2010-04-12 Matthew Gretton-Dann <matthew.gretton-dann@arm.com>
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying minimal symbol tables.
24
25 Minimal symbol tables are used to hold some very basic information about
26 all defined global symbols (text, data, bss, abs, etc). The only two
27 required pieces of information are the symbol's name and the address
28 associated with that symbol.
29
30 In many cases, even if a file was compiled with no special options for
31 debugging at all, as long as was not stripped it will contain sufficient
32 information to build useful minimal symbol tables using this structure.
33
34 Even when a file contains enough debugging information to build a full
35 symbol table, these minimal symbols are still useful for quickly mapping
36 between names and addresses, and vice versa. They are also sometimes used
37 to figure out what full symbol table entries need to be read in. */
38
39
40 #include "defs.h"
41 #include <ctype.h>
42 #include "gdb_string.h"
43 #include "symtab.h"
44 #include "bfd.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "demangle.h"
48 #include "value.h"
49 #include "cp-abi.h"
50 #include "target.h"
51 #include "cp-support.h"
52 #include "language.h"
53
54 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
55 At the end, copy them all into one newly allocated location on an objfile's
56 symbol obstack. */
57
58 #define BUNCH_SIZE 127
59
60 struct msym_bunch
61 {
62 struct msym_bunch *next;
63 struct minimal_symbol contents[BUNCH_SIZE];
64 };
65
66 /* Bunch currently being filled up.
67 The next field points to chain of filled bunches. */
68
69 static struct msym_bunch *msym_bunch;
70
71 /* Number of slots filled in current bunch. */
72
73 static int msym_bunch_index;
74
75 /* Total number of minimal symbols recorded so far for the objfile. */
76
77 static int msym_count;
78
79 /* Compute a hash code based using the same criteria as `strcmp_iw'. */
80
81 unsigned int
82 msymbol_hash_iw (const char *string)
83 {
84 unsigned int hash = 0;
85 while (*string && *string != '(')
86 {
87 while (isspace (*string))
88 ++string;
89 if (*string && *string != '(')
90 {
91 hash = hash * 67 + *string - 113;
92 ++string;
93 }
94 }
95 return hash;
96 }
97
98 /* Compute a hash code for a string. */
99
100 unsigned int
101 msymbol_hash (const char *string)
102 {
103 unsigned int hash = 0;
104 for (; *string; ++string)
105 hash = hash * 67 + *string - 113;
106 return hash;
107 }
108
109 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
110 void
111 add_minsym_to_hash_table (struct minimal_symbol *sym,
112 struct minimal_symbol **table)
113 {
114 if (sym->hash_next == NULL)
115 {
116 unsigned int hash
117 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
118 sym->hash_next = table[hash];
119 table[hash] = sym;
120 }
121 }
122
123 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
124 TABLE. */
125 static void
126 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
127 struct minimal_symbol **table)
128 {
129 if (sym->demangled_hash_next == NULL)
130 {
131 unsigned int hash
132 = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
133 sym->demangled_hash_next = table[hash];
134 table[hash] = sym;
135 }
136 }
137
138
139 /* Return OBJFILE where minimal symbol SYM is defined. */
140 struct objfile *
141 msymbol_objfile (struct minimal_symbol *sym)
142 {
143 struct objfile *objf;
144 struct minimal_symbol *tsym;
145
146 unsigned int hash
147 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
148
149 for (objf = object_files; objf; objf = objf->next)
150 for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
151 if (tsym == sym)
152 return objf;
153
154 /* We should always be able to find the objfile ... */
155 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
156 }
157
158
159 /* Look through all the current minimal symbol tables and find the
160 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
161 the search to that objfile. If SFILE is non-NULL, the only file-scope
162 symbols considered will be from that source file (global symbols are
163 still preferred). Returns a pointer to the minimal symbol that
164 matches, or NULL if no match is found.
165
166 Note: One instance where there may be duplicate minimal symbols with
167 the same name is when the symbol tables for a shared library and the
168 symbol tables for an executable contain global symbols with the same
169 names (the dynamic linker deals with the duplication).
170
171 It's also possible to have minimal symbols with different mangled
172 names, but identical demangled names. For example, the GNU C++ v3
173 ABI requires the generation of two (or perhaps three) copies of
174 constructor functions --- "in-charge", "not-in-charge", and
175 "allocate" copies; destructors may be duplicated as well.
176 Obviously, there must be distinct mangled names for each of these,
177 but the demangled names are all the same: S::S or S::~S. */
178
179 struct minimal_symbol *
180 lookup_minimal_symbol (const char *name, const char *sfile,
181 struct objfile *objf)
182 {
183 struct objfile *objfile;
184 struct minimal_symbol *msymbol;
185 struct minimal_symbol *found_symbol = NULL;
186 struct minimal_symbol *found_file_symbol = NULL;
187 struct minimal_symbol *trampoline_symbol = NULL;
188
189 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
190 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
191
192 int needtofreename = 0;
193 const char *modified_name;
194
195 if (sfile != NULL)
196 {
197 char *p = strrchr (sfile, '/');
198 if (p != NULL)
199 sfile = p + 1;
200 }
201
202 /* For C++, canonicalize the input name. */
203 modified_name = name;
204 if (current_language->la_language == language_cplus)
205 {
206 char *cname = cp_canonicalize_string (name);
207 if (cname)
208 {
209 modified_name = cname;
210 needtofreename = 1;
211 }
212 }
213
214 for (objfile = object_files;
215 objfile != NULL && found_symbol == NULL;
216 objfile = objfile->next)
217 {
218 if (objf == NULL || objf == objfile
219 || objf == objfile->separate_debug_objfile_backlink)
220 {
221 /* Do two passes: the first over the ordinary hash table,
222 and the second over the demangled hash table. */
223 int pass;
224
225 for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
226 {
227 /* Select hash list according to pass. */
228 if (pass == 1)
229 msymbol = objfile->msymbol_hash[hash];
230 else
231 msymbol = objfile->msymbol_demangled_hash[dem_hash];
232
233 while (msymbol != NULL && found_symbol == NULL)
234 {
235 int match;
236
237 if (pass == 1)
238 {
239 match = strcmp (SYMBOL_LINKAGE_NAME (msymbol),
240 modified_name) == 0;
241 }
242 else
243 {
244 match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
245 modified_name);
246 }
247
248 if (match)
249 {
250 switch (MSYMBOL_TYPE (msymbol))
251 {
252 case mst_file_text:
253 case mst_file_data:
254 case mst_file_bss:
255 if (sfile == NULL
256 || strcmp (msymbol->filename, sfile) == 0)
257 found_file_symbol = msymbol;
258 break;
259
260 case mst_solib_trampoline:
261
262 /* If a trampoline symbol is found, we prefer to
263 keep looking for the *real* symbol. If the
264 actual symbol is not found, then we'll use the
265 trampoline entry. */
266 if (trampoline_symbol == NULL)
267 trampoline_symbol = msymbol;
268 break;
269
270 case mst_unknown:
271 default:
272 found_symbol = msymbol;
273 break;
274 }
275 }
276
277 /* Find the next symbol on the hash chain. */
278 if (pass == 1)
279 msymbol = msymbol->hash_next;
280 else
281 msymbol = msymbol->demangled_hash_next;
282 }
283 }
284 }
285 }
286
287 if (needtofreename)
288 xfree ((void *) modified_name);
289
290 /* External symbols are best. */
291 if (found_symbol)
292 return found_symbol;
293
294 /* File-local symbols are next best. */
295 if (found_file_symbol)
296 return found_file_symbol;
297
298 /* Symbols for shared library trampolines are next best. */
299 if (trampoline_symbol)
300 return trampoline_symbol;
301
302 return NULL;
303 }
304
305 /* Look through all the current minimal symbol tables and find the
306 first minimal symbol that matches NAME and has text type. If OBJF
307 is non-NULL, limit the search to that objfile. Returns a pointer
308 to the minimal symbol that matches, or NULL if no match is found.
309
310 This function only searches the mangled (linkage) names. */
311
312 struct minimal_symbol *
313 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
314 {
315 struct objfile *objfile;
316 struct minimal_symbol *msymbol;
317 struct minimal_symbol *found_symbol = NULL;
318 struct minimal_symbol *found_file_symbol = NULL;
319
320 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
321
322 for (objfile = object_files;
323 objfile != NULL && found_symbol == NULL;
324 objfile = objfile->next)
325 {
326 if (objf == NULL || objf == objfile
327 || objf == objfile->separate_debug_objfile_backlink)
328 {
329 for (msymbol = objfile->msymbol_hash[hash];
330 msymbol != NULL && found_symbol == NULL;
331 msymbol = msymbol->hash_next)
332 {
333 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
334 (MSYMBOL_TYPE (msymbol) == mst_text ||
335 MSYMBOL_TYPE (msymbol) == mst_file_text))
336 {
337 switch (MSYMBOL_TYPE (msymbol))
338 {
339 case mst_file_text:
340 found_file_symbol = msymbol;
341 break;
342 default:
343 found_symbol = msymbol;
344 break;
345 }
346 }
347 }
348 }
349 }
350 /* External symbols are best. */
351 if (found_symbol)
352 return found_symbol;
353
354 /* File-local symbols are next best. */
355 if (found_file_symbol)
356 return found_file_symbol;
357
358 return NULL;
359 }
360
361 /* Look through all the current minimal symbol tables and find the
362 first minimal symbol that matches NAME and PC. If OBJF is non-NULL,
363 limit the search to that objfile. Returns a pointer to the minimal
364 symbol that matches, or NULL if no match is found. */
365
366 struct minimal_symbol *
367 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
368 struct objfile *objf)
369 {
370 struct objfile *objfile;
371 struct minimal_symbol *msymbol;
372
373 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
374
375 for (objfile = object_files;
376 objfile != NULL;
377 objfile = objfile->next)
378 {
379 if (objf == NULL || objf == objfile
380 || objf == objfile->separate_debug_objfile_backlink)
381 {
382 for (msymbol = objfile->msymbol_hash[hash];
383 msymbol != NULL;
384 msymbol = msymbol->hash_next)
385 {
386 if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
387 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
388 return msymbol;
389 }
390 }
391 }
392
393 return NULL;
394 }
395
396 /* Look through all the current minimal symbol tables and find the
397 first minimal symbol that matches NAME and is a solib trampoline.
398 If OBJF is non-NULL, limit the search to that objfile. Returns a
399 pointer to the minimal symbol that matches, or NULL if no match is
400 found.
401
402 This function only searches the mangled (linkage) names. */
403
404 struct minimal_symbol *
405 lookup_minimal_symbol_solib_trampoline (const char *name,
406 struct objfile *objf)
407 {
408 struct objfile *objfile;
409 struct minimal_symbol *msymbol;
410 struct minimal_symbol *found_symbol = NULL;
411
412 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
413
414 for (objfile = object_files;
415 objfile != NULL && found_symbol == NULL;
416 objfile = objfile->next)
417 {
418 if (objf == NULL || objf == objfile
419 || objf == objfile->separate_debug_objfile_backlink)
420 {
421 for (msymbol = objfile->msymbol_hash[hash];
422 msymbol != NULL && found_symbol == NULL;
423 msymbol = msymbol->hash_next)
424 {
425 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
426 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
427 return msymbol;
428 }
429 }
430 }
431
432 return NULL;
433 }
434
435 /* Search through the minimal symbol table for each objfile and find
436 the symbol whose address is the largest address that is still less
437 than or equal to PC, and matches SECTION (which is not NULL).
438 Returns a pointer to the minimal symbol if such a symbol is found,
439 or NULL if PC is not in a suitable range.
440 Note that we need to look through ALL the minimal symbol tables
441 before deciding on the symbol that comes closest to the specified PC.
442 This is because objfiles can overlap, for example objfile A has .text
443 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
444 .data at 0x40048.
445
446 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
447 there are text and trampoline symbols at the same address.
448 Otherwise prefer mst_text symbols. */
449
450 static struct minimal_symbol *
451 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
452 struct obj_section *section,
453 int want_trampoline)
454 {
455 int lo;
456 int hi;
457 int new;
458 struct objfile *objfile;
459 struct minimal_symbol *msymbol;
460 struct minimal_symbol *best_symbol = NULL;
461 enum minimal_symbol_type want_type, other_type;
462
463 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
464 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
465
466 /* We can not require the symbol found to be in section, because
467 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
468 symbol - but find_pc_section won't return an absolute section and
469 hence the code below would skip over absolute symbols. We can
470 still take advantage of the call to find_pc_section, though - the
471 object file still must match. In case we have separate debug
472 files, search both the file and its separate debug file. There's
473 no telling which one will have the minimal symbols. */
474
475 gdb_assert (section != NULL);
476
477 for (objfile = section->objfile;
478 objfile != NULL;
479 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
480 {
481 /* If this objfile has a minimal symbol table, go search it using
482 a binary search. Note that a minimal symbol table always consists
483 of at least two symbols, a "real" symbol and the terminating
484 "null symbol". If there are no real symbols, then there is no
485 minimal symbol table at all. */
486
487 if (objfile->minimal_symbol_count > 0)
488 {
489 int best_zero_sized = -1;
490
491 msymbol = objfile->msymbols;
492 lo = 0;
493 hi = objfile->minimal_symbol_count - 1;
494
495 /* This code assumes that the minimal symbols are sorted by
496 ascending address values. If the pc value is greater than or
497 equal to the first symbol's address, then some symbol in this
498 minimal symbol table is a suitable candidate for being the
499 "best" symbol. This includes the last real symbol, for cases
500 where the pc value is larger than any address in this vector.
501
502 By iterating until the address associated with the current
503 hi index (the endpoint of the test interval) is less than
504 or equal to the desired pc value, we accomplish two things:
505 (1) the case where the pc value is larger than any minimal
506 symbol address is trivially solved, (2) the address associated
507 with the hi index is always the one we want when the interation
508 terminates. In essence, we are iterating the test interval
509 down until the pc value is pushed out of it from the high end.
510
511 Warning: this code is trickier than it would appear at first. */
512
513 /* Should also require that pc is <= end of objfile. FIXME! */
514 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
515 {
516 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
517 {
518 /* pc is still strictly less than highest address */
519 /* Note "new" will always be >= lo */
520 new = (lo + hi) / 2;
521 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
522 (lo == new))
523 {
524 hi = new;
525 }
526 else
527 {
528 lo = new;
529 }
530 }
531
532 /* If we have multiple symbols at the same address, we want
533 hi to point to the last one. That way we can find the
534 right symbol if it has an index greater than hi. */
535 while (hi < objfile->minimal_symbol_count - 1
536 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
537 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
538 hi++;
539
540 /* Skip various undesirable symbols. */
541 while (hi >= 0)
542 {
543 /* Skip any absolute symbols. This is apparently
544 what adb and dbx do, and is needed for the CM-5.
545 There are two known possible problems: (1) on
546 ELF, apparently end, edata, etc. are absolute.
547 Not sure ignoring them here is a big deal, but if
548 we want to use them, the fix would go in
549 elfread.c. (2) I think shared library entry
550 points on the NeXT are absolute. If we want
551 special handling for this it probably should be
552 triggered by a special mst_abs_or_lib or some
553 such. */
554
555 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
556 {
557 hi--;
558 continue;
559 }
560
561 /* If SECTION was specified, skip any symbol from
562 wrong section. */
563 if (section
564 /* Some types of debug info, such as COFF,
565 don't fill the bfd_section member, so don't
566 throw away symbols on those platforms. */
567 && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
568 && (!matching_obj_sections
569 (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
570 {
571 hi--;
572 continue;
573 }
574
575 /* If we are looking for a trampoline and this is a
576 text symbol, or the other way around, check the
577 preceeding symbol too. If they are otherwise
578 identical prefer that one. */
579 if (hi > 0
580 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
581 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
582 && (MSYMBOL_SIZE (&msymbol[hi])
583 == MSYMBOL_SIZE (&msymbol[hi - 1]))
584 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
585 == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
586 && (SYMBOL_OBJ_SECTION (&msymbol[hi])
587 == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
588 {
589 hi--;
590 continue;
591 }
592
593 /* If the minimal symbol has a zero size, save it
594 but keep scanning backwards looking for one with
595 a non-zero size. A zero size may mean that the
596 symbol isn't an object or function (e.g. a
597 label), or it may just mean that the size was not
598 specified. */
599 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
600 && best_zero_sized == -1)
601 {
602 best_zero_sized = hi;
603 hi--;
604 continue;
605 }
606
607 /* If we are past the end of the current symbol, try
608 the previous symbol if it has a larger overlapping
609 size. This happens on i686-pc-linux-gnu with glibc;
610 the nocancel variants of system calls are inside
611 the cancellable variants, but both have sizes. */
612 if (hi > 0
613 && MSYMBOL_SIZE (&msymbol[hi]) != 0
614 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
615 + MSYMBOL_SIZE (&msymbol[hi]))
616 && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
617 + MSYMBOL_SIZE (&msymbol[hi - 1])))
618 {
619 hi--;
620 continue;
621 }
622
623 /* Otherwise, this symbol must be as good as we're going
624 to get. */
625 break;
626 }
627
628 /* If HI has a zero size, and best_zero_sized is set,
629 then we had two or more zero-sized symbols; prefer
630 the first one we found (which may have a higher
631 address). Also, if we ran off the end, be sure
632 to back up. */
633 if (best_zero_sized != -1
634 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
635 hi = best_zero_sized;
636
637 /* If the minimal symbol has a non-zero size, and this
638 PC appears to be outside the symbol's contents, then
639 refuse to use this symbol. If we found a zero-sized
640 symbol with an address greater than this symbol's,
641 use that instead. We assume that if symbols have
642 specified sizes, they do not overlap. */
643
644 if (hi >= 0
645 && MSYMBOL_SIZE (&msymbol[hi]) != 0
646 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
647 + MSYMBOL_SIZE (&msymbol[hi])))
648 {
649 if (best_zero_sized != -1)
650 hi = best_zero_sized;
651 else
652 /* Go on to the next object file. */
653 continue;
654 }
655
656 /* The minimal symbol indexed by hi now is the best one in this
657 objfile's minimal symbol table. See if it is the best one
658 overall. */
659
660 if (hi >= 0
661 && ((best_symbol == NULL) ||
662 (SYMBOL_VALUE_ADDRESS (best_symbol) <
663 SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
664 {
665 best_symbol = &msymbol[hi];
666 }
667 }
668 }
669 }
670 return (best_symbol);
671 }
672
673 struct minimal_symbol *
674 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
675 {
676 if (section == NULL)
677 {
678 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
679 force the section but that (well unless you're doing overlay
680 debugging) always returns NULL making the call somewhat useless. */
681 section = find_pc_section (pc);
682 if (section == NULL)
683 return NULL;
684 }
685 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
686 }
687
688 /* Backward compatibility: search through the minimal symbol table
689 for a matching PC (no section given) */
690
691 struct minimal_symbol *
692 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
693 {
694 return lookup_minimal_symbol_by_pc_section (pc, NULL);
695 }
696
697 /* Find the minimal symbol named NAME, and return both the minsym
698 struct and its objfile. This only checks the linkage name. Sets
699 *OBJFILE_P and returns the minimal symbol, if it is found. If it
700 is not found, returns NULL. */
701
702 struct minimal_symbol *
703 lookup_minimal_symbol_and_objfile (const char *name,
704 struct objfile **objfile_p)
705 {
706 struct objfile *objfile;
707 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
708
709 ALL_OBJFILES (objfile)
710 {
711 struct minimal_symbol *msym;
712
713 for (msym = objfile->msymbol_hash[hash];
714 msym != NULL;
715 msym = msym->hash_next)
716 {
717 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
718 {
719 *objfile_p = objfile;
720 return msym;
721 }
722 }
723 }
724
725 return 0;
726 }
727 \f
728
729 /* Return leading symbol character for a BFD. If BFD is NULL,
730 return the leading symbol character from the main objfile. */
731
732 static int get_symbol_leading_char (bfd *);
733
734 static int
735 get_symbol_leading_char (bfd *abfd)
736 {
737 if (abfd != NULL)
738 return bfd_get_symbol_leading_char (abfd);
739 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
740 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
741 return 0;
742 }
743
744 /* Prepare to start collecting minimal symbols. Note that presetting
745 msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
746 symbol to allocate the memory for the first bunch. */
747
748 void
749 init_minimal_symbol_collection (void)
750 {
751 msym_count = 0;
752 msym_bunch = NULL;
753 msym_bunch_index = BUNCH_SIZE;
754 }
755
756 void
757 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
758 enum minimal_symbol_type ms_type,
759 struct objfile *objfile)
760 {
761 int section;
762
763 switch (ms_type)
764 {
765 case mst_text:
766 case mst_file_text:
767 case mst_solib_trampoline:
768 section = SECT_OFF_TEXT (objfile);
769 break;
770 case mst_data:
771 case mst_file_data:
772 section = SECT_OFF_DATA (objfile);
773 break;
774 case mst_bss:
775 case mst_file_bss:
776 section = SECT_OFF_BSS (objfile);
777 break;
778 default:
779 section = -1;
780 }
781
782 prim_record_minimal_symbol_and_info (name, address, ms_type,
783 section, NULL, objfile);
784 }
785
786 /* Record a minimal symbol in the msym bunches. Returns the symbol
787 newly created. */
788
789 struct minimal_symbol *
790 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
791 CORE_ADDR address,
792 enum minimal_symbol_type ms_type,
793 int section,
794 asection *bfd_section,
795 struct objfile *objfile)
796 {
797 struct obj_section *obj_section;
798 struct msym_bunch *new;
799 struct minimal_symbol *msymbol;
800
801 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
802 the minimal symbols, because if there is also another symbol
803 at the same address (e.g. the first function of the file),
804 lookup_minimal_symbol_by_pc would have no way of getting the
805 right one. */
806 if (ms_type == mst_file_text && name[0] == 'g'
807 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
808 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
809 return (NULL);
810
811 /* It's safe to strip the leading char here once, since the name
812 is also stored stripped in the minimal symbol table. */
813 if (name[0] == get_symbol_leading_char (objfile->obfd))
814 {
815 ++name;
816 --name_len;
817 }
818
819 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
820 return (NULL);
821
822 if (msym_bunch_index == BUNCH_SIZE)
823 {
824 new = XCALLOC (1, struct msym_bunch);
825 msym_bunch_index = 0;
826 new->next = msym_bunch;
827 msym_bunch = new;
828 }
829 msymbol = &msym_bunch->contents[msym_bunch_index];
830 SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown);
831 SYMBOL_LANGUAGE (msymbol) = language_auto;
832 SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
833
834 SYMBOL_VALUE_ADDRESS (msymbol) = address;
835 SYMBOL_SECTION (msymbol) = section;
836 SYMBOL_OBJ_SECTION (msymbol) = NULL;
837
838 /* Find obj_section corresponding to bfd_section. */
839 if (bfd_section)
840 ALL_OBJFILE_OSECTIONS (objfile, obj_section)
841 {
842 if (obj_section->the_bfd_section == bfd_section)
843 {
844 SYMBOL_OBJ_SECTION (msymbol) = obj_section;
845 break;
846 }
847 }
848
849 MSYMBOL_TYPE (msymbol) = ms_type;
850 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
851 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
852 MSYMBOL_SIZE (msymbol) = 0;
853
854 /* The hash pointers must be cleared! If they're not,
855 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
856 msymbol->hash_next = NULL;
857 msymbol->demangled_hash_next = NULL;
858
859 msym_bunch_index++;
860 msym_count++;
861 OBJSTAT (objfile, n_minsyms++);
862 return msymbol;
863 }
864
865 /* Record a minimal symbol in the msym bunches. Returns the symbol
866 newly created. */
867
868 struct minimal_symbol *
869 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
870 enum minimal_symbol_type ms_type,
871 int section,
872 asection *bfd_section,
873 struct objfile *objfile)
874 {
875 return prim_record_minimal_symbol_full (name, strlen (name), 1,
876 address, ms_type, section,
877 bfd_section, objfile);
878 }
879
880 /* Compare two minimal symbols by address and return a signed result based
881 on unsigned comparisons, so that we sort into unsigned numeric order.
882 Within groups with the same address, sort by name. */
883
884 static int
885 compare_minimal_symbols (const void *fn1p, const void *fn2p)
886 {
887 const struct minimal_symbol *fn1;
888 const struct minimal_symbol *fn2;
889
890 fn1 = (const struct minimal_symbol *) fn1p;
891 fn2 = (const struct minimal_symbol *) fn2p;
892
893 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
894 {
895 return (-1); /* addr 1 is less than addr 2 */
896 }
897 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
898 {
899 return (1); /* addr 1 is greater than addr 2 */
900 }
901 else
902 /* addrs are equal: sort by name */
903 {
904 char *name1 = SYMBOL_LINKAGE_NAME (fn1);
905 char *name2 = SYMBOL_LINKAGE_NAME (fn2);
906
907 if (name1 && name2) /* both have names */
908 return strcmp (name1, name2);
909 else if (name2)
910 return 1; /* fn1 has no name, so it is "less" */
911 else if (name1) /* fn2 has no name, so it is "less" */
912 return -1;
913 else
914 return (0); /* neither has a name, so they're equal. */
915 }
916 }
917
918 /* Discard the currently collected minimal symbols, if any. If we wish
919 to save them for later use, we must have already copied them somewhere
920 else before calling this function.
921
922 FIXME: We could allocate the minimal symbol bunches on their own
923 obstack and then simply blow the obstack away when we are done with
924 it. Is it worth the extra trouble though? */
925
926 static void
927 do_discard_minimal_symbols_cleanup (void *arg)
928 {
929 struct msym_bunch *next;
930
931 while (msym_bunch != NULL)
932 {
933 next = msym_bunch->next;
934 xfree (msym_bunch);
935 msym_bunch = next;
936 }
937 }
938
939 struct cleanup *
940 make_cleanup_discard_minimal_symbols (void)
941 {
942 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
943 }
944
945
946
947 /* Compact duplicate entries out of a minimal symbol table by walking
948 through the table and compacting out entries with duplicate addresses
949 and matching names. Return the number of entries remaining.
950
951 On entry, the table resides between msymbol[0] and msymbol[mcount].
952 On exit, it resides between msymbol[0] and msymbol[result_count].
953
954 When files contain multiple sources of symbol information, it is
955 possible for the minimal symbol table to contain many duplicate entries.
956 As an example, SVR4 systems use ELF formatted object files, which
957 usually contain at least two different types of symbol tables (a
958 standard ELF one and a smaller dynamic linking table), as well as
959 DWARF debugging information for files compiled with -g.
960
961 Without compacting, the minimal symbol table for gdb itself contains
962 over a 1000 duplicates, about a third of the total table size. Aside
963 from the potential trap of not noticing that two successive entries
964 identify the same location, this duplication impacts the time required
965 to linearly scan the table, which is done in a number of places. So we
966 just do one linear scan here and toss out the duplicates.
967
968 Note that we are not concerned here about recovering the space that
969 is potentially freed up, because the strings themselves are allocated
970 on the objfile_obstack, and will get automatically freed when the symbol
971 table is freed. The caller can free up the unused minimal symbols at
972 the end of the compacted region if their allocation strategy allows it.
973
974 Also note we only go up to the next to last entry within the loop
975 and then copy the last entry explicitly after the loop terminates.
976
977 Since the different sources of information for each symbol may
978 have different levels of "completeness", we may have duplicates
979 that have one entry with type "mst_unknown" and the other with a
980 known type. So if the one we are leaving alone has type mst_unknown,
981 overwrite its type with the type from the one we are compacting out. */
982
983 static int
984 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
985 struct objfile *objfile)
986 {
987 struct minimal_symbol *copyfrom;
988 struct minimal_symbol *copyto;
989
990 if (mcount > 0)
991 {
992 copyfrom = copyto = msymbol;
993 while (copyfrom < msymbol + mcount - 1)
994 {
995 if (SYMBOL_VALUE_ADDRESS (copyfrom)
996 == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
997 && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
998 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
999 {
1000 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1001 {
1002 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1003 }
1004 copyfrom++;
1005 }
1006 else
1007 *copyto++ = *copyfrom++;
1008 }
1009 *copyto++ = *copyfrom++;
1010 mcount = copyto - msymbol;
1011 }
1012 return (mcount);
1013 }
1014
1015 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1016 after compacting or sorting the table since the entries move around
1017 thus causing the internal minimal_symbol pointers to become jumbled. */
1018
1019 static void
1020 build_minimal_symbol_hash_tables (struct objfile *objfile)
1021 {
1022 int i;
1023 struct minimal_symbol *msym;
1024
1025 /* Clear the hash tables. */
1026 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1027 {
1028 objfile->msymbol_hash[i] = 0;
1029 objfile->msymbol_demangled_hash[i] = 0;
1030 }
1031
1032 /* Now, (re)insert the actual entries. */
1033 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1034 i > 0;
1035 i--, msym++)
1036 {
1037 msym->hash_next = 0;
1038 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1039
1040 msym->demangled_hash_next = 0;
1041 if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
1042 add_minsym_to_demangled_hash_table (msym,
1043 objfile->msymbol_demangled_hash);
1044 }
1045 }
1046
1047 /* Add the minimal symbols in the existing bunches to the objfile's official
1048 minimal symbol table. In most cases there is no minimal symbol table yet
1049 for this objfile, and the existing bunches are used to create one. Once
1050 in a while (for shared libraries for example), we add symbols (e.g. common
1051 symbols) to an existing objfile.
1052
1053 Because of the way minimal symbols are collected, we generally have no way
1054 of knowing what source language applies to any particular minimal symbol.
1055 Specifically, we have no way of knowing if the minimal symbol comes from a
1056 C++ compilation unit or not. So for the sake of supporting cached
1057 demangled C++ names, we have no choice but to try and demangle each new one
1058 that comes in. If the demangling succeeds, then we assume it is a C++
1059 symbol and set the symbol's language and demangled name fields
1060 appropriately. Note that in order to avoid unnecessary demanglings, and
1061 allocating obstack space that subsequently can't be freed for the demangled
1062 names, we mark all newly added symbols with language_auto. After
1063 compaction of the minimal symbols, we go back and scan the entire minimal
1064 symbol table looking for these new symbols. For each new symbol we attempt
1065 to demangle it, and if successful, record it as a language_cplus symbol
1066 and cache the demangled form on the symbol obstack. Symbols which don't
1067 demangle are marked as language_unknown symbols, which inhibits future
1068 attempts to demangle them if we later add more minimal symbols. */
1069
1070 void
1071 install_minimal_symbols (struct objfile *objfile)
1072 {
1073 int bindex;
1074 int mcount;
1075 struct msym_bunch *bunch;
1076 struct minimal_symbol *msymbols;
1077 int alloc_count;
1078
1079 if (msym_count > 0)
1080 {
1081 /* Allocate enough space in the obstack, into which we will gather the
1082 bunches of new and existing minimal symbols, sort them, and then
1083 compact out the duplicate entries. Once we have a final table,
1084 we will give back the excess space. */
1085
1086 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1087 obstack_blank (&objfile->objfile_obstack,
1088 alloc_count * sizeof (struct minimal_symbol));
1089 msymbols = (struct minimal_symbol *)
1090 obstack_base (&objfile->objfile_obstack);
1091
1092 /* Copy in the existing minimal symbols, if there are any. */
1093
1094 if (objfile->minimal_symbol_count)
1095 memcpy ((char *) msymbols, (char *) objfile->msymbols,
1096 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1097
1098 /* Walk through the list of minimal symbol bunches, adding each symbol
1099 to the new contiguous array of symbols. Note that we start with the
1100 current, possibly partially filled bunch (thus we use the current
1101 msym_bunch_index for the first bunch we copy over), and thereafter
1102 each bunch is full. */
1103
1104 mcount = objfile->minimal_symbol_count;
1105
1106 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1107 {
1108 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1109 msymbols[mcount] = bunch->contents[bindex];
1110 msym_bunch_index = BUNCH_SIZE;
1111 }
1112
1113 /* Sort the minimal symbols by address. */
1114
1115 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1116 compare_minimal_symbols);
1117
1118 /* Compact out any duplicates, and free up whatever space we are
1119 no longer using. */
1120
1121 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1122
1123 obstack_blank (&objfile->objfile_obstack,
1124 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1125 msymbols = (struct minimal_symbol *)
1126 obstack_finish (&objfile->objfile_obstack);
1127
1128 /* We also terminate the minimal symbol table with a "null symbol",
1129 which is *not* included in the size of the table. This makes it
1130 easier to find the end of the table when we are handed a pointer
1131 to some symbol in the middle of it. Zero out the fields in the
1132 "null symbol" allocated at the end of the array. Note that the
1133 symbol count does *not* include this null symbol, which is why it
1134 is indexed by mcount and not mcount-1. */
1135
1136 SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
1137 SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
1138 MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
1139 MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
1140 MSYMBOL_SIZE (&msymbols[mcount]) = 0;
1141 MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
1142 SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown);
1143
1144 /* Attach the minimal symbol table to the specified objfile.
1145 The strings themselves are also located in the objfile_obstack
1146 of this objfile. */
1147
1148 objfile->minimal_symbol_count = mcount;
1149 objfile->msymbols = msymbols;
1150
1151 /* Try to guess the appropriate C++ ABI by looking at the names
1152 of the minimal symbols in the table. */
1153 {
1154 int i;
1155
1156 for (i = 0; i < mcount; i++)
1157 {
1158 /* If a symbol's name starts with _Z and was successfully
1159 demangled, then we can assume we've found a GNU v3 symbol.
1160 For now we set the C++ ABI globally; if the user is
1161 mixing ABIs then the user will need to "set cp-abi"
1162 manually. */
1163 const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1164 if (name[0] == '_' && name[1] == 'Z'
1165 && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1166 {
1167 set_cp_abi_as_auto_default ("gnu-v3");
1168 break;
1169 }
1170 }
1171 }
1172
1173 /* Now build the hash tables; we can't do this incrementally
1174 at an earlier point since we weren't finished with the obstack
1175 yet. (And if the msymbol obstack gets moved, all the internal
1176 pointers to other msymbols need to be adjusted.) */
1177 build_minimal_symbol_hash_tables (objfile);
1178 }
1179 }
1180
1181 /* Sort all the minimal symbols in OBJFILE. */
1182
1183 void
1184 msymbols_sort (struct objfile *objfile)
1185 {
1186 qsort (objfile->msymbols, objfile->minimal_symbol_count,
1187 sizeof (struct minimal_symbol), compare_minimal_symbols);
1188 build_minimal_symbol_hash_tables (objfile);
1189 }
1190
1191 /* Check if PC is in a shared library trampoline code stub.
1192 Return minimal symbol for the trampoline entry or NULL if PC is not
1193 in a trampoline code stub. */
1194
1195 struct minimal_symbol *
1196 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1197 {
1198 struct obj_section *section = find_pc_section (pc);
1199 struct minimal_symbol *msymbol;
1200
1201 if (section == NULL)
1202 return NULL;
1203 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1204
1205 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1206 return msymbol;
1207 return NULL;
1208 }
1209
1210 /* If PC is in a shared library trampoline code stub, return the
1211 address of the `real' function belonging to the stub.
1212 Return 0 if PC is not in a trampoline code stub or if the real
1213 function is not found in the minimal symbol table.
1214
1215 We may fail to find the right function if a function with the
1216 same name is defined in more than one shared library, but this
1217 is considered bad programming style. We could return 0 if we find
1218 a duplicate function in case this matters someday. */
1219
1220 CORE_ADDR
1221 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1222 {
1223 struct objfile *objfile;
1224 struct minimal_symbol *msymbol;
1225 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1226
1227 if (tsymbol != NULL)
1228 {
1229 ALL_MSYMBOLS (objfile, msymbol)
1230 {
1231 if (MSYMBOL_TYPE (msymbol) == mst_text
1232 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1233 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1234 return SYMBOL_VALUE_ADDRESS (msymbol);
1235
1236 /* Also handle minimal symbols pointing to function descriptors. */
1237 if (MSYMBOL_TYPE (msymbol) == mst_data
1238 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1239 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1240 {
1241 CORE_ADDR func;
1242 func = gdbarch_convert_from_func_ptr_addr
1243 (get_objfile_arch (objfile),
1244 SYMBOL_VALUE_ADDRESS (msymbol),
1245 &current_target);
1246
1247 /* Ignore data symbols that are not function descriptors. */
1248 if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1249 return func;
1250 }
1251 }
1252 }
1253 return 0;
1254 }
This page took 0.057776 seconds and 4 git commands to generate.