7ca3fcccbea9a6781199e2bed75382f7a71dd17b
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2018 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "symbol.h"
54 #include <algorithm>
55 #include "safe-ctype.h"
56
57 /* See minsyms.h. */
58
59 bool
60 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
61 CORE_ADDR *func_address_p)
62 {
63 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
64
65 switch (minsym->type)
66 {
67 case mst_slot_got_plt:
68 case mst_data:
69 case mst_bss:
70 case mst_abs:
71 case mst_file_data:
72 case mst_file_bss:
73 {
74 struct gdbarch *gdbarch = get_objfile_arch (objfile);
75 CORE_ADDR pc = gdbarch_convert_from_func_ptr_addr (gdbarch, msym_addr,
76 &current_target);
77 if (pc != msym_addr)
78 {
79 if (func_address_p != NULL)
80 *func_address_p = pc;
81 return true;
82 }
83 return false;
84 }
85 default:
86 if (func_address_p != NULL)
87 *func_address_p = msym_addr;
88 return true;
89 }
90 }
91
92 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
93 At the end, copy them all into one newly allocated location on an objfile's
94 per-BFD storage obstack. */
95
96 #define BUNCH_SIZE 127
97
98 struct msym_bunch
99 {
100 struct msym_bunch *next;
101 struct minimal_symbol contents[BUNCH_SIZE];
102 };
103
104 /* See minsyms.h. */
105
106 unsigned int
107 msymbol_hash_iw (const char *string)
108 {
109 unsigned int hash = 0;
110
111 while (*string && *string != '(')
112 {
113 string = skip_spaces (string);
114 if (*string && *string != '(')
115 {
116 hash = SYMBOL_HASH_NEXT (hash, *string);
117 ++string;
118 }
119 }
120 return hash;
121 }
122
123 /* See minsyms.h. */
124
125 unsigned int
126 msymbol_hash (const char *string)
127 {
128 unsigned int hash = 0;
129
130 for (; *string; ++string)
131 hash = SYMBOL_HASH_NEXT (hash, *string);
132 return hash;
133 }
134
135 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
136 static void
137 add_minsym_to_hash_table (struct minimal_symbol *sym,
138 struct minimal_symbol **table)
139 {
140 if (sym->hash_next == NULL)
141 {
142 unsigned int hash
143 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
144
145 sym->hash_next = table[hash];
146 table[hash] = sym;
147 }
148 }
149
150 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
151 TABLE. */
152 static void
153 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
154 struct objfile *objfile)
155 {
156 if (sym->demangled_hash_next == NULL)
157 {
158 unsigned int hash = search_name_hash (MSYMBOL_LANGUAGE (sym),
159 MSYMBOL_SEARCH_NAME (sym));
160
161 auto &vec = objfile->per_bfd->demangled_hash_languages;
162 auto it = std::lower_bound (vec.begin (), vec.end (),
163 MSYMBOL_LANGUAGE (sym));
164 if (it == vec.end () || *it != MSYMBOL_LANGUAGE (sym))
165 vec.insert (it, MSYMBOL_LANGUAGE (sym));
166
167 struct minimal_symbol **table
168 = objfile->per_bfd->msymbol_demangled_hash;
169 unsigned int hash_index = hash % MINIMAL_SYMBOL_HASH_SIZE;
170 sym->demangled_hash_next = table[hash_index];
171 table[hash_index] = sym;
172 }
173 }
174
175 /* Worker object for lookup_minimal_symbol. Stores temporary results
176 while walking the symbol tables. */
177
178 struct found_minimal_symbols
179 {
180 /* External symbols are best. */
181 bound_minimal_symbol external_symbol {};
182
183 /* File-local symbols are next best. */
184 bound_minimal_symbol file_symbol {};
185
186 /* Symbols for shared library trampolines are next best. */
187 bound_minimal_symbol trampoline_symbol {};
188
189 /* Called when a symbol name matches. Check if the minsym is a
190 better type than what we had already found, and record it in one
191 of the members fields if so. Returns true if we collected the
192 real symbol, in which case we can stop searching. */
193 bool maybe_collect (const char *sfile, objfile *objf,
194 minimal_symbol *msymbol);
195 };
196
197 /* See declaration above. */
198
199 bool
200 found_minimal_symbols::maybe_collect (const char *sfile,
201 struct objfile *objfile,
202 minimal_symbol *msymbol)
203 {
204 switch (MSYMBOL_TYPE (msymbol))
205 {
206 case mst_file_text:
207 case mst_file_data:
208 case mst_file_bss:
209 if (sfile == NULL
210 || filename_cmp (msymbol->filename, sfile) == 0)
211 {
212 file_symbol.minsym = msymbol;
213 file_symbol.objfile = objfile;
214 }
215 break;
216
217 case mst_solib_trampoline:
218
219 /* If a trampoline symbol is found, we prefer to keep
220 looking for the *real* symbol. If the actual symbol
221 is not found, then we'll use the trampoline
222 entry. */
223 if (trampoline_symbol.minsym == NULL)
224 {
225 trampoline_symbol.minsym = msymbol;
226 trampoline_symbol.objfile = objfile;
227 }
228 break;
229
230 case mst_unknown:
231 default:
232 external_symbol.minsym = msymbol;
233 external_symbol.objfile = objfile;
234 /* We have the real symbol. No use looking further. */
235 return true;
236 }
237
238 /* Keep looking. */
239 return false;
240 }
241
242 /* Walk the mangled name hash table, and pass each symbol whose name
243 matches LOOKUP_NAME according to NAMECMP to FOUND. */
244
245 static void
246 lookup_minimal_symbol_mangled (const char *lookup_name,
247 const char *sfile,
248 struct objfile *objfile,
249 struct minimal_symbol **table,
250 unsigned int hash,
251 int (*namecmp) (const char *, const char *),
252 found_minimal_symbols &found)
253 {
254 for (minimal_symbol *msymbol = table[hash];
255 msymbol != NULL;
256 msymbol = msymbol->hash_next)
257 {
258 const char *symbol_name = MSYMBOL_LINKAGE_NAME (msymbol);
259
260 if (namecmp (symbol_name, lookup_name) == 0
261 && found.maybe_collect (sfile, objfile, msymbol))
262 return;
263 }
264 }
265
266 /* Walk the demangled name hash table, and pass each symbol whose name
267 matches LOOKUP_NAME according to MATCHER to FOUND. */
268
269 static void
270 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
271 const char *sfile,
272 struct objfile *objfile,
273 struct minimal_symbol **table,
274 unsigned int hash,
275 symbol_name_matcher_ftype *matcher,
276 found_minimal_symbols &found)
277 {
278 for (minimal_symbol *msymbol = table[hash];
279 msymbol != NULL;
280 msymbol = msymbol->demangled_hash_next)
281 {
282 const char *symbol_name = MSYMBOL_SEARCH_NAME (msymbol);
283
284 if (matcher (symbol_name, lookup_name, NULL)
285 && found.maybe_collect (sfile, objfile, msymbol))
286 return;
287 }
288 }
289
290 /* Look through all the current minimal symbol tables and find the
291 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
292 the search to that objfile. If SFILE is non-NULL, the only file-scope
293 symbols considered will be from that source file (global symbols are
294 still preferred). Returns a pointer to the minimal symbol that
295 matches, or NULL if no match is found.
296
297 Note: One instance where there may be duplicate minimal symbols with
298 the same name is when the symbol tables for a shared library and the
299 symbol tables for an executable contain global symbols with the same
300 names (the dynamic linker deals with the duplication).
301
302 It's also possible to have minimal symbols with different mangled
303 names, but identical demangled names. For example, the GNU C++ v3
304 ABI requires the generation of two (or perhaps three) copies of
305 constructor functions --- "in-charge", "not-in-charge", and
306 "allocate" copies; destructors may be duplicated as well.
307 Obviously, there must be distinct mangled names for each of these,
308 but the demangled names are all the same: S::S or S::~S. */
309
310 struct bound_minimal_symbol
311 lookup_minimal_symbol (const char *name, const char *sfile,
312 struct objfile *objf)
313 {
314 struct objfile *objfile;
315 found_minimal_symbols found;
316
317 unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
318
319 auto *mangled_cmp
320 = (case_sensitivity == case_sensitive_on
321 ? strcmp
322 : strcasecmp);
323
324 if (sfile != NULL)
325 sfile = lbasename (sfile);
326
327 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
328
329 for (objfile = object_files;
330 objfile != NULL && found.external_symbol.minsym == NULL;
331 objfile = objfile->next)
332 {
333 if (objf == NULL || objf == objfile
334 || objf == objfile->separate_debug_objfile_backlink)
335 {
336 if (symbol_lookup_debug)
337 {
338 fprintf_unfiltered (gdb_stdlog,
339 "lookup_minimal_symbol (%s, %s, %s)\n",
340 name, sfile != NULL ? sfile : "NULL",
341 objfile_debug_name (objfile));
342 }
343
344 /* Do two passes: the first over the ordinary hash table,
345 and the second over the demangled hash table. */
346 lookup_minimal_symbol_mangled (name, sfile, objfile,
347 objfile->per_bfd->msymbol_hash,
348 mangled_hash, mangled_cmp, found);
349
350 /* If not found, try the demangled hash table. */
351 if (found.external_symbol.minsym == NULL)
352 {
353 /* Once for each language in the demangled hash names
354 table (usually just zero or one languages). */
355 for (auto lang : objfile->per_bfd->demangled_hash_languages)
356 {
357 unsigned int hash
358 = (lookup_name.search_name_hash (lang)
359 % MINIMAL_SYMBOL_HASH_SIZE);
360
361 symbol_name_matcher_ftype *match
362 = get_symbol_name_matcher (language_def (lang),
363 lookup_name);
364 struct minimal_symbol **msymbol_demangled_hash
365 = objfile->per_bfd->msymbol_demangled_hash;
366
367 lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
368 msymbol_demangled_hash,
369 hash, match, found);
370
371 if (found.external_symbol.minsym != NULL)
372 break;
373 }
374 }
375 }
376 }
377
378 /* External symbols are best. */
379 if (found.external_symbol.minsym != NULL)
380 {
381 if (symbol_lookup_debug)
382 {
383 minimal_symbol *minsym = found.external_symbol.minsym;
384
385 fprintf_unfiltered (gdb_stdlog,
386 "lookup_minimal_symbol (...) = %s (external)\n",
387 host_address_to_string (minsym));
388 }
389 return found.external_symbol;
390 }
391
392 /* File-local symbols are next best. */
393 if (found.file_symbol.minsym != NULL)
394 {
395 if (symbol_lookup_debug)
396 {
397 minimal_symbol *minsym = found.file_symbol.minsym;
398
399 fprintf_unfiltered (gdb_stdlog,
400 "lookup_minimal_symbol (...) = %s (file-local)\n",
401 host_address_to_string (minsym));
402 }
403 return found.file_symbol;
404 }
405
406 /* Symbols for shared library trampolines are next best. */
407 if (found.trampoline_symbol.minsym != NULL)
408 {
409 if (symbol_lookup_debug)
410 {
411 minimal_symbol *minsym = found.trampoline_symbol.minsym;
412
413 fprintf_unfiltered (gdb_stdlog,
414 "lookup_minimal_symbol (...) = %s (trampoline)\n",
415 host_address_to_string (minsym));
416 }
417
418 return found.trampoline_symbol;
419 }
420
421 /* Not found. */
422 if (symbol_lookup_debug)
423 fprintf_unfiltered (gdb_stdlog, "lookup_minimal_symbol (...) = NULL\n");
424 return {};
425 }
426
427 /* See minsyms.h. */
428
429 struct bound_minimal_symbol
430 lookup_bound_minimal_symbol (const char *name)
431 {
432 return lookup_minimal_symbol (name, NULL, NULL);
433 }
434
435 /* See common/symbol.h. */
436
437 int
438 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
439 struct objfile *objfile)
440 {
441 struct bound_minimal_symbol sym
442 = lookup_minimal_symbol (name, NULL, objfile);
443
444 if (sym.minsym != NULL)
445 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
446
447 return sym.minsym == NULL;
448 }
449
450 /* Get the lookup name form best suitable for linkage name
451 matching. */
452
453 static const char *
454 linkage_name_str (const lookup_name_info &lookup_name)
455 {
456 /* Unlike most languages (including C++), Ada uses the
457 encoded/linkage name as the search name recorded in symbols. So
458 if debugging in Ada mode, prefer the Ada-encoded name. This also
459 makes Ada's verbatim match syntax ("<...>") work, because
460 "lookup_name.name()" includes the "<>"s, while
461 "lookup_name.ada().lookup_name()" is the encoded name with "<>"s
462 stripped. */
463 if (current_language->la_language == language_ada)
464 return lookup_name.ada ().lookup_name ().c_str ();
465
466 return lookup_name.name ().c_str ();
467 }
468
469 /* See minsyms.h. */
470
471 void
472 iterate_over_minimal_symbols
473 (struct objfile *objf, const lookup_name_info &lookup_name,
474 gdb::function_view<bool (struct minimal_symbol *)> callback)
475 {
476 /* The first pass is over the ordinary hash table. */
477 {
478 const char *name = linkage_name_str (lookup_name);
479 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
480 auto *mangled_cmp
481 = (case_sensitivity == case_sensitive_on
482 ? strcmp
483 : strcasecmp);
484
485 for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
486 iter != NULL;
487 iter = iter->hash_next)
488 {
489 if (mangled_cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
490 if (callback (iter))
491 return;
492 }
493 }
494
495 /* The second pass is over the demangled table. Once for each
496 language in the demangled hash names table (usually just zero or
497 one). */
498 for (auto lang : objf->per_bfd->demangled_hash_languages)
499 {
500 const language_defn *lang_def = language_def (lang);
501 symbol_name_matcher_ftype *name_match
502 = get_symbol_name_matcher (lang_def, lookup_name);
503
504 unsigned int hash
505 = lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
506 for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
507 iter != NULL;
508 iter = iter->demangled_hash_next)
509 if (name_match (MSYMBOL_SEARCH_NAME (iter), lookup_name, NULL))
510 if (callback (iter))
511 return;
512 }
513 }
514
515 /* See minsyms.h. */
516
517 struct bound_minimal_symbol
518 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
519 {
520 struct objfile *objfile;
521 struct minimal_symbol *msymbol;
522 struct bound_minimal_symbol found_symbol = { NULL, NULL };
523 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
524
525 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
526
527 for (objfile = object_files;
528 objfile != NULL && found_symbol.minsym == NULL;
529 objfile = objfile->next)
530 {
531 if (objf == NULL || objf == objfile
532 || objf == objfile->separate_debug_objfile_backlink)
533 {
534 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
535 msymbol != NULL && found_symbol.minsym == NULL;
536 msymbol = msymbol->hash_next)
537 {
538 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
539 (MSYMBOL_TYPE (msymbol) == mst_text
540 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
541 || MSYMBOL_TYPE (msymbol) == mst_file_text))
542 {
543 switch (MSYMBOL_TYPE (msymbol))
544 {
545 case mst_file_text:
546 found_file_symbol.minsym = msymbol;
547 found_file_symbol.objfile = objfile;
548 break;
549 default:
550 found_symbol.minsym = msymbol;
551 found_symbol.objfile = objfile;
552 break;
553 }
554 }
555 }
556 }
557 }
558 /* External symbols are best. */
559 if (found_symbol.minsym)
560 return found_symbol;
561
562 /* File-local symbols are next best. */
563 return found_file_symbol;
564 }
565
566 /* See minsyms.h. */
567
568 struct minimal_symbol *
569 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
570 struct objfile *objf)
571 {
572 struct objfile *objfile;
573 struct minimal_symbol *msymbol;
574
575 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
576
577 for (objfile = object_files;
578 objfile != NULL;
579 objfile = objfile->next)
580 {
581 if (objf == NULL || objf == objfile
582 || objf == objfile->separate_debug_objfile_backlink)
583 {
584 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
585 msymbol != NULL;
586 msymbol = msymbol->hash_next)
587 {
588 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
589 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
590 return msymbol;
591 }
592 }
593 }
594
595 return NULL;
596 }
597
598 /* See minsyms.h. */
599
600 struct bound_minimal_symbol
601 lookup_minimal_symbol_solib_trampoline (const char *name,
602 struct objfile *objf)
603 {
604 struct objfile *objfile;
605 struct minimal_symbol *msymbol;
606 struct bound_minimal_symbol found_symbol = { NULL, NULL };
607
608 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
609
610 for (objfile = object_files;
611 objfile != NULL;
612 objfile = objfile->next)
613 {
614 if (objf == NULL || objf == objfile
615 || objf == objfile->separate_debug_objfile_backlink)
616 {
617 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
618 msymbol != NULL;
619 msymbol = msymbol->hash_next)
620 {
621 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
622 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
623 {
624 found_symbol.objfile = objfile;
625 found_symbol.minsym = msymbol;
626 return found_symbol;
627 }
628 }
629 }
630 }
631
632 return found_symbol;
633 }
634
635 /* A helper function that makes *PC section-relative. This searches
636 the sections of OBJFILE and if *PC is in a section, it subtracts
637 the section offset and returns true. Otherwise it returns
638 false. */
639
640 static int
641 frob_address (struct objfile *objfile, CORE_ADDR *pc)
642 {
643 struct obj_section *iter;
644
645 ALL_OBJFILE_OSECTIONS (objfile, iter)
646 {
647 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
648 {
649 *pc -= obj_section_offset (iter);
650 return 1;
651 }
652 }
653
654 return 0;
655 }
656
657 /* Search through the minimal symbol table for each objfile and find
658 the symbol whose address is the largest address that is still less
659 than or equal to PC, and matches SECTION (which is not NULL).
660 Returns a pointer to the minimal symbol if such a symbol is found,
661 or NULL if PC is not in a suitable range.
662 Note that we need to look through ALL the minimal symbol tables
663 before deciding on the symbol that comes closest to the specified PC.
664 This is because objfiles can overlap, for example objfile A has .text
665 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
666 .data at 0x40048.
667
668 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
669 there are text and trampoline symbols at the same address.
670 Otherwise prefer mst_text symbols. */
671
672 static struct bound_minimal_symbol
673 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc_in,
674 struct obj_section *section,
675 int want_trampoline)
676 {
677 int lo;
678 int hi;
679 int newobj;
680 struct objfile *objfile;
681 struct minimal_symbol *msymbol;
682 struct minimal_symbol *best_symbol = NULL;
683 struct objfile *best_objfile = NULL;
684 struct bound_minimal_symbol result;
685 enum minimal_symbol_type want_type, other_type;
686
687 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
688 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
689
690 /* We can not require the symbol found to be in section, because
691 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
692 symbol - but find_pc_section won't return an absolute section and
693 hence the code below would skip over absolute symbols. We can
694 still take advantage of the call to find_pc_section, though - the
695 object file still must match. In case we have separate debug
696 files, search both the file and its separate debug file. There's
697 no telling which one will have the minimal symbols. */
698
699 gdb_assert (section != NULL);
700
701 for (objfile = section->objfile;
702 objfile != NULL;
703 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
704 {
705 CORE_ADDR pc = pc_in;
706
707 /* If this objfile has a minimal symbol table, go search it using
708 a binary search. Note that a minimal symbol table always consists
709 of at least two symbols, a "real" symbol and the terminating
710 "null symbol". If there are no real symbols, then there is no
711 minimal symbol table at all. */
712
713 if (objfile->per_bfd->minimal_symbol_count > 0)
714 {
715 int best_zero_sized = -1;
716
717 msymbol = objfile->per_bfd->msymbols;
718 lo = 0;
719 hi = objfile->per_bfd->minimal_symbol_count - 1;
720
721 /* This code assumes that the minimal symbols are sorted by
722 ascending address values. If the pc value is greater than or
723 equal to the first symbol's address, then some symbol in this
724 minimal symbol table is a suitable candidate for being the
725 "best" symbol. This includes the last real symbol, for cases
726 where the pc value is larger than any address in this vector.
727
728 By iterating until the address associated with the current
729 hi index (the endpoint of the test interval) is less than
730 or equal to the desired pc value, we accomplish two things:
731 (1) the case where the pc value is larger than any minimal
732 symbol address is trivially solved, (2) the address associated
733 with the hi index is always the one we want when the interation
734 terminates. In essence, we are iterating the test interval
735 down until the pc value is pushed out of it from the high end.
736
737 Warning: this code is trickier than it would appear at first. */
738
739 if (frob_address (objfile, &pc)
740 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
741 {
742 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
743 {
744 /* pc is still strictly less than highest address. */
745 /* Note "new" will always be >= lo. */
746 newobj = (lo + hi) / 2;
747 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
748 || (lo == newobj))
749 {
750 hi = newobj;
751 }
752 else
753 {
754 lo = newobj;
755 }
756 }
757
758 /* If we have multiple symbols at the same address, we want
759 hi to point to the last one. That way we can find the
760 right symbol if it has an index greater than hi. */
761 while (hi < objfile->per_bfd->minimal_symbol_count - 1
762 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
763 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
764 hi++;
765
766 /* Skip various undesirable symbols. */
767 while (hi >= 0)
768 {
769 /* Skip any absolute symbols. This is apparently
770 what adb and dbx do, and is needed for the CM-5.
771 There are two known possible problems: (1) on
772 ELF, apparently end, edata, etc. are absolute.
773 Not sure ignoring them here is a big deal, but if
774 we want to use them, the fix would go in
775 elfread.c. (2) I think shared library entry
776 points on the NeXT are absolute. If we want
777 special handling for this it probably should be
778 triggered by a special mst_abs_or_lib or some
779 such. */
780
781 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
782 {
783 hi--;
784 continue;
785 }
786
787 /* If SECTION was specified, skip any symbol from
788 wrong section. */
789 if (section
790 /* Some types of debug info, such as COFF,
791 don't fill the bfd_section member, so don't
792 throw away symbols on those platforms. */
793 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
794 && (!matching_obj_sections
795 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
796 section)))
797 {
798 hi--;
799 continue;
800 }
801
802 /* If we are looking for a trampoline and this is a
803 text symbol, or the other way around, check the
804 preceding symbol too. If they are otherwise
805 identical prefer that one. */
806 if (hi > 0
807 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
808 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
809 && (MSYMBOL_SIZE (&msymbol[hi])
810 == MSYMBOL_SIZE (&msymbol[hi - 1]))
811 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
812 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
813 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
814 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
815 {
816 hi--;
817 continue;
818 }
819
820 /* If the minimal symbol has a zero size, save it
821 but keep scanning backwards looking for one with
822 a non-zero size. A zero size may mean that the
823 symbol isn't an object or function (e.g. a
824 label), or it may just mean that the size was not
825 specified. */
826 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
827 {
828 if (best_zero_sized == -1)
829 best_zero_sized = hi;
830 hi--;
831 continue;
832 }
833
834 /* If we are past the end of the current symbol, try
835 the previous symbol if it has a larger overlapping
836 size. This happens on i686-pc-linux-gnu with glibc;
837 the nocancel variants of system calls are inside
838 the cancellable variants, but both have sizes. */
839 if (hi > 0
840 && MSYMBOL_SIZE (&msymbol[hi]) != 0
841 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
842 + MSYMBOL_SIZE (&msymbol[hi]))
843 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
844 + MSYMBOL_SIZE (&msymbol[hi - 1])))
845 {
846 hi--;
847 continue;
848 }
849
850 /* Otherwise, this symbol must be as good as we're going
851 to get. */
852 break;
853 }
854
855 /* If HI has a zero size, and best_zero_sized is set,
856 then we had two or more zero-sized symbols; prefer
857 the first one we found (which may have a higher
858 address). Also, if we ran off the end, be sure
859 to back up. */
860 if (best_zero_sized != -1
861 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
862 hi = best_zero_sized;
863
864 /* If the minimal symbol has a non-zero size, and this
865 PC appears to be outside the symbol's contents, then
866 refuse to use this symbol. If we found a zero-sized
867 symbol with an address greater than this symbol's,
868 use that instead. We assume that if symbols have
869 specified sizes, they do not overlap. */
870
871 if (hi >= 0
872 && MSYMBOL_SIZE (&msymbol[hi]) != 0
873 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
874 + MSYMBOL_SIZE (&msymbol[hi])))
875 {
876 if (best_zero_sized != -1)
877 hi = best_zero_sized;
878 else
879 /* Go on to the next object file. */
880 continue;
881 }
882
883 /* The minimal symbol indexed by hi now is the best one in this
884 objfile's minimal symbol table. See if it is the best one
885 overall. */
886
887 if (hi >= 0
888 && ((best_symbol == NULL) ||
889 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
890 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
891 {
892 best_symbol = &msymbol[hi];
893 best_objfile = objfile;
894 }
895 }
896 }
897 }
898
899 result.minsym = best_symbol;
900 result.objfile = best_objfile;
901 return result;
902 }
903
904 struct bound_minimal_symbol
905 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
906 {
907 if (section == NULL)
908 {
909 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
910 force the section but that (well unless you're doing overlay
911 debugging) always returns NULL making the call somewhat useless. */
912 section = find_pc_section (pc);
913 if (section == NULL)
914 {
915 struct bound_minimal_symbol result;
916
917 memset (&result, 0, sizeof (result));
918 return result;
919 }
920 }
921 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
922 }
923
924 /* See minsyms.h. */
925
926 struct bound_minimal_symbol
927 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
928 {
929 struct obj_section *section = find_pc_section (pc);
930
931 if (section == NULL)
932 {
933 struct bound_minimal_symbol result;
934
935 memset (&result, 0, sizeof (result));
936 return result;
937 }
938 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
939 }
940
941 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
942
943 int
944 in_gnu_ifunc_stub (CORE_ADDR pc)
945 {
946 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc);
947
948 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
949 }
950
951 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
952
953 static CORE_ADDR
954 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
955 {
956 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
957 "the ELF support compiled in."),
958 paddress (gdbarch, pc));
959 }
960
961 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
962
963 static int
964 stub_gnu_ifunc_resolve_name (const char *function_name,
965 CORE_ADDR *function_address_p)
966 {
967 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
968 "the ELF support compiled in."),
969 function_name);
970 }
971
972 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
973
974 static void
975 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
976 {
977 internal_error (__FILE__, __LINE__,
978 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
979 }
980
981 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
982
983 static void
984 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
985 {
986 internal_error (__FILE__, __LINE__,
987 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
988 }
989
990 /* See elf_gnu_ifunc_fns for its real implementation. */
991
992 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
993 {
994 stub_gnu_ifunc_resolve_addr,
995 stub_gnu_ifunc_resolve_name,
996 stub_gnu_ifunc_resolver_stop,
997 stub_gnu_ifunc_resolver_return_stop,
998 };
999
1000 /* A placeholder for &elf_gnu_ifunc_fns. */
1001
1002 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
1003
1004 /* See minsyms.h. */
1005
1006 struct bound_minimal_symbol
1007 lookup_minimal_symbol_and_objfile (const char *name)
1008 {
1009 struct bound_minimal_symbol result;
1010 struct objfile *objfile;
1011
1012 ALL_OBJFILES (objfile)
1013 {
1014 result = lookup_minimal_symbol (name, NULL, objfile);
1015 if (result.minsym != NULL)
1016 return result;
1017 }
1018
1019 memset (&result, 0, sizeof (result));
1020 return result;
1021 }
1022 \f
1023
1024 /* Return leading symbol character for a BFD. If BFD is NULL,
1025 return the leading symbol character from the main objfile. */
1026
1027 static int
1028 get_symbol_leading_char (bfd *abfd)
1029 {
1030 if (abfd != NULL)
1031 return bfd_get_symbol_leading_char (abfd);
1032 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
1033 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
1034 return 0;
1035 }
1036
1037 /* See minsyms.h. */
1038
1039 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
1040 : m_objfile (obj),
1041 m_msym_bunch (NULL),
1042 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
1043 first call to save a minimal symbol to allocate the memory for
1044 the first bunch. */
1045 m_msym_bunch_index (BUNCH_SIZE),
1046 m_msym_count (0)
1047 {
1048 }
1049
1050 /* Discard the currently collected minimal symbols, if any. If we wish
1051 to save them for later use, we must have already copied them somewhere
1052 else before calling this function.
1053
1054 FIXME: We could allocate the minimal symbol bunches on their own
1055 obstack and then simply blow the obstack away when we are done with
1056 it. Is it worth the extra trouble though? */
1057
1058 minimal_symbol_reader::~minimal_symbol_reader ()
1059 {
1060 struct msym_bunch *next;
1061
1062 while (m_msym_bunch != NULL)
1063 {
1064 next = m_msym_bunch->next;
1065 xfree (m_msym_bunch);
1066 m_msym_bunch = next;
1067 }
1068 }
1069
1070 /* See minsyms.h. */
1071
1072 void
1073 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1074 enum minimal_symbol_type ms_type)
1075 {
1076 int section;
1077
1078 switch (ms_type)
1079 {
1080 case mst_text:
1081 case mst_text_gnu_ifunc:
1082 case mst_file_text:
1083 case mst_solib_trampoline:
1084 section = SECT_OFF_TEXT (m_objfile);
1085 break;
1086 case mst_data:
1087 case mst_file_data:
1088 section = SECT_OFF_DATA (m_objfile);
1089 break;
1090 case mst_bss:
1091 case mst_file_bss:
1092 section = SECT_OFF_BSS (m_objfile);
1093 break;
1094 default:
1095 section = -1;
1096 }
1097
1098 record_with_info (name, address, ms_type, section);
1099 }
1100
1101 /* See minsyms.h. */
1102
1103 struct minimal_symbol *
1104 minimal_symbol_reader::record_full (const char *name, int name_len,
1105 bool copy_name, CORE_ADDR address,
1106 enum minimal_symbol_type ms_type,
1107 int section)
1108 {
1109 struct msym_bunch *newobj;
1110 struct minimal_symbol *msymbol;
1111
1112 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1113 the minimal symbols, because if there is also another symbol
1114 at the same address (e.g. the first function of the file),
1115 lookup_minimal_symbol_by_pc would have no way of getting the
1116 right one. */
1117 if (ms_type == mst_file_text && name[0] == 'g'
1118 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
1119 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
1120 return (NULL);
1121
1122 /* It's safe to strip the leading char here once, since the name
1123 is also stored stripped in the minimal symbol table. */
1124 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1125 {
1126 ++name;
1127 --name_len;
1128 }
1129
1130 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1131 return (NULL);
1132
1133 if (m_msym_bunch_index == BUNCH_SIZE)
1134 {
1135 newobj = XCNEW (struct msym_bunch);
1136 m_msym_bunch_index = 0;
1137 newobj->next = m_msym_bunch;
1138 m_msym_bunch = newobj;
1139 }
1140 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1141 MSYMBOL_SET_LANGUAGE (msymbol, language_auto,
1142 &m_objfile->per_bfd->storage_obstack);
1143 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, m_objfile);
1144
1145 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1146 MSYMBOL_SECTION (msymbol) = section;
1147
1148 MSYMBOL_TYPE (msymbol) = ms_type;
1149 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
1150 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
1151 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
1152 as it would also set the has_size flag. */
1153 msymbol->size = 0;
1154
1155 /* The hash pointers must be cleared! If they're not,
1156 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
1157 msymbol->hash_next = NULL;
1158 msymbol->demangled_hash_next = NULL;
1159
1160 /* If we already read minimal symbols for this objfile, then don't
1161 ever allocate a new one. */
1162 if (!m_objfile->per_bfd->minsyms_read)
1163 {
1164 m_msym_bunch_index++;
1165 m_objfile->per_bfd->n_minsyms++;
1166 }
1167 m_msym_count++;
1168 return msymbol;
1169 }
1170
1171 /* Compare two minimal symbols by address and return a signed result based
1172 on unsigned comparisons, so that we sort into unsigned numeric order.
1173 Within groups with the same address, sort by name. */
1174
1175 static int
1176 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1177 {
1178 const struct minimal_symbol *fn1;
1179 const struct minimal_symbol *fn2;
1180
1181 fn1 = (const struct minimal_symbol *) fn1p;
1182 fn2 = (const struct minimal_symbol *) fn2p;
1183
1184 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1185 {
1186 return (-1); /* addr 1 is less than addr 2. */
1187 }
1188 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1189 {
1190 return (1); /* addr 1 is greater than addr 2. */
1191 }
1192 else
1193 /* addrs are equal: sort by name */
1194 {
1195 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1196 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1197
1198 if (name1 && name2) /* both have names */
1199 return strcmp (name1, name2);
1200 else if (name2)
1201 return 1; /* fn1 has no name, so it is "less". */
1202 else if (name1) /* fn2 has no name, so it is "less". */
1203 return -1;
1204 else
1205 return (0); /* Neither has a name, so they're equal. */
1206 }
1207 }
1208
1209 /* Compact duplicate entries out of a minimal symbol table by walking
1210 through the table and compacting out entries with duplicate addresses
1211 and matching names. Return the number of entries remaining.
1212
1213 On entry, the table resides between msymbol[0] and msymbol[mcount].
1214 On exit, it resides between msymbol[0] and msymbol[result_count].
1215
1216 When files contain multiple sources of symbol information, it is
1217 possible for the minimal symbol table to contain many duplicate entries.
1218 As an example, SVR4 systems use ELF formatted object files, which
1219 usually contain at least two different types of symbol tables (a
1220 standard ELF one and a smaller dynamic linking table), as well as
1221 DWARF debugging information for files compiled with -g.
1222
1223 Without compacting, the minimal symbol table for gdb itself contains
1224 over a 1000 duplicates, about a third of the total table size. Aside
1225 from the potential trap of not noticing that two successive entries
1226 identify the same location, this duplication impacts the time required
1227 to linearly scan the table, which is done in a number of places. So we
1228 just do one linear scan here and toss out the duplicates.
1229
1230 Note that we are not concerned here about recovering the space that
1231 is potentially freed up, because the strings themselves are allocated
1232 on the storage_obstack, and will get automatically freed when the symbol
1233 table is freed. The caller can free up the unused minimal symbols at
1234 the end of the compacted region if their allocation strategy allows it.
1235
1236 Also note we only go up to the next to last entry within the loop
1237 and then copy the last entry explicitly after the loop terminates.
1238
1239 Since the different sources of information for each symbol may
1240 have different levels of "completeness", we may have duplicates
1241 that have one entry with type "mst_unknown" and the other with a
1242 known type. So if the one we are leaving alone has type mst_unknown,
1243 overwrite its type with the type from the one we are compacting out. */
1244
1245 static int
1246 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1247 struct objfile *objfile)
1248 {
1249 struct minimal_symbol *copyfrom;
1250 struct minimal_symbol *copyto;
1251
1252 if (mcount > 0)
1253 {
1254 copyfrom = copyto = msymbol;
1255 while (copyfrom < msymbol + mcount - 1)
1256 {
1257 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1258 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1259 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1260 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1261 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1262 {
1263 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1264 {
1265 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1266 }
1267 copyfrom++;
1268 }
1269 else
1270 *copyto++ = *copyfrom++;
1271 }
1272 *copyto++ = *copyfrom++;
1273 mcount = copyto - msymbol;
1274 }
1275 return (mcount);
1276 }
1277
1278 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1279 after compacting or sorting the table since the entries move around
1280 thus causing the internal minimal_symbol pointers to become jumbled. */
1281
1282 static void
1283 build_minimal_symbol_hash_tables (struct objfile *objfile)
1284 {
1285 int i;
1286 struct minimal_symbol *msym;
1287
1288 /* Clear the hash tables. */
1289 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1290 {
1291 objfile->per_bfd->msymbol_hash[i] = 0;
1292 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1293 }
1294
1295 /* Now, (re)insert the actual entries. */
1296 for ((i = objfile->per_bfd->minimal_symbol_count,
1297 msym = objfile->per_bfd->msymbols);
1298 i > 0;
1299 i--, msym++)
1300 {
1301 msym->hash_next = 0;
1302 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1303
1304 msym->demangled_hash_next = 0;
1305 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1306 add_minsym_to_demangled_hash_table (msym, objfile);
1307 }
1308 }
1309
1310 /* Add the minimal symbols in the existing bunches to the objfile's official
1311 minimal symbol table. In most cases there is no minimal symbol table yet
1312 for this objfile, and the existing bunches are used to create one. Once
1313 in a while (for shared libraries for example), we add symbols (e.g. common
1314 symbols) to an existing objfile.
1315
1316 Because of the way minimal symbols are collected, we generally have no way
1317 of knowing what source language applies to any particular minimal symbol.
1318 Specifically, we have no way of knowing if the minimal symbol comes from a
1319 C++ compilation unit or not. So for the sake of supporting cached
1320 demangled C++ names, we have no choice but to try and demangle each new one
1321 that comes in. If the demangling succeeds, then we assume it is a C++
1322 symbol and set the symbol's language and demangled name fields
1323 appropriately. Note that in order to avoid unnecessary demanglings, and
1324 allocating obstack space that subsequently can't be freed for the demangled
1325 names, we mark all newly added symbols with language_auto. After
1326 compaction of the minimal symbols, we go back and scan the entire minimal
1327 symbol table looking for these new symbols. For each new symbol we attempt
1328 to demangle it, and if successful, record it as a language_cplus symbol
1329 and cache the demangled form on the symbol obstack. Symbols which don't
1330 demangle are marked as language_unknown symbols, which inhibits future
1331 attempts to demangle them if we later add more minimal symbols. */
1332
1333 void
1334 minimal_symbol_reader::install ()
1335 {
1336 int bindex;
1337 int mcount;
1338 struct msym_bunch *bunch;
1339 struct minimal_symbol *msymbols;
1340 int alloc_count;
1341
1342 if (m_objfile->per_bfd->minsyms_read)
1343 return;
1344
1345 if (m_msym_count > 0)
1346 {
1347 if (symtab_create_debug)
1348 {
1349 fprintf_unfiltered (gdb_stdlog,
1350 "Installing %d minimal symbols of objfile %s.\n",
1351 m_msym_count, objfile_name (m_objfile));
1352 }
1353
1354 /* Allocate enough space in the obstack, into which we will gather the
1355 bunches of new and existing minimal symbols, sort them, and then
1356 compact out the duplicate entries. Once we have a final table,
1357 we will give back the excess space. */
1358
1359 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count + 1;
1360 obstack_blank (&m_objfile->per_bfd->storage_obstack,
1361 alloc_count * sizeof (struct minimal_symbol));
1362 msymbols = (struct minimal_symbol *)
1363 obstack_base (&m_objfile->per_bfd->storage_obstack);
1364
1365 /* Copy in the existing minimal symbols, if there are any. */
1366
1367 if (m_objfile->per_bfd->minimal_symbol_count)
1368 memcpy ((char *) msymbols, (char *) m_objfile->per_bfd->msymbols,
1369 m_objfile->per_bfd->minimal_symbol_count * sizeof (struct minimal_symbol));
1370
1371 /* Walk through the list of minimal symbol bunches, adding each symbol
1372 to the new contiguous array of symbols. Note that we start with the
1373 current, possibly partially filled bunch (thus we use the current
1374 msym_bunch_index for the first bunch we copy over), and thereafter
1375 each bunch is full. */
1376
1377 mcount = m_objfile->per_bfd->minimal_symbol_count;
1378
1379 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1380 {
1381 for (bindex = 0; bindex < m_msym_bunch_index; bindex++, mcount++)
1382 msymbols[mcount] = bunch->contents[bindex];
1383 m_msym_bunch_index = BUNCH_SIZE;
1384 }
1385
1386 /* Sort the minimal symbols by address. */
1387
1388 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1389 compare_minimal_symbols);
1390
1391 /* Compact out any duplicates, and free up whatever space we are
1392 no longer using. */
1393
1394 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1395
1396 obstack_blank_fast (&m_objfile->per_bfd->storage_obstack,
1397 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1398 msymbols = (struct minimal_symbol *)
1399 obstack_finish (&m_objfile->per_bfd->storage_obstack);
1400
1401 /* We also terminate the minimal symbol table with a "null symbol",
1402 which is *not* included in the size of the table. This makes it
1403 easier to find the end of the table when we are handed a pointer
1404 to some symbol in the middle of it. Zero out the fields in the
1405 "null symbol" allocated at the end of the array. Note that the
1406 symbol count does *not* include this null symbol, which is why it
1407 is indexed by mcount and not mcount-1. */
1408
1409 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1410
1411 /* Attach the minimal symbol table to the specified objfile.
1412 The strings themselves are also located in the storage_obstack
1413 of this objfile. */
1414
1415 m_objfile->per_bfd->minimal_symbol_count = mcount;
1416 m_objfile->per_bfd->msymbols = msymbols;
1417
1418 /* Now build the hash tables; we can't do this incrementally
1419 at an earlier point since we weren't finished with the obstack
1420 yet. (And if the msymbol obstack gets moved, all the internal
1421 pointers to other msymbols need to be adjusted.) */
1422 build_minimal_symbol_hash_tables (m_objfile);
1423 }
1424 }
1425
1426 /* See minsyms.h. */
1427
1428 void
1429 terminate_minimal_symbol_table (struct objfile *objfile)
1430 {
1431 if (! objfile->per_bfd->msymbols)
1432 objfile->per_bfd->msymbols
1433 = ((struct minimal_symbol *)
1434 obstack_alloc (&objfile->per_bfd->storage_obstack,
1435 sizeof (struct minimal_symbol)));
1436
1437 {
1438 struct minimal_symbol *m
1439 = &objfile->per_bfd->msymbols[objfile->per_bfd->minimal_symbol_count];
1440
1441 memset (m, 0, sizeof (*m));
1442 /* Don't rely on these enumeration values being 0's. */
1443 MSYMBOL_TYPE (m) = mst_unknown;
1444 MSYMBOL_SET_LANGUAGE (m, language_unknown,
1445 &objfile->per_bfd->storage_obstack);
1446 }
1447 }
1448
1449 /* Check if PC is in a shared library trampoline code stub.
1450 Return minimal symbol for the trampoline entry or NULL if PC is not
1451 in a trampoline code stub. */
1452
1453 static struct minimal_symbol *
1454 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1455 {
1456 struct obj_section *section = find_pc_section (pc);
1457 struct bound_minimal_symbol msymbol;
1458
1459 if (section == NULL)
1460 return NULL;
1461 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1462
1463 if (msymbol.minsym != NULL
1464 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1465 return msymbol.minsym;
1466 return NULL;
1467 }
1468
1469 /* If PC is in a shared library trampoline code stub, return the
1470 address of the `real' function belonging to the stub.
1471 Return 0 if PC is not in a trampoline code stub or if the real
1472 function is not found in the minimal symbol table.
1473
1474 We may fail to find the right function if a function with the
1475 same name is defined in more than one shared library, but this
1476 is considered bad programming style. We could return 0 if we find
1477 a duplicate function in case this matters someday. */
1478
1479 CORE_ADDR
1480 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1481 {
1482 struct objfile *objfile;
1483 struct minimal_symbol *msymbol;
1484 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1485
1486 if (tsymbol != NULL)
1487 {
1488 ALL_MSYMBOLS (objfile, msymbol)
1489 {
1490 if ((MSYMBOL_TYPE (msymbol) == mst_text
1491 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1492 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1493 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1494 return MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1495
1496 /* Also handle minimal symbols pointing to function descriptors. */
1497 if (MSYMBOL_TYPE (msymbol) == mst_data
1498 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1499 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1500 {
1501 CORE_ADDR func;
1502
1503 func = gdbarch_convert_from_func_ptr_addr
1504 (get_objfile_arch (objfile),
1505 MSYMBOL_VALUE_ADDRESS (objfile, msymbol),
1506 &current_target);
1507
1508 /* Ignore data symbols that are not function descriptors. */
1509 if (func != MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
1510 return func;
1511 }
1512 }
1513 }
1514 return 0;
1515 }
1516
1517 /* See minsyms.h. */
1518
1519 CORE_ADDR
1520 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1521 {
1522 int i;
1523 short section;
1524 struct obj_section *obj_section;
1525 CORE_ADDR result;
1526 struct minimal_symbol *msymbol;
1527
1528 gdb_assert (minsym.minsym != NULL);
1529
1530 /* If the minimal symbol has a size, use it. Otherwise use the
1531 lesser of the next minimal symbol in the same section, or the end
1532 of the section, as the end of the function. */
1533
1534 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1535 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1536
1537 /* Step over other symbols at this same address, and symbols in
1538 other sections, to find the next symbol in this section with a
1539 different address. */
1540
1541 msymbol = minsym.minsym;
1542 section = MSYMBOL_SECTION (msymbol);
1543 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1544 {
1545 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1546 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1547 && MSYMBOL_SECTION (msymbol + i) == section)
1548 break;
1549 }
1550
1551 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1552 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1553 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1554 < obj_section_endaddr (obj_section)))
1555 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1556 else
1557 /* We got the start address from the last msymbol in the objfile.
1558 So the end address is the end of the section. */
1559 result = obj_section_endaddr (obj_section);
1560
1561 return result;
1562 }
This page took 0.079455 seconds and 3 git commands to generate.