1a1a37fa6dfb764c2a38856af481a79ff4fba4f8
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying minimal symbol tables.
24
25 Minimal symbol tables are used to hold some very basic information about
26 all defined global symbols (text, data, bss, abs, etc). The only two
27 required pieces of information are the symbol's name and the address
28 associated with that symbol.
29
30 In many cases, even if a file was compiled with no special options for
31 debugging at all, as long as was not stripped it will contain sufficient
32 information to build useful minimal symbol tables using this structure.
33
34 Even when a file contains enough debugging information to build a full
35 symbol table, these minimal symbols are still useful for quickly mapping
36 between names and addresses, and vice versa. They are also sometimes used
37 to figure out what full symbol table entries need to be read in. */
38
39
40 #include "defs.h"
41 #include <ctype.h>
42 #include "gdb_string.h"
43 #include "symtab.h"
44 #include "bfd.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "demangle.h"
48 #include "value.h"
49 #include "cp-abi.h"
50 #include "target.h"
51 #include "cp-support.h"
52 #include "language.h"
53
54 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
55 At the end, copy them all into one newly allocated location on an objfile's
56 symbol obstack. */
57
58 #define BUNCH_SIZE 127
59
60 struct msym_bunch
61 {
62 struct msym_bunch *next;
63 struct minimal_symbol contents[BUNCH_SIZE];
64 };
65
66 /* Bunch currently being filled up.
67 The next field points to chain of filled bunches. */
68
69 static struct msym_bunch *msym_bunch;
70
71 /* Number of slots filled in current bunch. */
72
73 static int msym_bunch_index;
74
75 /* Total number of minimal symbols recorded so far for the objfile. */
76
77 static int msym_count;
78
79 /* Compute a hash code based using the same criteria as `strcmp_iw'. */
80
81 unsigned int
82 msymbol_hash_iw (const char *string)
83 {
84 unsigned int hash = 0;
85 while (*string && *string != '(')
86 {
87 while (isspace (*string))
88 ++string;
89 if (*string && *string != '(')
90 {
91 hash = hash * 67 + *string - 113;
92 ++string;
93 }
94 }
95 return hash;
96 }
97
98 /* Compute a hash code for a string. */
99
100 unsigned int
101 msymbol_hash (const char *string)
102 {
103 unsigned int hash = 0;
104 for (; *string; ++string)
105 hash = hash * 67 + *string - 113;
106 return hash;
107 }
108
109 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
110 void
111 add_minsym_to_hash_table (struct minimal_symbol *sym,
112 struct minimal_symbol **table)
113 {
114 if (sym->hash_next == NULL)
115 {
116 unsigned int hash
117 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
118 sym->hash_next = table[hash];
119 table[hash] = sym;
120 }
121 }
122
123 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
124 TABLE. */
125 static void
126 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
127 struct minimal_symbol **table)
128 {
129 if (sym->demangled_hash_next == NULL)
130 {
131 unsigned int hash
132 = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
133 sym->demangled_hash_next = table[hash];
134 table[hash] = sym;
135 }
136 }
137
138
139 /* Return OBJFILE where minimal symbol SYM is defined. */
140 struct objfile *
141 msymbol_objfile (struct minimal_symbol *sym)
142 {
143 struct objfile *objf;
144 struct minimal_symbol *tsym;
145
146 unsigned int hash
147 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
148
149 for (objf = object_files; objf; objf = objf->next)
150 for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
151 if (tsym == sym)
152 return objf;
153
154 /* We should always be able to find the objfile ... */
155 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
156 }
157
158
159 /* Look through all the current minimal symbol tables and find the
160 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
161 the search to that objfile. If SFILE is non-NULL, the only file-scope
162 symbols considered will be from that source file (global symbols are
163 still preferred). Returns a pointer to the minimal symbol that
164 matches, or NULL if no match is found.
165
166 Note: One instance where there may be duplicate minimal symbols with
167 the same name is when the symbol tables for a shared library and the
168 symbol tables for an executable contain global symbols with the same
169 names (the dynamic linker deals with the duplication).
170
171 It's also possible to have minimal symbols with different mangled
172 names, but identical demangled names. For example, the GNU C++ v3
173 ABI requires the generation of two (or perhaps three) copies of
174 constructor functions --- "in-charge", "not-in-charge", and
175 "allocate" copies; destructors may be duplicated as well.
176 Obviously, there must be distinct mangled names for each of these,
177 but the demangled names are all the same: S::S or S::~S. */
178
179 struct minimal_symbol *
180 lookup_minimal_symbol (const char *name, const char *sfile,
181 struct objfile *objf)
182 {
183 struct objfile *objfile;
184 struct minimal_symbol *msymbol;
185 struct minimal_symbol *found_symbol = NULL;
186 struct minimal_symbol *found_file_symbol = NULL;
187 struct minimal_symbol *trampoline_symbol = NULL;
188
189 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
190 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
191
192 int needtofreename = 0;
193 const char *modified_name;
194
195 if (sfile != NULL)
196 {
197 char *p = strrchr (sfile, '/');
198 if (p != NULL)
199 sfile = p + 1;
200 }
201
202 /* For C++, canonicalize the input name. */
203 modified_name = name;
204 if (current_language->la_language == language_cplus)
205 {
206 char *cname = cp_canonicalize_string (name);
207 if (cname)
208 {
209 modified_name = cname;
210 needtofreename = 1;
211 }
212 }
213
214 for (objfile = object_files;
215 objfile != NULL && found_symbol == NULL;
216 objfile = objfile->next)
217 {
218 if (objf == NULL || objf == objfile
219 || objf->separate_debug_objfile == objfile)
220 {
221 /* Do two passes: the first over the ordinary hash table,
222 and the second over the demangled hash table. */
223 int pass;
224
225 for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
226 {
227 /* Select hash list according to pass. */
228 if (pass == 1)
229 msymbol = objfile->msymbol_hash[hash];
230 else
231 msymbol = objfile->msymbol_demangled_hash[dem_hash];
232
233 while (msymbol != NULL && found_symbol == NULL)
234 {
235 int match;
236
237 if (pass == 1)
238 {
239 match = strcmp (SYMBOL_LINKAGE_NAME (msymbol),
240 modified_name) == 0;
241 }
242 else
243 {
244 match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
245 modified_name);
246 }
247
248 if (match)
249 {
250 switch (MSYMBOL_TYPE (msymbol))
251 {
252 case mst_file_text:
253 case mst_file_data:
254 case mst_file_bss:
255 if (sfile == NULL
256 || strcmp (msymbol->filename, sfile) == 0)
257 found_file_symbol = msymbol;
258 break;
259
260 case mst_solib_trampoline:
261
262 /* If a trampoline symbol is found, we prefer to
263 keep looking for the *real* symbol. If the
264 actual symbol is not found, then we'll use the
265 trampoline entry. */
266 if (trampoline_symbol == NULL)
267 trampoline_symbol = msymbol;
268 break;
269
270 case mst_unknown:
271 default:
272 found_symbol = msymbol;
273 break;
274 }
275 }
276
277 /* Find the next symbol on the hash chain. */
278 if (pass == 1)
279 msymbol = msymbol->hash_next;
280 else
281 msymbol = msymbol->demangled_hash_next;
282 }
283 }
284 }
285 }
286
287 if (needtofreename)
288 xfree ((void *) modified_name);
289
290 /* External symbols are best. */
291 if (found_symbol)
292 return found_symbol;
293
294 /* File-local symbols are next best. */
295 if (found_file_symbol)
296 return found_file_symbol;
297
298 /* Symbols for shared library trampolines are next best. */
299 if (trampoline_symbol)
300 return trampoline_symbol;
301
302 return NULL;
303 }
304
305 /* Look through all the current minimal symbol tables and find the
306 first minimal symbol that matches NAME and has text type. If OBJF
307 is non-NULL, limit the search to that objfile. Returns a pointer
308 to the minimal symbol that matches, or NULL if no match is found.
309
310 This function only searches the mangled (linkage) names. */
311
312 struct minimal_symbol *
313 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
314 {
315 struct objfile *objfile;
316 struct minimal_symbol *msymbol;
317 struct minimal_symbol *found_symbol = NULL;
318 struct minimal_symbol *found_file_symbol = NULL;
319
320 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
321
322 for (objfile = object_files;
323 objfile != NULL && found_symbol == NULL;
324 objfile = objfile->next)
325 {
326 if (objf == NULL || objf == objfile
327 || objf->separate_debug_objfile == objfile)
328 {
329 for (msymbol = objfile->msymbol_hash[hash];
330 msymbol != NULL && found_symbol == NULL;
331 msymbol = msymbol->hash_next)
332 {
333 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
334 (MSYMBOL_TYPE (msymbol) == mst_text ||
335 MSYMBOL_TYPE (msymbol) == mst_file_text))
336 {
337 switch (MSYMBOL_TYPE (msymbol))
338 {
339 case mst_file_text:
340 found_file_symbol = msymbol;
341 break;
342 default:
343 found_symbol = msymbol;
344 break;
345 }
346 }
347 }
348 }
349 }
350 /* External symbols are best. */
351 if (found_symbol)
352 return found_symbol;
353
354 /* File-local symbols are next best. */
355 if (found_file_symbol)
356 return found_file_symbol;
357
358 return NULL;
359 }
360
361 /* Look through all the current minimal symbol tables and find the
362 first minimal symbol that matches NAME and PC. If OBJF is non-NULL,
363 limit the search to that objfile. Returns a pointer to the minimal
364 symbol that matches, or NULL if no match is found. */
365
366 struct minimal_symbol *
367 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
368 struct objfile *objf)
369 {
370 struct objfile *objfile;
371 struct minimal_symbol *msymbol;
372
373 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
374
375 for (objfile = object_files;
376 objfile != NULL;
377 objfile = objfile->next)
378 {
379 if (objf == NULL || objf == objfile
380 || objf->separate_debug_objfile == objfile)
381 {
382 for (msymbol = objfile->msymbol_hash[hash];
383 msymbol != NULL;
384 msymbol = msymbol->hash_next)
385 {
386 if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
387 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
388 return msymbol;
389 }
390 }
391 }
392
393 return NULL;
394 }
395
396 /* Look through all the current minimal symbol tables and find the
397 first minimal symbol that matches NAME and is a solib trampoline.
398 If OBJF is non-NULL, limit the search to that objfile. Returns a
399 pointer to the minimal symbol that matches, or NULL if no match is
400 found.
401
402 This function only searches the mangled (linkage) names. */
403
404 struct minimal_symbol *
405 lookup_minimal_symbol_solib_trampoline (const char *name,
406 struct objfile *objf)
407 {
408 struct objfile *objfile;
409 struct minimal_symbol *msymbol;
410 struct minimal_symbol *found_symbol = NULL;
411
412 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
413
414 for (objfile = object_files;
415 objfile != NULL && found_symbol == NULL;
416 objfile = objfile->next)
417 {
418 if (objf == NULL || objf == objfile
419 || objf->separate_debug_objfile == objfile)
420 {
421 for (msymbol = objfile->msymbol_hash[hash];
422 msymbol != NULL && found_symbol == NULL;
423 msymbol = msymbol->hash_next)
424 {
425 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
426 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
427 return msymbol;
428 }
429 }
430 }
431
432 return NULL;
433 }
434
435 /* Search through the minimal symbol table for each objfile and find
436 the symbol whose address is the largest address that is still less
437 than or equal to PC, and matches SECTION (if non-NULL). Returns a
438 pointer to the minimal symbol if such a symbol is found, or NULL if
439 PC is not in a suitable range. Note that we need to look through
440 ALL the minimal symbol tables before deciding on the symbol that
441 comes closest to the specified PC. This is because objfiles can
442 overlap, for example objfile A has .text at 0x100 and .data at
443 0x40000 and objfile B has .text at 0x234 and .data at 0x40048.
444
445 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
446 there are text and trampoline symbols at the same address.
447 Otherwise prefer mst_text symbols. */
448
449 static struct minimal_symbol *
450 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
451 struct obj_section *section,
452 int want_trampoline)
453 {
454 int lo;
455 int hi;
456 int new;
457 struct objfile *objfile;
458 struct minimal_symbol *msymbol;
459 struct minimal_symbol *best_symbol = NULL;
460 struct obj_section *pc_section;
461 enum minimal_symbol_type want_type, other_type;
462
463 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
464 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
465
466 /* PC has to be in a known section. This ensures that anything
467 beyond the end of the last segment doesn't appear to be part of
468 the last function in the last segment. */
469 pc_section = find_pc_section (pc);
470 if (pc_section == NULL)
471 return NULL;
472
473 /* We can not require the symbol found to be in pc_section, because
474 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
475 symbol - but find_pc_section won't return an absolute section and
476 hence the code below would skip over absolute symbols. We can
477 still take advantage of the call to find_pc_section, though - the
478 object file still must match. In case we have separate debug
479 files, search both the file and its separate debug file. There's
480 no telling which one will have the minimal symbols. */
481
482 objfile = pc_section->objfile;
483 if (objfile->separate_debug_objfile)
484 objfile = objfile->separate_debug_objfile;
485
486 for (; objfile != NULL; objfile = objfile->separate_debug_objfile_backlink)
487 {
488 /* If this objfile has a minimal symbol table, go search it using
489 a binary search. Note that a minimal symbol table always consists
490 of at least two symbols, a "real" symbol and the terminating
491 "null symbol". If there are no real symbols, then there is no
492 minimal symbol table at all. */
493
494 if (objfile->minimal_symbol_count > 0)
495 {
496 int best_zero_sized = -1;
497
498 msymbol = objfile->msymbols;
499 lo = 0;
500 hi = objfile->minimal_symbol_count - 1;
501
502 /* This code assumes that the minimal symbols are sorted by
503 ascending address values. If the pc value is greater than or
504 equal to the first symbol's address, then some symbol in this
505 minimal symbol table is a suitable candidate for being the
506 "best" symbol. This includes the last real symbol, for cases
507 where the pc value is larger than any address in this vector.
508
509 By iterating until the address associated with the current
510 hi index (the endpoint of the test interval) is less than
511 or equal to the desired pc value, we accomplish two things:
512 (1) the case where the pc value is larger than any minimal
513 symbol address is trivially solved, (2) the address associated
514 with the hi index is always the one we want when the interation
515 terminates. In essence, we are iterating the test interval
516 down until the pc value is pushed out of it from the high end.
517
518 Warning: this code is trickier than it would appear at first. */
519
520 /* Should also require that pc is <= end of objfile. FIXME! */
521 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
522 {
523 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
524 {
525 /* pc is still strictly less than highest address */
526 /* Note "new" will always be >= lo */
527 new = (lo + hi) / 2;
528 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
529 (lo == new))
530 {
531 hi = new;
532 }
533 else
534 {
535 lo = new;
536 }
537 }
538
539 /* If we have multiple symbols at the same address, we want
540 hi to point to the last one. That way we can find the
541 right symbol if it has an index greater than hi. */
542 while (hi < objfile->minimal_symbol_count - 1
543 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
544 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
545 hi++;
546
547 /* Skip various undesirable symbols. */
548 while (hi >= 0)
549 {
550 /* Skip any absolute symbols. This is apparently
551 what adb and dbx do, and is needed for the CM-5.
552 There are two known possible problems: (1) on
553 ELF, apparently end, edata, etc. are absolute.
554 Not sure ignoring them here is a big deal, but if
555 we want to use them, the fix would go in
556 elfread.c. (2) I think shared library entry
557 points on the NeXT are absolute. If we want
558 special handling for this it probably should be
559 triggered by a special mst_abs_or_lib or some
560 such. */
561
562 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
563 {
564 hi--;
565 continue;
566 }
567
568 /* If SECTION was specified, skip any symbol from
569 wrong section. */
570 if (section
571 /* Some types of debug info, such as COFF,
572 don't fill the bfd_section member, so don't
573 throw away symbols on those platforms. */
574 && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
575 && (!matching_obj_sections
576 (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
577 {
578 hi--;
579 continue;
580 }
581
582 /* If we are looking for a trampoline and this is a
583 text symbol, or the other way around, check the
584 preceeding symbol too. If they are otherwise
585 identical prefer that one. */
586 if (hi > 0
587 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
588 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
589 && (MSYMBOL_SIZE (&msymbol[hi])
590 == MSYMBOL_SIZE (&msymbol[hi - 1]))
591 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
592 == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
593 && (SYMBOL_OBJ_SECTION (&msymbol[hi])
594 == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
595 {
596 hi--;
597 continue;
598 }
599
600 /* If the minimal symbol has a zero size, save it
601 but keep scanning backwards looking for one with
602 a non-zero size. A zero size may mean that the
603 symbol isn't an object or function (e.g. a
604 label), or it may just mean that the size was not
605 specified. */
606 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
607 && best_zero_sized == -1)
608 {
609 best_zero_sized = hi;
610 hi--;
611 continue;
612 }
613
614 /* If we are past the end of the current symbol, try
615 the previous symbol if it has a larger overlapping
616 size. This happens on i686-pc-linux-gnu with glibc;
617 the nocancel variants of system calls are inside
618 the cancellable variants, but both have sizes. */
619 if (hi > 0
620 && MSYMBOL_SIZE (&msymbol[hi]) != 0
621 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
622 + MSYMBOL_SIZE (&msymbol[hi]))
623 && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
624 + MSYMBOL_SIZE (&msymbol[hi - 1])))
625 {
626 hi--;
627 continue;
628 }
629
630 /* Otherwise, this symbol must be as good as we're going
631 to get. */
632 break;
633 }
634
635 /* If HI has a zero size, and best_zero_sized is set,
636 then we had two or more zero-sized symbols; prefer
637 the first one we found (which may have a higher
638 address). Also, if we ran off the end, be sure
639 to back up. */
640 if (best_zero_sized != -1
641 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
642 hi = best_zero_sized;
643
644 /* If the minimal symbol has a non-zero size, and this
645 PC appears to be outside the symbol's contents, then
646 refuse to use this symbol. If we found a zero-sized
647 symbol with an address greater than this symbol's,
648 use that instead. We assume that if symbols have
649 specified sizes, they do not overlap. */
650
651 if (hi >= 0
652 && MSYMBOL_SIZE (&msymbol[hi]) != 0
653 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
654 + MSYMBOL_SIZE (&msymbol[hi])))
655 {
656 if (best_zero_sized != -1)
657 hi = best_zero_sized;
658 else
659 /* Go on to the next object file. */
660 continue;
661 }
662
663 /* The minimal symbol indexed by hi now is the best one in this
664 objfile's minimal symbol table. See if it is the best one
665 overall. */
666
667 if (hi >= 0
668 && ((best_symbol == NULL) ||
669 (SYMBOL_VALUE_ADDRESS (best_symbol) <
670 SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
671 {
672 best_symbol = &msymbol[hi];
673 }
674 }
675 }
676 }
677 return (best_symbol);
678 }
679
680 struct minimal_symbol *
681 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
682 {
683 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
684 }
685
686 /* Backward compatibility: search through the minimal symbol table
687 for a matching PC (no section given) */
688
689 struct minimal_symbol *
690 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
691 {
692 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
693 force the section but that (well unless you're doing overlay
694 debugging) always returns NULL making the call somewhat useless. */
695 struct obj_section *section = find_pc_section (pc);
696 if (section == NULL)
697 return NULL;
698 return lookup_minimal_symbol_by_pc_section (pc, section);
699 }
700 \f
701
702 /* Return leading symbol character for a BFD. If BFD is NULL,
703 return the leading symbol character from the main objfile. */
704
705 static int get_symbol_leading_char (bfd *);
706
707 static int
708 get_symbol_leading_char (bfd *abfd)
709 {
710 if (abfd != NULL)
711 return bfd_get_symbol_leading_char (abfd);
712 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
713 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
714 return 0;
715 }
716
717 /* Prepare to start collecting minimal symbols. Note that presetting
718 msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
719 symbol to allocate the memory for the first bunch. */
720
721 void
722 init_minimal_symbol_collection (void)
723 {
724 msym_count = 0;
725 msym_bunch = NULL;
726 msym_bunch_index = BUNCH_SIZE;
727 }
728
729 void
730 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
731 enum minimal_symbol_type ms_type,
732 struct objfile *objfile)
733 {
734 int section;
735
736 switch (ms_type)
737 {
738 case mst_text:
739 case mst_file_text:
740 case mst_solib_trampoline:
741 section = SECT_OFF_TEXT (objfile);
742 break;
743 case mst_data:
744 case mst_file_data:
745 section = SECT_OFF_DATA (objfile);
746 break;
747 case mst_bss:
748 case mst_file_bss:
749 section = SECT_OFF_BSS (objfile);
750 break;
751 default:
752 section = -1;
753 }
754
755 prim_record_minimal_symbol_and_info (name, address, ms_type,
756 section, NULL, objfile);
757 }
758
759 /* Record a minimal symbol in the msym bunches. Returns the symbol
760 newly created. */
761
762 struct minimal_symbol *
763 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
764 enum minimal_symbol_type ms_type,
765 int section,
766 asection *bfd_section,
767 struct objfile *objfile)
768 {
769 struct obj_section *obj_section;
770 struct msym_bunch *new;
771 struct minimal_symbol *msymbol;
772
773 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
774 the minimal symbols, because if there is also another symbol
775 at the same address (e.g. the first function of the file),
776 lookup_minimal_symbol_by_pc would have no way of getting the
777 right one. */
778 if (ms_type == mst_file_text && name[0] == 'g'
779 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
780 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
781 return (NULL);
782
783 /* It's safe to strip the leading char here once, since the name
784 is also stored stripped in the minimal symbol table. */
785 if (name[0] == get_symbol_leading_char (objfile->obfd))
786 ++name;
787
788 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
789 return (NULL);
790
791 if (msym_bunch_index == BUNCH_SIZE)
792 {
793 new = XCALLOC (1, struct msym_bunch);
794 msym_bunch_index = 0;
795 new->next = msym_bunch;
796 msym_bunch = new;
797 }
798 msymbol = &msym_bunch->contents[msym_bunch_index];
799 SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown);
800 SYMBOL_LANGUAGE (msymbol) = language_auto;
801 SYMBOL_SET_NAMES (msymbol, (char *)name, strlen (name), objfile);
802
803 SYMBOL_VALUE_ADDRESS (msymbol) = address;
804 SYMBOL_SECTION (msymbol) = section;
805 SYMBOL_OBJ_SECTION (msymbol) = NULL;
806
807 /* Find obj_section corresponding to bfd_section. */
808 if (bfd_section)
809 ALL_OBJFILE_OSECTIONS (objfile, obj_section)
810 {
811 if (obj_section->the_bfd_section == bfd_section)
812 {
813 SYMBOL_OBJ_SECTION (msymbol) = obj_section;
814 break;
815 }
816 }
817
818 MSYMBOL_TYPE (msymbol) = ms_type;
819 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
820 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
821 MSYMBOL_SIZE (msymbol) = 0;
822
823 /* The hash pointers must be cleared! If they're not,
824 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
825 msymbol->hash_next = NULL;
826 msymbol->demangled_hash_next = NULL;
827
828 msym_bunch_index++;
829 msym_count++;
830 OBJSTAT (objfile, n_minsyms++);
831 return msymbol;
832 }
833
834 /* Compare two minimal symbols by address and return a signed result based
835 on unsigned comparisons, so that we sort into unsigned numeric order.
836 Within groups with the same address, sort by name. */
837
838 static int
839 compare_minimal_symbols (const void *fn1p, const void *fn2p)
840 {
841 const struct minimal_symbol *fn1;
842 const struct minimal_symbol *fn2;
843
844 fn1 = (const struct minimal_symbol *) fn1p;
845 fn2 = (const struct minimal_symbol *) fn2p;
846
847 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
848 {
849 return (-1); /* addr 1 is less than addr 2 */
850 }
851 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
852 {
853 return (1); /* addr 1 is greater than addr 2 */
854 }
855 else
856 /* addrs are equal: sort by name */
857 {
858 char *name1 = SYMBOL_LINKAGE_NAME (fn1);
859 char *name2 = SYMBOL_LINKAGE_NAME (fn2);
860
861 if (name1 && name2) /* both have names */
862 return strcmp (name1, name2);
863 else if (name2)
864 return 1; /* fn1 has no name, so it is "less" */
865 else if (name1) /* fn2 has no name, so it is "less" */
866 return -1;
867 else
868 return (0); /* neither has a name, so they're equal. */
869 }
870 }
871
872 /* Discard the currently collected minimal symbols, if any. If we wish
873 to save them for later use, we must have already copied them somewhere
874 else before calling this function.
875
876 FIXME: We could allocate the minimal symbol bunches on their own
877 obstack and then simply blow the obstack away when we are done with
878 it. Is it worth the extra trouble though? */
879
880 static void
881 do_discard_minimal_symbols_cleanup (void *arg)
882 {
883 struct msym_bunch *next;
884
885 while (msym_bunch != NULL)
886 {
887 next = msym_bunch->next;
888 xfree (msym_bunch);
889 msym_bunch = next;
890 }
891 }
892
893 struct cleanup *
894 make_cleanup_discard_minimal_symbols (void)
895 {
896 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
897 }
898
899
900
901 /* Compact duplicate entries out of a minimal symbol table by walking
902 through the table and compacting out entries with duplicate addresses
903 and matching names. Return the number of entries remaining.
904
905 On entry, the table resides between msymbol[0] and msymbol[mcount].
906 On exit, it resides between msymbol[0] and msymbol[result_count].
907
908 When files contain multiple sources of symbol information, it is
909 possible for the minimal symbol table to contain many duplicate entries.
910 As an example, SVR4 systems use ELF formatted object files, which
911 usually contain at least two different types of symbol tables (a
912 standard ELF one and a smaller dynamic linking table), as well as
913 DWARF debugging information for files compiled with -g.
914
915 Without compacting, the minimal symbol table for gdb itself contains
916 over a 1000 duplicates, about a third of the total table size. Aside
917 from the potential trap of not noticing that two successive entries
918 identify the same location, this duplication impacts the time required
919 to linearly scan the table, which is done in a number of places. So we
920 just do one linear scan here and toss out the duplicates.
921
922 Note that we are not concerned here about recovering the space that
923 is potentially freed up, because the strings themselves are allocated
924 on the objfile_obstack, and will get automatically freed when the symbol
925 table is freed. The caller can free up the unused minimal symbols at
926 the end of the compacted region if their allocation strategy allows it.
927
928 Also note we only go up to the next to last entry within the loop
929 and then copy the last entry explicitly after the loop terminates.
930
931 Since the different sources of information for each symbol may
932 have different levels of "completeness", we may have duplicates
933 that have one entry with type "mst_unknown" and the other with a
934 known type. So if the one we are leaving alone has type mst_unknown,
935 overwrite its type with the type from the one we are compacting out. */
936
937 static int
938 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
939 struct objfile *objfile)
940 {
941 struct minimal_symbol *copyfrom;
942 struct minimal_symbol *copyto;
943
944 if (mcount > 0)
945 {
946 copyfrom = copyto = msymbol;
947 while (copyfrom < msymbol + mcount - 1)
948 {
949 if (SYMBOL_VALUE_ADDRESS (copyfrom)
950 == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
951 && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
952 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
953 {
954 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
955 {
956 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
957 }
958 copyfrom++;
959 }
960 else
961 *copyto++ = *copyfrom++;
962 }
963 *copyto++ = *copyfrom++;
964 mcount = copyto - msymbol;
965 }
966 return (mcount);
967 }
968
969 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
970 after compacting or sorting the table since the entries move around
971 thus causing the internal minimal_symbol pointers to become jumbled. */
972
973 static void
974 build_minimal_symbol_hash_tables (struct objfile *objfile)
975 {
976 int i;
977 struct minimal_symbol *msym;
978
979 /* Clear the hash tables. */
980 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
981 {
982 objfile->msymbol_hash[i] = 0;
983 objfile->msymbol_demangled_hash[i] = 0;
984 }
985
986 /* Now, (re)insert the actual entries. */
987 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
988 i > 0;
989 i--, msym++)
990 {
991 msym->hash_next = 0;
992 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
993
994 msym->demangled_hash_next = 0;
995 if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
996 add_minsym_to_demangled_hash_table (msym,
997 objfile->msymbol_demangled_hash);
998 }
999 }
1000
1001 /* Add the minimal symbols in the existing bunches to the objfile's official
1002 minimal symbol table. In most cases there is no minimal symbol table yet
1003 for this objfile, and the existing bunches are used to create one. Once
1004 in a while (for shared libraries for example), we add symbols (e.g. common
1005 symbols) to an existing objfile.
1006
1007 Because of the way minimal symbols are collected, we generally have no way
1008 of knowing what source language applies to any particular minimal symbol.
1009 Specifically, we have no way of knowing if the minimal symbol comes from a
1010 C++ compilation unit or not. So for the sake of supporting cached
1011 demangled C++ names, we have no choice but to try and demangle each new one
1012 that comes in. If the demangling succeeds, then we assume it is a C++
1013 symbol and set the symbol's language and demangled name fields
1014 appropriately. Note that in order to avoid unnecessary demanglings, and
1015 allocating obstack space that subsequently can't be freed for the demangled
1016 names, we mark all newly added symbols with language_auto. After
1017 compaction of the minimal symbols, we go back and scan the entire minimal
1018 symbol table looking for these new symbols. For each new symbol we attempt
1019 to demangle it, and if successful, record it as a language_cplus symbol
1020 and cache the demangled form on the symbol obstack. Symbols which don't
1021 demangle are marked as language_unknown symbols, which inhibits future
1022 attempts to demangle them if we later add more minimal symbols. */
1023
1024 void
1025 install_minimal_symbols (struct objfile *objfile)
1026 {
1027 int bindex;
1028 int mcount;
1029 struct msym_bunch *bunch;
1030 struct minimal_symbol *msymbols;
1031 int alloc_count;
1032
1033 if (msym_count > 0)
1034 {
1035 /* Allocate enough space in the obstack, into which we will gather the
1036 bunches of new and existing minimal symbols, sort them, and then
1037 compact out the duplicate entries. Once we have a final table,
1038 we will give back the excess space. */
1039
1040 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1041 obstack_blank (&objfile->objfile_obstack,
1042 alloc_count * sizeof (struct minimal_symbol));
1043 msymbols = (struct minimal_symbol *)
1044 obstack_base (&objfile->objfile_obstack);
1045
1046 /* Copy in the existing minimal symbols, if there are any. */
1047
1048 if (objfile->minimal_symbol_count)
1049 memcpy ((char *) msymbols, (char *) objfile->msymbols,
1050 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1051
1052 /* Walk through the list of minimal symbol bunches, adding each symbol
1053 to the new contiguous array of symbols. Note that we start with the
1054 current, possibly partially filled bunch (thus we use the current
1055 msym_bunch_index for the first bunch we copy over), and thereafter
1056 each bunch is full. */
1057
1058 mcount = objfile->minimal_symbol_count;
1059
1060 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1061 {
1062 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1063 msymbols[mcount] = bunch->contents[bindex];
1064 msym_bunch_index = BUNCH_SIZE;
1065 }
1066
1067 /* Sort the minimal symbols by address. */
1068
1069 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1070 compare_minimal_symbols);
1071
1072 /* Compact out any duplicates, and free up whatever space we are
1073 no longer using. */
1074
1075 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1076
1077 obstack_blank (&objfile->objfile_obstack,
1078 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1079 msymbols = (struct minimal_symbol *)
1080 obstack_finish (&objfile->objfile_obstack);
1081
1082 /* We also terminate the minimal symbol table with a "null symbol",
1083 which is *not* included in the size of the table. This makes it
1084 easier to find the end of the table when we are handed a pointer
1085 to some symbol in the middle of it. Zero out the fields in the
1086 "null symbol" allocated at the end of the array. Note that the
1087 symbol count does *not* include this null symbol, which is why it
1088 is indexed by mcount and not mcount-1. */
1089
1090 SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
1091 SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
1092 MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
1093 MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
1094 MSYMBOL_SIZE (&msymbols[mcount]) = 0;
1095 MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
1096 SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown);
1097
1098 /* Attach the minimal symbol table to the specified objfile.
1099 The strings themselves are also located in the objfile_obstack
1100 of this objfile. */
1101
1102 objfile->minimal_symbol_count = mcount;
1103 objfile->msymbols = msymbols;
1104
1105 /* Try to guess the appropriate C++ ABI by looking at the names
1106 of the minimal symbols in the table. */
1107 {
1108 int i;
1109
1110 for (i = 0; i < mcount; i++)
1111 {
1112 /* If a symbol's name starts with _Z and was successfully
1113 demangled, then we can assume we've found a GNU v3 symbol.
1114 For now we set the C++ ABI globally; if the user is
1115 mixing ABIs then the user will need to "set cp-abi"
1116 manually. */
1117 const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1118 if (name[0] == '_' && name[1] == 'Z'
1119 && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1120 {
1121 set_cp_abi_as_auto_default ("gnu-v3");
1122 break;
1123 }
1124 }
1125 }
1126
1127 /* Now build the hash tables; we can't do this incrementally
1128 at an earlier point since we weren't finished with the obstack
1129 yet. (And if the msymbol obstack gets moved, all the internal
1130 pointers to other msymbols need to be adjusted.) */
1131 build_minimal_symbol_hash_tables (objfile);
1132 }
1133 }
1134
1135 /* Sort all the minimal symbols in OBJFILE. */
1136
1137 void
1138 msymbols_sort (struct objfile *objfile)
1139 {
1140 qsort (objfile->msymbols, objfile->minimal_symbol_count,
1141 sizeof (struct minimal_symbol), compare_minimal_symbols);
1142 build_minimal_symbol_hash_tables (objfile);
1143 }
1144
1145 /* Check if PC is in a shared library trampoline code stub.
1146 Return minimal symbol for the trampoline entry or NULL if PC is not
1147 in a trampoline code stub. */
1148
1149 struct minimal_symbol *
1150 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1151 {
1152 struct obj_section *section = find_pc_section (pc);
1153 struct minimal_symbol *msymbol;
1154
1155 if (section == NULL)
1156 return NULL;
1157 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1158
1159 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1160 return msymbol;
1161 return NULL;
1162 }
1163
1164 /* If PC is in a shared library trampoline code stub, return the
1165 address of the `real' function belonging to the stub.
1166 Return 0 if PC is not in a trampoline code stub or if the real
1167 function is not found in the minimal symbol table.
1168
1169 We may fail to find the right function if a function with the
1170 same name is defined in more than one shared library, but this
1171 is considered bad programming style. We could return 0 if we find
1172 a duplicate function in case this matters someday. */
1173
1174 CORE_ADDR
1175 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1176 {
1177 struct objfile *objfile;
1178 struct minimal_symbol *msymbol;
1179 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1180
1181 if (tsymbol != NULL)
1182 {
1183 ALL_MSYMBOLS (objfile, msymbol)
1184 {
1185 if (MSYMBOL_TYPE (msymbol) == mst_text
1186 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1187 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1188 return SYMBOL_VALUE_ADDRESS (msymbol);
1189
1190 /* Also handle minimal symbols pointing to function descriptors. */
1191 if (MSYMBOL_TYPE (msymbol) == mst_data
1192 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1193 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1194 {
1195 CORE_ADDR func;
1196 func = gdbarch_convert_from_func_ptr_addr
1197 (get_objfile_arch (objfile),
1198 SYMBOL_VALUE_ADDRESS (msymbol),
1199 &current_target);
1200
1201 /* Ignore data symbols that are not function descriptors. */
1202 if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1203 return func;
1204 }
1205 }
1206 }
1207 return 0;
1208 }
This page took 0.062015 seconds and 4 git commands to generate.