Enable support for the AArch64 dot-prod instruction in the Cortex A55 and A75 cpus.
[deliverable/binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "target.h"
23 #include "solib-svr4.h"
24 #include "osabi.h"
25 #include "mips-tdep.h"
26 #include "frame.h"
27 #include "regcache.h"
28 #include "trad-frame.h"
29 #include "tramp-frame.h"
30 #include "gdbtypes.h"
31 #include "objfiles.h"
32 #include "solib.h"
33 #include "solist.h"
34 #include "symtab.h"
35 #include "target-descriptions.h"
36 #include "regset.h"
37 #include "mips-linux-tdep.h"
38 #include "glibc-tdep.h"
39 #include "linux-tdep.h"
40 #include "xml-syscall.h"
41 #include "gdb_signals.h"
42
43 #include "features/mips-linux.c"
44 #include "features/mips-dsp-linux.c"
45 #include "features/mips64-linux.c"
46 #include "features/mips64-dsp-linux.c"
47
48 static struct target_so_ops mips_svr4_so_ops;
49
50 /* This enum represents the signals' numbers on the MIPS
51 architecture. It just contains the signal definitions which are
52 different from the generic implementation.
53
54 It is derived from the file <arch/mips/include/uapi/asm/signal.h>,
55 from the Linux kernel tree. */
56
57 enum
58 {
59 MIPS_LINUX_SIGEMT = 7,
60 MIPS_LINUX_SIGBUS = 10,
61 MIPS_LINUX_SIGSYS = 12,
62 MIPS_LINUX_SIGUSR1 = 16,
63 MIPS_LINUX_SIGUSR2 = 17,
64 MIPS_LINUX_SIGCHLD = 18,
65 MIPS_LINUX_SIGCLD = MIPS_LINUX_SIGCHLD,
66 MIPS_LINUX_SIGPWR = 19,
67 MIPS_LINUX_SIGWINCH = 20,
68 MIPS_LINUX_SIGURG = 21,
69 MIPS_LINUX_SIGIO = 22,
70 MIPS_LINUX_SIGPOLL = MIPS_LINUX_SIGIO,
71 MIPS_LINUX_SIGSTOP = 23,
72 MIPS_LINUX_SIGTSTP = 24,
73 MIPS_LINUX_SIGCONT = 25,
74 MIPS_LINUX_SIGTTIN = 26,
75 MIPS_LINUX_SIGTTOU = 27,
76 MIPS_LINUX_SIGVTALRM = 28,
77 MIPS_LINUX_SIGPROF = 29,
78 MIPS_LINUX_SIGXCPU = 30,
79 MIPS_LINUX_SIGXFSZ = 31,
80
81 MIPS_LINUX_SIGRTMIN = 32,
82 MIPS_LINUX_SIGRT64 = 64,
83 MIPS_LINUX_SIGRTMAX = 127,
84 };
85
86 /* Figure out where the longjmp will land.
87 We expect the first arg to be a pointer to the jmp_buf structure
88 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
89 at. The pc is copied into PC. This routine returns 1 on
90 success. */
91
92 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
93 #define MIPS_LINUX_JB_PC 0
94
95 static int
96 mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
97 {
98 CORE_ADDR jb_addr;
99 struct gdbarch *gdbarch = get_frame_arch (frame);
100 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
101 gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
102
103 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
104
105 if (target_read_memory ((jb_addr
106 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
107 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
108 return 0;
109
110 *pc = extract_unsigned_integer (buf,
111 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
112 byte_order);
113
114 return 1;
115 }
116
117 /* Transform the bits comprising a 32-bit register to the right size
118 for regcache_raw_supply(). This is needed when mips_isa_regsize()
119 is 8. */
120
121 static void
122 supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
123 {
124 regcache->raw_supply_integer (regnum, (const gdb_byte *) addr, 4, true);
125 }
126
127 /* Unpack an elf_gregset_t into GDB's register cache. */
128
129 void
130 mips_supply_gregset (struct regcache *regcache,
131 const mips_elf_gregset_t *gregsetp)
132 {
133 int regi;
134 const mips_elf_greg_t *regp = *gregsetp;
135 struct gdbarch *gdbarch = get_regcache_arch (regcache);
136
137 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
138 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
139
140 if (mips_linux_restart_reg_p (gdbarch))
141 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
142
143 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
144 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
145
146 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
147 regp + EF_CP0_EPC);
148 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
149 regp + EF_CP0_BADVADDR);
150 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
151 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
152 regp + EF_CP0_CAUSE);
153
154 /* Fill the inaccessible zero register with zero. */
155 regcache->raw_supply_zeroed (MIPS_ZERO_REGNUM);
156 }
157
158 static void
159 mips_supply_gregset_wrapper (const struct regset *regset,
160 struct regcache *regcache,
161 int regnum, const void *gregs, size_t len)
162 {
163 gdb_assert (len >= sizeof (mips_elf_gregset_t));
164
165 mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
166 }
167
168 /* Pack our registers (or one register) into an elf_gregset_t. */
169
170 void
171 mips_fill_gregset (const struct regcache *regcache,
172 mips_elf_gregset_t *gregsetp, int regno)
173 {
174 struct gdbarch *gdbarch = get_regcache_arch (regcache);
175 int regaddr, regi;
176 mips_elf_greg_t *regp = *gregsetp;
177 void *dst;
178
179 if (regno == -1)
180 {
181 memset (regp, 0, sizeof (mips_elf_gregset_t));
182 for (regi = 1; regi < 32; regi++)
183 mips_fill_gregset (regcache, gregsetp, regi);
184 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
185 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
186 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
187 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
188 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
189 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
190 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
191 return;
192 }
193
194 if (regno > 0 && regno < 32)
195 {
196 dst = regp + regno + EF_REG0;
197 regcache_raw_collect (regcache, regno, dst);
198 return;
199 }
200
201 if (regno == mips_regnum (gdbarch)->lo)
202 regaddr = EF_LO;
203 else if (regno == mips_regnum (gdbarch)->hi)
204 regaddr = EF_HI;
205 else if (regno == mips_regnum (gdbarch)->pc)
206 regaddr = EF_CP0_EPC;
207 else if (regno == mips_regnum (gdbarch)->badvaddr)
208 regaddr = EF_CP0_BADVADDR;
209 else if (regno == MIPS_PS_REGNUM)
210 regaddr = EF_CP0_STATUS;
211 else if (regno == mips_regnum (gdbarch)->cause)
212 regaddr = EF_CP0_CAUSE;
213 else if (mips_linux_restart_reg_p (gdbarch)
214 && regno == MIPS_RESTART_REGNUM)
215 regaddr = EF_REG0;
216 else
217 regaddr = -1;
218
219 if (regaddr != -1)
220 {
221 dst = regp + regaddr;
222 regcache_raw_collect (regcache, regno, dst);
223 }
224 }
225
226 static void
227 mips_fill_gregset_wrapper (const struct regset *regset,
228 const struct regcache *regcache,
229 int regnum, void *gregs, size_t len)
230 {
231 gdb_assert (len >= sizeof (mips_elf_gregset_t));
232
233 mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
234 }
235
236 /* Likewise, unpack an elf_fpregset_t. */
237
238 void
239 mips_supply_fpregset (struct regcache *regcache,
240 const mips_elf_fpregset_t *fpregsetp)
241 {
242 struct gdbarch *gdbarch = get_regcache_arch (regcache);
243 int regi;
244
245 for (regi = 0; regi < 32; regi++)
246 regcache_raw_supply (regcache,
247 gdbarch_fp0_regnum (gdbarch) + regi,
248 *fpregsetp + regi);
249
250 regcache_raw_supply (regcache,
251 mips_regnum (gdbarch)->fp_control_status,
252 *fpregsetp + 32);
253
254 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
255 regcache->raw_supply_zeroed
256 (mips_regnum (gdbarch)->fp_implementation_revision);
257 }
258
259 static void
260 mips_supply_fpregset_wrapper (const struct regset *regset,
261 struct regcache *regcache,
262 int regnum, const void *gregs, size_t len)
263 {
264 gdb_assert (len >= sizeof (mips_elf_fpregset_t));
265
266 mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
267 }
268
269 /* Likewise, pack one or all floating point registers into an
270 elf_fpregset_t. */
271
272 void
273 mips_fill_fpregset (const struct regcache *regcache,
274 mips_elf_fpregset_t *fpregsetp, int regno)
275 {
276 struct gdbarch *gdbarch = get_regcache_arch (regcache);
277 char *to;
278
279 if ((regno >= gdbarch_fp0_regnum (gdbarch))
280 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
281 {
282 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
283 regcache_raw_collect (regcache, regno, to);
284 }
285 else if (regno == mips_regnum (gdbarch)->fp_control_status)
286 {
287 to = (char *) (*fpregsetp + 32);
288 regcache_raw_collect (regcache, regno, to);
289 }
290 else if (regno == -1)
291 {
292 int regi;
293
294 for (regi = 0; regi < 32; regi++)
295 mips_fill_fpregset (regcache, fpregsetp,
296 gdbarch_fp0_regnum (gdbarch) + regi);
297 mips_fill_fpregset (regcache, fpregsetp,
298 mips_regnum (gdbarch)->fp_control_status);
299 }
300 }
301
302 static void
303 mips_fill_fpregset_wrapper (const struct regset *regset,
304 const struct regcache *regcache,
305 int regnum, void *gregs, size_t len)
306 {
307 gdb_assert (len >= sizeof (mips_elf_fpregset_t));
308
309 mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
310 }
311
312 /* Support for 64-bit ABIs. */
313
314 /* Figure out where the longjmp will land.
315 We expect the first arg to be a pointer to the jmp_buf structure
316 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
317 at. The pc is copied into PC. This routine returns 1 on
318 success. */
319
320 /* Details about jmp_buf. */
321
322 #define MIPS64_LINUX_JB_PC 0
323
324 static int
325 mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
326 {
327 CORE_ADDR jb_addr;
328 struct gdbarch *gdbarch = get_frame_arch (frame);
329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
330 gdb_byte *buf
331 = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
332 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
333
334 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
335
336 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
337 buf,
338 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
339 return 0;
340
341 *pc = extract_unsigned_integer (buf,
342 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
343 byte_order);
344
345 return 1;
346 }
347
348 /* Register set support functions. These operate on standard 64-bit
349 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
350 target will still use the 64-bit format for PTRACE_GETREGS. */
351
352 /* Supply a 64-bit register. */
353
354 static void
355 supply_64bit_reg (struct regcache *regcache, int regnum,
356 const gdb_byte *buf)
357 {
358 struct gdbarch *gdbarch = get_regcache_arch (regcache);
359 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
360 && register_size (gdbarch, regnum) == 4)
361 regcache_raw_supply (regcache, regnum, buf + 4);
362 else
363 regcache_raw_supply (regcache, regnum, buf);
364 }
365
366 /* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
367
368 void
369 mips64_supply_gregset (struct regcache *regcache,
370 const mips64_elf_gregset_t *gregsetp)
371 {
372 int regi;
373 const mips64_elf_greg_t *regp = *gregsetp;
374 struct gdbarch *gdbarch = get_regcache_arch (regcache);
375
376 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
377 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
378 (const gdb_byte *) (regp + regi));
379
380 if (mips_linux_restart_reg_p (gdbarch))
381 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
382 (const gdb_byte *) (regp + MIPS64_EF_REG0));
383
384 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
385 (const gdb_byte *) (regp + MIPS64_EF_LO));
386 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
387 (const gdb_byte *) (regp + MIPS64_EF_HI));
388
389 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
390 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
391 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
392 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
393 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
394 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
395 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
396 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
397
398 /* Fill the inaccessible zero register with zero. */
399 regcache->raw_supply_zeroed (MIPS_ZERO_REGNUM);
400 }
401
402 static void
403 mips64_supply_gregset_wrapper (const struct regset *regset,
404 struct regcache *regcache,
405 int regnum, const void *gregs, size_t len)
406 {
407 gdb_assert (len >= sizeof (mips64_elf_gregset_t));
408
409 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
410 }
411
412 /* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
413
414 void
415 mips64_fill_gregset (const struct regcache *regcache,
416 mips64_elf_gregset_t *gregsetp, int regno)
417 {
418 struct gdbarch *gdbarch = get_regcache_arch (regcache);
419 int regaddr, regi;
420 mips64_elf_greg_t *regp = *gregsetp;
421 void *dst;
422
423 if (regno == -1)
424 {
425 memset (regp, 0, sizeof (mips64_elf_gregset_t));
426 for (regi = 1; regi < 32; regi++)
427 mips64_fill_gregset (regcache, gregsetp, regi);
428 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
429 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
430 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
431 mips64_fill_gregset (regcache, gregsetp,
432 mips_regnum (gdbarch)->badvaddr);
433 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
434 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
435 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
436 return;
437 }
438
439 if (regno > 0 && regno < 32)
440 regaddr = regno + MIPS64_EF_REG0;
441 else if (regno == mips_regnum (gdbarch)->lo)
442 regaddr = MIPS64_EF_LO;
443 else if (regno == mips_regnum (gdbarch)->hi)
444 regaddr = MIPS64_EF_HI;
445 else if (regno == mips_regnum (gdbarch)->pc)
446 regaddr = MIPS64_EF_CP0_EPC;
447 else if (regno == mips_regnum (gdbarch)->badvaddr)
448 regaddr = MIPS64_EF_CP0_BADVADDR;
449 else if (regno == MIPS_PS_REGNUM)
450 regaddr = MIPS64_EF_CP0_STATUS;
451 else if (regno == mips_regnum (gdbarch)->cause)
452 regaddr = MIPS64_EF_CP0_CAUSE;
453 else if (mips_linux_restart_reg_p (gdbarch)
454 && regno == MIPS_RESTART_REGNUM)
455 regaddr = MIPS64_EF_REG0;
456 else
457 regaddr = -1;
458
459 if (regaddr != -1)
460 {
461 dst = regp + regaddr;
462 regcache->raw_collect_integer (regno, (gdb_byte *) dst, 8, true);
463 }
464 }
465
466 static void
467 mips64_fill_gregset_wrapper (const struct regset *regset,
468 const struct regcache *regcache,
469 int regnum, void *gregs, size_t len)
470 {
471 gdb_assert (len >= sizeof (mips64_elf_gregset_t));
472
473 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
474 }
475
476 /* Likewise, unpack an elf_fpregset_t. */
477
478 void
479 mips64_supply_fpregset (struct regcache *regcache,
480 const mips64_elf_fpregset_t *fpregsetp)
481 {
482 struct gdbarch *gdbarch = get_regcache_arch (regcache);
483 int regi;
484
485 /* See mips_linux_o32_sigframe_init for a description of the
486 peculiar FP register layout. */
487 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
488 for (regi = 0; regi < 32; regi++)
489 {
490 const gdb_byte *reg_ptr
491 = (const gdb_byte *) (*fpregsetp + (regi & ~1));
492 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
493 reg_ptr += 4;
494 regcache_raw_supply (regcache,
495 gdbarch_fp0_regnum (gdbarch) + regi,
496 reg_ptr);
497 }
498 else
499 for (regi = 0; regi < 32; regi++)
500 regcache_raw_supply (regcache,
501 gdbarch_fp0_regnum (gdbarch) + regi,
502 (const char *) (*fpregsetp + regi));
503
504 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
505 (const gdb_byte *) (*fpregsetp + 32));
506
507 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
508 include it - but the result of PTRACE_GETFPREGS does. The best we
509 can do is to assume that its value is present. */
510 supply_32bit_reg (regcache,
511 mips_regnum (gdbarch)->fp_implementation_revision,
512 (const gdb_byte *) (*fpregsetp + 32) + 4);
513 }
514
515 static void
516 mips64_supply_fpregset_wrapper (const struct regset *regset,
517 struct regcache *regcache,
518 int regnum, const void *gregs, size_t len)
519 {
520 gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
521
522 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
523 }
524
525 /* Likewise, pack one or all floating point registers into an
526 elf_fpregset_t. */
527
528 void
529 mips64_fill_fpregset (const struct regcache *regcache,
530 mips64_elf_fpregset_t *fpregsetp, int regno)
531 {
532 struct gdbarch *gdbarch = get_regcache_arch (regcache);
533 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
534 gdb_byte *to;
535
536 if ((regno >= gdbarch_fp0_regnum (gdbarch))
537 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
538 {
539 /* See mips_linux_o32_sigframe_init for a description of the
540 peculiar FP register layout. */
541 if (register_size (gdbarch, regno) == 4)
542 {
543 int regi = regno - gdbarch_fp0_regnum (gdbarch);
544
545 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
546 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
547 to += 4;
548 regcache_raw_collect (regcache, regno, to);
549 }
550 else
551 {
552 to = (gdb_byte *) (*fpregsetp + regno
553 - gdbarch_fp0_regnum (gdbarch));
554 regcache_raw_collect (regcache, regno, to);
555 }
556 }
557 else if (regno == mips_regnum (gdbarch)->fp_control_status)
558 {
559 to = (gdb_byte *) (*fpregsetp + 32);
560 regcache->raw_collect_integer (regno, to, 4, true);
561 }
562 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
563 {
564 to = (gdb_byte *) (*fpregsetp + 32) + 4;
565 regcache->raw_collect_integer (regno, to, 4, true);
566 }
567 else if (regno == -1)
568 {
569 int regi;
570
571 for (regi = 0; regi < 32; regi++)
572 mips64_fill_fpregset (regcache, fpregsetp,
573 gdbarch_fp0_regnum (gdbarch) + regi);
574 mips64_fill_fpregset (regcache, fpregsetp,
575 mips_regnum (gdbarch)->fp_control_status);
576 mips64_fill_fpregset (regcache, fpregsetp,
577 mips_regnum (gdbarch)->fp_implementation_revision);
578 }
579 }
580
581 static void
582 mips64_fill_fpregset_wrapper (const struct regset *regset,
583 const struct regcache *regcache,
584 int regnum, void *gregs, size_t len)
585 {
586 gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
587
588 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
589 }
590
591 static const struct regset mips_linux_gregset =
592 {
593 NULL, mips_supply_gregset_wrapper, mips_fill_gregset_wrapper
594 };
595
596 static const struct regset mips64_linux_gregset =
597 {
598 NULL, mips64_supply_gregset_wrapper, mips64_fill_gregset_wrapper
599 };
600
601 static const struct regset mips_linux_fpregset =
602 {
603 NULL, mips_supply_fpregset_wrapper, mips_fill_fpregset_wrapper
604 };
605
606 static const struct regset mips64_linux_fpregset =
607 {
608 NULL, mips64_supply_fpregset_wrapper, mips64_fill_fpregset_wrapper
609 };
610
611 static void
612 mips_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
613 iterate_over_regset_sections_cb *cb,
614 void *cb_data,
615 const struct regcache *regcache)
616 {
617 if (register_size (gdbarch, MIPS_ZERO_REGNUM) == 4)
618 {
619 cb (".reg", sizeof (mips_elf_gregset_t), &mips_linux_gregset,
620 NULL, cb_data);
621 cb (".reg2", sizeof (mips_elf_fpregset_t), &mips_linux_fpregset,
622 NULL, cb_data);
623 }
624 else
625 {
626 cb (".reg", sizeof (mips64_elf_gregset_t), &mips64_linux_gregset,
627 NULL, cb_data);
628 cb (".reg2", sizeof (mips64_elf_fpregset_t), &mips64_linux_fpregset,
629 NULL, cb_data);
630 }
631 }
632
633 static const struct target_desc *
634 mips_linux_core_read_description (struct gdbarch *gdbarch,
635 struct target_ops *target,
636 bfd *abfd)
637 {
638 asection *section = bfd_get_section_by_name (abfd, ".reg");
639 if (! section)
640 return NULL;
641
642 switch (bfd_section_size (abfd, section))
643 {
644 case sizeof (mips_elf_gregset_t):
645 return mips_tdesc_gp32;
646
647 case sizeof (mips64_elf_gregset_t):
648 return mips_tdesc_gp64;
649
650 default:
651 return NULL;
652 }
653 }
654
655
656 /* Check the code at PC for a dynamic linker lazy resolution stub.
657 GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
658 section uniformly since version 2.15. If the pc is in that section,
659 then we are in such a stub. Before that ".stub" was used in 32-bit
660 ELF binaries, however we do not bother checking for that since we
661 have never had and that case should be extremely rare these days.
662 Instead we pattern-match on the code generated by GNU ld. They look
663 like this:
664
665 lw t9,0x8010(gp)
666 addu t7,ra
667 jalr t9,ra
668 addiu t8,zero,INDEX
669
670 (with the appropriate doubleword instructions for N64). As any lazy
671 resolution stubs in microMIPS binaries will always be in a
672 ".MIPS.stubs" section we only ever verify standard MIPS patterns. */
673
674 static int
675 mips_linux_in_dynsym_stub (CORE_ADDR pc)
676 {
677 gdb_byte buf[28], *p;
678 ULONGEST insn, insn1;
679 int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64);
680 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
681
682 if (in_mips_stubs_section (pc))
683 return 1;
684
685 read_memory (pc - 12, buf, 28);
686
687 if (n64)
688 {
689 /* ld t9,0x8010(gp) */
690 insn1 = 0xdf998010;
691 }
692 else
693 {
694 /* lw t9,0x8010(gp) */
695 insn1 = 0x8f998010;
696 }
697
698 p = buf + 12;
699 while (p >= buf)
700 {
701 insn = extract_unsigned_integer (p, 4, byte_order);
702 if (insn == insn1)
703 break;
704 p -= 4;
705 }
706 if (p < buf)
707 return 0;
708
709 insn = extract_unsigned_integer (p + 4, 4, byte_order);
710 if (n64)
711 {
712 /* 'daddu t7,ra' or 'or t7, ra, zero'*/
713 if (insn != 0x03e0782d || insn != 0x03e07825)
714 return 0;
715
716 }
717 else
718 {
719 /* 'addu t7,ra' or 'or t7, ra, zero'*/
720 if (insn != 0x03e07821 || insn != 0x03e07825)
721 return 0;
722
723 }
724
725 insn = extract_unsigned_integer (p + 8, 4, byte_order);
726 /* jalr t9,ra */
727 if (insn != 0x0320f809)
728 return 0;
729
730 insn = extract_unsigned_integer (p + 12, 4, byte_order);
731 if (n64)
732 {
733 /* daddiu t8,zero,0 */
734 if ((insn & 0xffff0000) != 0x64180000)
735 return 0;
736 }
737 else
738 {
739 /* addiu t8,zero,0 */
740 if ((insn & 0xffff0000) != 0x24180000)
741 return 0;
742 }
743
744 return 1;
745 }
746
747 /* Return non-zero iff PC belongs to the dynamic linker resolution
748 code, a PLT entry, or a lazy binding stub. */
749
750 static int
751 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
752 {
753 /* Check whether PC is in the dynamic linker. This also checks
754 whether it is in the .plt section, used by non-PIC executables. */
755 if (svr4_in_dynsym_resolve_code (pc))
756 return 1;
757
758 /* Likewise for the stubs. They live in the .MIPS.stubs section these
759 days, so we check if the PC is within, than fall back to a pattern
760 match. */
761 if (mips_linux_in_dynsym_stub (pc))
762 return 1;
763
764 return 0;
765 }
766
767 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
768 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
769 implementation of this triggers at "fixup" from the same objfile as
770 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
771 "__dl_runtime_resolve" directly. An unresolved lazy binding
772 stub will point to _dl_runtime_resolve, which will first call
773 __dl_runtime_resolve, and then pass control to the resolved
774 function. */
775
776 static CORE_ADDR
777 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
778 {
779 struct bound_minimal_symbol resolver;
780
781 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
782
783 if (resolver.minsym && BMSYMBOL_VALUE_ADDRESS (resolver) == pc)
784 return frame_unwind_caller_pc (get_current_frame ());
785
786 return glibc_skip_solib_resolver (gdbarch, pc);
787 }
788
789 /* Signal trampoline support. There are four supported layouts for a
790 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
791 n64 rt_sigframe. We handle them all independently; not the most
792 efficient way, but simplest. First, declare all the unwinders. */
793
794 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
795 struct frame_info *this_frame,
796 struct trad_frame_cache *this_cache,
797 CORE_ADDR func);
798
799 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
800 struct frame_info *this_frame,
801 struct trad_frame_cache *this_cache,
802 CORE_ADDR func);
803
804 static int mips_linux_sigframe_validate (const struct tramp_frame *self,
805 struct frame_info *this_frame,
806 CORE_ADDR *pc);
807
808 static int micromips_linux_sigframe_validate (const struct tramp_frame *self,
809 struct frame_info *this_frame,
810 CORE_ADDR *pc);
811
812 #define MIPS_NR_LINUX 4000
813 #define MIPS_NR_N64_LINUX 5000
814 #define MIPS_NR_N32_LINUX 6000
815
816 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
817 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
818 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
819 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
820
821 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
822 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
823 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
824 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
825 #define MIPS_INST_SYSCALL 0x0000000c
826
827 #define MICROMIPS_INST_LI_V0 0x3040
828 #define MICROMIPS_INST_POOL32A 0x0000
829 #define MICROMIPS_INST_SYSCALL 0x8b7c
830
831 static const struct tramp_frame mips_linux_o32_sigframe = {
832 SIGTRAMP_FRAME,
833 4,
834 {
835 { MIPS_INST_LI_V0_SIGRETURN, -1 },
836 { MIPS_INST_SYSCALL, -1 },
837 { TRAMP_SENTINEL_INSN, -1 }
838 },
839 mips_linux_o32_sigframe_init,
840 mips_linux_sigframe_validate
841 };
842
843 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
844 SIGTRAMP_FRAME,
845 4,
846 {
847 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
848 { MIPS_INST_SYSCALL, -1 },
849 { TRAMP_SENTINEL_INSN, -1 } },
850 mips_linux_o32_sigframe_init,
851 mips_linux_sigframe_validate
852 };
853
854 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
855 SIGTRAMP_FRAME,
856 4,
857 {
858 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
859 { MIPS_INST_SYSCALL, -1 },
860 { TRAMP_SENTINEL_INSN, -1 }
861 },
862 mips_linux_n32n64_sigframe_init,
863 mips_linux_sigframe_validate
864 };
865
866 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
867 SIGTRAMP_FRAME,
868 4,
869 {
870 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
871 { MIPS_INST_SYSCALL, -1 },
872 { TRAMP_SENTINEL_INSN, -1 }
873 },
874 mips_linux_n32n64_sigframe_init,
875 mips_linux_sigframe_validate
876 };
877
878 static const struct tramp_frame micromips_linux_o32_sigframe = {
879 SIGTRAMP_FRAME,
880 2,
881 {
882 { MICROMIPS_INST_LI_V0, -1 },
883 { MIPS_NR_sigreturn, -1 },
884 { MICROMIPS_INST_POOL32A, -1 },
885 { MICROMIPS_INST_SYSCALL, -1 },
886 { TRAMP_SENTINEL_INSN, -1 }
887 },
888 mips_linux_o32_sigframe_init,
889 micromips_linux_sigframe_validate
890 };
891
892 static const struct tramp_frame micromips_linux_o32_rt_sigframe = {
893 SIGTRAMP_FRAME,
894 2,
895 {
896 { MICROMIPS_INST_LI_V0, -1 },
897 { MIPS_NR_rt_sigreturn, -1 },
898 { MICROMIPS_INST_POOL32A, -1 },
899 { MICROMIPS_INST_SYSCALL, -1 },
900 { TRAMP_SENTINEL_INSN, -1 }
901 },
902 mips_linux_o32_sigframe_init,
903 micromips_linux_sigframe_validate
904 };
905
906 static const struct tramp_frame micromips_linux_n32_rt_sigframe = {
907 SIGTRAMP_FRAME,
908 2,
909 {
910 { MICROMIPS_INST_LI_V0, -1 },
911 { MIPS_NR_N32_rt_sigreturn, -1 },
912 { MICROMIPS_INST_POOL32A, -1 },
913 { MICROMIPS_INST_SYSCALL, -1 },
914 { TRAMP_SENTINEL_INSN, -1 }
915 },
916 mips_linux_n32n64_sigframe_init,
917 micromips_linux_sigframe_validate
918 };
919
920 static const struct tramp_frame micromips_linux_n64_rt_sigframe = {
921 SIGTRAMP_FRAME,
922 2,
923 {
924 { MICROMIPS_INST_LI_V0, -1 },
925 { MIPS_NR_N64_rt_sigreturn, -1 },
926 { MICROMIPS_INST_POOL32A, -1 },
927 { MICROMIPS_INST_SYSCALL, -1 },
928 { TRAMP_SENTINEL_INSN, -1 }
929 },
930 mips_linux_n32n64_sigframe_init,
931 micromips_linux_sigframe_validate
932 };
933
934 /* *INDENT-OFF* */
935 /* The unwinder for o32 signal frames. The legacy structures look
936 like this:
937
938 struct sigframe {
939 u32 sf_ass[4]; [argument save space for o32]
940 u32 sf_code[2]; [signal trampoline or fill]
941 struct sigcontext sf_sc;
942 sigset_t sf_mask;
943 };
944
945 Pre-2.6.12 sigcontext:
946
947 struct sigcontext {
948 unsigned int sc_regmask; [Unused]
949 unsigned int sc_status;
950 unsigned long long sc_pc;
951 unsigned long long sc_regs[32];
952 unsigned long long sc_fpregs[32];
953 unsigned int sc_ownedfp;
954 unsigned int sc_fpc_csr;
955 unsigned int sc_fpc_eir; [Unused]
956 unsigned int sc_used_math;
957 unsigned int sc_ssflags; [Unused]
958 [Alignment hole of four bytes]
959 unsigned long long sc_mdhi;
960 unsigned long long sc_mdlo;
961
962 unsigned int sc_cause; [Unused]
963 unsigned int sc_badvaddr; [Unused]
964
965 unsigned long sc_sigset[4]; [kernel's sigset_t]
966 };
967
968 Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
969
970 struct sigcontext {
971 unsigned int sc_regmask; [Unused]
972 unsigned int sc_status; [Unused]
973 unsigned long long sc_pc;
974 unsigned long long sc_regs[32];
975 unsigned long long sc_fpregs[32];
976 unsigned int sc_acx;
977 unsigned int sc_fpc_csr;
978 unsigned int sc_fpc_eir; [Unused]
979 unsigned int sc_used_math;
980 unsigned int sc_dsp;
981 [Alignment hole of four bytes]
982 unsigned long long sc_mdhi;
983 unsigned long long sc_mdlo;
984 unsigned long sc_hi1;
985 unsigned long sc_lo1;
986 unsigned long sc_hi2;
987 unsigned long sc_lo2;
988 unsigned long sc_hi3;
989 unsigned long sc_lo3;
990 };
991
992 The RT signal frames look like this:
993
994 struct rt_sigframe {
995 u32 rs_ass[4]; [argument save space for o32]
996 u32 rs_code[2] [signal trampoline or fill]
997 struct siginfo rs_info;
998 struct ucontext rs_uc;
999 };
1000
1001 struct ucontext {
1002 unsigned long uc_flags;
1003 struct ucontext *uc_link;
1004 stack_t uc_stack;
1005 [Alignment hole of four bytes]
1006 struct sigcontext uc_mcontext;
1007 sigset_t uc_sigmask;
1008 }; */
1009 /* *INDENT-ON* */
1010
1011 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
1012
1013 #define RTSIGFRAME_SIGINFO_SIZE 128
1014 #define STACK_T_SIZE (3 * 4)
1015 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
1016 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1017 + RTSIGFRAME_SIGINFO_SIZE \
1018 + UCONTEXT_SIGCONTEXT_OFFSET)
1019
1020 #define SIGCONTEXT_PC (1 * 8)
1021 #define SIGCONTEXT_REGS (2 * 8)
1022 #define SIGCONTEXT_FPREGS (34 * 8)
1023 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
1024 #define SIGCONTEXT_DSPCTL (68 * 8 + 0)
1025 #define SIGCONTEXT_HI (69 * 8)
1026 #define SIGCONTEXT_LO (70 * 8)
1027 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
1028 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
1029 #define SIGCONTEXT_HI1 (71 * 8 + 0)
1030 #define SIGCONTEXT_LO1 (71 * 8 + 4)
1031 #define SIGCONTEXT_HI2 (72 * 8 + 0)
1032 #define SIGCONTEXT_LO2 (72 * 8 + 4)
1033 #define SIGCONTEXT_HI3 (73 * 8 + 0)
1034 #define SIGCONTEXT_LO3 (73 * 8 + 4)
1035
1036 #define SIGCONTEXT_REG_SIZE 8
1037
1038 static void
1039 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
1040 struct frame_info *this_frame,
1041 struct trad_frame_cache *this_cache,
1042 CORE_ADDR func)
1043 {
1044 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1045 int ireg;
1046 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1047 CORE_ADDR sigcontext_base;
1048 const struct mips_regnum *regs = mips_regnum (gdbarch);
1049 CORE_ADDR regs_base;
1050
1051 if (self == &mips_linux_o32_sigframe
1052 || self == &micromips_linux_o32_sigframe)
1053 sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
1054 else
1055 sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
1056
1057 /* I'm not proud of this hack. Eventually we will have the
1058 infrastructure to indicate the size of saved registers on a
1059 per-frame basis, but right now we don't; the kernel saves eight
1060 bytes but we only want four. Use regs_base to access any
1061 64-bit fields. */
1062 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1063 regs_base = sigcontext_base + 4;
1064 else
1065 regs_base = sigcontext_base;
1066
1067 if (mips_linux_restart_reg_p (gdbarch))
1068 trad_frame_set_reg_addr (this_cache,
1069 (MIPS_RESTART_REGNUM
1070 + gdbarch_num_regs (gdbarch)),
1071 regs_base + SIGCONTEXT_REGS);
1072
1073 for (ireg = 1; ireg < 32; ireg++)
1074 trad_frame_set_reg_addr (this_cache,
1075 (ireg + MIPS_ZERO_REGNUM
1076 + gdbarch_num_regs (gdbarch)),
1077 (regs_base + SIGCONTEXT_REGS
1078 + ireg * SIGCONTEXT_REG_SIZE));
1079
1080 /* The way that floating point registers are saved, unfortunately,
1081 depends on the architecture the kernel is built for. For the r3000 and
1082 tx39, four bytes of each register are at the beginning of each of the
1083 32 eight byte slots. For everything else, the registers are saved
1084 using double precision; only the even-numbered slots are initialized,
1085 and the high bits are the odd-numbered register. Assume the latter
1086 layout, since we can't tell, and it's much more common. Which bits are
1087 the "high" bits depends on endianness. */
1088 for (ireg = 0; ireg < 32; ireg++)
1089 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
1090 trad_frame_set_reg_addr (this_cache,
1091 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1092 (sigcontext_base + SIGCONTEXT_FPREGS + 4
1093 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1094 else
1095 trad_frame_set_reg_addr (this_cache,
1096 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1097 (sigcontext_base + SIGCONTEXT_FPREGS
1098 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1099
1100 trad_frame_set_reg_addr (this_cache,
1101 regs->pc + gdbarch_num_regs (gdbarch),
1102 regs_base + SIGCONTEXT_PC);
1103
1104 trad_frame_set_reg_addr (this_cache,
1105 (regs->fp_control_status
1106 + gdbarch_num_regs (gdbarch)),
1107 sigcontext_base + SIGCONTEXT_FPCSR);
1108
1109 if (regs->dspctl != -1)
1110 trad_frame_set_reg_addr (this_cache,
1111 regs->dspctl + gdbarch_num_regs (gdbarch),
1112 sigcontext_base + SIGCONTEXT_DSPCTL);
1113
1114 trad_frame_set_reg_addr (this_cache,
1115 regs->hi + gdbarch_num_regs (gdbarch),
1116 regs_base + SIGCONTEXT_HI);
1117 trad_frame_set_reg_addr (this_cache,
1118 regs->lo + gdbarch_num_regs (gdbarch),
1119 regs_base + SIGCONTEXT_LO);
1120
1121 if (regs->dspacc != -1)
1122 {
1123 trad_frame_set_reg_addr (this_cache,
1124 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1125 sigcontext_base + SIGCONTEXT_HI1);
1126 trad_frame_set_reg_addr (this_cache,
1127 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1128 sigcontext_base + SIGCONTEXT_LO1);
1129 trad_frame_set_reg_addr (this_cache,
1130 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1131 sigcontext_base + SIGCONTEXT_HI2);
1132 trad_frame_set_reg_addr (this_cache,
1133 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1134 sigcontext_base + SIGCONTEXT_LO2);
1135 trad_frame_set_reg_addr (this_cache,
1136 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1137 sigcontext_base + SIGCONTEXT_HI3);
1138 trad_frame_set_reg_addr (this_cache,
1139 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1140 sigcontext_base + SIGCONTEXT_LO3);
1141 }
1142 else
1143 {
1144 trad_frame_set_reg_addr (this_cache,
1145 regs->cause + gdbarch_num_regs (gdbarch),
1146 sigcontext_base + SIGCONTEXT_CAUSE);
1147 trad_frame_set_reg_addr (this_cache,
1148 regs->badvaddr + gdbarch_num_regs (gdbarch),
1149 sigcontext_base + SIGCONTEXT_BADVADDR);
1150 }
1151
1152 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1153 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1154 }
1155
1156 /* *INDENT-OFF* */
1157 /* For N32/N64 things look different. There is no non-rt signal frame.
1158
1159 struct rt_sigframe_n32 {
1160 u32 rs_ass[4]; [ argument save space for o32 ]
1161 u32 rs_code[2]; [ signal trampoline or fill ]
1162 struct siginfo rs_info;
1163 struct ucontextn32 rs_uc;
1164 };
1165
1166 struct ucontextn32 {
1167 u32 uc_flags;
1168 s32 uc_link;
1169 stack32_t uc_stack;
1170 struct sigcontext uc_mcontext;
1171 sigset_t uc_sigmask; [ mask last for extensibility ]
1172 };
1173
1174 struct rt_sigframe {
1175 u32 rs_ass[4]; [ argument save space for o32 ]
1176 u32 rs_code[2]; [ signal trampoline ]
1177 struct siginfo rs_info;
1178 struct ucontext rs_uc;
1179 };
1180
1181 struct ucontext {
1182 unsigned long uc_flags;
1183 struct ucontext *uc_link;
1184 stack_t uc_stack;
1185 struct sigcontext uc_mcontext;
1186 sigset_t uc_sigmask; [ mask last for extensibility ]
1187 };
1188
1189 And the sigcontext is different (this is for both n32 and n64):
1190
1191 struct sigcontext {
1192 unsigned long long sc_regs[32];
1193 unsigned long long sc_fpregs[32];
1194 unsigned long long sc_mdhi;
1195 unsigned long long sc_hi1;
1196 unsigned long long sc_hi2;
1197 unsigned long long sc_hi3;
1198 unsigned long long sc_mdlo;
1199 unsigned long long sc_lo1;
1200 unsigned long long sc_lo2;
1201 unsigned long long sc_lo3;
1202 unsigned long long sc_pc;
1203 unsigned int sc_fpc_csr;
1204 unsigned int sc_used_math;
1205 unsigned int sc_dsp;
1206 unsigned int sc_reserved;
1207 };
1208
1209 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1210 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1211 included too. */
1212 /* *INDENT-ON* */
1213
1214 #define N32_STACK_T_SIZE STACK_T_SIZE
1215 #define N64_STACK_T_SIZE (2 * 8 + 4)
1216 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1217 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1218 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1219 + RTSIGFRAME_SIGINFO_SIZE \
1220 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1221 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1222 + RTSIGFRAME_SIGINFO_SIZE \
1223 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1224
1225 #define N64_SIGCONTEXT_REGS (0 * 8)
1226 #define N64_SIGCONTEXT_FPREGS (32 * 8)
1227 #define N64_SIGCONTEXT_HI (64 * 8)
1228 #define N64_SIGCONTEXT_HI1 (65 * 8)
1229 #define N64_SIGCONTEXT_HI2 (66 * 8)
1230 #define N64_SIGCONTEXT_HI3 (67 * 8)
1231 #define N64_SIGCONTEXT_LO (68 * 8)
1232 #define N64_SIGCONTEXT_LO1 (69 * 8)
1233 #define N64_SIGCONTEXT_LO2 (70 * 8)
1234 #define N64_SIGCONTEXT_LO3 (71 * 8)
1235 #define N64_SIGCONTEXT_PC (72 * 8)
1236 #define N64_SIGCONTEXT_FPCSR (73 * 8 + 0)
1237 #define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0)
1238
1239 #define N64_SIGCONTEXT_REG_SIZE 8
1240
1241 static void
1242 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1243 struct frame_info *this_frame,
1244 struct trad_frame_cache *this_cache,
1245 CORE_ADDR func)
1246 {
1247 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1248 int ireg;
1249 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1250 CORE_ADDR sigcontext_base;
1251 const struct mips_regnum *regs = mips_regnum (gdbarch);
1252
1253 if (self == &mips_linux_n32_rt_sigframe
1254 || self == &micromips_linux_n32_rt_sigframe)
1255 sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
1256 else
1257 sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
1258
1259 if (mips_linux_restart_reg_p (gdbarch))
1260 trad_frame_set_reg_addr (this_cache,
1261 (MIPS_RESTART_REGNUM
1262 + gdbarch_num_regs (gdbarch)),
1263 sigcontext_base + N64_SIGCONTEXT_REGS);
1264
1265 for (ireg = 1; ireg < 32; ireg++)
1266 trad_frame_set_reg_addr (this_cache,
1267 (ireg + MIPS_ZERO_REGNUM
1268 + gdbarch_num_regs (gdbarch)),
1269 (sigcontext_base + N64_SIGCONTEXT_REGS
1270 + ireg * N64_SIGCONTEXT_REG_SIZE));
1271
1272 for (ireg = 0; ireg < 32; ireg++)
1273 trad_frame_set_reg_addr (this_cache,
1274 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1275 (sigcontext_base + N64_SIGCONTEXT_FPREGS
1276 + ireg * N64_SIGCONTEXT_REG_SIZE));
1277
1278 trad_frame_set_reg_addr (this_cache,
1279 regs->pc + gdbarch_num_regs (gdbarch),
1280 sigcontext_base + N64_SIGCONTEXT_PC);
1281
1282 trad_frame_set_reg_addr (this_cache,
1283 (regs->fp_control_status
1284 + gdbarch_num_regs (gdbarch)),
1285 sigcontext_base + N64_SIGCONTEXT_FPCSR);
1286
1287 trad_frame_set_reg_addr (this_cache,
1288 regs->hi + gdbarch_num_regs (gdbarch),
1289 sigcontext_base + N64_SIGCONTEXT_HI);
1290 trad_frame_set_reg_addr (this_cache,
1291 regs->lo + gdbarch_num_regs (gdbarch),
1292 sigcontext_base + N64_SIGCONTEXT_LO);
1293
1294 if (regs->dspacc != -1)
1295 {
1296 trad_frame_set_reg_addr (this_cache,
1297 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1298 sigcontext_base + N64_SIGCONTEXT_HI1);
1299 trad_frame_set_reg_addr (this_cache,
1300 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1301 sigcontext_base + N64_SIGCONTEXT_LO1);
1302 trad_frame_set_reg_addr (this_cache,
1303 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1304 sigcontext_base + N64_SIGCONTEXT_HI2);
1305 trad_frame_set_reg_addr (this_cache,
1306 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1307 sigcontext_base + N64_SIGCONTEXT_LO2);
1308 trad_frame_set_reg_addr (this_cache,
1309 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1310 sigcontext_base + N64_SIGCONTEXT_HI3);
1311 trad_frame_set_reg_addr (this_cache,
1312 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1313 sigcontext_base + N64_SIGCONTEXT_LO3);
1314 }
1315 if (regs->dspctl != -1)
1316 trad_frame_set_reg_addr (this_cache,
1317 regs->dspctl + gdbarch_num_regs (gdbarch),
1318 sigcontext_base + N64_SIGCONTEXT_DSPCTL);
1319
1320 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1321 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1322 }
1323
1324 /* Implement struct tramp_frame's "validate" method for standard MIPS code. */
1325
1326 static int
1327 mips_linux_sigframe_validate (const struct tramp_frame *self,
1328 struct frame_info *this_frame,
1329 CORE_ADDR *pc)
1330 {
1331 return mips_pc_is_mips (*pc);
1332 }
1333
1334 /* Implement struct tramp_frame's "validate" method for microMIPS code. */
1335
1336 static int
1337 micromips_linux_sigframe_validate (const struct tramp_frame *self,
1338 struct frame_info *this_frame,
1339 CORE_ADDR *pc)
1340 {
1341 if (mips_pc_is_micromips (get_frame_arch (this_frame), *pc))
1342 {
1343 *pc = mips_unmake_compact_addr (*pc);
1344 return 1;
1345 }
1346 else
1347 return 0;
1348 }
1349
1350 /* Implement the "write_pc" gdbarch method. */
1351
1352 static void
1353 mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1354 {
1355 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1356
1357 mips_write_pc (regcache, pc);
1358
1359 /* Clear the syscall restart flag. */
1360 if (mips_linux_restart_reg_p (gdbarch))
1361 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
1362 }
1363
1364 /* Return 1 if MIPS_RESTART_REGNUM is usable. */
1365
1366 int
1367 mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1368 {
1369 /* If we do not have a target description with registers, then
1370 MIPS_RESTART_REGNUM will not be included in the register set. */
1371 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1372 return 0;
1373
1374 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1375 either be GPR-sized or missing. */
1376 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1377 }
1378
1379 /* When FRAME is at a syscall instruction, return the PC of the next
1380 instruction to be executed. */
1381
1382 static CORE_ADDR
1383 mips_linux_syscall_next_pc (struct frame_info *frame)
1384 {
1385 CORE_ADDR pc = get_frame_pc (frame);
1386 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1387
1388 /* If we are about to make a sigreturn syscall, use the unwinder to
1389 decode the signal frame. */
1390 if (v0 == MIPS_NR_sigreturn
1391 || v0 == MIPS_NR_rt_sigreturn
1392 || v0 == MIPS_NR_N64_rt_sigreturn
1393 || v0 == MIPS_NR_N32_rt_sigreturn)
1394 return frame_unwind_caller_pc (get_current_frame ());
1395
1396 return pc + 4;
1397 }
1398
1399 /* Return the current system call's number present in the
1400 v0 register. When the function fails, it returns -1. */
1401
1402 static LONGEST
1403 mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1404 ptid_t ptid)
1405 {
1406 struct regcache *regcache = get_thread_regcache (ptid);
1407 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1408 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1409 int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1410 /* The content of a register */
1411 gdb_byte buf[8];
1412 /* The result */
1413 LONGEST ret;
1414
1415 /* Make sure we're in a known ABI */
1416 gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1417 || tdep->mips_abi == MIPS_ABI_N32
1418 || tdep->mips_abi == MIPS_ABI_N64);
1419
1420 gdb_assert (regsize <= sizeof (buf));
1421
1422 /* Getting the system call number from the register.
1423 syscall number is in v0 or $2. */
1424 regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
1425
1426 ret = extract_signed_integer (buf, regsize, byte_order);
1427
1428 return ret;
1429 }
1430
1431 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
1432 gdbarch.h. */
1433
1434 static int
1435 mips_gdb_signal_to_target (struct gdbarch *gdbarch,
1436 enum gdb_signal signal)
1437 {
1438 switch (signal)
1439 {
1440 case GDB_SIGNAL_EMT:
1441 return MIPS_LINUX_SIGEMT;
1442
1443 case GDB_SIGNAL_BUS:
1444 return MIPS_LINUX_SIGBUS;
1445
1446 case GDB_SIGNAL_SYS:
1447 return MIPS_LINUX_SIGSYS;
1448
1449 case GDB_SIGNAL_USR1:
1450 return MIPS_LINUX_SIGUSR1;
1451
1452 case GDB_SIGNAL_USR2:
1453 return MIPS_LINUX_SIGUSR2;
1454
1455 case GDB_SIGNAL_CHLD:
1456 return MIPS_LINUX_SIGCHLD;
1457
1458 case GDB_SIGNAL_PWR:
1459 return MIPS_LINUX_SIGPWR;
1460
1461 case GDB_SIGNAL_WINCH:
1462 return MIPS_LINUX_SIGWINCH;
1463
1464 case GDB_SIGNAL_URG:
1465 return MIPS_LINUX_SIGURG;
1466
1467 case GDB_SIGNAL_IO:
1468 return MIPS_LINUX_SIGIO;
1469
1470 case GDB_SIGNAL_POLL:
1471 return MIPS_LINUX_SIGPOLL;
1472
1473 case GDB_SIGNAL_STOP:
1474 return MIPS_LINUX_SIGSTOP;
1475
1476 case GDB_SIGNAL_TSTP:
1477 return MIPS_LINUX_SIGTSTP;
1478
1479 case GDB_SIGNAL_CONT:
1480 return MIPS_LINUX_SIGCONT;
1481
1482 case GDB_SIGNAL_TTIN:
1483 return MIPS_LINUX_SIGTTIN;
1484
1485 case GDB_SIGNAL_TTOU:
1486 return MIPS_LINUX_SIGTTOU;
1487
1488 case GDB_SIGNAL_VTALRM:
1489 return MIPS_LINUX_SIGVTALRM;
1490
1491 case GDB_SIGNAL_PROF:
1492 return MIPS_LINUX_SIGPROF;
1493
1494 case GDB_SIGNAL_XCPU:
1495 return MIPS_LINUX_SIGXCPU;
1496
1497 case GDB_SIGNAL_XFSZ:
1498 return MIPS_LINUX_SIGXFSZ;
1499
1500 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
1501 therefore we have to handle it here. */
1502 case GDB_SIGNAL_REALTIME_32:
1503 return MIPS_LINUX_SIGRTMIN;
1504 }
1505
1506 if (signal >= GDB_SIGNAL_REALTIME_33
1507 && signal <= GDB_SIGNAL_REALTIME_63)
1508 {
1509 int offset = signal - GDB_SIGNAL_REALTIME_33;
1510
1511 return MIPS_LINUX_SIGRTMIN + 1 + offset;
1512 }
1513 else if (signal >= GDB_SIGNAL_REALTIME_64
1514 && signal <= GDB_SIGNAL_REALTIME_127)
1515 {
1516 int offset = signal - GDB_SIGNAL_REALTIME_64;
1517
1518 return MIPS_LINUX_SIGRT64 + offset;
1519 }
1520
1521 return linux_gdb_signal_to_target (gdbarch, signal);
1522 }
1523
1524 /* Translate signals based on MIPS signal values.
1525 Adapted from gdb/common/signals.c. */
1526
1527 static enum gdb_signal
1528 mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1529 {
1530 switch (signal)
1531 {
1532 case MIPS_LINUX_SIGEMT:
1533 return GDB_SIGNAL_EMT;
1534
1535 case MIPS_LINUX_SIGBUS:
1536 return GDB_SIGNAL_BUS;
1537
1538 case MIPS_LINUX_SIGSYS:
1539 return GDB_SIGNAL_SYS;
1540
1541 case MIPS_LINUX_SIGUSR1:
1542 return GDB_SIGNAL_USR1;
1543
1544 case MIPS_LINUX_SIGUSR2:
1545 return GDB_SIGNAL_USR2;
1546
1547 case MIPS_LINUX_SIGCHLD:
1548 return GDB_SIGNAL_CHLD;
1549
1550 case MIPS_LINUX_SIGPWR:
1551 return GDB_SIGNAL_PWR;
1552
1553 case MIPS_LINUX_SIGWINCH:
1554 return GDB_SIGNAL_WINCH;
1555
1556 case MIPS_LINUX_SIGURG:
1557 return GDB_SIGNAL_URG;
1558
1559 /* No way to differentiate between SIGIO and SIGPOLL.
1560 Therefore, we just handle the first one. */
1561 case MIPS_LINUX_SIGIO:
1562 return GDB_SIGNAL_IO;
1563
1564 case MIPS_LINUX_SIGSTOP:
1565 return GDB_SIGNAL_STOP;
1566
1567 case MIPS_LINUX_SIGTSTP:
1568 return GDB_SIGNAL_TSTP;
1569
1570 case MIPS_LINUX_SIGCONT:
1571 return GDB_SIGNAL_CONT;
1572
1573 case MIPS_LINUX_SIGTTIN:
1574 return GDB_SIGNAL_TTIN;
1575
1576 case MIPS_LINUX_SIGTTOU:
1577 return GDB_SIGNAL_TTOU;
1578
1579 case MIPS_LINUX_SIGVTALRM:
1580 return GDB_SIGNAL_VTALRM;
1581
1582 case MIPS_LINUX_SIGPROF:
1583 return GDB_SIGNAL_PROF;
1584
1585 case MIPS_LINUX_SIGXCPU:
1586 return GDB_SIGNAL_XCPU;
1587
1588 case MIPS_LINUX_SIGXFSZ:
1589 return GDB_SIGNAL_XFSZ;
1590 }
1591
1592 if (signal >= MIPS_LINUX_SIGRTMIN && signal <= MIPS_LINUX_SIGRTMAX)
1593 {
1594 /* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
1595 the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */
1596 int offset = signal - MIPS_LINUX_SIGRTMIN;
1597
1598 if (offset == 0)
1599 return GDB_SIGNAL_REALTIME_32;
1600 else if (offset < 32)
1601 return (enum gdb_signal) (offset - 1
1602 + (int) GDB_SIGNAL_REALTIME_33);
1603 else
1604 return (enum gdb_signal) (offset - 32
1605 + (int) GDB_SIGNAL_REALTIME_64);
1606 }
1607
1608 return linux_gdb_signal_from_target (gdbarch, signal);
1609 }
1610
1611 /* Initialize one of the GNU/Linux OS ABIs. */
1612
1613 static void
1614 mips_linux_init_abi (struct gdbarch_info info,
1615 struct gdbarch *gdbarch)
1616 {
1617 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1618 enum mips_abi abi = mips_abi (gdbarch);
1619 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
1620
1621 linux_init_abi (info, gdbarch);
1622
1623 /* Get the syscall number from the arch's register. */
1624 set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1625
1626 switch (abi)
1627 {
1628 case MIPS_ABI_O32:
1629 set_gdbarch_get_longjmp_target (gdbarch,
1630 mips_linux_get_longjmp_target);
1631 set_solib_svr4_fetch_link_map_offsets
1632 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1633 tramp_frame_prepend_unwinder (gdbarch, &micromips_linux_o32_sigframe);
1634 tramp_frame_prepend_unwinder (gdbarch,
1635 &micromips_linux_o32_rt_sigframe);
1636 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1637 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1638 set_xml_syscall_file_name (gdbarch, "syscalls/mips-o32-linux.xml");
1639 break;
1640 case MIPS_ABI_N32:
1641 set_gdbarch_get_longjmp_target (gdbarch,
1642 mips_linux_get_longjmp_target);
1643 set_solib_svr4_fetch_link_map_offsets
1644 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1645 set_gdbarch_long_double_bit (gdbarch, 128);
1646 /* These floatformats should probably be renamed. MIPS uses
1647 the same 128-bit IEEE floating point format that IA-64 uses,
1648 except that the quiet/signalling NaN bit is reversed (GDB
1649 does not distinguish between quiet and signalling NaNs). */
1650 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1651 tramp_frame_prepend_unwinder (gdbarch,
1652 &micromips_linux_n32_rt_sigframe);
1653 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1654 set_xml_syscall_file_name (gdbarch, "syscalls/mips-n32-linux.xml");
1655 break;
1656 case MIPS_ABI_N64:
1657 set_gdbarch_get_longjmp_target (gdbarch,
1658 mips64_linux_get_longjmp_target);
1659 set_solib_svr4_fetch_link_map_offsets
1660 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1661 set_gdbarch_long_double_bit (gdbarch, 128);
1662 /* These floatformats should probably be renamed. MIPS uses
1663 the same 128-bit IEEE floating point format that IA-64 uses,
1664 except that the quiet/signalling NaN bit is reversed (GDB
1665 does not distinguish between quiet and signalling NaNs). */
1666 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1667 tramp_frame_prepend_unwinder (gdbarch,
1668 &micromips_linux_n64_rt_sigframe);
1669 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1670 set_xml_syscall_file_name (gdbarch, "syscalls/mips-n64-linux.xml");
1671 break;
1672 default:
1673 break;
1674 }
1675
1676 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1677
1678 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1679
1680 /* Enable TLS support. */
1681 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1682 svr4_fetch_objfile_link_map);
1683
1684 /* Initialize this lazily, to avoid an initialization order
1685 dependency on solib-svr4.c's _initialize routine. */
1686 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1687 {
1688 mips_svr4_so_ops = svr4_so_ops;
1689 mips_svr4_so_ops.in_dynsym_resolve_code
1690 = mips_linux_in_dynsym_resolve_code;
1691 }
1692 set_solib_ops (gdbarch, &mips_svr4_so_ops);
1693
1694 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1695
1696 set_gdbarch_core_read_description (gdbarch,
1697 mips_linux_core_read_description);
1698
1699 set_gdbarch_iterate_over_regset_sections
1700 (gdbarch, mips_linux_iterate_over_regset_sections);
1701
1702 set_gdbarch_gdb_signal_from_target (gdbarch,
1703 mips_gdb_signal_from_target);
1704
1705 set_gdbarch_gdb_signal_to_target (gdbarch,
1706 mips_gdb_signal_to_target);
1707
1708 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1709
1710 if (tdesc_data)
1711 {
1712 const struct tdesc_feature *feature;
1713
1714 /* If we have target-described registers, then we can safely
1715 reserve a number for MIPS_RESTART_REGNUM (whether it is
1716 described or not). */
1717 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1718 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1719 set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1720
1721 /* If it's present, then assign it to the reserved number. */
1722 feature = tdesc_find_feature (info.target_desc,
1723 "org.gnu.gdb.mips.linux");
1724 if (feature != NULL)
1725 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1726 "restart");
1727 }
1728 }
1729
1730 /* Provide a prototype to silence -Wmissing-prototypes. */
1731 extern initialize_file_ftype _initialize_mips_linux_tdep;
1732
1733 void
1734 _initialize_mips_linux_tdep (void)
1735 {
1736 const struct bfd_arch_info *arch_info;
1737
1738 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1739 arch_info != NULL;
1740 arch_info = arch_info->next)
1741 {
1742 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1743 GDB_OSABI_LINUX,
1744 mips_linux_init_abi);
1745 }
1746
1747 /* Initialize the standard target descriptions. */
1748 initialize_tdesc_mips_linux ();
1749 initialize_tdesc_mips_dsp_linux ();
1750 initialize_tdesc_mips64_linux ();
1751 initialize_tdesc_mips64_dsp_linux ();
1752 }
This page took 0.0983810000000001 seconds and 4 git commands to generate.