PR symtab/11465:
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying minimal symbol tables.
24
25 Minimal symbol tables are used to hold some very basic information about
26 all defined global symbols (text, data, bss, abs, etc). The only two
27 required pieces of information are the symbol's name and the address
28 associated with that symbol.
29
30 In many cases, even if a file was compiled with no special options for
31 debugging at all, as long as was not stripped it will contain sufficient
32 information to build useful minimal symbol tables using this structure.
33
34 Even when a file contains enough debugging information to build a full
35 symbol table, these minimal symbols are still useful for quickly mapping
36 between names and addresses, and vice versa. They are also sometimes used
37 to figure out what full symbol table entries need to be read in. */
38
39
40 #include "defs.h"
41 #include <ctype.h>
42 #include "gdb_string.h"
43 #include "symtab.h"
44 #include "bfd.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "demangle.h"
48 #include "value.h"
49 #include "cp-abi.h"
50 #include "target.h"
51 #include "cp-support.h"
52 #include "language.h"
53
54 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
55 At the end, copy them all into one newly allocated location on an objfile's
56 symbol obstack. */
57
58 #define BUNCH_SIZE 127
59
60 struct msym_bunch
61 {
62 struct msym_bunch *next;
63 struct minimal_symbol contents[BUNCH_SIZE];
64 };
65
66 /* Bunch currently being filled up.
67 The next field points to chain of filled bunches. */
68
69 static struct msym_bunch *msym_bunch;
70
71 /* Number of slots filled in current bunch. */
72
73 static int msym_bunch_index;
74
75 /* Total number of minimal symbols recorded so far for the objfile. */
76
77 static int msym_count;
78
79 /* Compute a hash code based using the same criteria as `strcmp_iw'. */
80
81 unsigned int
82 msymbol_hash_iw (const char *string)
83 {
84 unsigned int hash = 0;
85
86 while (*string && *string != '(')
87 {
88 while (isspace (*string))
89 ++string;
90 if (*string && *string != '(')
91 {
92 hash = hash * 67 + *string - 113;
93 ++string;
94 }
95 }
96 return hash;
97 }
98
99 /* Compute a hash code for a string. */
100
101 unsigned int
102 msymbol_hash (const char *string)
103 {
104 unsigned int hash = 0;
105
106 for (; *string; ++string)
107 hash = hash * 67 + *string - 113;
108 return hash;
109 }
110
111 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
112 void
113 add_minsym_to_hash_table (struct minimal_symbol *sym,
114 struct minimal_symbol **table)
115 {
116 if (sym->hash_next == NULL)
117 {
118 unsigned int hash
119 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
120
121 sym->hash_next = table[hash];
122 table[hash] = sym;
123 }
124 }
125
126 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
127 TABLE. */
128 static void
129 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
130 struct minimal_symbol **table)
131 {
132 if (sym->demangled_hash_next == NULL)
133 {
134 unsigned int hash
135 = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
136
137 sym->demangled_hash_next = table[hash];
138 table[hash] = sym;
139 }
140 }
141
142
143 /* Return OBJFILE where minimal symbol SYM is defined. */
144 struct objfile *
145 msymbol_objfile (struct minimal_symbol *sym)
146 {
147 struct objfile *objf;
148 struct minimal_symbol *tsym;
149
150 unsigned int hash
151 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
152
153 for (objf = object_files; objf; objf = objf->next)
154 for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
155 if (tsym == sym)
156 return objf;
157
158 /* We should always be able to find the objfile ... */
159 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
160 }
161
162
163 /* Look through all the current minimal symbol tables and find the
164 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
165 the search to that objfile. If SFILE is non-NULL, the only file-scope
166 symbols considered will be from that source file (global symbols are
167 still preferred). Returns a pointer to the minimal symbol that
168 matches, or NULL if no match is found.
169
170 Note: One instance where there may be duplicate minimal symbols with
171 the same name is when the symbol tables for a shared library and the
172 symbol tables for an executable contain global symbols with the same
173 names (the dynamic linker deals with the duplication).
174
175 It's also possible to have minimal symbols with different mangled
176 names, but identical demangled names. For example, the GNU C++ v3
177 ABI requires the generation of two (or perhaps three) copies of
178 constructor functions --- "in-charge", "not-in-charge", and
179 "allocate" copies; destructors may be duplicated as well.
180 Obviously, there must be distinct mangled names for each of these,
181 but the demangled names are all the same: S::S or S::~S. */
182
183 struct minimal_symbol *
184 lookup_minimal_symbol (const char *name, const char *sfile,
185 struct objfile *objf)
186 {
187 struct objfile *objfile;
188 struct minimal_symbol *msymbol;
189 struct minimal_symbol *found_symbol = NULL;
190 struct minimal_symbol *found_file_symbol = NULL;
191 struct minimal_symbol *trampoline_symbol = NULL;
192
193 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
194 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
195
196 int needtofreename = 0;
197 const char *modified_name;
198
199 if (sfile != NULL)
200 {
201 char *p = strrchr (sfile, '/');
202
203 if (p != NULL)
204 sfile = p + 1;
205 }
206
207 /* For C++, canonicalize the input name. */
208 modified_name = name;
209 if (current_language->la_language == language_cplus)
210 {
211 char *cname = cp_canonicalize_string (name);
212
213 if (cname)
214 {
215 modified_name = cname;
216 needtofreename = 1;
217 }
218 }
219
220 for (objfile = object_files;
221 objfile != NULL && found_symbol == NULL;
222 objfile = objfile->next)
223 {
224 if (objf == NULL || objf == objfile
225 || objf == objfile->separate_debug_objfile_backlink)
226 {
227 /* Do two passes: the first over the ordinary hash table,
228 and the second over the demangled hash table. */
229 int pass;
230
231 for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
232 {
233 /* Select hash list according to pass. */
234 if (pass == 1)
235 msymbol = objfile->msymbol_hash[hash];
236 else
237 msymbol = objfile->msymbol_demangled_hash[dem_hash];
238
239 while (msymbol != NULL && found_symbol == NULL)
240 {
241 int match;
242
243 if (pass == 1)
244 {
245 match = strcmp (SYMBOL_LINKAGE_NAME (msymbol),
246 modified_name) == 0;
247 }
248 else
249 {
250 match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
251 modified_name);
252 }
253
254 if (match)
255 {
256 switch (MSYMBOL_TYPE (msymbol))
257 {
258 case mst_file_text:
259 case mst_file_data:
260 case mst_file_bss:
261 if (sfile == NULL
262 || strcmp (msymbol->filename, sfile) == 0)
263 found_file_symbol = msymbol;
264 break;
265
266 case mst_solib_trampoline:
267
268 /* If a trampoline symbol is found, we prefer to
269 keep looking for the *real* symbol. If the
270 actual symbol is not found, then we'll use the
271 trampoline entry. */
272 if (trampoline_symbol == NULL)
273 trampoline_symbol = msymbol;
274 break;
275
276 case mst_unknown:
277 default:
278 found_symbol = msymbol;
279 break;
280 }
281 }
282
283 /* Find the next symbol on the hash chain. */
284 if (pass == 1)
285 msymbol = msymbol->hash_next;
286 else
287 msymbol = msymbol->demangled_hash_next;
288 }
289 }
290 }
291 }
292
293 if (needtofreename)
294 xfree ((void *) modified_name);
295
296 /* External symbols are best. */
297 if (found_symbol)
298 return found_symbol;
299
300 /* File-local symbols are next best. */
301 if (found_file_symbol)
302 return found_file_symbol;
303
304 /* Symbols for shared library trampolines are next best. */
305 if (trampoline_symbol)
306 return trampoline_symbol;
307
308 return NULL;
309 }
310
311 /* Look through all the current minimal symbol tables and find the
312 first minimal symbol that matches NAME and has text type. If OBJF
313 is non-NULL, limit the search to that objfile. Returns a pointer
314 to the minimal symbol that matches, or NULL if no match is found.
315
316 This function only searches the mangled (linkage) names. */
317
318 struct minimal_symbol *
319 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
320 {
321 struct objfile *objfile;
322 struct minimal_symbol *msymbol;
323 struct minimal_symbol *found_symbol = NULL;
324 struct minimal_symbol *found_file_symbol = NULL;
325
326 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
327
328 for (objfile = object_files;
329 objfile != NULL && found_symbol == NULL;
330 objfile = objfile->next)
331 {
332 if (objf == NULL || objf == objfile
333 || objf == objfile->separate_debug_objfile_backlink)
334 {
335 for (msymbol = objfile->msymbol_hash[hash];
336 msymbol != NULL && found_symbol == NULL;
337 msymbol = msymbol->hash_next)
338 {
339 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
340 (MSYMBOL_TYPE (msymbol) == mst_text ||
341 MSYMBOL_TYPE (msymbol) == mst_file_text))
342 {
343 switch (MSYMBOL_TYPE (msymbol))
344 {
345 case mst_file_text:
346 found_file_symbol = msymbol;
347 break;
348 default:
349 found_symbol = msymbol;
350 break;
351 }
352 }
353 }
354 }
355 }
356 /* External symbols are best. */
357 if (found_symbol)
358 return found_symbol;
359
360 /* File-local symbols are next best. */
361 if (found_file_symbol)
362 return found_file_symbol;
363
364 return NULL;
365 }
366
367 /* Look through all the current minimal symbol tables and find the
368 first minimal symbol that matches NAME and PC. If OBJF is non-NULL,
369 limit the search to that objfile. Returns a pointer to the minimal
370 symbol that matches, or NULL if no match is found. */
371
372 struct minimal_symbol *
373 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
374 struct objfile *objf)
375 {
376 struct objfile *objfile;
377 struct minimal_symbol *msymbol;
378
379 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
380
381 for (objfile = object_files;
382 objfile != NULL;
383 objfile = objfile->next)
384 {
385 if (objf == NULL || objf == objfile
386 || objf == objfile->separate_debug_objfile_backlink)
387 {
388 for (msymbol = objfile->msymbol_hash[hash];
389 msymbol != NULL;
390 msymbol = msymbol->hash_next)
391 {
392 if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
393 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
394 return msymbol;
395 }
396 }
397 }
398
399 return NULL;
400 }
401
402 /* Look through all the current minimal symbol tables and find the
403 first minimal symbol that matches NAME and is a solib trampoline.
404 If OBJF is non-NULL, limit the search to that objfile. Returns a
405 pointer to the minimal symbol that matches, or NULL if no match is
406 found.
407
408 This function only searches the mangled (linkage) names. */
409
410 struct minimal_symbol *
411 lookup_minimal_symbol_solib_trampoline (const char *name,
412 struct objfile *objf)
413 {
414 struct objfile *objfile;
415 struct minimal_symbol *msymbol;
416 struct minimal_symbol *found_symbol = NULL;
417
418 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
419
420 for (objfile = object_files;
421 objfile != NULL && found_symbol == NULL;
422 objfile = objfile->next)
423 {
424 if (objf == NULL || objf == objfile
425 || objf == objfile->separate_debug_objfile_backlink)
426 {
427 for (msymbol = objfile->msymbol_hash[hash];
428 msymbol != NULL && found_symbol == NULL;
429 msymbol = msymbol->hash_next)
430 {
431 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
432 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
433 return msymbol;
434 }
435 }
436 }
437
438 return NULL;
439 }
440
441 /* Search through the minimal symbol table for each objfile and find
442 the symbol whose address is the largest address that is still less
443 than or equal to PC, and matches SECTION (which is not NULL).
444 Returns a pointer to the minimal symbol if such a symbol is found,
445 or NULL if PC is not in a suitable range.
446 Note that we need to look through ALL the minimal symbol tables
447 before deciding on the symbol that comes closest to the specified PC.
448 This is because objfiles can overlap, for example objfile A has .text
449 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
450 .data at 0x40048.
451
452 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
453 there are text and trampoline symbols at the same address.
454 Otherwise prefer mst_text symbols. */
455
456 static struct minimal_symbol *
457 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
458 struct obj_section *section,
459 int want_trampoline)
460 {
461 int lo;
462 int hi;
463 int new;
464 struct objfile *objfile;
465 struct minimal_symbol *msymbol;
466 struct minimal_symbol *best_symbol = NULL;
467 enum minimal_symbol_type want_type, other_type;
468
469 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
470 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
471
472 /* We can not require the symbol found to be in section, because
473 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
474 symbol - but find_pc_section won't return an absolute section and
475 hence the code below would skip over absolute symbols. We can
476 still take advantage of the call to find_pc_section, though - the
477 object file still must match. In case we have separate debug
478 files, search both the file and its separate debug file. There's
479 no telling which one will have the minimal symbols. */
480
481 gdb_assert (section != NULL);
482
483 for (objfile = section->objfile;
484 objfile != NULL;
485 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
486 {
487 /* If this objfile has a minimal symbol table, go search it using
488 a binary search. Note that a minimal symbol table always consists
489 of at least two symbols, a "real" symbol and the terminating
490 "null symbol". If there are no real symbols, then there is no
491 minimal symbol table at all. */
492
493 if (objfile->minimal_symbol_count > 0)
494 {
495 int best_zero_sized = -1;
496
497 msymbol = objfile->msymbols;
498 lo = 0;
499 hi = objfile->minimal_symbol_count - 1;
500
501 /* This code assumes that the minimal symbols are sorted by
502 ascending address values. If the pc value is greater than or
503 equal to the first symbol's address, then some symbol in this
504 minimal symbol table is a suitable candidate for being the
505 "best" symbol. This includes the last real symbol, for cases
506 where the pc value is larger than any address in this vector.
507
508 By iterating until the address associated with the current
509 hi index (the endpoint of the test interval) is less than
510 or equal to the desired pc value, we accomplish two things:
511 (1) the case where the pc value is larger than any minimal
512 symbol address is trivially solved, (2) the address associated
513 with the hi index is always the one we want when the interation
514 terminates. In essence, we are iterating the test interval
515 down until the pc value is pushed out of it from the high end.
516
517 Warning: this code is trickier than it would appear at first. */
518
519 /* Should also require that pc is <= end of objfile. FIXME! */
520 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
521 {
522 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
523 {
524 /* pc is still strictly less than highest address */
525 /* Note "new" will always be >= lo */
526 new = (lo + hi) / 2;
527 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
528 (lo == new))
529 {
530 hi = new;
531 }
532 else
533 {
534 lo = new;
535 }
536 }
537
538 /* If we have multiple symbols at the same address, we want
539 hi to point to the last one. That way we can find the
540 right symbol if it has an index greater than hi. */
541 while (hi < objfile->minimal_symbol_count - 1
542 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
543 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
544 hi++;
545
546 /* Skip various undesirable symbols. */
547 while (hi >= 0)
548 {
549 /* Skip any absolute symbols. This is apparently
550 what adb and dbx do, and is needed for the CM-5.
551 There are two known possible problems: (1) on
552 ELF, apparently end, edata, etc. are absolute.
553 Not sure ignoring them here is a big deal, but if
554 we want to use them, the fix would go in
555 elfread.c. (2) I think shared library entry
556 points on the NeXT are absolute. If we want
557 special handling for this it probably should be
558 triggered by a special mst_abs_or_lib or some
559 such. */
560
561 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
562 {
563 hi--;
564 continue;
565 }
566
567 /* If SECTION was specified, skip any symbol from
568 wrong section. */
569 if (section
570 /* Some types of debug info, such as COFF,
571 don't fill the bfd_section member, so don't
572 throw away symbols on those platforms. */
573 && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
574 && (!matching_obj_sections
575 (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
576 {
577 hi--;
578 continue;
579 }
580
581 /* If we are looking for a trampoline and this is a
582 text symbol, or the other way around, check the
583 preceeding symbol too. If they are otherwise
584 identical prefer that one. */
585 if (hi > 0
586 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
587 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
588 && (MSYMBOL_SIZE (&msymbol[hi])
589 == MSYMBOL_SIZE (&msymbol[hi - 1]))
590 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
591 == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
592 && (SYMBOL_OBJ_SECTION (&msymbol[hi])
593 == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
594 {
595 hi--;
596 continue;
597 }
598
599 /* If the minimal symbol has a zero size, save it
600 but keep scanning backwards looking for one with
601 a non-zero size. A zero size may mean that the
602 symbol isn't an object or function (e.g. a
603 label), or it may just mean that the size was not
604 specified. */
605 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
606 && best_zero_sized == -1)
607 {
608 best_zero_sized = hi;
609 hi--;
610 continue;
611 }
612
613 /* If we are past the end of the current symbol, try
614 the previous symbol if it has a larger overlapping
615 size. This happens on i686-pc-linux-gnu with glibc;
616 the nocancel variants of system calls are inside
617 the cancellable variants, but both have sizes. */
618 if (hi > 0
619 && MSYMBOL_SIZE (&msymbol[hi]) != 0
620 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
621 + MSYMBOL_SIZE (&msymbol[hi]))
622 && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
623 + MSYMBOL_SIZE (&msymbol[hi - 1])))
624 {
625 hi--;
626 continue;
627 }
628
629 /* Otherwise, this symbol must be as good as we're going
630 to get. */
631 break;
632 }
633
634 /* If HI has a zero size, and best_zero_sized is set,
635 then we had two or more zero-sized symbols; prefer
636 the first one we found (which may have a higher
637 address). Also, if we ran off the end, be sure
638 to back up. */
639 if (best_zero_sized != -1
640 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
641 hi = best_zero_sized;
642
643 /* If the minimal symbol has a non-zero size, and this
644 PC appears to be outside the symbol's contents, then
645 refuse to use this symbol. If we found a zero-sized
646 symbol with an address greater than this symbol's,
647 use that instead. We assume that if symbols have
648 specified sizes, they do not overlap. */
649
650 if (hi >= 0
651 && MSYMBOL_SIZE (&msymbol[hi]) != 0
652 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
653 + MSYMBOL_SIZE (&msymbol[hi])))
654 {
655 if (best_zero_sized != -1)
656 hi = best_zero_sized;
657 else
658 /* Go on to the next object file. */
659 continue;
660 }
661
662 /* The minimal symbol indexed by hi now is the best one in this
663 objfile's minimal symbol table. See if it is the best one
664 overall. */
665
666 if (hi >= 0
667 && ((best_symbol == NULL) ||
668 (SYMBOL_VALUE_ADDRESS (best_symbol) <
669 SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
670 {
671 best_symbol = &msymbol[hi];
672 }
673 }
674 }
675 }
676 return (best_symbol);
677 }
678
679 struct minimal_symbol *
680 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
681 {
682 if (section == NULL)
683 {
684 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
685 force the section but that (well unless you're doing overlay
686 debugging) always returns NULL making the call somewhat useless. */
687 section = find_pc_section (pc);
688 if (section == NULL)
689 return NULL;
690 }
691 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
692 }
693
694 /* Backward compatibility: search through the minimal symbol table
695 for a matching PC (no section given) */
696
697 struct minimal_symbol *
698 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
699 {
700 return lookup_minimal_symbol_by_pc_section (pc, NULL);
701 }
702
703 /* Find the minimal symbol named NAME, and return both the minsym
704 struct and its objfile. This only checks the linkage name. Sets
705 *OBJFILE_P and returns the minimal symbol, if it is found. If it
706 is not found, returns NULL. */
707
708 struct minimal_symbol *
709 lookup_minimal_symbol_and_objfile (const char *name,
710 struct objfile **objfile_p)
711 {
712 struct objfile *objfile;
713 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
714
715 ALL_OBJFILES (objfile)
716 {
717 struct minimal_symbol *msym;
718
719 for (msym = objfile->msymbol_hash[hash];
720 msym != NULL;
721 msym = msym->hash_next)
722 {
723 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
724 {
725 *objfile_p = objfile;
726 return msym;
727 }
728 }
729 }
730
731 return 0;
732 }
733 \f
734
735 /* Return leading symbol character for a BFD. If BFD is NULL,
736 return the leading symbol character from the main objfile. */
737
738 static int get_symbol_leading_char (bfd *);
739
740 static int
741 get_symbol_leading_char (bfd *abfd)
742 {
743 if (abfd != NULL)
744 return bfd_get_symbol_leading_char (abfd);
745 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
746 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
747 return 0;
748 }
749
750 /* Prepare to start collecting minimal symbols. Note that presetting
751 msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
752 symbol to allocate the memory for the first bunch. */
753
754 void
755 init_minimal_symbol_collection (void)
756 {
757 msym_count = 0;
758 msym_bunch = NULL;
759 msym_bunch_index = BUNCH_SIZE;
760 }
761
762 void
763 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
764 enum minimal_symbol_type ms_type,
765 struct objfile *objfile)
766 {
767 int section;
768
769 switch (ms_type)
770 {
771 case mst_text:
772 case mst_file_text:
773 case mst_solib_trampoline:
774 section = SECT_OFF_TEXT (objfile);
775 break;
776 case mst_data:
777 case mst_file_data:
778 section = SECT_OFF_DATA (objfile);
779 break;
780 case mst_bss:
781 case mst_file_bss:
782 section = SECT_OFF_BSS (objfile);
783 break;
784 default:
785 section = -1;
786 }
787
788 prim_record_minimal_symbol_and_info (name, address, ms_type,
789 section, NULL, objfile);
790 }
791
792 /* Record a minimal symbol in the msym bunches. Returns the symbol
793 newly created. */
794
795 struct minimal_symbol *
796 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
797 CORE_ADDR address,
798 enum minimal_symbol_type ms_type,
799 int section,
800 asection *bfd_section,
801 struct objfile *objfile)
802 {
803 struct obj_section *obj_section;
804 struct msym_bunch *new;
805 struct minimal_symbol *msymbol;
806
807 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
808 the minimal symbols, because if there is also another symbol
809 at the same address (e.g. the first function of the file),
810 lookup_minimal_symbol_by_pc would have no way of getting the
811 right one. */
812 if (ms_type == mst_file_text && name[0] == 'g'
813 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
814 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
815 return (NULL);
816
817 /* It's safe to strip the leading char here once, since the name
818 is also stored stripped in the minimal symbol table. */
819 if (name[0] == get_symbol_leading_char (objfile->obfd))
820 {
821 ++name;
822 --name_len;
823 }
824
825 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
826 return (NULL);
827
828 if (msym_bunch_index == BUNCH_SIZE)
829 {
830 new = XCALLOC (1, struct msym_bunch);
831 msym_bunch_index = 0;
832 new->next = msym_bunch;
833 msym_bunch = new;
834 }
835 msymbol = &msym_bunch->contents[msym_bunch_index];
836 SYMBOL_SET_LANGUAGE (msymbol, language_auto);
837 SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
838
839 SYMBOL_VALUE_ADDRESS (msymbol) = address;
840 SYMBOL_SECTION (msymbol) = section;
841 SYMBOL_OBJ_SECTION (msymbol) = NULL;
842
843 /* Find obj_section corresponding to bfd_section. */
844 if (bfd_section)
845 ALL_OBJFILE_OSECTIONS (objfile, obj_section)
846 {
847 if (obj_section->the_bfd_section == bfd_section)
848 {
849 SYMBOL_OBJ_SECTION (msymbol) = obj_section;
850 break;
851 }
852 }
853
854 MSYMBOL_TYPE (msymbol) = ms_type;
855 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
856 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
857 MSYMBOL_SIZE (msymbol) = 0;
858
859 /* The hash pointers must be cleared! If they're not,
860 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
861 msymbol->hash_next = NULL;
862 msymbol->demangled_hash_next = NULL;
863
864 msym_bunch_index++;
865 msym_count++;
866 OBJSTAT (objfile, n_minsyms++);
867 return msymbol;
868 }
869
870 /* Record a minimal symbol in the msym bunches. Returns the symbol
871 newly created. */
872
873 struct minimal_symbol *
874 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
875 enum minimal_symbol_type ms_type,
876 int section,
877 asection *bfd_section,
878 struct objfile *objfile)
879 {
880 return prim_record_minimal_symbol_full (name, strlen (name), 1,
881 address, ms_type, section,
882 bfd_section, objfile);
883 }
884
885 /* Compare two minimal symbols by address and return a signed result based
886 on unsigned comparisons, so that we sort into unsigned numeric order.
887 Within groups with the same address, sort by name. */
888
889 static int
890 compare_minimal_symbols (const void *fn1p, const void *fn2p)
891 {
892 const struct minimal_symbol *fn1;
893 const struct minimal_symbol *fn2;
894
895 fn1 = (const struct minimal_symbol *) fn1p;
896 fn2 = (const struct minimal_symbol *) fn2p;
897
898 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
899 {
900 return (-1); /* addr 1 is less than addr 2 */
901 }
902 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
903 {
904 return (1); /* addr 1 is greater than addr 2 */
905 }
906 else
907 /* addrs are equal: sort by name */
908 {
909 char *name1 = SYMBOL_LINKAGE_NAME (fn1);
910 char *name2 = SYMBOL_LINKAGE_NAME (fn2);
911
912 if (name1 && name2) /* both have names */
913 return strcmp (name1, name2);
914 else if (name2)
915 return 1; /* fn1 has no name, so it is "less" */
916 else if (name1) /* fn2 has no name, so it is "less" */
917 return -1;
918 else
919 return (0); /* neither has a name, so they're equal. */
920 }
921 }
922
923 /* Discard the currently collected minimal symbols, if any. If we wish
924 to save them for later use, we must have already copied them somewhere
925 else before calling this function.
926
927 FIXME: We could allocate the minimal symbol bunches on their own
928 obstack and then simply blow the obstack away when we are done with
929 it. Is it worth the extra trouble though? */
930
931 static void
932 do_discard_minimal_symbols_cleanup (void *arg)
933 {
934 struct msym_bunch *next;
935
936 while (msym_bunch != NULL)
937 {
938 next = msym_bunch->next;
939 xfree (msym_bunch);
940 msym_bunch = next;
941 }
942 }
943
944 struct cleanup *
945 make_cleanup_discard_minimal_symbols (void)
946 {
947 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
948 }
949
950
951
952 /* Compact duplicate entries out of a minimal symbol table by walking
953 through the table and compacting out entries with duplicate addresses
954 and matching names. Return the number of entries remaining.
955
956 On entry, the table resides between msymbol[0] and msymbol[mcount].
957 On exit, it resides between msymbol[0] and msymbol[result_count].
958
959 When files contain multiple sources of symbol information, it is
960 possible for the minimal symbol table to contain many duplicate entries.
961 As an example, SVR4 systems use ELF formatted object files, which
962 usually contain at least two different types of symbol tables (a
963 standard ELF one and a smaller dynamic linking table), as well as
964 DWARF debugging information for files compiled with -g.
965
966 Without compacting, the minimal symbol table for gdb itself contains
967 over a 1000 duplicates, about a third of the total table size. Aside
968 from the potential trap of not noticing that two successive entries
969 identify the same location, this duplication impacts the time required
970 to linearly scan the table, which is done in a number of places. So we
971 just do one linear scan here and toss out the duplicates.
972
973 Note that we are not concerned here about recovering the space that
974 is potentially freed up, because the strings themselves are allocated
975 on the objfile_obstack, and will get automatically freed when the symbol
976 table is freed. The caller can free up the unused minimal symbols at
977 the end of the compacted region if their allocation strategy allows it.
978
979 Also note we only go up to the next to last entry within the loop
980 and then copy the last entry explicitly after the loop terminates.
981
982 Since the different sources of information for each symbol may
983 have different levels of "completeness", we may have duplicates
984 that have one entry with type "mst_unknown" and the other with a
985 known type. So if the one we are leaving alone has type mst_unknown,
986 overwrite its type with the type from the one we are compacting out. */
987
988 static int
989 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
990 struct objfile *objfile)
991 {
992 struct minimal_symbol *copyfrom;
993 struct minimal_symbol *copyto;
994
995 if (mcount > 0)
996 {
997 copyfrom = copyto = msymbol;
998 while (copyfrom < msymbol + mcount - 1)
999 {
1000 if (SYMBOL_VALUE_ADDRESS (copyfrom)
1001 == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
1002 && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
1003 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1004 {
1005 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1006 {
1007 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1008 }
1009 copyfrom++;
1010 }
1011 else
1012 *copyto++ = *copyfrom++;
1013 }
1014 *copyto++ = *copyfrom++;
1015 mcount = copyto - msymbol;
1016 }
1017 return (mcount);
1018 }
1019
1020 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1021 after compacting or sorting the table since the entries move around
1022 thus causing the internal minimal_symbol pointers to become jumbled. */
1023
1024 static void
1025 build_minimal_symbol_hash_tables (struct objfile *objfile)
1026 {
1027 int i;
1028 struct minimal_symbol *msym;
1029
1030 /* Clear the hash tables. */
1031 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1032 {
1033 objfile->msymbol_hash[i] = 0;
1034 objfile->msymbol_demangled_hash[i] = 0;
1035 }
1036
1037 /* Now, (re)insert the actual entries. */
1038 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1039 i > 0;
1040 i--, msym++)
1041 {
1042 msym->hash_next = 0;
1043 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1044
1045 msym->demangled_hash_next = 0;
1046 if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
1047 add_minsym_to_demangled_hash_table (msym,
1048 objfile->msymbol_demangled_hash);
1049 }
1050 }
1051
1052 /* Add the minimal symbols in the existing bunches to the objfile's official
1053 minimal symbol table. In most cases there is no minimal symbol table yet
1054 for this objfile, and the existing bunches are used to create one. Once
1055 in a while (for shared libraries for example), we add symbols (e.g. common
1056 symbols) to an existing objfile.
1057
1058 Because of the way minimal symbols are collected, we generally have no way
1059 of knowing what source language applies to any particular minimal symbol.
1060 Specifically, we have no way of knowing if the minimal symbol comes from a
1061 C++ compilation unit or not. So for the sake of supporting cached
1062 demangled C++ names, we have no choice but to try and demangle each new one
1063 that comes in. If the demangling succeeds, then we assume it is a C++
1064 symbol and set the symbol's language and demangled name fields
1065 appropriately. Note that in order to avoid unnecessary demanglings, and
1066 allocating obstack space that subsequently can't be freed for the demangled
1067 names, we mark all newly added symbols with language_auto. After
1068 compaction of the minimal symbols, we go back and scan the entire minimal
1069 symbol table looking for these new symbols. For each new symbol we attempt
1070 to demangle it, and if successful, record it as a language_cplus symbol
1071 and cache the demangled form on the symbol obstack. Symbols which don't
1072 demangle are marked as language_unknown symbols, which inhibits future
1073 attempts to demangle them if we later add more minimal symbols. */
1074
1075 void
1076 install_minimal_symbols (struct objfile *objfile)
1077 {
1078 int bindex;
1079 int mcount;
1080 struct msym_bunch *bunch;
1081 struct minimal_symbol *msymbols;
1082 int alloc_count;
1083
1084 if (msym_count > 0)
1085 {
1086 /* Allocate enough space in the obstack, into which we will gather the
1087 bunches of new and existing minimal symbols, sort them, and then
1088 compact out the duplicate entries. Once we have a final table,
1089 we will give back the excess space. */
1090
1091 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1092 obstack_blank (&objfile->objfile_obstack,
1093 alloc_count * sizeof (struct minimal_symbol));
1094 msymbols = (struct minimal_symbol *)
1095 obstack_base (&objfile->objfile_obstack);
1096
1097 /* Copy in the existing minimal symbols, if there are any. */
1098
1099 if (objfile->minimal_symbol_count)
1100 memcpy ((char *) msymbols, (char *) objfile->msymbols,
1101 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1102
1103 /* Walk through the list of minimal symbol bunches, adding each symbol
1104 to the new contiguous array of symbols. Note that we start with the
1105 current, possibly partially filled bunch (thus we use the current
1106 msym_bunch_index for the first bunch we copy over), and thereafter
1107 each bunch is full. */
1108
1109 mcount = objfile->minimal_symbol_count;
1110
1111 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1112 {
1113 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1114 msymbols[mcount] = bunch->contents[bindex];
1115 msym_bunch_index = BUNCH_SIZE;
1116 }
1117
1118 /* Sort the minimal symbols by address. */
1119
1120 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1121 compare_minimal_symbols);
1122
1123 /* Compact out any duplicates, and free up whatever space we are
1124 no longer using. */
1125
1126 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1127
1128 obstack_blank (&objfile->objfile_obstack,
1129 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1130 msymbols = (struct minimal_symbol *)
1131 obstack_finish (&objfile->objfile_obstack);
1132
1133 /* We also terminate the minimal symbol table with a "null symbol",
1134 which is *not* included in the size of the table. This makes it
1135 easier to find the end of the table when we are handed a pointer
1136 to some symbol in the middle of it. Zero out the fields in the
1137 "null symbol" allocated at the end of the array. Note that the
1138 symbol count does *not* include this null symbol, which is why it
1139 is indexed by mcount and not mcount-1. */
1140
1141 SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
1142 SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
1143 MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
1144 MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
1145 MSYMBOL_SIZE (&msymbols[mcount]) = 0;
1146 MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
1147 SYMBOL_SET_LANGUAGE (&msymbols[mcount], language_unknown);
1148
1149 /* Attach the minimal symbol table to the specified objfile.
1150 The strings themselves are also located in the objfile_obstack
1151 of this objfile. */
1152
1153 objfile->minimal_symbol_count = mcount;
1154 objfile->msymbols = msymbols;
1155
1156 /* Try to guess the appropriate C++ ABI by looking at the names
1157 of the minimal symbols in the table. */
1158 {
1159 int i;
1160
1161 for (i = 0; i < mcount; i++)
1162 {
1163 /* If a symbol's name starts with _Z and was successfully
1164 demangled, then we can assume we've found a GNU v3 symbol.
1165 For now we set the C++ ABI globally; if the user is
1166 mixing ABIs then the user will need to "set cp-abi"
1167 manually. */
1168 const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1169
1170 if (name[0] == '_' && name[1] == 'Z'
1171 && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1172 {
1173 set_cp_abi_as_auto_default ("gnu-v3");
1174 break;
1175 }
1176 }
1177 }
1178
1179 /* Now build the hash tables; we can't do this incrementally
1180 at an earlier point since we weren't finished with the obstack
1181 yet. (And if the msymbol obstack gets moved, all the internal
1182 pointers to other msymbols need to be adjusted.) */
1183 build_minimal_symbol_hash_tables (objfile);
1184 }
1185 }
1186
1187 /* Sort all the minimal symbols in OBJFILE. */
1188
1189 void
1190 msymbols_sort (struct objfile *objfile)
1191 {
1192 qsort (objfile->msymbols, objfile->minimal_symbol_count,
1193 sizeof (struct minimal_symbol), compare_minimal_symbols);
1194 build_minimal_symbol_hash_tables (objfile);
1195 }
1196
1197 /* Check if PC is in a shared library trampoline code stub.
1198 Return minimal symbol for the trampoline entry or NULL if PC is not
1199 in a trampoline code stub. */
1200
1201 struct minimal_symbol *
1202 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1203 {
1204 struct obj_section *section = find_pc_section (pc);
1205 struct minimal_symbol *msymbol;
1206
1207 if (section == NULL)
1208 return NULL;
1209 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1210
1211 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1212 return msymbol;
1213 return NULL;
1214 }
1215
1216 /* If PC is in a shared library trampoline code stub, return the
1217 address of the `real' function belonging to the stub.
1218 Return 0 if PC is not in a trampoline code stub or if the real
1219 function is not found in the minimal symbol table.
1220
1221 We may fail to find the right function if a function with the
1222 same name is defined in more than one shared library, but this
1223 is considered bad programming style. We could return 0 if we find
1224 a duplicate function in case this matters someday. */
1225
1226 CORE_ADDR
1227 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1228 {
1229 struct objfile *objfile;
1230 struct minimal_symbol *msymbol;
1231 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1232
1233 if (tsymbol != NULL)
1234 {
1235 ALL_MSYMBOLS (objfile, msymbol)
1236 {
1237 if (MSYMBOL_TYPE (msymbol) == mst_text
1238 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1239 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1240 return SYMBOL_VALUE_ADDRESS (msymbol);
1241
1242 /* Also handle minimal symbols pointing to function descriptors. */
1243 if (MSYMBOL_TYPE (msymbol) == mst_data
1244 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1245 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1246 {
1247 CORE_ADDR func;
1248
1249 func = gdbarch_convert_from_func_ptr_addr
1250 (get_objfile_arch (objfile),
1251 SYMBOL_VALUE_ADDRESS (msymbol),
1252 &current_target);
1253
1254 /* Ignore data symbols that are not function descriptors. */
1255 if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1256 return func;
1257 }
1258 }
1259 }
1260 return 0;
1261 }
This page took 0.08119 seconds and 4 git commands to generate.