5f6db60ecabfb3b69362052de01ec893d390ff4a
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "symbol.h"
54
55 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
56 At the end, copy them all into one newly allocated location on an objfile's
57 per-BFD storage obstack. */
58
59 #define BUNCH_SIZE 127
60
61 struct msym_bunch
62 {
63 struct msym_bunch *next;
64 struct minimal_symbol contents[BUNCH_SIZE];
65 };
66
67 /* See minsyms.h. */
68
69 unsigned int
70 msymbol_hash_iw (const char *string)
71 {
72 unsigned int hash = 0;
73
74 while (*string && *string != '(')
75 {
76 string = skip_spaces_const (string);
77 if (*string && *string != '(')
78 {
79 hash = SYMBOL_HASH_NEXT (hash, *string);
80 ++string;
81 }
82 }
83 return hash;
84 }
85
86 /* See minsyms.h. */
87
88 unsigned int
89 msymbol_hash (const char *string)
90 {
91 unsigned int hash = 0;
92
93 for (; *string; ++string)
94 hash = SYMBOL_HASH_NEXT (hash, *string);
95 return hash;
96 }
97
98 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
99 static void
100 add_minsym_to_hash_table (struct minimal_symbol *sym,
101 struct minimal_symbol **table)
102 {
103 if (sym->hash_next == NULL)
104 {
105 unsigned int hash
106 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
107
108 sym->hash_next = table[hash];
109 table[hash] = sym;
110 }
111 }
112
113 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
114 TABLE. */
115 static void
116 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
117 struct minimal_symbol **table)
118 {
119 if (sym->demangled_hash_next == NULL)
120 {
121 unsigned int hash = msymbol_hash_iw (MSYMBOL_SEARCH_NAME (sym))
122 % MINIMAL_SYMBOL_HASH_SIZE;
123
124 sym->demangled_hash_next = table[hash];
125 table[hash] = sym;
126 }
127 }
128
129 /* Look through all the current minimal symbol tables and find the
130 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
131 the search to that objfile. If SFILE is non-NULL, the only file-scope
132 symbols considered will be from that source file (global symbols are
133 still preferred). Returns a pointer to the minimal symbol that
134 matches, or NULL if no match is found.
135
136 Note: One instance where there may be duplicate minimal symbols with
137 the same name is when the symbol tables for a shared library and the
138 symbol tables for an executable contain global symbols with the same
139 names (the dynamic linker deals with the duplication).
140
141 It's also possible to have minimal symbols with different mangled
142 names, but identical demangled names. For example, the GNU C++ v3
143 ABI requires the generation of two (or perhaps three) copies of
144 constructor functions --- "in-charge", "not-in-charge", and
145 "allocate" copies; destructors may be duplicated as well.
146 Obviously, there must be distinct mangled names for each of these,
147 but the demangled names are all the same: S::S or S::~S. */
148
149 struct bound_minimal_symbol
150 lookup_minimal_symbol (const char *name, const char *sfile,
151 struct objfile *objf)
152 {
153 struct objfile *objfile;
154 struct bound_minimal_symbol found_symbol = { NULL, NULL };
155 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
156 struct bound_minimal_symbol trampoline_symbol = { NULL, NULL };
157
158 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
159 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
160
161 int needtofreename = 0;
162 const char *modified_name;
163
164 if (sfile != NULL)
165 sfile = lbasename (sfile);
166
167 /* For C++, canonicalize the input name. */
168 modified_name = name;
169 if (current_language->la_language == language_cplus)
170 {
171 char *cname = cp_canonicalize_string (name);
172
173 if (cname)
174 {
175 modified_name = cname;
176 needtofreename = 1;
177 }
178 }
179
180 for (objfile = object_files;
181 objfile != NULL && found_symbol.minsym == NULL;
182 objfile = objfile->next)
183 {
184 struct minimal_symbol *msymbol;
185
186 if (objf == NULL || objf == objfile
187 || objf == objfile->separate_debug_objfile_backlink)
188 {
189 /* Do two passes: the first over the ordinary hash table,
190 and the second over the demangled hash table. */
191 int pass;
192
193 if (symbol_lookup_debug)
194 {
195 fprintf_unfiltered (gdb_stdlog,
196 "lookup_minimal_symbol (%s, %s, %s)\n",
197 name, sfile != NULL ? sfile : "NULL",
198 objfile_debug_name (objfile));
199 }
200
201 for (pass = 1; pass <= 2 && found_symbol.minsym == NULL; pass++)
202 {
203 /* Select hash list according to pass. */
204 if (pass == 1)
205 msymbol = objfile->per_bfd->msymbol_hash[hash];
206 else
207 msymbol = objfile->per_bfd->msymbol_demangled_hash[dem_hash];
208
209 while (msymbol != NULL && found_symbol.minsym == NULL)
210 {
211 int match;
212
213 if (pass == 1)
214 {
215 int (*cmp) (const char *, const char *);
216
217 cmp = (case_sensitivity == case_sensitive_on
218 ? strcmp : strcasecmp);
219 match = cmp (MSYMBOL_LINKAGE_NAME (msymbol),
220 modified_name) == 0;
221 }
222 else
223 {
224 /* The function respects CASE_SENSITIVITY. */
225 match = MSYMBOL_MATCHES_SEARCH_NAME (msymbol,
226 modified_name);
227 }
228
229 if (match)
230 {
231 switch (MSYMBOL_TYPE (msymbol))
232 {
233 case mst_file_text:
234 case mst_file_data:
235 case mst_file_bss:
236 if (sfile == NULL
237 || filename_cmp (msymbol->filename, sfile) == 0)
238 {
239 found_file_symbol.minsym = msymbol;
240 found_file_symbol.objfile = objfile;
241 }
242 break;
243
244 case mst_solib_trampoline:
245
246 /* If a trampoline symbol is found, we prefer to
247 keep looking for the *real* symbol. If the
248 actual symbol is not found, then we'll use the
249 trampoline entry. */
250 if (trampoline_symbol.minsym == NULL)
251 {
252 trampoline_symbol.minsym = msymbol;
253 trampoline_symbol.objfile = objfile;
254 }
255 break;
256
257 case mst_unknown:
258 default:
259 found_symbol.minsym = msymbol;
260 found_symbol.objfile = objfile;
261 break;
262 }
263 }
264
265 /* Find the next symbol on the hash chain. */
266 if (pass == 1)
267 msymbol = msymbol->hash_next;
268 else
269 msymbol = msymbol->demangled_hash_next;
270 }
271 }
272 }
273 }
274
275 if (needtofreename)
276 xfree ((void *) modified_name);
277
278 /* External symbols are best. */
279 if (found_symbol.minsym != NULL)
280 {
281 if (symbol_lookup_debug)
282 {
283 fprintf_unfiltered (gdb_stdlog,
284 "lookup_minimal_symbol (...) = %s"
285 " (external)\n",
286 host_address_to_string (found_symbol.minsym));
287 }
288 return found_symbol;
289 }
290
291 /* File-local symbols are next best. */
292 if (found_file_symbol.minsym != NULL)
293 {
294 if (symbol_lookup_debug)
295 {
296 fprintf_unfiltered (gdb_stdlog,
297 "lookup_minimal_symbol (...) = %s"
298 " (file-local)\n",
299 host_address_to_string
300 (found_file_symbol.minsym));
301 }
302 return found_file_symbol;
303 }
304
305 /* Symbols for shared library trampolines are next best. */
306 if (symbol_lookup_debug)
307 {
308 fprintf_unfiltered (gdb_stdlog,
309 "lookup_minimal_symbol (...) = %s%s\n",
310 trampoline_symbol.minsym != NULL
311 ? host_address_to_string (trampoline_symbol.minsym)
312 : "NULL",
313 trampoline_symbol.minsym != NULL
314 ? " (trampoline)" : "");
315 }
316 return trampoline_symbol;
317 }
318
319 /* See minsyms.h. */
320
321 struct bound_minimal_symbol
322 lookup_bound_minimal_symbol (const char *name)
323 {
324 return lookup_minimal_symbol (name, NULL, NULL);
325 }
326
327 /* See common/symbol.h. */
328
329 int
330 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
331 struct objfile *objfile)
332 {
333 struct bound_minimal_symbol sym
334 = lookup_minimal_symbol (name, NULL, objfile);
335
336 if (sym.minsym != NULL)
337 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
338
339 return sym.minsym == NULL;
340 }
341
342 /* See minsyms.h. */
343
344 void
345 iterate_over_minimal_symbols (struct objfile *objf, const char *name,
346 void (*callback) (struct minimal_symbol *,
347 void *),
348 void *user_data)
349 {
350 unsigned int hash;
351 struct minimal_symbol *iter;
352 int (*cmp) (const char *, const char *);
353
354 /* The first pass is over the ordinary hash table. */
355 hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
356 iter = objf->per_bfd->msymbol_hash[hash];
357 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
358 while (iter)
359 {
360 if (cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
361 (*callback) (iter, user_data);
362 iter = iter->hash_next;
363 }
364
365 /* The second pass is over the demangled table. */
366 hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
367 iter = objf->per_bfd->msymbol_demangled_hash[hash];
368 while (iter)
369 {
370 if (MSYMBOL_MATCHES_SEARCH_NAME (iter, name))
371 (*callback) (iter, user_data);
372 iter = iter->demangled_hash_next;
373 }
374 }
375
376 /* See minsyms.h. */
377
378 struct bound_minimal_symbol
379 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
380 {
381 struct objfile *objfile;
382 struct minimal_symbol *msymbol;
383 struct bound_minimal_symbol found_symbol = { NULL, NULL };
384 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
385
386 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
387
388 for (objfile = object_files;
389 objfile != NULL && found_symbol.minsym == NULL;
390 objfile = objfile->next)
391 {
392 if (objf == NULL || objf == objfile
393 || objf == objfile->separate_debug_objfile_backlink)
394 {
395 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
396 msymbol != NULL && found_symbol.minsym == NULL;
397 msymbol = msymbol->hash_next)
398 {
399 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
400 (MSYMBOL_TYPE (msymbol) == mst_text
401 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
402 || MSYMBOL_TYPE (msymbol) == mst_file_text))
403 {
404 switch (MSYMBOL_TYPE (msymbol))
405 {
406 case mst_file_text:
407 found_file_symbol.minsym = msymbol;
408 found_file_symbol.objfile = objfile;
409 break;
410 default:
411 found_symbol.minsym = msymbol;
412 found_symbol.objfile = objfile;
413 break;
414 }
415 }
416 }
417 }
418 }
419 /* External symbols are best. */
420 if (found_symbol.minsym)
421 return found_symbol;
422
423 /* File-local symbols are next best. */
424 return found_file_symbol;
425 }
426
427 /* See minsyms.h. */
428
429 struct minimal_symbol *
430 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
431 struct objfile *objf)
432 {
433 struct objfile *objfile;
434 struct minimal_symbol *msymbol;
435
436 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
437
438 for (objfile = object_files;
439 objfile != NULL;
440 objfile = objfile->next)
441 {
442 if (objf == NULL || objf == objfile
443 || objf == objfile->separate_debug_objfile_backlink)
444 {
445 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
446 msymbol != NULL;
447 msymbol = msymbol->hash_next)
448 {
449 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
450 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
451 return msymbol;
452 }
453 }
454 }
455
456 return NULL;
457 }
458
459 /* See minsyms.h. */
460
461 struct bound_minimal_symbol
462 lookup_minimal_symbol_solib_trampoline (const char *name,
463 struct objfile *objf)
464 {
465 struct objfile *objfile;
466 struct minimal_symbol *msymbol;
467 struct bound_minimal_symbol found_symbol = { NULL, NULL };
468
469 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
470
471 for (objfile = object_files;
472 objfile != NULL;
473 objfile = objfile->next)
474 {
475 if (objf == NULL || objf == objfile
476 || objf == objfile->separate_debug_objfile_backlink)
477 {
478 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
479 msymbol != NULL;
480 msymbol = msymbol->hash_next)
481 {
482 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
483 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
484 {
485 found_symbol.objfile = objfile;
486 found_symbol.minsym = msymbol;
487 return found_symbol;
488 }
489 }
490 }
491 }
492
493 return found_symbol;
494 }
495
496 /* A helper function that makes *PC section-relative. This searches
497 the sections of OBJFILE and if *PC is in a section, it subtracts
498 the section offset and returns true. Otherwise it returns
499 false. */
500
501 static int
502 frob_address (struct objfile *objfile, CORE_ADDR *pc)
503 {
504 struct obj_section *iter;
505
506 ALL_OBJFILE_OSECTIONS (objfile, iter)
507 {
508 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
509 {
510 *pc -= obj_section_offset (iter);
511 return 1;
512 }
513 }
514
515 return 0;
516 }
517
518 /* Search through the minimal symbol table for each objfile and find
519 the symbol whose address is the largest address that is still less
520 than or equal to PC, and matches SECTION (which is not NULL).
521 Returns a pointer to the minimal symbol if such a symbol is found,
522 or NULL if PC is not in a suitable range.
523 Note that we need to look through ALL the minimal symbol tables
524 before deciding on the symbol that comes closest to the specified PC.
525 This is because objfiles can overlap, for example objfile A has .text
526 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
527 .data at 0x40048.
528
529 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
530 there are text and trampoline symbols at the same address.
531 Otherwise prefer mst_text symbols. */
532
533 static struct bound_minimal_symbol
534 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc_in,
535 struct obj_section *section,
536 int want_trampoline)
537 {
538 int lo;
539 int hi;
540 int newobj;
541 struct objfile *objfile;
542 struct minimal_symbol *msymbol;
543 struct minimal_symbol *best_symbol = NULL;
544 struct objfile *best_objfile = NULL;
545 struct bound_minimal_symbol result;
546 enum minimal_symbol_type want_type, other_type;
547
548 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
549 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
550
551 /* We can not require the symbol found to be in section, because
552 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
553 symbol - but find_pc_section won't return an absolute section and
554 hence the code below would skip over absolute symbols. We can
555 still take advantage of the call to find_pc_section, though - the
556 object file still must match. In case we have separate debug
557 files, search both the file and its separate debug file. There's
558 no telling which one will have the minimal symbols. */
559
560 gdb_assert (section != NULL);
561
562 for (objfile = section->objfile;
563 objfile != NULL;
564 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
565 {
566 CORE_ADDR pc = pc_in;
567
568 /* If this objfile has a minimal symbol table, go search it using
569 a binary search. Note that a minimal symbol table always consists
570 of at least two symbols, a "real" symbol and the terminating
571 "null symbol". If there are no real symbols, then there is no
572 minimal symbol table at all. */
573
574 if (objfile->per_bfd->minimal_symbol_count > 0)
575 {
576 int best_zero_sized = -1;
577
578 msymbol = objfile->per_bfd->msymbols;
579 lo = 0;
580 hi = objfile->per_bfd->minimal_symbol_count - 1;
581
582 /* This code assumes that the minimal symbols are sorted by
583 ascending address values. If the pc value is greater than or
584 equal to the first symbol's address, then some symbol in this
585 minimal symbol table is a suitable candidate for being the
586 "best" symbol. This includes the last real symbol, for cases
587 where the pc value is larger than any address in this vector.
588
589 By iterating until the address associated with the current
590 hi index (the endpoint of the test interval) is less than
591 or equal to the desired pc value, we accomplish two things:
592 (1) the case where the pc value is larger than any minimal
593 symbol address is trivially solved, (2) the address associated
594 with the hi index is always the one we want when the interation
595 terminates. In essence, we are iterating the test interval
596 down until the pc value is pushed out of it from the high end.
597
598 Warning: this code is trickier than it would appear at first. */
599
600 if (frob_address (objfile, &pc)
601 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
602 {
603 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
604 {
605 /* pc is still strictly less than highest address. */
606 /* Note "new" will always be >= lo. */
607 newobj = (lo + hi) / 2;
608 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
609 || (lo == newobj))
610 {
611 hi = newobj;
612 }
613 else
614 {
615 lo = newobj;
616 }
617 }
618
619 /* If we have multiple symbols at the same address, we want
620 hi to point to the last one. That way we can find the
621 right symbol if it has an index greater than hi. */
622 while (hi < objfile->per_bfd->minimal_symbol_count - 1
623 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
624 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
625 hi++;
626
627 /* Skip various undesirable symbols. */
628 while (hi >= 0)
629 {
630 /* Skip any absolute symbols. This is apparently
631 what adb and dbx do, and is needed for the CM-5.
632 There are two known possible problems: (1) on
633 ELF, apparently end, edata, etc. are absolute.
634 Not sure ignoring them here is a big deal, but if
635 we want to use them, the fix would go in
636 elfread.c. (2) I think shared library entry
637 points on the NeXT are absolute. If we want
638 special handling for this it probably should be
639 triggered by a special mst_abs_or_lib or some
640 such. */
641
642 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
643 {
644 hi--;
645 continue;
646 }
647
648 /* If SECTION was specified, skip any symbol from
649 wrong section. */
650 if (section
651 /* Some types of debug info, such as COFF,
652 don't fill the bfd_section member, so don't
653 throw away symbols on those platforms. */
654 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
655 && (!matching_obj_sections
656 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
657 section)))
658 {
659 hi--;
660 continue;
661 }
662
663 /* If we are looking for a trampoline and this is a
664 text symbol, or the other way around, check the
665 preceding symbol too. If they are otherwise
666 identical prefer that one. */
667 if (hi > 0
668 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
669 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
670 && (MSYMBOL_SIZE (&msymbol[hi])
671 == MSYMBOL_SIZE (&msymbol[hi - 1]))
672 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
673 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
674 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
675 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
676 {
677 hi--;
678 continue;
679 }
680
681 /* If the minimal symbol has a zero size, save it
682 but keep scanning backwards looking for one with
683 a non-zero size. A zero size may mean that the
684 symbol isn't an object or function (e.g. a
685 label), or it may just mean that the size was not
686 specified. */
687 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
688 {
689 if (best_zero_sized == -1)
690 best_zero_sized = hi;
691 hi--;
692 continue;
693 }
694
695 /* If we are past the end of the current symbol, try
696 the previous symbol if it has a larger overlapping
697 size. This happens on i686-pc-linux-gnu with glibc;
698 the nocancel variants of system calls are inside
699 the cancellable variants, but both have sizes. */
700 if (hi > 0
701 && MSYMBOL_SIZE (&msymbol[hi]) != 0
702 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
703 + MSYMBOL_SIZE (&msymbol[hi]))
704 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
705 + MSYMBOL_SIZE (&msymbol[hi - 1])))
706 {
707 hi--;
708 continue;
709 }
710
711 /* Otherwise, this symbol must be as good as we're going
712 to get. */
713 break;
714 }
715
716 /* If HI has a zero size, and best_zero_sized is set,
717 then we had two or more zero-sized symbols; prefer
718 the first one we found (which may have a higher
719 address). Also, if we ran off the end, be sure
720 to back up. */
721 if (best_zero_sized != -1
722 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
723 hi = best_zero_sized;
724
725 /* If the minimal symbol has a non-zero size, and this
726 PC appears to be outside the symbol's contents, then
727 refuse to use this symbol. If we found a zero-sized
728 symbol with an address greater than this symbol's,
729 use that instead. We assume that if symbols have
730 specified sizes, they do not overlap. */
731
732 if (hi >= 0
733 && MSYMBOL_SIZE (&msymbol[hi]) != 0
734 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
735 + MSYMBOL_SIZE (&msymbol[hi])))
736 {
737 if (best_zero_sized != -1)
738 hi = best_zero_sized;
739 else
740 /* Go on to the next object file. */
741 continue;
742 }
743
744 /* The minimal symbol indexed by hi now is the best one in this
745 objfile's minimal symbol table. See if it is the best one
746 overall. */
747
748 if (hi >= 0
749 && ((best_symbol == NULL) ||
750 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
751 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
752 {
753 best_symbol = &msymbol[hi];
754 best_objfile = objfile;
755 }
756 }
757 }
758 }
759
760 result.minsym = best_symbol;
761 result.objfile = best_objfile;
762 return result;
763 }
764
765 struct bound_minimal_symbol
766 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
767 {
768 if (section == NULL)
769 {
770 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
771 force the section but that (well unless you're doing overlay
772 debugging) always returns NULL making the call somewhat useless. */
773 section = find_pc_section (pc);
774 if (section == NULL)
775 {
776 struct bound_minimal_symbol result;
777
778 memset (&result, 0, sizeof (result));
779 return result;
780 }
781 }
782 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
783 }
784
785 /* See minsyms.h. */
786
787 struct bound_minimal_symbol
788 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
789 {
790 struct obj_section *section = find_pc_section (pc);
791
792 if (section == NULL)
793 {
794 struct bound_minimal_symbol result;
795
796 memset (&result, 0, sizeof (result));
797 return result;
798 }
799 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
800 }
801
802 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
803
804 int
805 in_gnu_ifunc_stub (CORE_ADDR pc)
806 {
807 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc);
808
809 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
810 }
811
812 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
813
814 static CORE_ADDR
815 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
816 {
817 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
818 "the ELF support compiled in."),
819 paddress (gdbarch, pc));
820 }
821
822 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
823
824 static int
825 stub_gnu_ifunc_resolve_name (const char *function_name,
826 CORE_ADDR *function_address_p)
827 {
828 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
829 "the ELF support compiled in."),
830 function_name);
831 }
832
833 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
834
835 static void
836 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
837 {
838 internal_error (__FILE__, __LINE__,
839 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
840 }
841
842 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
843
844 static void
845 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
846 {
847 internal_error (__FILE__, __LINE__,
848 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
849 }
850
851 /* See elf_gnu_ifunc_fns for its real implementation. */
852
853 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
854 {
855 stub_gnu_ifunc_resolve_addr,
856 stub_gnu_ifunc_resolve_name,
857 stub_gnu_ifunc_resolver_stop,
858 stub_gnu_ifunc_resolver_return_stop,
859 };
860
861 /* A placeholder for &elf_gnu_ifunc_fns. */
862
863 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
864
865 /* See minsyms.h. */
866
867 struct bound_minimal_symbol
868 lookup_minimal_symbol_and_objfile (const char *name)
869 {
870 struct bound_minimal_symbol result;
871 struct objfile *objfile;
872 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
873
874 ALL_OBJFILES (objfile)
875 {
876 struct minimal_symbol *msym;
877
878 for (msym = objfile->per_bfd->msymbol_hash[hash];
879 msym != NULL;
880 msym = msym->hash_next)
881 {
882 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
883 {
884 result.minsym = msym;
885 result.objfile = objfile;
886 return result;
887 }
888 }
889 }
890
891 memset (&result, 0, sizeof (result));
892 return result;
893 }
894 \f
895
896 /* Return leading symbol character for a BFD. If BFD is NULL,
897 return the leading symbol character from the main objfile. */
898
899 static int
900 get_symbol_leading_char (bfd *abfd)
901 {
902 if (abfd != NULL)
903 return bfd_get_symbol_leading_char (abfd);
904 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
905 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
906 return 0;
907 }
908
909 /* See minsyms.h. */
910
911 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
912 : m_objfile (obj),
913 m_msym_bunch (NULL),
914 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
915 first call to save a minimal symbol to allocate the memory for
916 the first bunch. */
917 m_msym_bunch_index (BUNCH_SIZE),
918 m_msym_count (0)
919 {
920 }
921
922 /* Discard the currently collected minimal symbols, if any. If we wish
923 to save them for later use, we must have already copied them somewhere
924 else before calling this function.
925
926 FIXME: We could allocate the minimal symbol bunches on their own
927 obstack and then simply blow the obstack away when we are done with
928 it. Is it worth the extra trouble though? */
929
930 minimal_symbol_reader::~minimal_symbol_reader ()
931 {
932 struct msym_bunch *next;
933
934 while (m_msym_bunch != NULL)
935 {
936 next = m_msym_bunch->next;
937 xfree (m_msym_bunch);
938 m_msym_bunch = next;
939 }
940 }
941
942 /* See minsyms.h. */
943
944 void
945 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
946 enum minimal_symbol_type ms_type)
947 {
948 int section;
949
950 switch (ms_type)
951 {
952 case mst_text:
953 case mst_text_gnu_ifunc:
954 case mst_file_text:
955 case mst_solib_trampoline:
956 section = SECT_OFF_TEXT (m_objfile);
957 break;
958 case mst_data:
959 case mst_file_data:
960 section = SECT_OFF_DATA (m_objfile);
961 break;
962 case mst_bss:
963 case mst_file_bss:
964 section = SECT_OFF_BSS (m_objfile);
965 break;
966 default:
967 section = -1;
968 }
969
970 record_with_info (name, address, ms_type, section);
971 }
972
973 /* See minsyms.h. */
974
975 struct minimal_symbol *
976 minimal_symbol_reader::record_full (const char *name, int name_len,
977 int copy_name,
978 CORE_ADDR address,
979 enum minimal_symbol_type ms_type,
980 int section)
981 {
982 struct msym_bunch *newobj;
983 struct minimal_symbol *msymbol;
984
985 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
986 the minimal symbols, because if there is also another symbol
987 at the same address (e.g. the first function of the file),
988 lookup_minimal_symbol_by_pc would have no way of getting the
989 right one. */
990 if (ms_type == mst_file_text && name[0] == 'g'
991 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
992 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
993 return (NULL);
994
995 /* It's safe to strip the leading char here once, since the name
996 is also stored stripped in the minimal symbol table. */
997 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
998 {
999 ++name;
1000 --name_len;
1001 }
1002
1003 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1004 return (NULL);
1005
1006 if (m_msym_bunch_index == BUNCH_SIZE)
1007 {
1008 newobj = XCNEW (struct msym_bunch);
1009 m_msym_bunch_index = 0;
1010 newobj->next = m_msym_bunch;
1011 m_msym_bunch = newobj;
1012 }
1013 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1014 MSYMBOL_SET_LANGUAGE (msymbol, language_auto,
1015 &m_objfile->per_bfd->storage_obstack);
1016 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, m_objfile);
1017
1018 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1019 MSYMBOL_SECTION (msymbol) = section;
1020
1021 MSYMBOL_TYPE (msymbol) = ms_type;
1022 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
1023 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
1024 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
1025 as it would also set the has_size flag. */
1026 msymbol->size = 0;
1027
1028 /* The hash pointers must be cleared! If they're not,
1029 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
1030 msymbol->hash_next = NULL;
1031 msymbol->demangled_hash_next = NULL;
1032
1033 /* If we already read minimal symbols for this objfile, then don't
1034 ever allocate a new one. */
1035 if (!m_objfile->per_bfd->minsyms_read)
1036 {
1037 m_msym_bunch_index++;
1038 m_objfile->per_bfd->n_minsyms++;
1039 }
1040 m_msym_count++;
1041 return msymbol;
1042 }
1043
1044 /* Compare two minimal symbols by address and return a signed result based
1045 on unsigned comparisons, so that we sort into unsigned numeric order.
1046 Within groups with the same address, sort by name. */
1047
1048 static int
1049 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1050 {
1051 const struct minimal_symbol *fn1;
1052 const struct minimal_symbol *fn2;
1053
1054 fn1 = (const struct minimal_symbol *) fn1p;
1055 fn2 = (const struct minimal_symbol *) fn2p;
1056
1057 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1058 {
1059 return (-1); /* addr 1 is less than addr 2. */
1060 }
1061 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1062 {
1063 return (1); /* addr 1 is greater than addr 2. */
1064 }
1065 else
1066 /* addrs are equal: sort by name */
1067 {
1068 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1069 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1070
1071 if (name1 && name2) /* both have names */
1072 return strcmp (name1, name2);
1073 else if (name2)
1074 return 1; /* fn1 has no name, so it is "less". */
1075 else if (name1) /* fn2 has no name, so it is "less". */
1076 return -1;
1077 else
1078 return (0); /* Neither has a name, so they're equal. */
1079 }
1080 }
1081
1082 /* Compact duplicate entries out of a minimal symbol table by walking
1083 through the table and compacting out entries with duplicate addresses
1084 and matching names. Return the number of entries remaining.
1085
1086 On entry, the table resides between msymbol[0] and msymbol[mcount].
1087 On exit, it resides between msymbol[0] and msymbol[result_count].
1088
1089 When files contain multiple sources of symbol information, it is
1090 possible for the minimal symbol table to contain many duplicate entries.
1091 As an example, SVR4 systems use ELF formatted object files, which
1092 usually contain at least two different types of symbol tables (a
1093 standard ELF one and a smaller dynamic linking table), as well as
1094 DWARF debugging information for files compiled with -g.
1095
1096 Without compacting, the minimal symbol table for gdb itself contains
1097 over a 1000 duplicates, about a third of the total table size. Aside
1098 from the potential trap of not noticing that two successive entries
1099 identify the same location, this duplication impacts the time required
1100 to linearly scan the table, which is done in a number of places. So we
1101 just do one linear scan here and toss out the duplicates.
1102
1103 Note that we are not concerned here about recovering the space that
1104 is potentially freed up, because the strings themselves are allocated
1105 on the storage_obstack, and will get automatically freed when the symbol
1106 table is freed. The caller can free up the unused minimal symbols at
1107 the end of the compacted region if their allocation strategy allows it.
1108
1109 Also note we only go up to the next to last entry within the loop
1110 and then copy the last entry explicitly after the loop terminates.
1111
1112 Since the different sources of information for each symbol may
1113 have different levels of "completeness", we may have duplicates
1114 that have one entry with type "mst_unknown" and the other with a
1115 known type. So if the one we are leaving alone has type mst_unknown,
1116 overwrite its type with the type from the one we are compacting out. */
1117
1118 static int
1119 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1120 struct objfile *objfile)
1121 {
1122 struct minimal_symbol *copyfrom;
1123 struct minimal_symbol *copyto;
1124
1125 if (mcount > 0)
1126 {
1127 copyfrom = copyto = msymbol;
1128 while (copyfrom < msymbol + mcount - 1)
1129 {
1130 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1131 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1132 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1133 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1134 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1135 {
1136 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1137 {
1138 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1139 }
1140 copyfrom++;
1141 }
1142 else
1143 *copyto++ = *copyfrom++;
1144 }
1145 *copyto++ = *copyfrom++;
1146 mcount = copyto - msymbol;
1147 }
1148 return (mcount);
1149 }
1150
1151 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1152 after compacting or sorting the table since the entries move around
1153 thus causing the internal minimal_symbol pointers to become jumbled. */
1154
1155 static void
1156 build_minimal_symbol_hash_tables (struct objfile *objfile)
1157 {
1158 int i;
1159 struct minimal_symbol *msym;
1160
1161 /* Clear the hash tables. */
1162 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1163 {
1164 objfile->per_bfd->msymbol_hash[i] = 0;
1165 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1166 }
1167
1168 /* Now, (re)insert the actual entries. */
1169 for ((i = objfile->per_bfd->minimal_symbol_count,
1170 msym = objfile->per_bfd->msymbols);
1171 i > 0;
1172 i--, msym++)
1173 {
1174 msym->hash_next = 0;
1175 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1176
1177 msym->demangled_hash_next = 0;
1178 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1179 add_minsym_to_demangled_hash_table (msym,
1180 objfile->per_bfd->msymbol_demangled_hash);
1181 }
1182 }
1183
1184 /* Add the minimal symbols in the existing bunches to the objfile's official
1185 minimal symbol table. In most cases there is no minimal symbol table yet
1186 for this objfile, and the existing bunches are used to create one. Once
1187 in a while (for shared libraries for example), we add symbols (e.g. common
1188 symbols) to an existing objfile.
1189
1190 Because of the way minimal symbols are collected, we generally have no way
1191 of knowing what source language applies to any particular minimal symbol.
1192 Specifically, we have no way of knowing if the minimal symbol comes from a
1193 C++ compilation unit or not. So for the sake of supporting cached
1194 demangled C++ names, we have no choice but to try and demangle each new one
1195 that comes in. If the demangling succeeds, then we assume it is a C++
1196 symbol and set the symbol's language and demangled name fields
1197 appropriately. Note that in order to avoid unnecessary demanglings, and
1198 allocating obstack space that subsequently can't be freed for the demangled
1199 names, we mark all newly added symbols with language_auto. After
1200 compaction of the minimal symbols, we go back and scan the entire minimal
1201 symbol table looking for these new symbols. For each new symbol we attempt
1202 to demangle it, and if successful, record it as a language_cplus symbol
1203 and cache the demangled form on the symbol obstack. Symbols which don't
1204 demangle are marked as language_unknown symbols, which inhibits future
1205 attempts to demangle them if we later add more minimal symbols. */
1206
1207 void
1208 minimal_symbol_reader::install ()
1209 {
1210 int bindex;
1211 int mcount;
1212 struct msym_bunch *bunch;
1213 struct minimal_symbol *msymbols;
1214 int alloc_count;
1215
1216 if (m_objfile->per_bfd->minsyms_read)
1217 return;
1218
1219 if (m_msym_count > 0)
1220 {
1221 if (symtab_create_debug)
1222 {
1223 fprintf_unfiltered (gdb_stdlog,
1224 "Installing %d minimal symbols of objfile %s.\n",
1225 m_msym_count, objfile_name (m_objfile));
1226 }
1227
1228 /* Allocate enough space in the obstack, into which we will gather the
1229 bunches of new and existing minimal symbols, sort them, and then
1230 compact out the duplicate entries. Once we have a final table,
1231 we will give back the excess space. */
1232
1233 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count + 1;
1234 obstack_blank (&m_objfile->per_bfd->storage_obstack,
1235 alloc_count * sizeof (struct minimal_symbol));
1236 msymbols = (struct minimal_symbol *)
1237 obstack_base (&m_objfile->per_bfd->storage_obstack);
1238
1239 /* Copy in the existing minimal symbols, if there are any. */
1240
1241 if (m_objfile->per_bfd->minimal_symbol_count)
1242 memcpy ((char *) msymbols, (char *) m_objfile->per_bfd->msymbols,
1243 m_objfile->per_bfd->minimal_symbol_count * sizeof (struct minimal_symbol));
1244
1245 /* Walk through the list of minimal symbol bunches, adding each symbol
1246 to the new contiguous array of symbols. Note that we start with the
1247 current, possibly partially filled bunch (thus we use the current
1248 msym_bunch_index for the first bunch we copy over), and thereafter
1249 each bunch is full. */
1250
1251 mcount = m_objfile->per_bfd->minimal_symbol_count;
1252
1253 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1254 {
1255 for (bindex = 0; bindex < m_msym_bunch_index; bindex++, mcount++)
1256 msymbols[mcount] = bunch->contents[bindex];
1257 m_msym_bunch_index = BUNCH_SIZE;
1258 }
1259
1260 /* Sort the minimal symbols by address. */
1261
1262 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1263 compare_minimal_symbols);
1264
1265 /* Compact out any duplicates, and free up whatever space we are
1266 no longer using. */
1267
1268 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1269
1270 obstack_blank_fast (&m_objfile->per_bfd->storage_obstack,
1271 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1272 msymbols = (struct minimal_symbol *)
1273 obstack_finish (&m_objfile->per_bfd->storage_obstack);
1274
1275 /* We also terminate the minimal symbol table with a "null symbol",
1276 which is *not* included in the size of the table. This makes it
1277 easier to find the end of the table when we are handed a pointer
1278 to some symbol in the middle of it. Zero out the fields in the
1279 "null symbol" allocated at the end of the array. Note that the
1280 symbol count does *not* include this null symbol, which is why it
1281 is indexed by mcount and not mcount-1. */
1282
1283 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1284
1285 /* Attach the minimal symbol table to the specified objfile.
1286 The strings themselves are also located in the storage_obstack
1287 of this objfile. */
1288
1289 m_objfile->per_bfd->minimal_symbol_count = mcount;
1290 m_objfile->per_bfd->msymbols = msymbols;
1291
1292 /* Now build the hash tables; we can't do this incrementally
1293 at an earlier point since we weren't finished with the obstack
1294 yet. (And if the msymbol obstack gets moved, all the internal
1295 pointers to other msymbols need to be adjusted.) */
1296 build_minimal_symbol_hash_tables (m_objfile);
1297 }
1298 }
1299
1300 /* See minsyms.h. */
1301
1302 void
1303 terminate_minimal_symbol_table (struct objfile *objfile)
1304 {
1305 if (! objfile->per_bfd->msymbols)
1306 objfile->per_bfd->msymbols
1307 = ((struct minimal_symbol *)
1308 obstack_alloc (&objfile->per_bfd->storage_obstack,
1309 sizeof (struct minimal_symbol)));
1310
1311 {
1312 struct minimal_symbol *m
1313 = &objfile->per_bfd->msymbols[objfile->per_bfd->minimal_symbol_count];
1314
1315 memset (m, 0, sizeof (*m));
1316 /* Don't rely on these enumeration values being 0's. */
1317 MSYMBOL_TYPE (m) = mst_unknown;
1318 MSYMBOL_SET_LANGUAGE (m, language_unknown,
1319 &objfile->per_bfd->storage_obstack);
1320 }
1321 }
1322
1323 /* Check if PC is in a shared library trampoline code stub.
1324 Return minimal symbol for the trampoline entry or NULL if PC is not
1325 in a trampoline code stub. */
1326
1327 static struct minimal_symbol *
1328 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1329 {
1330 struct obj_section *section = find_pc_section (pc);
1331 struct bound_minimal_symbol msymbol;
1332
1333 if (section == NULL)
1334 return NULL;
1335 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1336
1337 if (msymbol.minsym != NULL
1338 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1339 return msymbol.minsym;
1340 return NULL;
1341 }
1342
1343 /* If PC is in a shared library trampoline code stub, return the
1344 address of the `real' function belonging to the stub.
1345 Return 0 if PC is not in a trampoline code stub or if the real
1346 function is not found in the minimal symbol table.
1347
1348 We may fail to find the right function if a function with the
1349 same name is defined in more than one shared library, but this
1350 is considered bad programming style. We could return 0 if we find
1351 a duplicate function in case this matters someday. */
1352
1353 CORE_ADDR
1354 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1355 {
1356 struct objfile *objfile;
1357 struct minimal_symbol *msymbol;
1358 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1359
1360 if (tsymbol != NULL)
1361 {
1362 ALL_MSYMBOLS (objfile, msymbol)
1363 {
1364 if ((MSYMBOL_TYPE (msymbol) == mst_text
1365 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1366 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1367 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1368 return MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1369
1370 /* Also handle minimal symbols pointing to function descriptors. */
1371 if (MSYMBOL_TYPE (msymbol) == mst_data
1372 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1373 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1374 {
1375 CORE_ADDR func;
1376
1377 func = gdbarch_convert_from_func_ptr_addr
1378 (get_objfile_arch (objfile),
1379 MSYMBOL_VALUE_ADDRESS (objfile, msymbol),
1380 &current_target);
1381
1382 /* Ignore data symbols that are not function descriptors. */
1383 if (func != MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
1384 return func;
1385 }
1386 }
1387 }
1388 return 0;
1389 }
1390
1391 /* See minsyms.h. */
1392
1393 CORE_ADDR
1394 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1395 {
1396 int i;
1397 short section;
1398 struct obj_section *obj_section;
1399 CORE_ADDR result;
1400 struct minimal_symbol *msymbol;
1401
1402 gdb_assert (minsym.minsym != NULL);
1403
1404 /* If the minimal symbol has a size, use it. Otherwise use the
1405 lesser of the next minimal symbol in the same section, or the end
1406 of the section, as the end of the function. */
1407
1408 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1409 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1410
1411 /* Step over other symbols at this same address, and symbols in
1412 other sections, to find the next symbol in this section with a
1413 different address. */
1414
1415 msymbol = minsym.minsym;
1416 section = MSYMBOL_SECTION (msymbol);
1417 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1418 {
1419 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1420 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1421 && MSYMBOL_SECTION (msymbol + i) == section)
1422 break;
1423 }
1424
1425 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1426 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1427 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1428 < obj_section_endaddr (obj_section)))
1429 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1430 else
1431 /* We got the start address from the last msymbol in the objfile.
1432 So the end address is the end of the section. */
1433 result = obj_section_endaddr (obj_section);
1434
1435 return result;
1436 }
This page took 0.061126 seconds and 4 git commands to generate.