2003-11-16 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "target.h"
25 #include "solib-svr4.h"
26 #include "osabi.h"
27 #include "mips-tdep.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30
31 /* Copied from <asm/elf.h>. */
32 #define ELF_NGREG 45
33 #define ELF_NFPREG 33
34
35 typedef unsigned char elf_greg_t[4];
36 typedef elf_greg_t elf_gregset_t[ELF_NGREG];
37
38 typedef unsigned char elf_fpreg_t[8];
39 typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG];
40
41 /* 0 - 31 are integer registers, 32 - 63 are fp registers. */
42 #define FPR_BASE 32
43 #define PC 64
44 #define CAUSE 65
45 #define BADVADDR 66
46 #define MMHI 67
47 #define MMLO 68
48 #define FPC_CSR 69
49 #define FPC_EIR 70
50
51 #define EF_REG0 6
52 #define EF_REG31 37
53 #define EF_LO 38
54 #define EF_HI 39
55 #define EF_CP0_EPC 40
56 #define EF_CP0_BADVADDR 41
57 #define EF_CP0_STATUS 42
58 #define EF_CP0_CAUSE 43
59
60 #define EF_SIZE 180
61
62 /* Figure out where the longjmp will land.
63 We expect the first arg to be a pointer to the jmp_buf structure from
64 which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
65 is copied into PC. This routine returns 1 on success. */
66
67 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
68 #define MIPS_LINUX_JB_PC 0
69
70 static int
71 mips_linux_get_longjmp_target (CORE_ADDR *pc)
72 {
73 CORE_ADDR jb_addr;
74 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
75
76 jb_addr = read_register (A0_REGNUM);
77
78 if (target_read_memory (jb_addr
79 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
80 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
81 return 0;
82
83 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
84
85 return 1;
86 }
87
88 /* Transform the bits comprising a 32-bit register to the right size
89 for supply_register(). This is needed when mips_regsize() is 8. */
90
91 static void
92 supply_32bit_reg (int regnum, const void *addr)
93 {
94 char buf[MAX_REGISTER_SIZE];
95 store_signed_integer (buf, DEPRECATED_REGISTER_RAW_SIZE (regnum),
96 extract_signed_integer (addr, 4));
97 supply_register (regnum, buf);
98 }
99
100 /* Unpack an elf_gregset_t into GDB's register cache. */
101
102 void
103 supply_gregset (elf_gregset_t *gregsetp)
104 {
105 int regi;
106 elf_greg_t *regp = *gregsetp;
107 char zerobuf[MAX_REGISTER_SIZE];
108
109 memset (zerobuf, 0, MAX_REGISTER_SIZE);
110
111 for (regi = EF_REG0; regi <= EF_REG31; regi++)
112 supply_32bit_reg ((regi - EF_REG0), (char *)(regp + regi));
113
114 supply_32bit_reg (LO_REGNUM, (char *)(regp + EF_LO));
115 supply_32bit_reg (HI_REGNUM, (char *)(regp + EF_HI));
116
117 supply_32bit_reg (PC_REGNUM, (char *)(regp + EF_CP0_EPC));
118 supply_32bit_reg (BADVADDR_REGNUM, (char *)(regp + EF_CP0_BADVADDR));
119 supply_32bit_reg (PS_REGNUM, (char *)(regp + EF_CP0_STATUS));
120 supply_32bit_reg (CAUSE_REGNUM, (char *)(regp + EF_CP0_CAUSE));
121
122 /* Fill inaccessible registers with zero. */
123 supply_register (UNUSED_REGNUM, zerobuf);
124 for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
125 supply_register (regi, zerobuf);
126 }
127
128 /* Pack our registers (or one register) into an elf_gregset_t. */
129
130 void
131 fill_gregset (elf_gregset_t *gregsetp, int regno)
132 {
133 int regaddr, regi;
134 elf_greg_t *regp = *gregsetp;
135 void *dst;
136
137 if (regno == -1)
138 {
139 memset (regp, 0, sizeof (elf_gregset_t));
140 for (regi = 0; regi < 32; regi++)
141 fill_gregset (gregsetp, regi);
142 fill_gregset (gregsetp, LO_REGNUM);
143 fill_gregset (gregsetp, HI_REGNUM);
144 fill_gregset (gregsetp, PC_REGNUM);
145 fill_gregset (gregsetp, BADVADDR_REGNUM);
146 fill_gregset (gregsetp, PS_REGNUM);
147 fill_gregset (gregsetp, CAUSE_REGNUM);
148
149 return;
150 }
151
152 if (regno < 32)
153 {
154 dst = regp + regno + EF_REG0;
155 regcache_collect (regno, dst);
156 return;
157 }
158
159 regaddr = -1;
160 switch (regno)
161 {
162 case LO_REGNUM:
163 regaddr = EF_LO;
164 break;
165 case HI_REGNUM:
166 regaddr = EF_HI;
167 break;
168 case PC_REGNUM:
169 regaddr = EF_CP0_EPC;
170 break;
171 case BADVADDR_REGNUM:
172 regaddr = EF_CP0_BADVADDR;
173 break;
174 case PS_REGNUM:
175 regaddr = EF_CP0_STATUS;
176 break;
177 case CAUSE_REGNUM:
178 regaddr = EF_CP0_CAUSE;
179 break;
180 }
181
182 if (regaddr != -1)
183 {
184 dst = regp + regaddr;
185 regcache_collect (regno, dst);
186 }
187 }
188
189 /* Likewise, unpack an elf_fpregset_t. */
190
191 void
192 supply_fpregset (elf_fpregset_t *fpregsetp)
193 {
194 int regi;
195 char zerobuf[MAX_REGISTER_SIZE];
196
197 memset (zerobuf, 0, MAX_REGISTER_SIZE);
198
199 for (regi = 0; regi < 32; regi++)
200 supply_register (FP0_REGNUM + regi,
201 (char *)(*fpregsetp + regi));
202
203 supply_register (FCRCS_REGNUM, (char *)(*fpregsetp + 32));
204
205 /* FIXME: how can we supply FCRIR_REGNUM? The ABI doesn't tell us. */
206 supply_register (FCRIR_REGNUM, zerobuf);
207 }
208
209 /* Likewise, pack one or all floating point registers into an
210 elf_fpregset_t. */
211
212 void
213 fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
214 {
215 char *from, *to;
216
217 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
218 {
219 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
220 to = (char *) (*fpregsetp + regno - FP0_REGNUM);
221 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno - FP0_REGNUM));
222 }
223 else if (regno == FCRCS_REGNUM)
224 {
225 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
226 to = (char *) (*fpregsetp + 32);
227 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno));
228 }
229 else if (regno == -1)
230 {
231 int regi;
232
233 for (regi = 0; regi < 32; regi++)
234 fill_fpregset (fpregsetp, FP0_REGNUM + regi);
235 fill_fpregset(fpregsetp, FCRCS_REGNUM);
236 }
237 }
238
239 /* Map gdb internal register number to ptrace ``address''.
240 These ``addresses'' are normally defined in <asm/ptrace.h>. */
241
242 static CORE_ADDR
243 mips_linux_register_addr (int regno, CORE_ADDR blockend)
244 {
245 int regaddr;
246
247 if (regno < 0 || regno >= NUM_REGS)
248 error ("Bogon register number %d.", regno);
249
250 if (regno < 32)
251 regaddr = regno;
252 else if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
253 regaddr = FPR_BASE + (regno - FP0_REGNUM);
254 else if (regno == PC_REGNUM)
255 regaddr = PC;
256 else if (regno == CAUSE_REGNUM)
257 regaddr = CAUSE;
258 else if (regno == BADVADDR_REGNUM)
259 regaddr = BADVADDR;
260 else if (regno == LO_REGNUM)
261 regaddr = MMLO;
262 else if (regno == HI_REGNUM)
263 regaddr = MMHI;
264 else if (regno == FCRCS_REGNUM)
265 regaddr = FPC_CSR;
266 else if (regno == FCRIR_REGNUM)
267 regaddr = FPC_EIR;
268 else
269 error ("Unknowable register number %d.", regno);
270
271 return regaddr;
272 }
273
274
275 /* Fetch (and possibly build) an appropriate link_map_offsets
276 structure for native GNU/Linux MIPS targets using the struct offsets
277 defined in link.h (but without actual reference to that file).
278
279 This makes it possible to access GNU/Linux MIPS shared libraries from a
280 GDB that was built on a different host platform (for cross debugging). */
281
282 static struct link_map_offsets *
283 mips_linux_svr4_fetch_link_map_offsets (void)
284 {
285 static struct link_map_offsets lmo;
286 static struct link_map_offsets *lmp = NULL;
287
288 if (lmp == NULL)
289 {
290 lmp = &lmo;
291
292 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
293 this is all we need. */
294 lmo.r_map_offset = 4;
295 lmo.r_map_size = 4;
296
297 lmo.link_map_size = 20;
298
299 lmo.l_addr_offset = 0;
300 lmo.l_addr_size = 4;
301
302 lmo.l_name_offset = 4;
303 lmo.l_name_size = 4;
304
305 lmo.l_next_offset = 12;
306 lmo.l_next_size = 4;
307
308 lmo.l_prev_offset = 16;
309 lmo.l_prev_size = 4;
310 }
311
312 return lmp;
313 }
314
315 /* Support for 64-bit ABIs. */
316
317 /* Copied from <asm/elf.h>. */
318 #define MIPS64_ELF_NGREG 45
319 #define MIPS64_ELF_NFPREG 33
320
321 typedef unsigned char mips64_elf_greg_t[8];
322 typedef mips64_elf_greg_t mips64_elf_gregset_t[MIPS64_ELF_NGREG];
323
324 typedef unsigned char mips64_elf_fpreg_t[8];
325 typedef mips64_elf_fpreg_t mips64_elf_fpregset_t[MIPS64_ELF_NFPREG];
326
327 /* 0 - 31 are integer registers, 32 - 63 are fp registers. */
328 #define MIPS64_FPR_BASE 32
329 #define MIPS64_PC 64
330 #define MIPS64_CAUSE 65
331 #define MIPS64_BADVADDR 66
332 #define MIPS64_MMHI 67
333 #define MIPS64_MMLO 68
334 #define MIPS64_FPC_CSR 69
335 #define MIPS64_FPC_EIR 70
336
337 #define MIPS64_EF_REG0 0
338 #define MIPS64_EF_REG31 31
339 #define MIPS64_EF_LO 32
340 #define MIPS64_EF_HI 33
341 #define MIPS64_EF_CP0_EPC 34
342 #define MIPS64_EF_CP0_BADVADDR 35
343 #define MIPS64_EF_CP0_STATUS 36
344 #define MIPS64_EF_CP0_CAUSE 37
345
346 #define MIPS64_EF_SIZE 304
347
348 /* Figure out where the longjmp will land.
349 We expect the first arg to be a pointer to the jmp_buf structure from
350 which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
351 is copied into PC. This routine returns 1 on success. */
352
353 /* Details about jmp_buf. */
354
355 #define MIPS64_LINUX_JB_PC 0
356
357 static int
358 mips64_linux_get_longjmp_target (CORE_ADDR *pc)
359 {
360 CORE_ADDR jb_addr;
361 void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
362 int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;
363
364 jb_addr = read_register (A0_REGNUM);
365
366 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
367 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
368 return 0;
369
370 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
371
372 return 1;
373 }
374
375 /* Unpack an elf_gregset_t into GDB's register cache. */
376
377 static void
378 mips64_supply_gregset (mips64_elf_gregset_t *gregsetp)
379 {
380 int regi;
381 mips64_elf_greg_t *regp = *gregsetp;
382 char zerobuf[MAX_REGISTER_SIZE];
383
384 memset (zerobuf, 0, MAX_REGISTER_SIZE);
385
386 for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
387 supply_register ((regi - MIPS64_EF_REG0), (char *)(regp + regi));
388
389 supply_register (LO_REGNUM, (char *)(regp + MIPS64_EF_LO));
390 supply_register (HI_REGNUM, (char *)(regp + MIPS64_EF_HI));
391
392 supply_register (PC_REGNUM, (char *)(regp + MIPS64_EF_CP0_EPC));
393 supply_register (BADVADDR_REGNUM, (char *)(regp + MIPS64_EF_CP0_BADVADDR));
394 supply_register (PS_REGNUM, (char *)(regp + MIPS64_EF_CP0_STATUS));
395 supply_register (CAUSE_REGNUM, (char *)(regp + MIPS64_EF_CP0_CAUSE));
396
397 /* Fill inaccessible registers with zero. */
398 supply_register (UNUSED_REGNUM, zerobuf);
399 for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
400 supply_register (regi, zerobuf);
401 }
402
403 /* Pack our registers (or one register) into an elf_gregset_t. */
404
405 static void
406 mips64_fill_gregset (mips64_elf_gregset_t *gregsetp, int regno)
407 {
408 int regaddr, regi;
409 mips64_elf_greg_t *regp = *gregsetp;
410 void *src, *dst;
411
412 if (regno == -1)
413 {
414 memset (regp, 0, sizeof (mips64_elf_gregset_t));
415 for (regi = 0; regi < 32; regi++)
416 mips64_fill_gregset (gregsetp, regi);
417 mips64_fill_gregset (gregsetp, LO_REGNUM);
418 mips64_fill_gregset (gregsetp, HI_REGNUM);
419 mips64_fill_gregset (gregsetp, PC_REGNUM);
420 mips64_fill_gregset (gregsetp, BADVADDR_REGNUM);
421 mips64_fill_gregset (gregsetp, PS_REGNUM);
422 mips64_fill_gregset (gregsetp, CAUSE_REGNUM);
423
424 return;
425 }
426
427 if (regno < 32)
428 {
429 dst = regp + regno + MIPS64_EF_REG0;
430 regcache_collect (regno, dst);
431 return;
432 }
433
434 regaddr = -1;
435 switch (regno)
436 {
437 case LO_REGNUM:
438 regaddr = MIPS64_EF_LO;
439 break;
440 case HI_REGNUM:
441 regaddr = MIPS64_EF_HI;
442 break;
443 case PC_REGNUM:
444 regaddr = MIPS64_EF_CP0_EPC;
445 break;
446 case BADVADDR_REGNUM:
447 regaddr = MIPS64_EF_CP0_BADVADDR;
448 break;
449 case PS_REGNUM:
450 regaddr = MIPS64_EF_CP0_STATUS;
451 break;
452 case CAUSE_REGNUM:
453 regaddr = MIPS64_EF_CP0_CAUSE;
454 break;
455 }
456
457 if (regaddr != -1)
458 {
459 dst = regp + regaddr;
460 regcache_collect (regno, dst);
461 }
462 }
463
464 /* Likewise, unpack an elf_fpregset_t. */
465
466 static void
467 mips64_supply_fpregset (mips64_elf_fpregset_t *fpregsetp)
468 {
469 int regi;
470 char zerobuf[MAX_REGISTER_SIZE];
471
472 memset (zerobuf, 0, MAX_REGISTER_SIZE);
473
474 for (regi = 0; regi < 32; regi++)
475 supply_register (FP0_REGNUM + regi,
476 (char *)(*fpregsetp + regi));
477
478 supply_register (FCRCS_REGNUM, (char *)(*fpregsetp + 32));
479
480 /* FIXME: how can we supply FCRIR_REGNUM? The ABI doesn't tell us. */
481 supply_register (FCRIR_REGNUM, zerobuf);
482 }
483
484 /* Likewise, pack one or all floating point registers into an
485 elf_fpregset_t. */
486
487 static void
488 mips64_fill_fpregset (mips64_elf_fpregset_t *fpregsetp, int regno)
489 {
490 char *from, *to;
491
492 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
493 {
494 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
495 to = (char *) (*fpregsetp + regno - FP0_REGNUM);
496 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno - FP0_REGNUM));
497 }
498 else if (regno == FCRCS_REGNUM)
499 {
500 from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
501 to = (char *) (*fpregsetp + 32);
502 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno));
503 }
504 else if (regno == -1)
505 {
506 int regi;
507
508 for (regi = 0; regi < 32; regi++)
509 mips64_fill_fpregset (fpregsetp, FP0_REGNUM + regi);
510 mips64_fill_fpregset(fpregsetp, FCRCS_REGNUM);
511 }
512 }
513
514
515 /* Map gdb internal register number to ptrace ``address''.
516 These ``addresses'' are normally defined in <asm/ptrace.h>. */
517
518 static CORE_ADDR
519 mips64_linux_register_addr (int regno, CORE_ADDR blockend)
520 {
521 int regaddr;
522
523 if (regno < 0 || regno >= NUM_REGS)
524 error ("Bogon register number %d.", regno);
525
526 if (regno < 32)
527 regaddr = regno;
528 else if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
529 regaddr = MIPS64_FPR_BASE + (regno - FP0_REGNUM);
530 else if (regno == PC_REGNUM)
531 regaddr = MIPS64_PC;
532 else if (regno == CAUSE_REGNUM)
533 regaddr = MIPS64_CAUSE;
534 else if (regno == BADVADDR_REGNUM)
535 regaddr = MIPS64_BADVADDR;
536 else if (regno == LO_REGNUM)
537 regaddr = MIPS64_MMLO;
538 else if (regno == HI_REGNUM)
539 regaddr = MIPS64_MMHI;
540 else if (regno == FCRCS_REGNUM)
541 regaddr = MIPS64_FPC_CSR;
542 else if (regno == FCRIR_REGNUM)
543 regaddr = MIPS64_FPC_EIR;
544 else
545 error ("Unknowable register number %d.", regno);
546
547 return regaddr;
548 }
549
550 /* Use a local version of this function to get the correct types for
551 regsets, until multi-arch core support is ready. */
552
553 static void
554 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
555 int which, CORE_ADDR reg_addr)
556 {
557 elf_gregset_t gregset;
558 elf_fpregset_t fpregset;
559 mips64_elf_gregset_t gregset64;
560 mips64_elf_fpregset_t fpregset64;
561
562 if (which == 0)
563 {
564 if (core_reg_size == sizeof (gregset))
565 {
566 memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
567 supply_gregset (&gregset);
568 }
569 else if (core_reg_size == sizeof (gregset64))
570 {
571 memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
572 mips64_supply_gregset (&gregset64);
573 }
574 else
575 {
576 warning ("wrong size gregset struct in core file");
577 }
578 }
579 else if (which == 2)
580 {
581 if (core_reg_size == sizeof (fpregset))
582 {
583 memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
584 supply_fpregset (&fpregset);
585 }
586 else if (core_reg_size == sizeof (fpregset64))
587 {
588 memcpy ((char *) &fpregset64, core_reg_sect, sizeof (fpregset64));
589 mips64_supply_fpregset (&fpregset64);
590 }
591 else
592 {
593 warning ("wrong size fpregset struct in core file");
594 }
595 }
596 }
597
598 /* Register that we are able to handle ELF file formats using standard
599 procfs "regset" structures. */
600
601 static struct core_fns regset_core_fns =
602 {
603 bfd_target_elf_flavour, /* core_flavour */
604 default_check_format, /* check_format */
605 default_core_sniffer, /* core_sniffer */
606 fetch_core_registers, /* core_read_registers */
607 NULL /* next */
608 };
609
610 /* Fetch (and possibly build) an appropriate link_map_offsets
611 structure for native GNU/Linux MIPS targets using the struct offsets
612 defined in link.h (but without actual reference to that file).
613
614 This makes it possible to access GNU/Linux MIPS shared libraries from a
615 GDB that was built on a different host platform (for cross debugging). */
616
617 static struct link_map_offsets *
618 mips64_linux_svr4_fetch_link_map_offsets (void)
619 {
620 static struct link_map_offsets lmo;
621 static struct link_map_offsets *lmp = NULL;
622
623 if (lmp == NULL)
624 {
625 lmp = &lmo;
626
627 lmo.r_debug_size = 16; /* The actual size is 40 bytes, but
628 this is all we need. */
629 lmo.r_map_offset = 8;
630 lmo.r_map_size = 8;
631
632 lmo.link_map_size = 40;
633
634 lmo.l_addr_offset = 0;
635 lmo.l_addr_size = 8;
636
637 lmo.l_name_offset = 8;
638 lmo.l_name_size = 8;
639
640 lmo.l_next_offset = 24;
641 lmo.l_next_size = 8;
642
643 lmo.l_prev_offset = 32;
644 lmo.l_prev_size = 8;
645 }
646
647 return lmp;
648 }
649
650 /* Handle for obtaining pointer to the current register_addr() function
651 for a given architecture. */
652 static struct gdbarch_data *register_addr_data;
653
654 CORE_ADDR
655 register_addr (int regno, CORE_ADDR blockend)
656 {
657 CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR) =
658 gdbarch_data (current_gdbarch, register_addr_data);
659
660 gdb_assert (register_addr_ptr != 0);
661
662 return register_addr_ptr (regno, blockend);
663 }
664
665 static void
666 set_mips_linux_register_addr (struct gdbarch *gdbarch,
667 CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR))
668 {
669 set_gdbarch_data (gdbarch, register_addr_data, register_addr_ptr);
670 }
671
672 static void *
673 init_register_addr_data (struct gdbarch *gdbarch)
674 {
675 return 0;
676 }
677
678 static void
679 mips_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
680 {
681 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
682 enum mips_abi abi = mips_abi (gdbarch);
683
684 switch (abi)
685 {
686 case MIPS_ABI_O32:
687 set_gdbarch_get_longjmp_target (gdbarch,
688 mips_linux_get_longjmp_target);
689 set_solib_svr4_fetch_link_map_offsets
690 (gdbarch, mips_linux_svr4_fetch_link_map_offsets);
691 set_mips_linux_register_addr (gdbarch, mips_linux_register_addr);
692 break;
693 case MIPS_ABI_N32:
694 set_gdbarch_get_longjmp_target (gdbarch,
695 mips_linux_get_longjmp_target);
696 set_solib_svr4_fetch_link_map_offsets
697 (gdbarch, mips_linux_svr4_fetch_link_map_offsets);
698 set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
699 break;
700 case MIPS_ABI_N64:
701 set_gdbarch_get_longjmp_target (gdbarch,
702 mips64_linux_get_longjmp_target);
703 set_solib_svr4_fetch_link_map_offsets
704 (gdbarch, mips64_linux_svr4_fetch_link_map_offsets);
705 set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
706 break;
707 default:
708 internal_error (__FILE__, __LINE__, "can't handle ABI");
709 break;
710 }
711 }
712
713 void
714 _initialize_mips_linux_tdep (void)
715 {
716 const struct bfd_arch_info *arch_info;
717
718 register_addr_data =
719 register_gdbarch_data (init_register_addr_data);
720
721 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
722 arch_info != NULL;
723 arch_info = arch_info->next)
724 {
725 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach, GDB_OSABI_LINUX,
726 mips_linux_init_abi);
727 }
728
729 add_core_fns (&regset_core_fns);
730 }
This page took 0.04456 seconds and 4 git commands to generate.