d68fb65a9e0ad6cd5fea21f480ad70856d0eab76
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "symbol.h"
54 #include <algorithm>
55 #include "safe-ctype.h"
56
57 /* See minsyms.h. */
58
59 bool
60 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
61 CORE_ADDR *func_address_p)
62 {
63 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
64
65 switch (minsym->type)
66 {
67 case mst_slot_got_plt:
68 case mst_data:
69 case mst_bss:
70 case mst_abs:
71 case mst_file_data:
72 case mst_file_bss:
73 {
74 struct gdbarch *gdbarch = get_objfile_arch (objfile);
75 CORE_ADDR pc = gdbarch_convert_from_func_ptr_addr (gdbarch, msym_addr,
76 &current_target);
77 if (pc != msym_addr)
78 {
79 if (func_address_p != NULL)
80 *func_address_p = pc;
81 return true;
82 }
83 return false;
84 }
85 default:
86 if (func_address_p != NULL)
87 *func_address_p = msym_addr;
88 return true;
89 }
90 }
91
92 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
93 At the end, copy them all into one newly allocated location on an objfile's
94 per-BFD storage obstack. */
95
96 #define BUNCH_SIZE 127
97
98 struct msym_bunch
99 {
100 struct msym_bunch *next;
101 struct minimal_symbol contents[BUNCH_SIZE];
102 };
103
104 /* See minsyms.h. */
105
106 unsigned int
107 msymbol_hash_iw (const char *string)
108 {
109 unsigned int hash = 0;
110
111 while (*string && *string != '(')
112 {
113 string = skip_spaces (string);
114 if (*string && *string != '(')
115 {
116 hash = SYMBOL_HASH_NEXT (hash, *string);
117 ++string;
118 }
119 }
120 return hash;
121 }
122
123 /* See minsyms.h. */
124
125 unsigned int
126 msymbol_hash (const char *string)
127 {
128 unsigned int hash = 0;
129
130 for (; *string; ++string)
131 hash = SYMBOL_HASH_NEXT (hash, *string);
132 return hash;
133 }
134
135 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
136 static void
137 add_minsym_to_hash_table (struct minimal_symbol *sym,
138 struct minimal_symbol **table)
139 {
140 if (sym->hash_next == NULL)
141 {
142 unsigned int hash
143 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
144
145 sym->hash_next = table[hash];
146 table[hash] = sym;
147 }
148 }
149
150 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
151 TABLE. */
152 static void
153 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
154 struct objfile *objfile)
155 {
156 if (sym->demangled_hash_next == NULL)
157 {
158 unsigned int hash = search_name_hash (MSYMBOL_LANGUAGE (sym),
159 MSYMBOL_SEARCH_NAME (sym));
160
161 auto &vec = objfile->per_bfd->demangled_hash_languages;
162 auto it = std::lower_bound (vec.begin (), vec.end (),
163 MSYMBOL_LANGUAGE (sym));
164 if (it == vec.end () || *it != MSYMBOL_LANGUAGE (sym))
165 vec.insert (it, MSYMBOL_LANGUAGE (sym));
166
167 struct minimal_symbol **table
168 = objfile->per_bfd->msymbol_demangled_hash;
169 unsigned int hash_index = hash % MINIMAL_SYMBOL_HASH_SIZE;
170 sym->demangled_hash_next = table[hash_index];
171 table[hash_index] = sym;
172 }
173 }
174
175 /* Worker object for lookup_minimal_symbol. Stores temporary results
176 while walking the symbol tables. */
177
178 struct found_minimal_symbols
179 {
180 /* External symbols are best. */
181 bound_minimal_symbol external_symbol {};
182
183 /* File-local symbols are next best. */
184 bound_minimal_symbol file_symbol {};
185
186 /* Symbols for shared library trampolines are next best. */
187 bound_minimal_symbol trampoline_symbol {};
188
189 /* Called when a symbol name matches. Check if the minsym is a
190 better type than what we had already found, and record it in one
191 of the members fields if so. Returns true if we collected the
192 real symbol, in which case we can stop searching. */
193 bool maybe_collect (const char *sfile, objfile *objf,
194 minimal_symbol *msymbol);
195 };
196
197 /* See declaration above. */
198
199 bool
200 found_minimal_symbols::maybe_collect (const char *sfile,
201 struct objfile *objfile,
202 minimal_symbol *msymbol)
203 {
204 switch (MSYMBOL_TYPE (msymbol))
205 {
206 case mst_file_text:
207 case mst_file_data:
208 case mst_file_bss:
209 if (sfile == NULL
210 || filename_cmp (msymbol->filename, sfile) == 0)
211 {
212 file_symbol.minsym = msymbol;
213 file_symbol.objfile = objfile;
214 }
215 break;
216
217 case mst_solib_trampoline:
218
219 /* If a trampoline symbol is found, we prefer to keep
220 looking for the *real* symbol. If the actual symbol
221 is not found, then we'll use the trampoline
222 entry. */
223 if (trampoline_symbol.minsym == NULL)
224 {
225 trampoline_symbol.minsym = msymbol;
226 trampoline_symbol.objfile = objfile;
227 }
228 break;
229
230 case mst_unknown:
231 default:
232 external_symbol.minsym = msymbol;
233 external_symbol.objfile = objfile;
234 /* We have the real symbol. No use looking further. */
235 return true;
236 }
237
238 /* Keep looking. */
239 return false;
240 }
241
242 /* Walk the mangled name hash table, and pass each symbol whose name
243 matches LOOKUP_NAME according to NAMECMP to FOUND. */
244
245 static void
246 lookup_minimal_symbol_mangled (const char *lookup_name,
247 const char *sfile,
248 struct objfile *objfile,
249 struct minimal_symbol **table,
250 unsigned int hash,
251 int (*namecmp) (const char *, const char *),
252 found_minimal_symbols &found)
253 {
254 for (minimal_symbol *msymbol = table[hash];
255 msymbol != NULL;
256 msymbol = msymbol->hash_next)
257 {
258 const char *symbol_name = MSYMBOL_LINKAGE_NAME (msymbol);
259
260 if (namecmp (symbol_name, lookup_name) == 0
261 && found.maybe_collect (sfile, objfile, msymbol))
262 return;
263 }
264 }
265
266 /* Walk the demangled name hash table, and pass each symbol whose name
267 matches LOOKUP_NAME according to MATCHER to FOUND. */
268
269 static void
270 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
271 const char *sfile,
272 struct objfile *objfile,
273 struct minimal_symbol **table,
274 unsigned int hash,
275 symbol_name_matcher_ftype *matcher,
276 found_minimal_symbols &found)
277 {
278 for (minimal_symbol *msymbol = table[hash];
279 msymbol != NULL;
280 msymbol = msymbol->demangled_hash_next)
281 {
282 const char *symbol_name = MSYMBOL_SEARCH_NAME (msymbol);
283
284 if (matcher (symbol_name, lookup_name, NULL)
285 && found.maybe_collect (sfile, objfile, msymbol))
286 return;
287 }
288 }
289
290 /* Look through all the current minimal symbol tables and find the
291 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
292 the search to that objfile. If SFILE is non-NULL, the only file-scope
293 symbols considered will be from that source file (global symbols are
294 still preferred). Returns a pointer to the minimal symbol that
295 matches, or NULL if no match is found.
296
297 Note: One instance where there may be duplicate minimal symbols with
298 the same name is when the symbol tables for a shared library and the
299 symbol tables for an executable contain global symbols with the same
300 names (the dynamic linker deals with the duplication).
301
302 It's also possible to have minimal symbols with different mangled
303 names, but identical demangled names. For example, the GNU C++ v3
304 ABI requires the generation of two (or perhaps three) copies of
305 constructor functions --- "in-charge", "not-in-charge", and
306 "allocate" copies; destructors may be duplicated as well.
307 Obviously, there must be distinct mangled names for each of these,
308 but the demangled names are all the same: S::S or S::~S. */
309
310 struct bound_minimal_symbol
311 lookup_minimal_symbol (const char *name, const char *sfile,
312 struct objfile *objf)
313 {
314 struct objfile *objfile;
315 found_minimal_symbols found;
316
317 unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
318
319 auto *mangled_cmp
320 = (case_sensitivity == case_sensitive_on
321 ? strcmp
322 : strcasecmp);
323
324 if (sfile != NULL)
325 sfile = lbasename (sfile);
326
327 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
328
329 for (objfile = object_files;
330 objfile != NULL && found.external_symbol.minsym == NULL;
331 objfile = objfile->next)
332 {
333 struct minimal_symbol *msymbol;
334
335 if (objf == NULL || objf == objfile
336 || objf == objfile->separate_debug_objfile_backlink)
337 {
338 if (symbol_lookup_debug)
339 {
340 fprintf_unfiltered (gdb_stdlog,
341 "lookup_minimal_symbol (%s, %s, %s)\n",
342 name, sfile != NULL ? sfile : "NULL",
343 objfile_debug_name (objfile));
344 }
345
346 /* Do two passes: the first over the ordinary hash table,
347 and the second over the demangled hash table. */
348 lookup_minimal_symbol_mangled (name, sfile, objfile,
349 objfile->per_bfd->msymbol_hash,
350 mangled_hash, mangled_cmp, found);
351
352 /* If not found, try the demangled hash table. */
353 if (found.external_symbol.minsym == NULL)
354 {
355 /* Once for each language in the demangled hash names
356 table (usually just zero or one languages). */
357 for (auto lang : objfile->per_bfd->demangled_hash_languages)
358 {
359 unsigned int hash
360 = (lookup_name.search_name_hash (lang)
361 % MINIMAL_SYMBOL_HASH_SIZE);
362
363 symbol_name_matcher_ftype *match
364 = language_get_symbol_name_matcher (language_def (lang),
365 lookup_name);
366 struct minimal_symbol **msymbol_demangled_hash
367 = objfile->per_bfd->msymbol_demangled_hash;
368
369 lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
370 msymbol_demangled_hash,
371 hash, match, found);
372
373 if (found.external_symbol.minsym != NULL)
374 break;
375 }
376 }
377 }
378 }
379
380 /* External symbols are best. */
381 if (found.external_symbol.minsym != NULL)
382 {
383 if (symbol_lookup_debug)
384 {
385 minimal_symbol *minsym = found.external_symbol.minsym;
386
387 fprintf_unfiltered (gdb_stdlog,
388 "lookup_minimal_symbol (...) = %s (external)\n",
389 host_address_to_string (minsym));
390 }
391 return found.external_symbol;
392 }
393
394 /* File-local symbols are next best. */
395 if (found.file_symbol.minsym != NULL)
396 {
397 if (symbol_lookup_debug)
398 {
399 minimal_symbol *minsym = found.file_symbol.minsym;
400
401 fprintf_unfiltered (gdb_stdlog,
402 "lookup_minimal_symbol (...) = %s (file-local)\n",
403 host_address_to_string (minsym));
404 }
405 return found.file_symbol;
406 }
407
408 /* Symbols for shared library trampolines are next best. */
409 if (found.trampoline_symbol.minsym != NULL)
410 {
411 if (symbol_lookup_debug)
412 {
413 minimal_symbol *minsym = found.trampoline_symbol.minsym;
414
415 fprintf_unfiltered (gdb_stdlog,
416 "lookup_minimal_symbol (...) = %s (trampoline)\n",
417 host_address_to_string (minsym));
418 }
419
420 return found.trampoline_symbol;
421 }
422
423 /* Not found. */
424 if (symbol_lookup_debug)
425 fprintf_unfiltered (gdb_stdlog, "lookup_minimal_symbol (...) = NULL\n");
426 return {};
427 }
428
429 /* See minsyms.h. */
430
431 struct bound_minimal_symbol
432 lookup_bound_minimal_symbol (const char *name)
433 {
434 return lookup_minimal_symbol (name, NULL, NULL);
435 }
436
437 /* See common/symbol.h. */
438
439 int
440 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
441 struct objfile *objfile)
442 {
443 struct bound_minimal_symbol sym
444 = lookup_minimal_symbol (name, NULL, objfile);
445
446 if (sym.minsym != NULL)
447 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
448
449 return sym.minsym == NULL;
450 }
451
452 /* See minsyms.h. */
453
454 void
455 iterate_over_minimal_symbols (struct objfile *objf,
456 const lookup_name_info &lookup_name,
457 void (*callback) (struct minimal_symbol *,
458 void *),
459 void *user_data)
460 {
461
462 /* The first pass is over the ordinary hash table. */
463 {
464 const char *name = lookup_name.name ().c_str ();
465 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
466 auto *mangled_cmp
467 = (case_sensitivity == case_sensitive_on
468 ? strcmp
469 : strcasecmp);
470
471 for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
472 iter != NULL;
473 iter = iter->hash_next)
474 {
475 if (mangled_cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
476 (*callback) (iter, user_data);
477 }
478 }
479
480 /* The second pass is over the demangled table. Once for each
481 language in the demangled hash names table (usually just zero or
482 one). */
483 for (auto lang : objf->per_bfd->demangled_hash_languages)
484 {
485 const language_defn *lang_def = language_def (lang);
486 symbol_name_matcher_ftype *name_match
487 = language_get_symbol_name_matcher (lang_def, lookup_name);
488
489 unsigned int hash
490 = lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
491 for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
492 iter != NULL;
493 iter = iter->demangled_hash_next)
494 if (name_match (MSYMBOL_SEARCH_NAME (iter), lookup_name, NULL))
495 (*callback) (iter, user_data);
496 }
497 }
498
499 /* See minsyms.h. */
500
501 struct bound_minimal_symbol
502 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
503 {
504 struct objfile *objfile;
505 struct minimal_symbol *msymbol;
506 struct bound_minimal_symbol found_symbol = { NULL, NULL };
507 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
508
509 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
510
511 for (objfile = object_files;
512 objfile != NULL && found_symbol.minsym == NULL;
513 objfile = objfile->next)
514 {
515 if (objf == NULL || objf == objfile
516 || objf == objfile->separate_debug_objfile_backlink)
517 {
518 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
519 msymbol != NULL && found_symbol.minsym == NULL;
520 msymbol = msymbol->hash_next)
521 {
522 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
523 (MSYMBOL_TYPE (msymbol) == mst_text
524 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
525 || MSYMBOL_TYPE (msymbol) == mst_file_text))
526 {
527 switch (MSYMBOL_TYPE (msymbol))
528 {
529 case mst_file_text:
530 found_file_symbol.minsym = msymbol;
531 found_file_symbol.objfile = objfile;
532 break;
533 default:
534 found_symbol.minsym = msymbol;
535 found_symbol.objfile = objfile;
536 break;
537 }
538 }
539 }
540 }
541 }
542 /* External symbols are best. */
543 if (found_symbol.minsym)
544 return found_symbol;
545
546 /* File-local symbols are next best. */
547 return found_file_symbol;
548 }
549
550 /* See minsyms.h. */
551
552 struct minimal_symbol *
553 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
554 struct objfile *objf)
555 {
556 struct objfile *objfile;
557 struct minimal_symbol *msymbol;
558
559 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
560
561 for (objfile = object_files;
562 objfile != NULL;
563 objfile = objfile->next)
564 {
565 if (objf == NULL || objf == objfile
566 || objf == objfile->separate_debug_objfile_backlink)
567 {
568 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
569 msymbol != NULL;
570 msymbol = msymbol->hash_next)
571 {
572 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
573 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
574 return msymbol;
575 }
576 }
577 }
578
579 return NULL;
580 }
581
582 /* See minsyms.h. */
583
584 struct bound_minimal_symbol
585 lookup_minimal_symbol_solib_trampoline (const char *name,
586 struct objfile *objf)
587 {
588 struct objfile *objfile;
589 struct minimal_symbol *msymbol;
590 struct bound_minimal_symbol found_symbol = { NULL, NULL };
591
592 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
593
594 for (objfile = object_files;
595 objfile != NULL;
596 objfile = objfile->next)
597 {
598 if (objf == NULL || objf == objfile
599 || objf == objfile->separate_debug_objfile_backlink)
600 {
601 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
602 msymbol != NULL;
603 msymbol = msymbol->hash_next)
604 {
605 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
606 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
607 {
608 found_symbol.objfile = objfile;
609 found_symbol.minsym = msymbol;
610 return found_symbol;
611 }
612 }
613 }
614 }
615
616 return found_symbol;
617 }
618
619 /* A helper function that makes *PC section-relative. This searches
620 the sections of OBJFILE and if *PC is in a section, it subtracts
621 the section offset and returns true. Otherwise it returns
622 false. */
623
624 static int
625 frob_address (struct objfile *objfile, CORE_ADDR *pc)
626 {
627 struct obj_section *iter;
628
629 ALL_OBJFILE_OSECTIONS (objfile, iter)
630 {
631 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
632 {
633 *pc -= obj_section_offset (iter);
634 return 1;
635 }
636 }
637
638 return 0;
639 }
640
641 /* Search through the minimal symbol table for each objfile and find
642 the symbol whose address is the largest address that is still less
643 than or equal to PC, and matches SECTION (which is not NULL).
644 Returns a pointer to the minimal symbol if such a symbol is found,
645 or NULL if PC is not in a suitable range.
646 Note that we need to look through ALL the minimal symbol tables
647 before deciding on the symbol that comes closest to the specified PC.
648 This is because objfiles can overlap, for example objfile A has .text
649 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
650 .data at 0x40048.
651
652 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
653 there are text and trampoline symbols at the same address.
654 Otherwise prefer mst_text symbols. */
655
656 static struct bound_minimal_symbol
657 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc_in,
658 struct obj_section *section,
659 int want_trampoline)
660 {
661 int lo;
662 int hi;
663 int newobj;
664 struct objfile *objfile;
665 struct minimal_symbol *msymbol;
666 struct minimal_symbol *best_symbol = NULL;
667 struct objfile *best_objfile = NULL;
668 struct bound_minimal_symbol result;
669 enum minimal_symbol_type want_type, other_type;
670
671 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
672 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
673
674 /* We can not require the symbol found to be in section, because
675 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
676 symbol - but find_pc_section won't return an absolute section and
677 hence the code below would skip over absolute symbols. We can
678 still take advantage of the call to find_pc_section, though - the
679 object file still must match. In case we have separate debug
680 files, search both the file and its separate debug file. There's
681 no telling which one will have the minimal symbols. */
682
683 gdb_assert (section != NULL);
684
685 for (objfile = section->objfile;
686 objfile != NULL;
687 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
688 {
689 CORE_ADDR pc = pc_in;
690
691 /* If this objfile has a minimal symbol table, go search it using
692 a binary search. Note that a minimal symbol table always consists
693 of at least two symbols, a "real" symbol and the terminating
694 "null symbol". If there are no real symbols, then there is no
695 minimal symbol table at all. */
696
697 if (objfile->per_bfd->minimal_symbol_count > 0)
698 {
699 int best_zero_sized = -1;
700
701 msymbol = objfile->per_bfd->msymbols;
702 lo = 0;
703 hi = objfile->per_bfd->minimal_symbol_count - 1;
704
705 /* This code assumes that the minimal symbols are sorted by
706 ascending address values. If the pc value is greater than or
707 equal to the first symbol's address, then some symbol in this
708 minimal symbol table is a suitable candidate for being the
709 "best" symbol. This includes the last real symbol, for cases
710 where the pc value is larger than any address in this vector.
711
712 By iterating until the address associated with the current
713 hi index (the endpoint of the test interval) is less than
714 or equal to the desired pc value, we accomplish two things:
715 (1) the case where the pc value is larger than any minimal
716 symbol address is trivially solved, (2) the address associated
717 with the hi index is always the one we want when the interation
718 terminates. In essence, we are iterating the test interval
719 down until the pc value is pushed out of it from the high end.
720
721 Warning: this code is trickier than it would appear at first. */
722
723 if (frob_address (objfile, &pc)
724 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
725 {
726 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
727 {
728 /* pc is still strictly less than highest address. */
729 /* Note "new" will always be >= lo. */
730 newobj = (lo + hi) / 2;
731 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
732 || (lo == newobj))
733 {
734 hi = newobj;
735 }
736 else
737 {
738 lo = newobj;
739 }
740 }
741
742 /* If we have multiple symbols at the same address, we want
743 hi to point to the last one. That way we can find the
744 right symbol if it has an index greater than hi. */
745 while (hi < objfile->per_bfd->minimal_symbol_count - 1
746 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
747 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
748 hi++;
749
750 /* Skip various undesirable symbols. */
751 while (hi >= 0)
752 {
753 /* Skip any absolute symbols. This is apparently
754 what adb and dbx do, and is needed for the CM-5.
755 There are two known possible problems: (1) on
756 ELF, apparently end, edata, etc. are absolute.
757 Not sure ignoring them here is a big deal, but if
758 we want to use them, the fix would go in
759 elfread.c. (2) I think shared library entry
760 points on the NeXT are absolute. If we want
761 special handling for this it probably should be
762 triggered by a special mst_abs_or_lib or some
763 such. */
764
765 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
766 {
767 hi--;
768 continue;
769 }
770
771 /* If SECTION was specified, skip any symbol from
772 wrong section. */
773 if (section
774 /* Some types of debug info, such as COFF,
775 don't fill the bfd_section member, so don't
776 throw away symbols on those platforms. */
777 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
778 && (!matching_obj_sections
779 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
780 section)))
781 {
782 hi--;
783 continue;
784 }
785
786 /* If we are looking for a trampoline and this is a
787 text symbol, or the other way around, check the
788 preceding symbol too. If they are otherwise
789 identical prefer that one. */
790 if (hi > 0
791 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
792 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
793 && (MSYMBOL_SIZE (&msymbol[hi])
794 == MSYMBOL_SIZE (&msymbol[hi - 1]))
795 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
796 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
797 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
798 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
799 {
800 hi--;
801 continue;
802 }
803
804 /* If the minimal symbol has a zero size, save it
805 but keep scanning backwards looking for one with
806 a non-zero size. A zero size may mean that the
807 symbol isn't an object or function (e.g. a
808 label), or it may just mean that the size was not
809 specified. */
810 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
811 {
812 if (best_zero_sized == -1)
813 best_zero_sized = hi;
814 hi--;
815 continue;
816 }
817
818 /* If we are past the end of the current symbol, try
819 the previous symbol if it has a larger overlapping
820 size. This happens on i686-pc-linux-gnu with glibc;
821 the nocancel variants of system calls are inside
822 the cancellable variants, but both have sizes. */
823 if (hi > 0
824 && MSYMBOL_SIZE (&msymbol[hi]) != 0
825 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
826 + MSYMBOL_SIZE (&msymbol[hi]))
827 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
828 + MSYMBOL_SIZE (&msymbol[hi - 1])))
829 {
830 hi--;
831 continue;
832 }
833
834 /* Otherwise, this symbol must be as good as we're going
835 to get. */
836 break;
837 }
838
839 /* If HI has a zero size, and best_zero_sized is set,
840 then we had two or more zero-sized symbols; prefer
841 the first one we found (which may have a higher
842 address). Also, if we ran off the end, be sure
843 to back up. */
844 if (best_zero_sized != -1
845 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
846 hi = best_zero_sized;
847
848 /* If the minimal symbol has a non-zero size, and this
849 PC appears to be outside the symbol's contents, then
850 refuse to use this symbol. If we found a zero-sized
851 symbol with an address greater than this symbol's,
852 use that instead. We assume that if symbols have
853 specified sizes, they do not overlap. */
854
855 if (hi >= 0
856 && MSYMBOL_SIZE (&msymbol[hi]) != 0
857 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
858 + MSYMBOL_SIZE (&msymbol[hi])))
859 {
860 if (best_zero_sized != -1)
861 hi = best_zero_sized;
862 else
863 /* Go on to the next object file. */
864 continue;
865 }
866
867 /* The minimal symbol indexed by hi now is the best one in this
868 objfile's minimal symbol table. See if it is the best one
869 overall. */
870
871 if (hi >= 0
872 && ((best_symbol == NULL) ||
873 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
874 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
875 {
876 best_symbol = &msymbol[hi];
877 best_objfile = objfile;
878 }
879 }
880 }
881 }
882
883 result.minsym = best_symbol;
884 result.objfile = best_objfile;
885 return result;
886 }
887
888 struct bound_minimal_symbol
889 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
890 {
891 if (section == NULL)
892 {
893 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
894 force the section but that (well unless you're doing overlay
895 debugging) always returns NULL making the call somewhat useless. */
896 section = find_pc_section (pc);
897 if (section == NULL)
898 {
899 struct bound_minimal_symbol result;
900
901 memset (&result, 0, sizeof (result));
902 return result;
903 }
904 }
905 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
906 }
907
908 /* See minsyms.h. */
909
910 struct bound_minimal_symbol
911 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
912 {
913 struct obj_section *section = find_pc_section (pc);
914
915 if (section == NULL)
916 {
917 struct bound_minimal_symbol result;
918
919 memset (&result, 0, sizeof (result));
920 return result;
921 }
922 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
923 }
924
925 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
926
927 int
928 in_gnu_ifunc_stub (CORE_ADDR pc)
929 {
930 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc);
931
932 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
933 }
934
935 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
936
937 static CORE_ADDR
938 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
939 {
940 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
941 "the ELF support compiled in."),
942 paddress (gdbarch, pc));
943 }
944
945 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
946
947 static int
948 stub_gnu_ifunc_resolve_name (const char *function_name,
949 CORE_ADDR *function_address_p)
950 {
951 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
952 "the ELF support compiled in."),
953 function_name);
954 }
955
956 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
957
958 static void
959 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
960 {
961 internal_error (__FILE__, __LINE__,
962 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
963 }
964
965 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
966
967 static void
968 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
969 {
970 internal_error (__FILE__, __LINE__,
971 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
972 }
973
974 /* See elf_gnu_ifunc_fns for its real implementation. */
975
976 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
977 {
978 stub_gnu_ifunc_resolve_addr,
979 stub_gnu_ifunc_resolve_name,
980 stub_gnu_ifunc_resolver_stop,
981 stub_gnu_ifunc_resolver_return_stop,
982 };
983
984 /* A placeholder for &elf_gnu_ifunc_fns. */
985
986 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
987
988 /* See minsyms.h. */
989
990 struct bound_minimal_symbol
991 lookup_minimal_symbol_and_objfile (const char *name)
992 {
993 struct bound_minimal_symbol result;
994 struct objfile *objfile;
995 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
996
997 ALL_OBJFILES (objfile)
998 {
999 struct minimal_symbol *msym;
1000
1001 for (msym = objfile->per_bfd->msymbol_hash[hash];
1002 msym != NULL;
1003 msym = msym->hash_next)
1004 {
1005 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
1006 {
1007 result.minsym = msym;
1008 result.objfile = objfile;
1009 return result;
1010 }
1011 }
1012 }
1013
1014 memset (&result, 0, sizeof (result));
1015 return result;
1016 }
1017 \f
1018
1019 /* Return leading symbol character for a BFD. If BFD is NULL,
1020 return the leading symbol character from the main objfile. */
1021
1022 static int
1023 get_symbol_leading_char (bfd *abfd)
1024 {
1025 if (abfd != NULL)
1026 return bfd_get_symbol_leading_char (abfd);
1027 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
1028 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
1029 return 0;
1030 }
1031
1032 /* See minsyms.h. */
1033
1034 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
1035 : m_objfile (obj),
1036 m_msym_bunch (NULL),
1037 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
1038 first call to save a minimal symbol to allocate the memory for
1039 the first bunch. */
1040 m_msym_bunch_index (BUNCH_SIZE),
1041 m_msym_count (0)
1042 {
1043 }
1044
1045 /* Discard the currently collected minimal symbols, if any. If we wish
1046 to save them for later use, we must have already copied them somewhere
1047 else before calling this function.
1048
1049 FIXME: We could allocate the minimal symbol bunches on their own
1050 obstack and then simply blow the obstack away when we are done with
1051 it. Is it worth the extra trouble though? */
1052
1053 minimal_symbol_reader::~minimal_symbol_reader ()
1054 {
1055 struct msym_bunch *next;
1056
1057 while (m_msym_bunch != NULL)
1058 {
1059 next = m_msym_bunch->next;
1060 xfree (m_msym_bunch);
1061 m_msym_bunch = next;
1062 }
1063 }
1064
1065 /* See minsyms.h. */
1066
1067 void
1068 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1069 enum minimal_symbol_type ms_type)
1070 {
1071 int section;
1072
1073 switch (ms_type)
1074 {
1075 case mst_text:
1076 case mst_text_gnu_ifunc:
1077 case mst_file_text:
1078 case mst_solib_trampoline:
1079 section = SECT_OFF_TEXT (m_objfile);
1080 break;
1081 case mst_data:
1082 case mst_file_data:
1083 section = SECT_OFF_DATA (m_objfile);
1084 break;
1085 case mst_bss:
1086 case mst_file_bss:
1087 section = SECT_OFF_BSS (m_objfile);
1088 break;
1089 default:
1090 section = -1;
1091 }
1092
1093 record_with_info (name, address, ms_type, section);
1094 }
1095
1096 /* See minsyms.h. */
1097
1098 struct minimal_symbol *
1099 minimal_symbol_reader::record_full (const char *name, int name_len,
1100 bool copy_name, CORE_ADDR address,
1101 enum minimal_symbol_type ms_type,
1102 int section)
1103 {
1104 struct msym_bunch *newobj;
1105 struct minimal_symbol *msymbol;
1106
1107 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1108 the minimal symbols, because if there is also another symbol
1109 at the same address (e.g. the first function of the file),
1110 lookup_minimal_symbol_by_pc would have no way of getting the
1111 right one. */
1112 if (ms_type == mst_file_text && name[0] == 'g'
1113 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
1114 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
1115 return (NULL);
1116
1117 /* It's safe to strip the leading char here once, since the name
1118 is also stored stripped in the minimal symbol table. */
1119 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1120 {
1121 ++name;
1122 --name_len;
1123 }
1124
1125 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1126 return (NULL);
1127
1128 if (m_msym_bunch_index == BUNCH_SIZE)
1129 {
1130 newobj = XCNEW (struct msym_bunch);
1131 m_msym_bunch_index = 0;
1132 newobj->next = m_msym_bunch;
1133 m_msym_bunch = newobj;
1134 }
1135 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1136 MSYMBOL_SET_LANGUAGE (msymbol, language_auto,
1137 &m_objfile->per_bfd->storage_obstack);
1138 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, m_objfile);
1139
1140 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1141 MSYMBOL_SECTION (msymbol) = section;
1142
1143 MSYMBOL_TYPE (msymbol) = ms_type;
1144 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
1145 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
1146 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
1147 as it would also set the has_size flag. */
1148 msymbol->size = 0;
1149
1150 /* The hash pointers must be cleared! If they're not,
1151 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
1152 msymbol->hash_next = NULL;
1153 msymbol->demangled_hash_next = NULL;
1154
1155 /* If we already read minimal symbols for this objfile, then don't
1156 ever allocate a new one. */
1157 if (!m_objfile->per_bfd->minsyms_read)
1158 {
1159 m_msym_bunch_index++;
1160 m_objfile->per_bfd->n_minsyms++;
1161 }
1162 m_msym_count++;
1163 return msymbol;
1164 }
1165
1166 /* Compare two minimal symbols by address and return a signed result based
1167 on unsigned comparisons, so that we sort into unsigned numeric order.
1168 Within groups with the same address, sort by name. */
1169
1170 static int
1171 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1172 {
1173 const struct minimal_symbol *fn1;
1174 const struct minimal_symbol *fn2;
1175
1176 fn1 = (const struct minimal_symbol *) fn1p;
1177 fn2 = (const struct minimal_symbol *) fn2p;
1178
1179 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1180 {
1181 return (-1); /* addr 1 is less than addr 2. */
1182 }
1183 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1184 {
1185 return (1); /* addr 1 is greater than addr 2. */
1186 }
1187 else
1188 /* addrs are equal: sort by name */
1189 {
1190 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1191 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1192
1193 if (name1 && name2) /* both have names */
1194 return strcmp (name1, name2);
1195 else if (name2)
1196 return 1; /* fn1 has no name, so it is "less". */
1197 else if (name1) /* fn2 has no name, so it is "less". */
1198 return -1;
1199 else
1200 return (0); /* Neither has a name, so they're equal. */
1201 }
1202 }
1203
1204 /* Compact duplicate entries out of a minimal symbol table by walking
1205 through the table and compacting out entries with duplicate addresses
1206 and matching names. Return the number of entries remaining.
1207
1208 On entry, the table resides between msymbol[0] and msymbol[mcount].
1209 On exit, it resides between msymbol[0] and msymbol[result_count].
1210
1211 When files contain multiple sources of symbol information, it is
1212 possible for the minimal symbol table to contain many duplicate entries.
1213 As an example, SVR4 systems use ELF formatted object files, which
1214 usually contain at least two different types of symbol tables (a
1215 standard ELF one and a smaller dynamic linking table), as well as
1216 DWARF debugging information for files compiled with -g.
1217
1218 Without compacting, the minimal symbol table for gdb itself contains
1219 over a 1000 duplicates, about a third of the total table size. Aside
1220 from the potential trap of not noticing that two successive entries
1221 identify the same location, this duplication impacts the time required
1222 to linearly scan the table, which is done in a number of places. So we
1223 just do one linear scan here and toss out the duplicates.
1224
1225 Note that we are not concerned here about recovering the space that
1226 is potentially freed up, because the strings themselves are allocated
1227 on the storage_obstack, and will get automatically freed when the symbol
1228 table is freed. The caller can free up the unused minimal symbols at
1229 the end of the compacted region if their allocation strategy allows it.
1230
1231 Also note we only go up to the next to last entry within the loop
1232 and then copy the last entry explicitly after the loop terminates.
1233
1234 Since the different sources of information for each symbol may
1235 have different levels of "completeness", we may have duplicates
1236 that have one entry with type "mst_unknown" and the other with a
1237 known type. So if the one we are leaving alone has type mst_unknown,
1238 overwrite its type with the type from the one we are compacting out. */
1239
1240 static int
1241 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1242 struct objfile *objfile)
1243 {
1244 struct minimal_symbol *copyfrom;
1245 struct minimal_symbol *copyto;
1246
1247 if (mcount > 0)
1248 {
1249 copyfrom = copyto = msymbol;
1250 while (copyfrom < msymbol + mcount - 1)
1251 {
1252 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1253 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1254 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1255 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1256 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1257 {
1258 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1259 {
1260 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1261 }
1262 copyfrom++;
1263 }
1264 else
1265 *copyto++ = *copyfrom++;
1266 }
1267 *copyto++ = *copyfrom++;
1268 mcount = copyto - msymbol;
1269 }
1270 return (mcount);
1271 }
1272
1273 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1274 after compacting or sorting the table since the entries move around
1275 thus causing the internal minimal_symbol pointers to become jumbled. */
1276
1277 static void
1278 build_minimal_symbol_hash_tables (struct objfile *objfile)
1279 {
1280 int i;
1281 struct minimal_symbol *msym;
1282
1283 /* Clear the hash tables. */
1284 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1285 {
1286 objfile->per_bfd->msymbol_hash[i] = 0;
1287 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1288 }
1289
1290 /* Now, (re)insert the actual entries. */
1291 for ((i = objfile->per_bfd->minimal_symbol_count,
1292 msym = objfile->per_bfd->msymbols);
1293 i > 0;
1294 i--, msym++)
1295 {
1296 msym->hash_next = 0;
1297 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1298
1299 msym->demangled_hash_next = 0;
1300 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1301 add_minsym_to_demangled_hash_table (msym, objfile);
1302 }
1303 }
1304
1305 /* Add the minimal symbols in the existing bunches to the objfile's official
1306 minimal symbol table. In most cases there is no minimal symbol table yet
1307 for this objfile, and the existing bunches are used to create one. Once
1308 in a while (for shared libraries for example), we add symbols (e.g. common
1309 symbols) to an existing objfile.
1310
1311 Because of the way minimal symbols are collected, we generally have no way
1312 of knowing what source language applies to any particular minimal symbol.
1313 Specifically, we have no way of knowing if the minimal symbol comes from a
1314 C++ compilation unit or not. So for the sake of supporting cached
1315 demangled C++ names, we have no choice but to try and demangle each new one
1316 that comes in. If the demangling succeeds, then we assume it is a C++
1317 symbol and set the symbol's language and demangled name fields
1318 appropriately. Note that in order to avoid unnecessary demanglings, and
1319 allocating obstack space that subsequently can't be freed for the demangled
1320 names, we mark all newly added symbols with language_auto. After
1321 compaction of the minimal symbols, we go back and scan the entire minimal
1322 symbol table looking for these new symbols. For each new symbol we attempt
1323 to demangle it, and if successful, record it as a language_cplus symbol
1324 and cache the demangled form on the symbol obstack. Symbols which don't
1325 demangle are marked as language_unknown symbols, which inhibits future
1326 attempts to demangle them if we later add more minimal symbols. */
1327
1328 void
1329 minimal_symbol_reader::install ()
1330 {
1331 int bindex;
1332 int mcount;
1333 struct msym_bunch *bunch;
1334 struct minimal_symbol *msymbols;
1335 int alloc_count;
1336
1337 if (m_objfile->per_bfd->minsyms_read)
1338 return;
1339
1340 if (m_msym_count > 0)
1341 {
1342 if (symtab_create_debug)
1343 {
1344 fprintf_unfiltered (gdb_stdlog,
1345 "Installing %d minimal symbols of objfile %s.\n",
1346 m_msym_count, objfile_name (m_objfile));
1347 }
1348
1349 /* Allocate enough space in the obstack, into which we will gather the
1350 bunches of new and existing minimal symbols, sort them, and then
1351 compact out the duplicate entries. Once we have a final table,
1352 we will give back the excess space. */
1353
1354 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count + 1;
1355 obstack_blank (&m_objfile->per_bfd->storage_obstack,
1356 alloc_count * sizeof (struct minimal_symbol));
1357 msymbols = (struct minimal_symbol *)
1358 obstack_base (&m_objfile->per_bfd->storage_obstack);
1359
1360 /* Copy in the existing minimal symbols, if there are any. */
1361
1362 if (m_objfile->per_bfd->minimal_symbol_count)
1363 memcpy ((char *) msymbols, (char *) m_objfile->per_bfd->msymbols,
1364 m_objfile->per_bfd->minimal_symbol_count * sizeof (struct minimal_symbol));
1365
1366 /* Walk through the list of minimal symbol bunches, adding each symbol
1367 to the new contiguous array of symbols. Note that we start with the
1368 current, possibly partially filled bunch (thus we use the current
1369 msym_bunch_index for the first bunch we copy over), and thereafter
1370 each bunch is full. */
1371
1372 mcount = m_objfile->per_bfd->minimal_symbol_count;
1373
1374 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1375 {
1376 for (bindex = 0; bindex < m_msym_bunch_index; bindex++, mcount++)
1377 msymbols[mcount] = bunch->contents[bindex];
1378 m_msym_bunch_index = BUNCH_SIZE;
1379 }
1380
1381 /* Sort the minimal symbols by address. */
1382
1383 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1384 compare_minimal_symbols);
1385
1386 /* Compact out any duplicates, and free up whatever space we are
1387 no longer using. */
1388
1389 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1390
1391 obstack_blank_fast (&m_objfile->per_bfd->storage_obstack,
1392 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1393 msymbols = (struct minimal_symbol *)
1394 obstack_finish (&m_objfile->per_bfd->storage_obstack);
1395
1396 /* We also terminate the minimal symbol table with a "null symbol",
1397 which is *not* included in the size of the table. This makes it
1398 easier to find the end of the table when we are handed a pointer
1399 to some symbol in the middle of it. Zero out the fields in the
1400 "null symbol" allocated at the end of the array. Note that the
1401 symbol count does *not* include this null symbol, which is why it
1402 is indexed by mcount and not mcount-1. */
1403
1404 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1405
1406 /* Attach the minimal symbol table to the specified objfile.
1407 The strings themselves are also located in the storage_obstack
1408 of this objfile. */
1409
1410 m_objfile->per_bfd->minimal_symbol_count = mcount;
1411 m_objfile->per_bfd->msymbols = msymbols;
1412
1413 /* Now build the hash tables; we can't do this incrementally
1414 at an earlier point since we weren't finished with the obstack
1415 yet. (And if the msymbol obstack gets moved, all the internal
1416 pointers to other msymbols need to be adjusted.) */
1417 build_minimal_symbol_hash_tables (m_objfile);
1418 }
1419 }
1420
1421 /* See minsyms.h. */
1422
1423 void
1424 terminate_minimal_symbol_table (struct objfile *objfile)
1425 {
1426 if (! objfile->per_bfd->msymbols)
1427 objfile->per_bfd->msymbols
1428 = ((struct minimal_symbol *)
1429 obstack_alloc (&objfile->per_bfd->storage_obstack,
1430 sizeof (struct minimal_symbol)));
1431
1432 {
1433 struct minimal_symbol *m
1434 = &objfile->per_bfd->msymbols[objfile->per_bfd->minimal_symbol_count];
1435
1436 memset (m, 0, sizeof (*m));
1437 /* Don't rely on these enumeration values being 0's. */
1438 MSYMBOL_TYPE (m) = mst_unknown;
1439 MSYMBOL_SET_LANGUAGE (m, language_unknown,
1440 &objfile->per_bfd->storage_obstack);
1441 }
1442 }
1443
1444 /* Check if PC is in a shared library trampoline code stub.
1445 Return minimal symbol for the trampoline entry or NULL if PC is not
1446 in a trampoline code stub. */
1447
1448 static struct minimal_symbol *
1449 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1450 {
1451 struct obj_section *section = find_pc_section (pc);
1452 struct bound_minimal_symbol msymbol;
1453
1454 if (section == NULL)
1455 return NULL;
1456 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1457
1458 if (msymbol.minsym != NULL
1459 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1460 return msymbol.minsym;
1461 return NULL;
1462 }
1463
1464 /* If PC is in a shared library trampoline code stub, return the
1465 address of the `real' function belonging to the stub.
1466 Return 0 if PC is not in a trampoline code stub or if the real
1467 function is not found in the minimal symbol table.
1468
1469 We may fail to find the right function if a function with the
1470 same name is defined in more than one shared library, but this
1471 is considered bad programming style. We could return 0 if we find
1472 a duplicate function in case this matters someday. */
1473
1474 CORE_ADDR
1475 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1476 {
1477 struct objfile *objfile;
1478 struct minimal_symbol *msymbol;
1479 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1480
1481 if (tsymbol != NULL)
1482 {
1483 ALL_MSYMBOLS (objfile, msymbol)
1484 {
1485 if ((MSYMBOL_TYPE (msymbol) == mst_text
1486 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1487 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1488 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1489 return MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1490
1491 /* Also handle minimal symbols pointing to function descriptors. */
1492 if (MSYMBOL_TYPE (msymbol) == mst_data
1493 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1494 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1495 {
1496 CORE_ADDR func;
1497
1498 func = gdbarch_convert_from_func_ptr_addr
1499 (get_objfile_arch (objfile),
1500 MSYMBOL_VALUE_ADDRESS (objfile, msymbol),
1501 &current_target);
1502
1503 /* Ignore data symbols that are not function descriptors. */
1504 if (func != MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
1505 return func;
1506 }
1507 }
1508 }
1509 return 0;
1510 }
1511
1512 /* See minsyms.h. */
1513
1514 CORE_ADDR
1515 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1516 {
1517 int i;
1518 short section;
1519 struct obj_section *obj_section;
1520 CORE_ADDR result;
1521 struct minimal_symbol *msymbol;
1522
1523 gdb_assert (minsym.minsym != NULL);
1524
1525 /* If the minimal symbol has a size, use it. Otherwise use the
1526 lesser of the next minimal symbol in the same section, or the end
1527 of the section, as the end of the function. */
1528
1529 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1530 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1531
1532 /* Step over other symbols at this same address, and symbols in
1533 other sections, to find the next symbol in this section with a
1534 different address. */
1535
1536 msymbol = minsym.minsym;
1537 section = MSYMBOL_SECTION (msymbol);
1538 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1539 {
1540 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1541 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1542 && MSYMBOL_SECTION (msymbol + i) == section)
1543 break;
1544 }
1545
1546 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1547 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1548 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1549 < obj_section_endaddr (obj_section)))
1550 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1551 else
1552 /* We got the start address from the last msymbol in the objfile.
1553 So the end address is the end of the section. */
1554 result = obj_section_endaddr (obj_section);
1555
1556 return result;
1557 }
This page took 0.06281 seconds and 4 git commands to generate.