add short-circuit logic to elfread.c
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include <string.h>
42 #include "symtab.h"
43 #include "bfd.h"
44 #include "filenames.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "demangle.h"
48 #include "value.h"
49 #include "cp-abi.h"
50 #include "target.h"
51 #include "cp-support.h"
52 #include "language.h"
53 #include "cli/cli-utils.h"
54
55 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
56 At the end, copy them all into one newly allocated location on an objfile's
57 per-BFD storage obstack. */
58
59 #define BUNCH_SIZE 127
60
61 struct msym_bunch
62 {
63 struct msym_bunch *next;
64 struct minimal_symbol contents[BUNCH_SIZE];
65 };
66
67 /* Bunch currently being filled up.
68 The next field points to chain of filled bunches. */
69
70 static struct msym_bunch *msym_bunch;
71
72 /* Number of slots filled in current bunch. */
73
74 static int msym_bunch_index;
75
76 /* Total number of minimal symbols recorded so far for the objfile. */
77
78 static int msym_count;
79
80 /* See minsyms.h. */
81
82 unsigned int
83 msymbol_hash_iw (const char *string)
84 {
85 unsigned int hash = 0;
86
87 while (*string && *string != '(')
88 {
89 string = skip_spaces_const (string);
90 if (*string && *string != '(')
91 {
92 hash = SYMBOL_HASH_NEXT (hash, *string);
93 ++string;
94 }
95 }
96 return hash;
97 }
98
99 /* See minsyms.h. */
100
101 unsigned int
102 msymbol_hash (const char *string)
103 {
104 unsigned int hash = 0;
105
106 for (; *string; ++string)
107 hash = SYMBOL_HASH_NEXT (hash, *string);
108 return hash;
109 }
110
111 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
112 static void
113 add_minsym_to_hash_table (struct minimal_symbol *sym,
114 struct minimal_symbol **table)
115 {
116 if (sym->hash_next == NULL)
117 {
118 unsigned int hash
119 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
120
121 sym->hash_next = table[hash];
122 table[hash] = sym;
123 }
124 }
125
126 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
127 TABLE. */
128 static void
129 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
130 struct minimal_symbol **table)
131 {
132 if (sym->demangled_hash_next == NULL)
133 {
134 unsigned int hash = msymbol_hash_iw (MSYMBOL_SEARCH_NAME (sym))
135 % MINIMAL_SYMBOL_HASH_SIZE;
136
137 sym->demangled_hash_next = table[hash];
138 table[hash] = sym;
139 }
140 }
141
142 /* Look through all the current minimal symbol tables and find the
143 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
144 the search to that objfile. If SFILE is non-NULL, the only file-scope
145 symbols considered will be from that source file (global symbols are
146 still preferred). Returns a pointer to the minimal symbol that
147 matches, or NULL if no match is found.
148
149 Note: One instance where there may be duplicate minimal symbols with
150 the same name is when the symbol tables for a shared library and the
151 symbol tables for an executable contain global symbols with the same
152 names (the dynamic linker deals with the duplication).
153
154 It's also possible to have minimal symbols with different mangled
155 names, but identical demangled names. For example, the GNU C++ v3
156 ABI requires the generation of two (or perhaps three) copies of
157 constructor functions --- "in-charge", "not-in-charge", and
158 "allocate" copies; destructors may be duplicated as well.
159 Obviously, there must be distinct mangled names for each of these,
160 but the demangled names are all the same: S::S or S::~S. */
161
162 struct bound_minimal_symbol
163 lookup_minimal_symbol (const char *name, const char *sfile,
164 struct objfile *objf)
165 {
166 struct objfile *objfile;
167 struct bound_minimal_symbol found_symbol = { NULL, NULL };
168 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
169 struct bound_minimal_symbol trampoline_symbol = { NULL, NULL };
170
171 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
172 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
173
174 int needtofreename = 0;
175 const char *modified_name;
176
177 if (sfile != NULL)
178 sfile = lbasename (sfile);
179
180 /* For C++, canonicalize the input name. */
181 modified_name = name;
182 if (current_language->la_language == language_cplus)
183 {
184 char *cname = cp_canonicalize_string (name);
185
186 if (cname)
187 {
188 modified_name = cname;
189 needtofreename = 1;
190 }
191 }
192
193 for (objfile = object_files;
194 objfile != NULL && found_symbol.minsym == NULL;
195 objfile = objfile->next)
196 {
197 struct minimal_symbol *msymbol;
198
199 if (objf == NULL || objf == objfile
200 || objf == objfile->separate_debug_objfile_backlink)
201 {
202 /* Do two passes: the first over the ordinary hash table,
203 and the second over the demangled hash table. */
204 int pass;
205
206 for (pass = 1; pass <= 2 && found_symbol.minsym == NULL; pass++)
207 {
208 /* Select hash list according to pass. */
209 if (pass == 1)
210 msymbol = objfile->per_bfd->msymbol_hash[hash];
211 else
212 msymbol = objfile->per_bfd->msymbol_demangled_hash[dem_hash];
213
214 while (msymbol != NULL && found_symbol.minsym == NULL)
215 {
216 int match;
217
218 if (pass == 1)
219 {
220 int (*cmp) (const char *, const char *);
221
222 cmp = (case_sensitivity == case_sensitive_on
223 ? strcmp : strcasecmp);
224 match = cmp (MSYMBOL_LINKAGE_NAME (msymbol),
225 modified_name) == 0;
226 }
227 else
228 {
229 /* The function respects CASE_SENSITIVITY. */
230 match = MSYMBOL_MATCHES_SEARCH_NAME (msymbol,
231 modified_name);
232 }
233
234 if (match)
235 {
236 switch (MSYMBOL_TYPE (msymbol))
237 {
238 case mst_file_text:
239 case mst_file_data:
240 case mst_file_bss:
241 if (sfile == NULL
242 || filename_cmp (msymbol->filename, sfile) == 0)
243 {
244 found_file_symbol.minsym = msymbol;
245 found_file_symbol.objfile = objfile;
246 }
247 break;
248
249 case mst_solib_trampoline:
250
251 /* If a trampoline symbol is found, we prefer to
252 keep looking for the *real* symbol. If the
253 actual symbol is not found, then we'll use the
254 trampoline entry. */
255 if (trampoline_symbol.minsym == NULL)
256 {
257 trampoline_symbol.minsym = msymbol;
258 trampoline_symbol.objfile = objfile;
259 }
260 break;
261
262 case mst_unknown:
263 default:
264 found_symbol.minsym = msymbol;
265 found_symbol.objfile = objfile;
266 break;
267 }
268 }
269
270 /* Find the next symbol on the hash chain. */
271 if (pass == 1)
272 msymbol = msymbol->hash_next;
273 else
274 msymbol = msymbol->demangled_hash_next;
275 }
276 }
277 }
278 }
279
280 if (needtofreename)
281 xfree ((void *) modified_name);
282
283 /* External symbols are best. */
284 if (found_symbol.minsym != NULL)
285 return found_symbol;
286
287 /* File-local symbols are next best. */
288 if (found_file_symbol.minsym != NULL)
289 return found_file_symbol;
290
291 /* Symbols for shared library trampolines are next best. */
292 return trampoline_symbol;
293 }
294
295 /* See minsyms.h. */
296
297 struct bound_minimal_symbol
298 lookup_bound_minimal_symbol (const char *name)
299 {
300 return lookup_minimal_symbol (name, NULL, NULL);
301 }
302
303 /* See minsyms.h. */
304
305 void
306 iterate_over_minimal_symbols (struct objfile *objf, const char *name,
307 void (*callback) (struct minimal_symbol *,
308 void *),
309 void *user_data)
310 {
311 unsigned int hash;
312 struct minimal_symbol *iter;
313 int (*cmp) (const char *, const char *);
314
315 /* The first pass is over the ordinary hash table. */
316 hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
317 iter = objf->per_bfd->msymbol_hash[hash];
318 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
319 while (iter)
320 {
321 if (cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
322 (*callback) (iter, user_data);
323 iter = iter->hash_next;
324 }
325
326 /* The second pass is over the demangled table. */
327 hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
328 iter = objf->per_bfd->msymbol_demangled_hash[hash];
329 while (iter)
330 {
331 if (MSYMBOL_MATCHES_SEARCH_NAME (iter, name))
332 (*callback) (iter, user_data);
333 iter = iter->demangled_hash_next;
334 }
335 }
336
337 /* See minsyms.h. */
338
339 struct bound_minimal_symbol
340 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
341 {
342 struct objfile *objfile;
343 struct minimal_symbol *msymbol;
344 struct bound_minimal_symbol found_symbol = { NULL, NULL };
345 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
346
347 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
348
349 for (objfile = object_files;
350 objfile != NULL && found_symbol.minsym == NULL;
351 objfile = objfile->next)
352 {
353 if (objf == NULL || objf == objfile
354 || objf == objfile->separate_debug_objfile_backlink)
355 {
356 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
357 msymbol != NULL && found_symbol.minsym == NULL;
358 msymbol = msymbol->hash_next)
359 {
360 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
361 (MSYMBOL_TYPE (msymbol) == mst_text
362 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
363 || MSYMBOL_TYPE (msymbol) == mst_file_text))
364 {
365 switch (MSYMBOL_TYPE (msymbol))
366 {
367 case mst_file_text:
368 found_file_symbol.minsym = msymbol;
369 found_file_symbol.objfile = objfile;
370 break;
371 default:
372 found_symbol.minsym = msymbol;
373 found_symbol.objfile = objfile;
374 break;
375 }
376 }
377 }
378 }
379 }
380 /* External symbols are best. */
381 if (found_symbol.minsym)
382 return found_symbol;
383
384 /* File-local symbols are next best. */
385 return found_file_symbol;
386 }
387
388 /* See minsyms.h. */
389
390 struct minimal_symbol *
391 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
392 struct objfile *objf)
393 {
394 struct objfile *objfile;
395 struct minimal_symbol *msymbol;
396
397 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
398
399 for (objfile = object_files;
400 objfile != NULL;
401 objfile = objfile->next)
402 {
403 if (objf == NULL || objf == objfile
404 || objf == objfile->separate_debug_objfile_backlink)
405 {
406 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
407 msymbol != NULL;
408 msymbol = msymbol->hash_next)
409 {
410 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
411 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
412 return msymbol;
413 }
414 }
415 }
416
417 return NULL;
418 }
419
420 /* See minsyms.h. */
421
422 struct bound_minimal_symbol
423 lookup_minimal_symbol_solib_trampoline (const char *name,
424 struct objfile *objf)
425 {
426 struct objfile *objfile;
427 struct minimal_symbol *msymbol;
428 struct bound_minimal_symbol found_symbol = { NULL, NULL };
429
430 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
431
432 for (objfile = object_files;
433 objfile != NULL;
434 objfile = objfile->next)
435 {
436 if (objf == NULL || objf == objfile
437 || objf == objfile->separate_debug_objfile_backlink)
438 {
439 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
440 msymbol != NULL;
441 msymbol = msymbol->hash_next)
442 {
443 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
444 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
445 {
446 found_symbol.objfile = objfile;
447 found_symbol.minsym = msymbol;
448 return found_symbol;
449 }
450 }
451 }
452 }
453
454 return found_symbol;
455 }
456
457 /* A helper function that makes *PC section-relative. This searches
458 the sections of OBJFILE and if *PC is in a section, it subtracts
459 the section offset and returns true. Otherwise it returns
460 false. */
461
462 static int
463 frob_address (struct objfile *objfile, CORE_ADDR *pc)
464 {
465 struct obj_section *iter;
466
467 ALL_OBJFILE_OSECTIONS (objfile, iter)
468 {
469 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
470 {
471 *pc -= obj_section_offset (iter);
472 return 1;
473 }
474 }
475
476 return 0;
477 }
478
479 /* Search through the minimal symbol table for each objfile and find
480 the symbol whose address is the largest address that is still less
481 than or equal to PC, and matches SECTION (which is not NULL).
482 Returns a pointer to the minimal symbol if such a symbol is found,
483 or NULL if PC is not in a suitable range.
484 Note that we need to look through ALL the minimal symbol tables
485 before deciding on the symbol that comes closest to the specified PC.
486 This is because objfiles can overlap, for example objfile A has .text
487 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
488 .data at 0x40048.
489
490 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
491 there are text and trampoline symbols at the same address.
492 Otherwise prefer mst_text symbols. */
493
494 static struct bound_minimal_symbol
495 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc_in,
496 struct obj_section *section,
497 int want_trampoline)
498 {
499 int lo;
500 int hi;
501 int new;
502 struct objfile *objfile;
503 struct minimal_symbol *msymbol;
504 struct minimal_symbol *best_symbol = NULL;
505 struct objfile *best_objfile = NULL;
506 struct bound_minimal_symbol result;
507 enum minimal_symbol_type want_type, other_type;
508
509 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
510 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
511
512 /* We can not require the symbol found to be in section, because
513 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
514 symbol - but find_pc_section won't return an absolute section and
515 hence the code below would skip over absolute symbols. We can
516 still take advantage of the call to find_pc_section, though - the
517 object file still must match. In case we have separate debug
518 files, search both the file and its separate debug file. There's
519 no telling which one will have the minimal symbols. */
520
521 gdb_assert (section != NULL);
522
523 for (objfile = section->objfile;
524 objfile != NULL;
525 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
526 {
527 CORE_ADDR pc = pc_in;
528
529 /* If this objfile has a minimal symbol table, go search it using
530 a binary search. Note that a minimal symbol table always consists
531 of at least two symbols, a "real" symbol and the terminating
532 "null symbol". If there are no real symbols, then there is no
533 minimal symbol table at all. */
534
535 if (objfile->per_bfd->minimal_symbol_count > 0)
536 {
537 int best_zero_sized = -1;
538
539 msymbol = objfile->per_bfd->msymbols;
540 lo = 0;
541 hi = objfile->per_bfd->minimal_symbol_count - 1;
542
543 /* This code assumes that the minimal symbols are sorted by
544 ascending address values. If the pc value is greater than or
545 equal to the first symbol's address, then some symbol in this
546 minimal symbol table is a suitable candidate for being the
547 "best" symbol. This includes the last real symbol, for cases
548 where the pc value is larger than any address in this vector.
549
550 By iterating until the address associated with the current
551 hi index (the endpoint of the test interval) is less than
552 or equal to the desired pc value, we accomplish two things:
553 (1) the case where the pc value is larger than any minimal
554 symbol address is trivially solved, (2) the address associated
555 with the hi index is always the one we want when the interation
556 terminates. In essence, we are iterating the test interval
557 down until the pc value is pushed out of it from the high end.
558
559 Warning: this code is trickier than it would appear at first. */
560
561 if (frob_address (objfile, &pc)
562 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
563 {
564 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
565 {
566 /* pc is still strictly less than highest address. */
567 /* Note "new" will always be >= lo. */
568 new = (lo + hi) / 2;
569 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[new]) >= pc)
570 || (lo == new))
571 {
572 hi = new;
573 }
574 else
575 {
576 lo = new;
577 }
578 }
579
580 /* If we have multiple symbols at the same address, we want
581 hi to point to the last one. That way we can find the
582 right symbol if it has an index greater than hi. */
583 while (hi < objfile->per_bfd->minimal_symbol_count - 1
584 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
585 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
586 hi++;
587
588 /* Skip various undesirable symbols. */
589 while (hi >= 0)
590 {
591 /* Skip any absolute symbols. This is apparently
592 what adb and dbx do, and is needed for the CM-5.
593 There are two known possible problems: (1) on
594 ELF, apparently end, edata, etc. are absolute.
595 Not sure ignoring them here is a big deal, but if
596 we want to use them, the fix would go in
597 elfread.c. (2) I think shared library entry
598 points on the NeXT are absolute. If we want
599 special handling for this it probably should be
600 triggered by a special mst_abs_or_lib or some
601 such. */
602
603 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
604 {
605 hi--;
606 continue;
607 }
608
609 /* If SECTION was specified, skip any symbol from
610 wrong section. */
611 if (section
612 /* Some types of debug info, such as COFF,
613 don't fill the bfd_section member, so don't
614 throw away symbols on those platforms. */
615 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
616 && (!matching_obj_sections
617 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
618 section)))
619 {
620 hi--;
621 continue;
622 }
623
624 /* If we are looking for a trampoline and this is a
625 text symbol, or the other way around, check the
626 preceding symbol too. If they are otherwise
627 identical prefer that one. */
628 if (hi > 0
629 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
630 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
631 && (MSYMBOL_SIZE (&msymbol[hi])
632 == MSYMBOL_SIZE (&msymbol[hi - 1]))
633 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
634 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
635 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
636 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
637 {
638 hi--;
639 continue;
640 }
641
642 /* If the minimal symbol has a zero size, save it
643 but keep scanning backwards looking for one with
644 a non-zero size. A zero size may mean that the
645 symbol isn't an object or function (e.g. a
646 label), or it may just mean that the size was not
647 specified. */
648 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
649 && best_zero_sized == -1)
650 {
651 best_zero_sized = hi;
652 hi--;
653 continue;
654 }
655
656 /* If we are past the end of the current symbol, try
657 the previous symbol if it has a larger overlapping
658 size. This happens on i686-pc-linux-gnu with glibc;
659 the nocancel variants of system calls are inside
660 the cancellable variants, but both have sizes. */
661 if (hi > 0
662 && MSYMBOL_SIZE (&msymbol[hi]) != 0
663 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
664 + MSYMBOL_SIZE (&msymbol[hi]))
665 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
666 + MSYMBOL_SIZE (&msymbol[hi - 1])))
667 {
668 hi--;
669 continue;
670 }
671
672 /* Otherwise, this symbol must be as good as we're going
673 to get. */
674 break;
675 }
676
677 /* If HI has a zero size, and best_zero_sized is set,
678 then we had two or more zero-sized symbols; prefer
679 the first one we found (which may have a higher
680 address). Also, if we ran off the end, be sure
681 to back up. */
682 if (best_zero_sized != -1
683 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
684 hi = best_zero_sized;
685
686 /* If the minimal symbol has a non-zero size, and this
687 PC appears to be outside the symbol's contents, then
688 refuse to use this symbol. If we found a zero-sized
689 symbol with an address greater than this symbol's,
690 use that instead. We assume that if symbols have
691 specified sizes, they do not overlap. */
692
693 if (hi >= 0
694 && MSYMBOL_SIZE (&msymbol[hi]) != 0
695 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
696 + MSYMBOL_SIZE (&msymbol[hi])))
697 {
698 if (best_zero_sized != -1)
699 hi = best_zero_sized;
700 else
701 /* Go on to the next object file. */
702 continue;
703 }
704
705 /* The minimal symbol indexed by hi now is the best one in this
706 objfile's minimal symbol table. See if it is the best one
707 overall. */
708
709 if (hi >= 0
710 && ((best_symbol == NULL) ||
711 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
712 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
713 {
714 best_symbol = &msymbol[hi];
715 best_objfile = objfile;
716 }
717 }
718 }
719 }
720
721 result.minsym = best_symbol;
722 result.objfile = best_objfile;
723 return result;
724 }
725
726 struct bound_minimal_symbol
727 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
728 {
729 if (section == NULL)
730 {
731 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
732 force the section but that (well unless you're doing overlay
733 debugging) always returns NULL making the call somewhat useless. */
734 section = find_pc_section (pc);
735 if (section == NULL)
736 {
737 struct bound_minimal_symbol result;
738
739 memset (&result, 0, sizeof (result));
740 return result;
741 }
742 }
743 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
744 }
745
746 /* See minsyms.h. */
747
748 struct bound_minimal_symbol
749 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
750 {
751 struct obj_section *section = find_pc_section (pc);
752
753 if (section == NULL)
754 {
755 struct bound_minimal_symbol result;
756
757 memset (&result, 0, sizeof (result));
758 return result;
759 }
760 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
761 }
762
763 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
764
765 int
766 in_gnu_ifunc_stub (CORE_ADDR pc)
767 {
768 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc);
769
770 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
771 }
772
773 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
774
775 static CORE_ADDR
776 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
777 {
778 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
779 "the ELF support compiled in."),
780 paddress (gdbarch, pc));
781 }
782
783 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
784
785 static int
786 stub_gnu_ifunc_resolve_name (const char *function_name,
787 CORE_ADDR *function_address_p)
788 {
789 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
790 "the ELF support compiled in."),
791 function_name);
792 }
793
794 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
795
796 static void
797 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
798 {
799 internal_error (__FILE__, __LINE__,
800 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
801 }
802
803 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
804
805 static void
806 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
807 {
808 internal_error (__FILE__, __LINE__,
809 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
810 }
811
812 /* See elf_gnu_ifunc_fns for its real implementation. */
813
814 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
815 {
816 stub_gnu_ifunc_resolve_addr,
817 stub_gnu_ifunc_resolve_name,
818 stub_gnu_ifunc_resolver_stop,
819 stub_gnu_ifunc_resolver_return_stop,
820 };
821
822 /* A placeholder for &elf_gnu_ifunc_fns. */
823
824 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
825
826 /* See minsyms.h. */
827
828 struct bound_minimal_symbol
829 lookup_minimal_symbol_and_objfile (const char *name)
830 {
831 struct bound_minimal_symbol result;
832 struct objfile *objfile;
833 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
834
835 ALL_OBJFILES (objfile)
836 {
837 struct minimal_symbol *msym;
838
839 for (msym = objfile->per_bfd->msymbol_hash[hash];
840 msym != NULL;
841 msym = msym->hash_next)
842 {
843 if (strcmp (MSYMBOL_LINKAGE_NAME (msym), name) == 0)
844 {
845 result.minsym = msym;
846 result.objfile = objfile;
847 return result;
848 }
849 }
850 }
851
852 memset (&result, 0, sizeof (result));
853 return result;
854 }
855 \f
856
857 /* Return leading symbol character for a BFD. If BFD is NULL,
858 return the leading symbol character from the main objfile. */
859
860 static int
861 get_symbol_leading_char (bfd *abfd)
862 {
863 if (abfd != NULL)
864 return bfd_get_symbol_leading_char (abfd);
865 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
866 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
867 return 0;
868 }
869
870 /* See minsyms.h. */
871
872 void
873 init_minimal_symbol_collection (void)
874 {
875 msym_count = 0;
876 msym_bunch = NULL;
877 /* Note that presetting msym_bunch_index to BUNCH_SIZE causes the
878 first call to save a minimal symbol to allocate the memory for
879 the first bunch. */
880 msym_bunch_index = BUNCH_SIZE;
881 }
882
883 /* See minsyms.h. */
884
885 void
886 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
887 enum minimal_symbol_type ms_type,
888 struct objfile *objfile)
889 {
890 int section;
891
892 switch (ms_type)
893 {
894 case mst_text:
895 case mst_text_gnu_ifunc:
896 case mst_file_text:
897 case mst_solib_trampoline:
898 section = SECT_OFF_TEXT (objfile);
899 break;
900 case mst_data:
901 case mst_file_data:
902 section = SECT_OFF_DATA (objfile);
903 break;
904 case mst_bss:
905 case mst_file_bss:
906 section = SECT_OFF_BSS (objfile);
907 break;
908 default:
909 section = -1;
910 }
911
912 prim_record_minimal_symbol_and_info (name, address, ms_type,
913 section, objfile);
914 }
915
916 /* See minsyms.h. */
917
918 struct minimal_symbol *
919 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
920 CORE_ADDR address,
921 enum minimal_symbol_type ms_type,
922 int section,
923 struct objfile *objfile)
924 {
925 struct obj_section *obj_section;
926 struct msym_bunch *new;
927 struct minimal_symbol *msymbol;
928
929 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
930 the minimal symbols, because if there is also another symbol
931 at the same address (e.g. the first function of the file),
932 lookup_minimal_symbol_by_pc would have no way of getting the
933 right one. */
934 if (ms_type == mst_file_text && name[0] == 'g'
935 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
936 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
937 return (NULL);
938
939 /* It's safe to strip the leading char here once, since the name
940 is also stored stripped in the minimal symbol table. */
941 if (name[0] == get_symbol_leading_char (objfile->obfd))
942 {
943 ++name;
944 --name_len;
945 }
946
947 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
948 return (NULL);
949
950 if (msym_bunch_index == BUNCH_SIZE)
951 {
952 new = XCNEW (struct msym_bunch);
953 msym_bunch_index = 0;
954 new->next = msym_bunch;
955 msym_bunch = new;
956 }
957 msymbol = &msym_bunch->contents[msym_bunch_index];
958 MSYMBOL_SET_LANGUAGE (msymbol, language_auto,
959 &objfile->per_bfd->storage_obstack);
960 MSYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
961
962 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
963 MSYMBOL_SECTION (msymbol) = section;
964
965 MSYMBOL_TYPE (msymbol) = ms_type;
966 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
967 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
968 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
969 as it would also set the has_size flag. */
970 msymbol->size = 0;
971
972 /* The hash pointers must be cleared! If they're not,
973 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
974 msymbol->hash_next = NULL;
975 msymbol->demangled_hash_next = NULL;
976
977 /* If we already read minimal symbols for this objfile, then don't
978 ever allocate a new one. */
979 if (!objfile->per_bfd->minsyms_read)
980 {
981 msym_bunch_index++;
982 objfile->per_bfd->n_minsyms++;
983 }
984 msym_count++;
985 return msymbol;
986 }
987
988 /* See minsyms.h. */
989
990 struct minimal_symbol *
991 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
992 enum minimal_symbol_type ms_type,
993 int section,
994 struct objfile *objfile)
995 {
996 return prim_record_minimal_symbol_full (name, strlen (name), 1,
997 address, ms_type,
998 section, objfile);
999 }
1000
1001 /* Compare two minimal symbols by address and return a signed result based
1002 on unsigned comparisons, so that we sort into unsigned numeric order.
1003 Within groups with the same address, sort by name. */
1004
1005 static int
1006 compare_minimal_symbols (const void *fn1p, const void *fn2p)
1007 {
1008 const struct minimal_symbol *fn1;
1009 const struct minimal_symbol *fn2;
1010
1011 fn1 = (const struct minimal_symbol *) fn1p;
1012 fn2 = (const struct minimal_symbol *) fn2p;
1013
1014 if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) < MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1015 {
1016 return (-1); /* addr 1 is less than addr 2. */
1017 }
1018 else if (MSYMBOL_VALUE_RAW_ADDRESS (fn1) > MSYMBOL_VALUE_RAW_ADDRESS (fn2))
1019 {
1020 return (1); /* addr 1 is greater than addr 2. */
1021 }
1022 else
1023 /* addrs are equal: sort by name */
1024 {
1025 const char *name1 = MSYMBOL_LINKAGE_NAME (fn1);
1026 const char *name2 = MSYMBOL_LINKAGE_NAME (fn2);
1027
1028 if (name1 && name2) /* both have names */
1029 return strcmp (name1, name2);
1030 else if (name2)
1031 return 1; /* fn1 has no name, so it is "less". */
1032 else if (name1) /* fn2 has no name, so it is "less". */
1033 return -1;
1034 else
1035 return (0); /* Neither has a name, so they're equal. */
1036 }
1037 }
1038
1039 /* Discard the currently collected minimal symbols, if any. If we wish
1040 to save them for later use, we must have already copied them somewhere
1041 else before calling this function.
1042
1043 FIXME: We could allocate the minimal symbol bunches on their own
1044 obstack and then simply blow the obstack away when we are done with
1045 it. Is it worth the extra trouble though? */
1046
1047 static void
1048 do_discard_minimal_symbols_cleanup (void *arg)
1049 {
1050 struct msym_bunch *next;
1051
1052 while (msym_bunch != NULL)
1053 {
1054 next = msym_bunch->next;
1055 xfree (msym_bunch);
1056 msym_bunch = next;
1057 }
1058 }
1059
1060 /* See minsyms.h. */
1061
1062 struct cleanup *
1063 make_cleanup_discard_minimal_symbols (void)
1064 {
1065 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
1066 }
1067
1068
1069
1070 /* Compact duplicate entries out of a minimal symbol table by walking
1071 through the table and compacting out entries with duplicate addresses
1072 and matching names. Return the number of entries remaining.
1073
1074 On entry, the table resides between msymbol[0] and msymbol[mcount].
1075 On exit, it resides between msymbol[0] and msymbol[result_count].
1076
1077 When files contain multiple sources of symbol information, it is
1078 possible for the minimal symbol table to contain many duplicate entries.
1079 As an example, SVR4 systems use ELF formatted object files, which
1080 usually contain at least two different types of symbol tables (a
1081 standard ELF one and a smaller dynamic linking table), as well as
1082 DWARF debugging information for files compiled with -g.
1083
1084 Without compacting, the minimal symbol table for gdb itself contains
1085 over a 1000 duplicates, about a third of the total table size. Aside
1086 from the potential trap of not noticing that two successive entries
1087 identify the same location, this duplication impacts the time required
1088 to linearly scan the table, which is done in a number of places. So we
1089 just do one linear scan here and toss out the duplicates.
1090
1091 Note that we are not concerned here about recovering the space that
1092 is potentially freed up, because the strings themselves are allocated
1093 on the storage_obstack, and will get automatically freed when the symbol
1094 table is freed. The caller can free up the unused minimal symbols at
1095 the end of the compacted region if their allocation strategy allows it.
1096
1097 Also note we only go up to the next to last entry within the loop
1098 and then copy the last entry explicitly after the loop terminates.
1099
1100 Since the different sources of information for each symbol may
1101 have different levels of "completeness", we may have duplicates
1102 that have one entry with type "mst_unknown" and the other with a
1103 known type. So if the one we are leaving alone has type mst_unknown,
1104 overwrite its type with the type from the one we are compacting out. */
1105
1106 static int
1107 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1108 struct objfile *objfile)
1109 {
1110 struct minimal_symbol *copyfrom;
1111 struct minimal_symbol *copyto;
1112
1113 if (mcount > 0)
1114 {
1115 copyfrom = copyto = msymbol;
1116 while (copyfrom < msymbol + mcount - 1)
1117 {
1118 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1119 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1120 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1121 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1122 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1123 {
1124 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1125 {
1126 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1127 }
1128 copyfrom++;
1129 }
1130 else
1131 *copyto++ = *copyfrom++;
1132 }
1133 *copyto++ = *copyfrom++;
1134 mcount = copyto - msymbol;
1135 }
1136 return (mcount);
1137 }
1138
1139 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1140 after compacting or sorting the table since the entries move around
1141 thus causing the internal minimal_symbol pointers to become jumbled. */
1142
1143 static void
1144 build_minimal_symbol_hash_tables (struct objfile *objfile)
1145 {
1146 int i;
1147 struct minimal_symbol *msym;
1148
1149 /* Clear the hash tables. */
1150 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1151 {
1152 objfile->per_bfd->msymbol_hash[i] = 0;
1153 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1154 }
1155
1156 /* Now, (re)insert the actual entries. */
1157 for ((i = objfile->per_bfd->minimal_symbol_count,
1158 msym = objfile->per_bfd->msymbols);
1159 i > 0;
1160 i--, msym++)
1161 {
1162 msym->hash_next = 0;
1163 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1164
1165 msym->demangled_hash_next = 0;
1166 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1167 add_minsym_to_demangled_hash_table (msym,
1168 objfile->per_bfd->msymbol_demangled_hash);
1169 }
1170 }
1171
1172 /* Add the minimal symbols in the existing bunches to the objfile's official
1173 minimal symbol table. In most cases there is no minimal symbol table yet
1174 for this objfile, and the existing bunches are used to create one. Once
1175 in a while (for shared libraries for example), we add symbols (e.g. common
1176 symbols) to an existing objfile.
1177
1178 Because of the way minimal symbols are collected, we generally have no way
1179 of knowing what source language applies to any particular minimal symbol.
1180 Specifically, we have no way of knowing if the minimal symbol comes from a
1181 C++ compilation unit or not. So for the sake of supporting cached
1182 demangled C++ names, we have no choice but to try and demangle each new one
1183 that comes in. If the demangling succeeds, then we assume it is a C++
1184 symbol and set the symbol's language and demangled name fields
1185 appropriately. Note that in order to avoid unnecessary demanglings, and
1186 allocating obstack space that subsequently can't be freed for the demangled
1187 names, we mark all newly added symbols with language_auto. After
1188 compaction of the minimal symbols, we go back and scan the entire minimal
1189 symbol table looking for these new symbols. For each new symbol we attempt
1190 to demangle it, and if successful, record it as a language_cplus symbol
1191 and cache the demangled form on the symbol obstack. Symbols which don't
1192 demangle are marked as language_unknown symbols, which inhibits future
1193 attempts to demangle them if we later add more minimal symbols. */
1194
1195 void
1196 install_minimal_symbols (struct objfile *objfile)
1197 {
1198 int bindex;
1199 int mcount;
1200 struct msym_bunch *bunch;
1201 struct minimal_symbol *msymbols;
1202 int alloc_count;
1203
1204 if (objfile->per_bfd->minsyms_read)
1205 return;
1206
1207 if (msym_count > 0)
1208 {
1209 if (symtab_create_debug)
1210 {
1211 fprintf_unfiltered (gdb_stdlog,
1212 "Installing %d minimal symbols of objfile %s.\n",
1213 msym_count, objfile_name (objfile));
1214 }
1215
1216 /* Allocate enough space in the obstack, into which we will gather the
1217 bunches of new and existing minimal symbols, sort them, and then
1218 compact out the duplicate entries. Once we have a final table,
1219 we will give back the excess space. */
1220
1221 alloc_count = msym_count + objfile->per_bfd->minimal_symbol_count + 1;
1222 obstack_blank (&objfile->per_bfd->storage_obstack,
1223 alloc_count * sizeof (struct minimal_symbol));
1224 msymbols = (struct minimal_symbol *)
1225 obstack_base (&objfile->per_bfd->storage_obstack);
1226
1227 /* Copy in the existing minimal symbols, if there are any. */
1228
1229 if (objfile->per_bfd->minimal_symbol_count)
1230 memcpy ((char *) msymbols, (char *) objfile->per_bfd->msymbols,
1231 objfile->per_bfd->minimal_symbol_count * sizeof (struct minimal_symbol));
1232
1233 /* Walk through the list of minimal symbol bunches, adding each symbol
1234 to the new contiguous array of symbols. Note that we start with the
1235 current, possibly partially filled bunch (thus we use the current
1236 msym_bunch_index for the first bunch we copy over), and thereafter
1237 each bunch is full. */
1238
1239 mcount = objfile->per_bfd->minimal_symbol_count;
1240
1241 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1242 {
1243 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1244 msymbols[mcount] = bunch->contents[bindex];
1245 msym_bunch_index = BUNCH_SIZE;
1246 }
1247
1248 /* Sort the minimal symbols by address. */
1249
1250 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1251 compare_minimal_symbols);
1252
1253 /* Compact out any duplicates, and free up whatever space we are
1254 no longer using. */
1255
1256 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1257
1258 obstack_blank (&objfile->per_bfd->storage_obstack,
1259 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1260 msymbols = (struct minimal_symbol *)
1261 obstack_finish (&objfile->per_bfd->storage_obstack);
1262
1263 /* We also terminate the minimal symbol table with a "null symbol",
1264 which is *not* included in the size of the table. This makes it
1265 easier to find the end of the table when we are handed a pointer
1266 to some symbol in the middle of it. Zero out the fields in the
1267 "null symbol" allocated at the end of the array. Note that the
1268 symbol count does *not* include this null symbol, which is why it
1269 is indexed by mcount and not mcount-1. */
1270
1271 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1272
1273 /* Attach the minimal symbol table to the specified objfile.
1274 The strings themselves are also located in the storage_obstack
1275 of this objfile. */
1276
1277 objfile->per_bfd->minimal_symbol_count = mcount;
1278 objfile->per_bfd->msymbols = msymbols;
1279
1280 /* Now build the hash tables; we can't do this incrementally
1281 at an earlier point since we weren't finished with the obstack
1282 yet. (And if the msymbol obstack gets moved, all the internal
1283 pointers to other msymbols need to be adjusted.) */
1284 build_minimal_symbol_hash_tables (objfile);
1285 }
1286 }
1287
1288 /* See minsyms.h. */
1289
1290 void
1291 terminate_minimal_symbol_table (struct objfile *objfile)
1292 {
1293 if (! objfile->per_bfd->msymbols)
1294 objfile->per_bfd->msymbols
1295 = ((struct minimal_symbol *)
1296 obstack_alloc (&objfile->per_bfd->storage_obstack,
1297 sizeof (struct minimal_symbol)));
1298
1299 {
1300 struct minimal_symbol *m
1301 = &objfile->per_bfd->msymbols[objfile->per_bfd->minimal_symbol_count];
1302
1303 memset (m, 0, sizeof (*m));
1304 /* Don't rely on these enumeration values being 0's. */
1305 MSYMBOL_TYPE (m) = mst_unknown;
1306 MSYMBOL_SET_LANGUAGE (m, language_unknown,
1307 &objfile->per_bfd->storage_obstack);
1308 }
1309 }
1310
1311 /* Check if PC is in a shared library trampoline code stub.
1312 Return minimal symbol for the trampoline entry or NULL if PC is not
1313 in a trampoline code stub. */
1314
1315 static struct minimal_symbol *
1316 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1317 {
1318 struct obj_section *section = find_pc_section (pc);
1319 struct bound_minimal_symbol msymbol;
1320
1321 if (section == NULL)
1322 return NULL;
1323 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1324
1325 if (msymbol.minsym != NULL
1326 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1327 return msymbol.minsym;
1328 return NULL;
1329 }
1330
1331 /* If PC is in a shared library trampoline code stub, return the
1332 address of the `real' function belonging to the stub.
1333 Return 0 if PC is not in a trampoline code stub or if the real
1334 function is not found in the minimal symbol table.
1335
1336 We may fail to find the right function if a function with the
1337 same name is defined in more than one shared library, but this
1338 is considered bad programming style. We could return 0 if we find
1339 a duplicate function in case this matters someday. */
1340
1341 CORE_ADDR
1342 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1343 {
1344 struct objfile *objfile;
1345 struct minimal_symbol *msymbol;
1346 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1347
1348 if (tsymbol != NULL)
1349 {
1350 ALL_MSYMBOLS (objfile, msymbol)
1351 {
1352 if ((MSYMBOL_TYPE (msymbol) == mst_text
1353 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1354 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1355 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1356 return MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1357
1358 /* Also handle minimal symbols pointing to function descriptors. */
1359 if (MSYMBOL_TYPE (msymbol) == mst_data
1360 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1361 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1362 {
1363 CORE_ADDR func;
1364
1365 func = gdbarch_convert_from_func_ptr_addr
1366 (get_objfile_arch (objfile),
1367 MSYMBOL_VALUE_ADDRESS (objfile, msymbol),
1368 &current_target);
1369
1370 /* Ignore data symbols that are not function descriptors. */
1371 if (func != MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
1372 return func;
1373 }
1374 }
1375 }
1376 return 0;
1377 }
1378
1379 /* See minsyms.h. */
1380
1381 CORE_ADDR
1382 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1383 {
1384 int i;
1385 short section;
1386 struct obj_section *obj_section;
1387 CORE_ADDR result;
1388 struct minimal_symbol *msymbol;
1389
1390 gdb_assert (minsym.minsym != NULL);
1391
1392 /* If the minimal symbol has a size, use it. Otherwise use the
1393 lesser of the next minimal symbol in the same section, or the end
1394 of the section, as the end of the function. */
1395
1396 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1397 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1398
1399 /* Step over other symbols at this same address, and symbols in
1400 other sections, to find the next symbol in this section with a
1401 different address. */
1402
1403 msymbol = minsym.minsym;
1404 section = MSYMBOL_SECTION (msymbol);
1405 for (i = 1; MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
1406 {
1407 if ((MSYMBOL_VALUE_RAW_ADDRESS (msymbol + i)
1408 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1409 && MSYMBOL_SECTION (msymbol + i) == section)
1410 break;
1411 }
1412
1413 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1414 if (MSYMBOL_LINKAGE_NAME (msymbol + i) != NULL
1415 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i)
1416 < obj_section_endaddr (obj_section)))
1417 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, msymbol + i);
1418 else
1419 /* We got the start address from the last msymbol in the objfile.
1420 So the end address is the end of the section. */
1421 result = obj_section_endaddr (obj_section);
1422
1423 return result;
1424 }
This page took 0.063013 seconds and 5 git commands to generate.