Further fix the documentation in struct quick_symbol_functions
[deliverable/binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright (C) 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "target.h"
24 #include "solib-svr4.h"
25 #include "osabi.h"
26 #include "mips-tdep.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "regcache.h"
31 #include "trad-frame.h"
32 #include "tramp-frame.h"
33 #include "gdbtypes.h"
34 #include "solib.h"
35 #include "solib-svr4.h"
36 #include "solist.h"
37 #include "symtab.h"
38 #include "target-descriptions.h"
39 #include "regset.h"
40 #include "mips-linux-tdep.h"
41 #include "glibc-tdep.h"
42 #include "linux-tdep.h"
43 #include "xml-syscall.h"
44
45 static struct target_so_ops mips_svr4_so_ops;
46
47 /* Figure out where the longjmp will land.
48 We expect the first arg to be a pointer to the jmp_buf structure
49 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
50 at. The pc is copied into PC. This routine returns 1 on
51 success. */
52
53 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
54 #define MIPS_LINUX_JB_PC 0
55
56 static int
57 mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
58 {
59 CORE_ADDR jb_addr;
60 struct gdbarch *gdbarch = get_frame_arch (frame);
61 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
62 char buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
63
64 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
65
66 if (target_read_memory (jb_addr
67 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
68 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
69 return 0;
70
71 *pc = extract_unsigned_integer (buf,
72 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
73 byte_order);
74
75 return 1;
76 }
77
78 /* Transform the bits comprising a 32-bit register to the right size
79 for regcache_raw_supply(). This is needed when mips_isa_regsize()
80 is 8. */
81
82 static void
83 supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
84 {
85 struct gdbarch *gdbarch = get_regcache_arch (regcache);
86 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
87 gdb_byte buf[MAX_REGISTER_SIZE];
88 store_signed_integer (buf, register_size (gdbarch, regnum), byte_order,
89 extract_signed_integer (addr, 4, byte_order));
90 regcache_raw_supply (regcache, regnum, buf);
91 }
92
93 /* Unpack an elf_gregset_t into GDB's register cache. */
94
95 void
96 mips_supply_gregset (struct regcache *regcache,
97 const mips_elf_gregset_t *gregsetp)
98 {
99 int regi;
100 const mips_elf_greg_t *regp = *gregsetp;
101 char zerobuf[MAX_REGISTER_SIZE];
102 struct gdbarch *gdbarch = get_regcache_arch (regcache);
103
104 memset (zerobuf, 0, MAX_REGISTER_SIZE);
105
106 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
107 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
108
109 if (mips_linux_restart_reg_p (gdbarch))
110 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
111
112 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
113 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
114
115 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
116 regp + EF_CP0_EPC);
117 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
118 regp + EF_CP0_BADVADDR);
119 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
120 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
121 regp + EF_CP0_CAUSE);
122
123 /* Fill inaccessible registers with zero. */
124 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
125 regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
126 for (regi = MIPS_FIRST_EMBED_REGNUM;
127 regi <= MIPS_LAST_EMBED_REGNUM;
128 regi++)
129 regcache_raw_supply (regcache, regi, zerobuf);
130 }
131
132 static void
133 mips_supply_gregset_wrapper (const struct regset *regset,
134 struct regcache *regcache,
135 int regnum, const void *gregs, size_t len)
136 {
137 gdb_assert (len == sizeof (mips_elf_gregset_t));
138
139 mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
140 }
141
142 /* Pack our registers (or one register) into an elf_gregset_t. */
143
144 void
145 mips_fill_gregset (const struct regcache *regcache,
146 mips_elf_gregset_t *gregsetp, int regno)
147 {
148 struct gdbarch *gdbarch = get_regcache_arch (regcache);
149 int regaddr, regi;
150 mips_elf_greg_t *regp = *gregsetp;
151 void *dst;
152
153 if (regno == -1)
154 {
155 memset (regp, 0, sizeof (mips_elf_gregset_t));
156 for (regi = 1; regi < 32; regi++)
157 mips_fill_gregset (regcache, gregsetp, regi);
158 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
159 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
160 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
161 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
162 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
163 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
164 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
165 return;
166 }
167
168 if (regno > 0 && regno < 32)
169 {
170 dst = regp + regno + EF_REG0;
171 regcache_raw_collect (regcache, regno, dst);
172 return;
173 }
174
175 if (regno == mips_regnum (gdbarch)->lo)
176 regaddr = EF_LO;
177 else if (regno == mips_regnum (gdbarch)->hi)
178 regaddr = EF_HI;
179 else if (regno == mips_regnum (gdbarch)->pc)
180 regaddr = EF_CP0_EPC;
181 else if (regno == mips_regnum (gdbarch)->badvaddr)
182 regaddr = EF_CP0_BADVADDR;
183 else if (regno == MIPS_PS_REGNUM)
184 regaddr = EF_CP0_STATUS;
185 else if (regno == mips_regnum (gdbarch)->cause)
186 regaddr = EF_CP0_CAUSE;
187 else if (mips_linux_restart_reg_p (gdbarch)
188 && regno == MIPS_RESTART_REGNUM)
189 regaddr = EF_REG0;
190 else
191 regaddr = -1;
192
193 if (regaddr != -1)
194 {
195 dst = regp + regaddr;
196 regcache_raw_collect (regcache, regno, dst);
197 }
198 }
199
200 static void
201 mips_fill_gregset_wrapper (const struct regset *regset,
202 const struct regcache *regcache,
203 int regnum, void *gregs, size_t len)
204 {
205 gdb_assert (len == sizeof (mips_elf_gregset_t));
206
207 mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
208 }
209
210 /* Likewise, unpack an elf_fpregset_t. */
211
212 void
213 mips_supply_fpregset (struct regcache *regcache,
214 const mips_elf_fpregset_t *fpregsetp)
215 {
216 struct gdbarch *gdbarch = get_regcache_arch (regcache);
217 int regi;
218 char zerobuf[MAX_REGISTER_SIZE];
219
220 memset (zerobuf, 0, MAX_REGISTER_SIZE);
221
222 for (regi = 0; regi < 32; regi++)
223 regcache_raw_supply (regcache,
224 gdbarch_fp0_regnum (gdbarch) + regi,
225 *fpregsetp + regi);
226
227 regcache_raw_supply (regcache,
228 mips_regnum (gdbarch)->fp_control_status,
229 *fpregsetp + 32);
230
231 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
232 regcache_raw_supply (regcache,
233 mips_regnum (gdbarch)->fp_implementation_revision,
234 zerobuf);
235 }
236
237 static void
238 mips_supply_fpregset_wrapper (const struct regset *regset,
239 struct regcache *regcache,
240 int regnum, const void *gregs, size_t len)
241 {
242 gdb_assert (len == sizeof (mips_elf_fpregset_t));
243
244 mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
245 }
246
247 /* Likewise, pack one or all floating point registers into an
248 elf_fpregset_t. */
249
250 void
251 mips_fill_fpregset (const struct regcache *regcache,
252 mips_elf_fpregset_t *fpregsetp, int regno)
253 {
254 struct gdbarch *gdbarch = get_regcache_arch (regcache);
255 char *from, *to;
256
257 if ((regno >= gdbarch_fp0_regnum (gdbarch))
258 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
259 {
260 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
261 regcache_raw_collect (regcache, regno, to);
262 }
263 else if (regno == mips_regnum (gdbarch)->fp_control_status)
264 {
265 to = (char *) (*fpregsetp + 32);
266 regcache_raw_collect (regcache, regno, to);
267 }
268 else if (regno == -1)
269 {
270 int regi;
271
272 for (regi = 0; regi < 32; regi++)
273 mips_fill_fpregset (regcache, fpregsetp,
274 gdbarch_fp0_regnum (gdbarch) + regi);
275 mips_fill_fpregset (regcache, fpregsetp,
276 mips_regnum (gdbarch)->fp_control_status);
277 }
278 }
279
280 static void
281 mips_fill_fpregset_wrapper (const struct regset *regset,
282 const struct regcache *regcache,
283 int regnum, void *gregs, size_t len)
284 {
285 gdb_assert (len == sizeof (mips_elf_fpregset_t));
286
287 mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
288 }
289
290 /* Support for 64-bit ABIs. */
291
292 /* Figure out where the longjmp will land.
293 We expect the first arg to be a pointer to the jmp_buf structure
294 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
295 at. The pc is copied into PC. This routine returns 1 on
296 success. */
297
298 /* Details about jmp_buf. */
299
300 #define MIPS64_LINUX_JB_PC 0
301
302 static int
303 mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
304 {
305 CORE_ADDR jb_addr;
306 struct gdbarch *gdbarch = get_frame_arch (frame);
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308 void *buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
309 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
310
311 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
312
313 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
314 buf,
315 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
316 return 0;
317
318 *pc = extract_unsigned_integer (buf,
319 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
320 byte_order);
321
322 return 1;
323 }
324
325 /* Register set support functions. These operate on standard 64-bit
326 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
327 target will still use the 64-bit format for PTRACE_GETREGS. */
328
329 /* Supply a 64-bit register. */
330
331 static void
332 supply_64bit_reg (struct regcache *regcache, int regnum,
333 const gdb_byte *buf)
334 {
335 struct gdbarch *gdbarch = get_regcache_arch (regcache);
336 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
337 && register_size (gdbarch, regnum) == 4)
338 regcache_raw_supply (regcache, regnum, buf + 4);
339 else
340 regcache_raw_supply (regcache, regnum, buf);
341 }
342
343 /* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
344
345 void
346 mips64_supply_gregset (struct regcache *regcache,
347 const mips64_elf_gregset_t *gregsetp)
348 {
349 int regi;
350 const mips64_elf_greg_t *regp = *gregsetp;
351 gdb_byte zerobuf[MAX_REGISTER_SIZE];
352 struct gdbarch *gdbarch = get_regcache_arch (regcache);
353
354 memset (zerobuf, 0, MAX_REGISTER_SIZE);
355
356 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
357 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
358 (const gdb_byte *)(regp + regi));
359
360 if (mips_linux_restart_reg_p (gdbarch))
361 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
362 (const gdb_byte *)(regp + MIPS64_EF_REG0));
363
364 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
365 (const gdb_byte *) (regp + MIPS64_EF_LO));
366 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
367 (const gdb_byte *) (regp + MIPS64_EF_HI));
368
369 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
370 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
371 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
372 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
373 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
374 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
375 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
376 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
377
378 /* Fill inaccessible registers with zero. */
379 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
380 regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
381 for (regi = MIPS_FIRST_EMBED_REGNUM;
382 regi <= MIPS_LAST_EMBED_REGNUM;
383 regi++)
384 regcache_raw_supply (regcache, regi, zerobuf);
385 }
386
387 static void
388 mips64_supply_gregset_wrapper (const struct regset *regset,
389 struct regcache *regcache,
390 int regnum, const void *gregs, size_t len)
391 {
392 gdb_assert (len == sizeof (mips64_elf_gregset_t));
393
394 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
395 }
396
397 /* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
398
399 void
400 mips64_fill_gregset (const struct regcache *regcache,
401 mips64_elf_gregset_t *gregsetp, int regno)
402 {
403 struct gdbarch *gdbarch = get_regcache_arch (regcache);
404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
405 int regaddr, regi;
406 mips64_elf_greg_t *regp = *gregsetp;
407 void *dst;
408
409 if (regno == -1)
410 {
411 memset (regp, 0, sizeof (mips64_elf_gregset_t));
412 for (regi = 1; regi < 32; regi++)
413 mips64_fill_gregset (regcache, gregsetp, regi);
414 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
415 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
416 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
417 mips64_fill_gregset (regcache, gregsetp,
418 mips_regnum (gdbarch)->badvaddr);
419 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
420 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
421 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
422 return;
423 }
424
425 if (regno > 0 && regno < 32)
426 regaddr = regno + MIPS64_EF_REG0;
427 else if (regno == mips_regnum (gdbarch)->lo)
428 regaddr = MIPS64_EF_LO;
429 else if (regno == mips_regnum (gdbarch)->hi)
430 regaddr = MIPS64_EF_HI;
431 else if (regno == mips_regnum (gdbarch)->pc)
432 regaddr = MIPS64_EF_CP0_EPC;
433 else if (regno == mips_regnum (gdbarch)->badvaddr)
434 regaddr = MIPS64_EF_CP0_BADVADDR;
435 else if (regno == MIPS_PS_REGNUM)
436 regaddr = MIPS64_EF_CP0_STATUS;
437 else if (regno == mips_regnum (gdbarch)->cause)
438 regaddr = MIPS64_EF_CP0_CAUSE;
439 else if (mips_linux_restart_reg_p (gdbarch)
440 && regno == MIPS_RESTART_REGNUM)
441 regaddr = MIPS64_EF_REG0;
442 else
443 regaddr = -1;
444
445 if (regaddr != -1)
446 {
447 gdb_byte buf[MAX_REGISTER_SIZE];
448 LONGEST val;
449
450 regcache_raw_collect (regcache, regno, buf);
451 val = extract_signed_integer (buf, register_size (gdbarch, regno),
452 byte_order);
453 dst = regp + regaddr;
454 store_signed_integer (dst, 8, byte_order, val);
455 }
456 }
457
458 static void
459 mips64_fill_gregset_wrapper (const struct regset *regset,
460 const struct regcache *regcache,
461 int regnum, void *gregs, size_t len)
462 {
463 gdb_assert (len == sizeof (mips64_elf_gregset_t));
464
465 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
466 }
467
468 /* Likewise, unpack an elf_fpregset_t. */
469
470 void
471 mips64_supply_fpregset (struct regcache *regcache,
472 const mips64_elf_fpregset_t *fpregsetp)
473 {
474 struct gdbarch *gdbarch = get_regcache_arch (regcache);
475 int regi;
476
477 /* See mips_linux_o32_sigframe_init for a description of the
478 peculiar FP register layout. */
479 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
480 for (regi = 0; regi < 32; regi++)
481 {
482 const gdb_byte *reg_ptr = (const gdb_byte *)(*fpregsetp + (regi & ~1));
483 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
484 reg_ptr += 4;
485 regcache_raw_supply (regcache,
486 gdbarch_fp0_regnum (gdbarch) + regi,
487 reg_ptr);
488 }
489 else
490 for (regi = 0; regi < 32; regi++)
491 regcache_raw_supply (regcache,
492 gdbarch_fp0_regnum (gdbarch) + regi,
493 (const char *)(*fpregsetp + regi));
494
495 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
496 (const gdb_byte *)(*fpregsetp + 32));
497
498 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
499 include it - but the result of PTRACE_GETFPREGS does. The best we
500 can do is to assume that its value is present. */
501 supply_32bit_reg (regcache,
502 mips_regnum (gdbarch)->fp_implementation_revision,
503 (const gdb_byte *)(*fpregsetp + 32) + 4);
504 }
505
506 static void
507 mips64_supply_fpregset_wrapper (const struct regset *regset,
508 struct regcache *regcache,
509 int regnum, const void *gregs, size_t len)
510 {
511 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
512
513 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
514 }
515
516 /* Likewise, pack one or all floating point registers into an
517 elf_fpregset_t. */
518
519 void
520 mips64_fill_fpregset (const struct regcache *regcache,
521 mips64_elf_fpregset_t *fpregsetp, int regno)
522 {
523 struct gdbarch *gdbarch = get_regcache_arch (regcache);
524 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
525 gdb_byte *to;
526
527 if ((regno >= gdbarch_fp0_regnum (gdbarch))
528 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
529 {
530 /* See mips_linux_o32_sigframe_init for a description of the
531 peculiar FP register layout. */
532 if (register_size (gdbarch, regno) == 4)
533 {
534 int regi = regno - gdbarch_fp0_regnum (gdbarch);
535
536 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
537 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
538 to += 4;
539 regcache_raw_collect (regcache, regno, to);
540 }
541 else
542 {
543 to = (gdb_byte *) (*fpregsetp + regno
544 - gdbarch_fp0_regnum (gdbarch));
545 regcache_raw_collect (regcache, regno, to);
546 }
547 }
548 else if (regno == mips_regnum (gdbarch)->fp_control_status)
549 {
550 gdb_byte buf[MAX_REGISTER_SIZE];
551 LONGEST val;
552
553 regcache_raw_collect (regcache, regno, buf);
554 val = extract_signed_integer (buf, register_size (gdbarch, regno),
555 byte_order);
556 to = (gdb_byte *) (*fpregsetp + 32);
557 store_signed_integer (to, 4, byte_order, val);
558 }
559 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
560 {
561 gdb_byte buf[MAX_REGISTER_SIZE];
562 LONGEST val;
563
564 regcache_raw_collect (regcache, regno, buf);
565 val = extract_signed_integer (buf, register_size (gdbarch, regno),
566 byte_order);
567 to = (gdb_byte *) (*fpregsetp + 32) + 4;
568 store_signed_integer (to, 4, byte_order, val);
569 }
570 else if (regno == -1)
571 {
572 int regi;
573
574 for (regi = 0; regi < 32; regi++)
575 mips64_fill_fpregset (regcache, fpregsetp,
576 gdbarch_fp0_regnum (gdbarch) + regi);
577 mips64_fill_fpregset (regcache, fpregsetp,
578 mips_regnum (gdbarch)->fp_control_status);
579 mips64_fill_fpregset (regcache, fpregsetp,
580 (mips_regnum (gdbarch)
581 ->fp_implementation_revision));
582 }
583 }
584
585 static void
586 mips64_fill_fpregset_wrapper (const struct regset *regset,
587 const struct regcache *regcache,
588 int regnum, void *gregs, size_t len)
589 {
590 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
591
592 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
593 }
594
595 const struct regset *
596 mips_linux_regset_from_core_section (struct gdbarch *gdbarch,
597 const char *sect_name, size_t sect_size)
598 {
599 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
600 mips_elf_gregset_t gregset;
601 mips_elf_fpregset_t fpregset;
602 mips64_elf_gregset_t gregset64;
603 mips64_elf_fpregset_t fpregset64;
604
605 if (strcmp (sect_name, ".reg") == 0)
606 {
607 if (sect_size == sizeof (gregset))
608 {
609 if (tdep->gregset == NULL)
610 tdep->gregset = regset_alloc (gdbarch,
611 mips_supply_gregset_wrapper,
612 mips_fill_gregset_wrapper);
613 return tdep->gregset;
614 }
615 else if (sect_size == sizeof (gregset64))
616 {
617 if (tdep->gregset64 == NULL)
618 tdep->gregset64 = regset_alloc (gdbarch,
619 mips64_supply_gregset_wrapper,
620 mips64_fill_gregset_wrapper);
621 return tdep->gregset64;
622 }
623 else
624 {
625 warning (_("wrong size gregset struct in core file"));
626 }
627 }
628 else if (strcmp (sect_name, ".reg2") == 0)
629 {
630 if (sect_size == sizeof (fpregset))
631 {
632 if (tdep->fpregset == NULL)
633 tdep->fpregset = regset_alloc (gdbarch,
634 mips_supply_fpregset_wrapper,
635 mips_fill_fpregset_wrapper);
636 return tdep->fpregset;
637 }
638 else if (sect_size == sizeof (fpregset64))
639 {
640 if (tdep->fpregset64 == NULL)
641 tdep->fpregset64 = regset_alloc (gdbarch,
642 mips64_supply_fpregset_wrapper,
643 mips64_fill_fpregset_wrapper);
644 return tdep->fpregset64;
645 }
646 else
647 {
648 warning (_("wrong size fpregset struct in core file"));
649 }
650 }
651
652 return NULL;
653 }
654
655 static const struct target_desc *
656 mips_linux_core_read_description (struct gdbarch *gdbarch,
657 struct target_ops *target,
658 bfd *abfd)
659 {
660 asection *section = bfd_get_section_by_name (abfd, ".reg");
661 if (! section)
662 return NULL;
663
664 switch (bfd_section_size (abfd, section))
665 {
666 case sizeof (mips_elf_gregset_t):
667 return mips_tdesc_gp32;
668
669 case sizeof (mips64_elf_gregset_t):
670 return mips_tdesc_gp64;
671
672 default:
673 return NULL;
674 }
675 }
676
677
678 /* Check the code at PC for a dynamic linker lazy resolution stub.
679 Because they aren't in the .plt section, we pattern-match on the
680 code generated by GNU ld. They look like this:
681
682 lw t9,0x8010(gp)
683 addu t7,ra
684 jalr t9,ra
685 addiu t8,zero,INDEX
686
687 (with the appropriate doubleword instructions for N64). Also
688 return the dynamic symbol index used in the last instruction. */
689
690 static int
691 mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
692 {
693 unsigned char buf[28], *p;
694 ULONGEST insn, insn1;
695 int n64 = (mips_abi (target_gdbarch) == MIPS_ABI_N64);
696 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
697
698 read_memory (pc - 12, buf, 28);
699
700 if (n64)
701 {
702 /* ld t9,0x8010(gp) */
703 insn1 = 0xdf998010;
704 }
705 else
706 {
707 /* lw t9,0x8010(gp) */
708 insn1 = 0x8f998010;
709 }
710
711 p = buf + 12;
712 while (p >= buf)
713 {
714 insn = extract_unsigned_integer (p, 4, byte_order);
715 if (insn == insn1)
716 break;
717 p -= 4;
718 }
719 if (p < buf)
720 return 0;
721
722 insn = extract_unsigned_integer (p + 4, 4, byte_order);
723 if (n64)
724 {
725 /* daddu t7,ra */
726 if (insn != 0x03e0782d)
727 return 0;
728 }
729 else
730 {
731 /* addu t7,ra */
732 if (insn != 0x03e07821)
733 return 0;
734 }
735
736 insn = extract_unsigned_integer (p + 8, 4, byte_order);
737 /* jalr t9,ra */
738 if (insn != 0x0320f809)
739 return 0;
740
741 insn = extract_unsigned_integer (p + 12, 4, byte_order);
742 if (n64)
743 {
744 /* daddiu t8,zero,0 */
745 if ((insn & 0xffff0000) != 0x64180000)
746 return 0;
747 }
748 else
749 {
750 /* addiu t8,zero,0 */
751 if ((insn & 0xffff0000) != 0x24180000)
752 return 0;
753 }
754
755 return (insn & 0xffff);
756 }
757
758 /* Return non-zero iff PC belongs to the dynamic linker resolution
759 code, a PLT entry, or a lazy binding stub. */
760
761 static int
762 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
763 {
764 /* Check whether PC is in the dynamic linker. This also checks
765 whether it is in the .plt section, used by non-PIC executables. */
766 if (svr4_in_dynsym_resolve_code (pc))
767 return 1;
768
769 /* Pattern match for the stub. It would be nice if there were a
770 more efficient way to avoid this check. */
771 if (mips_linux_in_dynsym_stub (pc, NULL))
772 return 1;
773
774 return 0;
775 }
776
777 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
778 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
779 implementation of this triggers at "fixup" from the same objfile as
780 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
781 "__dl_runtime_resolve" directly. An unresolved lazy binding
782 stub will point to _dl_runtime_resolve, which will first call
783 __dl_runtime_resolve, and then pass control to the resolved
784 function. */
785
786 static CORE_ADDR
787 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
788 {
789 struct minimal_symbol *resolver;
790
791 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
792
793 if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
794 return frame_unwind_caller_pc (get_current_frame ());
795
796 return glibc_skip_solib_resolver (gdbarch, pc);
797 }
798
799 /* Signal trampoline support. There are four supported layouts for a
800 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
801 n64 rt_sigframe. We handle them all independently; not the most
802 efficient way, but simplest. First, declare all the unwinders. */
803
804 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
805 struct frame_info *this_frame,
806 struct trad_frame_cache *this_cache,
807 CORE_ADDR func);
808
809 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
810 struct frame_info *this_frame,
811 struct trad_frame_cache *this_cache,
812 CORE_ADDR func);
813
814 #define MIPS_NR_LINUX 4000
815 #define MIPS_NR_N64_LINUX 5000
816 #define MIPS_NR_N32_LINUX 6000
817
818 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
819 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
820 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
821 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
822
823 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
824 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
825 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
826 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
827 #define MIPS_INST_SYSCALL 0x0000000c
828
829 static const struct tramp_frame mips_linux_o32_sigframe = {
830 SIGTRAMP_FRAME,
831 4,
832 {
833 { MIPS_INST_LI_V0_SIGRETURN, -1 },
834 { MIPS_INST_SYSCALL, -1 },
835 { TRAMP_SENTINEL_INSN, -1 }
836 },
837 mips_linux_o32_sigframe_init
838 };
839
840 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
841 SIGTRAMP_FRAME,
842 4,
843 {
844 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
845 { MIPS_INST_SYSCALL, -1 },
846 { TRAMP_SENTINEL_INSN, -1 } },
847 mips_linux_o32_sigframe_init
848 };
849
850 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
851 SIGTRAMP_FRAME,
852 4,
853 {
854 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
855 { MIPS_INST_SYSCALL, -1 },
856 { TRAMP_SENTINEL_INSN, -1 }
857 },
858 mips_linux_n32n64_sigframe_init
859 };
860
861 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
862 SIGTRAMP_FRAME,
863 4,
864 {
865 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
866 { MIPS_INST_SYSCALL, -1 },
867 { TRAMP_SENTINEL_INSN, -1 }
868 },
869 mips_linux_n32n64_sigframe_init
870 };
871
872 /* *INDENT-OFF* */
873 /* The unwinder for o32 signal frames. The legacy structures look
874 like this:
875
876 struct sigframe {
877 u32 sf_ass[4]; [argument save space for o32]
878 u32 sf_code[2]; [signal trampoline or fill]
879 struct sigcontext sf_sc;
880 sigset_t sf_mask;
881 };
882
883 struct sigcontext {
884 unsigned int sc_regmask; [Unused]
885 unsigned int sc_status;
886 unsigned long long sc_pc;
887 unsigned long long sc_regs[32];
888 unsigned long long sc_fpregs[32];
889 unsigned int sc_ownedfp;
890 unsigned int sc_fpc_csr;
891 unsigned int sc_fpc_eir; [Unused]
892 unsigned int sc_used_math;
893 unsigned int sc_ssflags; [Unused]
894 [Alignment hole of four bytes]
895 unsigned long long sc_mdhi;
896 unsigned long long sc_mdlo;
897
898 unsigned int sc_cause; [Unused]
899 unsigned int sc_badvaddr; [Unused]
900
901 unsigned long sc_sigset[4]; [kernel's sigset_t]
902 };
903
904 The RT signal frames look like this:
905
906 struct rt_sigframe {
907 u32 rs_ass[4]; [argument save space for o32]
908 u32 rs_code[2] [signal trampoline or fill]
909 struct siginfo rs_info;
910 struct ucontext rs_uc;
911 };
912
913 struct ucontext {
914 unsigned long uc_flags;
915 struct ucontext *uc_link;
916 stack_t uc_stack;
917 [Alignment hole of four bytes]
918 struct sigcontext uc_mcontext;
919 sigset_t uc_sigmask;
920 }; */
921 /* *INDENT-ON* */
922
923 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
924
925 #define RTSIGFRAME_SIGINFO_SIZE 128
926 #define STACK_T_SIZE (3 * 4)
927 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
928 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
929 + RTSIGFRAME_SIGINFO_SIZE \
930 + UCONTEXT_SIGCONTEXT_OFFSET)
931
932 #define SIGCONTEXT_PC (1 * 8)
933 #define SIGCONTEXT_REGS (2 * 8)
934 #define SIGCONTEXT_FPREGS (34 * 8)
935 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
936 #define SIGCONTEXT_HI (69 * 8)
937 #define SIGCONTEXT_LO (70 * 8)
938 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
939 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
940
941 #define SIGCONTEXT_REG_SIZE 8
942
943 static void
944 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
945 struct frame_info *this_frame,
946 struct trad_frame_cache *this_cache,
947 CORE_ADDR func)
948 {
949 struct gdbarch *gdbarch = get_frame_arch (this_frame);
950 int ireg, reg_position;
951 CORE_ADDR frame_sp = get_frame_sp (this_frame);
952 CORE_ADDR sigcontext_base;
953 const struct mips_regnum *regs = mips_regnum (gdbarch);
954 CORE_ADDR regs_base;
955
956 if (self == &mips_linux_o32_sigframe)
957 sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
958 else
959 sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
960
961 /* I'm not proud of this hack. Eventually we will have the
962 infrastructure to indicate the size of saved registers on a
963 per-frame basis, but right now we don't; the kernel saves eight
964 bytes but we only want four. Use regs_base to access any
965 64-bit fields. */
966 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
967 regs_base = sigcontext_base + 4;
968 else
969 regs_base = sigcontext_base;
970
971 if (mips_linux_restart_reg_p (gdbarch))
972 trad_frame_set_reg_addr (this_cache,
973 (MIPS_RESTART_REGNUM
974 + gdbarch_num_regs (gdbarch)),
975 regs_base + SIGCONTEXT_REGS);
976
977 for (ireg = 1; ireg < 32; ireg++)
978 trad_frame_set_reg_addr (this_cache,
979 ireg + MIPS_ZERO_REGNUM
980 + gdbarch_num_regs (gdbarch),
981 regs_base + SIGCONTEXT_REGS
982 + ireg * SIGCONTEXT_REG_SIZE);
983
984 /* The way that floating point registers are saved, unfortunately,
985 depends on the architecture the kernel is built for. For the r3000 and
986 tx39, four bytes of each register are at the beginning of each of the
987 32 eight byte slots. For everything else, the registers are saved
988 using double precision; only the even-numbered slots are initialized,
989 and the high bits are the odd-numbered register. Assume the latter
990 layout, since we can't tell, and it's much more common. Which bits are
991 the "high" bits depends on endianness. */
992 for (ireg = 0; ireg < 32; ireg++)
993 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
994 trad_frame_set_reg_addr (this_cache,
995 ireg + regs->fp0 +
996 gdbarch_num_regs (gdbarch),
997 sigcontext_base + SIGCONTEXT_FPREGS + 4
998 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
999 else
1000 trad_frame_set_reg_addr (this_cache,
1001 ireg + regs->fp0
1002 + gdbarch_num_regs (gdbarch),
1003 sigcontext_base + SIGCONTEXT_FPREGS
1004 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
1005
1006 trad_frame_set_reg_addr (this_cache,
1007 regs->pc + gdbarch_num_regs (gdbarch),
1008 regs_base + SIGCONTEXT_PC);
1009
1010 trad_frame_set_reg_addr (this_cache,
1011 regs->fp_control_status
1012 + gdbarch_num_regs (gdbarch),
1013 sigcontext_base + SIGCONTEXT_FPCSR);
1014 trad_frame_set_reg_addr (this_cache,
1015 regs->hi + gdbarch_num_regs (gdbarch),
1016 regs_base + SIGCONTEXT_HI);
1017 trad_frame_set_reg_addr (this_cache,
1018 regs->lo + gdbarch_num_regs (gdbarch),
1019 regs_base + SIGCONTEXT_LO);
1020 trad_frame_set_reg_addr (this_cache,
1021 regs->cause + gdbarch_num_regs (gdbarch),
1022 sigcontext_base + SIGCONTEXT_CAUSE);
1023 trad_frame_set_reg_addr (this_cache,
1024 regs->badvaddr + gdbarch_num_regs (gdbarch),
1025 sigcontext_base + SIGCONTEXT_BADVADDR);
1026
1027 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1028 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1029 }
1030
1031 /* *INDENT-OFF* */
1032 /* For N32/N64 things look different. There is no non-rt signal frame.
1033
1034 struct rt_sigframe_n32 {
1035 u32 rs_ass[4]; [ argument save space for o32 ]
1036 u32 rs_code[2]; [ signal trampoline or fill ]
1037 struct siginfo rs_info;
1038 struct ucontextn32 rs_uc;
1039 };
1040
1041 struct ucontextn32 {
1042 u32 uc_flags;
1043 s32 uc_link;
1044 stack32_t uc_stack;
1045 struct sigcontext uc_mcontext;
1046 sigset_t uc_sigmask; [ mask last for extensibility ]
1047 };
1048
1049 struct rt_sigframe {
1050 u32 rs_ass[4]; [ argument save space for o32 ]
1051 u32 rs_code[2]; [ signal trampoline ]
1052 struct siginfo rs_info;
1053 struct ucontext rs_uc;
1054 };
1055
1056 struct ucontext {
1057 unsigned long uc_flags;
1058 struct ucontext *uc_link;
1059 stack_t uc_stack;
1060 struct sigcontext uc_mcontext;
1061 sigset_t uc_sigmask; [ mask last for extensibility ]
1062 };
1063
1064 And the sigcontext is different (this is for both n32 and n64):
1065
1066 struct sigcontext {
1067 unsigned long long sc_regs[32];
1068 unsigned long long sc_fpregs[32];
1069 unsigned long long sc_mdhi;
1070 unsigned long long sc_hi1;
1071 unsigned long long sc_hi2;
1072 unsigned long long sc_hi3;
1073 unsigned long long sc_mdlo;
1074 unsigned long long sc_lo1;
1075 unsigned long long sc_lo2;
1076 unsigned long long sc_lo3;
1077 unsigned long long sc_pc;
1078 unsigned int sc_fpc_csr;
1079 unsigned int sc_used_math;
1080 unsigned int sc_dsp;
1081 unsigned int sc_reserved;
1082 };
1083
1084 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1085 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1086 included too. */
1087 /* *INDENT-ON* */
1088
1089 #define N32_STACK_T_SIZE STACK_T_SIZE
1090 #define N64_STACK_T_SIZE (2 * 8 + 4)
1091 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1092 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1093 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1094 + RTSIGFRAME_SIGINFO_SIZE \
1095 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1096 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1097 + RTSIGFRAME_SIGINFO_SIZE \
1098 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1099
1100 #define N64_SIGCONTEXT_REGS (0 * 8)
1101 #define N64_SIGCONTEXT_FPREGS (32 * 8)
1102 #define N64_SIGCONTEXT_HI (64 * 8)
1103 #define N64_SIGCONTEXT_LO (68 * 8)
1104 #define N64_SIGCONTEXT_PC (72 * 8)
1105 #define N64_SIGCONTEXT_FPCSR (73 * 8)
1106
1107 #define N64_SIGCONTEXT_REG_SIZE 8
1108
1109 static void
1110 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1111 struct frame_info *this_frame,
1112 struct trad_frame_cache *this_cache,
1113 CORE_ADDR func)
1114 {
1115 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1116 int ireg, reg_position;
1117 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1118 CORE_ADDR sigcontext_base;
1119 const struct mips_regnum *regs = mips_regnum (gdbarch);
1120
1121 if (self == &mips_linux_n32_rt_sigframe)
1122 sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
1123 else
1124 sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
1125
1126 if (mips_linux_restart_reg_p (gdbarch))
1127 trad_frame_set_reg_addr (this_cache,
1128 (MIPS_RESTART_REGNUM
1129 + gdbarch_num_regs (gdbarch)),
1130 sigcontext_base + N64_SIGCONTEXT_REGS);
1131
1132 for (ireg = 1; ireg < 32; ireg++)
1133 trad_frame_set_reg_addr (this_cache,
1134 ireg + MIPS_ZERO_REGNUM
1135 + gdbarch_num_regs (gdbarch),
1136 sigcontext_base + N64_SIGCONTEXT_REGS
1137 + ireg * N64_SIGCONTEXT_REG_SIZE);
1138
1139 for (ireg = 0; ireg < 32; ireg++)
1140 trad_frame_set_reg_addr (this_cache,
1141 ireg + regs->fp0
1142 + gdbarch_num_regs (gdbarch),
1143 sigcontext_base + N64_SIGCONTEXT_FPREGS
1144 + ireg * N64_SIGCONTEXT_REG_SIZE);
1145
1146 trad_frame_set_reg_addr (this_cache,
1147 regs->pc + gdbarch_num_regs (gdbarch),
1148 sigcontext_base + N64_SIGCONTEXT_PC);
1149
1150 trad_frame_set_reg_addr (this_cache,
1151 regs->fp_control_status
1152 + gdbarch_num_regs (gdbarch),
1153 sigcontext_base + N64_SIGCONTEXT_FPCSR);
1154 trad_frame_set_reg_addr (this_cache,
1155 regs->hi + gdbarch_num_regs (gdbarch),
1156 sigcontext_base + N64_SIGCONTEXT_HI);
1157 trad_frame_set_reg_addr (this_cache,
1158 regs->lo + gdbarch_num_regs (gdbarch),
1159 sigcontext_base + N64_SIGCONTEXT_LO);
1160
1161 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1162 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1163 }
1164
1165 static void
1166 mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1167 {
1168 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1169 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
1170
1171 /* Clear the syscall restart flag. */
1172 if (mips_linux_restart_reg_p (gdbarch))
1173 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
1174 }
1175
1176 /* Return 1 if MIPS_RESTART_REGNUM is usable. */
1177
1178 int
1179 mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1180 {
1181 /* If we do not have a target description with registers, then
1182 MIPS_RESTART_REGNUM will not be included in the register set. */
1183 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1184 return 0;
1185
1186 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1187 either be GPR-sized or missing. */
1188 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1189 }
1190
1191 /* When FRAME is at a syscall instruction, return the PC of the next
1192 instruction to be executed. */
1193
1194 static CORE_ADDR
1195 mips_linux_syscall_next_pc (struct frame_info *frame)
1196 {
1197 CORE_ADDR pc = get_frame_pc (frame);
1198 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1199
1200 /* If we are about to make a sigreturn syscall, use the unwinder to
1201 decode the signal frame. */
1202 if (v0 == MIPS_NR_sigreturn
1203 || v0 == MIPS_NR_rt_sigreturn
1204 || v0 == MIPS_NR_N64_rt_sigreturn
1205 || v0 == MIPS_NR_N32_rt_sigreturn)
1206 return frame_unwind_caller_pc (get_current_frame ());
1207
1208 return pc + 4;
1209 }
1210
1211 /* Return the current system call's number present in the
1212 v0 register. When the function fails, it returns -1. */
1213
1214 static LONGEST
1215 mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1216 ptid_t ptid)
1217 {
1218 struct regcache *regcache = get_thread_regcache (ptid);
1219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1221 int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1222 /* The content of a register */
1223 gdb_byte buf[8];
1224 /* The result */
1225 LONGEST ret;
1226
1227 /* Make sure we're in a known ABI */
1228 gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1229 || tdep->mips_abi == MIPS_ABI_N32
1230 || tdep->mips_abi == MIPS_ABI_N64);
1231
1232 gdb_assert (regsize <= sizeof (buf));
1233
1234 /* Getting the system call number from the register.
1235 syscall number is in v0 or $2. */
1236 regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
1237
1238 ret = extract_signed_integer (buf, regsize, byte_order);
1239
1240 return ret;
1241 }
1242
1243 /* Initialize one of the GNU/Linux OS ABIs. */
1244
1245 static void
1246 mips_linux_init_abi (struct gdbarch_info info,
1247 struct gdbarch *gdbarch)
1248 {
1249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1250 enum mips_abi abi = mips_abi (gdbarch);
1251 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
1252
1253 linux_init_abi (info, gdbarch);
1254
1255 /* Get the syscall number from the arch's register. */
1256 set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1257
1258 switch (abi)
1259 {
1260 case MIPS_ABI_O32:
1261 set_gdbarch_get_longjmp_target (gdbarch,
1262 mips_linux_get_longjmp_target);
1263 set_solib_svr4_fetch_link_map_offsets
1264 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1265 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1266 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1267 set_xml_syscall_file_name ("syscalls/mips-o32-linux.xml");
1268 break;
1269 case MIPS_ABI_N32:
1270 set_gdbarch_get_longjmp_target (gdbarch,
1271 mips_linux_get_longjmp_target);
1272 set_solib_svr4_fetch_link_map_offsets
1273 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1274 set_gdbarch_long_double_bit (gdbarch, 128);
1275 /* These floatformats should probably be renamed. MIPS uses
1276 the same 128-bit IEEE floating point format that IA-64 uses,
1277 except that the quiet/signalling NaN bit is reversed (GDB
1278 does not distinguish between quiet and signalling NaNs). */
1279 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1280 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1281 set_xml_syscall_file_name ("syscalls/mips-n32-linux.xml");
1282 break;
1283 case MIPS_ABI_N64:
1284 set_gdbarch_get_longjmp_target (gdbarch,
1285 mips64_linux_get_longjmp_target);
1286 set_solib_svr4_fetch_link_map_offsets
1287 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1288 set_gdbarch_long_double_bit (gdbarch, 128);
1289 /* These floatformats should probably be renamed. MIPS uses
1290 the same 128-bit IEEE floating point format that IA-64 uses,
1291 except that the quiet/signalling NaN bit is reversed (GDB
1292 does not distinguish between quiet and signalling NaNs). */
1293 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1294 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1295 set_xml_syscall_file_name ("syscalls/mips-n64-linux.xml");
1296 break;
1297 default:
1298 break;
1299 }
1300
1301 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1302
1303 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1304
1305 /* Enable TLS support. */
1306 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1307 svr4_fetch_objfile_link_map);
1308
1309 /* Initialize this lazily, to avoid an initialization order
1310 dependency on solib-svr4.c's _initialize routine. */
1311 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1312 {
1313 mips_svr4_so_ops = svr4_so_ops;
1314 mips_svr4_so_ops.in_dynsym_resolve_code
1315 = mips_linux_in_dynsym_resolve_code;
1316 }
1317 set_solib_ops (gdbarch, &mips_svr4_so_ops);
1318
1319 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1320
1321 set_gdbarch_core_read_description (gdbarch,
1322 mips_linux_core_read_description);
1323
1324 set_gdbarch_regset_from_core_section (gdbarch,
1325 mips_linux_regset_from_core_section);
1326
1327 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1328
1329 if (tdesc_data)
1330 {
1331 const struct tdesc_feature *feature;
1332
1333 /* If we have target-described registers, then we can safely
1334 reserve a number for MIPS_RESTART_REGNUM (whether it is
1335 described or not). */
1336 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1337 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1338
1339 /* If it's present, then assign it to the reserved number. */
1340 feature = tdesc_find_feature (info.target_desc,
1341 "org.gnu.gdb.mips.linux");
1342 if (feature != NULL)
1343 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1344 "restart");
1345 }
1346 }
1347
1348 /* Provide a prototype to silence -Wmissing-prototypes. */
1349 extern initialize_file_ftype _initialize_mips_linux_tdep;
1350
1351 void
1352 _initialize_mips_linux_tdep (void)
1353 {
1354 const struct bfd_arch_info *arch_info;
1355
1356 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1357 arch_info != NULL;
1358 arch_info = arch_info->next)
1359 {
1360 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1361 GDB_OSABI_LINUX,
1362 mips_linux_init_abi);
1363 }
1364 }
This page took 0.057856 seconds and 4 git commands to generate.