
2098 /* This is to handle EOF (^D). We just quit gdb. */
2099 /* FIXME: we should call some API function here. */
2100 if (cmd == 0)
2101 quit_force (NULL, from_tty);
2102
2103 target_log_command (cmd);
2104
2105 TRY
2106 {
2107 command = mi_parse (cmd, &token);
2108 }
2109 CATCH (exception, RETURN_MASK_ALL)
2110 {
2111 mi_print_exception (token, exception);
2112 xfree (token);
2113 }
2114 END_CATCH
2115
2116 if (command != NULL)
2117 {
2118 ptid_t previous_ptid = inferior_ptid;
2119
2120 command->token = token;
2121
2122 if (do_timings)
2123 {
2124 command->cmd_start = XNEW (struct mi_timestamp);
2125 timestamp (command->cmd_start);
2126 }
2127
2128 TRY
2129 {
2130 captured_mi_execute_command (current_uiout, command);
2131 }
2132 CATCH (result, RETURN_MASK_ALL)
2133 {
2134 /* The command execution failed and error() was called
2135 somewhere. */
2136 mi_print_exception (command->token, result);
2137 mi_out_rewind (current_uiout);
2138 }
2139 END_CATCH
2140
2141 bpstat_do_actions ();
2142
2143 if (/* The notifications are only output when the top-level
2144 interpreter (specified on the command line) is MI. */
2145 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
2146 /* Don't try report anything if there are no threads --
2147 the program is dead. */
2148 && thread_count () != 0
2149 /* -thread-select explicitly changes thread. If frontend uses that
2150 internally, we don't want to emit =thread-selected, since
2151 =thread-selected is supposed to indicate user's intentions. */
2152 && strcmp (command->command, "thread-select") != 0)
2153 {
2154 struct mi_interp *mi
2155 = (struct mi_interp *) top_level_interpreter_data ();
2156 int report_change = 0;
2157
2158 if (command->thread == -1)
2159 {
2160 report_change = (!ptid_equal (previous_ptid, null_ptid)
2161 && !ptid_equal (inferior_ptid, previous_ptid)
2162 && !ptid_equal (inferior_ptid, null_ptid));
2163 }
2164 else if (!ptid_equal (inferior_ptid, null_ptid))
2165 {
2166 struct thread_info *ti = inferior_thread ();
2167
2168 report_change = (ti->global_num != command->thread);
2169 }
2170
2171 if (report_change)
2172 {
2173 struct thread_info *ti = inferior_thread ();
2174 struct cleanup *old_chain;
2175
2176 old_chain = make_cleanup_restore_target_terminal ();
2177 target_terminal_ours_for_output ();
2178
2179 fprintf_unfiltered (mi->event_channel,
2180 "thread-selected,id=\"%d\"",
2181 ti->global_num);
2182 gdb_flush (mi->event_channel);
2183
2184 do_cleanups (old_chain);
2185 }
2186 }
2187
2188 mi_parse_free (command);
2189 }
2190 }
2191
2192 static void
2193 mi_cmd_execute (struct mi_parse *parse)
2194 {
2195 struct cleanup *cleanup;
2196 enum language saved_language;
2197
2198 cleanup = prepare_execute_command ();
2199
2200 if (parse->all && parse->thread_group != -1)
2201 error (_("Cannot specify --thread-group together with --all"));
2202
2203 if (parse->all && parse->thread != -1)
2204 error (_("Cannot specify --thread together with --all"));
2205
2206 if (parse->thread_group != -1 && parse->thread != -1)
2207 error (_("Cannot specify --thread together with --thread-group"));
2208
2209 if (parse->frame != -1 && parse->thread == -1)
2210 error (_("Cannot specify --frame without --thread"));
2211
2212 if (parse->thread_group != -1)
2213 {
2214 struct inferior *inf = find_inferior_id (parse->thread_group);
2215 struct thread_info *tp = 0;
2216
2217 if (!inf)
2218 error (_("Invalid thread group for the --thread-group option"));
2219
2220 set_current_inferior (inf);
2221 /* This behaviour means that if --thread-group option identifies
2222 an inferior with multiple threads, then a random one will be
2223 picked. This is not a problem -- frontend should always
2224 provide --thread if it wishes to operate on a specific
2225 thread. */
2226 if (inf->pid != 0)
2227 tp = any_live_thread_of_process (inf->pid);
2228 switch_to_thread (tp ? tp->ptid : null_ptid);
2229 set_current_program_space (inf->pspace);
2230 }
2231
2232 if (parse->thread != -1)
2233 {
2234 struct thread_info *tp = find_thread_global_id (parse->thread);
2235
2236 if (!tp)
2237 error (_("Invalid thread id: %d"), parse->thread);
2238
2239 if (is_exited (tp->ptid))
2240 error (_("Thread id: %d has terminated"), parse->thread);
2241
2242 switch_to_thread (tp->ptid);
2243 }
2244
2245 if (parse->frame != -1)
2246 {
2247 struct frame_info *fid;
2248 int frame = parse->frame;
2249
2250 fid = find_relative_frame (get_current_frame (), &frame);
2251 if (frame == 0)
2252 /* find_relative_frame was successful */
2253 select_frame (fid);
2254 else
2255 error (_("Invalid frame id: %d"), frame);
2256 }
2257
2258 if (parse->language != language_unknown)
2259 {
2260 make_cleanup_restore_current_language ();
2261 set_language (parse->language);
2262 }
2263
2264 current_context = parse;
2265
2266 if (parse->cmd->suppress_notification != NULL)
2267 {
2268 make_cleanup_restore_integer (parse->cmd->suppress_notification);
2269 *parse->cmd->suppress_notification = 1;
2270 }
2271
2272 if (parse->cmd->argv_func != NULL)
2273 {
2274 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2275 }
2276 else if (parse->cmd->cli.cmd != 0)
2277 {
2278 /* FIXME: DELETE THIS. */
2279 /* The operation is still implemented by a cli command. */
2280 /* Must be a synchronous one. */
2281 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2282 parse->args);
2283 }
2284 else
2285 {
2286 /* FIXME: DELETE THIS. */
2287 struct ui_file *stb;
2288
2289 stb = mem_fileopen ();
2290
2291 fputs_unfiltered ("Undefined mi command: ", stb);
2292 fputstr_unfiltered (parse->command, '"', stb);
2293 fputs_unfiltered (" (missing implementation)", stb);
2294
2295 make_cleanup_ui_file_delete (stb);
2296 error_stream (stb);
2297 }
2298 do_cleanups (cleanup);
2299 }
2300
2301 /* FIXME: This is just a hack so we can get some extra commands going.
2302 We don't want to channel things through the CLI, but call libgdb directly.
2303 Use only for synchronous commands. */
2304
2305 void
2306 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2307 {
2308 if (cmd != 0)
2309 {
2310 struct cleanup *old_cleanups;
2311 char *run;
2312
2313 if (args_p)
2314 run = xstrprintf ("%s %s", cmd, args);
2315 else
2316 run = xstrdup (cmd);
2317 if (mi_debug_p)
2318 /* FIXME: gdb_???? */
2319 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2320 cmd, run);
2321 old_cleanups = make_cleanup (xfree, run);
2322 execute_command (run, 0 /* from_tty */ );
2323 do_cleanups (old_cleanups);
2324 return;
2325 }
2326 }
2327
2328 void
2329 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2330 {
2331 struct cleanup *old_cleanups;
2332 char *run;
2333
2334 if (mi_async_p ())
2335 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2336 else
2337 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2338 old_cleanups = make_cleanup (xfree, run);
2339
2340 execute_command (run, 0 /* from_tty */ );
2341
2342 /* Do this before doing any printing. It would appear that some
2343 print code leaves garbage around in the buffer. */
2344 do_cleanups (old_cleanups);
2345 }
2346
2347 void
2348 mi_load_progress (const char *section_name,
2349 unsigned long sent_so_far,
2350 unsigned long total_section,
2351 unsigned long total_sent,
2352 unsigned long grand_total)
2353 {
2354 struct timeval time_now, delta, update_threshold;
2355 static struct timeval last_update;
2356 static char *previous_sect_name = NULL;
2357 int new_section;
2358 struct ui_out *saved_uiout;
2359 struct ui_out *uiout;
2360
2361 /* This function is called through deprecated_show_load_progress
2362 which means uiout may not be correct. Fix it for the duration
2363 of this function. */
2364 saved_uiout = current_uiout;
2365
2366 if (current_interp_named_p (INTERP_MI)
2367 || current_interp_named_p (INTERP_MI2))
2368 current_uiout = mi_out_new (2);
2369 else if (current_interp_named_p (INTERP_MI1))
2370 current_uiout = mi_out_new (1);
2371 else if (current_interp_named_p (INTERP_MI3))
2372 current_uiout = mi_out_new (3);
2373 else
2374 return;
2375
2376 uiout = current_uiout;
2377
2378 update_threshold.tv_sec = 0;
2379 update_threshold.tv_usec = 500000;
2380 gettimeofday (&time_now, NULL);
2381
2382 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
2383 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
2384
2385 if (delta.tv_usec < 0)
2386 {
2387 delta.tv_sec -= 1;
2388 delta.tv_usec += 1000000L;
2389 }
2390
2391 new_section = (previous_sect_name ?
2392 strcmp (previous_sect_name, section_name) : 1);
2393 if (new_section)
2394 {
2395 struct cleanup *cleanup_tuple;
2396
2397 xfree (previous_sect_name);
2398 previous_sect_name = xstrdup (section_name);
2399
2400 if (current_token)
2401 fputs_unfiltered (current_token, raw_stdout);
2402 fputs_unfiltered ("+download", raw_stdout);
2403 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2404 ui_out_field_string (uiout, "section", section_name);
2405 ui_out_field_int (uiout, "section-size", total_section);
2406 ui_out_field_int (uiout, "total-size", grand_total);
2407 do_cleanups (cleanup_tuple);
2408 mi_out_put (uiout, raw_stdout);
2409 fputs_unfiltered ("\n", raw_stdout);
2410 gdb_flush (raw_stdout);
2411 }
2412
2413 if (delta.tv_sec >= update_threshold.tv_sec &&
2414 delta.tv_usec >= update_threshold.tv_usec)
2415 {
2416 struct cleanup *cleanup_tuple;
2417
2418 last_update.tv_sec = time_now.tv_sec;
2419 last_update.tv_usec = time_now.tv_usec;
2420 if (current_token)
2421 fputs_unfiltered (current_token, raw_stdout);
2422 fputs_unfiltered ("+download", raw_stdout);
2423 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2424 ui_out_field_string (uiout, "section", section_name);
2425 ui_out_field_int (uiout, "section-sent", sent_so_far);
2426 ui_out_field_int (uiout, "section-size", total_section);
2427 ui_out_field_int (uiout, "total-sent", total_sent);
2428 ui_out_field_int (uiout, "total-size", grand_total);
2429 do_cleanups (cleanup_tuple);
2430 mi_out_put (uiout, raw_stdout);
2431 fputs_unfiltered ("\n", raw_stdout);
2432 gdb_flush (raw_stdout);
2433 }
2434
2435 xfree (uiout);
2436 current_uiout = saved_uiout;
2437 }
2438
2439 static void
2440 timestamp (struct mi_timestamp *tv)
2441 {
2442 gettimeofday (&tv->wallclock, NULL);
2443 #ifdef HAVE_GETRUSAGE
2444 getrusage (RUSAGE_SELF, &rusage);
2445 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2446 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2447 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2448 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2449 #else
2450 {
2451 long usec = get_run_time ();
2452
2453 tv->utime.tv_sec = usec/1000000L;
2454 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2455 tv->stime.tv_sec = 0;
2456 tv->stime.tv_usec = 0;
2457 }
2458 #endif
2459 }
2460
2461 static void
2462 print_diff_now (struct mi_timestamp *start)
2463 {
2464 struct mi_timestamp now;
2465
2466 timestamp (&now);
2467 print_diff (start, &now);
2468 }
2469
2470 void
2471 mi_print_timing_maybe (void)
2472 {
2473 /* If the command is -enable-timing then do_timings may be true
2474 whilst current_command_ts is not initialized. */
2475 if (do_timings && current_command_ts)
2476 print_diff_now (current_command_ts);
2477 }
2478
2479 static long
2480 timeval_diff (struct timeval start, struct timeval end)
2481 {
2482 return ((end.tv_sec - start.tv_sec) * 1000000L)
2483 + (end.tv_usec - start.tv_usec);
2484 }
2485
2486 static void
2487 print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
2488 {
2489 fprintf_unfiltered
2490 (raw_stdout,
2491 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2492 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2493 timeval_diff (start->utime, end->utime) / 1000000.0,
2494 timeval_diff (start->stime, end->stime) / 1000000.0);
2495 }
2496
2497 void
2498 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2499 {
2500 struct expression *expr;
2501 LONGEST initval = 0;
2502 struct trace_state_variable *tsv;
2503 char *name = 0;
2504
2505 if (argc != 1 && argc != 2)
2506 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2507
2508 name = argv[0];
2509 if (*name++ != '$')
2510 error (_("Name of trace variable should start with '$'"));
2511
2512 validate_trace_state_variable_name (name);
2513
2514 tsv = find_trace_state_variable (name);
2515 if (!tsv)
2516 tsv = create_trace_state_variable (name);
2517
2518 if (argc == 2)
2519 initval = value_as_long (parse_and_eval (argv[1]));
2520
2521 tsv->initial_value = initval;
2522 }
2523
2524 void
2525 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2526 {
2527 if (argc != 0)
2528 error (_("-trace-list-variables: no arguments allowed"));
2529
2530 tvariables_info_1 ();
2531 }
2532
2533 void
2534 mi_cmd_trace_find (char *command, char **argv, int argc)
2535 {
2536 char *mode;
2537
2538 if (argc == 0)
2539 error (_("trace selection mode is required"));
2540
2541 mode = argv[0];
2542
2543 if (strcmp (mode, "none") == 0)
2544 {
2545 tfind_1 (tfind_number, -1, 0, 0, 0);
2546 return;
2547 }
2548
2549 check_trace_running (current_trace_status ());
2550
2551 if (strcmp (mode, "frame-number") == 0)
2552 {
2553 if (argc != 2)
2554 error (_("frame number is required"));
2555 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2556 }
2557 else if (strcmp (mode, "tracepoint-number") == 0)
2558 {
2559 if (argc != 2)
2560 error (_("tracepoint number is required"));
2561 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2562 }
2563 else if (strcmp (mode, "pc") == 0)
2564 {
2565 if (argc != 2)
2566 error (_("PC is required"));
2567 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2568 }
2569 else if (strcmp (mode, "pc-inside-range") == 0)
2570 {
2571 if (argc != 3)
2572 error (_("Start and end PC are required"));
2573 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2574 parse_and_eval_address (argv[2]), 0);
2575 }
2576 else if (strcmp (mode, "pc-outside-range") == 0)
2577 {
2578 if (argc != 3)
2579 error (_("Start and end PC are required"));
2580 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2581 parse_and_eval_address (argv[2]), 0);
2582 }
2583 else if (strcmp (mode, "line") == 0)
2584 {
2585 struct symtabs_and_lines sals;
2586 struct symtab_and_line sal;
2587 static CORE_ADDR start_pc, end_pc;
2588 struct cleanup *back_to;
2589
2590 if (argc != 2)
2591 error (_("Line is required"));
2592
2593 sals = decode_line_with_current_source (argv[1],
2594 DECODE_LINE_FUNFIRSTLINE);
2595 back_to = make_cleanup (xfree, sals.sals);
2596
2597 sal = sals.sals[0];
2598
2599 if (sal.symtab == 0)
2600 error (_("Could not find the specified line"));
2601
2602 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2603 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2604 else
2605 error (_("Could not find the specified line"));
2606
2607 do_cleanups (back_to);
2608 }
2609 else
2610 error (_("Invalid mode '%s'"), mode);
2611
2612 if (has_stack_frames () || get_traceframe_number () >= 0)
2613 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2614 }
2615
2616 void
2617 mi_cmd_trace_save (char *command, char **argv, int argc)
2618 {
2619 int target_saves = 0;
2620 int generate_ctf = 0;
2621 char *filename;
2622 int oind = 0;
2623 char *oarg;
2624
2625 enum opt
2626 {
2627 TARGET_SAVE_OPT, CTF_OPT
2628 };
2629 static const struct mi_opt opts[] =
2630 {
2631 {"r", TARGET_SAVE_OPT, 0},
2632 {"ctf", CTF_OPT, 0},
2633 { 0, 0, 0 }
2634 };
2635
2636 while (1)
2637 {
2638 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2639 &oind, &oarg);
2640
2641 if (opt < 0)
2642 break;
2643 switch ((enum opt) opt)
2644 {
2645 case TARGET_SAVE_OPT:
2646 target_saves = 1;
2647 break;
2648 case CTF_OPT:
2649 generate_ctf = 1;
2650 break;
2651 }
2652 }
2653 filename = argv[oind];
2654
2655 if (generate_ctf)
2656 trace_save_ctf (filename, target_saves);
2657 else
2658 trace_save_tfile (filename, target_saves);
2659 }
2660
2661 void
2662 mi_cmd_trace_start (char *command, char **argv, int argc)
2663 {
2664 start_tracing (NULL);
2665 }
2666
2667 void
2668 mi_cmd_trace_status (char *command, char **argv, int argc)
2669 {
2670 trace_status_mi (0);
2671 }
2672
2673 void
2674 mi_cmd_trace_stop (char *command, char **argv, int argc)
2675 {
2676 stop_tracing (NULL);
2677 trace_status_mi (1);
2678 }
2679
2680 /* Implement the "-ada-task-info" command. */
2681
2682 void
2683 mi_cmd_ada_task_info (char *command, char **argv, int argc)
2684 {
2685 if (argc != 0 && argc != 1)
2686 error (_("Invalid MI command"));
2687
2688 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2689 }
2690
2691 /* Print EXPRESSION according to VALUES. */
2692
2693 static void
2694 print_variable_or_computed (char *expression, enum print_values values)
2695 {
2696 struct expression *expr;
2697 struct cleanup *old_chain;
2698 struct value *val;
2699 struct ui_file *stb;
2700 struct value_print_options opts;
2701 struct type *type;
2702 struct ui_out *uiout = current_uiout;
2703
2704 stb = mem_fileopen ();
2705 old_chain = make_cleanup_ui_file_delete (stb);
2706
2707 expr = parse_expression (expression);
2708
2709 make_cleanup (free_current_contents, &expr);
2710
2711 if (values == PRINT_SIMPLE_VALUES)
2712 val = evaluate_type (expr);
2713 else
2714 val = evaluate_expression (expr);
2715
2716 if (values != PRINT_NO_VALUES)
2717 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2718 ui_out_field_string (uiout, "name", expression);
2719
2720 switch (values)
2721 {
2722 case PRINT_SIMPLE_VALUES:
2723 type = check_typedef (value_type (val));
2724 type_print (value_type (val), "", stb, -1);
2725 ui_out_field_stream (uiout, "type", stb);
2726 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2727 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2728 && TYPE_CODE (type) != TYPE_CODE_UNION)
2729 {
2730 struct value_print_options opts;
2731
2732 get_no_prettyformat_print_options (&opts);
2733 opts.deref_ref = 1;
2734 common_val_print (val, stb, 0, &opts, current_language);
2735 ui_out_field_stream (uiout, "value", stb);
2736 }
2737 break;
2738 case PRINT_ALL_VALUES:
2739 {
2740 struct value_print_options opts;
2741
2742 get_no_prettyformat_print_options (&opts);
2743 opts.deref_ref = 1;
2744 common_val_print (val, stb, 0, &opts, current_language);
2745 ui_out_field_stream (uiout, "value", stb);
2746 }
2747 break;
2748 }
2749
2750 do_cleanups (old_chain);
2751 }
2752
2753 /* Implement the "-trace-frame-collected" command. */
2754
2755 void
2756 mi_cmd_trace_frame_collected (char *command, char **argv, int argc)
2757 {
2758 struct cleanup *old_chain;
2759 struct bp_location *tloc;
2760 int stepping_frame;
2761 struct collection_list *clist;
2762 struct collection_list tracepoint_list, stepping_list;
2763 struct traceframe_info *tinfo;
2764 int oind = 0;
2765 enum print_values var_print_values = PRINT_ALL_VALUES;
2766 enum print_values comp_print_values = PRINT_ALL_VALUES;
2767 int registers_format = 'x';
2768 int memory_contents = 0;
2769 struct ui_out *uiout = current_uiout;
2770 enum opt
2771 {
2772 VAR_PRINT_VALUES,
2773 COMP_PRINT_VALUES,
2774 REGISTERS_FORMAT,
2775 MEMORY_CONTENTS,
2776 };
2777 static const struct mi_opt opts[] =
2778 {
2779 {"-var-print-values", VAR_PRINT_VALUES, 1},
2780 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2781 {"-registers-format", REGISTERS_FORMAT, 1},
2782 {"-memory-contents", MEMORY_CONTENTS, 0},
2783 { 0, 0, 0 }
2784 };
2785
2786 while (1)
2787 {
2788 char *oarg;
2789 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2790 &oind, &oarg);
2791 if (opt < 0)
2792 break;
2793 switch ((enum opt) opt)
2794 {
2795 case VAR_PRINT_VALUES:
2796 var_print_values = mi_parse_print_values (oarg);
2797 break;
2798 case COMP_PRINT_VALUES:
2799 comp_print_values = mi_parse_print_values (oarg);
2800 break;
2801 case REGISTERS_FORMAT:
2802 registers_format = oarg[0];
2803 case MEMORY_CONTENTS:
2804 memory_contents = 1;
2805 break;
2806 }
2807 }
2808
2809 if (oind != argc)
2810 error (_("Usage: -trace-frame-collected "
2811 "[--var-print-values PRINT_VALUES] "
2812 "[--comp-print-values PRINT_VALUES] "
2813 "[--registers-format FORMAT]"
2814 "[--memory-contents]"));
2815
2816 /* This throws an error is not inspecting a trace frame. */
2817 tloc = get_traceframe_location (&stepping_frame);
2818
2819 /* This command only makes sense for the current frame, not the
2820 selected frame. */
2821 old_chain = make_cleanup_restore_current_thread ();
2822 select_frame (get_current_frame ());
2823
2824 encode_actions_and_make_cleanup (tloc, &tracepoint_list,
2825 &stepping_list);
2826
2827 if (stepping_frame)
2828 clist = &stepping_list;
2829 else
2830 clist = &tracepoint_list;
2831
2832 tinfo = get_traceframe_info ();
2833
2834 /* Explicitly wholly collected variables. */
2835 {
2836 struct cleanup *list_cleanup;
2837 char *p;
2838 int i;
2839
2840 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout,
2841 "explicit-variables");
2842 for (i = 0; VEC_iterate (char_ptr, clist->wholly_collected, i, p); i++)
2843 print_variable_or_computed (p, var_print_values);
2844 do_cleanups (list_cleanup);
2845 }
2846
2847 /* Computed expressions. */
2848 {
2849 struct cleanup *list_cleanup;
2850 char *p;
2851 int i;
2852
2853 list_cleanup
2854 = make_cleanup_ui_out_list_begin_end (uiout,
2855 "computed-expressions");
2856 for (i = 0; VEC_iterate (char_ptr, clist->computed, i, p); i++)
2857 print_variable_or_computed (p, comp_print_values);
2858 do_cleanups (list_cleanup);
2859 }
2860
2861 /* Registers. Given pseudo-registers, and that some architectures
2862 (like MIPS) actually hide the raw registers, we don't go through
2863 the trace frame info, but instead consult the register cache for
2864 register availability. */
2865 {
2866 struct cleanup *list_cleanup;
2867 struct frame_info *frame;
2868 struct gdbarch *gdbarch;
2869 int regnum;
2870 int numregs;
2871
2872 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "registers");
2873
2874 frame = get_selected_frame (NULL);
2875 gdbarch = get_frame_arch (frame);
2876 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2877
2878 for (regnum = 0; regnum < numregs; regnum++)
2879 {
2880 if (gdbarch_register_name (gdbarch, regnum) == NULL
2881 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2882 continue;
2883
2884 output_register (frame, regnum, registers_format, 1);
2885 }
2886
2887 do_cleanups (list_cleanup);
2888 }
2889
2890 /* Trace state variables. */
2891 {
2892 struct cleanup *list_cleanup;
2893 int tvar;
2894 char *tsvname;
2895 int i;
2896
2897 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "tvars");
2898
2899 tsvname = NULL;
2900 make_cleanup (free_current_contents, &tsvname);
2901
2902 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2903 {
2904 struct cleanup *cleanup_child;
2905 struct trace_state_variable *tsv;
2906
2907 tsv = find_trace_state_variable_by_number (tvar);
2908
2909 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2910
2911 if (tsv != NULL)
2912 {
2913 tsvname = (char *) xrealloc (tsvname, strlen (tsv->name) + 2);
2914 tsvname[0] = '$';
2915 strcpy (tsvname + 1, tsv->name);
2916 ui_out_field_string (uiout, "name", tsvname);
2917
2918 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2919 &tsv->value);
2920 ui_out_field_int (uiout, "current", tsv->value);
2921 }
2922 else
2923 {
2924 ui_out_field_skip (uiout, "name");
2925 ui_out_field_skip (uiout, "current");
2926 }
2927
2928 do_cleanups (cleanup_child);
2929 }
2930
2931 do_cleanups (list_cleanup);
2932 }
2933
2934 /* Memory. */
2935 {
2936 struct cleanup *list_cleanup;
2937 VEC(mem_range_s) *available_memory = NULL;
2938 struct mem_range *r;
2939 int i;
2940
2941 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2942 make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2943
2944 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "memory");
2945
2946 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2947 {
2948 struct cleanup *cleanup_child;
2949 gdb_byte *data;
2950 struct gdbarch *gdbarch = target_gdbarch ();
2951
2952 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2953
2954 ui_out_field_core_addr (uiout, "address", gdbarch, r->start);
2955 ui_out_field_int (uiout, "length", r->length);
2956
2957 data = (gdb_byte *) xmalloc (r->length);
2958 make_cleanup (xfree, data);
2959
2960 if (memory_contents)
2961 {
2962 if (target_read_memory (r->start, data, r->length) == 0)
2963 {
2964 int m;
2965 char *data_str, *p;
2966
2967 data_str = (char *) xmalloc (r->length * 2 + 1);
2968 make_cleanup (xfree, data_str);
2969
2970 for (m = 0, p = data_str; m < r->length; ++m, p += 2)
2971 sprintf (p, "%02x", data[m]);
2972 ui_out_field_string (uiout, "contents", data_str);
2973 }
2974 else
2975 ui_out_field_skip (uiout, "contents");
2976 }
2977 do_cleanups (cleanup_child);
2978 }
2979
2980 do_cleanups (list_cleanup);
2981 }
2982
2983 do_cleanups (old_chain);
2984 }
2985
2986 void
2987 _initialize_mi_main (void)
2988 {
2989 struct cmd_list_element *c;
2990
2991 add_setshow_boolean_cmd ("mi-async", class_run,
2992 &mi_async_1, _("\
2993 Set whether MI asynchronous mode is enabled."), _("\
2994 Show whether MI asynchronous mode is enabled."), _("\
2995 Tells GDB whether MI should be in asynchronous mode."),
2996 set_mi_async_command,
2997 show_mi_async_command,
2998 &setlist,
2999 &showlist);
3000
3001 /* Alias old "target-async" to "mi-async". */
3002 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
3003 deprecate_cmd (c, "set mi-async");
3004 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
3005 deprecate_cmd (c, "show mi-async");
3006 }
This page took 0.086221 seconds and 5 git commands to generate.