gas: slightly relax .startof.()/.sizeof.() testcase
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "symbol.h"
54
55 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
56 At the end, copy them all into one newly allocated location on an objfile's
57 per-BFD storage obstack. */
58
59 #define BUNCH_SIZE 127
60
61 struct msym_bunch
62 {
63 struct msym_bunch *next;
64 struct minimal_symbol contents[BUNCH_SIZE];
65 };
66
67 /* See minsyms.h. */
68
69 unsigned int
70 msymbol_hash_iw (const char *string)
71 {
72 unsigned int hash = 0;
73
74 while (*string && *string != '(')
75 {
76 string = skip_spaces_const (string);
77 if (*string && *string != '(')
78 {
79 hash = SYMBOL_HASH_NEXT (hash, *string);
80 ++string;
81 }
82 }
83 return hash;
84 }
85
86 /* See minsyms.h. */
87
88 unsigned int
89 msymbol_hash (const char *string)
90 {
91 unsigned int hash = 0;
92
93 for (; *string; ++string)
94 hash = SYMBOL_HASH_NEXT (hash, *string);
95 return hash;
96 }
97
98 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
99 static void
100 add_minsym_to_hash_table (struct minimal_symbol *sym,
101 struct minimal_symbol **table)
102 {
103 if (sym->hash_next == NULL)
104 {
105 unsigned int hash
106 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
107
108 sym->hash_next = table[hash];
109 table[hash] = sym;
110 }
111 }
112
113 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
114 TABLE. */
115 static void
116 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
117 struct minimal_symbol **table)
118 {
119 if (sym->demangled_hash_next == NULL)
120 {
121 unsigned int hash = msymbol_hash_iw (MSYMBOL_SEARCH_NAME (sym))
122 % MINIMAL_SYMBOL_HASH_SIZE;
123
124 sym->demangled_hash_next = table[hash];
125 table[hash] = sym;
126 }
127 }
128
129 /* Look through all the current minimal symbol tables and find the
130 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
131 the search to that objfile. If SFILE is non-NULL, the only file-scope
132 symbols considered will be from that source file (global symbols are
133 still preferred). Returns a pointer to the minimal symbol that
134 matches, or NULL if no match is found.
135
136 Note: One instance where there may be duplicate minimal symbols with
137 the same name is when the symbol tables for a shared library and the
138 symbol tables for an executable contain global symbols with the same
139 names (the dynamic linker deals with the duplication).
140
141 It's also possible to have minimal symbols with different mangled
142 names, but identical demangled names. For example, the GNU C++ v3
143 ABI requires the generation of two (or perhaps three) copies of
144 constructor functions --- "in-charge", "not-in-charge", and
145 "allocate" copies; destructors may be duplicated as well.
146 Obviously, there must be distinct mangled names for each of these,
147 but the demangled names are all the same: S::S or S::~S. */
148
149 struct bound_minimal_symbol
150 lookup_minimal_symbol (const char *name, const char *sfile,
151 struct objfile *objf)
152 {
153 struct objfile *objfile;
154 struct bound_minimal_symbol found_symbol = { NULL, NULL };
155 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
156 struct bound_minimal_symbol trampoline_symbol = { NULL, NULL };
157
158 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
159 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
160
161 const char *modified_name = name;
162
163 if (sfile != NULL)
164 sfile = lbasename (sfile);
165
166 /* For C++, canonicalize the input name. */
167 std::string modified_name_storage;
168 if (current_language->la_language == language_cplus)
169 {
170 std::string cname = cp_canonicalize_string (name);
171 if (!cname.empty ())
172 {
173 std::swap (modified_name_storage, cname);
174 modified_name = modified_name_storage.c_str ();
175 }
176 }
177
178 for (objfile = object_files;
179 objfile != NULL && found_symbol.minsym == NULL;
180 objfile = objfile->next)
181 {
182 struct minimal_symbol *msymbol;
183
184 if (objf == NULL || objf == objfile
185 || objf == objfile->separate_debug_objfile_backlink)
186 {
187 /* Do two passes: the first over the ordinary hash table,
188 and the second over the demangled hash table. */
189 int pass;
190
191 if (symbol_lookup_debug)
192 {
193 fprintf_unfiltered (gdb_stdlog,
194 "lookup_minimal_symbol (%s, %s, %s)\n",
195 name, sfile != NULL ? sfile : "NULL",
196 objfile_debug_name (objfile));
197 }
198
199 for (pass = 1; pass <= 2 && found_symbol.minsym == NULL; pass++)
200 {
201 /* Select hash list according to pass. */
202 if (pass == 1)
203 msymbol = objfile->per_bfd->msymbol_hash[hash];
204 else
205 msymbol = objfile->per_bfd->msymbol_demangled_hash[dem_hash];
206
207 while (msymbol != NULL && found_symbol.minsym == NULL)
208 {
209 int match;
210
211 if (pass == 1)
212 {
213 int (*cmp) (const char *, const char *);
214
215 cmp = (case_sensitivity == case_sensitive_on
216 ? strcmp : strcasecmp);
217 match = cmp (MSYMBOL_LINKAGE_NAME (msymbol),
218 modified_name) == 0;
219 }
220 else
221 {
222 /* The function respects CASE_SENSITIVITY. */
223 match = MSYMBOL_MATCHES_SEARCH_NAME (msymbol,
224 modified_name);
225 }
226
227 if (match)
228 {
229 switch (MSYMBOL_TYPE (msymbol))
230 {
231 case mst_file_text:
232 case mst_file_data:
233 case mst_file_bss:
234 if (sfile == NULL
235 || filename_cmp (msymbol->filename, sfile) == 0)
236 {
237 found_file_symbol.minsym = msymbol;
238 found_file_symbol.objfile = objfile;
239 }
240 break;
241
242 case mst_solib_trampoline:
243
244 /* If a trampoline symbol is found, we prefer to
245 keep looking for the *real* symbol. If the
246 actual symbol is not found, then we'll use the
247 trampoline entry. */
248 if (trampoline_symbol.minsym == NULL)
249 {
250 trampoline_symbol.minsym = msymbol;
251 trampoline_symbol.objfile = objfile;
252 }
253 break;
254
255 case mst_unknown:
256 default:
257 found_symbol.minsym = msymbol;
258 found_symbol.objfile = objfile;
259 break;
260 }
261 }
262
263 /* Find the next symbol on the hash chain. */
264 if (pass == 1)
265 msymbol = msymbol->hash_next;
266 else
267 msymbol = msymbol->demangled_hash_next;
268 }
269 }
270 }
271 }
272
273 /* External symbols are best. */
274 if (found_symbol.minsym != NULL)
275 {
276 if (symbol_lookup_debug)
277 {
278 fprintf_unfiltered (gdb_stdlog,
279 "lookup_minimal_symbol (...) = %s"
280 " (external)\n",
281 host_address_to_string (found_symbol.minsym));
282 }
283 return found_symbol;
284 }
285
286 /* File-local symbols are next best. */
287 if (found_file_symbol.minsym != NULL)
288 {
289 if (symbol_lookup_debug)
290 {
291 fprintf_unfiltered (gdb_stdlog,
292 "lookup_minimal_symbol (...) = %s"
293 " (file-local)\n",
294 host_address_to_string
295 (found_file_symbol.minsym));
296 }
297 return found_file_symbol;
298 }
299
300 /* Symbols for shared library trampolines are next best. */
301 if (symbol_lookup_debug)
302 {
303 fprintf_unfiltered (gdb_stdlog,
304 "lookup_minimal_symbol (...) = %s%s\n",
305 trampoline_symbol.minsym != NULL
306 ? host_address_to_string (trampoline_symbol.minsym)
307 : "NULL",
308 trampoline_symbol.minsym != NULL
309 ? " (trampoline)" : "");
310 }
311 return trampoline_symbol;
312 }
313
314 /* See minsyms.h. */
315
316 struct bound_minimal_symbol
317 lookup_bound_minimal_symbol (const char *name)
318 {
319 return lookup_minimal_symbol (name, NULL, NULL);
320 }
321
322 /* See common/symbol.h. */
323
324 int
325 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
326 struct objfile *objfile)
327 {
328 struct bound_minimal_symbol sym
329 = lookup_minimal_symbol (name, NULL, objfile);
330
331 if (sym.minsym != NULL)
332 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
333
334 return sym.minsym == NULL;
335 }
336
337 /* See minsyms.h. */
338
339 void
340 iterate_over_minimal_symbols (struct objfile *objf, const char *name,
341 void (*callback) (struct minimal_symbol *,
342 void *),
343 void *user_data)
344 {
345 unsigned int hash;
346 struct minimal_symbol *iter;
347 int (*cmp) (const char *, const char *);
348
349 /* The first pass is over the ordinary hash table. */
350 hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
351 iter = objf->per_bfd->msymbol_hash[hash];
352 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
353 while (iter)
354 {
355 if (cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
356 (*callback) (iter, user_data);
357 iter = iter->hash_next;
358 }
359
360 /* The second pass is over the demangled table. */
361 hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
362 iter = objf->per_bfd->msymbol_demangled_hash[hash];
363 while (iter)
364 {
365 if (MSYMBOL_MATCHES_SEARCH_NAME (iter, name))
366 (*callback) (iter, user_data);
367 iter = iter->demangled_hash_next;
368 }
369 }
370
371 /* See minsyms.h. */
372
373 struct bound_minimal_symbol
374 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
375 {
376 struct objfile *objfile;
377 struct minimal_symbol *msymbol;
378 struct bound_minimal_symbol found_symbol = { NULL, NULL };
379 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
380
381 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
382
383 for (objfile = object_files;
384 objfile != NULL && found_symbol.minsym == NULL;
385 objfile = objfile->next)
386 {
387 if (objf == NULL || objf == objfile
388 || objf == objfile->separate_debug_objfile_backlink)
389 {
390 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
391 msymbol != NULL && found_symbol.minsym == NULL;
392 msymbol = msymbol->hash_next)
393 {
394 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
395 (MSYMBOL_TYPE (msymbol) == mst_text
396 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
397 || MSYMBOL_TYPE (msymbol) == mst_file_text))
398 {
399 switch (MSYMBOL_TYPE (msymbol))
400 {
401 case mst_file_text:
402 found_file_symbol.minsym = msymbol;
403 found_file_symbol.objfile = objfile;
404 break;
405 default:
406 found_symbol.minsym = msymbol;
407 found_symbol.objfile = objfile;
408 break;
409 }
410 }
411 }
412 }
413 }
414 /* External symbols are best. */
415 if (found_symbol.minsym)
416 return found_symbol;
417
418 /* File-local symbols are next best. */
419 return found_file_symbol;
420 }
421
422 /* See minsyms.h. */
423
424 struct minimal_symbol *
425 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
426 struct objfile *objf)
427 {
428 struct objfile *objfile;
429 struct minimal_symbol *msymbol;
430
431 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
432
433 for (objfile = object_files;
434 objfile != NULL;
435 objfile = objfile->next)
436 {
437 if (objf == NULL || objf == objfile
438 || objf == objfile->separate_debug_objfile_backlink)
439 {
440 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
441 msymbol != NULL;
442 msymbol = msymbol->hash_next)
443 {
444 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
445 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
446 return msymbol;
447 }
448 }
449 }
450
451 return NULL;
452 }
453
454 /* See minsyms.h. */
455
456 struct bound_minimal_symbol
457 lookup_minimal_symbol_solib_trampoline (const char *name,
458 struct objfile *objf)
459 {
460 struct objfile *objfile;
461 struct minimal_symbol *msymbol;
462 struct bound_minimal_symbol found_symbol = { NULL, NULL };
463
464 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
465
466 for (objfile = object_files;
467 objfile != NULL;
468 objfile = objfile->next)
469 {
470 if (objf == NULL || objf == objfile
471 || objf == objfile->separate_debug_objfile_backlink)
472 {
473 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
474 msymbol != NULL;
475 msymbol = msymbol->hash_next)
476 {
477 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
478 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
479 {
480 found_symbol.objfile = objfile;
481 found_symbol.minsym = msymbol;
482 return found_symbol;
483 }
484 }
485 }
486 }
487
488 return found_symbol;
489 }
490
491 /* A helper function that makes *PC section-relative. This searches
492 the sections of OBJFILE and if *PC is in a section, it subtracts
493 the section offset and returns true. Otherwise it returns
494 false. */
495
496 static int
497 frob_address (struct objfile *objfile, CORE_ADDR *pc)
498 {
499 struct obj_section *iter;
500
501 ALL_OBJFILE_OSECTIONS (objfile, iter)
502 {
503 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
504 {
505 *pc -= obj_section_offset (iter);
506 return 1;
507 }
508 }
509
510 return 0;
511 }
512
513 /* Search through the minimal symbol table for each objfile and find
514 the symbol whose address is the largest address that is still less
515 than or equal to PC, and matches SECTION (which is not NULL).
516 Returns a pointer to the minimal symbol if such a symbol is found,
517 or NULL if PC is not in a suitable range.
518 Note that we need to look through ALL the minimal symbol tables
519 before deciding on the symbol that comes closest to the specified PC.
520 This is because objfiles can overlap, for example objfile A has .text
521 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
522 .data at 0x40048.
523
524 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
525 there are text and trampoline symbols at the same address.
526 Otherwise prefer mst_text symbols. */
527
528 static struct bound_minimal_symbol
529 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc_in,
530 struct obj_section *section,
531 int want_trampoline)
532 {
533 int lo;
534 int hi;
535 int newobj;
536 struct objfile *objfile;
537 struct minimal_symbol *msymbol;
538 struct minimal_symbol *best_symbol = NULL;
539 struct objfile *best_objfile = NULL;
540 struct bound_minimal_symbol result;
541 enum minimal_symbol_type want_type, other_type;
542
543 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
544 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
545
546 /* We can not require the symbol found to be in section, because
547 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
548 symbol - but find_pc_section won't return an absolute section and
549 hence the code below would skip over absolute symbols. We can
550 still take advantage of the call to find_pc_section, though - the
551 object file still must match. In case we have separate debug
552 files, search both the file and its separate debug file. There's
553 no telling which one will have the minimal symbols. */
554
555 gdb_assert (section != NULL);
556
557 for (objfile = section->objfile;
558 objfile != NULL;
559 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
560 {
561 CORE_ADDR pc = pc_in;
562
563 /* If this objfile has a minimal symbol table, go search it using
564 a binary search. Note that a minimal symbol table always consists
565 of at least two symbols, a "real" symbol and the terminating
566 "null symbol". If there are no real symbols, then there is no
567 minimal symbol table at all. */
568
569 if (objfile->per_bfd->minimal_symbol_count > 0)
570 {
571 int best_zero_sized = -1;
572
573 msymbol = objfile->per_bfd->msymbols;
574 lo = 0;
575 hi = objfile->per_bfd->minimal_symbol_count - 1;
576
577 /* This code assumes that the minimal symbols are sorted by
578 ascending address values. If the pc value is greater than or
579 equal to the first symbol's address, then some symbol in this
580 minimal symbol table is a suitable candidate for being the
581 "best" symbol. This includes the last real symbol, for cases
582 where the pc value is larger than any address in this vector.
583
584 By iterating until the address associated with the current
585 hi index (the endpoint of the test interval) is less than
586 or equal to the desired pc value, we accomplish two things:
587 (1) the case where the pc value is larger than any minimal
588 symbol address is trivially solved, (2) the address associated
589 with the hi index is always the one we want when the interation
590 terminates. In essence, we are iterating the test interval
591 down until the pc value is pushed out of it from the high end.
592
593 Warning: this code is trickier than it would appear at first. */
594
595 if (frob_address (objfile, &pc)
596 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
597 {
598 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
599 {
600 /* pc is still strictly less than highest address. */
601 /* Note "new" will always be >= lo. */
602 newobj = (lo + hi) / 2;
603 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
604 || (lo == newobj))
605 {
606 hi = newobj;
607 }
608 else
609 {
610 lo = newobj;
611 }
612 }
613
614 /* If we have multiple symbols at the same address, we want
615 hi to point to the last one. That way we can find the
616 right symbol if it has an index greater than hi. */
617 while (hi < objfile->per_bfd->minimal_symbol_count - 1
618 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
619 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
620 hi++;
621
622 /* Skip various undesirable symbols. */
623 while (hi >= 0)
624 {
625 /* Skip any absolute symbols. This is apparently
626 what adb and dbx do, and is needed for the CM-5.
627 There are two known possible problems: (1) on
628 ELF, apparently end, edata, etc. are absolute.
629 Not sure ignoring them here is a big deal, but if
630 we want to use them, the fix would go in
631 elfread.c. (2) I think shared library entry
632 points on the NeXT are absolute. If we want
633 special handling for this it probably should be
634 triggered by a special mst_abs_or_lib or some
635 such. */
636
637 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
638 {
639 hi--;
640 continue;
641 }
642
643 /* If SECTION was specified, skip any symbol from
644 wrong section. */
645 if (section
646 /* Some types of debug info, such as COFF,
647 don't fill the bfd_section member, so don't
648 throw away symbols on those platforms. */
649 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
650 && (!matching_obj_sections
651 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
652 section)))
653 {
654 hi--;
655 continue;
656 }
657
658 /* If we are looking for a trampoline and this is a
659 text symbol, or the other way around, check the
660 preceding symbol too. If they are otherwise
661 identical prefer that one. */
662 if (hi > 0
663 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
664 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
665 && (MSYMBOL_SIZE (&msymbol[hi])
666 == MSYMBOL_SIZE (&msymbol[hi - 1]))
667 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
668 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
669 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
670 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
671 {
672 hi--;
673 continue;
674 }
675
676 /* If the minimal symbol has a zero size, save it
677 but keep scanning backwards looking for one with
678 a non-zero size. A zero size may mean that the
679 symbol isn't an object or function (e.g. a
680 label), or it may just mean that the size was not
681 specified. */
682 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
683 {
684 if (best_zero_sized == -1)
685 best_zero_sized = hi;
686 hi--;
687 continue;
688 }
689
690 /* If we are past the end of the current symbol, try
691 the previous symbol if it has a larger overlapping
692 size. This happens on i686-pc-linux-gnu with glibc;
693 the nocancel variants of system calls are inside
694 the cancellable variants, but both have sizes. */
695 if (hi > 0
696 && MSYMBOL_SIZE (&msymbol[hi]) != 0
697 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
698 + MSYMBOL_SIZE (&msymbol[hi]))
699 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
700 + MSYMBOL_SIZE (&msymbol[hi - 1])))
701 {
702 hi--;
703 continue;
704 }
705
706 /* Otherwise, this symbol must be as good as we're going
707 to get. */
708 break;
709 }
710
711 /* If HI has a zero size, and best_zero_sized is set,
712 then we had two or more zero-sized symbols; prefer
713 the first one we found (which may have a higher
714 address). Also, if we ran off the end, be sure
715 to back up. */
716 if (best_zero_sized != -1
717 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
718 hi = best_zero_sized;
719
720 /* If the minimal symbol has a non-zero size, and this
721 PC appears to be outside the symbol's contents, then
722 refuse to use this symbol. If we found a zero-sized
723 symbol with an address greater than this symbol's,
724 use that instead. We assume that if symbols have
725 specified sizes, they do not overlap. */
726
727 if (hi >= 0
728 && MSYMBOL_SIZE (&msymbol[hi]) != 0
729 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
730 + MSYMBOL_SIZE (&msymbol[hi])))
731 {
732 if (best_zero_sized != -1)
733 hi = best_zero_sized;
734 else
735 /* Go on to the next object file. */
736 continue;
737 }
738
739 /* The minimal symbol indexed by hi now is the best one in this
740 objfile's minimal symbol table. See if it is the best one
741 overall. */
742
743 if (hi >= 0
744 && ((best_symbol == NULL) ||
745 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
746 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
747 {
748 best_symbol = &msymbol[hi];
749 best_objfile = objfile;
750 }
751 }
752 }
753 }
754
755 result.minsym = best_symbol;
756 result.objfile = best_objfile;
757 return result;
758 }
759
760 struct bound_minimal_symbol
761 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
762 {
763 if (section == NULL)
764 {
765 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
766 force the section but that (well unless you're doing overlay
767 debugging) always returns NULL making the call somewhat useless. */
768 section = find_pc_section (pc);
769 if (section == NULL)
770 {
771 struct bound_minimal_symbol result;
772
773 memset (&result, 0, sizeof (result));
774 return result;
775 }
776 }
777 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
778 }
779
780 /* See minsyms.h. */
781
782 struct bound_minimal_symbol
783 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
784 {
785 struct obj_section *section = find_pc_section (pc);
786
787 if (section == NULL)
788 {
789 struct bound_minimal_symbol result;
790
791 memset (&result, 0, sizeof (result));
792 return result;
793 }
794 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
795 }
796
797 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
798
799 int
800 in_gnu_ifunc_stub (CORE_ADDR pc)
801 {
802 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc);
803
804 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
805 }
806
807 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
808
809 static CORE_ADDR
810 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
811 {
812 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
813 "the ELF support compiled in."),
814 paddress (gdbarch, pc));
815 }
816
817 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
818
819 static int
820 stub_gnu_ifunc_resolve_name (const char *function_name,
821 CORE_ADDR *function_address_p)
822 {
823 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
824 "the ELF support compiled in."),
825 function_name);
826 }
827
828 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
829
830 static void
831 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
832 {
833 internal_error (__FILE__, __LINE__,
834 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
835 }
836
837 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
838
839 static void
840 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
841 {
842 internal_error (__FILE__, __LINE__,
843 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
844 }
845
846 /* See elf_gnu_ifunc_fns for its real implementation. */
847
848 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
849 {
850 stub_gnu_ifunc_resolve_addr,
851 stub_gnu_ifunc_resolve_name,
852 stub_gnu_ifunc_resolver_stop,
853 stub_gnu_ifunc_resolver_return_stop,
854 };
855
856 /* A placeholder for &elf_gnu_ifunc_fns. */
857
858 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
859
860 /* See minsyms.h. */
861
862 struct bound_minimal_symbol
863 lookup_minimal_symbol_and_objfile (const char *name)
864 {
865 struct bound_minimal_symbol result;
866 struct objfile *objfile;
867 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
868
869 ALL_OBJFILES (objfile)
870 {
871 struct minimal_symbol *msym;
872
873 for (msym = objfile->per_bfd->msymbol_hash[hash];
874 msym != NULL;
875 msym = msym->hash_next)
876 {
877 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
878 {
879 result.minsym = msym;
880 result.objfile = objfile;
881 return result;
882 }
883 }
884 }
885
886 memset (&result, 0, sizeof (result));
887 return result;
888 }
889 \f
890
891 /* Return leading symbol character for a BFD. If BFD is NULL,
892 return the leading symbol character from the main objfile. */
893
894 static int
895 get_symbol_leading_char (bfd *abfd)
896 {
897 if (abfd != NULL)
898 return bfd_get_symbol_leading_char (abfd);
899 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
900 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
901 return 0;
902 }
903
904 /* See minsyms.h. */
905
906 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
907 : m_objfile (obj),
908 m_msym_bunch (NULL),
909 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
910 first call to save a minimal symbol to allocate the memory for
911 the first bunch. */
912 m_msym_bunch_index (BUNCH_SIZE),
913 m_msym_count (0)
914 {
915 }
916
917 /* Discard the currently collected minimal symbols, if any. If we wish
918 to save them for later use, we must have already copied them somewhere
919 else before calling this function.
920
921 FIXME: We could allocate the minimal symbol bunches on their own
922 obstack and then simply blow the obstack away when we are done with
923 it. Is it worth the extra trouble though? */
924
925 minimal_symbol_reader::~minimal_symbol_reader ()
926 {
927 struct msym_bunch *next;
928
929 while (m_msym_bunch != NULL)
930 {
931 next = m_msym_bunch->next;
932 xfree (m_msym_bunch);
933 m_msym_bunch = next;
934 }
935 }
936
937 /* See minsyms.h. */
938
939 void
940 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
941 enum minimal_symbol_type ms_type)
942 {
943 int section;
944
945 switch (ms_type)
946 {
947 case mst_text:
948 case mst_text_gnu_ifunc:
949 case mst_file_text:
950 case mst_solib_trampoline:
951 section = SECT_OFF_TEXT (m_objfile);
952 break;
953 case mst_data:
954 case mst_file_data:
955 section = SECT_OFF_DATA (m_objfile);
956 break;
957 case mst_bss:
958 case mst_file_bss:
959 section = SECT_OFF_BSS (m_objfile);
960 break;
961 default:
962 section = -1;
963 }
964
965 record_with_info (name, address, ms_type, section);
966 }
967
968 /* See minsyms.h. */
969
970 struct minimal_symbol *
971 minimal_symbol_reader::record_full (const char *name, int name_len,
972 bool copy_name, CORE_ADDR address,
973 enum minimal_symbol_type ms_type,
974 int section)
975 {
976 struct msym_bunch *newobj;
977 struct minimal_symbol *msymbol;
978
979 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
980 the minimal symbols, because if there is also another symbol
981 at the same address (e.g. the first function of the file),
982 lookup_minimal_symbol_by_pc would have no way of getting the
983 right one. */
984 if (ms_type == mst_file_text && name[0] == 'g'
985 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
986 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
987 return (NULL);
988
989 /* It's safe to strip the leading char here once, since the name
990 is also stored stripped in the minimal symbol table. */
991 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
992 {
993 ++name;
994 --name_len;
995 }
996
997 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
998 return (NULL);
999
1000 if (m_msym_bunch_index == BUNCH_SIZE)
1001 {
1002 newobj = XCNEW (struct msym_bunch);
1003 m_msym_bunch_index = 0;
1004 newobj->next = m_msym_bunch;
1005 m_msym_bunch = newobj;
1006 }
1007 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1008 MSYMBOL_SET_LANGUAGE (msymbol, language_auto,
1009 &m_objfile->per_bfd->storage_obstack);
1010 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, m_objfile);
1011
1012 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1013 MSYMBOL_SECTION (msymbol) = section;
1014
1015 MSYMBOL_TYPE (msymbol) = ms_type;
1016 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
1017 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
1018 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
1019 as it would also set the has_size flag. */
1020 msymbol->size = 0;
1021
1022 /* The hash pointers must be cleared! If they're not,
1023 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
1024 msymbol->hash_next = NULL;
1025 msymbol->demangled_hash_next = NULL;
1026
1027 /* If we already read minimal symbols for this objfile, then don't
1028 ever allocate a new one. */
1029 if (!m_objfile->per_bfd->minsyms_read)
1030 {
1031 m_msym_bunch_index++;
1032 m_objfile->per_bfd->n_minsyms++;
1033 }
1034 m_msym_count++;
1035 return msymbol;
1036 }
1037
1038 /* Compare two minimal symbols by address and return a signed result based
1039 on unsigned comparisons, so that we sort into unsigned numeric order.
1040 Within groups with the same address, sort by name. */
1041
1042 static int
1043 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1044 {
1045 const struct minimal_symbol *fn1;
1046 const struct minimal_symbol *fn2;
1047
1048 fn1 = (const struct minimal_symbol *) fn1p;
1049 fn2 = (const struct minimal_symbol *) fn2p;
1050
1051 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1052 {
1053 return (-1); /* addr 1 is less than addr 2. */
1054 }
1055 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1056 {
1057 return (1); /* addr 1 is greater than addr 2. */
1058 }
1059 else
1060 /* addrs are equal: sort by name */
1061 {
1062 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1063 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1064
1065 if (name1 && name2) /* both have names */
1066 return strcmp (name1, name2);
1067 else if (name2)
1068 return 1; /* fn1 has no name, so it is "less". */
1069 else if (name1) /* fn2 has no name, so it is "less". */
1070 return -1;
1071 else
1072 return (0); /* Neither has a name, so they're equal. */
1073 }
1074 }
1075
1076 /* Compact duplicate entries out of a minimal symbol table by walking
1077 through the table and compacting out entries with duplicate addresses
1078 and matching names. Return the number of entries remaining.
1079
1080 On entry, the table resides between msymbol[0] and msymbol[mcount].
1081 On exit, it resides between msymbol[0] and msymbol[result_count].
1082
1083 When files contain multiple sources of symbol information, it is
1084 possible for the minimal symbol table to contain many duplicate entries.
1085 As an example, SVR4 systems use ELF formatted object files, which
1086 usually contain at least two different types of symbol tables (a
1087 standard ELF one and a smaller dynamic linking table), as well as
1088 DWARF debugging information for files compiled with -g.
1089
1090 Without compacting, the minimal symbol table for gdb itself contains
1091 over a 1000 duplicates, about a third of the total table size. Aside
1092 from the potential trap of not noticing that two successive entries
1093 identify the same location, this duplication impacts the time required
1094 to linearly scan the table, which is done in a number of places. So we
1095 just do one linear scan here and toss out the duplicates.
1096
1097 Note that we are not concerned here about recovering the space that
1098 is potentially freed up, because the strings themselves are allocated
1099 on the storage_obstack, and will get automatically freed when the symbol
1100 table is freed. The caller can free up the unused minimal symbols at
1101 the end of the compacted region if their allocation strategy allows it.
1102
1103 Also note we only go up to the next to last entry within the loop
1104 and then copy the last entry explicitly after the loop terminates.
1105
1106 Since the different sources of information for each symbol may
1107 have different levels of "completeness", we may have duplicates
1108 that have one entry with type "mst_unknown" and the other with a
1109 known type. So if the one we are leaving alone has type mst_unknown,
1110 overwrite its type with the type from the one we are compacting out. */
1111
1112 static int
1113 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1114 struct objfile *objfile)
1115 {
1116 struct minimal_symbol *copyfrom;
1117 struct minimal_symbol *copyto;
1118
1119 if (mcount > 0)
1120 {
1121 copyfrom = copyto = msymbol;
1122 while (copyfrom < msymbol + mcount - 1)
1123 {
1124 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1125 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1126 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1127 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1128 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1129 {
1130 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1131 {
1132 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1133 }
1134 copyfrom++;
1135 }
1136 else
1137 *copyto++ = *copyfrom++;
1138 }
1139 *copyto++ = *copyfrom++;
1140 mcount = copyto - msymbol;
1141 }
1142 return (mcount);
1143 }
1144
1145 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1146 after compacting or sorting the table since the entries move around
1147 thus causing the internal minimal_symbol pointers to become jumbled. */
1148
1149 static void
1150 build_minimal_symbol_hash_tables (struct objfile *objfile)
1151 {
1152 int i;
1153 struct minimal_symbol *msym;
1154
1155 /* Clear the hash tables. */
1156 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1157 {
1158 objfile->per_bfd->msymbol_hash[i] = 0;
1159 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1160 }
1161
1162 /* Now, (re)insert the actual entries. */
1163 for ((i = objfile->per_bfd->minimal_symbol_count,
1164 msym = objfile->per_bfd->msymbols);
1165 i > 0;
1166 i--, msym++)
1167 {
1168 msym->hash_next = 0;
1169 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1170
1171 msym->demangled_hash_next = 0;
1172 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1173 add_minsym_to_demangled_hash_table (msym,
1174 objfile->per_bfd->msymbol_demangled_hash);
1175 }
1176 }
1177
1178 /* Add the minimal symbols in the existing bunches to the objfile's official
1179 minimal symbol table. In most cases there is no minimal symbol table yet
1180 for this objfile, and the existing bunches are used to create one. Once
1181 in a while (for shared libraries for example), we add symbols (e.g. common
1182 symbols) to an existing objfile.
1183
1184 Because of the way minimal symbols are collected, we generally have no way
1185 of knowing what source language applies to any particular minimal symbol.
1186 Specifically, we have no way of knowing if the minimal symbol comes from a
1187 C++ compilation unit or not. So for the sake of supporting cached
1188 demangled C++ names, we have no choice but to try and demangle each new one
1189 that comes in. If the demangling succeeds, then we assume it is a C++
1190 symbol and set the symbol's language and demangled name fields
1191 appropriately. Note that in order to avoid unnecessary demanglings, and
1192 allocating obstack space that subsequently can't be freed for the demangled
1193 names, we mark all newly added symbols with language_auto. After
1194 compaction of the minimal symbols, we go back and scan the entire minimal
1195 symbol table looking for these new symbols. For each new symbol we attempt
1196 to demangle it, and if successful, record it as a language_cplus symbol
1197 and cache the demangled form on the symbol obstack. Symbols which don't
1198 demangle are marked as language_unknown symbols, which inhibits future
1199 attempts to demangle them if we later add more minimal symbols. */
1200
1201 void
1202 minimal_symbol_reader::install ()
1203 {
1204 int bindex;
1205 int mcount;
1206 struct msym_bunch *bunch;
1207 struct minimal_symbol *msymbols;
1208 int alloc_count;
1209
1210 if (m_objfile->per_bfd->minsyms_read)
1211 return;
1212
1213 if (m_msym_count > 0)
1214 {
1215 if (symtab_create_debug)
1216 {
1217 fprintf_unfiltered (gdb_stdlog,
1218 "Installing %d minimal symbols of objfile %s.\n",
1219 m_msym_count, objfile_name (m_objfile));
1220 }
1221
1222 /* Allocate enough space in the obstack, into which we will gather the
1223 bunches of new and existing minimal symbols, sort them, and then
1224 compact out the duplicate entries. Once we have a final table,
1225 we will give back the excess space. */
1226
1227 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count + 1;
1228 obstack_blank (&m_objfile->per_bfd->storage_obstack,
1229 alloc_count * sizeof (struct minimal_symbol));
1230 msymbols = (struct minimal_symbol *)
1231 obstack_base (&m_objfile->per_bfd->storage_obstack);
1232
1233 /* Copy in the existing minimal symbols, if there are any. */
1234
1235 if (m_objfile->per_bfd->minimal_symbol_count)
1236 memcpy ((char *) msymbols, (char *) m_objfile->per_bfd->msymbols,
1237 m_objfile->per_bfd->minimal_symbol_count * sizeof (struct minimal_symbol));
1238
1239 /* Walk through the list of minimal symbol bunches, adding each symbol
1240 to the new contiguous array of symbols. Note that we start with the
1241 current, possibly partially filled bunch (thus we use the current
1242 msym_bunch_index for the first bunch we copy over), and thereafter
1243 each bunch is full. */
1244
1245 mcount = m_objfile->per_bfd->minimal_symbol_count;
1246
1247 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1248 {
1249 for (bindex = 0; bindex < m_msym_bunch_index; bindex++, mcount++)
1250 msymbols[mcount] = bunch->contents[bindex];
1251 m_msym_bunch_index = BUNCH_SIZE;
1252 }
1253
1254 /* Sort the minimal symbols by address. */
1255
1256 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1257 compare_minimal_symbols);
1258
1259 /* Compact out any duplicates, and free up whatever space we are
1260 no longer using. */
1261
1262 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1263
1264 obstack_blank_fast (&m_objfile->per_bfd->storage_obstack,
1265 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1266 msymbols = (struct minimal_symbol *)
1267 obstack_finish (&m_objfile->per_bfd->storage_obstack);
1268
1269 /* We also terminate the minimal symbol table with a "null symbol",
1270 which is *not* included in the size of the table. This makes it
1271 easier to find the end of the table when we are handed a pointer
1272 to some symbol in the middle of it. Zero out the fields in the
1273 "null symbol" allocated at the end of the array. Note that the
1274 symbol count does *not* include this null symbol, which is why it
1275 is indexed by mcount and not mcount-1. */
1276
1277 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1278
1279 /* Attach the minimal symbol table to the specified objfile.
1280 The strings themselves are also located in the storage_obstack
1281 of this objfile. */
1282
1283 m_objfile->per_bfd->minimal_symbol_count = mcount;
1284 m_objfile->per_bfd->msymbols = msymbols;
1285
1286 /* Now build the hash tables; we can't do this incrementally
1287 at an earlier point since we weren't finished with the obstack
1288 yet. (And if the msymbol obstack gets moved, all the internal
1289 pointers to other msymbols need to be adjusted.) */
1290 build_minimal_symbol_hash_tables (m_objfile);
1291 }
1292 }
1293
1294 /* See minsyms.h. */
1295
1296 void
1297 terminate_minimal_symbol_table (struct objfile *objfile)
1298 {
1299 if (! objfile->per_bfd->msymbols)
1300 objfile->per_bfd->msymbols
1301 = ((struct minimal_symbol *)
1302 obstack_alloc (&objfile->per_bfd->storage_obstack,
1303 sizeof (struct minimal_symbol)));
1304
1305 {
1306 struct minimal_symbol *m
1307 = &objfile->per_bfd->msymbols[objfile->per_bfd->minimal_symbol_count];
1308
1309 memset (m, 0, sizeof (*m));
1310 /* Don't rely on these enumeration values being 0's. */
1311 MSYMBOL_TYPE (m) = mst_unknown;
1312 MSYMBOL_SET_LANGUAGE (m, language_unknown,
1313 &objfile->per_bfd->storage_obstack);
1314 }
1315 }
1316
1317 /* Check if PC is in a shared library trampoline code stub.
1318 Return minimal symbol for the trampoline entry or NULL if PC is not
1319 in a trampoline code stub. */
1320
1321 static struct minimal_symbol *
1322 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1323 {
1324 struct obj_section *section = find_pc_section (pc);
1325 struct bound_minimal_symbol msymbol;
1326
1327 if (section == NULL)
1328 return NULL;
1329 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1330
1331 if (msymbol.minsym != NULL
1332 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1333 return msymbol.minsym;
1334 return NULL;
1335 }
1336
1337 /* If PC is in a shared library trampoline code stub, return the
1338 address of the `real' function belonging to the stub.
1339 Return 0 if PC is not in a trampoline code stub or if the real
1340 function is not found in the minimal symbol table.
1341
1342 We may fail to find the right function if a function with the
1343 same name is defined in more than one shared library, but this
1344 is considered bad programming style. We could return 0 if we find
1345 a duplicate function in case this matters someday. */
1346
1347 CORE_ADDR
1348 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1349 {
1350 struct objfile *objfile;
1351 struct minimal_symbol *msymbol;
1352 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1353
1354 if (tsymbol != NULL)
1355 {
1356 ALL_MSYMBOLS (objfile, msymbol)
1357 {
1358 if ((MSYMBOL_TYPE (msymbol) == mst_text
1359 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1360 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1361 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1362 return MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1363
1364 /* Also handle minimal symbols pointing to function descriptors. */
1365 if (MSYMBOL_TYPE (msymbol) == mst_data
1366 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1367 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1368 {
1369 CORE_ADDR func;
1370
1371 func = gdbarch_convert_from_func_ptr_addr
1372 (get_objfile_arch (objfile),
1373 MSYMBOL_VALUE_ADDRESS (objfile, msymbol),
1374 &current_target);
1375
1376 /* Ignore data symbols that are not function descriptors. */
1377 if (func != MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
1378 return func;
1379 }
1380 }
1381 }
1382 return 0;
1383 }
1384
1385 /* See minsyms.h. */
1386
1387 CORE_ADDR
1388 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1389 {
1390 int i;
1391 short section;
1392 struct obj_section *obj_section;
1393 CORE_ADDR result;
1394 struct minimal_symbol *msymbol;
1395
1396 gdb_assert (minsym.minsym != NULL);
1397
1398 /* If the minimal symbol has a size, use it. Otherwise use the
1399 lesser of the next minimal symbol in the same section, or the end
1400 of the section, as the end of the function. */
1401
1402 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1403 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1404
1405 /* Step over other symbols at this same address, and symbols in
1406 other sections, to find the next symbol in this section with a
1407 different address. */
1408
1409 msymbol = minsym.minsym;
1410 section = MSYMBOL_SECTION (msymbol);
1411 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1412 {
1413 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1414 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1415 && MSYMBOL_SECTION (msymbol + i) == section)
1416 break;
1417 }
1418
1419 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1420 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1421 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1422 < obj_section_endaddr (obj_section)))
1423 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1424 else
1425 /* We got the start address from the last msymbol in the objfile.
1426 So the end address is the end of the section. */
1427 result = obj_section_endaddr (obj_section);
1428
1429 return result;
1430 }
This page took 0.084097 seconds and 4 git commands to generate.