Fix stepping past GNU ifunc resolvers (introduce lookup_msym_prefer)
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2018 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "symbol.h"
54 #include <algorithm>
55 #include "safe-ctype.h"
56
57 /* See minsyms.h. */
58
59 bool
60 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
61 CORE_ADDR *func_address_p)
62 {
63 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
64
65 switch (minsym->type)
66 {
67 case mst_slot_got_plt:
68 case mst_data:
69 case mst_bss:
70 case mst_abs:
71 case mst_file_data:
72 case mst_file_bss:
73 {
74 struct gdbarch *gdbarch = get_objfile_arch (objfile);
75 CORE_ADDR pc = gdbarch_convert_from_func_ptr_addr (gdbarch, msym_addr,
76 &current_target);
77 if (pc != msym_addr)
78 {
79 if (func_address_p != NULL)
80 *func_address_p = pc;
81 return true;
82 }
83 return false;
84 }
85 default:
86 if (func_address_p != NULL)
87 *func_address_p = msym_addr;
88 return true;
89 }
90 }
91
92 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
93 At the end, copy them all into one newly allocated location on an objfile's
94 per-BFD storage obstack. */
95
96 #define BUNCH_SIZE 127
97
98 struct msym_bunch
99 {
100 struct msym_bunch *next;
101 struct minimal_symbol contents[BUNCH_SIZE];
102 };
103
104 /* See minsyms.h. */
105
106 unsigned int
107 msymbol_hash_iw (const char *string)
108 {
109 unsigned int hash = 0;
110
111 while (*string && *string != '(')
112 {
113 string = skip_spaces (string);
114 if (*string && *string != '(')
115 {
116 hash = SYMBOL_HASH_NEXT (hash, *string);
117 ++string;
118 }
119 }
120 return hash;
121 }
122
123 /* See minsyms.h. */
124
125 unsigned int
126 msymbol_hash (const char *string)
127 {
128 unsigned int hash = 0;
129
130 for (; *string; ++string)
131 hash = SYMBOL_HASH_NEXT (hash, *string);
132 return hash;
133 }
134
135 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
136 static void
137 add_minsym_to_hash_table (struct minimal_symbol *sym,
138 struct minimal_symbol **table)
139 {
140 if (sym->hash_next == NULL)
141 {
142 unsigned int hash
143 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
144
145 sym->hash_next = table[hash];
146 table[hash] = sym;
147 }
148 }
149
150 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
151 TABLE. */
152 static void
153 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
154 struct objfile *objfile)
155 {
156 if (sym->demangled_hash_next == NULL)
157 {
158 unsigned int hash = search_name_hash (MSYMBOL_LANGUAGE (sym),
159 MSYMBOL_SEARCH_NAME (sym));
160
161 auto &vec = objfile->per_bfd->demangled_hash_languages;
162 auto it = std::lower_bound (vec.begin (), vec.end (),
163 MSYMBOL_LANGUAGE (sym));
164 if (it == vec.end () || *it != MSYMBOL_LANGUAGE (sym))
165 vec.insert (it, MSYMBOL_LANGUAGE (sym));
166
167 struct minimal_symbol **table
168 = objfile->per_bfd->msymbol_demangled_hash;
169 unsigned int hash_index = hash % MINIMAL_SYMBOL_HASH_SIZE;
170 sym->demangled_hash_next = table[hash_index];
171 table[hash_index] = sym;
172 }
173 }
174
175 /* Worker object for lookup_minimal_symbol. Stores temporary results
176 while walking the symbol tables. */
177
178 struct found_minimal_symbols
179 {
180 /* External symbols are best. */
181 bound_minimal_symbol external_symbol {};
182
183 /* File-local symbols are next best. */
184 bound_minimal_symbol file_symbol {};
185
186 /* Symbols for shared library trampolines are next best. */
187 bound_minimal_symbol trampoline_symbol {};
188
189 /* Called when a symbol name matches. Check if the minsym is a
190 better type than what we had already found, and record it in one
191 of the members fields if so. Returns true if we collected the
192 real symbol, in which case we can stop searching. */
193 bool maybe_collect (const char *sfile, objfile *objf,
194 minimal_symbol *msymbol);
195 };
196
197 /* See declaration above. */
198
199 bool
200 found_minimal_symbols::maybe_collect (const char *sfile,
201 struct objfile *objfile,
202 minimal_symbol *msymbol)
203 {
204 switch (MSYMBOL_TYPE (msymbol))
205 {
206 case mst_file_text:
207 case mst_file_data:
208 case mst_file_bss:
209 if (sfile == NULL
210 || filename_cmp (msymbol->filename, sfile) == 0)
211 {
212 file_symbol.minsym = msymbol;
213 file_symbol.objfile = objfile;
214 }
215 break;
216
217 case mst_solib_trampoline:
218
219 /* If a trampoline symbol is found, we prefer to keep
220 looking for the *real* symbol. If the actual symbol
221 is not found, then we'll use the trampoline
222 entry. */
223 if (trampoline_symbol.minsym == NULL)
224 {
225 trampoline_symbol.minsym = msymbol;
226 trampoline_symbol.objfile = objfile;
227 }
228 break;
229
230 case mst_unknown:
231 default:
232 external_symbol.minsym = msymbol;
233 external_symbol.objfile = objfile;
234 /* We have the real symbol. No use looking further. */
235 return true;
236 }
237
238 /* Keep looking. */
239 return false;
240 }
241
242 /* Walk the mangled name hash table, and pass each symbol whose name
243 matches LOOKUP_NAME according to NAMECMP to FOUND. */
244
245 static void
246 lookup_minimal_symbol_mangled (const char *lookup_name,
247 const char *sfile,
248 struct objfile *objfile,
249 struct minimal_symbol **table,
250 unsigned int hash,
251 int (*namecmp) (const char *, const char *),
252 found_minimal_symbols &found)
253 {
254 for (minimal_symbol *msymbol = table[hash];
255 msymbol != NULL;
256 msymbol = msymbol->hash_next)
257 {
258 const char *symbol_name = MSYMBOL_LINKAGE_NAME (msymbol);
259
260 if (namecmp (symbol_name, lookup_name) == 0
261 && found.maybe_collect (sfile, objfile, msymbol))
262 return;
263 }
264 }
265
266 /* Walk the demangled name hash table, and pass each symbol whose name
267 matches LOOKUP_NAME according to MATCHER to FOUND. */
268
269 static void
270 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
271 const char *sfile,
272 struct objfile *objfile,
273 struct minimal_symbol **table,
274 unsigned int hash,
275 symbol_name_matcher_ftype *matcher,
276 found_minimal_symbols &found)
277 {
278 for (minimal_symbol *msymbol = table[hash];
279 msymbol != NULL;
280 msymbol = msymbol->demangled_hash_next)
281 {
282 const char *symbol_name = MSYMBOL_SEARCH_NAME (msymbol);
283
284 if (matcher (symbol_name, lookup_name, NULL)
285 && found.maybe_collect (sfile, objfile, msymbol))
286 return;
287 }
288 }
289
290 /* Look through all the current minimal symbol tables and find the
291 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
292 the search to that objfile. If SFILE is non-NULL, the only file-scope
293 symbols considered will be from that source file (global symbols are
294 still preferred). Returns a pointer to the minimal symbol that
295 matches, or NULL if no match is found.
296
297 Note: One instance where there may be duplicate minimal symbols with
298 the same name is when the symbol tables for a shared library and the
299 symbol tables for an executable contain global symbols with the same
300 names (the dynamic linker deals with the duplication).
301
302 It's also possible to have minimal symbols with different mangled
303 names, but identical demangled names. For example, the GNU C++ v3
304 ABI requires the generation of two (or perhaps three) copies of
305 constructor functions --- "in-charge", "not-in-charge", and
306 "allocate" copies; destructors may be duplicated as well.
307 Obviously, there must be distinct mangled names for each of these,
308 but the demangled names are all the same: S::S or S::~S. */
309
310 struct bound_minimal_symbol
311 lookup_minimal_symbol (const char *name, const char *sfile,
312 struct objfile *objf)
313 {
314 struct objfile *objfile;
315 found_minimal_symbols found;
316
317 unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
318
319 auto *mangled_cmp
320 = (case_sensitivity == case_sensitive_on
321 ? strcmp
322 : strcasecmp);
323
324 if (sfile != NULL)
325 sfile = lbasename (sfile);
326
327 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
328
329 for (objfile = object_files;
330 objfile != NULL && found.external_symbol.minsym == NULL;
331 objfile = objfile->next)
332 {
333 if (objf == NULL || objf == objfile
334 || objf == objfile->separate_debug_objfile_backlink)
335 {
336 if (symbol_lookup_debug)
337 {
338 fprintf_unfiltered (gdb_stdlog,
339 "lookup_minimal_symbol (%s, %s, %s)\n",
340 name, sfile != NULL ? sfile : "NULL",
341 objfile_debug_name (objfile));
342 }
343
344 /* Do two passes: the first over the ordinary hash table,
345 and the second over the demangled hash table. */
346 lookup_minimal_symbol_mangled (name, sfile, objfile,
347 objfile->per_bfd->msymbol_hash,
348 mangled_hash, mangled_cmp, found);
349
350 /* If not found, try the demangled hash table. */
351 if (found.external_symbol.minsym == NULL)
352 {
353 /* Once for each language in the demangled hash names
354 table (usually just zero or one languages). */
355 for (auto lang : objfile->per_bfd->demangled_hash_languages)
356 {
357 unsigned int hash
358 = (lookup_name.search_name_hash (lang)
359 % MINIMAL_SYMBOL_HASH_SIZE);
360
361 symbol_name_matcher_ftype *match
362 = get_symbol_name_matcher (language_def (lang),
363 lookup_name);
364 struct minimal_symbol **msymbol_demangled_hash
365 = objfile->per_bfd->msymbol_demangled_hash;
366
367 lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
368 msymbol_demangled_hash,
369 hash, match, found);
370
371 if (found.external_symbol.minsym != NULL)
372 break;
373 }
374 }
375 }
376 }
377
378 /* External symbols are best. */
379 if (found.external_symbol.minsym != NULL)
380 {
381 if (symbol_lookup_debug)
382 {
383 minimal_symbol *minsym = found.external_symbol.minsym;
384
385 fprintf_unfiltered (gdb_stdlog,
386 "lookup_minimal_symbol (...) = %s (external)\n",
387 host_address_to_string (minsym));
388 }
389 return found.external_symbol;
390 }
391
392 /* File-local symbols are next best. */
393 if (found.file_symbol.minsym != NULL)
394 {
395 if (symbol_lookup_debug)
396 {
397 minimal_symbol *minsym = found.file_symbol.minsym;
398
399 fprintf_unfiltered (gdb_stdlog,
400 "lookup_minimal_symbol (...) = %s (file-local)\n",
401 host_address_to_string (minsym));
402 }
403 return found.file_symbol;
404 }
405
406 /* Symbols for shared library trampolines are next best. */
407 if (found.trampoline_symbol.minsym != NULL)
408 {
409 if (symbol_lookup_debug)
410 {
411 minimal_symbol *minsym = found.trampoline_symbol.minsym;
412
413 fprintf_unfiltered (gdb_stdlog,
414 "lookup_minimal_symbol (...) = %s (trampoline)\n",
415 host_address_to_string (minsym));
416 }
417
418 return found.trampoline_symbol;
419 }
420
421 /* Not found. */
422 if (symbol_lookup_debug)
423 fprintf_unfiltered (gdb_stdlog, "lookup_minimal_symbol (...) = NULL\n");
424 return {};
425 }
426
427 /* See minsyms.h. */
428
429 struct bound_minimal_symbol
430 lookup_bound_minimal_symbol (const char *name)
431 {
432 return lookup_minimal_symbol (name, NULL, NULL);
433 }
434
435 /* See common/symbol.h. */
436
437 int
438 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
439 struct objfile *objfile)
440 {
441 struct bound_minimal_symbol sym
442 = lookup_minimal_symbol (name, NULL, objfile);
443
444 if (sym.minsym != NULL)
445 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
446
447 return sym.minsym == NULL;
448 }
449
450 /* Get the lookup name form best suitable for linkage name
451 matching. */
452
453 static const char *
454 linkage_name_str (const lookup_name_info &lookup_name)
455 {
456 /* Unlike most languages (including C++), Ada uses the
457 encoded/linkage name as the search name recorded in symbols. So
458 if debugging in Ada mode, prefer the Ada-encoded name. This also
459 makes Ada's verbatim match syntax ("<...>") work, because
460 "lookup_name.name()" includes the "<>"s, while
461 "lookup_name.ada().lookup_name()" is the encoded name with "<>"s
462 stripped. */
463 if (current_language->la_language == language_ada)
464 return lookup_name.ada ().lookup_name ().c_str ();
465
466 return lookup_name.name ().c_str ();
467 }
468
469 /* See minsyms.h. */
470
471 void
472 iterate_over_minimal_symbols
473 (struct objfile *objf, const lookup_name_info &lookup_name,
474 gdb::function_view<bool (struct minimal_symbol *)> callback)
475 {
476 /* The first pass is over the ordinary hash table. */
477 {
478 const char *name = linkage_name_str (lookup_name);
479 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
480 auto *mangled_cmp
481 = (case_sensitivity == case_sensitive_on
482 ? strcmp
483 : strcasecmp);
484
485 for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
486 iter != NULL;
487 iter = iter->hash_next)
488 {
489 if (mangled_cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
490 if (callback (iter))
491 return;
492 }
493 }
494
495 /* The second pass is over the demangled table. Once for each
496 language in the demangled hash names table (usually just zero or
497 one). */
498 for (auto lang : objf->per_bfd->demangled_hash_languages)
499 {
500 const language_defn *lang_def = language_def (lang);
501 symbol_name_matcher_ftype *name_match
502 = get_symbol_name_matcher (lang_def, lookup_name);
503
504 unsigned int hash
505 = lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
506 for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
507 iter != NULL;
508 iter = iter->demangled_hash_next)
509 if (name_match (MSYMBOL_SEARCH_NAME (iter), lookup_name, NULL))
510 if (callback (iter))
511 return;
512 }
513 }
514
515 /* See minsyms.h. */
516
517 struct bound_minimal_symbol
518 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
519 {
520 struct objfile *objfile;
521 struct minimal_symbol *msymbol;
522 struct bound_minimal_symbol found_symbol = { NULL, NULL };
523 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
524
525 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
526
527 for (objfile = object_files;
528 objfile != NULL && found_symbol.minsym == NULL;
529 objfile = objfile->next)
530 {
531 if (objf == NULL || objf == objfile
532 || objf == objfile->separate_debug_objfile_backlink)
533 {
534 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
535 msymbol != NULL && found_symbol.minsym == NULL;
536 msymbol = msymbol->hash_next)
537 {
538 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
539 (MSYMBOL_TYPE (msymbol) == mst_text
540 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
541 || MSYMBOL_TYPE (msymbol) == mst_file_text))
542 {
543 switch (MSYMBOL_TYPE (msymbol))
544 {
545 case mst_file_text:
546 found_file_symbol.minsym = msymbol;
547 found_file_symbol.objfile = objfile;
548 break;
549 default:
550 found_symbol.minsym = msymbol;
551 found_symbol.objfile = objfile;
552 break;
553 }
554 }
555 }
556 }
557 }
558 /* External symbols are best. */
559 if (found_symbol.minsym)
560 return found_symbol;
561
562 /* File-local symbols are next best. */
563 return found_file_symbol;
564 }
565
566 /* See minsyms.h. */
567
568 struct minimal_symbol *
569 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
570 struct objfile *objf)
571 {
572 struct objfile *objfile;
573 struct minimal_symbol *msymbol;
574
575 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
576
577 for (objfile = object_files;
578 objfile != NULL;
579 objfile = objfile->next)
580 {
581 if (objf == NULL || objf == objfile
582 || objf == objfile->separate_debug_objfile_backlink)
583 {
584 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
585 msymbol != NULL;
586 msymbol = msymbol->hash_next)
587 {
588 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
589 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
590 return msymbol;
591 }
592 }
593 }
594
595 return NULL;
596 }
597
598 /* See minsyms.h. */
599
600 struct bound_minimal_symbol
601 lookup_minimal_symbol_solib_trampoline (const char *name,
602 struct objfile *objf)
603 {
604 struct objfile *objfile;
605 struct minimal_symbol *msymbol;
606 struct bound_minimal_symbol found_symbol = { NULL, NULL };
607
608 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
609
610 for (objfile = object_files;
611 objfile != NULL;
612 objfile = objfile->next)
613 {
614 if (objf == NULL || objf == objfile
615 || objf == objfile->separate_debug_objfile_backlink)
616 {
617 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
618 msymbol != NULL;
619 msymbol = msymbol->hash_next)
620 {
621 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
622 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
623 {
624 found_symbol.objfile = objfile;
625 found_symbol.minsym = msymbol;
626 return found_symbol;
627 }
628 }
629 }
630 }
631
632 return found_symbol;
633 }
634
635 /* A helper function that makes *PC section-relative. This searches
636 the sections of OBJFILE and if *PC is in a section, it subtracts
637 the section offset and returns true. Otherwise it returns
638 false. */
639
640 static int
641 frob_address (struct objfile *objfile, CORE_ADDR *pc)
642 {
643 struct obj_section *iter;
644
645 ALL_OBJFILE_OSECTIONS (objfile, iter)
646 {
647 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
648 {
649 *pc -= obj_section_offset (iter);
650 return 1;
651 }
652 }
653
654 return 0;
655 }
656
657 /* Search through the minimal symbol table for each objfile and find
658 the symbol whose address is the largest address that is still less
659 than or equal to PC, and matches SECTION (which is not NULL).
660 Returns a pointer to the minimal symbol if such a symbol is found,
661 or NULL if PC is not in a suitable range.
662 Note that we need to look through ALL the minimal symbol tables
663 before deciding on the symbol that comes closest to the specified PC.
664 This is because objfiles can overlap, for example objfile A has .text
665 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
666 .data at 0x40048.
667
668 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
669 there are text and trampoline symbols at the same address.
670 Otherwise prefer mst_text symbols. */
671
672 bound_minimal_symbol
673 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc_in, struct obj_section *section,
674 lookup_msym_prefer prefer)
675 {
676 int lo;
677 int hi;
678 int newobj;
679 struct objfile *objfile;
680 struct minimal_symbol *msymbol;
681 struct minimal_symbol *best_symbol = NULL;
682 struct objfile *best_objfile = NULL;
683 struct bound_minimal_symbol result;
684 enum minimal_symbol_type want_type;
685
686 if (section == NULL)
687 {
688 section = find_pc_section (pc_in);
689 if (section == NULL)
690 return {};
691 }
692
693 switch (prefer)
694 {
695 case lookup_msym_prefer::TEXT:
696 want_type = mst_text;
697 break;
698 case lookup_msym_prefer::TRAMPOLINE:
699 want_type = mst_solib_trampoline;
700 break;
701 case lookup_msym_prefer::GNU_IFUNC:
702 want_type = mst_text_gnu_ifunc;
703 break;
704 }
705
706 /* We can not require the symbol found to be in section, because
707 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
708 symbol - but find_pc_section won't return an absolute section and
709 hence the code below would skip over absolute symbols. We can
710 still take advantage of the call to find_pc_section, though - the
711 object file still must match. In case we have separate debug
712 files, search both the file and its separate debug file. There's
713 no telling which one will have the minimal symbols. */
714
715 gdb_assert (section != NULL);
716
717 for (objfile = section->objfile;
718 objfile != NULL;
719 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
720 {
721 CORE_ADDR pc = pc_in;
722
723 /* If this objfile has a minimal symbol table, go search it using
724 a binary search. Note that a minimal symbol table always consists
725 of at least two symbols, a "real" symbol and the terminating
726 "null symbol". If there are no real symbols, then there is no
727 minimal symbol table at all. */
728
729 if (objfile->per_bfd->minimal_symbol_count > 0)
730 {
731 int best_zero_sized = -1;
732
733 msymbol = objfile->per_bfd->msymbols;
734 lo = 0;
735 hi = objfile->per_bfd->minimal_symbol_count - 1;
736
737 /* This code assumes that the minimal symbols are sorted by
738 ascending address values. If the pc value is greater than or
739 equal to the first symbol's address, then some symbol in this
740 minimal symbol table is a suitable candidate for being the
741 "best" symbol. This includes the last real symbol, for cases
742 where the pc value is larger than any address in this vector.
743
744 By iterating until the address associated with the current
745 hi index (the endpoint of the test interval) is less than
746 or equal to the desired pc value, we accomplish two things:
747 (1) the case where the pc value is larger than any minimal
748 symbol address is trivially solved, (2) the address associated
749 with the hi index is always the one we want when the interation
750 terminates. In essence, we are iterating the test interval
751 down until the pc value is pushed out of it from the high end.
752
753 Warning: this code is trickier than it would appear at first. */
754
755 if (frob_address (objfile, &pc)
756 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
757 {
758 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
759 {
760 /* pc is still strictly less than highest address. */
761 /* Note "new" will always be >= lo. */
762 newobj = (lo + hi) / 2;
763 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
764 || (lo == newobj))
765 {
766 hi = newobj;
767 }
768 else
769 {
770 lo = newobj;
771 }
772 }
773
774 /* If we have multiple symbols at the same address, we want
775 hi to point to the last one. That way we can find the
776 right symbol if it has an index greater than hi. */
777 while (hi < objfile->per_bfd->minimal_symbol_count - 1
778 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
779 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
780 hi++;
781
782 /* Skip various undesirable symbols. */
783 while (hi >= 0)
784 {
785 /* Skip any absolute symbols. This is apparently
786 what adb and dbx do, and is needed for the CM-5.
787 There are two known possible problems: (1) on
788 ELF, apparently end, edata, etc. are absolute.
789 Not sure ignoring them here is a big deal, but if
790 we want to use them, the fix would go in
791 elfread.c. (2) I think shared library entry
792 points on the NeXT are absolute. If we want
793 special handling for this it probably should be
794 triggered by a special mst_abs_or_lib or some
795 such. */
796
797 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
798 {
799 hi--;
800 continue;
801 }
802
803 /* If SECTION was specified, skip any symbol from
804 wrong section. */
805 if (section
806 /* Some types of debug info, such as COFF,
807 don't fill the bfd_section member, so don't
808 throw away symbols on those platforms. */
809 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
810 && (!matching_obj_sections
811 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
812 section)))
813 {
814 hi--;
815 continue;
816 }
817
818 /* If we are looking for a trampoline and this is a
819 text symbol, or the other way around, check the
820 preceding symbol too. If they are otherwise
821 identical prefer that one. */
822 if (hi > 0
823 && MSYMBOL_TYPE (&msymbol[hi]) != want_type
824 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
825 && (MSYMBOL_SIZE (&msymbol[hi])
826 == MSYMBOL_SIZE (&msymbol[hi - 1]))
827 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
828 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
829 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
830 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
831 {
832 hi--;
833 continue;
834 }
835
836 /* If the minimal symbol has a zero size, save it
837 but keep scanning backwards looking for one with
838 a non-zero size. A zero size may mean that the
839 symbol isn't an object or function (e.g. a
840 label), or it may just mean that the size was not
841 specified. */
842 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
843 {
844 if (best_zero_sized == -1)
845 best_zero_sized = hi;
846 hi--;
847 continue;
848 }
849
850 /* If we are past the end of the current symbol, try
851 the previous symbol if it has a larger overlapping
852 size. This happens on i686-pc-linux-gnu with glibc;
853 the nocancel variants of system calls are inside
854 the cancellable variants, but both have sizes. */
855 if (hi > 0
856 && MSYMBOL_SIZE (&msymbol[hi]) != 0
857 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
858 + MSYMBOL_SIZE (&msymbol[hi]))
859 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
860 + MSYMBOL_SIZE (&msymbol[hi - 1])))
861 {
862 hi--;
863 continue;
864 }
865
866 /* Otherwise, this symbol must be as good as we're going
867 to get. */
868 break;
869 }
870
871 /* If HI has a zero size, and best_zero_sized is set,
872 then we had two or more zero-sized symbols; prefer
873 the first one we found (which may have a higher
874 address). Also, if we ran off the end, be sure
875 to back up. */
876 if (best_zero_sized != -1
877 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
878 hi = best_zero_sized;
879
880 /* If the minimal symbol has a non-zero size, and this
881 PC appears to be outside the symbol's contents, then
882 refuse to use this symbol. If we found a zero-sized
883 symbol with an address greater than this symbol's,
884 use that instead. We assume that if symbols have
885 specified sizes, they do not overlap. */
886
887 if (hi >= 0
888 && MSYMBOL_SIZE (&msymbol[hi]) != 0
889 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
890 + MSYMBOL_SIZE (&msymbol[hi])))
891 {
892 if (best_zero_sized != -1)
893 hi = best_zero_sized;
894 else
895 /* Go on to the next object file. */
896 continue;
897 }
898
899 /* The minimal symbol indexed by hi now is the best one in this
900 objfile's minimal symbol table. See if it is the best one
901 overall. */
902
903 if (hi >= 0
904 && ((best_symbol == NULL) ||
905 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
906 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
907 {
908 best_symbol = &msymbol[hi];
909 best_objfile = objfile;
910 }
911 }
912 }
913 }
914
915 result.minsym = best_symbol;
916 result.objfile = best_objfile;
917 return result;
918 }
919
920 /* See minsyms.h. */
921
922 struct bound_minimal_symbol
923 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
924 {
925 return lookup_minimal_symbol_by_pc_section (pc, NULL);
926 }
927
928 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
929
930 int
931 in_gnu_ifunc_stub (CORE_ADDR pc)
932 {
933 bound_minimal_symbol msymbol
934 = lookup_minimal_symbol_by_pc_section (pc, NULL,
935 lookup_msym_prefer::GNU_IFUNC);
936 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
937 }
938
939 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
940
941 static CORE_ADDR
942 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
943 {
944 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
945 "the ELF support compiled in."),
946 paddress (gdbarch, pc));
947 }
948
949 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
950
951 static int
952 stub_gnu_ifunc_resolve_name (const char *function_name,
953 CORE_ADDR *function_address_p)
954 {
955 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
956 "the ELF support compiled in."),
957 function_name);
958 }
959
960 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
961
962 static void
963 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
964 {
965 internal_error (__FILE__, __LINE__,
966 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
967 }
968
969 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
970
971 static void
972 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
973 {
974 internal_error (__FILE__, __LINE__,
975 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
976 }
977
978 /* See elf_gnu_ifunc_fns for its real implementation. */
979
980 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
981 {
982 stub_gnu_ifunc_resolve_addr,
983 stub_gnu_ifunc_resolve_name,
984 stub_gnu_ifunc_resolver_stop,
985 stub_gnu_ifunc_resolver_return_stop,
986 };
987
988 /* A placeholder for &elf_gnu_ifunc_fns. */
989
990 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
991
992 /* See minsyms.h. */
993
994 struct bound_minimal_symbol
995 lookup_minimal_symbol_and_objfile (const char *name)
996 {
997 struct bound_minimal_symbol result;
998 struct objfile *objfile;
999
1000 ALL_OBJFILES (objfile)
1001 {
1002 result = lookup_minimal_symbol (name, NULL, objfile);
1003 if (result.minsym != NULL)
1004 return result;
1005 }
1006
1007 memset (&result, 0, sizeof (result));
1008 return result;
1009 }
1010 \f
1011
1012 /* Return leading symbol character for a BFD. If BFD is NULL,
1013 return the leading symbol character from the main objfile. */
1014
1015 static int
1016 get_symbol_leading_char (bfd *abfd)
1017 {
1018 if (abfd != NULL)
1019 return bfd_get_symbol_leading_char (abfd);
1020 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
1021 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
1022 return 0;
1023 }
1024
1025 /* See minsyms.h. */
1026
1027 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
1028 : m_objfile (obj),
1029 m_msym_bunch (NULL),
1030 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
1031 first call to save a minimal symbol to allocate the memory for
1032 the first bunch. */
1033 m_msym_bunch_index (BUNCH_SIZE),
1034 m_msym_count (0)
1035 {
1036 }
1037
1038 /* Discard the currently collected minimal symbols, if any. If we wish
1039 to save them for later use, we must have already copied them somewhere
1040 else before calling this function.
1041
1042 FIXME: We could allocate the minimal symbol bunches on their own
1043 obstack and then simply blow the obstack away when we are done with
1044 it. Is it worth the extra trouble though? */
1045
1046 minimal_symbol_reader::~minimal_symbol_reader ()
1047 {
1048 struct msym_bunch *next;
1049
1050 while (m_msym_bunch != NULL)
1051 {
1052 next = m_msym_bunch->next;
1053 xfree (m_msym_bunch);
1054 m_msym_bunch = next;
1055 }
1056 }
1057
1058 /* See minsyms.h. */
1059
1060 void
1061 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1062 enum minimal_symbol_type ms_type)
1063 {
1064 int section;
1065
1066 switch (ms_type)
1067 {
1068 case mst_text:
1069 case mst_text_gnu_ifunc:
1070 case mst_file_text:
1071 case mst_solib_trampoline:
1072 section = SECT_OFF_TEXT (m_objfile);
1073 break;
1074 case mst_data:
1075 case mst_file_data:
1076 section = SECT_OFF_DATA (m_objfile);
1077 break;
1078 case mst_bss:
1079 case mst_file_bss:
1080 section = SECT_OFF_BSS (m_objfile);
1081 break;
1082 default:
1083 section = -1;
1084 }
1085
1086 record_with_info (name, address, ms_type, section);
1087 }
1088
1089 /* See minsyms.h. */
1090
1091 struct minimal_symbol *
1092 minimal_symbol_reader::record_full (const char *name, int name_len,
1093 bool copy_name, CORE_ADDR address,
1094 enum minimal_symbol_type ms_type,
1095 int section)
1096 {
1097 struct msym_bunch *newobj;
1098 struct minimal_symbol *msymbol;
1099
1100 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1101 the minimal symbols, because if there is also another symbol
1102 at the same address (e.g. the first function of the file),
1103 lookup_minimal_symbol_by_pc would have no way of getting the
1104 right one. */
1105 if (ms_type == mst_file_text && name[0] == 'g'
1106 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
1107 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
1108 return (NULL);
1109
1110 /* It's safe to strip the leading char here once, since the name
1111 is also stored stripped in the minimal symbol table. */
1112 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1113 {
1114 ++name;
1115 --name_len;
1116 }
1117
1118 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1119 return (NULL);
1120
1121 if (m_msym_bunch_index == BUNCH_SIZE)
1122 {
1123 newobj = XCNEW (struct msym_bunch);
1124 m_msym_bunch_index = 0;
1125 newobj->next = m_msym_bunch;
1126 m_msym_bunch = newobj;
1127 }
1128 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1129 MSYMBOL_SET_LANGUAGE (msymbol, language_auto,
1130 &m_objfile->per_bfd->storage_obstack);
1131 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, m_objfile);
1132
1133 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1134 MSYMBOL_SECTION (msymbol) = section;
1135
1136 MSYMBOL_TYPE (msymbol) = ms_type;
1137 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
1138 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
1139 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
1140 as it would also set the has_size flag. */
1141 msymbol->size = 0;
1142
1143 /* The hash pointers must be cleared! If they're not,
1144 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
1145 msymbol->hash_next = NULL;
1146 msymbol->demangled_hash_next = NULL;
1147
1148 /* If we already read minimal symbols for this objfile, then don't
1149 ever allocate a new one. */
1150 if (!m_objfile->per_bfd->minsyms_read)
1151 {
1152 m_msym_bunch_index++;
1153 m_objfile->per_bfd->n_minsyms++;
1154 }
1155 m_msym_count++;
1156 return msymbol;
1157 }
1158
1159 /* Compare two minimal symbols by address and return a signed result based
1160 on unsigned comparisons, so that we sort into unsigned numeric order.
1161 Within groups with the same address, sort by name. */
1162
1163 static int
1164 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1165 {
1166 const struct minimal_symbol *fn1;
1167 const struct minimal_symbol *fn2;
1168
1169 fn1 = (const struct minimal_symbol *) fn1p;
1170 fn2 = (const struct minimal_symbol *) fn2p;
1171
1172 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1173 {
1174 return (-1); /* addr 1 is less than addr 2. */
1175 }
1176 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1177 {
1178 return (1); /* addr 1 is greater than addr 2. */
1179 }
1180 else
1181 /* addrs are equal: sort by name */
1182 {
1183 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1184 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1185
1186 if (name1 && name2) /* both have names */
1187 return strcmp (name1, name2);
1188 else if (name2)
1189 return 1; /* fn1 has no name, so it is "less". */
1190 else if (name1) /* fn2 has no name, so it is "less". */
1191 return -1;
1192 else
1193 return (0); /* Neither has a name, so they're equal. */
1194 }
1195 }
1196
1197 /* Compact duplicate entries out of a minimal symbol table by walking
1198 through the table and compacting out entries with duplicate addresses
1199 and matching names. Return the number of entries remaining.
1200
1201 On entry, the table resides between msymbol[0] and msymbol[mcount].
1202 On exit, it resides between msymbol[0] and msymbol[result_count].
1203
1204 When files contain multiple sources of symbol information, it is
1205 possible for the minimal symbol table to contain many duplicate entries.
1206 As an example, SVR4 systems use ELF formatted object files, which
1207 usually contain at least two different types of symbol tables (a
1208 standard ELF one and a smaller dynamic linking table), as well as
1209 DWARF debugging information for files compiled with -g.
1210
1211 Without compacting, the minimal symbol table for gdb itself contains
1212 over a 1000 duplicates, about a third of the total table size. Aside
1213 from the potential trap of not noticing that two successive entries
1214 identify the same location, this duplication impacts the time required
1215 to linearly scan the table, which is done in a number of places. So we
1216 just do one linear scan here and toss out the duplicates.
1217
1218 Note that we are not concerned here about recovering the space that
1219 is potentially freed up, because the strings themselves are allocated
1220 on the storage_obstack, and will get automatically freed when the symbol
1221 table is freed. The caller can free up the unused minimal symbols at
1222 the end of the compacted region if their allocation strategy allows it.
1223
1224 Also note we only go up to the next to last entry within the loop
1225 and then copy the last entry explicitly after the loop terminates.
1226
1227 Since the different sources of information for each symbol may
1228 have different levels of "completeness", we may have duplicates
1229 that have one entry with type "mst_unknown" and the other with a
1230 known type. So if the one we are leaving alone has type mst_unknown,
1231 overwrite its type with the type from the one we are compacting out. */
1232
1233 static int
1234 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1235 struct objfile *objfile)
1236 {
1237 struct minimal_symbol *copyfrom;
1238 struct minimal_symbol *copyto;
1239
1240 if (mcount > 0)
1241 {
1242 copyfrom = copyto = msymbol;
1243 while (copyfrom < msymbol + mcount - 1)
1244 {
1245 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1246 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1247 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1248 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1249 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1250 {
1251 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1252 {
1253 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1254 }
1255 copyfrom++;
1256 }
1257 else
1258 *copyto++ = *copyfrom++;
1259 }
1260 *copyto++ = *copyfrom++;
1261 mcount = copyto - msymbol;
1262 }
1263 return (mcount);
1264 }
1265
1266 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1267 after compacting or sorting the table since the entries move around
1268 thus causing the internal minimal_symbol pointers to become jumbled. */
1269
1270 static void
1271 build_minimal_symbol_hash_tables (struct objfile *objfile)
1272 {
1273 int i;
1274 struct minimal_symbol *msym;
1275
1276 /* Clear the hash tables. */
1277 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1278 {
1279 objfile->per_bfd->msymbol_hash[i] = 0;
1280 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1281 }
1282
1283 /* Now, (re)insert the actual entries. */
1284 for ((i = objfile->per_bfd->minimal_symbol_count,
1285 msym = objfile->per_bfd->msymbols);
1286 i > 0;
1287 i--, msym++)
1288 {
1289 msym->hash_next = 0;
1290 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1291
1292 msym->demangled_hash_next = 0;
1293 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1294 add_minsym_to_demangled_hash_table (msym, objfile);
1295 }
1296 }
1297
1298 /* Add the minimal symbols in the existing bunches to the objfile's official
1299 minimal symbol table. In most cases there is no minimal symbol table yet
1300 for this objfile, and the existing bunches are used to create one. Once
1301 in a while (for shared libraries for example), we add symbols (e.g. common
1302 symbols) to an existing objfile.
1303
1304 Because of the way minimal symbols are collected, we generally have no way
1305 of knowing what source language applies to any particular minimal symbol.
1306 Specifically, we have no way of knowing if the minimal symbol comes from a
1307 C++ compilation unit or not. So for the sake of supporting cached
1308 demangled C++ names, we have no choice but to try and demangle each new one
1309 that comes in. If the demangling succeeds, then we assume it is a C++
1310 symbol and set the symbol's language and demangled name fields
1311 appropriately. Note that in order to avoid unnecessary demanglings, and
1312 allocating obstack space that subsequently can't be freed for the demangled
1313 names, we mark all newly added symbols with language_auto. After
1314 compaction of the minimal symbols, we go back and scan the entire minimal
1315 symbol table looking for these new symbols. For each new symbol we attempt
1316 to demangle it, and if successful, record it as a language_cplus symbol
1317 and cache the demangled form on the symbol obstack. Symbols which don't
1318 demangle are marked as language_unknown symbols, which inhibits future
1319 attempts to demangle them if we later add more minimal symbols. */
1320
1321 void
1322 minimal_symbol_reader::install ()
1323 {
1324 int bindex;
1325 int mcount;
1326 struct msym_bunch *bunch;
1327 struct minimal_symbol *msymbols;
1328 int alloc_count;
1329
1330 if (m_objfile->per_bfd->minsyms_read)
1331 return;
1332
1333 if (m_msym_count > 0)
1334 {
1335 if (symtab_create_debug)
1336 {
1337 fprintf_unfiltered (gdb_stdlog,
1338 "Installing %d minimal symbols of objfile %s.\n",
1339 m_msym_count, objfile_name (m_objfile));
1340 }
1341
1342 /* Allocate enough space in the obstack, into which we will gather the
1343 bunches of new and existing minimal symbols, sort them, and then
1344 compact out the duplicate entries. Once we have a final table,
1345 we will give back the excess space. */
1346
1347 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count + 1;
1348 obstack_blank (&m_objfile->per_bfd->storage_obstack,
1349 alloc_count * sizeof (struct minimal_symbol));
1350 msymbols = (struct minimal_symbol *)
1351 obstack_base (&m_objfile->per_bfd->storage_obstack);
1352
1353 /* Copy in the existing minimal symbols, if there are any. */
1354
1355 if (m_objfile->per_bfd->minimal_symbol_count)
1356 memcpy ((char *) msymbols, (char *) m_objfile->per_bfd->msymbols,
1357 m_objfile->per_bfd->minimal_symbol_count * sizeof (struct minimal_symbol));
1358
1359 /* Walk through the list of minimal symbol bunches, adding each symbol
1360 to the new contiguous array of symbols. Note that we start with the
1361 current, possibly partially filled bunch (thus we use the current
1362 msym_bunch_index for the first bunch we copy over), and thereafter
1363 each bunch is full. */
1364
1365 mcount = m_objfile->per_bfd->minimal_symbol_count;
1366
1367 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1368 {
1369 for (bindex = 0; bindex < m_msym_bunch_index; bindex++, mcount++)
1370 msymbols[mcount] = bunch->contents[bindex];
1371 m_msym_bunch_index = BUNCH_SIZE;
1372 }
1373
1374 /* Sort the minimal symbols by address. */
1375
1376 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1377 compare_minimal_symbols);
1378
1379 /* Compact out any duplicates, and free up whatever space we are
1380 no longer using. */
1381
1382 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1383
1384 obstack_blank_fast (&m_objfile->per_bfd->storage_obstack,
1385 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1386 msymbols = (struct minimal_symbol *)
1387 obstack_finish (&m_objfile->per_bfd->storage_obstack);
1388
1389 /* We also terminate the minimal symbol table with a "null symbol",
1390 which is *not* included in the size of the table. This makes it
1391 easier to find the end of the table when we are handed a pointer
1392 to some symbol in the middle of it. Zero out the fields in the
1393 "null symbol" allocated at the end of the array. Note that the
1394 symbol count does *not* include this null symbol, which is why it
1395 is indexed by mcount and not mcount-1. */
1396
1397 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1398
1399 /* Attach the minimal symbol table to the specified objfile.
1400 The strings themselves are also located in the storage_obstack
1401 of this objfile. */
1402
1403 m_objfile->per_bfd->minimal_symbol_count = mcount;
1404 m_objfile->per_bfd->msymbols = msymbols;
1405
1406 /* Now build the hash tables; we can't do this incrementally
1407 at an earlier point since we weren't finished with the obstack
1408 yet. (And if the msymbol obstack gets moved, all the internal
1409 pointers to other msymbols need to be adjusted.) */
1410 build_minimal_symbol_hash_tables (m_objfile);
1411 }
1412 }
1413
1414 /* See minsyms.h. */
1415
1416 void
1417 terminate_minimal_symbol_table (struct objfile *objfile)
1418 {
1419 if (! objfile->per_bfd->msymbols)
1420 objfile->per_bfd->msymbols
1421 = ((struct minimal_symbol *)
1422 obstack_alloc (&objfile->per_bfd->storage_obstack,
1423 sizeof (struct minimal_symbol)));
1424
1425 {
1426 struct minimal_symbol *m
1427 = &objfile->per_bfd->msymbols[objfile->per_bfd->minimal_symbol_count];
1428
1429 memset (m, 0, sizeof (*m));
1430 /* Don't rely on these enumeration values being 0's. */
1431 MSYMBOL_TYPE (m) = mst_unknown;
1432 MSYMBOL_SET_LANGUAGE (m, language_unknown,
1433 &objfile->per_bfd->storage_obstack);
1434 }
1435 }
1436
1437 /* Check if PC is in a shared library trampoline code stub.
1438 Return minimal symbol for the trampoline entry or NULL if PC is not
1439 in a trampoline code stub. */
1440
1441 static struct minimal_symbol *
1442 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1443 {
1444 bound_minimal_symbol msymbol
1445 = lookup_minimal_symbol_by_pc_section (pc, NULL,
1446 lookup_msym_prefer::TRAMPOLINE);
1447
1448 if (msymbol.minsym != NULL
1449 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1450 return msymbol.minsym;
1451 return NULL;
1452 }
1453
1454 /* If PC is in a shared library trampoline code stub, return the
1455 address of the `real' function belonging to the stub.
1456 Return 0 if PC is not in a trampoline code stub or if the real
1457 function is not found in the minimal symbol table.
1458
1459 We may fail to find the right function if a function with the
1460 same name is defined in more than one shared library, but this
1461 is considered bad programming style. We could return 0 if we find
1462 a duplicate function in case this matters someday. */
1463
1464 CORE_ADDR
1465 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1466 {
1467 struct objfile *objfile;
1468 struct minimal_symbol *msymbol;
1469 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1470
1471 if (tsymbol != NULL)
1472 {
1473 ALL_MSYMBOLS (objfile, msymbol)
1474 {
1475 if ((MSYMBOL_TYPE (msymbol) == mst_text
1476 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1477 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1478 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1479 return MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1480
1481 /* Also handle minimal symbols pointing to function descriptors. */
1482 if (MSYMBOL_TYPE (msymbol) == mst_data
1483 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1484 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1485 {
1486 CORE_ADDR func;
1487
1488 func = gdbarch_convert_from_func_ptr_addr
1489 (get_objfile_arch (objfile),
1490 MSYMBOL_VALUE_ADDRESS (objfile, msymbol),
1491 &current_target);
1492
1493 /* Ignore data symbols that are not function descriptors. */
1494 if (func != MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
1495 return func;
1496 }
1497 }
1498 }
1499 return 0;
1500 }
1501
1502 /* See minsyms.h. */
1503
1504 CORE_ADDR
1505 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1506 {
1507 int i;
1508 short section;
1509 struct obj_section *obj_section;
1510 CORE_ADDR result;
1511 struct minimal_symbol *msymbol;
1512
1513 gdb_assert (minsym.minsym != NULL);
1514
1515 /* If the minimal symbol has a size, use it. Otherwise use the
1516 lesser of the next minimal symbol in the same section, or the end
1517 of the section, as the end of the function. */
1518
1519 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1520 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1521
1522 /* Step over other symbols at this same address, and symbols in
1523 other sections, to find the next symbol in this section with a
1524 different address. */
1525
1526 msymbol = minsym.minsym;
1527 section = MSYMBOL_SECTION (msymbol);
1528 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1529 {
1530 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1531 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1532 && MSYMBOL_SECTION (msymbol + i) == section)
1533 break;
1534 }
1535
1536 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1537 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1538 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1539 < obj_section_endaddr (obj_section)))
1540 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1541 else
1542 /* We got the start address from the last msymbol in the objfile.
1543 So the end address is the end of the section. */
1544 result = obj_section_endaddr (obj_section);
1545
1546 return result;
1547 }
This page took 0.077194 seconds and 5 git commands to generate.