Change build_address_symbolic to return std::string
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "frame.h"
42 #include "mi-main.h"
43 #include "mi-common.h"
44 #include "language.h"
45 #include "valprint.h"
46 #include "inferior.h"
47 #include "osdata.h"
48 #include "common/gdb_splay_tree.h"
49 #include "tracepoint.h"
50 #include "ctf.h"
51 #include "ada-lang.h"
52 #include "linespec.h"
53 #include "extension.h"
54 #include "gdbcmd.h"
55 #include "observable.h"
56 #include "common/gdb_optional.h"
57 #include "common/byte-vector.h"
58
59 #include <ctype.h>
60 #include "run-time-clock.h"
61 #include <chrono>
62 #include "progspace-and-thread.h"
63 #include "common/rsp-low.h"
64 #include <algorithm>
65 #include <set>
66 #include <map>
67
68 enum
69 {
70 FROM_TTY = 0
71 };
72
73 int mi_debug_p;
74
75 /* This is used to pass the current command timestamp down to
76 continuation routines. */
77 static struct mi_timestamp *current_command_ts;
78
79 static int do_timings = 0;
80
81 char *current_token;
82 /* Few commands would like to know if options like --thread-group were
83 explicitly specified. This variable keeps the current parsed
84 command including all option, and make it possible. */
85 static struct mi_parse *current_context;
86
87 int running_result_record_printed = 1;
88
89 /* Flag indicating that the target has proceeded since the last
90 command was issued. */
91 int mi_proceeded;
92
93 static void mi_cmd_execute (struct mi_parse *parse);
94
95 static void mi_execute_cli_command (const char *cmd, int args_p,
96 const char *args);
97 static void mi_execute_async_cli_command (const char *cli_command,
98 char **argv, int argc);
99 static bool register_changed_p (int regnum, readonly_detached_regcache *,
100 readonly_detached_regcache *);
101 static void output_register (struct frame_info *, int regnum, int format,
102 int skip_unavailable);
103
104 /* Controls whether the frontend wants MI in async mode. */
105 static int mi_async = 0;
106
107 /* The set command writes to this variable. If the inferior is
108 executing, mi_async is *not* updated. */
109 static int mi_async_1 = 0;
110
111 static void
112 set_mi_async_command (const char *args, int from_tty,
113 struct cmd_list_element *c)
114 {
115 if (have_live_inferiors ())
116 {
117 mi_async_1 = mi_async;
118 error (_("Cannot change this setting while the inferior is running."));
119 }
120
121 mi_async = mi_async_1;
122 }
123
124 static void
125 show_mi_async_command (struct ui_file *file, int from_tty,
126 struct cmd_list_element *c,
127 const char *value)
128 {
129 fprintf_filtered (file,
130 _("Whether MI is in asynchronous mode is %s.\n"),
131 value);
132 }
133
134 /* A wrapper for target_can_async_p that takes the MI setting into
135 account. */
136
137 int
138 mi_async_p (void)
139 {
140 return mi_async && target_can_async_p ();
141 }
142
143 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
144 layer that calls libgdb. Any operation used in the below should be
145 formalized. */
146
147 static void timestamp (struct mi_timestamp *tv);
148
149 static void print_diff (struct ui_file *file, struct mi_timestamp *start,
150 struct mi_timestamp *end);
151
152 void
153 mi_cmd_gdb_exit (const char *command, char **argv, int argc)
154 {
155 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
156
157 /* We have to print everything right here because we never return. */
158 if (current_token)
159 fputs_unfiltered (current_token, mi->raw_stdout);
160 fputs_unfiltered ("^exit\n", mi->raw_stdout);
161 mi_out_put (current_uiout, mi->raw_stdout);
162 gdb_flush (mi->raw_stdout);
163 /* FIXME: The function called is not yet a formal libgdb function. */
164 quit_force (NULL, FROM_TTY);
165 }
166
167 void
168 mi_cmd_exec_next (const char *command, char **argv, int argc)
169 {
170 /* FIXME: Should call a libgdb function, not a cli wrapper. */
171 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
172 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
173 else
174 mi_execute_async_cli_command ("next", argv, argc);
175 }
176
177 void
178 mi_cmd_exec_next_instruction (const char *command, char **argv, int argc)
179 {
180 /* FIXME: Should call a libgdb function, not a cli wrapper. */
181 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
182 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
183 else
184 mi_execute_async_cli_command ("nexti", argv, argc);
185 }
186
187 void
188 mi_cmd_exec_step (const char *command, char **argv, int argc)
189 {
190 /* FIXME: Should call a libgdb function, not a cli wrapper. */
191 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
192 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
193 else
194 mi_execute_async_cli_command ("step", argv, argc);
195 }
196
197 void
198 mi_cmd_exec_step_instruction (const char *command, char **argv, int argc)
199 {
200 /* FIXME: Should call a libgdb function, not a cli wrapper. */
201 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
202 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
203 else
204 mi_execute_async_cli_command ("stepi", argv, argc);
205 }
206
207 void
208 mi_cmd_exec_finish (const char *command, char **argv, int argc)
209 {
210 /* FIXME: Should call a libgdb function, not a cli wrapper. */
211 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
212 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
213 else
214 mi_execute_async_cli_command ("finish", argv, argc);
215 }
216
217 void
218 mi_cmd_exec_return (const char *command, char **argv, int argc)
219 {
220 /* This command doesn't really execute the target, it just pops the
221 specified number of frames. */
222 if (argc)
223 /* Call return_command with from_tty argument equal to 0 so as to
224 avoid being queried. */
225 return_command (*argv, 0);
226 else
227 /* Call return_command with from_tty argument equal to 0 so as to
228 avoid being queried. */
229 return_command (NULL, 0);
230
231 /* Because we have called return_command with from_tty = 0, we need
232 to print the frame here. */
233 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
234 }
235
236 void
237 mi_cmd_exec_jump (const char *args, char **argv, int argc)
238 {
239 /* FIXME: Should call a libgdb function, not a cli wrapper. */
240 mi_execute_async_cli_command ("jump", argv, argc);
241 }
242
243 static void
244 proceed_thread (struct thread_info *thread, int pid)
245 {
246 if (!is_stopped (thread->ptid))
247 return;
248
249 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
250 return;
251
252 switch_to_thread (thread->ptid);
253 clear_proceed_status (0);
254 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
255 }
256
257 static int
258 proceed_thread_callback (struct thread_info *thread, void *arg)
259 {
260 int pid = *(int *)arg;
261
262 proceed_thread (thread, pid);
263 return 0;
264 }
265
266 static void
267 exec_continue (char **argv, int argc)
268 {
269 prepare_execution_command (target_stack, mi_async_p ());
270
271 if (non_stop)
272 {
273 /* In non-stop mode, 'resume' always resumes a single thread.
274 Therefore, to resume all threads of the current inferior, or
275 all threads in all inferiors, we need to iterate over
276 threads.
277
278 See comment on infcmd.c:proceed_thread_callback for rationale. */
279 if (current_context->all || current_context->thread_group != -1)
280 {
281 scoped_restore_current_thread restore_thread;
282 int pid = 0;
283
284 if (!current_context->all)
285 {
286 struct inferior *inf
287 = find_inferior_id (current_context->thread_group);
288
289 pid = inf->pid;
290 }
291 iterate_over_threads (proceed_thread_callback, &pid);
292 }
293 else
294 {
295 continue_1 (0);
296 }
297 }
298 else
299 {
300 scoped_restore save_multi = make_scoped_restore (&sched_multi);
301
302 if (current_context->all)
303 {
304 sched_multi = 1;
305 continue_1 (0);
306 }
307 else
308 {
309 /* In all-stop mode, -exec-continue traditionally resumed
310 either all threads, or one thread, depending on the
311 'scheduler-locking' variable. Let's continue to do the
312 same. */
313 continue_1 (1);
314 }
315 }
316 }
317
318 static void
319 exec_reverse_continue (char **argv, int argc)
320 {
321 enum exec_direction_kind dir = execution_direction;
322
323 if (dir == EXEC_REVERSE)
324 error (_("Already in reverse mode."));
325
326 if (!target_can_execute_reverse)
327 error (_("Target %s does not support this command."), target_shortname);
328
329 scoped_restore save_exec_dir = make_scoped_restore (&execution_direction,
330 EXEC_REVERSE);
331 exec_continue (argv, argc);
332 }
333
334 void
335 mi_cmd_exec_continue (const char *command, char **argv, int argc)
336 {
337 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
338 exec_reverse_continue (argv + 1, argc - 1);
339 else
340 exec_continue (argv, argc);
341 }
342
343 static int
344 interrupt_thread_callback (struct thread_info *thread, void *arg)
345 {
346 int pid = *(int *)arg;
347
348 if (!is_running (thread->ptid))
349 return 0;
350
351 if (ptid_get_pid (thread->ptid) != pid)
352 return 0;
353
354 target_stop (thread->ptid);
355 return 0;
356 }
357
358 /* Interrupt the execution of the target. Note how we must play
359 around with the token variables, in order to display the current
360 token in the result of the interrupt command, and the previous
361 execution token when the target finally stops. See comments in
362 mi_cmd_execute. */
363
364 void
365 mi_cmd_exec_interrupt (const char *command, char **argv, int argc)
366 {
367 /* In all-stop mode, everything stops, so we don't need to try
368 anything specific. */
369 if (!non_stop)
370 {
371 interrupt_target_1 (0);
372 return;
373 }
374
375 if (current_context->all)
376 {
377 /* This will interrupt all threads in all inferiors. */
378 interrupt_target_1 (1);
379 }
380 else if (current_context->thread_group != -1)
381 {
382 struct inferior *inf = find_inferior_id (current_context->thread_group);
383
384 iterate_over_threads (interrupt_thread_callback, &inf->pid);
385 }
386 else
387 {
388 /* Interrupt just the current thread -- either explicitly
389 specified via --thread or whatever was current before
390 MI command was sent. */
391 interrupt_target_1 (0);
392 }
393 }
394
395 /* Callback for iterate_over_inferiors which starts the execution
396 of the given inferior.
397
398 ARG is a pointer to an integer whose value, if non-zero, indicates
399 that the program should be stopped when reaching the main subprogram
400 (similar to what the CLI "start" command does). */
401
402 static int
403 run_one_inferior (struct inferior *inf, void *arg)
404 {
405 int start_p = *(int *) arg;
406 const char *run_cmd = start_p ? "start" : "run";
407 struct target_ops *run_target = find_run_target ();
408 int async_p = mi_async && run_target->can_async_p ();
409
410 if (inf->pid != 0)
411 {
412 if (inf->pid != ptid_get_pid (inferior_ptid))
413 {
414 struct thread_info *tp;
415
416 tp = any_thread_of_process (inf->pid);
417 if (!tp)
418 error (_("Inferior has no threads."));
419
420 switch_to_thread (tp->ptid);
421 }
422 }
423 else
424 {
425 set_current_inferior (inf);
426 switch_to_thread (null_ptid);
427 set_current_program_space (inf->pspace);
428 }
429 mi_execute_cli_command (run_cmd, async_p,
430 async_p ? "&" : NULL);
431 return 0;
432 }
433
434 void
435 mi_cmd_exec_run (const char *command, char **argv, int argc)
436 {
437 int start_p = 0;
438
439 /* Parse the command options. */
440 enum opt
441 {
442 START_OPT,
443 };
444 static const struct mi_opt opts[] =
445 {
446 {"-start", START_OPT, 0},
447 {NULL, 0, 0},
448 };
449
450 int oind = 0;
451 char *oarg;
452
453 while (1)
454 {
455 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
456
457 if (opt < 0)
458 break;
459 switch ((enum opt) opt)
460 {
461 case START_OPT:
462 start_p = 1;
463 break;
464 }
465 }
466
467 /* This command does not accept any argument. Make sure the user
468 did not provide any. */
469 if (oind != argc)
470 error (_("Invalid argument: %s"), argv[oind]);
471
472 if (current_context->all)
473 {
474 scoped_restore_current_pspace_and_thread restore_pspace_thread;
475
476 iterate_over_inferiors (run_one_inferior, &start_p);
477 }
478 else
479 {
480 const char *run_cmd = start_p ? "start" : "run";
481 struct target_ops *run_target = find_run_target ();
482 int async_p = mi_async && run_target->can_async_p ();
483
484 mi_execute_cli_command (run_cmd, async_p,
485 async_p ? "&" : NULL);
486 }
487 }
488
489
490 static int
491 find_thread_of_process (struct thread_info *ti, void *p)
492 {
493 int pid = *(int *)p;
494
495 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
496 return 1;
497
498 return 0;
499 }
500
501 void
502 mi_cmd_target_detach (const char *command, char **argv, int argc)
503 {
504 if (argc != 0 && argc != 1)
505 error (_("Usage: -target-detach [pid | thread-group]"));
506
507 if (argc == 1)
508 {
509 struct thread_info *tp;
510 char *end = argv[0];
511 int pid;
512
513 /* First see if we are dealing with a thread-group id. */
514 if (*argv[0] == 'i')
515 {
516 struct inferior *inf;
517 int id = strtoul (argv[0] + 1, &end, 0);
518
519 if (*end != '\0')
520 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
521
522 inf = find_inferior_id (id);
523 if (!inf)
524 error (_("Non-existent thread-group id '%d'"), id);
525
526 pid = inf->pid;
527 }
528 else
529 {
530 /* We must be dealing with a pid. */
531 pid = strtol (argv[0], &end, 10);
532
533 if (*end != '\0')
534 error (_("Invalid identifier '%s'"), argv[0]);
535 }
536
537 /* Pick any thread in the desired process. Current
538 target_detach detaches from the parent of inferior_ptid. */
539 tp = iterate_over_threads (find_thread_of_process, &pid);
540 if (!tp)
541 error (_("Thread group is empty"));
542
543 switch_to_thread (tp->ptid);
544 }
545
546 detach_command (NULL, 0);
547 }
548
549 void
550 mi_cmd_target_flash_erase (const char *command, char **argv, int argc)
551 {
552 flash_erase_command (NULL, 0);
553 }
554
555 void
556 mi_cmd_thread_select (const char *command, char **argv, int argc)
557 {
558 if (argc != 1)
559 error (_("-thread-select: USAGE: threadnum."));
560
561 int num = value_as_long (parse_and_eval (argv[0]));
562 thread_info *thr = find_thread_global_id (num);
563 if (thr == NULL)
564 error (_("Thread ID %d not known."), num);
565
566 ptid_t previous_ptid = inferior_ptid;
567
568 thread_select (argv[0], thr);
569
570 print_selected_thread_frame (current_uiout,
571 USER_SELECTED_THREAD | USER_SELECTED_FRAME);
572
573 /* Notify if the thread has effectively changed. */
574 if (!ptid_equal (inferior_ptid, previous_ptid))
575 {
576 gdb::observers::user_selected_context_changed.notify
577 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
578 }
579 }
580
581 void
582 mi_cmd_thread_list_ids (const char *command, char **argv, int argc)
583 {
584 if (argc != 0)
585 error (_("-thread-list-ids: No arguments required."));
586
587 int num = 0;
588 int current_thread = -1;
589
590 update_thread_list ();
591
592 {
593 ui_out_emit_tuple tuple_emitter (current_uiout, "thread-ids");
594
595 struct thread_info *tp;
596 ALL_NON_EXITED_THREADS (tp)
597 {
598 if (tp->ptid == inferior_ptid)
599 current_thread = tp->global_num;
600
601 num++;
602 current_uiout->field_int ("thread-id", tp->global_num);
603 }
604 }
605
606 if (current_thread != -1)
607 current_uiout->field_int ("current-thread-id", current_thread);
608 current_uiout->field_int ("number-of-threads", num);
609 }
610
611 void
612 mi_cmd_thread_info (const char *command, char **argv, int argc)
613 {
614 if (argc != 0 && argc != 1)
615 error (_("Invalid MI command"));
616
617 print_thread_info (current_uiout, argv[0], -1);
618 }
619
620 struct collect_cores_data
621 {
622 int pid;
623 std::set<int> cores;
624 };
625
626 static int
627 collect_cores (struct thread_info *ti, void *xdata)
628 {
629 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
630
631 if (ptid_get_pid (ti->ptid) == data->pid)
632 {
633 int core = target_core_of_thread (ti->ptid);
634
635 if (core != -1)
636 data->cores.insert (core);
637 }
638
639 return 0;
640 }
641
642 struct print_one_inferior_data
643 {
644 int recurse;
645 const std::set<int> *inferiors;
646 };
647
648 static int
649 print_one_inferior (struct inferior *inferior, void *xdata)
650 {
651 struct print_one_inferior_data *top_data
652 = (struct print_one_inferior_data *) xdata;
653 struct ui_out *uiout = current_uiout;
654
655 if (top_data->inferiors->empty ()
656 || (top_data->inferiors->find (inferior->pid)
657 != top_data->inferiors->end ()))
658 {
659 struct collect_cores_data data;
660 ui_out_emit_tuple tuple_emitter (uiout, NULL);
661
662 uiout->field_fmt ("id", "i%d", inferior->num);
663 uiout->field_string ("type", "process");
664 if (inferior->has_exit_code)
665 uiout->field_string ("exit-code",
666 int_string (inferior->exit_code, 8, 0, 0, 1));
667 if (inferior->pid != 0)
668 uiout->field_int ("pid", inferior->pid);
669
670 if (inferior->pspace->pspace_exec_filename != NULL)
671 {
672 uiout->field_string ("executable",
673 inferior->pspace->pspace_exec_filename);
674 }
675
676 if (inferior->pid != 0)
677 {
678 data.pid = inferior->pid;
679 iterate_over_threads (collect_cores, &data);
680 }
681
682 if (!data.cores.empty ())
683 {
684 ui_out_emit_list list_emitter (uiout, "cores");
685
686 for (int b : data.cores)
687 uiout->field_int (NULL, b);
688 }
689
690 if (top_data->recurse)
691 print_thread_info (uiout, NULL, inferior->pid);
692 }
693
694 return 0;
695 }
696
697 /* Output a field named 'cores' with a list as the value. The
698 elements of the list are obtained by splitting 'cores' on
699 comma. */
700
701 static void
702 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
703 {
704 ui_out_emit_list list_emitter (uiout, field_name);
705 gdb::unique_xmalloc_ptr<char> cores (xstrdup (xcores));
706 char *p = cores.get ();
707
708 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
709 uiout->field_string (NULL, p);
710 }
711
712 static void
713 list_available_thread_groups (const std::set<int> &ids, int recurse)
714 {
715 struct ui_out *uiout = current_uiout;
716
717 /* This keeps a map from integer (pid) to vector of struct osdata_item.
718 The vector contains information about all threads for the given pid. */
719 std::map<int, std::vector<osdata_item>> tree;
720
721 /* get_osdata will throw if it cannot return data. */
722 std::unique_ptr<osdata> data = get_osdata ("processes");
723
724 if (recurse)
725 {
726 std::unique_ptr<osdata> threads = get_osdata ("threads");
727
728 for (const osdata_item &item : threads->items)
729 {
730 const std::string *pid = get_osdata_column (item, "pid");
731 int pid_i = strtoul (pid->c_str (), NULL, 0);
732
733 tree[pid_i].push_back (item);
734 }
735 }
736
737 ui_out_emit_list list_emitter (uiout, "groups");
738
739 for (const osdata_item &item : data->items)
740 {
741 const std::string *pid = get_osdata_column (item, "pid");
742 const std::string *cmd = get_osdata_column (item, "command");
743 const std::string *user = get_osdata_column (item, "user");
744 const std::string *cores = get_osdata_column (item, "cores");
745
746 int pid_i = strtoul (pid->c_str (), NULL, 0);
747
748 /* At present, the target will return all available processes
749 and if information about specific ones was required, we filter
750 undesired processes here. */
751 if (!ids.empty () && ids.find (pid_i) == ids.end ())
752 continue;
753
754 ui_out_emit_tuple tuple_emitter (uiout, NULL);
755
756 uiout->field_fmt ("id", "%s", pid->c_str ());
757 uiout->field_string ("type", "process");
758 if (cmd)
759 uiout->field_string ("description", cmd->c_str ());
760 if (user)
761 uiout->field_string ("user", user->c_str ());
762 if (cores)
763 output_cores (uiout, "cores", cores->c_str ());
764
765 if (recurse)
766 {
767 auto n = tree.find (pid_i);
768 if (n != tree.end ())
769 {
770 std::vector<osdata_item> &children = n->second;
771
772 ui_out_emit_list thread_list_emitter (uiout, "threads");
773
774 for (const osdata_item &child : children)
775 {
776 ui_out_emit_tuple tuple_emitter (uiout, NULL);
777 const std::string *tid = get_osdata_column (child, "tid");
778 const std::string *tcore = get_osdata_column (child, "core");
779
780 uiout->field_string ("id", tid->c_str ());
781 if (tcore)
782 uiout->field_string ("core", tcore->c_str ());
783 }
784 }
785 }
786 }
787 }
788
789 void
790 mi_cmd_list_thread_groups (const char *command, char **argv, int argc)
791 {
792 struct ui_out *uiout = current_uiout;
793 int available = 0;
794 int recurse = 0;
795 std::set<int> ids;
796
797 enum opt
798 {
799 AVAILABLE_OPT, RECURSE_OPT
800 };
801 static const struct mi_opt opts[] =
802 {
803 {"-available", AVAILABLE_OPT, 0},
804 {"-recurse", RECURSE_OPT, 1},
805 { 0, 0, 0 }
806 };
807
808 int oind = 0;
809 char *oarg;
810
811 while (1)
812 {
813 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
814 &oind, &oarg);
815
816 if (opt < 0)
817 break;
818 switch ((enum opt) opt)
819 {
820 case AVAILABLE_OPT:
821 available = 1;
822 break;
823 case RECURSE_OPT:
824 if (strcmp (oarg, "0") == 0)
825 ;
826 else if (strcmp (oarg, "1") == 0)
827 recurse = 1;
828 else
829 error (_("only '0' and '1' are valid values "
830 "for the '--recurse' option"));
831 break;
832 }
833 }
834
835 for (; oind < argc; ++oind)
836 {
837 char *end;
838 int inf;
839
840 if (*(argv[oind]) != 'i')
841 error (_("invalid syntax of group id '%s'"), argv[oind]);
842
843 inf = strtoul (argv[oind] + 1, &end, 0);
844
845 if (*end != '\0')
846 error (_("invalid syntax of group id '%s'"), argv[oind]);
847 ids.insert (inf);
848 }
849
850 if (available)
851 {
852 list_available_thread_groups (ids, recurse);
853 }
854 else if (ids.size () == 1)
855 {
856 /* Local thread groups, single id. */
857 int id = *(ids.begin ());
858 struct inferior *inf = find_inferior_id (id);
859
860 if (!inf)
861 error (_("Non-existent thread group id '%d'"), id);
862
863 print_thread_info (uiout, NULL, inf->pid);
864 }
865 else
866 {
867 struct print_one_inferior_data data;
868
869 data.recurse = recurse;
870 data.inferiors = &ids;
871
872 /* Local thread groups. Either no explicit ids -- and we
873 print everything, or several explicit ids. In both cases,
874 we print more than one group, and have to use 'groups'
875 as the top-level element. */
876 ui_out_emit_list list_emitter (uiout, "groups");
877 update_thread_list ();
878 iterate_over_inferiors (print_one_inferior, &data);
879 }
880 }
881
882 void
883 mi_cmd_data_list_register_names (const char *command, char **argv, int argc)
884 {
885 struct gdbarch *gdbarch;
886 struct ui_out *uiout = current_uiout;
887 int regnum, numregs;
888 int i;
889
890 /* Note that the test for a valid register must include checking the
891 gdbarch_register_name because gdbarch_num_regs may be allocated
892 for the union of the register sets within a family of related
893 processors. In this case, some entries of gdbarch_register_name
894 will change depending upon the particular processor being
895 debugged. */
896
897 gdbarch = get_current_arch ();
898 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
899
900 ui_out_emit_list list_emitter (uiout, "register-names");
901
902 if (argc == 0) /* No args, just do all the regs. */
903 {
904 for (regnum = 0;
905 regnum < numregs;
906 regnum++)
907 {
908 if (gdbarch_register_name (gdbarch, regnum) == NULL
909 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
910 uiout->field_string (NULL, "");
911 else
912 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
913 }
914 }
915
916 /* Else, list of register #s, just do listed regs. */
917 for (i = 0; i < argc; i++)
918 {
919 regnum = atoi (argv[i]);
920 if (regnum < 0 || regnum >= numregs)
921 error (_("bad register number"));
922
923 if (gdbarch_register_name (gdbarch, regnum) == NULL
924 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
925 uiout->field_string (NULL, "");
926 else
927 uiout->field_string (NULL, gdbarch_register_name (gdbarch, regnum));
928 }
929 }
930
931 void
932 mi_cmd_data_list_changed_registers (const char *command, char **argv, int argc)
933 {
934 static std::unique_ptr<readonly_detached_regcache> this_regs;
935 struct ui_out *uiout = current_uiout;
936 std::unique_ptr<readonly_detached_regcache> prev_regs;
937 struct gdbarch *gdbarch;
938 int regnum, numregs;
939 int i;
940
941 /* The last time we visited this function, the current frame's
942 register contents were saved in THIS_REGS. Move THIS_REGS over
943 to PREV_REGS, and refresh THIS_REGS with the now-current register
944 contents. */
945
946 prev_regs = std::move (this_regs);
947 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
948
949 /* Note that the test for a valid register must include checking the
950 gdbarch_register_name because gdbarch_num_regs may be allocated
951 for the union of the register sets within a family of related
952 processors. In this case, some entries of gdbarch_register_name
953 will change depending upon the particular processor being
954 debugged. */
955
956 gdbarch = this_regs->arch ();
957 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
958
959 ui_out_emit_list list_emitter (uiout, "changed-registers");
960
961 if (argc == 0)
962 {
963 /* No args, just do all the regs. */
964 for (regnum = 0;
965 regnum < numregs;
966 regnum++)
967 {
968 if (gdbarch_register_name (gdbarch, regnum) == NULL
969 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
970 continue;
971
972 if (register_changed_p (regnum, prev_regs.get (),
973 this_regs.get ()))
974 uiout->field_int (NULL, regnum);
975 }
976 }
977
978 /* Else, list of register #s, just do listed regs. */
979 for (i = 0; i < argc; i++)
980 {
981 regnum = atoi (argv[i]);
982
983 if (regnum >= 0
984 && regnum < numregs
985 && gdbarch_register_name (gdbarch, regnum) != NULL
986 && *gdbarch_register_name (gdbarch, regnum) != '\000')
987 {
988 if (register_changed_p (regnum, prev_regs.get (),
989 this_regs.get ()))
990 uiout->field_int (NULL, regnum);
991 }
992 else
993 error (_("bad register number"));
994 }
995 }
996
997 static bool
998 register_changed_p (int regnum, readonly_detached_regcache *prev_regs,
999 readonly_detached_regcache *this_regs)
1000 {
1001 struct gdbarch *gdbarch = this_regs->arch ();
1002 struct value *prev_value, *this_value;
1003
1004 /* First time through or after gdbarch change consider all registers
1005 as changed. */
1006 if (!prev_regs || prev_regs->arch () != gdbarch)
1007 return true;
1008
1009 /* Get register contents and compare. */
1010 prev_value = prev_regs->cooked_read_value (regnum);
1011 this_value = this_regs->cooked_read_value (regnum);
1012 gdb_assert (prev_value != NULL);
1013 gdb_assert (this_value != NULL);
1014
1015 auto ret = !value_contents_eq (prev_value, 0, this_value, 0,
1016 register_size (gdbarch, regnum));
1017
1018 release_value (prev_value);
1019 release_value (this_value);
1020 return ret;
1021 }
1022
1023 /* Return a list of register number and value pairs. The valid
1024 arguments expected are: a letter indicating the format in which to
1025 display the registers contents. This can be one of: x
1026 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1027 (raw). After the format argument there can be a sequence of
1028 numbers, indicating which registers to fetch the content of. If
1029 the format is the only argument, a list of all the registers with
1030 their values is returned. */
1031
1032 void
1033 mi_cmd_data_list_register_values (const char *command, char **argv, int argc)
1034 {
1035 struct ui_out *uiout = current_uiout;
1036 struct frame_info *frame;
1037 struct gdbarch *gdbarch;
1038 int regnum, numregs, format;
1039 int i;
1040 int skip_unavailable = 0;
1041 int oind = 0;
1042 enum opt
1043 {
1044 SKIP_UNAVAILABLE,
1045 };
1046 static const struct mi_opt opts[] =
1047 {
1048 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1049 { 0, 0, 0 }
1050 };
1051
1052 /* Note that the test for a valid register must include checking the
1053 gdbarch_register_name because gdbarch_num_regs may be allocated
1054 for the union of the register sets within a family of related
1055 processors. In this case, some entries of gdbarch_register_name
1056 will change depending upon the particular processor being
1057 debugged. */
1058
1059 while (1)
1060 {
1061 char *oarg;
1062 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1063 opts, &oind, &oarg);
1064
1065 if (opt < 0)
1066 break;
1067 switch ((enum opt) opt)
1068 {
1069 case SKIP_UNAVAILABLE:
1070 skip_unavailable = 1;
1071 break;
1072 }
1073 }
1074
1075 if (argc - oind < 1)
1076 error (_("-data-list-register-values: Usage: "
1077 "-data-list-register-values [--skip-unavailable] <format>"
1078 " [<regnum1>...<regnumN>]"));
1079
1080 format = (int) argv[oind][0];
1081
1082 frame = get_selected_frame (NULL);
1083 gdbarch = get_frame_arch (frame);
1084 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1085
1086 ui_out_emit_list list_emitter (uiout, "register-values");
1087
1088 if (argc - oind == 1)
1089 {
1090 /* No args, beside the format: do all the regs. */
1091 for (regnum = 0;
1092 regnum < numregs;
1093 regnum++)
1094 {
1095 if (gdbarch_register_name (gdbarch, regnum) == NULL
1096 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1097 continue;
1098
1099 output_register (frame, regnum, format, skip_unavailable);
1100 }
1101 }
1102
1103 /* Else, list of register #s, just do listed regs. */
1104 for (i = 1 + oind; i < argc; i++)
1105 {
1106 regnum = atoi (argv[i]);
1107
1108 if (regnum >= 0
1109 && regnum < numregs
1110 && gdbarch_register_name (gdbarch, regnum) != NULL
1111 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1112 output_register (frame, regnum, format, skip_unavailable);
1113 else
1114 error (_("bad register number"));
1115 }
1116 }
1117
1118 /* Output one register REGNUM's contents in the desired FORMAT. If
1119 SKIP_UNAVAILABLE is true, skip the register if it is
1120 unavailable. */
1121
1122 static void
1123 output_register (struct frame_info *frame, int regnum, int format,
1124 int skip_unavailable)
1125 {
1126 struct ui_out *uiout = current_uiout;
1127 struct value *val = value_of_register (regnum, frame);
1128 struct value_print_options opts;
1129
1130 if (skip_unavailable && !value_entirely_available (val))
1131 return;
1132
1133 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1134 uiout->field_int ("number", regnum);
1135
1136 if (format == 'N')
1137 format = 0;
1138
1139 if (format == 'r')
1140 format = 'z';
1141
1142 string_file stb;
1143
1144 get_formatted_print_options (&opts, format);
1145 opts.deref_ref = 1;
1146 val_print (value_type (val),
1147 value_embedded_offset (val), 0,
1148 &stb, 0, val, &opts, current_language);
1149 uiout->field_stream ("value", stb);
1150 }
1151
1152 /* Write given values into registers. The registers and values are
1153 given as pairs. The corresponding MI command is
1154 -data-write-register-values <format>
1155 [<regnum1> <value1>...<regnumN> <valueN>] */
1156 void
1157 mi_cmd_data_write_register_values (const char *command, char **argv, int argc)
1158 {
1159 struct regcache *regcache;
1160 struct gdbarch *gdbarch;
1161 int numregs, i;
1162
1163 /* Note that the test for a valid register must include checking the
1164 gdbarch_register_name because gdbarch_num_regs may be allocated
1165 for the union of the register sets within a family of related
1166 processors. In this case, some entries of gdbarch_register_name
1167 will change depending upon the particular processor being
1168 debugged. */
1169
1170 regcache = get_current_regcache ();
1171 gdbarch = regcache->arch ();
1172 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1173
1174 if (argc == 0)
1175 error (_("-data-write-register-values: Usage: -data-write-register-"
1176 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1177
1178 if (!target_has_registers)
1179 error (_("-data-write-register-values: No registers."));
1180
1181 if (!(argc - 1))
1182 error (_("-data-write-register-values: No regs and values specified."));
1183
1184 if ((argc - 1) % 2)
1185 error (_("-data-write-register-values: "
1186 "Regs and vals are not in pairs."));
1187
1188 for (i = 1; i < argc; i = i + 2)
1189 {
1190 int regnum = atoi (argv[i]);
1191
1192 if (regnum >= 0 && regnum < numregs
1193 && gdbarch_register_name (gdbarch, regnum)
1194 && *gdbarch_register_name (gdbarch, regnum))
1195 {
1196 LONGEST value;
1197
1198 /* Get the value as a number. */
1199 value = parse_and_eval_address (argv[i + 1]);
1200
1201 /* Write it down. */
1202 regcache_cooked_write_signed (regcache, regnum, value);
1203 }
1204 else
1205 error (_("bad register number"));
1206 }
1207 }
1208
1209 /* Evaluate the value of the argument. The argument is an
1210 expression. If the expression contains spaces it needs to be
1211 included in double quotes. */
1212
1213 void
1214 mi_cmd_data_evaluate_expression (const char *command, char **argv, int argc)
1215 {
1216 struct value *val;
1217 struct value_print_options opts;
1218 struct ui_out *uiout = current_uiout;
1219
1220 if (argc != 1)
1221 error (_("-data-evaluate-expression: "
1222 "Usage: -data-evaluate-expression expression"));
1223
1224 expression_up expr = parse_expression (argv[0]);
1225
1226 val = evaluate_expression (expr.get ());
1227
1228 string_file stb;
1229
1230 /* Print the result of the expression evaluation. */
1231 get_user_print_options (&opts);
1232 opts.deref_ref = 0;
1233 common_val_print (val, &stb, 0, &opts, current_language);
1234
1235 uiout->field_stream ("value", stb);
1236 }
1237
1238 /* This is the -data-read-memory command.
1239
1240 ADDR: start address of data to be dumped.
1241 WORD-FORMAT: a char indicating format for the ``word''. See
1242 the ``x'' command.
1243 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1244 NR_ROW: Number of rows.
1245 NR_COL: The number of colums (words per row).
1246 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1247 ASCHAR for unprintable characters.
1248
1249 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1250 displayes them. Returns:
1251
1252 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1253
1254 Returns:
1255 The number of bytes read is SIZE*ROW*COL. */
1256
1257 void
1258 mi_cmd_data_read_memory (const char *command, char **argv, int argc)
1259 {
1260 struct gdbarch *gdbarch = get_current_arch ();
1261 struct ui_out *uiout = current_uiout;
1262 CORE_ADDR addr;
1263 long total_bytes, nr_cols, nr_rows;
1264 char word_format;
1265 struct type *word_type;
1266 long word_size;
1267 char word_asize;
1268 char aschar;
1269 int nr_bytes;
1270 long offset = 0;
1271 int oind = 0;
1272 char *oarg;
1273 enum opt
1274 {
1275 OFFSET_OPT
1276 };
1277 static const struct mi_opt opts[] =
1278 {
1279 {"o", OFFSET_OPT, 1},
1280 { 0, 0, 0 }
1281 };
1282
1283 while (1)
1284 {
1285 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1286 &oind, &oarg);
1287
1288 if (opt < 0)
1289 break;
1290 switch ((enum opt) opt)
1291 {
1292 case OFFSET_OPT:
1293 offset = atol (oarg);
1294 break;
1295 }
1296 }
1297 argv += oind;
1298 argc -= oind;
1299
1300 if (argc < 5 || argc > 6)
1301 error (_("-data-read-memory: Usage: "
1302 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1303
1304 /* Extract all the arguments. */
1305
1306 /* Start address of the memory dump. */
1307 addr = parse_and_eval_address (argv[0]) + offset;
1308 /* The format character to use when displaying a memory word. See
1309 the ``x'' command. */
1310 word_format = argv[1][0];
1311 /* The size of the memory word. */
1312 word_size = atol (argv[2]);
1313 switch (word_size)
1314 {
1315 case 1:
1316 word_type = builtin_type (gdbarch)->builtin_int8;
1317 word_asize = 'b';
1318 break;
1319 case 2:
1320 word_type = builtin_type (gdbarch)->builtin_int16;
1321 word_asize = 'h';
1322 break;
1323 case 4:
1324 word_type = builtin_type (gdbarch)->builtin_int32;
1325 word_asize = 'w';
1326 break;
1327 case 8:
1328 word_type = builtin_type (gdbarch)->builtin_int64;
1329 word_asize = 'g';
1330 break;
1331 default:
1332 word_type = builtin_type (gdbarch)->builtin_int8;
1333 word_asize = 'b';
1334 }
1335 /* The number of rows. */
1336 nr_rows = atol (argv[3]);
1337 if (nr_rows <= 0)
1338 error (_("-data-read-memory: invalid number of rows."));
1339
1340 /* Number of bytes per row. */
1341 nr_cols = atol (argv[4]);
1342 if (nr_cols <= 0)
1343 error (_("-data-read-memory: invalid number of columns."));
1344
1345 /* The un-printable character when printing ascii. */
1346 if (argc == 6)
1347 aschar = *argv[5];
1348 else
1349 aschar = 0;
1350
1351 /* Create a buffer and read it in. */
1352 total_bytes = word_size * nr_rows * nr_cols;
1353
1354 gdb::byte_vector mbuf (total_bytes);
1355
1356 nr_bytes = target_read (target_stack, TARGET_OBJECT_MEMORY, NULL, mbuf.data (),
1357 addr, total_bytes);
1358 if (nr_bytes <= 0)
1359 error (_("Unable to read memory."));
1360
1361 /* Output the header information. */
1362 uiout->field_core_addr ("addr", gdbarch, addr);
1363 uiout->field_int ("nr-bytes", nr_bytes);
1364 uiout->field_int ("total-bytes", total_bytes);
1365 uiout->field_core_addr ("next-row", gdbarch, addr + word_size * nr_cols);
1366 uiout->field_core_addr ("prev-row", gdbarch, addr - word_size * nr_cols);
1367 uiout->field_core_addr ("next-page", gdbarch, addr + total_bytes);
1368 uiout->field_core_addr ("prev-page", gdbarch, addr - total_bytes);
1369
1370 /* Build the result as a two dimentional table. */
1371 {
1372 int row;
1373 int row_byte;
1374
1375 string_file stream;
1376
1377 ui_out_emit_list list_emitter (uiout, "memory");
1378 for (row = 0, row_byte = 0;
1379 row < nr_rows;
1380 row++, row_byte += nr_cols * word_size)
1381 {
1382 int col;
1383 int col_byte;
1384 struct value_print_options opts;
1385
1386 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1387 uiout->field_core_addr ("addr", gdbarch, addr + row_byte);
1388 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1389 row_byte); */
1390 {
1391 ui_out_emit_list list_data_emitter (uiout, "data");
1392 get_formatted_print_options (&opts, word_format);
1393 for (col = 0, col_byte = row_byte;
1394 col < nr_cols;
1395 col++, col_byte += word_size)
1396 {
1397 if (col_byte + word_size > nr_bytes)
1398 {
1399 uiout->field_string (NULL, "N/A");
1400 }
1401 else
1402 {
1403 stream.clear ();
1404 print_scalar_formatted (&mbuf[col_byte], word_type, &opts,
1405 word_asize, &stream);
1406 uiout->field_stream (NULL, stream);
1407 }
1408 }
1409 }
1410
1411 if (aschar)
1412 {
1413 int byte;
1414
1415 stream.clear ();
1416 for (byte = row_byte;
1417 byte < row_byte + word_size * nr_cols; byte++)
1418 {
1419 if (byte >= nr_bytes)
1420 stream.putc ('X');
1421 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1422 stream.putc (aschar);
1423 else
1424 stream.putc (mbuf[byte]);
1425 }
1426 uiout->field_stream ("ascii", stream);
1427 }
1428 }
1429 }
1430 }
1431
1432 void
1433 mi_cmd_data_read_memory_bytes (const char *command, char **argv, int argc)
1434 {
1435 struct gdbarch *gdbarch = get_current_arch ();
1436 struct ui_out *uiout = current_uiout;
1437 CORE_ADDR addr;
1438 LONGEST length;
1439 long offset = 0;
1440 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1441 int oind = 0;
1442 char *oarg;
1443 enum opt
1444 {
1445 OFFSET_OPT
1446 };
1447 static const struct mi_opt opts[] =
1448 {
1449 {"o", OFFSET_OPT, 1},
1450 { 0, 0, 0 }
1451 };
1452
1453 while (1)
1454 {
1455 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1456 &oind, &oarg);
1457 if (opt < 0)
1458 break;
1459 switch ((enum opt) opt)
1460 {
1461 case OFFSET_OPT:
1462 offset = atol (oarg);
1463 break;
1464 }
1465 }
1466 argv += oind;
1467 argc -= oind;
1468
1469 if (argc != 2)
1470 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1471
1472 addr = parse_and_eval_address (argv[0]) + offset;
1473 length = atol (argv[1]);
1474
1475 std::vector<memory_read_result> result
1476 = read_memory_robust (target_stack, addr, length);
1477
1478 if (result.size () == 0)
1479 error (_("Unable to read memory."));
1480
1481 ui_out_emit_list list_emitter (uiout, "memory");
1482 for (const memory_read_result &read_result : result)
1483 {
1484 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1485
1486 uiout->field_core_addr ("begin", gdbarch, read_result.begin);
1487 uiout->field_core_addr ("offset", gdbarch, read_result.begin - addr);
1488 uiout->field_core_addr ("end", gdbarch, read_result.end);
1489
1490 std::string data = bin2hex (read_result.data.get (),
1491 (read_result.end - read_result.begin)
1492 * unit_size);
1493 uiout->field_string ("contents", data.c_str ());
1494 }
1495 }
1496
1497 /* Implementation of the -data-write_memory command.
1498
1499 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1500 offset from the beginning of the memory grid row where the cell to
1501 be written is.
1502 ADDR: start address of the row in the memory grid where the memory
1503 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1504 the location to write to.
1505 FORMAT: a char indicating format for the ``word''. See
1506 the ``x'' command.
1507 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1508 VALUE: value to be written into the memory address.
1509
1510 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1511
1512 Prints nothing. */
1513
1514 void
1515 mi_cmd_data_write_memory (const char *command, char **argv, int argc)
1516 {
1517 struct gdbarch *gdbarch = get_current_arch ();
1518 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1519 CORE_ADDR addr;
1520 long word_size;
1521 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1522 enough when using a compiler other than GCC. */
1523 LONGEST value;
1524 long offset = 0;
1525 int oind = 0;
1526 char *oarg;
1527 enum opt
1528 {
1529 OFFSET_OPT
1530 };
1531 static const struct mi_opt opts[] =
1532 {
1533 {"o", OFFSET_OPT, 1},
1534 { 0, 0, 0 }
1535 };
1536
1537 while (1)
1538 {
1539 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1540 &oind, &oarg);
1541
1542 if (opt < 0)
1543 break;
1544 switch ((enum opt) opt)
1545 {
1546 case OFFSET_OPT:
1547 offset = atol (oarg);
1548 break;
1549 }
1550 }
1551 argv += oind;
1552 argc -= oind;
1553
1554 if (argc != 4)
1555 error (_("-data-write-memory: Usage: "
1556 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1557
1558 /* Extract all the arguments. */
1559 /* Start address of the memory dump. */
1560 addr = parse_and_eval_address (argv[0]);
1561 /* The size of the memory word. */
1562 word_size = atol (argv[2]);
1563
1564 /* Calculate the real address of the write destination. */
1565 addr += (offset * word_size);
1566
1567 /* Get the value as a number. */
1568 value = parse_and_eval_address (argv[3]);
1569 /* Get the value into an array. */
1570 gdb::byte_vector buffer (word_size);
1571 store_signed_integer (buffer.data (), word_size, byte_order, value);
1572 /* Write it down to memory. */
1573 write_memory_with_notification (addr, buffer.data (), word_size);
1574 }
1575
1576 /* Implementation of the -data-write-memory-bytes command.
1577
1578 ADDR: start address
1579 DATA: string of bytes to write at that address
1580 COUNT: number of bytes to be filled (decimal integer). */
1581
1582 void
1583 mi_cmd_data_write_memory_bytes (const char *command, char **argv, int argc)
1584 {
1585 CORE_ADDR addr;
1586 char *cdata;
1587 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1588 long int count_units;
1589 int unit_size;
1590
1591 if (argc != 2 && argc != 3)
1592 error (_("Usage: ADDR DATA [COUNT]."));
1593
1594 addr = parse_and_eval_address (argv[0]);
1595 cdata = argv[1];
1596 len_hex = strlen (cdata);
1597 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1598
1599 if (len_hex % (unit_size * 2) != 0)
1600 error (_("Hex-encoded '%s' must represent an integral number of "
1601 "addressable memory units."),
1602 cdata);
1603
1604 len_bytes = len_hex / 2;
1605 len_units = len_bytes / unit_size;
1606
1607 if (argc == 3)
1608 count_units = strtoul (argv[2], NULL, 10);
1609 else
1610 count_units = len_units;
1611
1612 gdb::byte_vector databuf (len_bytes);
1613
1614 for (i = 0; i < len_bytes; ++i)
1615 {
1616 int x;
1617 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1618 error (_("Invalid argument"));
1619 databuf[i] = (gdb_byte) x;
1620 }
1621
1622 gdb::byte_vector data;
1623 if (len_units < count_units)
1624 {
1625 /* Pattern is made of less units than count:
1626 repeat pattern to fill memory. */
1627 data = gdb::byte_vector (count_units * unit_size);
1628
1629 /* Number of times the pattern is entirely repeated. */
1630 steps = count_units / len_units;
1631 /* Number of remaining addressable memory units. */
1632 remaining_units = count_units % len_units;
1633 for (i = 0; i < steps; i++)
1634 memcpy (&data[i * len_bytes], &databuf[0], len_bytes);
1635
1636 if (remaining_units > 0)
1637 memcpy (&data[steps * len_bytes], &databuf[0],
1638 remaining_units * unit_size);
1639 }
1640 else
1641 {
1642 /* Pattern is longer than or equal to count:
1643 just copy count addressable memory units. */
1644 data = std::move (databuf);
1645 }
1646
1647 write_memory_with_notification (addr, data.data (), count_units);
1648 }
1649
1650 void
1651 mi_cmd_enable_timings (const char *command, char **argv, int argc)
1652 {
1653 if (argc == 0)
1654 do_timings = 1;
1655 else if (argc == 1)
1656 {
1657 if (strcmp (argv[0], "yes") == 0)
1658 do_timings = 1;
1659 else if (strcmp (argv[0], "no") == 0)
1660 do_timings = 0;
1661 else
1662 goto usage_error;
1663 }
1664 else
1665 goto usage_error;
1666
1667 return;
1668
1669 usage_error:
1670 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1671 }
1672
1673 void
1674 mi_cmd_list_features (const char *command, char **argv, int argc)
1675 {
1676 if (argc == 0)
1677 {
1678 struct ui_out *uiout = current_uiout;
1679
1680 ui_out_emit_list list_emitter (uiout, "features");
1681 uiout->field_string (NULL, "frozen-varobjs");
1682 uiout->field_string (NULL, "pending-breakpoints");
1683 uiout->field_string (NULL, "thread-info");
1684 uiout->field_string (NULL, "data-read-memory-bytes");
1685 uiout->field_string (NULL, "breakpoint-notifications");
1686 uiout->field_string (NULL, "ada-task-info");
1687 uiout->field_string (NULL, "language-option");
1688 uiout->field_string (NULL, "info-gdb-mi-command");
1689 uiout->field_string (NULL, "undefined-command-error-code");
1690 uiout->field_string (NULL, "exec-run-start-option");
1691
1692 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1693 uiout->field_string (NULL, "python");
1694
1695 return;
1696 }
1697
1698 error (_("-list-features should be passed no arguments"));
1699 }
1700
1701 void
1702 mi_cmd_list_target_features (const char *command, char **argv, int argc)
1703 {
1704 if (argc == 0)
1705 {
1706 struct ui_out *uiout = current_uiout;
1707
1708 ui_out_emit_list list_emitter (uiout, "features");
1709 if (mi_async_p ())
1710 uiout->field_string (NULL, "async");
1711 if (target_can_execute_reverse)
1712 uiout->field_string (NULL, "reverse");
1713 return;
1714 }
1715
1716 error (_("-list-target-features should be passed no arguments"));
1717 }
1718
1719 void
1720 mi_cmd_add_inferior (const char *command, char **argv, int argc)
1721 {
1722 struct inferior *inf;
1723
1724 if (argc != 0)
1725 error (_("-add-inferior should be passed no arguments"));
1726
1727 inf = add_inferior_with_spaces ();
1728
1729 current_uiout->field_fmt ("inferior", "i%d", inf->num);
1730 }
1731
1732 /* Callback used to find the first inferior other than the current
1733 one. */
1734
1735 static int
1736 get_other_inferior (struct inferior *inf, void *arg)
1737 {
1738 if (inf == current_inferior ())
1739 return 0;
1740
1741 return 1;
1742 }
1743
1744 void
1745 mi_cmd_remove_inferior (const char *command, char **argv, int argc)
1746 {
1747 int id;
1748 struct inferior *inf;
1749
1750 if (argc != 1)
1751 error (_("-remove-inferior should be passed a single argument"));
1752
1753 if (sscanf (argv[0], "i%d", &id) != 1)
1754 error (_("the thread group id is syntactically invalid"));
1755
1756 inf = find_inferior_id (id);
1757 if (!inf)
1758 error (_("the specified thread group does not exist"));
1759
1760 if (inf->pid != 0)
1761 error (_("cannot remove an active inferior"));
1762
1763 if (inf == current_inferior ())
1764 {
1765 struct thread_info *tp = 0;
1766 struct inferior *new_inferior
1767 = iterate_over_inferiors (get_other_inferior, NULL);
1768
1769 if (new_inferior == NULL)
1770 error (_("Cannot remove last inferior"));
1771
1772 set_current_inferior (new_inferior);
1773 if (new_inferior->pid != 0)
1774 tp = any_thread_of_process (new_inferior->pid);
1775 switch_to_thread (tp ? tp->ptid : null_ptid);
1776 set_current_program_space (new_inferior->pspace);
1777 }
1778
1779 delete_inferior (inf);
1780 }
1781
1782 \f
1783
1784 /* Execute a command within a safe environment.
1785 Return <0 for error; >=0 for ok.
1786
1787 args->action will tell mi_execute_command what action
1788 to perform after the given command has executed (display/suppress
1789 prompt, display error). */
1790
1791 static void
1792 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1793 {
1794 struct mi_interp *mi = (struct mi_interp *) command_interp ();
1795
1796 if (do_timings)
1797 current_command_ts = context->cmd_start;
1798
1799 scoped_restore save_token = make_scoped_restore (&current_token,
1800 context->token);
1801
1802 running_result_record_printed = 0;
1803 mi_proceeded = 0;
1804 switch (context->op)
1805 {
1806 case MI_COMMAND:
1807 /* A MI command was read from the input stream. */
1808 if (mi_debug_p)
1809 /* FIXME: gdb_???? */
1810 fprintf_unfiltered (mi->raw_stdout,
1811 " token=`%s' command=`%s' args=`%s'\n",
1812 context->token, context->command, context->args);
1813
1814 mi_cmd_execute (context);
1815
1816 /* Print the result if there were no errors.
1817
1818 Remember that on the way out of executing a command, you have
1819 to directly use the mi_interp's uiout, since the command
1820 could have reset the interpreter, in which case the current
1821 uiout will most likely crash in the mi_out_* routines. */
1822 if (!running_result_record_printed)
1823 {
1824 fputs_unfiltered (context->token, mi->raw_stdout);
1825 /* There's no particularly good reason why target-connect results
1826 in not ^done. Should kill ^connected for MI3. */
1827 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1828 ? "^connected" : "^done", mi->raw_stdout);
1829 mi_out_put (uiout, mi->raw_stdout);
1830 mi_out_rewind (uiout);
1831 mi_print_timing_maybe (mi->raw_stdout);
1832 fputs_unfiltered ("\n", mi->raw_stdout);
1833 }
1834 else
1835 /* The command does not want anything to be printed. In that
1836 case, the command probably should not have written anything
1837 to uiout, but in case it has written something, discard it. */
1838 mi_out_rewind (uiout);
1839 break;
1840
1841 case CLI_COMMAND:
1842 {
1843 char *argv[2];
1844
1845 /* A CLI command was read from the input stream. */
1846 /* This "feature" will be removed as soon as we have a
1847 complete set of mi commands. */
1848 /* Echo the command on the console. */
1849 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1850 /* Call the "console" interpreter. */
1851 argv[0] = (char *) INTERP_CONSOLE;
1852 argv[1] = context->command;
1853 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1854
1855 /* If we changed interpreters, DON'T print out anything. */
1856 if (current_interp_named_p (INTERP_MI)
1857 || current_interp_named_p (INTERP_MI1)
1858 || current_interp_named_p (INTERP_MI2)
1859 || current_interp_named_p (INTERP_MI3))
1860 {
1861 if (!running_result_record_printed)
1862 {
1863 fputs_unfiltered (context->token, mi->raw_stdout);
1864 fputs_unfiltered ("^done", mi->raw_stdout);
1865 mi_out_put (uiout, mi->raw_stdout);
1866 mi_out_rewind (uiout);
1867 mi_print_timing_maybe (mi->raw_stdout);
1868 fputs_unfiltered ("\n", mi->raw_stdout);
1869 }
1870 else
1871 mi_out_rewind (uiout);
1872 }
1873 break;
1874 }
1875 }
1876 }
1877
1878 /* Print a gdb exception to the MI output stream. */
1879
1880 static void
1881 mi_print_exception (const char *token, struct gdb_exception exception)
1882 {
1883 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
1884
1885 fputs_unfiltered (token, mi->raw_stdout);
1886 fputs_unfiltered ("^error,msg=\"", mi->raw_stdout);
1887 if (exception.message == NULL)
1888 fputs_unfiltered ("unknown error", mi->raw_stdout);
1889 else
1890 fputstr_unfiltered (exception.message, '"', mi->raw_stdout);
1891 fputs_unfiltered ("\"", mi->raw_stdout);
1892
1893 switch (exception.error)
1894 {
1895 case UNDEFINED_COMMAND_ERROR:
1896 fputs_unfiltered (",code=\"undefined-command\"", mi->raw_stdout);
1897 break;
1898 }
1899
1900 fputs_unfiltered ("\n", mi->raw_stdout);
1901 }
1902
1903 /* Determine whether the parsed command already notifies the
1904 user_selected_context_changed observer. */
1905
1906 static int
1907 command_notifies_uscc_observer (struct mi_parse *command)
1908 {
1909 if (command->op == CLI_COMMAND)
1910 {
1911 /* CLI commands "thread" and "inferior" already send it. */
1912 return (strncmp (command->command, "thread ", 7) == 0
1913 || strncmp (command->command, "inferior ", 9) == 0);
1914 }
1915 else /* MI_COMMAND */
1916 {
1917 if (strcmp (command->command, "interpreter-exec") == 0
1918 && command->argc > 1)
1919 {
1920 /* "thread" and "inferior" again, but through -interpreter-exec. */
1921 return (strncmp (command->argv[1], "thread ", 7) == 0
1922 || strncmp (command->argv[1], "inferior ", 9) == 0);
1923 }
1924
1925 else
1926 /* -thread-select already sends it. */
1927 return strcmp (command->command, "thread-select") == 0;
1928 }
1929 }
1930
1931 void
1932 mi_execute_command (const char *cmd, int from_tty)
1933 {
1934 char *token;
1935 std::unique_ptr<struct mi_parse> command;
1936
1937 /* This is to handle EOF (^D). We just quit gdb. */
1938 /* FIXME: we should call some API function here. */
1939 if (cmd == 0)
1940 quit_force (NULL, from_tty);
1941
1942 target_log_command (cmd);
1943
1944 TRY
1945 {
1946 command = mi_parse (cmd, &token);
1947 }
1948 CATCH (exception, RETURN_MASK_ALL)
1949 {
1950 mi_print_exception (token, exception);
1951 xfree (token);
1952 }
1953 END_CATCH
1954
1955 if (command != NULL)
1956 {
1957 ptid_t previous_ptid = inferior_ptid;
1958
1959 gdb::optional<scoped_restore_tmpl<int>> restore_suppress;
1960
1961 if (command->cmd != NULL && command->cmd->suppress_notification != NULL)
1962 restore_suppress.emplace (command->cmd->suppress_notification, 1);
1963
1964 command->token = token;
1965
1966 if (do_timings)
1967 {
1968 command->cmd_start = new mi_timestamp ();
1969 timestamp (command->cmd_start);
1970 }
1971
1972 TRY
1973 {
1974 captured_mi_execute_command (current_uiout, command.get ());
1975 }
1976 CATCH (result, RETURN_MASK_ALL)
1977 {
1978 /* Like in start_event_loop, enable input and force display
1979 of the prompt. Otherwise, any command that calls
1980 async_disable_stdin, and then throws, will leave input
1981 disabled. */
1982 async_enable_stdin ();
1983 current_ui->prompt_state = PROMPT_NEEDED;
1984
1985 /* The command execution failed and error() was called
1986 somewhere. */
1987 mi_print_exception (command->token, result);
1988 mi_out_rewind (current_uiout);
1989 }
1990 END_CATCH
1991
1992 bpstat_do_actions ();
1993
1994 if (/* The notifications are only output when the top-level
1995 interpreter (specified on the command line) is MI. */
1996 top_level_interpreter ()->interp_ui_out ()->is_mi_like_p ()
1997 /* Don't try report anything if there are no threads --
1998 the program is dead. */
1999 && thread_count () != 0
2000 /* If the command already reports the thread change, no need to do it
2001 again. */
2002 && !command_notifies_uscc_observer (command.get ()))
2003 {
2004 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter ();
2005 int report_change = 0;
2006
2007 if (command->thread == -1)
2008 {
2009 report_change = (!ptid_equal (previous_ptid, null_ptid)
2010 && !ptid_equal (inferior_ptid, previous_ptid)
2011 && !ptid_equal (inferior_ptid, null_ptid));
2012 }
2013 else if (!ptid_equal (inferior_ptid, null_ptid))
2014 {
2015 struct thread_info *ti = inferior_thread ();
2016
2017 report_change = (ti->global_num != command->thread);
2018 }
2019
2020 if (report_change)
2021 {
2022 gdb::observers::user_selected_context_changed.notify
2023 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
2024 }
2025 }
2026 }
2027 }
2028
2029 static void
2030 mi_cmd_execute (struct mi_parse *parse)
2031 {
2032 scoped_value_mark cleanup = prepare_execute_command ();
2033
2034 if (parse->all && parse->thread_group != -1)
2035 error (_("Cannot specify --thread-group together with --all"));
2036
2037 if (parse->all && parse->thread != -1)
2038 error (_("Cannot specify --thread together with --all"));
2039
2040 if (parse->thread_group != -1 && parse->thread != -1)
2041 error (_("Cannot specify --thread together with --thread-group"));
2042
2043 if (parse->frame != -1 && parse->thread == -1)
2044 error (_("Cannot specify --frame without --thread"));
2045
2046 if (parse->thread_group != -1)
2047 {
2048 struct inferior *inf = find_inferior_id (parse->thread_group);
2049 struct thread_info *tp = 0;
2050
2051 if (!inf)
2052 error (_("Invalid thread group for the --thread-group option"));
2053
2054 set_current_inferior (inf);
2055 /* This behaviour means that if --thread-group option identifies
2056 an inferior with multiple threads, then a random one will be
2057 picked. This is not a problem -- frontend should always
2058 provide --thread if it wishes to operate on a specific
2059 thread. */
2060 if (inf->pid != 0)
2061 tp = any_live_thread_of_process (inf->pid);
2062 switch_to_thread (tp ? tp->ptid : null_ptid);
2063 set_current_program_space (inf->pspace);
2064 }
2065
2066 if (parse->thread != -1)
2067 {
2068 struct thread_info *tp = find_thread_global_id (parse->thread);
2069
2070 if (!tp)
2071 error (_("Invalid thread id: %d"), parse->thread);
2072
2073 if (is_exited (tp->ptid))
2074 error (_("Thread id: %d has terminated"), parse->thread);
2075
2076 switch_to_thread (tp->ptid);
2077 }
2078
2079 if (parse->frame != -1)
2080 {
2081 struct frame_info *fid;
2082 int frame = parse->frame;
2083
2084 fid = find_relative_frame (get_current_frame (), &frame);
2085 if (frame == 0)
2086 /* find_relative_frame was successful */
2087 select_frame (fid);
2088 else
2089 error (_("Invalid frame id: %d"), frame);
2090 }
2091
2092 gdb::optional<scoped_restore_current_language> lang_saver;
2093 if (parse->language != language_unknown)
2094 {
2095 lang_saver.emplace ();
2096 set_language (parse->language);
2097 }
2098
2099 current_context = parse;
2100
2101 if (parse->cmd->argv_func != NULL)
2102 {
2103 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2104 }
2105 else if (parse->cmd->cli.cmd != 0)
2106 {
2107 /* FIXME: DELETE THIS. */
2108 /* The operation is still implemented by a cli command. */
2109 /* Must be a synchronous one. */
2110 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2111 parse->args);
2112 }
2113 else
2114 {
2115 /* FIXME: DELETE THIS. */
2116 string_file stb;
2117
2118 stb.puts ("Undefined mi command: ");
2119 stb.putstr (parse->command, '"');
2120 stb.puts (" (missing implementation)");
2121
2122 error_stream (stb);
2123 }
2124 }
2125
2126 /* FIXME: This is just a hack so we can get some extra commands going.
2127 We don't want to channel things through the CLI, but call libgdb directly.
2128 Use only for synchronous commands. */
2129
2130 void
2131 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2132 {
2133 if (cmd != 0)
2134 {
2135 std::string run = cmd;
2136
2137 if (args_p)
2138 run = run + " " + args;
2139 if (mi_debug_p)
2140 /* FIXME: gdb_???? */
2141 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2142 cmd, run.c_str ());
2143 execute_command (run.c_str (), 0 /* from_tty */ );
2144 }
2145 }
2146
2147 void
2148 mi_execute_async_cli_command (const char *cli_command, char **argv, int argc)
2149 {
2150 std::string run = cli_command;
2151
2152 if (argc)
2153 run = run + " " + *argv;
2154 if (mi_async_p ())
2155 run += "&";
2156
2157 execute_command (run.c_str (), 0 /* from_tty */ );
2158 }
2159
2160 void
2161 mi_load_progress (const char *section_name,
2162 unsigned long sent_so_far,
2163 unsigned long total_section,
2164 unsigned long total_sent,
2165 unsigned long grand_total)
2166 {
2167 using namespace std::chrono;
2168 static steady_clock::time_point last_update;
2169 static char *previous_sect_name = NULL;
2170 int new_section;
2171 struct mi_interp *mi = (struct mi_interp *) current_interpreter ();
2172
2173 /* This function is called through deprecated_show_load_progress
2174 which means uiout may not be correct. Fix it for the duration
2175 of this function. */
2176
2177 std::unique_ptr<ui_out> uiout;
2178
2179 if (current_interp_named_p (INTERP_MI)
2180 || current_interp_named_p (INTERP_MI2))
2181 uiout.reset (mi_out_new (2));
2182 else if (current_interp_named_p (INTERP_MI1))
2183 uiout.reset (mi_out_new (1));
2184 else if (current_interp_named_p (INTERP_MI3))
2185 uiout.reset (mi_out_new (3));
2186 else
2187 return;
2188
2189 scoped_restore save_uiout
2190 = make_scoped_restore (&current_uiout, uiout.get ());
2191
2192 new_section = (previous_sect_name ?
2193 strcmp (previous_sect_name, section_name) : 1);
2194 if (new_section)
2195 {
2196 xfree (previous_sect_name);
2197 previous_sect_name = xstrdup (section_name);
2198
2199 if (current_token)
2200 fputs_unfiltered (current_token, mi->raw_stdout);
2201 fputs_unfiltered ("+download", mi->raw_stdout);
2202 {
2203 ui_out_emit_tuple tuple_emitter (uiout.get (), NULL);
2204 uiout->field_string ("section", section_name);
2205 uiout->field_int ("section-size", total_section);
2206 uiout->field_int ("total-size", grand_total);
2207 }
2208 mi_out_put (uiout.get (), mi->raw_stdout);
2209 fputs_unfiltered ("\n", mi->raw_stdout);
2210 gdb_flush (mi->raw_stdout);
2211 }
2212
2213 steady_clock::time_point time_now = steady_clock::now ();
2214 if (time_now - last_update > milliseconds (500))
2215 {
2216 last_update = time_now;
2217 if (current_token)
2218 fputs_unfiltered (current_token, mi->raw_stdout);
2219 fputs_unfiltered ("+download", mi->raw_stdout);
2220 {
2221 ui_out_emit_tuple tuple_emitter (uiout.get (), NULL);
2222 uiout->field_string ("section", section_name);
2223 uiout->field_int ("section-sent", sent_so_far);
2224 uiout->field_int ("section-size", total_section);
2225 uiout->field_int ("total-sent", total_sent);
2226 uiout->field_int ("total-size", grand_total);
2227 }
2228 mi_out_put (uiout.get (), mi->raw_stdout);
2229 fputs_unfiltered ("\n", mi->raw_stdout);
2230 gdb_flush (mi->raw_stdout);
2231 }
2232 }
2233
2234 static void
2235 timestamp (struct mi_timestamp *tv)
2236 {
2237 using namespace std::chrono;
2238
2239 tv->wallclock = steady_clock::now ();
2240 run_time_clock::now (tv->utime, tv->stime);
2241 }
2242
2243 static void
2244 print_diff_now (struct ui_file *file, struct mi_timestamp *start)
2245 {
2246 struct mi_timestamp now;
2247
2248 timestamp (&now);
2249 print_diff (file, start, &now);
2250 }
2251
2252 void
2253 mi_print_timing_maybe (struct ui_file *file)
2254 {
2255 /* If the command is -enable-timing then do_timings may be true
2256 whilst current_command_ts is not initialized. */
2257 if (do_timings && current_command_ts)
2258 print_diff_now (file, current_command_ts);
2259 }
2260
2261 static void
2262 print_diff (struct ui_file *file, struct mi_timestamp *start,
2263 struct mi_timestamp *end)
2264 {
2265 using namespace std::chrono;
2266
2267 duration<double> wallclock = end->wallclock - start->wallclock;
2268 duration<double> utime = end->utime - start->utime;
2269 duration<double> stime = end->stime - start->stime;
2270
2271 fprintf_unfiltered
2272 (file,
2273 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2274 wallclock.count (), utime.count (), stime.count ());
2275 }
2276
2277 void
2278 mi_cmd_trace_define_variable (const char *command, char **argv, int argc)
2279 {
2280 LONGEST initval = 0;
2281 struct trace_state_variable *tsv;
2282 char *name = 0;
2283
2284 if (argc != 1 && argc != 2)
2285 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2286
2287 name = argv[0];
2288 if (*name++ != '$')
2289 error (_("Name of trace variable should start with '$'"));
2290
2291 validate_trace_state_variable_name (name);
2292
2293 tsv = find_trace_state_variable (name);
2294 if (!tsv)
2295 tsv = create_trace_state_variable (name);
2296
2297 if (argc == 2)
2298 initval = value_as_long (parse_and_eval (argv[1]));
2299
2300 tsv->initial_value = initval;
2301 }
2302
2303 void
2304 mi_cmd_trace_list_variables (const char *command, char **argv, int argc)
2305 {
2306 if (argc != 0)
2307 error (_("-trace-list-variables: no arguments allowed"));
2308
2309 tvariables_info_1 ();
2310 }
2311
2312 void
2313 mi_cmd_trace_find (const char *command, char **argv, int argc)
2314 {
2315 char *mode;
2316
2317 if (argc == 0)
2318 error (_("trace selection mode is required"));
2319
2320 mode = argv[0];
2321
2322 if (strcmp (mode, "none") == 0)
2323 {
2324 tfind_1 (tfind_number, -1, 0, 0, 0);
2325 return;
2326 }
2327
2328 check_trace_running (current_trace_status ());
2329
2330 if (strcmp (mode, "frame-number") == 0)
2331 {
2332 if (argc != 2)
2333 error (_("frame number is required"));
2334 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2335 }
2336 else if (strcmp (mode, "tracepoint-number") == 0)
2337 {
2338 if (argc != 2)
2339 error (_("tracepoint number is required"));
2340 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2341 }
2342 else if (strcmp (mode, "pc") == 0)
2343 {
2344 if (argc != 2)
2345 error (_("PC is required"));
2346 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2347 }
2348 else if (strcmp (mode, "pc-inside-range") == 0)
2349 {
2350 if (argc != 3)
2351 error (_("Start and end PC are required"));
2352 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2353 parse_and_eval_address (argv[2]), 0);
2354 }
2355 else if (strcmp (mode, "pc-outside-range") == 0)
2356 {
2357 if (argc != 3)
2358 error (_("Start and end PC are required"));
2359 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2360 parse_and_eval_address (argv[2]), 0);
2361 }
2362 else if (strcmp (mode, "line") == 0)
2363 {
2364 if (argc != 2)
2365 error (_("Line is required"));
2366
2367 std::vector<symtab_and_line> sals
2368 = decode_line_with_current_source (argv[1],
2369 DECODE_LINE_FUNFIRSTLINE);
2370 const symtab_and_line &sal = sals[0];
2371
2372 if (sal.symtab == 0)
2373 error (_("Could not find the specified line"));
2374
2375 CORE_ADDR start_pc, end_pc;
2376 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2377 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2378 else
2379 error (_("Could not find the specified line"));
2380 }
2381 else
2382 error (_("Invalid mode '%s'"), mode);
2383
2384 if (has_stack_frames () || get_traceframe_number () >= 0)
2385 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2386 }
2387
2388 void
2389 mi_cmd_trace_save (const char *command, char **argv, int argc)
2390 {
2391 int target_saves = 0;
2392 int generate_ctf = 0;
2393 char *filename;
2394 int oind = 0;
2395 char *oarg;
2396
2397 enum opt
2398 {
2399 TARGET_SAVE_OPT, CTF_OPT
2400 };
2401 static const struct mi_opt opts[] =
2402 {
2403 {"r", TARGET_SAVE_OPT, 0},
2404 {"ctf", CTF_OPT, 0},
2405 { 0, 0, 0 }
2406 };
2407
2408 while (1)
2409 {
2410 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2411 &oind, &oarg);
2412
2413 if (opt < 0)
2414 break;
2415 switch ((enum opt) opt)
2416 {
2417 case TARGET_SAVE_OPT:
2418 target_saves = 1;
2419 break;
2420 case CTF_OPT:
2421 generate_ctf = 1;
2422 break;
2423 }
2424 }
2425
2426 if (argc - oind != 1)
2427 error (_("Exactly one argument required "
2428 "(file in which to save trace data)"));
2429
2430 filename = argv[oind];
2431
2432 if (generate_ctf)
2433 trace_save_ctf (filename, target_saves);
2434 else
2435 trace_save_tfile (filename, target_saves);
2436 }
2437
2438 void
2439 mi_cmd_trace_start (const char *command, char **argv, int argc)
2440 {
2441 start_tracing (NULL);
2442 }
2443
2444 void
2445 mi_cmd_trace_status (const char *command, char **argv, int argc)
2446 {
2447 trace_status_mi (0);
2448 }
2449
2450 void
2451 mi_cmd_trace_stop (const char *command, char **argv, int argc)
2452 {
2453 stop_tracing (NULL);
2454 trace_status_mi (1);
2455 }
2456
2457 /* Implement the "-ada-task-info" command. */
2458
2459 void
2460 mi_cmd_ada_task_info (const char *command, char **argv, int argc)
2461 {
2462 if (argc != 0 && argc != 1)
2463 error (_("Invalid MI command"));
2464
2465 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2466 }
2467
2468 /* Print EXPRESSION according to VALUES. */
2469
2470 static void
2471 print_variable_or_computed (const char *expression, enum print_values values)
2472 {
2473 struct value *val;
2474 struct type *type;
2475 struct ui_out *uiout = current_uiout;
2476
2477 string_file stb;
2478
2479 expression_up expr = parse_expression (expression);
2480
2481 if (values == PRINT_SIMPLE_VALUES)
2482 val = evaluate_type (expr.get ());
2483 else
2484 val = evaluate_expression (expr.get ());
2485
2486 gdb::optional<ui_out_emit_tuple> tuple_emitter;
2487 if (values != PRINT_NO_VALUES)
2488 tuple_emitter.emplace (uiout, nullptr);
2489 uiout->field_string ("name", expression);
2490
2491 switch (values)
2492 {
2493 case PRINT_SIMPLE_VALUES:
2494 type = check_typedef (value_type (val));
2495 type_print (value_type (val), "", &stb, -1);
2496 uiout->field_stream ("type", stb);
2497 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2498 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2499 && TYPE_CODE (type) != TYPE_CODE_UNION)
2500 {
2501 struct value_print_options opts;
2502
2503 get_no_prettyformat_print_options (&opts);
2504 opts.deref_ref = 1;
2505 common_val_print (val, &stb, 0, &opts, current_language);
2506 uiout->field_stream ("value", stb);
2507 }
2508 break;
2509 case PRINT_ALL_VALUES:
2510 {
2511 struct value_print_options opts;
2512
2513 get_no_prettyformat_print_options (&opts);
2514 opts.deref_ref = 1;
2515 common_val_print (val, &stb, 0, &opts, current_language);
2516 uiout->field_stream ("value", stb);
2517 }
2518 break;
2519 }
2520 }
2521
2522 /* Implement the "-trace-frame-collected" command. */
2523
2524 void
2525 mi_cmd_trace_frame_collected (const char *command, char **argv, int argc)
2526 {
2527 struct bp_location *tloc;
2528 int stepping_frame;
2529 struct collection_list *clist;
2530 struct collection_list tracepoint_list, stepping_list;
2531 struct traceframe_info *tinfo;
2532 int oind = 0;
2533 enum print_values var_print_values = PRINT_ALL_VALUES;
2534 enum print_values comp_print_values = PRINT_ALL_VALUES;
2535 int registers_format = 'x';
2536 int memory_contents = 0;
2537 struct ui_out *uiout = current_uiout;
2538 enum opt
2539 {
2540 VAR_PRINT_VALUES,
2541 COMP_PRINT_VALUES,
2542 REGISTERS_FORMAT,
2543 MEMORY_CONTENTS,
2544 };
2545 static const struct mi_opt opts[] =
2546 {
2547 {"-var-print-values", VAR_PRINT_VALUES, 1},
2548 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2549 {"-registers-format", REGISTERS_FORMAT, 1},
2550 {"-memory-contents", MEMORY_CONTENTS, 0},
2551 { 0, 0, 0 }
2552 };
2553
2554 while (1)
2555 {
2556 char *oarg;
2557 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2558 &oind, &oarg);
2559 if (opt < 0)
2560 break;
2561 switch ((enum opt) opt)
2562 {
2563 case VAR_PRINT_VALUES:
2564 var_print_values = mi_parse_print_values (oarg);
2565 break;
2566 case COMP_PRINT_VALUES:
2567 comp_print_values = mi_parse_print_values (oarg);
2568 break;
2569 case REGISTERS_FORMAT:
2570 registers_format = oarg[0];
2571 break;
2572 case MEMORY_CONTENTS:
2573 memory_contents = 1;
2574 break;
2575 }
2576 }
2577
2578 if (oind != argc)
2579 error (_("Usage: -trace-frame-collected "
2580 "[--var-print-values PRINT_VALUES] "
2581 "[--comp-print-values PRINT_VALUES] "
2582 "[--registers-format FORMAT]"
2583 "[--memory-contents]"));
2584
2585 /* This throws an error is not inspecting a trace frame. */
2586 tloc = get_traceframe_location (&stepping_frame);
2587
2588 /* This command only makes sense for the current frame, not the
2589 selected frame. */
2590 scoped_restore_current_thread restore_thread;
2591 select_frame (get_current_frame ());
2592
2593 encode_actions (tloc, &tracepoint_list, &stepping_list);
2594
2595 if (stepping_frame)
2596 clist = &stepping_list;
2597 else
2598 clist = &tracepoint_list;
2599
2600 tinfo = get_traceframe_info ();
2601
2602 /* Explicitly wholly collected variables. */
2603 {
2604 ui_out_emit_list list_emitter (uiout, "explicit-variables");
2605 const std::vector<std::string> &wholly_collected
2606 = clist->wholly_collected ();
2607 for (size_t i = 0; i < wholly_collected.size (); i++)
2608 {
2609 const std::string &str = wholly_collected[i];
2610 print_variable_or_computed (str.c_str (), var_print_values);
2611 }
2612 }
2613
2614 /* Computed expressions. */
2615 {
2616 ui_out_emit_list list_emitter (uiout, "computed-expressions");
2617
2618 const std::vector<std::string> &computed = clist->computed ();
2619 for (size_t i = 0; i < computed.size (); i++)
2620 {
2621 const std::string &str = computed[i];
2622 print_variable_or_computed (str.c_str (), comp_print_values);
2623 }
2624 }
2625
2626 /* Registers. Given pseudo-registers, and that some architectures
2627 (like MIPS) actually hide the raw registers, we don't go through
2628 the trace frame info, but instead consult the register cache for
2629 register availability. */
2630 {
2631 struct frame_info *frame;
2632 struct gdbarch *gdbarch;
2633 int regnum;
2634 int numregs;
2635
2636 ui_out_emit_list list_emitter (uiout, "registers");
2637
2638 frame = get_selected_frame (NULL);
2639 gdbarch = get_frame_arch (frame);
2640 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2641
2642 for (regnum = 0; regnum < numregs; regnum++)
2643 {
2644 if (gdbarch_register_name (gdbarch, regnum) == NULL
2645 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2646 continue;
2647
2648 output_register (frame, regnum, registers_format, 1);
2649 }
2650 }
2651
2652 /* Trace state variables. */
2653 {
2654 ui_out_emit_list list_emitter (uiout, "tvars");
2655
2656 for (int tvar : tinfo->tvars)
2657 {
2658 struct trace_state_variable *tsv;
2659
2660 tsv = find_trace_state_variable_by_number (tvar);
2661
2662 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2663
2664 if (tsv != NULL)
2665 {
2666 uiout->field_fmt ("name", "$%s", tsv->name.c_str ());
2667
2668 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2669 &tsv->value);
2670 uiout->field_int ("current", tsv->value);
2671 }
2672 else
2673 {
2674 uiout->field_skip ("name");
2675 uiout->field_skip ("current");
2676 }
2677 }
2678 }
2679
2680 /* Memory. */
2681 {
2682 std::vector<mem_range> available_memory;
2683
2684 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2685
2686 ui_out_emit_list list_emitter (uiout, "memory");
2687
2688 for (const mem_range &r : available_memory)
2689 {
2690 struct gdbarch *gdbarch = target_gdbarch ();
2691
2692 ui_out_emit_tuple tuple_emitter (uiout, NULL);
2693
2694 uiout->field_core_addr ("address", gdbarch, r.start);
2695 uiout->field_int ("length", r.length);
2696
2697 gdb::byte_vector data (r.length);
2698
2699 if (memory_contents)
2700 {
2701 if (target_read_memory (r.start, data.data (), r.length) == 0)
2702 {
2703 std::string data_str = bin2hex (data.data (), r.length);
2704 uiout->field_string ("contents", data_str.c_str ());
2705 }
2706 else
2707 uiout->field_skip ("contents");
2708 }
2709 }
2710 }
2711 }
2712
2713 void
2714 _initialize_mi_main (void)
2715 {
2716 struct cmd_list_element *c;
2717
2718 add_setshow_boolean_cmd ("mi-async", class_run,
2719 &mi_async_1, _("\
2720 Set whether MI asynchronous mode is enabled."), _("\
2721 Show whether MI asynchronous mode is enabled."), _("\
2722 Tells GDB whether MI should be in asynchronous mode."),
2723 set_mi_async_command,
2724 show_mi_async_command,
2725 &setlist,
2726 &showlist);
2727
2728 /* Alias old "target-async" to "mi-async". */
2729 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
2730 deprecate_cmd (c, "set mi-async");
2731 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
2732 deprecate_cmd (c, "show mi-async");
2733 }
This page took 0.086251 seconds and 5 git commands to generate.