2012-04-20 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2004, 2007-2012 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "gdb_string.h"
42 #include "symtab.h"
43 #include "bfd.h"
44 #include "filenames.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "demangle.h"
48 #include "value.h"
49 #include "cp-abi.h"
50 #include "target.h"
51 #include "cp-support.h"
52 #include "language.h"
53
54 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
55 At the end, copy them all into one newly allocated location on an objfile's
56 symbol obstack. */
57
58 #define BUNCH_SIZE 127
59
60 struct msym_bunch
61 {
62 struct msym_bunch *next;
63 struct minimal_symbol contents[BUNCH_SIZE];
64 };
65
66 /* Bunch currently being filled up.
67 The next field points to chain of filled bunches. */
68
69 static struct msym_bunch *msym_bunch;
70
71 /* Number of slots filled in current bunch. */
72
73 static int msym_bunch_index;
74
75 /* Total number of minimal symbols recorded so far for the objfile. */
76
77 static int msym_count;
78
79 /* See minsyms.h. */
80
81 unsigned int
82 msymbol_hash_iw (const char *string)
83 {
84 unsigned int hash = 0;
85
86 while (*string && *string != '(')
87 {
88 while (isspace (*string))
89 ++string;
90 if (*string && *string != '(')
91 {
92 hash = SYMBOL_HASH_NEXT (hash, *string);
93 ++string;
94 }
95 }
96 return hash;
97 }
98
99 /* See minsyms.h. */
100
101 unsigned int
102 msymbol_hash (const char *string)
103 {
104 unsigned int hash = 0;
105
106 for (; *string; ++string)
107 hash = SYMBOL_HASH_NEXT (hash, *string);
108 return hash;
109 }
110
111 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
112 static void
113 add_minsym_to_hash_table (struct minimal_symbol *sym,
114 struct minimal_symbol **table)
115 {
116 if (sym->hash_next == NULL)
117 {
118 unsigned int hash
119 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
120
121 sym->hash_next = table[hash];
122 table[hash] = sym;
123 }
124 }
125
126 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
127 TABLE. */
128 static void
129 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
130 struct minimal_symbol **table)
131 {
132 if (sym->demangled_hash_next == NULL)
133 {
134 unsigned int hash = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym))
135 % MINIMAL_SYMBOL_HASH_SIZE;
136
137 sym->demangled_hash_next = table[hash];
138 table[hash] = sym;
139 }
140 }
141
142 /* See minsyms.h. */
143
144 struct objfile *
145 msymbol_objfile (struct minimal_symbol *sym)
146 {
147 struct objfile *objf;
148 struct minimal_symbol *tsym;
149
150 unsigned int hash
151 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
152
153 for (objf = object_files; objf; objf = objf->next)
154 for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
155 if (tsym == sym)
156 return objf;
157
158 /* We should always be able to find the objfile ... */
159 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
160 }
161
162
163 /* Look through all the current minimal symbol tables and find the
164 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
165 the search to that objfile. If SFILE is non-NULL, the only file-scope
166 symbols considered will be from that source file (global symbols are
167 still preferred). Returns a pointer to the minimal symbol that
168 matches, or NULL if no match is found.
169
170 Note: One instance where there may be duplicate minimal symbols with
171 the same name is when the symbol tables for a shared library and the
172 symbol tables for an executable contain global symbols with the same
173 names (the dynamic linker deals with the duplication).
174
175 It's also possible to have minimal symbols with different mangled
176 names, but identical demangled names. For example, the GNU C++ v3
177 ABI requires the generation of two (or perhaps three) copies of
178 constructor functions --- "in-charge", "not-in-charge", and
179 "allocate" copies; destructors may be duplicated as well.
180 Obviously, there must be distinct mangled names for each of these,
181 but the demangled names are all the same: S::S or S::~S. */
182
183 struct minimal_symbol *
184 lookup_minimal_symbol (const char *name, const char *sfile,
185 struct objfile *objf)
186 {
187 struct objfile *objfile;
188 struct minimal_symbol *msymbol;
189 struct minimal_symbol *found_symbol = NULL;
190 struct minimal_symbol *found_file_symbol = NULL;
191 struct minimal_symbol *trampoline_symbol = NULL;
192
193 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
194 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
195
196 int needtofreename = 0;
197 const char *modified_name;
198
199 if (sfile != NULL)
200 sfile = lbasename (sfile);
201
202 /* For C++, canonicalize the input name. */
203 modified_name = name;
204 if (current_language->la_language == language_cplus)
205 {
206 char *cname = cp_canonicalize_string (name);
207
208 if (cname)
209 {
210 modified_name = cname;
211 needtofreename = 1;
212 }
213 }
214
215 for (objfile = object_files;
216 objfile != NULL && found_symbol == NULL;
217 objfile = objfile->next)
218 {
219 if (objf == NULL || objf == objfile
220 || objf == objfile->separate_debug_objfile_backlink)
221 {
222 /* Do two passes: the first over the ordinary hash table,
223 and the second over the demangled hash table. */
224 int pass;
225
226 for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
227 {
228 /* Select hash list according to pass. */
229 if (pass == 1)
230 msymbol = objfile->msymbol_hash[hash];
231 else
232 msymbol = objfile->msymbol_demangled_hash[dem_hash];
233
234 while (msymbol != NULL && found_symbol == NULL)
235 {
236 int match;
237
238 if (pass == 1)
239 {
240 int (*cmp) (const char *, const char *);
241
242 cmp = (case_sensitivity == case_sensitive_on
243 ? strcmp : strcasecmp);
244 match = cmp (SYMBOL_LINKAGE_NAME (msymbol),
245 modified_name) == 0;
246 }
247 else
248 {
249 /* The function respects CASE_SENSITIVITY. */
250 match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
251 modified_name);
252 }
253
254 if (match)
255 {
256 switch (MSYMBOL_TYPE (msymbol))
257 {
258 case mst_file_text:
259 case mst_file_data:
260 case mst_file_bss:
261 if (sfile == NULL
262 || filename_cmp (msymbol->filename, sfile) == 0)
263 found_file_symbol = msymbol;
264 break;
265
266 case mst_solib_trampoline:
267
268 /* If a trampoline symbol is found, we prefer to
269 keep looking for the *real* symbol. If the
270 actual symbol is not found, then we'll use the
271 trampoline entry. */
272 if (trampoline_symbol == NULL)
273 trampoline_symbol = msymbol;
274 break;
275
276 case mst_unknown:
277 default:
278 found_symbol = msymbol;
279 break;
280 }
281 }
282
283 /* Find the next symbol on the hash chain. */
284 if (pass == 1)
285 msymbol = msymbol->hash_next;
286 else
287 msymbol = msymbol->demangled_hash_next;
288 }
289 }
290 }
291 }
292
293 if (needtofreename)
294 xfree ((void *) modified_name);
295
296 /* External symbols are best. */
297 if (found_symbol)
298 return found_symbol;
299
300 /* File-local symbols are next best. */
301 if (found_file_symbol)
302 return found_file_symbol;
303
304 /* Symbols for shared library trampolines are next best. */
305 if (trampoline_symbol)
306 return trampoline_symbol;
307
308 return NULL;
309 }
310
311 /* See minsyms.h. */
312
313 void
314 iterate_over_minimal_symbols (struct objfile *objf, const char *name,
315 void (*callback) (struct minimal_symbol *,
316 void *),
317 void *user_data)
318 {
319 unsigned int hash;
320 struct minimal_symbol *iter;
321 int (*cmp) (const char *, const char *);
322
323 /* The first pass is over the ordinary hash table. */
324 hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
325 iter = objf->msymbol_hash[hash];
326 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
327 while (iter)
328 {
329 if (cmp (SYMBOL_LINKAGE_NAME (iter), name) == 0)
330 (*callback) (iter, user_data);
331 iter = iter->hash_next;
332 }
333
334 /* The second pass is over the demangled table. */
335 hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
336 iter = objf->msymbol_demangled_hash[hash];
337 while (iter)
338 {
339 if (SYMBOL_MATCHES_SEARCH_NAME (iter, name))
340 (*callback) (iter, user_data);
341 iter = iter->demangled_hash_next;
342 }
343 }
344
345 /* See minsyms.h. */
346
347 struct minimal_symbol *
348 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
349 {
350 struct objfile *objfile;
351 struct minimal_symbol *msymbol;
352 struct minimal_symbol *found_symbol = NULL;
353 struct minimal_symbol *found_file_symbol = NULL;
354
355 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
356
357 for (objfile = object_files;
358 objfile != NULL && found_symbol == NULL;
359 objfile = objfile->next)
360 {
361 if (objf == NULL || objf == objfile
362 || objf == objfile->separate_debug_objfile_backlink)
363 {
364 for (msymbol = objfile->msymbol_hash[hash];
365 msymbol != NULL && found_symbol == NULL;
366 msymbol = msymbol->hash_next)
367 {
368 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
369 (MSYMBOL_TYPE (msymbol) == mst_text
370 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
371 || MSYMBOL_TYPE (msymbol) == mst_file_text))
372 {
373 switch (MSYMBOL_TYPE (msymbol))
374 {
375 case mst_file_text:
376 found_file_symbol = msymbol;
377 break;
378 default:
379 found_symbol = msymbol;
380 break;
381 }
382 }
383 }
384 }
385 }
386 /* External symbols are best. */
387 if (found_symbol)
388 return found_symbol;
389
390 /* File-local symbols are next best. */
391 if (found_file_symbol)
392 return found_file_symbol;
393
394 return NULL;
395 }
396
397 /* See minsyms.h. */
398
399 struct minimal_symbol *
400 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
401 struct objfile *objf)
402 {
403 struct objfile *objfile;
404 struct minimal_symbol *msymbol;
405
406 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
407
408 for (objfile = object_files;
409 objfile != NULL;
410 objfile = objfile->next)
411 {
412 if (objf == NULL || objf == objfile
413 || objf == objfile->separate_debug_objfile_backlink)
414 {
415 for (msymbol = objfile->msymbol_hash[hash];
416 msymbol != NULL;
417 msymbol = msymbol->hash_next)
418 {
419 if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
420 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
421 return msymbol;
422 }
423 }
424 }
425
426 return NULL;
427 }
428
429 /* See minsyms.h. */
430
431 struct minimal_symbol *
432 lookup_minimal_symbol_solib_trampoline (const char *name,
433 struct objfile *objf)
434 {
435 struct objfile *objfile;
436 struct minimal_symbol *msymbol;
437 struct minimal_symbol *found_symbol = NULL;
438
439 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
440
441 for (objfile = object_files;
442 objfile != NULL && found_symbol == NULL;
443 objfile = objfile->next)
444 {
445 if (objf == NULL || objf == objfile
446 || objf == objfile->separate_debug_objfile_backlink)
447 {
448 for (msymbol = objfile->msymbol_hash[hash];
449 msymbol != NULL && found_symbol == NULL;
450 msymbol = msymbol->hash_next)
451 {
452 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
453 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
454 return msymbol;
455 }
456 }
457 }
458
459 return NULL;
460 }
461
462 /* Search through the minimal symbol table for each objfile and find
463 the symbol whose address is the largest address that is still less
464 than or equal to PC, and matches SECTION (which is not NULL).
465 Returns a pointer to the minimal symbol if such a symbol is found,
466 or NULL if PC is not in a suitable range.
467 Note that we need to look through ALL the minimal symbol tables
468 before deciding on the symbol that comes closest to the specified PC.
469 This is because objfiles can overlap, for example objfile A has .text
470 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
471 .data at 0x40048.
472
473 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
474 there are text and trampoline symbols at the same address.
475 Otherwise prefer mst_text symbols. */
476
477 static struct minimal_symbol *
478 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
479 struct obj_section *section,
480 int want_trampoline)
481 {
482 int lo;
483 int hi;
484 int new;
485 struct objfile *objfile;
486 struct minimal_symbol *msymbol;
487 struct minimal_symbol *best_symbol = NULL;
488 enum minimal_symbol_type want_type, other_type;
489
490 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
491 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
492
493 /* We can not require the symbol found to be in section, because
494 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
495 symbol - but find_pc_section won't return an absolute section and
496 hence the code below would skip over absolute symbols. We can
497 still take advantage of the call to find_pc_section, though - the
498 object file still must match. In case we have separate debug
499 files, search both the file and its separate debug file. There's
500 no telling which one will have the minimal symbols. */
501
502 gdb_assert (section != NULL);
503
504 for (objfile = section->objfile;
505 objfile != NULL;
506 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
507 {
508 /* If this objfile has a minimal symbol table, go search it using
509 a binary search. Note that a minimal symbol table always consists
510 of at least two symbols, a "real" symbol and the terminating
511 "null symbol". If there are no real symbols, then there is no
512 minimal symbol table at all. */
513
514 if (objfile->minimal_symbol_count > 0)
515 {
516 int best_zero_sized = -1;
517
518 msymbol = objfile->msymbols;
519 lo = 0;
520 hi = objfile->minimal_symbol_count - 1;
521
522 /* This code assumes that the minimal symbols are sorted by
523 ascending address values. If the pc value is greater than or
524 equal to the first symbol's address, then some symbol in this
525 minimal symbol table is a suitable candidate for being the
526 "best" symbol. This includes the last real symbol, for cases
527 where the pc value is larger than any address in this vector.
528
529 By iterating until the address associated with the current
530 hi index (the endpoint of the test interval) is less than
531 or equal to the desired pc value, we accomplish two things:
532 (1) the case where the pc value is larger than any minimal
533 symbol address is trivially solved, (2) the address associated
534 with the hi index is always the one we want when the interation
535 terminates. In essence, we are iterating the test interval
536 down until the pc value is pushed out of it from the high end.
537
538 Warning: this code is trickier than it would appear at first. */
539
540 /* Should also require that pc is <= end of objfile. FIXME! */
541 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
542 {
543 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
544 {
545 /* pc is still strictly less than highest address. */
546 /* Note "new" will always be >= lo. */
547 new = (lo + hi) / 2;
548 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
549 (lo == new))
550 {
551 hi = new;
552 }
553 else
554 {
555 lo = new;
556 }
557 }
558
559 /* If we have multiple symbols at the same address, we want
560 hi to point to the last one. That way we can find the
561 right symbol if it has an index greater than hi. */
562 while (hi < objfile->minimal_symbol_count - 1
563 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
564 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
565 hi++;
566
567 /* Skip various undesirable symbols. */
568 while (hi >= 0)
569 {
570 /* Skip any absolute symbols. This is apparently
571 what adb and dbx do, and is needed for the CM-5.
572 There are two known possible problems: (1) on
573 ELF, apparently end, edata, etc. are absolute.
574 Not sure ignoring them here is a big deal, but if
575 we want to use them, the fix would go in
576 elfread.c. (2) I think shared library entry
577 points on the NeXT are absolute. If we want
578 special handling for this it probably should be
579 triggered by a special mst_abs_or_lib or some
580 such. */
581
582 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
583 {
584 hi--;
585 continue;
586 }
587
588 /* If SECTION was specified, skip any symbol from
589 wrong section. */
590 if (section
591 /* Some types of debug info, such as COFF,
592 don't fill the bfd_section member, so don't
593 throw away symbols on those platforms. */
594 && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
595 && (!matching_obj_sections
596 (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
597 {
598 hi--;
599 continue;
600 }
601
602 /* If we are looking for a trampoline and this is a
603 text symbol, or the other way around, check the
604 preceding symbol too. If they are otherwise
605 identical prefer that one. */
606 if (hi > 0
607 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
608 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
609 && (MSYMBOL_SIZE (&msymbol[hi])
610 == MSYMBOL_SIZE (&msymbol[hi - 1]))
611 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
612 == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
613 && (SYMBOL_OBJ_SECTION (&msymbol[hi])
614 == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
615 {
616 hi--;
617 continue;
618 }
619
620 /* If the minimal symbol has a zero size, save it
621 but keep scanning backwards looking for one with
622 a non-zero size. A zero size may mean that the
623 symbol isn't an object or function (e.g. a
624 label), or it may just mean that the size was not
625 specified. */
626 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
627 && best_zero_sized == -1)
628 {
629 best_zero_sized = hi;
630 hi--;
631 continue;
632 }
633
634 /* If we are past the end of the current symbol, try
635 the previous symbol if it has a larger overlapping
636 size. This happens on i686-pc-linux-gnu with glibc;
637 the nocancel variants of system calls are inside
638 the cancellable variants, but both have sizes. */
639 if (hi > 0
640 && MSYMBOL_SIZE (&msymbol[hi]) != 0
641 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
642 + MSYMBOL_SIZE (&msymbol[hi]))
643 && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
644 + MSYMBOL_SIZE (&msymbol[hi - 1])))
645 {
646 hi--;
647 continue;
648 }
649
650 /* Otherwise, this symbol must be as good as we're going
651 to get. */
652 break;
653 }
654
655 /* If HI has a zero size, and best_zero_sized is set,
656 then we had two or more zero-sized symbols; prefer
657 the first one we found (which may have a higher
658 address). Also, if we ran off the end, be sure
659 to back up. */
660 if (best_zero_sized != -1
661 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
662 hi = best_zero_sized;
663
664 /* If the minimal symbol has a non-zero size, and this
665 PC appears to be outside the symbol's contents, then
666 refuse to use this symbol. If we found a zero-sized
667 symbol with an address greater than this symbol's,
668 use that instead. We assume that if symbols have
669 specified sizes, they do not overlap. */
670
671 if (hi >= 0
672 && MSYMBOL_SIZE (&msymbol[hi]) != 0
673 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
674 + MSYMBOL_SIZE (&msymbol[hi])))
675 {
676 if (best_zero_sized != -1)
677 hi = best_zero_sized;
678 else
679 /* Go on to the next object file. */
680 continue;
681 }
682
683 /* The minimal symbol indexed by hi now is the best one in this
684 objfile's minimal symbol table. See if it is the best one
685 overall. */
686
687 if (hi >= 0
688 && ((best_symbol == NULL) ||
689 (SYMBOL_VALUE_ADDRESS (best_symbol) <
690 SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
691 {
692 best_symbol = &msymbol[hi];
693 }
694 }
695 }
696 }
697 return (best_symbol);
698 }
699
700 struct minimal_symbol *
701 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
702 {
703 if (section == NULL)
704 {
705 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
706 force the section but that (well unless you're doing overlay
707 debugging) always returns NULL making the call somewhat useless. */
708 section = find_pc_section (pc);
709 if (section == NULL)
710 return NULL;
711 }
712 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
713 }
714
715 /* See minsyms.h. */
716
717 struct minimal_symbol *
718 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
719 {
720 return lookup_minimal_symbol_by_pc_section (pc, NULL);
721 }
722
723 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
724
725 int
726 in_gnu_ifunc_stub (CORE_ADDR pc)
727 {
728 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
729
730 return msymbol && MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc;
731 }
732
733 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
734
735 static CORE_ADDR
736 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
737 {
738 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
739 "the ELF support compiled in."),
740 paddress (gdbarch, pc));
741 }
742
743 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
744
745 static int
746 stub_gnu_ifunc_resolve_name (const char *function_name,
747 CORE_ADDR *function_address_p)
748 {
749 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
750 "the ELF support compiled in."),
751 function_name);
752 }
753
754 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
755
756 static void
757 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
758 {
759 internal_error (__FILE__, __LINE__,
760 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
761 }
762
763 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
764
765 static void
766 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
767 {
768 internal_error (__FILE__, __LINE__,
769 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
770 }
771
772 /* See elf_gnu_ifunc_fns for its real implementation. */
773
774 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
775 {
776 stub_gnu_ifunc_resolve_addr,
777 stub_gnu_ifunc_resolve_name,
778 stub_gnu_ifunc_resolver_stop,
779 stub_gnu_ifunc_resolver_return_stop,
780 };
781
782 /* A placeholder for &elf_gnu_ifunc_fns. */
783
784 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
785
786 /* See minsyms.h. */
787
788 struct minimal_symbol *
789 lookup_minimal_symbol_and_objfile (const char *name,
790 struct objfile **objfile_p)
791 {
792 struct objfile *objfile;
793 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
794
795 ALL_OBJFILES (objfile)
796 {
797 struct minimal_symbol *msym;
798
799 for (msym = objfile->msymbol_hash[hash];
800 msym != NULL;
801 msym = msym->hash_next)
802 {
803 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
804 {
805 *objfile_p = objfile;
806 return msym;
807 }
808 }
809 }
810
811 return 0;
812 }
813 \f
814
815 /* Return leading symbol character for a BFD. If BFD is NULL,
816 return the leading symbol character from the main objfile. */
817
818 static int get_symbol_leading_char (bfd *);
819
820 static int
821 get_symbol_leading_char (bfd *abfd)
822 {
823 if (abfd != NULL)
824 return bfd_get_symbol_leading_char (abfd);
825 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
826 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
827 return 0;
828 }
829
830 /* See minsyms.h. */
831
832 void
833 init_minimal_symbol_collection (void)
834 {
835 msym_count = 0;
836 msym_bunch = NULL;
837 /* Note that presetting msym_bunch_index to BUNCH_SIZE causes the
838 first call to save a minimal symbol to allocate the memory for
839 the first bunch. */
840 msym_bunch_index = BUNCH_SIZE;
841 }
842
843 /* See minsyms.h. */
844
845 void
846 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
847 enum minimal_symbol_type ms_type,
848 struct objfile *objfile)
849 {
850 int section;
851
852 switch (ms_type)
853 {
854 case mst_text:
855 case mst_text_gnu_ifunc:
856 case mst_file_text:
857 case mst_solib_trampoline:
858 section = SECT_OFF_TEXT (objfile);
859 break;
860 case mst_data:
861 case mst_file_data:
862 section = SECT_OFF_DATA (objfile);
863 break;
864 case mst_bss:
865 case mst_file_bss:
866 section = SECT_OFF_BSS (objfile);
867 break;
868 default:
869 section = -1;
870 }
871
872 prim_record_minimal_symbol_and_info (name, address, ms_type,
873 section, NULL, objfile);
874 }
875
876 /* See minsyms.h. */
877
878 struct minimal_symbol *
879 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
880 CORE_ADDR address,
881 enum minimal_symbol_type ms_type,
882 int section,
883 asection *bfd_section,
884 struct objfile *objfile)
885 {
886 struct obj_section *obj_section;
887 struct msym_bunch *new;
888 struct minimal_symbol *msymbol;
889
890 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
891 the minimal symbols, because if there is also another symbol
892 at the same address (e.g. the first function of the file),
893 lookup_minimal_symbol_by_pc would have no way of getting the
894 right one. */
895 if (ms_type == mst_file_text && name[0] == 'g'
896 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
897 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
898 return (NULL);
899
900 /* It's safe to strip the leading char here once, since the name
901 is also stored stripped in the minimal symbol table. */
902 if (name[0] == get_symbol_leading_char (objfile->obfd))
903 {
904 ++name;
905 --name_len;
906 }
907
908 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
909 return (NULL);
910
911 if (msym_bunch_index == BUNCH_SIZE)
912 {
913 new = XCALLOC (1, struct msym_bunch);
914 msym_bunch_index = 0;
915 new->next = msym_bunch;
916 msym_bunch = new;
917 }
918 msymbol = &msym_bunch->contents[msym_bunch_index];
919 SYMBOL_SET_LANGUAGE (msymbol, language_auto);
920 SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
921
922 SYMBOL_VALUE_ADDRESS (msymbol) = address;
923 SYMBOL_SECTION (msymbol) = section;
924 SYMBOL_OBJ_SECTION (msymbol) = NULL;
925
926 /* Find obj_section corresponding to bfd_section. */
927 if (bfd_section)
928 ALL_OBJFILE_OSECTIONS (objfile, obj_section)
929 {
930 if (obj_section->the_bfd_section == bfd_section)
931 {
932 SYMBOL_OBJ_SECTION (msymbol) = obj_section;
933 break;
934 }
935 }
936
937 MSYMBOL_TYPE (msymbol) = ms_type;
938 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
939 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
940 MSYMBOL_SIZE (msymbol) = 0;
941
942 /* The hash pointers must be cleared! If they're not,
943 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
944 msymbol->hash_next = NULL;
945 msymbol->demangled_hash_next = NULL;
946
947 msym_bunch_index++;
948 msym_count++;
949 OBJSTAT (objfile, n_minsyms++);
950 return msymbol;
951 }
952
953 /* See minsyms.h. */
954
955 struct minimal_symbol *
956 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
957 enum minimal_symbol_type ms_type,
958 int section,
959 asection *bfd_section,
960 struct objfile *objfile)
961 {
962 return prim_record_minimal_symbol_full (name, strlen (name), 1,
963 address, ms_type, section,
964 bfd_section, objfile);
965 }
966
967 /* Compare two minimal symbols by address and return a signed result based
968 on unsigned comparisons, so that we sort into unsigned numeric order.
969 Within groups with the same address, sort by name. */
970
971 static int
972 compare_minimal_symbols (const void *fn1p, const void *fn2p)
973 {
974 const struct minimal_symbol *fn1;
975 const struct minimal_symbol *fn2;
976
977 fn1 = (const struct minimal_symbol *) fn1p;
978 fn2 = (const struct minimal_symbol *) fn2p;
979
980 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
981 {
982 return (-1); /* addr 1 is less than addr 2. */
983 }
984 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
985 {
986 return (1); /* addr 1 is greater than addr 2. */
987 }
988 else
989 /* addrs are equal: sort by name */
990 {
991 const char *name1 = SYMBOL_LINKAGE_NAME (fn1);
992 const char *name2 = SYMBOL_LINKAGE_NAME (fn2);
993
994 if (name1 && name2) /* both have names */
995 return strcmp (name1, name2);
996 else if (name2)
997 return 1; /* fn1 has no name, so it is "less". */
998 else if (name1) /* fn2 has no name, so it is "less". */
999 return -1;
1000 else
1001 return (0); /* Neither has a name, so they're equal. */
1002 }
1003 }
1004
1005 /* Discard the currently collected minimal symbols, if any. If we wish
1006 to save them for later use, we must have already copied them somewhere
1007 else before calling this function.
1008
1009 FIXME: We could allocate the minimal symbol bunches on their own
1010 obstack and then simply blow the obstack away when we are done with
1011 it. Is it worth the extra trouble though? */
1012
1013 static void
1014 do_discard_minimal_symbols_cleanup (void *arg)
1015 {
1016 struct msym_bunch *next;
1017
1018 while (msym_bunch != NULL)
1019 {
1020 next = msym_bunch->next;
1021 xfree (msym_bunch);
1022 msym_bunch = next;
1023 }
1024 }
1025
1026 /* See minsyms.h. */
1027
1028 struct cleanup *
1029 make_cleanup_discard_minimal_symbols (void)
1030 {
1031 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
1032 }
1033
1034
1035
1036 /* Compact duplicate entries out of a minimal symbol table by walking
1037 through the table and compacting out entries with duplicate addresses
1038 and matching names. Return the number of entries remaining.
1039
1040 On entry, the table resides between msymbol[0] and msymbol[mcount].
1041 On exit, it resides between msymbol[0] and msymbol[result_count].
1042
1043 When files contain multiple sources of symbol information, it is
1044 possible for the minimal symbol table to contain many duplicate entries.
1045 As an example, SVR4 systems use ELF formatted object files, which
1046 usually contain at least two different types of symbol tables (a
1047 standard ELF one and a smaller dynamic linking table), as well as
1048 DWARF debugging information for files compiled with -g.
1049
1050 Without compacting, the minimal symbol table for gdb itself contains
1051 over a 1000 duplicates, about a third of the total table size. Aside
1052 from the potential trap of not noticing that two successive entries
1053 identify the same location, this duplication impacts the time required
1054 to linearly scan the table, which is done in a number of places. So we
1055 just do one linear scan here and toss out the duplicates.
1056
1057 Note that we are not concerned here about recovering the space that
1058 is potentially freed up, because the strings themselves are allocated
1059 on the objfile_obstack, and will get automatically freed when the symbol
1060 table is freed. The caller can free up the unused minimal symbols at
1061 the end of the compacted region if their allocation strategy allows it.
1062
1063 Also note we only go up to the next to last entry within the loop
1064 and then copy the last entry explicitly after the loop terminates.
1065
1066 Since the different sources of information for each symbol may
1067 have different levels of "completeness", we may have duplicates
1068 that have one entry with type "mst_unknown" and the other with a
1069 known type. So if the one we are leaving alone has type mst_unknown,
1070 overwrite its type with the type from the one we are compacting out. */
1071
1072 static int
1073 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1074 struct objfile *objfile)
1075 {
1076 struct minimal_symbol *copyfrom;
1077 struct minimal_symbol *copyto;
1078
1079 if (mcount > 0)
1080 {
1081 copyfrom = copyto = msymbol;
1082 while (copyfrom < msymbol + mcount - 1)
1083 {
1084 if (SYMBOL_VALUE_ADDRESS (copyfrom)
1085 == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
1086 && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
1087 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1088 {
1089 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1090 {
1091 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1092 }
1093 copyfrom++;
1094 }
1095 else
1096 *copyto++ = *copyfrom++;
1097 }
1098 *copyto++ = *copyfrom++;
1099 mcount = copyto - msymbol;
1100 }
1101 return (mcount);
1102 }
1103
1104 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1105 after compacting or sorting the table since the entries move around
1106 thus causing the internal minimal_symbol pointers to become jumbled. */
1107
1108 static void
1109 build_minimal_symbol_hash_tables (struct objfile *objfile)
1110 {
1111 int i;
1112 struct minimal_symbol *msym;
1113
1114 /* Clear the hash tables. */
1115 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1116 {
1117 objfile->msymbol_hash[i] = 0;
1118 objfile->msymbol_demangled_hash[i] = 0;
1119 }
1120
1121 /* Now, (re)insert the actual entries. */
1122 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1123 i > 0;
1124 i--, msym++)
1125 {
1126 msym->hash_next = 0;
1127 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1128
1129 msym->demangled_hash_next = 0;
1130 if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
1131 add_minsym_to_demangled_hash_table (msym,
1132 objfile->msymbol_demangled_hash);
1133 }
1134 }
1135
1136 /* Add the minimal symbols in the existing bunches to the objfile's official
1137 minimal symbol table. In most cases there is no minimal symbol table yet
1138 for this objfile, and the existing bunches are used to create one. Once
1139 in a while (for shared libraries for example), we add symbols (e.g. common
1140 symbols) to an existing objfile.
1141
1142 Because of the way minimal symbols are collected, we generally have no way
1143 of knowing what source language applies to any particular minimal symbol.
1144 Specifically, we have no way of knowing if the minimal symbol comes from a
1145 C++ compilation unit or not. So for the sake of supporting cached
1146 demangled C++ names, we have no choice but to try and demangle each new one
1147 that comes in. If the demangling succeeds, then we assume it is a C++
1148 symbol and set the symbol's language and demangled name fields
1149 appropriately. Note that in order to avoid unnecessary demanglings, and
1150 allocating obstack space that subsequently can't be freed for the demangled
1151 names, we mark all newly added symbols with language_auto. After
1152 compaction of the minimal symbols, we go back and scan the entire minimal
1153 symbol table looking for these new symbols. For each new symbol we attempt
1154 to demangle it, and if successful, record it as a language_cplus symbol
1155 and cache the demangled form on the symbol obstack. Symbols which don't
1156 demangle are marked as language_unknown symbols, which inhibits future
1157 attempts to demangle them if we later add more minimal symbols. */
1158
1159 void
1160 install_minimal_symbols (struct objfile *objfile)
1161 {
1162 int bindex;
1163 int mcount;
1164 struct msym_bunch *bunch;
1165 struct minimal_symbol *msymbols;
1166 int alloc_count;
1167
1168 if (msym_count > 0)
1169 {
1170 /* Allocate enough space in the obstack, into which we will gather the
1171 bunches of new and existing minimal symbols, sort them, and then
1172 compact out the duplicate entries. Once we have a final table,
1173 we will give back the excess space. */
1174
1175 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1176 obstack_blank (&objfile->objfile_obstack,
1177 alloc_count * sizeof (struct minimal_symbol));
1178 msymbols = (struct minimal_symbol *)
1179 obstack_base (&objfile->objfile_obstack);
1180
1181 /* Copy in the existing minimal symbols, if there are any. */
1182
1183 if (objfile->minimal_symbol_count)
1184 memcpy ((char *) msymbols, (char *) objfile->msymbols,
1185 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1186
1187 /* Walk through the list of minimal symbol bunches, adding each symbol
1188 to the new contiguous array of symbols. Note that we start with the
1189 current, possibly partially filled bunch (thus we use the current
1190 msym_bunch_index for the first bunch we copy over), and thereafter
1191 each bunch is full. */
1192
1193 mcount = objfile->minimal_symbol_count;
1194
1195 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1196 {
1197 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1198 msymbols[mcount] = bunch->contents[bindex];
1199 msym_bunch_index = BUNCH_SIZE;
1200 }
1201
1202 /* Sort the minimal symbols by address. */
1203
1204 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1205 compare_minimal_symbols);
1206
1207 /* Compact out any duplicates, and free up whatever space we are
1208 no longer using. */
1209
1210 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1211
1212 obstack_blank (&objfile->objfile_obstack,
1213 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1214 msymbols = (struct minimal_symbol *)
1215 obstack_finish (&objfile->objfile_obstack);
1216
1217 /* We also terminate the minimal symbol table with a "null symbol",
1218 which is *not* included in the size of the table. This makes it
1219 easier to find the end of the table when we are handed a pointer
1220 to some symbol in the middle of it. Zero out the fields in the
1221 "null symbol" allocated at the end of the array. Note that the
1222 symbol count does *not* include this null symbol, which is why it
1223 is indexed by mcount and not mcount-1. */
1224
1225 SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
1226 SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
1227 MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
1228 MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
1229 MSYMBOL_SIZE (&msymbols[mcount]) = 0;
1230 MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
1231 SYMBOL_SET_LANGUAGE (&msymbols[mcount], language_unknown);
1232
1233 /* Attach the minimal symbol table to the specified objfile.
1234 The strings themselves are also located in the objfile_obstack
1235 of this objfile. */
1236
1237 objfile->minimal_symbol_count = mcount;
1238 objfile->msymbols = msymbols;
1239
1240 /* Try to guess the appropriate C++ ABI by looking at the names
1241 of the minimal symbols in the table. */
1242 {
1243 int i;
1244
1245 for (i = 0; i < mcount; i++)
1246 {
1247 /* If a symbol's name starts with _Z and was successfully
1248 demangled, then we can assume we've found a GNU v3 symbol.
1249 For now we set the C++ ABI globally; if the user is
1250 mixing ABIs then the user will need to "set cp-abi"
1251 manually. */
1252 const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1253
1254 if (name[0] == '_' && name[1] == 'Z'
1255 && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1256 {
1257 set_cp_abi_as_auto_default ("gnu-v3");
1258 break;
1259 }
1260 }
1261 }
1262
1263 /* Now build the hash tables; we can't do this incrementally
1264 at an earlier point since we weren't finished with the obstack
1265 yet. (And if the msymbol obstack gets moved, all the internal
1266 pointers to other msymbols need to be adjusted.) */
1267 build_minimal_symbol_hash_tables (objfile);
1268 }
1269 }
1270
1271 /* See minsyms.h. */
1272
1273 void
1274 terminate_minimal_symbol_table (struct objfile *objfile)
1275 {
1276 if (! objfile->msymbols)
1277 objfile->msymbols = ((struct minimal_symbol *)
1278 obstack_alloc (&objfile->objfile_obstack,
1279 sizeof (objfile->msymbols[0])));
1280
1281 {
1282 struct minimal_symbol *m
1283 = &objfile->msymbols[objfile->minimal_symbol_count];
1284
1285 memset (m, 0, sizeof (*m));
1286 /* Don't rely on these enumeration values being 0's. */
1287 MSYMBOL_TYPE (m) = mst_unknown;
1288 SYMBOL_SET_LANGUAGE (m, language_unknown);
1289 }
1290 }
1291
1292 /* Sort all the minimal symbols in OBJFILE. */
1293
1294 void
1295 msymbols_sort (struct objfile *objfile)
1296 {
1297 qsort (objfile->msymbols, objfile->minimal_symbol_count,
1298 sizeof (struct minimal_symbol), compare_minimal_symbols);
1299 build_minimal_symbol_hash_tables (objfile);
1300 }
1301
1302 /* See minsyms.h. */
1303
1304 struct minimal_symbol *
1305 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1306 {
1307 struct obj_section *section = find_pc_section (pc);
1308 struct minimal_symbol *msymbol;
1309
1310 if (section == NULL)
1311 return NULL;
1312 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1313
1314 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1315 return msymbol;
1316 return NULL;
1317 }
1318
1319 /* If PC is in a shared library trampoline code stub, return the
1320 address of the `real' function belonging to the stub.
1321 Return 0 if PC is not in a trampoline code stub or if the real
1322 function is not found in the minimal symbol table.
1323
1324 We may fail to find the right function if a function with the
1325 same name is defined in more than one shared library, but this
1326 is considered bad programming style. We could return 0 if we find
1327 a duplicate function in case this matters someday. */
1328
1329 CORE_ADDR
1330 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1331 {
1332 struct objfile *objfile;
1333 struct minimal_symbol *msymbol;
1334 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1335
1336 if (tsymbol != NULL)
1337 {
1338 ALL_MSYMBOLS (objfile, msymbol)
1339 {
1340 if ((MSYMBOL_TYPE (msymbol) == mst_text
1341 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1342 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1343 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1344 return SYMBOL_VALUE_ADDRESS (msymbol);
1345
1346 /* Also handle minimal symbols pointing to function descriptors. */
1347 if (MSYMBOL_TYPE (msymbol) == mst_data
1348 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1349 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1350 {
1351 CORE_ADDR func;
1352
1353 func = gdbarch_convert_from_func_ptr_addr
1354 (get_objfile_arch (objfile),
1355 SYMBOL_VALUE_ADDRESS (msymbol),
1356 &current_target);
1357
1358 /* Ignore data symbols that are not function descriptors. */
1359 if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1360 return func;
1361 }
1362 }
1363 }
1364 return 0;
1365 }
This page took 0.078929 seconds and 4 git commands to generate.