gdb: add obj_section function to bound_minimal_symbol
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2021 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "gdbsupport/symbol.h"
54 #include <algorithm>
55 #include "safe-ctype.h"
56 #include "gdbsupport/parallel-for.h"
57
58 #if CXX_STD_THREAD
59 #include <mutex>
60 #endif
61
62 /* See minsyms.h. */
63
64 bool
65 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
66 CORE_ADDR *func_address_p)
67 {
68 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
69
70 switch (minsym->type)
71 {
72 case mst_slot_got_plt:
73 case mst_data:
74 case mst_bss:
75 case mst_abs:
76 case mst_file_data:
77 case mst_file_bss:
78 case mst_data_gnu_ifunc:
79 {
80 struct gdbarch *gdbarch = objfile->arch ();
81 CORE_ADDR pc
82 = gdbarch_convert_from_func_ptr_addr (gdbarch, msym_addr,
83 current_top_target ());
84 if (pc != msym_addr)
85 {
86 if (func_address_p != NULL)
87 *func_address_p = pc;
88 return true;
89 }
90 return false;
91 }
92 default:
93 if (func_address_p != NULL)
94 *func_address_p = msym_addr;
95 return true;
96 }
97 }
98
99 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
100 At the end, copy them all into one newly allocated array. */
101
102 #define BUNCH_SIZE 127
103
104 struct msym_bunch
105 {
106 struct msym_bunch *next;
107 struct minimal_symbol contents[BUNCH_SIZE];
108 };
109
110 /* See minsyms.h. */
111
112 unsigned int
113 msymbol_hash_iw (const char *string)
114 {
115 unsigned int hash = 0;
116
117 while (*string && *string != '(')
118 {
119 string = skip_spaces (string);
120 if (*string && *string != '(')
121 {
122 hash = SYMBOL_HASH_NEXT (hash, *string);
123 ++string;
124 }
125 }
126 return hash;
127 }
128
129 /* See minsyms.h. */
130
131 unsigned int
132 msymbol_hash (const char *string)
133 {
134 unsigned int hash = 0;
135
136 for (; *string; ++string)
137 hash = SYMBOL_HASH_NEXT (hash, *string);
138 return hash;
139 }
140
141 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
142 static void
143 add_minsym_to_hash_table (struct minimal_symbol *sym,
144 struct minimal_symbol **table,
145 unsigned int hash_value)
146 {
147 if (sym->hash_next == NULL)
148 {
149 unsigned int hash = hash_value % MINIMAL_SYMBOL_HASH_SIZE;
150
151 sym->hash_next = table[hash];
152 table[hash] = sym;
153 }
154 }
155
156 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
157 TABLE. */
158 static void
159 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
160 struct objfile *objfile,
161 unsigned int hash_value)
162 {
163 if (sym->demangled_hash_next == NULL)
164 {
165 objfile->per_bfd->demangled_hash_languages.set (sym->language ());
166
167 struct minimal_symbol **table
168 = objfile->per_bfd->msymbol_demangled_hash;
169 unsigned int hash_index = hash_value % MINIMAL_SYMBOL_HASH_SIZE;
170 sym->demangled_hash_next = table[hash_index];
171 table[hash_index] = sym;
172 }
173 }
174
175 /* Worker object for lookup_minimal_symbol. Stores temporary results
176 while walking the symbol tables. */
177
178 struct found_minimal_symbols
179 {
180 /* External symbols are best. */
181 bound_minimal_symbol external_symbol {};
182
183 /* File-local symbols are next best. */
184 bound_minimal_symbol file_symbol {};
185
186 /* Symbols for shared library trampolines are next best. */
187 bound_minimal_symbol trampoline_symbol {};
188
189 /* Called when a symbol name matches. Check if the minsym is a
190 better type than what we had already found, and record it in one
191 of the members fields if so. Returns true if we collected the
192 real symbol, in which case we can stop searching. */
193 bool maybe_collect (const char *sfile, objfile *objf,
194 minimal_symbol *msymbol);
195 };
196
197 /* See declaration above. */
198
199 bool
200 found_minimal_symbols::maybe_collect (const char *sfile,
201 struct objfile *objfile,
202 minimal_symbol *msymbol)
203 {
204 switch (MSYMBOL_TYPE (msymbol))
205 {
206 case mst_file_text:
207 case mst_file_data:
208 case mst_file_bss:
209 if (sfile == NULL
210 || filename_cmp (msymbol->filename, sfile) == 0)
211 {
212 file_symbol.minsym = msymbol;
213 file_symbol.objfile = objfile;
214 }
215 break;
216
217 case mst_solib_trampoline:
218
219 /* If a trampoline symbol is found, we prefer to keep
220 looking for the *real* symbol. If the actual symbol
221 is not found, then we'll use the trampoline
222 entry. */
223 if (trampoline_symbol.minsym == NULL)
224 {
225 trampoline_symbol.minsym = msymbol;
226 trampoline_symbol.objfile = objfile;
227 }
228 break;
229
230 case mst_unknown:
231 default:
232 external_symbol.minsym = msymbol;
233 external_symbol.objfile = objfile;
234 /* We have the real symbol. No use looking further. */
235 return true;
236 }
237
238 /* Keep looking. */
239 return false;
240 }
241
242 /* Walk the mangled name hash table, and pass each symbol whose name
243 matches LOOKUP_NAME according to NAMECMP to FOUND. */
244
245 static void
246 lookup_minimal_symbol_mangled (const char *lookup_name,
247 const char *sfile,
248 struct objfile *objfile,
249 struct minimal_symbol **table,
250 unsigned int hash,
251 int (*namecmp) (const char *, const char *),
252 found_minimal_symbols &found)
253 {
254 for (minimal_symbol *msymbol = table[hash];
255 msymbol != NULL;
256 msymbol = msymbol->hash_next)
257 {
258 const char *symbol_name = msymbol->linkage_name ();
259
260 if (namecmp (symbol_name, lookup_name) == 0
261 && found.maybe_collect (sfile, objfile, msymbol))
262 return;
263 }
264 }
265
266 /* Walk the demangled name hash table, and pass each symbol whose name
267 matches LOOKUP_NAME according to MATCHER to FOUND. */
268
269 static void
270 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
271 const char *sfile,
272 struct objfile *objfile,
273 struct minimal_symbol **table,
274 unsigned int hash,
275 symbol_name_matcher_ftype *matcher,
276 found_minimal_symbols &found)
277 {
278 for (minimal_symbol *msymbol = table[hash];
279 msymbol != NULL;
280 msymbol = msymbol->demangled_hash_next)
281 {
282 const char *symbol_name = msymbol->search_name ();
283
284 if (matcher (symbol_name, lookup_name, NULL)
285 && found.maybe_collect (sfile, objfile, msymbol))
286 return;
287 }
288 }
289
290 /* Look through all the current minimal symbol tables and find the
291 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
292 the search to that objfile. If SFILE is non-NULL, the only file-scope
293 symbols considered will be from that source file (global symbols are
294 still preferred). Returns a pointer to the minimal symbol that
295 matches, or NULL if no match is found.
296
297 Note: One instance where there may be duplicate minimal symbols with
298 the same name is when the symbol tables for a shared library and the
299 symbol tables for an executable contain global symbols with the same
300 names (the dynamic linker deals with the duplication).
301
302 It's also possible to have minimal symbols with different mangled
303 names, but identical demangled names. For example, the GNU C++ v3
304 ABI requires the generation of two (or perhaps three) copies of
305 constructor functions --- "in-charge", "not-in-charge", and
306 "allocate" copies; destructors may be duplicated as well.
307 Obviously, there must be distinct mangled names for each of these,
308 but the demangled names are all the same: S::S or S::~S. */
309
310 struct bound_minimal_symbol
311 lookup_minimal_symbol (const char *name, const char *sfile,
312 struct objfile *objf)
313 {
314 found_minimal_symbols found;
315
316 unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
317
318 auto *mangled_cmp
319 = (case_sensitivity == case_sensitive_on
320 ? strcmp
321 : strcasecmp);
322
323 if (sfile != NULL)
324 sfile = lbasename (sfile);
325
326 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
327
328 for (objfile *objfile : current_program_space->objfiles ())
329 {
330 if (found.external_symbol.minsym != NULL)
331 break;
332
333 if (objf == NULL || objf == objfile
334 || objf == objfile->separate_debug_objfile_backlink)
335 {
336 if (symbol_lookup_debug)
337 {
338 fprintf_unfiltered (gdb_stdlog,
339 "lookup_minimal_symbol (%s, %s, %s)\n",
340 name, sfile != NULL ? sfile : "NULL",
341 objfile_debug_name (objfile));
342 }
343
344 /* Do two passes: the first over the ordinary hash table,
345 and the second over the demangled hash table. */
346 lookup_minimal_symbol_mangled (name, sfile, objfile,
347 objfile->per_bfd->msymbol_hash,
348 mangled_hash, mangled_cmp, found);
349
350 /* If not found, try the demangled hash table. */
351 if (found.external_symbol.minsym == NULL)
352 {
353 /* Once for each language in the demangled hash names
354 table (usually just zero or one languages). */
355 for (unsigned iter = 0; iter < nr_languages; ++iter)
356 {
357 if (!objfile->per_bfd->demangled_hash_languages.test (iter))
358 continue;
359 enum language lang = (enum language) iter;
360
361 unsigned int hash
362 = (lookup_name.search_name_hash (lang)
363 % MINIMAL_SYMBOL_HASH_SIZE);
364
365 symbol_name_matcher_ftype *match
366 = language_def (lang)->get_symbol_name_matcher
367 (lookup_name);
368 struct minimal_symbol **msymbol_demangled_hash
369 = objfile->per_bfd->msymbol_demangled_hash;
370
371 lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
372 msymbol_demangled_hash,
373 hash, match, found);
374
375 if (found.external_symbol.minsym != NULL)
376 break;
377 }
378 }
379 }
380 }
381
382 /* External symbols are best. */
383 if (found.external_symbol.minsym != NULL)
384 {
385 if (symbol_lookup_debug)
386 {
387 minimal_symbol *minsym = found.external_symbol.minsym;
388
389 fprintf_unfiltered (gdb_stdlog,
390 "lookup_minimal_symbol (...) = %s (external)\n",
391 host_address_to_string (minsym));
392 }
393 return found.external_symbol;
394 }
395
396 /* File-local symbols are next best. */
397 if (found.file_symbol.minsym != NULL)
398 {
399 if (symbol_lookup_debug)
400 {
401 minimal_symbol *minsym = found.file_symbol.minsym;
402
403 fprintf_unfiltered (gdb_stdlog,
404 "lookup_minimal_symbol (...) = %s (file-local)\n",
405 host_address_to_string (minsym));
406 }
407 return found.file_symbol;
408 }
409
410 /* Symbols for shared library trampolines are next best. */
411 if (found.trampoline_symbol.minsym != NULL)
412 {
413 if (symbol_lookup_debug)
414 {
415 minimal_symbol *minsym = found.trampoline_symbol.minsym;
416
417 fprintf_unfiltered (gdb_stdlog,
418 "lookup_minimal_symbol (...) = %s (trampoline)\n",
419 host_address_to_string (minsym));
420 }
421
422 return found.trampoline_symbol;
423 }
424
425 /* Not found. */
426 if (symbol_lookup_debug)
427 fprintf_unfiltered (gdb_stdlog, "lookup_minimal_symbol (...) = NULL\n");
428 return {};
429 }
430
431 /* See minsyms.h. */
432
433 struct bound_minimal_symbol
434 lookup_bound_minimal_symbol (const char *name)
435 {
436 return lookup_minimal_symbol (name, NULL, NULL);
437 }
438
439 /* See gdbsupport/symbol.h. */
440
441 int
442 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
443 struct objfile *objfile)
444 {
445 struct bound_minimal_symbol sym
446 = lookup_minimal_symbol (name, NULL, objfile);
447
448 if (sym.minsym != NULL)
449 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
450
451 return sym.minsym == NULL;
452 }
453
454 /* Get the lookup name form best suitable for linkage name
455 matching. */
456
457 static const char *
458 linkage_name_str (const lookup_name_info &lookup_name)
459 {
460 /* Unlike most languages (including C++), Ada uses the
461 encoded/linkage name as the search name recorded in symbols. So
462 if debugging in Ada mode, prefer the Ada-encoded name. This also
463 makes Ada's verbatim match syntax ("<...>") work, because
464 "lookup_name.name()" includes the "<>"s, while
465 "lookup_name.ada().lookup_name()" is the encoded name with "<>"s
466 stripped. */
467 if (current_language->la_language == language_ada)
468 return lookup_name.ada ().lookup_name ().c_str ();
469
470 return lookup_name.c_str ();
471 }
472
473 /* See minsyms.h. */
474
475 void
476 iterate_over_minimal_symbols
477 (struct objfile *objf, const lookup_name_info &lookup_name,
478 gdb::function_view<bool (struct minimal_symbol *)> callback)
479 {
480 /* The first pass is over the ordinary hash table. */
481 {
482 const char *name = linkage_name_str (lookup_name);
483 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
484 auto *mangled_cmp
485 = (case_sensitivity == case_sensitive_on
486 ? strcmp
487 : strcasecmp);
488
489 for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
490 iter != NULL;
491 iter = iter->hash_next)
492 {
493 if (mangled_cmp (iter->linkage_name (), name) == 0)
494 if (callback (iter))
495 return;
496 }
497 }
498
499 /* The second pass is over the demangled table. Once for each
500 language in the demangled hash names table (usually just zero or
501 one). */
502 for (unsigned liter = 0; liter < nr_languages; ++liter)
503 {
504 if (!objf->per_bfd->demangled_hash_languages.test (liter))
505 continue;
506
507 enum language lang = (enum language) liter;
508 const language_defn *lang_def = language_def (lang);
509 symbol_name_matcher_ftype *name_match
510 = lang_def->get_symbol_name_matcher (lookup_name);
511
512 unsigned int hash
513 = lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
514 for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
515 iter != NULL;
516 iter = iter->demangled_hash_next)
517 if (name_match (iter->search_name (), lookup_name, NULL))
518 if (callback (iter))
519 return;
520 }
521 }
522
523 /* See minsyms.h. */
524
525 bound_minimal_symbol
526 lookup_minimal_symbol_linkage (const char *name, struct objfile *objf)
527 {
528 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
529
530 for (objfile *objfile : objf->separate_debug_objfiles ())
531 {
532 for (minimal_symbol *msymbol = objfile->per_bfd->msymbol_hash[hash];
533 msymbol != NULL;
534 msymbol = msymbol->hash_next)
535 {
536 if (strcmp (msymbol->linkage_name (), name) == 0
537 && (MSYMBOL_TYPE (msymbol) == mst_data
538 || MSYMBOL_TYPE (msymbol) == mst_bss))
539 return {msymbol, objfile};
540 }
541 }
542
543 return {};
544 }
545
546 /* See minsyms.h. */
547
548 struct bound_minimal_symbol
549 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
550 {
551 struct minimal_symbol *msymbol;
552 struct bound_minimal_symbol found_symbol = { NULL, NULL };
553 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
554
555 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
556
557 for (objfile *objfile : current_program_space->objfiles ())
558 {
559 if (found_symbol.minsym != NULL)
560 break;
561
562 if (objf == NULL || objf == objfile
563 || objf == objfile->separate_debug_objfile_backlink)
564 {
565 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
566 msymbol != NULL && found_symbol.minsym == NULL;
567 msymbol = msymbol->hash_next)
568 {
569 if (strcmp (msymbol->linkage_name (), name) == 0 &&
570 (MSYMBOL_TYPE (msymbol) == mst_text
571 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
572 || MSYMBOL_TYPE (msymbol) == mst_file_text))
573 {
574 switch (MSYMBOL_TYPE (msymbol))
575 {
576 case mst_file_text:
577 found_file_symbol.minsym = msymbol;
578 found_file_symbol.objfile = objfile;
579 break;
580 default:
581 found_symbol.minsym = msymbol;
582 found_symbol.objfile = objfile;
583 break;
584 }
585 }
586 }
587 }
588 }
589 /* External symbols are best. */
590 if (found_symbol.minsym)
591 return found_symbol;
592
593 /* File-local symbols are next best. */
594 return found_file_symbol;
595 }
596
597 /* See minsyms.h. */
598
599 struct minimal_symbol *
600 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
601 struct objfile *objf)
602 {
603 struct minimal_symbol *msymbol;
604
605 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
606
607 for (objfile *objfile : current_program_space->objfiles ())
608 {
609 if (objf == NULL || objf == objfile
610 || objf == objfile->separate_debug_objfile_backlink)
611 {
612 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
613 msymbol != NULL;
614 msymbol = msymbol->hash_next)
615 {
616 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
617 && strcmp (msymbol->linkage_name (), name) == 0)
618 return msymbol;
619 }
620 }
621 }
622
623 return NULL;
624 }
625
626 /* A helper function that makes *PC section-relative. This searches
627 the sections of OBJFILE and if *PC is in a section, it subtracts
628 the section offset and returns true. Otherwise it returns
629 false. */
630
631 static int
632 frob_address (struct objfile *objfile, CORE_ADDR *pc)
633 {
634 struct obj_section *iter;
635
636 ALL_OBJFILE_OSECTIONS (objfile, iter)
637 {
638 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
639 {
640 *pc -= obj_section_offset (iter);
641 return 1;
642 }
643 }
644
645 return 0;
646 }
647
648 /* Helper for lookup_minimal_symbol_by_pc_section. Convert a
649 lookup_msym_prefer to a minimal_symbol_type. */
650
651 static minimal_symbol_type
652 msym_prefer_to_msym_type (lookup_msym_prefer prefer)
653 {
654 switch (prefer)
655 {
656 case lookup_msym_prefer::TEXT:
657 return mst_text;
658 case lookup_msym_prefer::TRAMPOLINE:
659 return mst_solib_trampoline;
660 case lookup_msym_prefer::GNU_IFUNC:
661 return mst_text_gnu_ifunc;
662 }
663
664 /* Assert here instead of in a default switch case above so that
665 -Wswitch warns if a new enumerator is added. */
666 gdb_assert_not_reached ("unhandled lookup_msym_prefer");
667 }
668
669 /* See minsyms.h.
670
671 Note that we need to look through ALL the minimal symbol tables
672 before deciding on the symbol that comes closest to the specified PC.
673 This is because objfiles can overlap, for example objfile A has .text
674 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
675 .data at 0x40048. */
676
677 bound_minimal_symbol
678 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc_in, struct obj_section *section,
679 lookup_msym_prefer prefer,
680 bound_minimal_symbol *previous)
681 {
682 int lo;
683 int hi;
684 int newobj;
685 struct minimal_symbol *msymbol;
686 struct minimal_symbol *best_symbol = NULL;
687 struct objfile *best_objfile = NULL;
688 struct bound_minimal_symbol result;
689
690 if (previous != nullptr)
691 {
692 previous->minsym = nullptr;
693 previous->objfile = nullptr;
694 }
695
696 if (section == NULL)
697 {
698 section = find_pc_section (pc_in);
699 if (section == NULL)
700 return {};
701 }
702
703 minimal_symbol_type want_type = msym_prefer_to_msym_type (prefer);
704
705 /* We can not require the symbol found to be in section, because
706 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
707 symbol - but find_pc_section won't return an absolute section and
708 hence the code below would skip over absolute symbols. We can
709 still take advantage of the call to find_pc_section, though - the
710 object file still must match. In case we have separate debug
711 files, search both the file and its separate debug file. There's
712 no telling which one will have the minimal symbols. */
713
714 gdb_assert (section != NULL);
715
716 for (objfile *objfile : section->objfile->separate_debug_objfiles ())
717 {
718 CORE_ADDR pc = pc_in;
719
720 /* If this objfile has a minimal symbol table, go search it
721 using a binary search. */
722
723 if (objfile->per_bfd->minimal_symbol_count > 0)
724 {
725 int best_zero_sized = -1;
726
727 msymbol = objfile->per_bfd->msymbols.get ();
728 lo = 0;
729 hi = objfile->per_bfd->minimal_symbol_count - 1;
730
731 /* This code assumes that the minimal symbols are sorted by
732 ascending address values. If the pc value is greater than or
733 equal to the first symbol's address, then some symbol in this
734 minimal symbol table is a suitable candidate for being the
735 "best" symbol. This includes the last real symbol, for cases
736 where the pc value is larger than any address in this vector.
737
738 By iterating until the address associated with the current
739 hi index (the endpoint of the test interval) is less than
740 or equal to the desired pc value, we accomplish two things:
741 (1) the case where the pc value is larger than any minimal
742 symbol address is trivially solved, (2) the address associated
743 with the hi index is always the one we want when the iteration
744 terminates. In essence, we are iterating the test interval
745 down until the pc value is pushed out of it from the high end.
746
747 Warning: this code is trickier than it would appear at first. */
748
749 if (frob_address (objfile, &pc)
750 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
751 {
752 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
753 {
754 /* pc is still strictly less than highest address. */
755 /* Note "new" will always be >= lo. */
756 newobj = (lo + hi) / 2;
757 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
758 || (lo == newobj))
759 {
760 hi = newobj;
761 }
762 else
763 {
764 lo = newobj;
765 }
766 }
767
768 /* If we have multiple symbols at the same address, we want
769 hi to point to the last one. That way we can find the
770 right symbol if it has an index greater than hi. */
771 while (hi < objfile->per_bfd->minimal_symbol_count - 1
772 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
773 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
774 hi++;
775
776 /* Skip various undesirable symbols. */
777 while (hi >= 0)
778 {
779 /* Skip any absolute symbols. This is apparently
780 what adb and dbx do, and is needed for the CM-5.
781 There are two known possible problems: (1) on
782 ELF, apparently end, edata, etc. are absolute.
783 Not sure ignoring them here is a big deal, but if
784 we want to use them, the fix would go in
785 elfread.c. (2) I think shared library entry
786 points on the NeXT are absolute. If we want
787 special handling for this it probably should be
788 triggered by a special mst_abs_or_lib or some
789 such. */
790
791 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
792 {
793 hi--;
794 continue;
795 }
796
797 /* If SECTION was specified, skip any symbol from
798 wrong section. */
799 if (section
800 /* Some types of debug info, such as COFF,
801 don't fill the bfd_section member, so don't
802 throw away symbols on those platforms. */
803 && msymbol[hi].obj_section (objfile) != nullptr
804 && (!matching_obj_sections
805 (msymbol[hi].obj_section (objfile),
806 section)))
807 {
808 hi--;
809 continue;
810 }
811
812 /* If we are looking for a trampoline and this is a
813 text symbol, or the other way around, check the
814 preceding symbol too. If they are otherwise
815 identical prefer that one. */
816 if (hi > 0
817 && MSYMBOL_TYPE (&msymbol[hi]) != want_type
818 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
819 && (MSYMBOL_SIZE (&msymbol[hi])
820 == MSYMBOL_SIZE (&msymbol[hi - 1]))
821 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
822 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
823 && (msymbol[hi].obj_section (objfile)
824 == msymbol[hi - 1].obj_section (objfile)))
825 {
826 hi--;
827 continue;
828 }
829
830 /* If the minimal symbol has a zero size, save it
831 but keep scanning backwards looking for one with
832 a non-zero size. A zero size may mean that the
833 symbol isn't an object or function (e.g. a
834 label), or it may just mean that the size was not
835 specified. */
836 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
837 {
838 if (best_zero_sized == -1)
839 best_zero_sized = hi;
840 hi--;
841 continue;
842 }
843
844 /* If we are past the end of the current symbol, try
845 the previous symbol if it has a larger overlapping
846 size. This happens on i686-pc-linux-gnu with glibc;
847 the nocancel variants of system calls are inside
848 the cancellable variants, but both have sizes. */
849 if (hi > 0
850 && MSYMBOL_SIZE (&msymbol[hi]) != 0
851 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
852 + MSYMBOL_SIZE (&msymbol[hi]))
853 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
854 + MSYMBOL_SIZE (&msymbol[hi - 1])))
855 {
856 hi--;
857 continue;
858 }
859
860 /* Otherwise, this symbol must be as good as we're going
861 to get. */
862 break;
863 }
864
865 /* If HI has a zero size, and best_zero_sized is set,
866 then we had two or more zero-sized symbols; prefer
867 the first one we found (which may have a higher
868 address). Also, if we ran off the end, be sure
869 to back up. */
870 if (best_zero_sized != -1
871 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
872 hi = best_zero_sized;
873
874 /* If the minimal symbol has a non-zero size, and this
875 PC appears to be outside the symbol's contents, then
876 refuse to use this symbol. If we found a zero-sized
877 symbol with an address greater than this symbol's,
878 use that instead. We assume that if symbols have
879 specified sizes, they do not overlap. */
880
881 if (hi >= 0
882 && MSYMBOL_SIZE (&msymbol[hi]) != 0
883 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
884 + MSYMBOL_SIZE (&msymbol[hi])))
885 {
886 if (best_zero_sized != -1)
887 hi = best_zero_sized;
888 else
889 {
890 /* If needed record this symbol as the closest
891 previous symbol. */
892 if (previous != nullptr)
893 {
894 if (previous->minsym == nullptr
895 || (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
896 > MSYMBOL_VALUE_RAW_ADDRESS
897 (previous->minsym)))
898 {
899 previous->minsym = &msymbol[hi];
900 previous->objfile = objfile;
901 }
902 }
903 /* Go on to the next object file. */
904 continue;
905 }
906 }
907
908 /* The minimal symbol indexed by hi now is the best one in this
909 objfile's minimal symbol table. See if it is the best one
910 overall. */
911
912 if (hi >= 0
913 && ((best_symbol == NULL) ||
914 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
915 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
916 {
917 best_symbol = &msymbol[hi];
918 best_objfile = objfile;
919 }
920 }
921 }
922 }
923
924 result.minsym = best_symbol;
925 result.objfile = best_objfile;
926 return result;
927 }
928
929 /* See minsyms.h. */
930
931 struct bound_minimal_symbol
932 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
933 {
934 return lookup_minimal_symbol_by_pc_section (pc, NULL);
935 }
936
937 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
938
939 bool
940 in_gnu_ifunc_stub (CORE_ADDR pc)
941 {
942 bound_minimal_symbol msymbol
943 = lookup_minimal_symbol_by_pc_section (pc, NULL,
944 lookup_msym_prefer::GNU_IFUNC);
945 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
946 }
947
948 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
949
950 static CORE_ADDR
951 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
952 {
953 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
954 "the ELF support compiled in."),
955 paddress (gdbarch, pc));
956 }
957
958 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
959
960 static bool
961 stub_gnu_ifunc_resolve_name (const char *function_name,
962 CORE_ADDR *function_address_p)
963 {
964 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
965 "the ELF support compiled in."),
966 function_name);
967 }
968
969 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
970
971 static void
972 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
973 {
974 internal_error (__FILE__, __LINE__,
975 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
976 }
977
978 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
979
980 static void
981 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
982 {
983 internal_error (__FILE__, __LINE__,
984 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
985 }
986
987 /* See elf_gnu_ifunc_fns for its real implementation. */
988
989 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
990 {
991 stub_gnu_ifunc_resolve_addr,
992 stub_gnu_ifunc_resolve_name,
993 stub_gnu_ifunc_resolver_stop,
994 stub_gnu_ifunc_resolver_return_stop,
995 };
996
997 /* A placeholder for &elf_gnu_ifunc_fns. */
998
999 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
1000
1001 \f
1002
1003 /* Return leading symbol character for a BFD. If BFD is NULL,
1004 return the leading symbol character from the main objfile. */
1005
1006 static int
1007 get_symbol_leading_char (bfd *abfd)
1008 {
1009 if (abfd != NULL)
1010 return bfd_get_symbol_leading_char (abfd);
1011 if (current_program_space->symfile_object_file != NULL)
1012 {
1013 objfile *objf = current_program_space->symfile_object_file;
1014 if (objf->obfd != NULL)
1015 return bfd_get_symbol_leading_char (objf->obfd);
1016 }
1017 return 0;
1018 }
1019
1020 /* See minsyms.h. */
1021
1022 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
1023 : m_objfile (obj),
1024 m_msym_bunch (NULL),
1025 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
1026 first call to save a minimal symbol to allocate the memory for
1027 the first bunch. */
1028 m_msym_bunch_index (BUNCH_SIZE),
1029 m_msym_count (0)
1030 {
1031 }
1032
1033 /* Discard the currently collected minimal symbols, if any. If we wish
1034 to save them for later use, we must have already copied them somewhere
1035 else before calling this function. */
1036
1037 minimal_symbol_reader::~minimal_symbol_reader ()
1038 {
1039 struct msym_bunch *next;
1040
1041 while (m_msym_bunch != NULL)
1042 {
1043 next = m_msym_bunch->next;
1044 xfree (m_msym_bunch);
1045 m_msym_bunch = next;
1046 }
1047 }
1048
1049 /* See minsyms.h. */
1050
1051 void
1052 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1053 enum minimal_symbol_type ms_type)
1054 {
1055 int section;
1056
1057 switch (ms_type)
1058 {
1059 case mst_text:
1060 case mst_text_gnu_ifunc:
1061 case mst_file_text:
1062 case mst_solib_trampoline:
1063 section = SECT_OFF_TEXT (m_objfile);
1064 break;
1065 case mst_data:
1066 case mst_data_gnu_ifunc:
1067 case mst_file_data:
1068 section = SECT_OFF_DATA (m_objfile);
1069 break;
1070 case mst_bss:
1071 case mst_file_bss:
1072 section = SECT_OFF_BSS (m_objfile);
1073 break;
1074 default:
1075 section = -1;
1076 }
1077
1078 record_with_info (name, address, ms_type, section);
1079 }
1080
1081 /* Convert an enumerator of type minimal_symbol_type to its string
1082 representation. */
1083
1084 static const char *
1085 mst_str (minimal_symbol_type t)
1086 {
1087 #define MST_TO_STR(x) case x: return #x;
1088 switch (t)
1089 {
1090 MST_TO_STR (mst_unknown);
1091 MST_TO_STR (mst_text);
1092 MST_TO_STR (mst_text_gnu_ifunc);
1093 MST_TO_STR (mst_slot_got_plt);
1094 MST_TO_STR (mst_data);
1095 MST_TO_STR (mst_bss);
1096 MST_TO_STR (mst_abs);
1097 MST_TO_STR (mst_solib_trampoline);
1098 MST_TO_STR (mst_file_text);
1099 MST_TO_STR (mst_file_data);
1100 MST_TO_STR (mst_file_bss);
1101
1102 default:
1103 return "mst_???";
1104 }
1105 #undef MST_TO_STR
1106 }
1107
1108 /* See minsyms.h. */
1109
1110 struct minimal_symbol *
1111 minimal_symbol_reader::record_full (gdb::string_view name,
1112 bool copy_name, CORE_ADDR address,
1113 enum minimal_symbol_type ms_type,
1114 int section)
1115 {
1116 struct msym_bunch *newobj;
1117 struct minimal_symbol *msymbol;
1118
1119 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1120 the minimal symbols, because if there is also another symbol
1121 at the same address (e.g. the first function of the file),
1122 lookup_minimal_symbol_by_pc would have no way of getting the
1123 right one. */
1124 if (ms_type == mst_file_text && name[0] == 'g'
1125 && (name == GCC_COMPILED_FLAG_SYMBOL
1126 || name == GCC2_COMPILED_FLAG_SYMBOL))
1127 return (NULL);
1128
1129 /* It's safe to strip the leading char here once, since the name
1130 is also stored stripped in the minimal symbol table. */
1131 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1132 name = name.substr (1);
1133
1134 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1135 return (NULL);
1136
1137 if (symtab_create_debug >= 2)
1138 printf_unfiltered ("Recording minsym: %-21s %18s %4d %.*s\n",
1139 mst_str (ms_type), hex_string (address), section,
1140 (int) name.size (), name.data ());
1141
1142 if (m_msym_bunch_index == BUNCH_SIZE)
1143 {
1144 newobj = XCNEW (struct msym_bunch);
1145 m_msym_bunch_index = 0;
1146 newobj->next = m_msym_bunch;
1147 m_msym_bunch = newobj;
1148 }
1149 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1150 msymbol->set_language (language_auto,
1151 &m_objfile->per_bfd->storage_obstack);
1152
1153 if (copy_name)
1154 msymbol->m_name = obstack_strndup (&m_objfile->per_bfd->storage_obstack,
1155 name.data (), name.size ());
1156 else
1157 msymbol->m_name = name.data ();
1158
1159 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1160 msymbol->set_section_index (section);
1161
1162 MSYMBOL_TYPE (msymbol) = ms_type;
1163
1164 /* If we already read minimal symbols for this objfile, then don't
1165 ever allocate a new one. */
1166 if (!m_objfile->per_bfd->minsyms_read)
1167 {
1168 m_msym_bunch_index++;
1169 m_objfile->per_bfd->n_minsyms++;
1170 }
1171 m_msym_count++;
1172 return msymbol;
1173 }
1174
1175 /* Compare two minimal symbols by address and return true if FN1's address
1176 is less than FN2's, so that we sort into unsigned numeric order.
1177 Within groups with the same address, sort by name. */
1178
1179 static inline bool
1180 minimal_symbol_is_less_than (const minimal_symbol &fn1,
1181 const minimal_symbol &fn2)
1182 {
1183 if (MSYMBOL_VALUE_RAW_ADDRESS (&fn1) < MSYMBOL_VALUE_RAW_ADDRESS (&fn2))
1184 {
1185 return true; /* addr 1 is less than addr 2. */
1186 }
1187 else if (MSYMBOL_VALUE_RAW_ADDRESS (&fn1) > MSYMBOL_VALUE_RAW_ADDRESS (&fn2))
1188 {
1189 return false; /* addr 1 is greater than addr 2. */
1190 }
1191 else
1192 /* addrs are equal: sort by name */
1193 {
1194 const char *name1 = fn1.linkage_name ();
1195 const char *name2 = fn2.linkage_name ();
1196
1197 if (name1 && name2) /* both have names */
1198 return strcmp (name1, name2) < 0;
1199 else if (name2)
1200 return true; /* fn1 has no name, so it is "less". */
1201 else if (name1) /* fn2 has no name, so it is "less". */
1202 return false;
1203 else
1204 return false; /* Neither has a name, so they're equal. */
1205 }
1206 }
1207
1208 /* Compact duplicate entries out of a minimal symbol table by walking
1209 through the table and compacting out entries with duplicate addresses
1210 and matching names. Return the number of entries remaining.
1211
1212 On entry, the table resides between msymbol[0] and msymbol[mcount].
1213 On exit, it resides between msymbol[0] and msymbol[result_count].
1214
1215 When files contain multiple sources of symbol information, it is
1216 possible for the minimal symbol table to contain many duplicate entries.
1217 As an example, SVR4 systems use ELF formatted object files, which
1218 usually contain at least two different types of symbol tables (a
1219 standard ELF one and a smaller dynamic linking table), as well as
1220 DWARF debugging information for files compiled with -g.
1221
1222 Without compacting, the minimal symbol table for gdb itself contains
1223 over a 1000 duplicates, about a third of the total table size. Aside
1224 from the potential trap of not noticing that two successive entries
1225 identify the same location, this duplication impacts the time required
1226 to linearly scan the table, which is done in a number of places. So we
1227 just do one linear scan here and toss out the duplicates.
1228
1229 Since the different sources of information for each symbol may
1230 have different levels of "completeness", we may have duplicates
1231 that have one entry with type "mst_unknown" and the other with a
1232 known type. So if the one we are leaving alone has type mst_unknown,
1233 overwrite its type with the type from the one we are compacting out. */
1234
1235 static int
1236 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1237 struct objfile *objfile)
1238 {
1239 struct minimal_symbol *copyfrom;
1240 struct minimal_symbol *copyto;
1241
1242 if (mcount > 0)
1243 {
1244 copyfrom = copyto = msymbol;
1245 while (copyfrom < msymbol + mcount - 1)
1246 {
1247 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1248 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1249 && (copyfrom->section_index ()
1250 == (copyfrom + 1)->section_index ())
1251 && strcmp (copyfrom->linkage_name (),
1252 (copyfrom + 1)->linkage_name ()) == 0)
1253 {
1254 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1255 {
1256 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1257 }
1258 copyfrom++;
1259 }
1260 else
1261 *copyto++ = *copyfrom++;
1262 }
1263 *copyto++ = *copyfrom++;
1264 mcount = copyto - msymbol;
1265 }
1266 return (mcount);
1267 }
1268
1269 static void
1270 clear_minimal_symbol_hash_tables (struct objfile *objfile)
1271 {
1272 for (size_t i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1273 {
1274 objfile->per_bfd->msymbol_hash[i] = 0;
1275 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1276 }
1277 }
1278
1279 /* This struct is used to store values we compute for msymbols on the
1280 background threads but don't need to keep around long term. */
1281 struct computed_hash_values
1282 {
1283 /* Length of the linkage_name of the symbol. */
1284 size_t name_length;
1285 /* Hash code (using fast_hash) of the linkage_name. */
1286 hashval_t mangled_name_hash;
1287 /* The msymbol_hash of the linkage_name. */
1288 unsigned int minsym_hash;
1289 /* The msymbol_hash of the search_name. */
1290 unsigned int minsym_demangled_hash;
1291 };
1292
1293 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1294 after compacting or sorting the table since the entries move around
1295 thus causing the internal minimal_symbol pointers to become jumbled. */
1296
1297 static void
1298 build_minimal_symbol_hash_tables
1299 (struct objfile *objfile,
1300 const std::vector<computed_hash_values>& hash_values)
1301 {
1302 int i;
1303 struct minimal_symbol *msym;
1304
1305 /* (Re)insert the actual entries. */
1306 int mcount = objfile->per_bfd->minimal_symbol_count;
1307 for ((i = 0,
1308 msym = objfile->per_bfd->msymbols.get ());
1309 i < mcount;
1310 i++, msym++)
1311 {
1312 msym->hash_next = 0;
1313 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash,
1314 hash_values[i].minsym_hash);
1315
1316 msym->demangled_hash_next = 0;
1317 if (msym->search_name () != msym->linkage_name ())
1318 add_minsym_to_demangled_hash_table
1319 (msym, objfile, hash_values[i].minsym_demangled_hash);
1320 }
1321 }
1322
1323 /* Add the minimal symbols in the existing bunches to the objfile's official
1324 minimal symbol table. In most cases there is no minimal symbol table yet
1325 for this objfile, and the existing bunches are used to create one. Once
1326 in a while (for shared libraries for example), we add symbols (e.g. common
1327 symbols) to an existing objfile. */
1328
1329 void
1330 minimal_symbol_reader::install ()
1331 {
1332 int mcount;
1333 struct msym_bunch *bunch;
1334 struct minimal_symbol *msymbols;
1335 int alloc_count;
1336
1337 if (m_objfile->per_bfd->minsyms_read)
1338 return;
1339
1340 if (m_msym_count > 0)
1341 {
1342 if (symtab_create_debug)
1343 {
1344 fprintf_unfiltered (gdb_stdlog,
1345 "Installing %d minimal symbols of objfile %s.\n",
1346 m_msym_count, objfile_name (m_objfile));
1347 }
1348
1349 /* Allocate enough space, into which we will gather the bunches
1350 of new and existing minimal symbols, sort them, and then
1351 compact out the duplicate entries. Once we have a final
1352 table, we will give back the excess space. */
1353
1354 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count;
1355 gdb::unique_xmalloc_ptr<minimal_symbol>
1356 msym_holder (XNEWVEC (minimal_symbol, alloc_count));
1357 msymbols = msym_holder.get ();
1358
1359 /* Copy in the existing minimal symbols, if there are any. */
1360
1361 if (m_objfile->per_bfd->minimal_symbol_count)
1362 memcpy (msymbols, m_objfile->per_bfd->msymbols.get (),
1363 m_objfile->per_bfd->minimal_symbol_count
1364 * sizeof (struct minimal_symbol));
1365
1366 /* Walk through the list of minimal symbol bunches, adding each symbol
1367 to the new contiguous array of symbols. Note that we start with the
1368 current, possibly partially filled bunch (thus we use the current
1369 msym_bunch_index for the first bunch we copy over), and thereafter
1370 each bunch is full. */
1371
1372 mcount = m_objfile->per_bfd->minimal_symbol_count;
1373
1374 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1375 {
1376 memcpy (&msymbols[mcount], &bunch->contents[0],
1377 m_msym_bunch_index * sizeof (struct minimal_symbol));
1378 mcount += m_msym_bunch_index;
1379 m_msym_bunch_index = BUNCH_SIZE;
1380 }
1381
1382 /* Sort the minimal symbols by address. */
1383
1384 std::sort (msymbols, msymbols + mcount, minimal_symbol_is_less_than);
1385
1386 /* Compact out any duplicates, and free up whatever space we are
1387 no longer using. */
1388
1389 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1390 msym_holder.reset (XRESIZEVEC (struct minimal_symbol,
1391 msym_holder.release (),
1392 mcount));
1393
1394 /* Attach the minimal symbol table to the specified objfile.
1395 The strings themselves are also located in the storage_obstack
1396 of this objfile. */
1397
1398 if (m_objfile->per_bfd->minimal_symbol_count != 0)
1399 clear_minimal_symbol_hash_tables (m_objfile);
1400
1401 m_objfile->per_bfd->minimal_symbol_count = mcount;
1402 m_objfile->per_bfd->msymbols = std::move (msym_holder);
1403
1404 #if CXX_STD_THREAD
1405 /* Mutex that is used when modifying or accessing the demangled
1406 hash table. */
1407 std::mutex demangled_mutex;
1408 #endif
1409
1410 std::vector<computed_hash_values> hash_values (mcount);
1411
1412 msymbols = m_objfile->per_bfd->msymbols.get ();
1413 gdb::parallel_for_each
1414 (&msymbols[0], &msymbols[mcount],
1415 [&] (minimal_symbol *start, minimal_symbol *end)
1416 {
1417 for (minimal_symbol *msym = start; msym < end; ++msym)
1418 {
1419 size_t idx = msym - msymbols;
1420 hash_values[idx].name_length = strlen (msym->linkage_name ());
1421 if (!msym->name_set)
1422 {
1423 /* This will be freed later, by compute_and_set_names. */
1424 char *demangled_name
1425 = symbol_find_demangled_name (msym, msym->linkage_name ());
1426 msym->set_demangled_name
1427 (demangled_name, &m_objfile->per_bfd->storage_obstack);
1428 msym->name_set = 1;
1429 }
1430 /* This mangled_name_hash computation has to be outside of
1431 the name_set check, or compute_and_set_names below will
1432 be called with an invalid hash value. */
1433 hash_values[idx].mangled_name_hash
1434 = fast_hash (msym->linkage_name (),
1435 hash_values[idx].name_length);
1436 hash_values[idx].minsym_hash
1437 = msymbol_hash (msym->linkage_name ());
1438 /* We only use this hash code if the search name differs
1439 from the linkage name. See the code in
1440 build_minimal_symbol_hash_tables. */
1441 if (msym->search_name () != msym->linkage_name ())
1442 hash_values[idx].minsym_demangled_hash
1443 = search_name_hash (msym->language (), msym->search_name ());
1444 }
1445 {
1446 /* To limit how long we hold the lock, we only acquire it here
1447 and not while we demangle the names above. */
1448 #if CXX_STD_THREAD
1449 std::lock_guard<std::mutex> guard (demangled_mutex);
1450 #endif
1451 for (minimal_symbol *msym = start; msym < end; ++msym)
1452 {
1453 size_t idx = msym - msymbols;
1454 msym->compute_and_set_names
1455 (gdb::string_view (msym->linkage_name (),
1456 hash_values[idx].name_length),
1457 false,
1458 m_objfile->per_bfd,
1459 hash_values[idx].mangled_name_hash);
1460 }
1461 }
1462 });
1463
1464 build_minimal_symbol_hash_tables (m_objfile, hash_values);
1465 }
1466 }
1467
1468 /* Check if PC is in a shared library trampoline code stub.
1469 Return minimal symbol for the trampoline entry or NULL if PC is not
1470 in a trampoline code stub. */
1471
1472 static struct minimal_symbol *
1473 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1474 {
1475 bound_minimal_symbol msymbol
1476 = lookup_minimal_symbol_by_pc_section (pc, NULL,
1477 lookup_msym_prefer::TRAMPOLINE);
1478
1479 if (msymbol.minsym != NULL
1480 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1481 return msymbol.minsym;
1482 return NULL;
1483 }
1484
1485 /* If PC is in a shared library trampoline code stub, return the
1486 address of the `real' function belonging to the stub.
1487 Return 0 if PC is not in a trampoline code stub or if the real
1488 function is not found in the minimal symbol table.
1489
1490 We may fail to find the right function if a function with the
1491 same name is defined in more than one shared library, but this
1492 is considered bad programming style. We could return 0 if we find
1493 a duplicate function in case this matters someday. */
1494
1495 CORE_ADDR
1496 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1497 {
1498 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1499
1500 if (tsymbol != NULL)
1501 {
1502 for (objfile *objfile : current_program_space->objfiles ())
1503 {
1504 for (minimal_symbol *msymbol : objfile->msymbols ())
1505 {
1506 /* Also handle minimal symbols pointing to function
1507 descriptors. */
1508 if ((MSYMBOL_TYPE (msymbol) == mst_text
1509 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
1510 || MSYMBOL_TYPE (msymbol) == mst_data
1511 || MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
1512 && strcmp (msymbol->linkage_name (),
1513 tsymbol->linkage_name ()) == 0)
1514 {
1515 CORE_ADDR func;
1516
1517 /* Ignore data symbols that are not function
1518 descriptors. */
1519 if (msymbol_is_function (objfile, msymbol, &func))
1520 return func;
1521 }
1522 }
1523 }
1524 }
1525 return 0;
1526 }
1527
1528 /* See minsyms.h. */
1529
1530 CORE_ADDR
1531 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1532 {
1533 short section;
1534 struct obj_section *obj_section;
1535 CORE_ADDR result;
1536 struct minimal_symbol *iter, *msymbol;
1537
1538 gdb_assert (minsym.minsym != NULL);
1539
1540 /* If the minimal symbol has a size, use it. Otherwise use the
1541 lesser of the next minimal symbol in the same section, or the end
1542 of the section, as the end of the function. */
1543
1544 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1545 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1546
1547 /* Step over other symbols at this same address, and symbols in
1548 other sections, to find the next symbol in this section with a
1549 different address. */
1550
1551 struct minimal_symbol *past_the_end
1552 = (minsym.objfile->per_bfd->msymbols.get ()
1553 + minsym.objfile->per_bfd->minimal_symbol_count);
1554 msymbol = minsym.minsym;
1555 section = msymbol->section_index ();
1556 for (iter = msymbol + 1; iter != past_the_end; ++iter)
1557 {
1558 if ((MSYMBOL_VALUE_RAW_ADDRESS (iter)
1559 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1560 && iter->section_index () == section)
1561 break;
1562 }
1563
1564 obj_section = minsym.obj_section ();
1565 if (iter != past_the_end
1566 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, iter)
1567 < obj_section_endaddr (obj_section)))
1568 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, iter);
1569 else
1570 /* We got the start address from the last msymbol in the objfile.
1571 So the end address is the end of the section. */
1572 result = obj_section_endaddr (obj_section);
1573
1574 return result;
1575 }
This page took 0.06186 seconds and 4 git commands to generate.