* gdbcore.h (read_memory_nobpt): New function name instead of
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "value.h"
34 #include "gdbcmd.h"
35 #include "language.h"
36 #include "gdbcore.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbtypes.h"
40 #include "target.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "mips-tdep.h"
45 #include "block.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
48 #include "elf/mips.h"
49 #include "elf-bfd.h"
50 #include "symcat.h"
51 #include "sim-regno.h"
52 #include "dis-asm.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
56 #include "infcall.h"
57 #include "floatformat.h"
58
59 static const struct objfile_data *mips_pdr_data;
60
61 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
62
63 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
64 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
65 #define ST0_FR (1 << 26)
66
67 /* The sizes of floating point registers. */
68
69 enum
70 {
71 MIPS_FPU_SINGLE_REGSIZE = 4,
72 MIPS_FPU_DOUBLE_REGSIZE = 8
73 };
74
75
76 static const char *mips_abi_string;
77
78 static const char *mips_abi_strings[] = {
79 "auto",
80 "n32",
81 "o32",
82 "n64",
83 "o64",
84 "eabi32",
85 "eabi64",
86 NULL
87 };
88
89 /* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
91 them. */
92
93 static const char size_auto[] = "auto";
94 static const char size_32[] = "32";
95 static const char size_64[] = "64";
96
97 static const char *size_enums[] = {
98 size_auto,
99 size_32,
100 size_64,
101 0
102 };
103
104 /* Some MIPS boards don't support floating point while others only
105 support single-precision floating-point operations. */
106
107 enum mips_fpu_type
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
113
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116 #endif
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
119
120 static int mips_debug = 0;
121
122 /* MIPS specific per-architecture information */
123 struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int default_mask_address_p;
135 /* Is the target using 64-bit raw integer registers but only
136 storing a left-aligned 32-bit value in each? */
137 int mips64_transfers_32bit_regs_p;
138 /* Indexes for various registers. IRIX and embedded have
139 different values. This contains the "public" fields. Don't
140 add any that do not need to be public. */
141 const struct mips_regnum *regnum;
142 /* Register names table for the current register set. */
143 const char **mips_processor_reg_names;
144 };
145
146 static int
147 n32n64_floatformat_always_valid (const struct floatformat *fmt,
148 const void *from)
149 {
150 return 1;
151 }
152
153 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
154 They are implemented as a pair of 64bit doubles where the high
155 part holds the result of the operation rounded to double, and
156 the low double holds the difference between the exact result and
157 the rounded result. So "high" + "low" contains the result with
158 added precision. Unfortunately, the floatformat structure used
159 by GDB is not powerful enough to describe this format. As a temporary
160 measure, we define a 128bit floatformat that only uses the high part.
161 We lose a bit of precision but that's probably the best we can do
162 for now with the current infrastructure. */
163
164 static const struct floatformat floatformat_n32n64_long_double_big =
165 {
166 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
167 floatformat_intbit_no,
168 "floatformat_ieee_double_big",
169 n32n64_floatformat_always_valid
170 };
171
172 const struct mips_regnum *
173 mips_regnum (struct gdbarch *gdbarch)
174 {
175 return gdbarch_tdep (gdbarch)->regnum;
176 }
177
178 static int
179 mips_fpa0_regnum (struct gdbarch *gdbarch)
180 {
181 return mips_regnum (gdbarch)->fp0 + 12;
182 }
183
184 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
185 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
186
187 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
188
189 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
190
191 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
192
193 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
195
196 static CORE_ADDR
197 is_mips16_addr (CORE_ADDR addr)
198 {
199 return ((addr) & 1);
200 }
201
202 static CORE_ADDR
203 unmake_mips16_addr (CORE_ADDR addr)
204 {
205 return ((addr) & ~(CORE_ADDR) 1);
206 }
207
208 /* Return the contents of register REGNUM as a signed integer. */
209
210 static LONGEST
211 read_signed_register (int regnum)
212 {
213 LONGEST val;
214 regcache_cooked_read_signed (current_regcache, regnum, &val);
215 return val;
216 }
217
218 static LONGEST
219 read_signed_register_pid (int regnum, ptid_t ptid)
220 {
221 ptid_t save_ptid;
222 LONGEST retval;
223
224 if (ptid_equal (ptid, inferior_ptid))
225 return read_signed_register (regnum);
226
227 save_ptid = inferior_ptid;
228
229 inferior_ptid = ptid;
230
231 retval = read_signed_register (regnum);
232
233 inferior_ptid = save_ptid;
234
235 return retval;
236 }
237
238 /* Return the MIPS ABI associated with GDBARCH. */
239 enum mips_abi
240 mips_abi (struct gdbarch *gdbarch)
241 {
242 return gdbarch_tdep (gdbarch)->mips_abi;
243 }
244
245 int
246 mips_isa_regsize (struct gdbarch *gdbarch)
247 {
248 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
249 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
250 }
251
252 /* Return the currently configured (or set) saved register size. */
253
254 static const char *mips_abi_regsize_string = size_auto;
255
256 unsigned int
257 mips_abi_regsize (struct gdbarch *gdbarch)
258 {
259 if (mips_abi_regsize_string == size_auto)
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
273 internal_error (__FILE__, __LINE__, _("bad switch"));
274 }
275 else if (mips_abi_regsize_string == size_64)
276 return 8;
277 else /* if (mips_abi_regsize_string == size_32) */
278 return 4;
279 }
280
281 /* Functions for setting and testing a bit in a minimal symbol that
282 marks it as 16-bit function. The MSB of the minimal symbol's
283 "info" field is used for this purpose.
284
285 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
286 i.e. refers to a 16-bit function, and sets a "special" bit in a
287 minimal symbol to mark it as a 16-bit function
288
289 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
290
291 static void
292 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
293 {
294 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
295 {
296 MSYMBOL_INFO (msym) = (char *)
297 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
298 SYMBOL_VALUE_ADDRESS (msym) |= 1;
299 }
300 }
301
302 static int
303 msymbol_is_special (struct minimal_symbol *msym)
304 {
305 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
306 }
307
308 /* XFER a value from the big/little/left end of the register.
309 Depending on the size of the value it might occupy the entire
310 register or just part of it. Make an allowance for this, aligning
311 things accordingly. */
312
313 static void
314 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
315 enum bfd_endian endian, gdb_byte *in,
316 const gdb_byte *out, int buf_offset)
317 {
318 int reg_offset = 0;
319 gdb_assert (reg_num >= NUM_REGS);
320 /* Need to transfer the left or right part of the register, based on
321 the targets byte order. */
322 switch (endian)
323 {
324 case BFD_ENDIAN_BIG:
325 reg_offset = register_size (current_gdbarch, reg_num) - length;
326 break;
327 case BFD_ENDIAN_LITTLE:
328 reg_offset = 0;
329 break;
330 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
331 reg_offset = 0;
332 break;
333 default:
334 internal_error (__FILE__, __LINE__, _("bad switch"));
335 }
336 if (mips_debug)
337 fprintf_unfiltered (gdb_stderr,
338 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
339 reg_num, reg_offset, buf_offset, length);
340 if (mips_debug && out != NULL)
341 {
342 int i;
343 fprintf_unfiltered (gdb_stdlog, "out ");
344 for (i = 0; i < length; i++)
345 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
346 }
347 if (in != NULL)
348 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
349 in + buf_offset);
350 if (out != NULL)
351 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
352 out + buf_offset);
353 if (mips_debug && in != NULL)
354 {
355 int i;
356 fprintf_unfiltered (gdb_stdlog, "in ");
357 for (i = 0; i < length; i++)
358 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
359 }
360 if (mips_debug)
361 fprintf_unfiltered (gdb_stdlog, "\n");
362 }
363
364 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
365 compatiblity mode. A return value of 1 means that we have
366 physical 64-bit registers, but should treat them as 32-bit registers. */
367
368 static int
369 mips2_fp_compat (void)
370 {
371 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
372 meaningful. */
373 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
374 4)
375 return 0;
376
377 #if 0
378 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
379 in all the places we deal with FP registers. PR gdb/413. */
380 /* Otherwise check the FR bit in the status register - it controls
381 the FP compatiblity mode. If it is clear we are in compatibility
382 mode. */
383 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
384 return 1;
385 #endif
386
387 return 0;
388 }
389
390 /* The amount of space reserved on the stack for registers. This is
391 different to MIPS_ABI_REGSIZE as it determines the alignment of
392 data allocated after the registers have run out. */
393
394 static const char *mips_stack_argsize_string = size_auto;
395
396 static unsigned int
397 mips_stack_argsize (struct gdbarch *gdbarch)
398 {
399 if (mips_stack_argsize_string == size_auto)
400 return mips_abi_regsize (gdbarch);
401 else if (mips_stack_argsize_string == size_64)
402 return 8;
403 else /* if (mips_stack_argsize_string == size_32) */
404 return 4;
405 }
406
407 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
408
409 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
410
411 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
412
413 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
414
415 static struct type *mips_float_register_type (void);
416 static struct type *mips_double_register_type (void);
417
418 /* The list of available "set mips " and "show mips " commands */
419
420 static struct cmd_list_element *setmipscmdlist = NULL;
421 static struct cmd_list_element *showmipscmdlist = NULL;
422
423 /* Integer registers 0 thru 31 are handled explicitly by
424 mips_register_name(). Processor specific registers 32 and above
425 are listed in the followign tables. */
426
427 enum
428 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
429
430 /* Generic MIPS. */
431
432 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
433 "sr", "lo", "hi", "bad", "cause", "pc",
434 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
435 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
436 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
437 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
438 "fsr", "fir", "" /*"fp" */ , "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 };
442
443 /* Names of IDT R3041 registers. */
444
445 static const char *mips_r3041_reg_names[] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "", /*"fp" */ "",
452 "", "", "bus", "ccfg", "", "", "", "",
453 "", "", "port", "cmp", "", "", "epc", "prid",
454 };
455
456 /* Names of tx39 registers. */
457
458 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "", "", "", "", "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 "", "", "", "", "", "", "", "",
463 "", "", "", "", "", "", "", "",
464 "", "", "", "",
465 "", "", "", "", "", "", "", "",
466 "", "", "config", "cache", "debug", "depc", "epc", ""
467 };
468
469 /* Names of IRIX registers. */
470 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
471 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
472 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
473 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
474 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
475 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
476 };
477
478
479 /* Return the name of the register corresponding to REGNO. */
480 static const char *
481 mips_register_name (int regno)
482 {
483 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
484 /* GPR names for all ABIs other than n32/n64. */
485 static char *mips_gpr_names[] = {
486 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
487 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
488 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
489 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
490 };
491
492 /* GPR names for n32 and n64 ABIs. */
493 static char *mips_n32_n64_gpr_names[] = {
494 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
495 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
496 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
497 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
498 };
499
500 enum mips_abi abi = mips_abi (current_gdbarch);
501
502 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
503 don't make the raw register names visible. */
504 int rawnum = regno % NUM_REGS;
505 if (regno < NUM_REGS)
506 return "";
507
508 /* The MIPS integer registers are always mapped from 0 to 31. The
509 names of the registers (which reflects the conventions regarding
510 register use) vary depending on the ABI. */
511 if (0 <= rawnum && rawnum < 32)
512 {
513 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
514 return mips_n32_n64_gpr_names[rawnum];
515 else
516 return mips_gpr_names[rawnum];
517 }
518 else if (32 <= rawnum && rawnum < NUM_REGS)
519 {
520 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
521 return tdep->mips_processor_reg_names[rawnum - 32];
522 }
523 else
524 internal_error (__FILE__, __LINE__,
525 _("mips_register_name: bad register number %d"), rawnum);
526 }
527
528 /* Return the groups that a MIPS register can be categorised into. */
529
530 static int
531 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
532 struct reggroup *reggroup)
533 {
534 int vector_p;
535 int float_p;
536 int raw_p;
537 int rawnum = regnum % NUM_REGS;
538 int pseudo = regnum / NUM_REGS;
539 if (reggroup == all_reggroup)
540 return pseudo;
541 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
542 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
543 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
544 (gdbarch), as not all architectures are multi-arch. */
545 raw_p = rawnum < NUM_REGS;
546 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
547 return 0;
548 if (reggroup == float_reggroup)
549 return float_p && pseudo;
550 if (reggroup == vector_reggroup)
551 return vector_p && pseudo;
552 if (reggroup == general_reggroup)
553 return (!vector_p && !float_p) && pseudo;
554 /* Save the pseudo registers. Need to make certain that any code
555 extracting register values from a saved register cache also uses
556 pseudo registers. */
557 if (reggroup == save_reggroup)
558 return raw_p && pseudo;
559 /* Restore the same pseudo register. */
560 if (reggroup == restore_reggroup)
561 return raw_p && pseudo;
562 return 0;
563 }
564
565 /* Map the symbol table registers which live in the range [1 *
566 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
567 registers. Take care of alignment and size problems. */
568
569 static void
570 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
571 int cookednum, gdb_byte *buf)
572 {
573 int rawnum = cookednum % NUM_REGS;
574 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
575 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
576 regcache_raw_read (regcache, rawnum, buf);
577 else if (register_size (gdbarch, rawnum) >
578 register_size (gdbarch, cookednum))
579 {
580 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
581 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
582 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
583 else
584 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
585 }
586 else
587 internal_error (__FILE__, __LINE__, _("bad register size"));
588 }
589
590 static void
591 mips_pseudo_register_write (struct gdbarch *gdbarch,
592 struct regcache *regcache, int cookednum,
593 const gdb_byte *buf)
594 {
595 int rawnum = cookednum % NUM_REGS;
596 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
597 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
598 regcache_raw_write (regcache, rawnum, buf);
599 else if (register_size (gdbarch, rawnum) >
600 register_size (gdbarch, cookednum))
601 {
602 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
603 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
604 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
605 else
606 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
607 }
608 else
609 internal_error (__FILE__, __LINE__, _("bad register size"));
610 }
611
612 /* Table to translate MIPS16 register field to actual register number. */
613 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
614
615 /* Heuristic_proc_start may hunt through the text section for a long
616 time across a 2400 baud serial line. Allows the user to limit this
617 search. */
618
619 static unsigned int heuristic_fence_post = 0;
620
621 /* Number of bytes of storage in the actual machine representation for
622 register N. NOTE: This defines the pseudo register type so need to
623 rebuild the architecture vector. */
624
625 static int mips64_transfers_32bit_regs_p = 0;
626
627 static void
628 set_mips64_transfers_32bit_regs (char *args, int from_tty,
629 struct cmd_list_element *c)
630 {
631 struct gdbarch_info info;
632 gdbarch_info_init (&info);
633 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
634 instead of relying on globals. Doing that would let generic code
635 handle the search for this specific architecture. */
636 if (!gdbarch_update_p (info))
637 {
638 mips64_transfers_32bit_regs_p = 0;
639 error (_("32-bit compatibility mode not supported"));
640 }
641 }
642
643 /* Convert to/from a register and the corresponding memory value. */
644
645 static int
646 mips_convert_register_p (int regnum, struct type *type)
647 {
648 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
649 && register_size (current_gdbarch, regnum) == 4
650 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
651 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
652 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
653 }
654
655 static void
656 mips_register_to_value (struct frame_info *frame, int regnum,
657 struct type *type, gdb_byte *to)
658 {
659 get_frame_register (frame, regnum + 0, to + 4);
660 get_frame_register (frame, regnum + 1, to + 0);
661 }
662
663 static void
664 mips_value_to_register (struct frame_info *frame, int regnum,
665 struct type *type, const gdb_byte *from)
666 {
667 put_frame_register (frame, regnum + 0, from + 4);
668 put_frame_register (frame, regnum + 1, from + 0);
669 }
670
671 /* Return the GDB type object for the "standard" data type of data in
672 register REG. */
673
674 static struct type *
675 mips_register_type (struct gdbarch *gdbarch, int regnum)
676 {
677 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
678 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
679 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
680 {
681 /* The floating-point registers raw, or cooked, always match
682 mips_isa_regsize(), and also map 1:1, byte for byte. */
683 switch (gdbarch_byte_order (gdbarch))
684 {
685 case BFD_ENDIAN_BIG:
686 if (mips_isa_regsize (gdbarch) == 4)
687 return builtin_type_ieee_single_big;
688 else
689 return builtin_type_ieee_double_big;
690 case BFD_ENDIAN_LITTLE:
691 if (mips_isa_regsize (gdbarch) == 4)
692 return builtin_type_ieee_single_little;
693 else
694 return builtin_type_ieee_double_little;
695 case BFD_ENDIAN_UNKNOWN:
696 default:
697 internal_error (__FILE__, __LINE__, _("bad switch"));
698 }
699 }
700 else if (regnum < NUM_REGS)
701 {
702 /* The raw or ISA registers. These are all sized according to
703 the ISA regsize. */
704 if (mips_isa_regsize (gdbarch) == 4)
705 return builtin_type_int32;
706 else
707 return builtin_type_int64;
708 }
709 else
710 {
711 /* The cooked or ABI registers. These are sized according to
712 the ABI (with a few complications). */
713 if (regnum >= (NUM_REGS
714 + mips_regnum (current_gdbarch)->fp_control_status)
715 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32;
719 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
720 /* The target, while possibly using a 64-bit register buffer,
721 is only transfering 32-bits of each integer register.
722 Reflect this in the cooked/pseudo (ABI) register value. */
723 return builtin_type_int32;
724 else if (mips_abi_regsize (gdbarch) == 4)
725 /* The ABI is restricted to 32-bit registers (the ISA could be
726 32- or 64-bit). */
727 return builtin_type_int32;
728 else
729 /* 64-bit ABI. */
730 return builtin_type_int64;
731 }
732 }
733
734 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
735
736 static CORE_ADDR
737 mips_read_sp (void)
738 {
739 return read_signed_register (MIPS_SP_REGNUM);
740 }
741
742 /* Should the upper word of 64-bit addresses be zeroed? */
743 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
744
745 static int
746 mips_mask_address_p (struct gdbarch_tdep *tdep)
747 {
748 switch (mask_address_var)
749 {
750 case AUTO_BOOLEAN_TRUE:
751 return 1;
752 case AUTO_BOOLEAN_FALSE:
753 return 0;
754 break;
755 case AUTO_BOOLEAN_AUTO:
756 return tdep->default_mask_address_p;
757 default:
758 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
759 return -1;
760 }
761 }
762
763 static void
764 show_mask_address (struct ui_file *file, int from_tty,
765 struct cmd_list_element *c, const char *value)
766 {
767 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
768
769 deprecated_show_value_hack (file, from_tty, c, value);
770 switch (mask_address_var)
771 {
772 case AUTO_BOOLEAN_TRUE:
773 printf_filtered ("The 32 bit mips address mask is enabled\n");
774 break;
775 case AUTO_BOOLEAN_FALSE:
776 printf_filtered ("The 32 bit mips address mask is disabled\n");
777 break;
778 case AUTO_BOOLEAN_AUTO:
779 printf_filtered
780 ("The 32 bit address mask is set automatically. Currently %s\n",
781 mips_mask_address_p (tdep) ? "enabled" : "disabled");
782 break;
783 default:
784 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
785 break;
786 }
787 }
788
789 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
790
791 int
792 mips_pc_is_mips16 (CORE_ADDR memaddr)
793 {
794 struct minimal_symbol *sym;
795
796 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
797 if (is_mips16_addr (memaddr))
798 return 1;
799
800 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
801 the high bit of the info field. Use this to decide if the function is
802 MIPS16 or normal MIPS. */
803 sym = lookup_minimal_symbol_by_pc (memaddr);
804 if (sym)
805 return msymbol_is_special (sym);
806 else
807 return 0;
808 }
809
810 /* MIPS believes that the PC has a sign extended value. Perhaps the
811 all registers should be sign extended for simplicity? */
812
813 static CORE_ADDR
814 mips_read_pc (ptid_t ptid)
815 {
816 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
817 }
818
819 static CORE_ADDR
820 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
821 {
822 return frame_unwind_register_signed (next_frame,
823 NUM_REGS + mips_regnum (gdbarch)->pc);
824 }
825
826 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
827 dummy frame. The frame ID's base needs to match the TOS value
828 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
829 breakpoint. */
830
831 static struct frame_id
832 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
833 {
834 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
835 frame_pc_unwind (next_frame));
836 }
837
838 static void
839 mips_write_pc (CORE_ADDR pc, ptid_t ptid)
840 {
841 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
842 }
843
844 /* Fetch and return instruction from the specified location. If the PC
845 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
846
847 static ULONGEST
848 mips_fetch_instruction (CORE_ADDR addr)
849 {
850 gdb_byte buf[MIPS_INSN32_SIZE];
851 int instlen;
852 int status;
853
854 if (mips_pc_is_mips16 (addr))
855 {
856 instlen = MIPS_INSN16_SIZE;
857 addr = unmake_mips16_addr (addr);
858 }
859 else
860 instlen = MIPS_INSN32_SIZE;
861 status = read_memory_nobpt (addr, buf, instlen);
862 if (status)
863 memory_error (status, addr);
864 return extract_unsigned_integer (buf, instlen);
865 }
866
867 /* These the fields of 32 bit mips instructions */
868 #define mips32_op(x) (x >> 26)
869 #define itype_op(x) (x >> 26)
870 #define itype_rs(x) ((x >> 21) & 0x1f)
871 #define itype_rt(x) ((x >> 16) & 0x1f)
872 #define itype_immediate(x) (x & 0xffff)
873
874 #define jtype_op(x) (x >> 26)
875 #define jtype_target(x) (x & 0x03ffffff)
876
877 #define rtype_op(x) (x >> 26)
878 #define rtype_rs(x) ((x >> 21) & 0x1f)
879 #define rtype_rt(x) ((x >> 16) & 0x1f)
880 #define rtype_rd(x) ((x >> 11) & 0x1f)
881 #define rtype_shamt(x) ((x >> 6) & 0x1f)
882 #define rtype_funct(x) (x & 0x3f)
883
884 static LONGEST
885 mips32_relative_offset (ULONGEST inst)
886 {
887 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
888 }
889
890 /* Determine where to set a single step breakpoint while considering
891 branch prediction. */
892 static CORE_ADDR
893 mips32_next_pc (CORE_ADDR pc)
894 {
895 unsigned long inst;
896 int op;
897 inst = mips_fetch_instruction (pc);
898 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
899 {
900 if (itype_op (inst) >> 2 == 5)
901 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
902 {
903 op = (itype_op (inst) & 0x03);
904 switch (op)
905 {
906 case 0: /* BEQL */
907 goto equal_branch;
908 case 1: /* BNEL */
909 goto neq_branch;
910 case 2: /* BLEZL */
911 goto less_branch;
912 case 3: /* BGTZ */
913 goto greater_branch;
914 default:
915 pc += 4;
916 }
917 }
918 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
919 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
920 {
921 int tf = itype_rt (inst) & 0x01;
922 int cnum = itype_rt (inst) >> 2;
923 int fcrcs =
924 read_signed_register (mips_regnum (current_gdbarch)->
925 fp_control_status);
926 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
927
928 if (((cond >> cnum) & 0x01) == tf)
929 pc += mips32_relative_offset (inst) + 4;
930 else
931 pc += 8;
932 }
933 else
934 pc += 4; /* Not a branch, next instruction is easy */
935 }
936 else
937 { /* This gets way messy */
938
939 /* Further subdivide into SPECIAL, REGIMM and other */
940 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
941 {
942 case 0: /* SPECIAL */
943 op = rtype_funct (inst);
944 switch (op)
945 {
946 case 8: /* JR */
947 case 9: /* JALR */
948 /* Set PC to that address */
949 pc = read_signed_register (rtype_rs (inst));
950 break;
951 default:
952 pc += 4;
953 }
954
955 break; /* end SPECIAL */
956 case 1: /* REGIMM */
957 {
958 op = itype_rt (inst); /* branch condition */
959 switch (op)
960 {
961 case 0: /* BLTZ */
962 case 2: /* BLTZL */
963 case 16: /* BLTZAL */
964 case 18: /* BLTZALL */
965 less_branch:
966 if (read_signed_register (itype_rs (inst)) < 0)
967 pc += mips32_relative_offset (inst) + 4;
968 else
969 pc += 8; /* after the delay slot */
970 break;
971 case 1: /* BGEZ */
972 case 3: /* BGEZL */
973 case 17: /* BGEZAL */
974 case 19: /* BGEZALL */
975 if (read_signed_register (itype_rs (inst)) >= 0)
976 pc += mips32_relative_offset (inst) + 4;
977 else
978 pc += 8; /* after the delay slot */
979 break;
980 /* All of the other instructions in the REGIMM category */
981 default:
982 pc += 4;
983 }
984 }
985 break; /* end REGIMM */
986 case 2: /* J */
987 case 3: /* JAL */
988 {
989 unsigned long reg;
990 reg = jtype_target (inst) << 2;
991 /* Upper four bits get never changed... */
992 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
993 }
994 break;
995 /* FIXME case JALX : */
996 {
997 unsigned long reg;
998 reg = jtype_target (inst) << 2;
999 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1000 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1001 }
1002 break; /* The new PC will be alternate mode */
1003 case 4: /* BEQ, BEQL */
1004 equal_branch:
1005 if (read_signed_register (itype_rs (inst)) ==
1006 read_signed_register (itype_rt (inst)))
1007 pc += mips32_relative_offset (inst) + 4;
1008 else
1009 pc += 8;
1010 break;
1011 case 5: /* BNE, BNEL */
1012 neq_branch:
1013 if (read_signed_register (itype_rs (inst)) !=
1014 read_signed_register (itype_rt (inst)))
1015 pc += mips32_relative_offset (inst) + 4;
1016 else
1017 pc += 8;
1018 break;
1019 case 6: /* BLEZ, BLEZL */
1020 if (read_signed_register (itype_rs (inst)) <= 0)
1021 pc += mips32_relative_offset (inst) + 4;
1022 else
1023 pc += 8;
1024 break;
1025 case 7:
1026 default:
1027 greater_branch: /* BGTZ, BGTZL */
1028 if (read_signed_register (itype_rs (inst)) > 0)
1029 pc += mips32_relative_offset (inst) + 4;
1030 else
1031 pc += 8;
1032 break;
1033 } /* switch */
1034 } /* else */
1035 return pc;
1036 } /* mips32_next_pc */
1037
1038 /* Decoding the next place to set a breakpoint is irregular for the
1039 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1040 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1041 We dont want to set a single step instruction on the extend instruction
1042 either.
1043 */
1044
1045 /* Lots of mips16 instruction formats */
1046 /* Predicting jumps requires itype,ritype,i8type
1047 and their extensions extItype,extritype,extI8type
1048 */
1049 enum mips16_inst_fmts
1050 {
1051 itype, /* 0 immediate 5,10 */
1052 ritype, /* 1 5,3,8 */
1053 rrtype, /* 2 5,3,3,5 */
1054 rritype, /* 3 5,3,3,5 */
1055 rrrtype, /* 4 5,3,3,3,2 */
1056 rriatype, /* 5 5,3,3,1,4 */
1057 shifttype, /* 6 5,3,3,3,2 */
1058 i8type, /* 7 5,3,8 */
1059 i8movtype, /* 8 5,3,3,5 */
1060 i8mov32rtype, /* 9 5,3,5,3 */
1061 i64type, /* 10 5,3,8 */
1062 ri64type, /* 11 5,3,3,5 */
1063 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1064 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1065 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1066 extRRItype, /* 15 5,5,5,5,3,3,5 */
1067 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1068 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1069 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1070 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1071 extRi64type, /* 20 5,6,5,5,3,3,5 */
1072 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1073 };
1074 /* I am heaping all the fields of the formats into one structure and
1075 then, only the fields which are involved in instruction extension */
1076 struct upk_mips16
1077 {
1078 CORE_ADDR offset;
1079 unsigned int regx; /* Function in i8 type */
1080 unsigned int regy;
1081 };
1082
1083
1084 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1085 for the bits which make up the immediatate extension. */
1086
1087 static CORE_ADDR
1088 extended_offset (unsigned int extension)
1089 {
1090 CORE_ADDR value;
1091 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1092 value = value << 6;
1093 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1094 value = value << 5;
1095 value |= extension & 0x01f; /* extract 4:0 */
1096 return value;
1097 }
1098
1099 /* Only call this function if you know that this is an extendable
1100 instruction, It wont malfunction, but why make excess remote memory references?
1101 If the immediate operands get sign extended or somthing, do it after
1102 the extension is performed.
1103 */
1104 /* FIXME: Every one of these cases needs to worry about sign extension
1105 when the offset is to be used in relative addressing */
1106
1107
1108 static unsigned int
1109 fetch_mips_16 (CORE_ADDR pc)
1110 {
1111 gdb_byte buf[8];
1112 pc &= 0xfffffffe; /* clear the low order bit */
1113 target_read_memory (pc, buf, 2);
1114 return extract_unsigned_integer (buf, 2);
1115 }
1116
1117 static void
1118 unpack_mips16 (CORE_ADDR pc,
1119 unsigned int extension,
1120 unsigned int inst,
1121 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1122 {
1123 CORE_ADDR offset;
1124 int regx;
1125 int regy;
1126 switch (insn_format)
1127 {
1128 case itype:
1129 {
1130 CORE_ADDR value;
1131 if (extension)
1132 {
1133 value = extended_offset (extension);
1134 value = value << 11; /* rom for the original value */
1135 value |= inst & 0x7ff; /* eleven bits from instruction */
1136 }
1137 else
1138 {
1139 value = inst & 0x7ff;
1140 /* FIXME : Consider sign extension */
1141 }
1142 offset = value;
1143 regx = -1;
1144 regy = -1;
1145 }
1146 break;
1147 case ritype:
1148 case i8type:
1149 { /* A register identifier and an offset */
1150 /* Most of the fields are the same as I type but the
1151 immediate value is of a different length */
1152 CORE_ADDR value;
1153 if (extension)
1154 {
1155 value = extended_offset (extension);
1156 value = value << 8; /* from the original instruction */
1157 value |= inst & 0xff; /* eleven bits from instruction */
1158 regx = (extension >> 8) & 0x07; /* or i8 funct */
1159 if (value & 0x4000) /* test the sign bit , bit 26 */
1160 {
1161 value &= ~0x3fff; /* remove the sign bit */
1162 value = -value;
1163 }
1164 }
1165 else
1166 {
1167 value = inst & 0xff; /* 8 bits */
1168 regx = (inst >> 8) & 0x07; /* or i8 funct */
1169 /* FIXME: Do sign extension , this format needs it */
1170 if (value & 0x80) /* THIS CONFUSES ME */
1171 {
1172 value &= 0xef; /* remove the sign bit */
1173 value = -value;
1174 }
1175 }
1176 offset = value;
1177 regy = -1;
1178 break;
1179 }
1180 case jalxtype:
1181 {
1182 unsigned long value;
1183 unsigned int nexthalf;
1184 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1185 value = value << 16;
1186 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1187 value |= nexthalf;
1188 offset = value;
1189 regx = -1;
1190 regy = -1;
1191 break;
1192 }
1193 default:
1194 internal_error (__FILE__, __LINE__, _("bad switch"));
1195 }
1196 upk->offset = offset;
1197 upk->regx = regx;
1198 upk->regy = regy;
1199 }
1200
1201
1202 static CORE_ADDR
1203 add_offset_16 (CORE_ADDR pc, int offset)
1204 {
1205 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1206 }
1207
1208 static CORE_ADDR
1209 extended_mips16_next_pc (CORE_ADDR pc,
1210 unsigned int extension, unsigned int insn)
1211 {
1212 int op = (insn >> 11);
1213 switch (op)
1214 {
1215 case 2: /* Branch */
1216 {
1217 CORE_ADDR offset;
1218 struct upk_mips16 upk;
1219 unpack_mips16 (pc, extension, insn, itype, &upk);
1220 offset = upk.offset;
1221 if (offset & 0x800)
1222 {
1223 offset &= 0xeff;
1224 offset = -offset;
1225 }
1226 pc += (offset << 1) + 2;
1227 break;
1228 }
1229 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1230 {
1231 struct upk_mips16 upk;
1232 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1233 pc = add_offset_16 (pc, upk.offset);
1234 if ((insn >> 10) & 0x01) /* Exchange mode */
1235 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1236 else
1237 pc |= 0x01;
1238 break;
1239 }
1240 case 4: /* beqz */
1241 {
1242 struct upk_mips16 upk;
1243 int reg;
1244 unpack_mips16 (pc, extension, insn, ritype, &upk);
1245 reg = read_signed_register (upk.regx);
1246 if (reg == 0)
1247 pc += (upk.offset << 1) + 2;
1248 else
1249 pc += 2;
1250 break;
1251 }
1252 case 5: /* bnez */
1253 {
1254 struct upk_mips16 upk;
1255 int reg;
1256 unpack_mips16 (pc, extension, insn, ritype, &upk);
1257 reg = read_signed_register (upk.regx);
1258 if (reg != 0)
1259 pc += (upk.offset << 1) + 2;
1260 else
1261 pc += 2;
1262 break;
1263 }
1264 case 12: /* I8 Formats btez btnez */
1265 {
1266 struct upk_mips16 upk;
1267 int reg;
1268 unpack_mips16 (pc, extension, insn, i8type, &upk);
1269 /* upk.regx contains the opcode */
1270 reg = read_signed_register (24); /* Test register is 24 */
1271 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1272 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1273 /* pc = add_offset_16(pc,upk.offset) ; */
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
1279 case 29: /* RR Formats JR, JALR, JALR-RA */
1280 {
1281 struct upk_mips16 upk;
1282 /* upk.fmt = rrtype; */
1283 op = insn & 0x1f;
1284 if (op == 0)
1285 {
1286 int reg;
1287 upk.regx = (insn >> 8) & 0x07;
1288 upk.regy = (insn >> 5) & 0x07;
1289 switch (upk.regy)
1290 {
1291 case 0:
1292 reg = upk.regx;
1293 break;
1294 case 1:
1295 reg = 31;
1296 break; /* Function return instruction */
1297 case 2:
1298 reg = upk.regx;
1299 break;
1300 default:
1301 reg = 31;
1302 break; /* BOGUS Guess */
1303 }
1304 pc = read_signed_register (reg);
1305 }
1306 else
1307 pc += 2;
1308 break;
1309 }
1310 case 30:
1311 /* This is an instruction extension. Fetch the real instruction
1312 (which follows the extension) and decode things based on
1313 that. */
1314 {
1315 pc += 2;
1316 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1317 break;
1318 }
1319 default:
1320 {
1321 pc += 2;
1322 break;
1323 }
1324 }
1325 return pc;
1326 }
1327
1328 static CORE_ADDR
1329 mips16_next_pc (CORE_ADDR pc)
1330 {
1331 unsigned int insn = fetch_mips_16 (pc);
1332 return extended_mips16_next_pc (pc, 0, insn);
1333 }
1334
1335 /* The mips_next_pc function supports single_step when the remote
1336 target monitor or stub is not developed enough to do a single_step.
1337 It works by decoding the current instruction and predicting where a
1338 branch will go. This isnt hard because all the data is available.
1339 The MIPS32 and MIPS16 variants are quite different */
1340 CORE_ADDR
1341 mips_next_pc (CORE_ADDR pc)
1342 {
1343 if (pc & 0x01)
1344 return mips16_next_pc (pc);
1345 else
1346 return mips32_next_pc (pc);
1347 }
1348
1349 struct mips_frame_cache
1350 {
1351 CORE_ADDR base;
1352 struct trad_frame_saved_reg *saved_regs;
1353 };
1354
1355 /* Set a register's saved stack address in temp_saved_regs. If an
1356 address has already been set for this register, do nothing; this
1357 way we will only recognize the first save of a given register in a
1358 function prologue.
1359
1360 For simplicity, save the address in both [0 .. NUM_REGS) and
1361 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1362 is used as it is only second range (the ABI instead of ISA
1363 registers) that comes into play when finding saved registers in a
1364 frame. */
1365
1366 static void
1367 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1368 CORE_ADDR offset)
1369 {
1370 if (this_cache != NULL
1371 && this_cache->saved_regs[regnum].addr == -1)
1372 {
1373 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1374 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1375 }
1376 }
1377
1378
1379 /* Fetch the immediate value from a MIPS16 instruction.
1380 If the previous instruction was an EXTEND, use it to extend
1381 the upper bits of the immediate value. This is a helper function
1382 for mips16_scan_prologue. */
1383
1384 static int
1385 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1386 unsigned short inst, /* current instruction */
1387 int nbits, /* number of bits in imm field */
1388 int scale, /* scale factor to be applied to imm */
1389 int is_signed) /* is the imm field signed? */
1390 {
1391 int offset;
1392
1393 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1394 {
1395 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1396 if (offset & 0x8000) /* check for negative extend */
1397 offset = 0 - (0x10000 - (offset & 0xffff));
1398 return offset | (inst & 0x1f);
1399 }
1400 else
1401 {
1402 int max_imm = 1 << nbits;
1403 int mask = max_imm - 1;
1404 int sign_bit = max_imm >> 1;
1405
1406 offset = inst & mask;
1407 if (is_signed && (offset & sign_bit))
1408 offset = 0 - (max_imm - offset);
1409 return offset * scale;
1410 }
1411 }
1412
1413
1414 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1415 the associated FRAME_CACHE if not null.
1416 Return the address of the first instruction past the prologue. */
1417
1418 static CORE_ADDR
1419 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1420 struct frame_info *next_frame,
1421 struct mips_frame_cache *this_cache)
1422 {
1423 CORE_ADDR cur_pc;
1424 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1425 CORE_ADDR sp;
1426 long frame_offset = 0; /* Size of stack frame. */
1427 long frame_adjust = 0; /* Offset of FP from SP. */
1428 int frame_reg = MIPS_SP_REGNUM;
1429 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1430 unsigned inst = 0; /* current instruction */
1431 unsigned entry_inst = 0; /* the entry instruction */
1432 int reg, offset;
1433
1434 int extend_bytes = 0;
1435 int prev_extend_bytes;
1436 CORE_ADDR end_prologue_addr = 0;
1437
1438 /* Can be called when there's no process, and hence when there's no
1439 NEXT_FRAME. */
1440 if (next_frame != NULL)
1441 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1442 else
1443 sp = 0;
1444
1445 if (limit_pc > start_pc + 200)
1446 limit_pc = start_pc + 200;
1447
1448 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1449 {
1450 /* Save the previous instruction. If it's an EXTEND, we'll extract
1451 the immediate offset extension from it in mips16_get_imm. */
1452 prev_inst = inst;
1453
1454 /* Fetch and decode the instruction. */
1455 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1456
1457 /* Normally we ignore extend instructions. However, if it is
1458 not followed by a valid prologue instruction, then this
1459 instruction is not part of the prologue either. We must
1460 remember in this case to adjust the end_prologue_addr back
1461 over the extend. */
1462 if ((inst & 0xf800) == 0xf000) /* extend */
1463 {
1464 extend_bytes = MIPS_INSN16_SIZE;
1465 continue;
1466 }
1467
1468 prev_extend_bytes = extend_bytes;
1469 extend_bytes = 0;
1470
1471 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1472 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1473 {
1474 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1475 if (offset < 0) /* negative stack adjustment? */
1476 frame_offset -= offset;
1477 else
1478 /* Exit loop if a positive stack adjustment is found, which
1479 usually means that the stack cleanup code in the function
1480 epilogue is reached. */
1481 break;
1482 }
1483 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1484 {
1485 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1486 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1487 set_reg_offset (this_cache, reg, sp + offset);
1488 }
1489 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1490 {
1491 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1492 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1493 set_reg_offset (this_cache, reg, sp + offset);
1494 }
1495 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1496 {
1497 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1498 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1499 }
1500 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1501 {
1502 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1503 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1504 }
1505 else if (inst == 0x673d) /* move $s1, $sp */
1506 {
1507 frame_addr = sp;
1508 frame_reg = 17;
1509 }
1510 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1511 {
1512 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1513 frame_addr = sp + offset;
1514 frame_reg = 17;
1515 frame_adjust = offset;
1516 }
1517 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1518 {
1519 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1520 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1521 set_reg_offset (this_cache, reg, frame_addr + offset);
1522 }
1523 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1524 {
1525 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1526 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1527 set_reg_offset (this_cache, reg, frame_addr + offset);
1528 }
1529 else if ((inst & 0xf81f) == 0xe809
1530 && (inst & 0x700) != 0x700) /* entry */
1531 entry_inst = inst; /* save for later processing */
1532 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1533 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1534 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1535 {
1536 /* This instruction is part of the prologue, but we don't
1537 need to do anything special to handle it. */
1538 }
1539 else
1540 {
1541 /* This instruction is not an instruction typically found
1542 in a prologue, so we must have reached the end of the
1543 prologue. */
1544 if (end_prologue_addr == 0)
1545 end_prologue_addr = cur_pc - prev_extend_bytes;
1546 }
1547 }
1548
1549 /* The entry instruction is typically the first instruction in a function,
1550 and it stores registers at offsets relative to the value of the old SP
1551 (before the prologue). But the value of the sp parameter to this
1552 function is the new SP (after the prologue has been executed). So we
1553 can't calculate those offsets until we've seen the entire prologue,
1554 and can calculate what the old SP must have been. */
1555 if (entry_inst != 0)
1556 {
1557 int areg_count = (entry_inst >> 8) & 7;
1558 int sreg_count = (entry_inst >> 6) & 3;
1559
1560 /* The entry instruction always subtracts 32 from the SP. */
1561 frame_offset += 32;
1562
1563 /* Now we can calculate what the SP must have been at the
1564 start of the function prologue. */
1565 sp += frame_offset;
1566
1567 /* Check if a0-a3 were saved in the caller's argument save area. */
1568 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1569 {
1570 set_reg_offset (this_cache, reg, sp + offset);
1571 offset += mips_abi_regsize (current_gdbarch);
1572 }
1573
1574 /* Check if the ra register was pushed on the stack. */
1575 offset = -4;
1576 if (entry_inst & 0x20)
1577 {
1578 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1579 offset -= mips_abi_regsize (current_gdbarch);
1580 }
1581
1582 /* Check if the s0 and s1 registers were pushed on the stack. */
1583 for (reg = 16; reg < sreg_count + 16; reg++)
1584 {
1585 set_reg_offset (this_cache, reg, sp + offset);
1586 offset -= mips_abi_regsize (current_gdbarch);
1587 }
1588 }
1589
1590 if (this_cache != NULL)
1591 {
1592 this_cache->base =
1593 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1594 + frame_offset - frame_adjust);
1595 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1596 be able to get rid of the assignment below, evetually. But it's
1597 still needed for now. */
1598 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1599 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1600 }
1601
1602 /* If we didn't reach the end of the prologue when scanning the function
1603 instructions, then set end_prologue_addr to the address of the
1604 instruction immediately after the last one we scanned. */
1605 if (end_prologue_addr == 0)
1606 end_prologue_addr = cur_pc;
1607
1608 return end_prologue_addr;
1609 }
1610
1611 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1612 Procedures that use the 32-bit instruction set are handled by the
1613 mips_insn32 unwinder. */
1614
1615 static struct mips_frame_cache *
1616 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1617 {
1618 struct mips_frame_cache *cache;
1619
1620 if ((*this_cache) != NULL)
1621 return (*this_cache);
1622 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1623 (*this_cache) = cache;
1624 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1625
1626 /* Analyze the function prologue. */
1627 {
1628 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1629 CORE_ADDR start_addr;
1630
1631 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1632 if (start_addr == 0)
1633 start_addr = heuristic_proc_start (pc);
1634 /* We can't analyze the prologue if we couldn't find the begining
1635 of the function. */
1636 if (start_addr == 0)
1637 return cache;
1638
1639 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1640 }
1641
1642 /* SP_REGNUM, contains the value and not the address. */
1643 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1644
1645 return (*this_cache);
1646 }
1647
1648 static void
1649 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1650 struct frame_id *this_id)
1651 {
1652 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1653 this_cache);
1654 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1655 }
1656
1657 static void
1658 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1659 void **this_cache,
1660 int regnum, int *optimizedp,
1661 enum lval_type *lvalp, CORE_ADDR *addrp,
1662 int *realnump, gdb_byte *valuep)
1663 {
1664 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1665 this_cache);
1666 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1667 optimizedp, lvalp, addrp, realnump, valuep);
1668 }
1669
1670 static const struct frame_unwind mips_insn16_frame_unwind =
1671 {
1672 NORMAL_FRAME,
1673 mips_insn16_frame_this_id,
1674 mips_insn16_frame_prev_register
1675 };
1676
1677 static const struct frame_unwind *
1678 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1679 {
1680 CORE_ADDR pc = frame_pc_unwind (next_frame);
1681 if (mips_pc_is_mips16 (pc))
1682 return &mips_insn16_frame_unwind;
1683 return NULL;
1684 }
1685
1686 static CORE_ADDR
1687 mips_insn16_frame_base_address (struct frame_info *next_frame,
1688 void **this_cache)
1689 {
1690 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1691 this_cache);
1692 return info->base;
1693 }
1694
1695 static const struct frame_base mips_insn16_frame_base =
1696 {
1697 &mips_insn16_frame_unwind,
1698 mips_insn16_frame_base_address,
1699 mips_insn16_frame_base_address,
1700 mips_insn16_frame_base_address
1701 };
1702
1703 static const struct frame_base *
1704 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1705 {
1706 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1707 return &mips_insn16_frame_base;
1708 else
1709 return NULL;
1710 }
1711
1712 /* Mark all the registers as unset in the saved_regs array
1713 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1714
1715 void
1716 reset_saved_regs (struct mips_frame_cache *this_cache)
1717 {
1718 if (this_cache == NULL || this_cache->saved_regs == NULL)
1719 return;
1720
1721 {
1722 const int num_regs = NUM_REGS;
1723 int i;
1724
1725 for (i = 0; i < num_regs; i++)
1726 {
1727 this_cache->saved_regs[i].addr = -1;
1728 }
1729 }
1730 }
1731
1732 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1733 the associated FRAME_CACHE if not null.
1734 Return the address of the first instruction past the prologue. */
1735
1736 static CORE_ADDR
1737 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1738 struct frame_info *next_frame,
1739 struct mips_frame_cache *this_cache)
1740 {
1741 CORE_ADDR cur_pc;
1742 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1743 CORE_ADDR sp;
1744 long frame_offset;
1745 int frame_reg = MIPS_SP_REGNUM;
1746
1747 CORE_ADDR end_prologue_addr = 0;
1748 int seen_sp_adjust = 0;
1749 int load_immediate_bytes = 0;
1750
1751 /* Can be called when there's no process, and hence when there's no
1752 NEXT_FRAME. */
1753 if (next_frame != NULL)
1754 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1755 else
1756 sp = 0;
1757
1758 if (limit_pc > start_pc + 200)
1759 limit_pc = start_pc + 200;
1760
1761 restart:
1762
1763 frame_offset = 0;
1764 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1765 {
1766 unsigned long inst, high_word, low_word;
1767 int reg;
1768
1769 /* Fetch the instruction. */
1770 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1771
1772 /* Save some code by pre-extracting some useful fields. */
1773 high_word = (inst >> 16) & 0xffff;
1774 low_word = inst & 0xffff;
1775 reg = high_word & 0x1f;
1776
1777 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1778 || high_word == 0x23bd /* addi $sp,$sp,-i */
1779 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1780 {
1781 if (low_word & 0x8000) /* negative stack adjustment? */
1782 frame_offset += 0x10000 - low_word;
1783 else
1784 /* Exit loop if a positive stack adjustment is found, which
1785 usually means that the stack cleanup code in the function
1786 epilogue is reached. */
1787 break;
1788 seen_sp_adjust = 1;
1789 }
1790 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1791 {
1792 set_reg_offset (this_cache, reg, sp + low_word);
1793 }
1794 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1795 {
1796 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1797 set_reg_offset (this_cache, reg, sp + low_word);
1798 }
1799 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1800 {
1801 /* Old gcc frame, r30 is virtual frame pointer. */
1802 if ((long) low_word != frame_offset)
1803 frame_addr = sp + low_word;
1804 else if (frame_reg == MIPS_SP_REGNUM)
1805 {
1806 unsigned alloca_adjust;
1807
1808 frame_reg = 30;
1809 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1810 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1811 if (alloca_adjust > 0)
1812 {
1813 /* FP > SP + frame_size. This may be because of
1814 an alloca or somethings similar. Fix sp to
1815 "pre-alloca" value, and try again. */
1816 sp += alloca_adjust;
1817 /* Need to reset the status of all registers. Otherwise,
1818 we will hit a guard that prevents the new address
1819 for each register to be recomputed during the second
1820 pass. */
1821 reset_saved_regs (this_cache);
1822 goto restart;
1823 }
1824 }
1825 }
1826 /* move $30,$sp. With different versions of gas this will be either
1827 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1828 Accept any one of these. */
1829 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1830 {
1831 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1832 if (frame_reg == MIPS_SP_REGNUM)
1833 {
1834 unsigned alloca_adjust;
1835
1836 frame_reg = 30;
1837 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1838 alloca_adjust = (unsigned) (frame_addr - sp);
1839 if (alloca_adjust > 0)
1840 {
1841 /* FP > SP + frame_size. This may be because of
1842 an alloca or somethings similar. Fix sp to
1843 "pre-alloca" value, and try again. */
1844 sp = frame_addr;
1845 /* Need to reset the status of all registers. Otherwise,
1846 we will hit a guard that prevents the new address
1847 for each register to be recomputed during the second
1848 pass. */
1849 reset_saved_regs (this_cache);
1850 goto restart;
1851 }
1852 }
1853 }
1854 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1855 {
1856 set_reg_offset (this_cache, reg, frame_addr + low_word);
1857 }
1858 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1859 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1860 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1861 || high_word == 0x3c1c /* lui $gp,n */
1862 || high_word == 0x279c /* addiu $gp,$gp,n */
1863 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1864 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1865 )
1866 {
1867 /* These instructions are part of the prologue, but we don't
1868 need to do anything special to handle them. */
1869 }
1870 /* The instructions below load $at or $t0 with an immediate
1871 value in preparation for a stack adjustment via
1872 subu $sp,$sp,[$at,$t0]. These instructions could also
1873 initialize a local variable, so we accept them only before
1874 a stack adjustment instruction was seen. */
1875 else if (!seen_sp_adjust
1876 && (high_word == 0x3c01 /* lui $at,n */
1877 || high_word == 0x3c08 /* lui $t0,n */
1878 || high_word == 0x3421 /* ori $at,$at,n */
1879 || high_word == 0x3508 /* ori $t0,$t0,n */
1880 || high_word == 0x3401 /* ori $at,$zero,n */
1881 || high_word == 0x3408 /* ori $t0,$zero,n */
1882 ))
1883 {
1884 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
1885 }
1886 else
1887 {
1888 /* This instruction is not an instruction typically found
1889 in a prologue, so we must have reached the end of the
1890 prologue. */
1891 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1892 loop now? Why would we need to continue scanning the function
1893 instructions? */
1894 if (end_prologue_addr == 0)
1895 end_prologue_addr = cur_pc;
1896 }
1897 }
1898
1899 if (this_cache != NULL)
1900 {
1901 this_cache->base =
1902 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1903 + frame_offset);
1904 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1905 this assignment below, eventually. But it's still needed
1906 for now. */
1907 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1908 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1909 }
1910
1911 /* If we didn't reach the end of the prologue when scanning the function
1912 instructions, then set end_prologue_addr to the address of the
1913 instruction immediately after the last one we scanned. */
1914 /* brobecker/2004-10-10: I don't think this would ever happen, but
1915 we may as well be careful and do our best if we have a null
1916 end_prologue_addr. */
1917 if (end_prologue_addr == 0)
1918 end_prologue_addr = cur_pc;
1919
1920 /* In a frameless function, we might have incorrectly
1921 skipped some load immediate instructions. Undo the skipping
1922 if the load immediate was not followed by a stack adjustment. */
1923 if (load_immediate_bytes && !seen_sp_adjust)
1924 end_prologue_addr -= load_immediate_bytes;
1925
1926 return end_prologue_addr;
1927 }
1928
1929 /* Heuristic unwinder for procedures using 32-bit instructions (covers
1930 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1931 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1932 unwinder. */
1933
1934 static struct mips_frame_cache *
1935 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
1936 {
1937 struct mips_frame_cache *cache;
1938
1939 if ((*this_cache) != NULL)
1940 return (*this_cache);
1941
1942 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1943 (*this_cache) = cache;
1944 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1945
1946 /* Analyze the function prologue. */
1947 {
1948 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1949 CORE_ADDR start_addr;
1950
1951 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1952 if (start_addr == 0)
1953 start_addr = heuristic_proc_start (pc);
1954 /* We can't analyze the prologue if we couldn't find the begining
1955 of the function. */
1956 if (start_addr == 0)
1957 return cache;
1958
1959 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1960 }
1961
1962 /* SP_REGNUM, contains the value and not the address. */
1963 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1964
1965 return (*this_cache);
1966 }
1967
1968 static void
1969 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1970 struct frame_id *this_id)
1971 {
1972 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1973 this_cache);
1974 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1975 }
1976
1977 static void
1978 mips_insn32_frame_prev_register (struct frame_info *next_frame,
1979 void **this_cache,
1980 int regnum, int *optimizedp,
1981 enum lval_type *lvalp, CORE_ADDR *addrp,
1982 int *realnump, gdb_byte *valuep)
1983 {
1984 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1985 this_cache);
1986 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1987 optimizedp, lvalp, addrp, realnump, valuep);
1988 }
1989
1990 static const struct frame_unwind mips_insn32_frame_unwind =
1991 {
1992 NORMAL_FRAME,
1993 mips_insn32_frame_this_id,
1994 mips_insn32_frame_prev_register
1995 };
1996
1997 static const struct frame_unwind *
1998 mips_insn32_frame_sniffer (struct frame_info *next_frame)
1999 {
2000 CORE_ADDR pc = frame_pc_unwind (next_frame);
2001 if (! mips_pc_is_mips16 (pc))
2002 return &mips_insn32_frame_unwind;
2003 return NULL;
2004 }
2005
2006 static CORE_ADDR
2007 mips_insn32_frame_base_address (struct frame_info *next_frame,
2008 void **this_cache)
2009 {
2010 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2011 this_cache);
2012 return info->base;
2013 }
2014
2015 static const struct frame_base mips_insn32_frame_base =
2016 {
2017 &mips_insn32_frame_unwind,
2018 mips_insn32_frame_base_address,
2019 mips_insn32_frame_base_address,
2020 mips_insn32_frame_base_address
2021 };
2022
2023 static const struct frame_base *
2024 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2025 {
2026 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2027 return &mips_insn32_frame_base;
2028 else
2029 return NULL;
2030 }
2031
2032 static struct trad_frame_cache *
2033 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2034 {
2035 CORE_ADDR pc;
2036 CORE_ADDR start_addr;
2037 CORE_ADDR stack_addr;
2038 struct trad_frame_cache *this_trad_cache;
2039
2040 if ((*this_cache) != NULL)
2041 return (*this_cache);
2042 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2043 (*this_cache) = this_trad_cache;
2044
2045 /* The return address is in the link register. */
2046 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
2047
2048 /* Frame ID, since it's a frameless / stackless function, no stack
2049 space is allocated and SP on entry is the current SP. */
2050 pc = frame_pc_unwind (next_frame);
2051 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2052 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2053 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2054
2055 /* Assume that the frame's base is the same as the
2056 stack-pointer. */
2057 trad_frame_set_this_base (this_trad_cache, stack_addr);
2058
2059 return this_trad_cache;
2060 }
2061
2062 static void
2063 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2064 struct frame_id *this_id)
2065 {
2066 struct trad_frame_cache *this_trad_cache
2067 = mips_stub_frame_cache (next_frame, this_cache);
2068 trad_frame_get_id (this_trad_cache, this_id);
2069 }
2070
2071 static void
2072 mips_stub_frame_prev_register (struct frame_info *next_frame,
2073 void **this_cache,
2074 int regnum, int *optimizedp,
2075 enum lval_type *lvalp, CORE_ADDR *addrp,
2076 int *realnump, gdb_byte *valuep)
2077 {
2078 struct trad_frame_cache *this_trad_cache
2079 = mips_stub_frame_cache (next_frame, this_cache);
2080 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2081 lvalp, addrp, realnump, valuep);
2082 }
2083
2084 static const struct frame_unwind mips_stub_frame_unwind =
2085 {
2086 NORMAL_FRAME,
2087 mips_stub_frame_this_id,
2088 mips_stub_frame_prev_register
2089 };
2090
2091 static const struct frame_unwind *
2092 mips_stub_frame_sniffer (struct frame_info *next_frame)
2093 {
2094 struct obj_section *s;
2095 CORE_ADDR pc = frame_pc_unwind (next_frame);
2096
2097 if (in_plt_section (pc, NULL))
2098 return &mips_stub_frame_unwind;
2099
2100 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2101 s = find_pc_section (pc);
2102
2103 if (s != NULL
2104 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2105 ".MIPS.stubs") == 0)
2106 return &mips_stub_frame_unwind;
2107
2108 return NULL;
2109 }
2110
2111 static CORE_ADDR
2112 mips_stub_frame_base_address (struct frame_info *next_frame,
2113 void **this_cache)
2114 {
2115 struct trad_frame_cache *this_trad_cache
2116 = mips_stub_frame_cache (next_frame, this_cache);
2117 return trad_frame_get_this_base (this_trad_cache);
2118 }
2119
2120 static const struct frame_base mips_stub_frame_base =
2121 {
2122 &mips_stub_frame_unwind,
2123 mips_stub_frame_base_address,
2124 mips_stub_frame_base_address,
2125 mips_stub_frame_base_address
2126 };
2127
2128 static const struct frame_base *
2129 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2130 {
2131 if (mips_stub_frame_sniffer (next_frame) != NULL)
2132 return &mips_stub_frame_base;
2133 else
2134 return NULL;
2135 }
2136
2137 static CORE_ADDR
2138 read_next_frame_reg (struct frame_info *fi, int regno)
2139 {
2140 /* Always a pseudo. */
2141 gdb_assert (regno >= NUM_REGS);
2142 if (fi == NULL)
2143 {
2144 LONGEST val;
2145 regcache_cooked_read_signed (current_regcache, regno, &val);
2146 return val;
2147 }
2148 else
2149 return frame_unwind_register_signed (fi, regno);
2150
2151 }
2152
2153 /* mips_addr_bits_remove - remove useless address bits */
2154
2155 static CORE_ADDR
2156 mips_addr_bits_remove (CORE_ADDR addr)
2157 {
2158 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2159 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2160 /* This hack is a work-around for existing boards using PMON, the
2161 simulator, and any other 64-bit targets that doesn't have true
2162 64-bit addressing. On these targets, the upper 32 bits of
2163 addresses are ignored by the hardware. Thus, the PC or SP are
2164 likely to have been sign extended to all 1s by instruction
2165 sequences that load 32-bit addresses. For example, a typical
2166 piece of code that loads an address is this:
2167
2168 lui $r2, <upper 16 bits>
2169 ori $r2, <lower 16 bits>
2170
2171 But the lui sign-extends the value such that the upper 32 bits
2172 may be all 1s. The workaround is simply to mask off these
2173 bits. In the future, gcc may be changed to support true 64-bit
2174 addressing, and this masking will have to be disabled. */
2175 return addr &= 0xffffffffUL;
2176 else
2177 return addr;
2178 }
2179
2180 /* mips_software_single_step() is called just before we want to resume
2181 the inferior, if we want to single-step it but there is no hardware
2182 or kernel single-step support (MIPS on GNU/Linux for example). We find
2183 the target of the coming instruction and breakpoint it.
2184
2185 single_step is also called just after the inferior stops. If we had
2186 set up a simulated single-step, we undo our damage. */
2187
2188 void
2189 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
2190 {
2191 CORE_ADDR pc, next_pc;
2192
2193 if (insert_breakpoints_p)
2194 {
2195 pc = read_register (mips_regnum (current_gdbarch)->pc);
2196 next_pc = mips_next_pc (pc);
2197
2198 insert_single_step_breakpoint (next_pc);
2199 }
2200 else
2201 remove_single_step_breakpoints ();
2202 }
2203
2204 /* Test whether the PC points to the return instruction at the
2205 end of a function. */
2206
2207 static int
2208 mips_about_to_return (CORE_ADDR pc)
2209 {
2210 if (mips_pc_is_mips16 (pc))
2211 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2212 generates a "jr $ra"; other times it generates code to load
2213 the return address from the stack to an accessible register (such
2214 as $a3), then a "jr" using that register. This second case
2215 is almost impossible to distinguish from an indirect jump
2216 used for switch statements, so we don't even try. */
2217 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2218 else
2219 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2220 }
2221
2222
2223 /* This fencepost looks highly suspicious to me. Removing it also
2224 seems suspicious as it could affect remote debugging across serial
2225 lines. */
2226
2227 static CORE_ADDR
2228 heuristic_proc_start (CORE_ADDR pc)
2229 {
2230 CORE_ADDR start_pc;
2231 CORE_ADDR fence;
2232 int instlen;
2233 int seen_adjsp = 0;
2234
2235 pc = ADDR_BITS_REMOVE (pc);
2236 start_pc = pc;
2237 fence = start_pc - heuristic_fence_post;
2238 if (start_pc == 0)
2239 return 0;
2240
2241 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2242 fence = VM_MIN_ADDRESS;
2243
2244 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2245
2246 /* search back for previous return */
2247 for (start_pc -= instlen;; start_pc -= instlen)
2248 if (start_pc < fence)
2249 {
2250 /* It's not clear to me why we reach this point when
2251 stop_soon, but with this test, at least we
2252 don't print out warnings for every child forked (eg, on
2253 decstation). 22apr93 rich@cygnus.com. */
2254 if (stop_soon == NO_STOP_QUIETLY)
2255 {
2256 static int blurb_printed = 0;
2257
2258 warning (_("GDB can't find the start of the function at 0x%s."),
2259 paddr_nz (pc));
2260
2261 if (!blurb_printed)
2262 {
2263 /* This actually happens frequently in embedded
2264 development, when you first connect to a board
2265 and your stack pointer and pc are nowhere in
2266 particular. This message needs to give people
2267 in that situation enough information to
2268 determine that it's no big deal. */
2269 printf_filtered ("\n\
2270 GDB is unable to find the start of the function at 0x%s\n\
2271 and thus can't determine the size of that function's stack frame.\n\
2272 This means that GDB may be unable to access that stack frame, or\n\
2273 the frames below it.\n\
2274 This problem is most likely caused by an invalid program counter or\n\
2275 stack pointer.\n\
2276 However, if you think GDB should simply search farther back\n\
2277 from 0x%s for code which looks like the beginning of a\n\
2278 function, you can increase the range of the search using the `set\n\
2279 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2280 blurb_printed = 1;
2281 }
2282 }
2283
2284 return 0;
2285 }
2286 else if (mips_pc_is_mips16 (start_pc))
2287 {
2288 unsigned short inst;
2289
2290 /* On MIPS16, any one of the following is likely to be the
2291 start of a function:
2292 entry
2293 addiu sp,-n
2294 daddiu sp,-n
2295 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2296 inst = mips_fetch_instruction (start_pc);
2297 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2298 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2299 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2300 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2301 break;
2302 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2303 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2304 seen_adjsp = 1;
2305 else
2306 seen_adjsp = 0;
2307 }
2308 else if (mips_about_to_return (start_pc))
2309 {
2310 /* Skip return and its delay slot. */
2311 start_pc += 2 * MIPS_INSN32_SIZE;
2312 break;
2313 }
2314
2315 return start_pc;
2316 }
2317
2318 struct mips_objfile_private
2319 {
2320 bfd_size_type size;
2321 char *contents;
2322 };
2323
2324 /* According to the current ABI, should the type be passed in a
2325 floating-point register (assuming that there is space)? When there
2326 is no FPU, FP are not even considered as possible candidates for
2327 FP registers and, consequently this returns false - forces FP
2328 arguments into integer registers. */
2329
2330 static int
2331 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2332 {
2333 return ((typecode == TYPE_CODE_FLT
2334 || (MIPS_EABI
2335 && (typecode == TYPE_CODE_STRUCT
2336 || typecode == TYPE_CODE_UNION)
2337 && TYPE_NFIELDS (arg_type) == 1
2338 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2339 == TYPE_CODE_FLT))
2340 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2341 }
2342
2343 /* On o32, argument passing in GPRs depends on the alignment of the type being
2344 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2345
2346 static int
2347 mips_type_needs_double_align (struct type *type)
2348 {
2349 enum type_code typecode = TYPE_CODE (type);
2350
2351 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2352 return 1;
2353 else if (typecode == TYPE_CODE_STRUCT)
2354 {
2355 if (TYPE_NFIELDS (type) < 1)
2356 return 0;
2357 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2358 }
2359 else if (typecode == TYPE_CODE_UNION)
2360 {
2361 int i, n;
2362
2363 n = TYPE_NFIELDS (type);
2364 for (i = 0; i < n; i++)
2365 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2366 return 1;
2367 return 0;
2368 }
2369 return 0;
2370 }
2371
2372 /* Adjust the address downward (direction of stack growth) so that it
2373 is correctly aligned for a new stack frame. */
2374 static CORE_ADDR
2375 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2376 {
2377 return align_down (addr, 16);
2378 }
2379
2380 static CORE_ADDR
2381 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2382 struct regcache *regcache, CORE_ADDR bp_addr,
2383 int nargs, struct value **args, CORE_ADDR sp,
2384 int struct_return, CORE_ADDR struct_addr)
2385 {
2386 int argreg;
2387 int float_argreg;
2388 int argnum;
2389 int len = 0;
2390 int stack_offset = 0;
2391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2392 CORE_ADDR func_addr = find_function_addr (function, NULL);
2393
2394 /* For shared libraries, "t9" needs to point at the function
2395 address. */
2396 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2397
2398 /* Set the return address register to point to the entry point of
2399 the program, where a breakpoint lies in wait. */
2400 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2401
2402 /* First ensure that the stack and structure return address (if any)
2403 are properly aligned. The stack has to be at least 64-bit
2404 aligned even on 32-bit machines, because doubles must be 64-bit
2405 aligned. For n32 and n64, stack frames need to be 128-bit
2406 aligned, so we round to this widest known alignment. */
2407
2408 sp = align_down (sp, 16);
2409 struct_addr = align_down (struct_addr, 16);
2410
2411 /* Now make space on the stack for the args. We allocate more
2412 than necessary for EABI, because the first few arguments are
2413 passed in registers, but that's OK. */
2414 for (argnum = 0; argnum < nargs; argnum++)
2415 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2416 mips_stack_argsize (gdbarch));
2417 sp -= align_up (len, 16);
2418
2419 if (mips_debug)
2420 fprintf_unfiltered (gdb_stdlog,
2421 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2422 paddr_nz (sp), (long) align_up (len, 16));
2423
2424 /* Initialize the integer and float register pointers. */
2425 argreg = MIPS_A0_REGNUM;
2426 float_argreg = mips_fpa0_regnum (current_gdbarch);
2427
2428 /* The struct_return pointer occupies the first parameter-passing reg. */
2429 if (struct_return)
2430 {
2431 if (mips_debug)
2432 fprintf_unfiltered (gdb_stdlog,
2433 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2434 argreg, paddr_nz (struct_addr));
2435 write_register (argreg++, struct_addr);
2436 }
2437
2438 /* Now load as many as possible of the first arguments into
2439 registers, and push the rest onto the stack. Loop thru args
2440 from first to last. */
2441 for (argnum = 0; argnum < nargs; argnum++)
2442 {
2443 const gdb_byte *val;
2444 gdb_byte valbuf[MAX_REGISTER_SIZE];
2445 struct value *arg = args[argnum];
2446 struct type *arg_type = check_typedef (value_type (arg));
2447 int len = TYPE_LENGTH (arg_type);
2448 enum type_code typecode = TYPE_CODE (arg_type);
2449
2450 if (mips_debug)
2451 fprintf_unfiltered (gdb_stdlog,
2452 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2453 argnum + 1, len, (int) typecode);
2454
2455 /* The EABI passes structures that do not fit in a register by
2456 reference. */
2457 if (len > mips_abi_regsize (gdbarch)
2458 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2459 {
2460 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
2461 VALUE_ADDRESS (arg));
2462 typecode = TYPE_CODE_PTR;
2463 len = mips_abi_regsize (gdbarch);
2464 val = valbuf;
2465 if (mips_debug)
2466 fprintf_unfiltered (gdb_stdlog, " push");
2467 }
2468 else
2469 val = value_contents (arg);
2470
2471 /* 32-bit ABIs always start floating point arguments in an
2472 even-numbered floating point register. Round the FP register
2473 up before the check to see if there are any FP registers
2474 left. Non MIPS_EABI targets also pass the FP in the integer
2475 registers so also round up normal registers. */
2476 if (mips_abi_regsize (gdbarch) < 8
2477 && fp_register_arg_p (typecode, arg_type))
2478 {
2479 if ((float_argreg & 1))
2480 float_argreg++;
2481 }
2482
2483 /* Floating point arguments passed in registers have to be
2484 treated specially. On 32-bit architectures, doubles
2485 are passed in register pairs; the even register gets
2486 the low word, and the odd register gets the high word.
2487 On non-EABI processors, the first two floating point arguments are
2488 also copied to general registers, because MIPS16 functions
2489 don't use float registers for arguments. This duplication of
2490 arguments in general registers can't hurt non-MIPS16 functions
2491 because those registers are normally skipped. */
2492 /* MIPS_EABI squeezes a struct that contains a single floating
2493 point value into an FP register instead of pushing it onto the
2494 stack. */
2495 if (fp_register_arg_p (typecode, arg_type)
2496 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2497 {
2498 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
2499 {
2500 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2501 unsigned long regval;
2502
2503 /* Write the low word of the double to the even register(s). */
2504 regval = extract_unsigned_integer (val + low_offset, 4);
2505 if (mips_debug)
2506 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2507 float_argreg, phex (regval, 4));
2508 write_register (float_argreg++, regval);
2509
2510 /* Write the high word of the double to the odd register(s). */
2511 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2512 if (mips_debug)
2513 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2514 float_argreg, phex (regval, 4));
2515 write_register (float_argreg++, regval);
2516 }
2517 else
2518 {
2519 /* This is a floating point value that fits entirely
2520 in a single register. */
2521 /* On 32 bit ABI's the float_argreg is further adjusted
2522 above to ensure that it is even register aligned. */
2523 LONGEST regval = extract_unsigned_integer (val, len);
2524 if (mips_debug)
2525 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2526 float_argreg, phex (regval, len));
2527 write_register (float_argreg++, regval);
2528 }
2529 }
2530 else
2531 {
2532 /* Copy the argument to general registers or the stack in
2533 register-sized pieces. Large arguments are split between
2534 registers and stack. */
2535 /* Note: structs whose size is not a multiple of
2536 mips_abi_regsize() are treated specially: Irix cc passes
2537 them in registers where gcc sometimes puts them on the
2538 stack. For maximum compatibility, we will put them in
2539 both places. */
2540 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2541 && (len % mips_abi_regsize (gdbarch) != 0));
2542
2543 /* Note: Floating-point values that didn't fit into an FP
2544 register are only written to memory. */
2545 while (len > 0)
2546 {
2547 /* Remember if the argument was written to the stack. */
2548 int stack_used_p = 0;
2549 int partial_len = (len < mips_abi_regsize (gdbarch)
2550 ? len : mips_abi_regsize (gdbarch));
2551
2552 if (mips_debug)
2553 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2554 partial_len);
2555
2556 /* Write this portion of the argument to the stack. */
2557 if (argreg > MIPS_LAST_ARG_REGNUM
2558 || odd_sized_struct
2559 || fp_register_arg_p (typecode, arg_type))
2560 {
2561 /* Should shorter than int integer values be
2562 promoted to int before being stored? */
2563 int longword_offset = 0;
2564 CORE_ADDR addr;
2565 stack_used_p = 1;
2566 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2567 {
2568 if (mips_stack_argsize (gdbarch) == 8
2569 && (typecode == TYPE_CODE_INT
2570 || typecode == TYPE_CODE_PTR
2571 || typecode == TYPE_CODE_FLT) && len <= 4)
2572 longword_offset = mips_stack_argsize (gdbarch) - len;
2573 else if ((typecode == TYPE_CODE_STRUCT
2574 || typecode == TYPE_CODE_UNION)
2575 && (TYPE_LENGTH (arg_type)
2576 < mips_stack_argsize (gdbarch)))
2577 longword_offset = mips_stack_argsize (gdbarch) - len;
2578 }
2579
2580 if (mips_debug)
2581 {
2582 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2583 paddr_nz (stack_offset));
2584 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2585 paddr_nz (longword_offset));
2586 }
2587
2588 addr = sp + stack_offset + longword_offset;
2589
2590 if (mips_debug)
2591 {
2592 int i;
2593 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2594 paddr_nz (addr));
2595 for (i = 0; i < partial_len; i++)
2596 {
2597 fprintf_unfiltered (gdb_stdlog, "%02x",
2598 val[i] & 0xff);
2599 }
2600 }
2601 write_memory (addr, val, partial_len);
2602 }
2603
2604 /* Note!!! This is NOT an else clause. Odd sized
2605 structs may go thru BOTH paths. Floating point
2606 arguments will not. */
2607 /* Write this portion of the argument to a general
2608 purpose register. */
2609 if (argreg <= MIPS_LAST_ARG_REGNUM
2610 && !fp_register_arg_p (typecode, arg_type))
2611 {
2612 LONGEST regval =
2613 extract_unsigned_integer (val, partial_len);
2614
2615 if (mips_debug)
2616 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2617 argreg,
2618 phex (regval,
2619 mips_abi_regsize (gdbarch)));
2620 write_register (argreg, regval);
2621 argreg++;
2622 }
2623
2624 len -= partial_len;
2625 val += partial_len;
2626
2627 /* Compute the the offset into the stack at which we
2628 will copy the next parameter.
2629
2630 In the new EABI (and the NABI32), the stack_offset
2631 only needs to be adjusted when it has been used. */
2632
2633 if (stack_used_p)
2634 stack_offset += align_up (partial_len,
2635 mips_stack_argsize (gdbarch));
2636 }
2637 }
2638 if (mips_debug)
2639 fprintf_unfiltered (gdb_stdlog, "\n");
2640 }
2641
2642 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2643
2644 /* Return adjusted stack pointer. */
2645 return sp;
2646 }
2647
2648 /* Determine the return value convention being used. */
2649
2650 static enum return_value_convention
2651 mips_eabi_return_value (struct gdbarch *gdbarch,
2652 struct type *type, struct regcache *regcache,
2653 gdb_byte *readbuf, const gdb_byte *writebuf)
2654 {
2655 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2656 return RETURN_VALUE_STRUCT_CONVENTION;
2657 if (readbuf)
2658 memset (readbuf, 0, TYPE_LENGTH (type));
2659 return RETURN_VALUE_REGISTER_CONVENTION;
2660 }
2661
2662
2663 /* N32/N64 ABI stuff. */
2664
2665 static CORE_ADDR
2666 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2667 struct regcache *regcache, CORE_ADDR bp_addr,
2668 int nargs, struct value **args, CORE_ADDR sp,
2669 int struct_return, CORE_ADDR struct_addr)
2670 {
2671 int argreg;
2672 int float_argreg;
2673 int argnum;
2674 int len = 0;
2675 int stack_offset = 0;
2676 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2677 CORE_ADDR func_addr = find_function_addr (function, NULL);
2678
2679 /* For shared libraries, "t9" needs to point at the function
2680 address. */
2681 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2682
2683 /* Set the return address register to point to the entry point of
2684 the program, where a breakpoint lies in wait. */
2685 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2686
2687 /* First ensure that the stack and structure return address (if any)
2688 are properly aligned. The stack has to be at least 64-bit
2689 aligned even on 32-bit machines, because doubles must be 64-bit
2690 aligned. For n32 and n64, stack frames need to be 128-bit
2691 aligned, so we round to this widest known alignment. */
2692
2693 sp = align_down (sp, 16);
2694 struct_addr = align_down (struct_addr, 16);
2695
2696 /* Now make space on the stack for the args. */
2697 for (argnum = 0; argnum < nargs; argnum++)
2698 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2699 mips_stack_argsize (gdbarch));
2700 sp -= align_up (len, 16);
2701
2702 if (mips_debug)
2703 fprintf_unfiltered (gdb_stdlog,
2704 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2705 paddr_nz (sp), (long) align_up (len, 16));
2706
2707 /* Initialize the integer and float register pointers. */
2708 argreg = MIPS_A0_REGNUM;
2709 float_argreg = mips_fpa0_regnum (current_gdbarch);
2710
2711 /* The struct_return pointer occupies the first parameter-passing reg. */
2712 if (struct_return)
2713 {
2714 if (mips_debug)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2717 argreg, paddr_nz (struct_addr));
2718 write_register (argreg++, struct_addr);
2719 }
2720
2721 /* Now load as many as possible of the first arguments into
2722 registers, and push the rest onto the stack. Loop thru args
2723 from first to last. */
2724 for (argnum = 0; argnum < nargs; argnum++)
2725 {
2726 const gdb_byte *val;
2727 struct value *arg = args[argnum];
2728 struct type *arg_type = check_typedef (value_type (arg));
2729 int len = TYPE_LENGTH (arg_type);
2730 enum type_code typecode = TYPE_CODE (arg_type);
2731
2732 if (mips_debug)
2733 fprintf_unfiltered (gdb_stdlog,
2734 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2735 argnum + 1, len, (int) typecode);
2736
2737 val = value_contents (arg);
2738
2739 if (fp_register_arg_p (typecode, arg_type)
2740 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2741 {
2742 /* This is a floating point value that fits entirely
2743 in a single register. */
2744 /* On 32 bit ABI's the float_argreg is further adjusted
2745 above to ensure that it is even register aligned. */
2746 LONGEST regval = extract_unsigned_integer (val, len);
2747 if (mips_debug)
2748 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2749 float_argreg, phex (regval, len));
2750 write_register (float_argreg++, regval);
2751
2752 if (mips_debug)
2753 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2754 argreg, phex (regval, len));
2755 write_register (argreg, regval);
2756 argreg += 1;
2757 }
2758 else
2759 {
2760 /* Copy the argument to general registers or the stack in
2761 register-sized pieces. Large arguments are split between
2762 registers and stack. */
2763 /* Note: structs whose size is not a multiple of
2764 mips_abi_regsize() are treated specially: Irix cc passes
2765 them in registers where gcc sometimes puts them on the
2766 stack. For maximum compatibility, we will put them in
2767 both places. */
2768 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2769 && (len % mips_abi_regsize (gdbarch) != 0));
2770 /* Note: Floating-point values that didn't fit into an FP
2771 register are only written to memory. */
2772 while (len > 0)
2773 {
2774 /* Rememer if the argument was written to the stack. */
2775 int stack_used_p = 0;
2776 int partial_len = (len < mips_abi_regsize (gdbarch)
2777 ? len : mips_abi_regsize (gdbarch));
2778
2779 if (mips_debug)
2780 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2781 partial_len);
2782
2783 /* Write this portion of the argument to the stack. */
2784 if (argreg > MIPS_LAST_ARG_REGNUM
2785 || odd_sized_struct
2786 || fp_register_arg_p (typecode, arg_type))
2787 {
2788 /* Should shorter than int integer values be
2789 promoted to int before being stored? */
2790 int longword_offset = 0;
2791 CORE_ADDR addr;
2792 stack_used_p = 1;
2793 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2794 {
2795 if (mips_stack_argsize (gdbarch) == 8
2796 && (typecode == TYPE_CODE_INT
2797 || typecode == TYPE_CODE_PTR
2798 || typecode == TYPE_CODE_FLT) && len <= 4)
2799 longword_offset = mips_stack_argsize (gdbarch) - len;
2800 }
2801
2802 if (mips_debug)
2803 {
2804 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2805 paddr_nz (stack_offset));
2806 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2807 paddr_nz (longword_offset));
2808 }
2809
2810 addr = sp + stack_offset + longword_offset;
2811
2812 if (mips_debug)
2813 {
2814 int i;
2815 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2816 paddr_nz (addr));
2817 for (i = 0; i < partial_len; i++)
2818 {
2819 fprintf_unfiltered (gdb_stdlog, "%02x",
2820 val[i] & 0xff);
2821 }
2822 }
2823 write_memory (addr, val, partial_len);
2824 }
2825
2826 /* Note!!! This is NOT an else clause. Odd sized
2827 structs may go thru BOTH paths. Floating point
2828 arguments will not. */
2829 /* Write this portion of the argument to a general
2830 purpose register. */
2831 if (argreg <= MIPS_LAST_ARG_REGNUM
2832 && !fp_register_arg_p (typecode, arg_type))
2833 {
2834 LONGEST regval =
2835 extract_unsigned_integer (val, partial_len);
2836
2837 /* A non-floating-point argument being passed in a
2838 general register. If a struct or union, and if
2839 the remaining length is smaller than the register
2840 size, we have to adjust the register value on
2841 big endian targets.
2842
2843 It does not seem to be necessary to do the
2844 same for integral types.
2845
2846 cagney/2001-07-23: gdb/179: Also, GCC, when
2847 outputting LE O32 with sizeof (struct) <
2848 mips_abi_regsize(), generates a left shift as
2849 part of storing the argument in a register a
2850 register (the left shift isn't generated when
2851 sizeof (struct) >= mips_abi_regsize()). Since
2852 it is quite possible that this is GCC
2853 contradicting the LE/O32 ABI, GDB has not been
2854 adjusted to accommodate this. Either someone
2855 needs to demonstrate that the LE/O32 ABI
2856 specifies such a left shift OR this new ABI gets
2857 identified as such and GDB gets tweaked
2858 accordingly. */
2859
2860 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2861 && partial_len < mips_abi_regsize (gdbarch)
2862 && (typecode == TYPE_CODE_STRUCT ||
2863 typecode == TYPE_CODE_UNION))
2864 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
2865 TARGET_CHAR_BIT);
2866
2867 if (mips_debug)
2868 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2869 argreg,
2870 phex (regval,
2871 mips_abi_regsize (gdbarch)));
2872 write_register (argreg, regval);
2873 argreg++;
2874 }
2875
2876 len -= partial_len;
2877 val += partial_len;
2878
2879 /* Compute the the offset into the stack at which we
2880 will copy the next parameter.
2881
2882 In N32 (N64?), the stack_offset only needs to be
2883 adjusted when it has been used. */
2884
2885 if (stack_used_p)
2886 stack_offset += align_up (partial_len,
2887 mips_stack_argsize (gdbarch));
2888 }
2889 }
2890 if (mips_debug)
2891 fprintf_unfiltered (gdb_stdlog, "\n");
2892 }
2893
2894 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2895
2896 /* Return adjusted stack pointer. */
2897 return sp;
2898 }
2899
2900 static enum return_value_convention
2901 mips_n32n64_return_value (struct gdbarch *gdbarch,
2902 struct type *type, struct regcache *regcache,
2903 gdb_byte *readbuf, const gdb_byte *writebuf)
2904 {
2905 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2906 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2907 || TYPE_CODE (type) == TYPE_CODE_UNION
2908 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2909 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2910 return RETURN_VALUE_STRUCT_CONVENTION;
2911 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2912 && TYPE_LENGTH (type) == 16
2913 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2914 {
2915 /* A 128-bit floating-point value fills both $f0 and $f2. The
2916 two registers are used in the same as memory order, so the
2917 eight bytes with the lower memory address are in $f0. */
2918 if (mips_debug)
2919 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
2920 mips_xfer_register (regcache,
2921 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2922 8, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2923 mips_xfer_register (regcache,
2924 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 2,
2925 8, TARGET_BYTE_ORDER, readbuf ? readbuf + 8 : readbuf,
2926 writebuf ? writebuf + 8 : writebuf, 0);
2927 return RETURN_VALUE_REGISTER_CONVENTION;
2928 }
2929 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2930 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2931 {
2932 /* A floating-point value belongs in the least significant part
2933 of FP0. */
2934 if (mips_debug)
2935 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2936 mips_xfer_register (regcache,
2937 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2938 TYPE_LENGTH (type),
2939 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2940 return RETURN_VALUE_REGISTER_CONVENTION;
2941 }
2942 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2943 && TYPE_NFIELDS (type) <= 2
2944 && TYPE_NFIELDS (type) >= 1
2945 && ((TYPE_NFIELDS (type) == 1
2946 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2947 == TYPE_CODE_FLT))
2948 || (TYPE_NFIELDS (type) == 2
2949 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2950 == TYPE_CODE_FLT)
2951 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2952 == TYPE_CODE_FLT)))
2953 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2954 {
2955 /* A struct that contains one or two floats. Each value is part
2956 in the least significant part of their floating point
2957 register.. */
2958 int regnum;
2959 int field;
2960 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2961 field < TYPE_NFIELDS (type); field++, regnum += 2)
2962 {
2963 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2964 / TARGET_CHAR_BIT);
2965 if (mips_debug)
2966 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2967 offset);
2968 mips_xfer_register (regcache, NUM_REGS + regnum,
2969 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2970 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2971 }
2972 return RETURN_VALUE_REGISTER_CONVENTION;
2973 }
2974 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2975 || TYPE_CODE (type) == TYPE_CODE_UNION)
2976 {
2977 /* A structure or union. Extract the left justified value,
2978 regardless of the byte order. I.e. DO NOT USE
2979 mips_xfer_lower. */
2980 int offset;
2981 int regnum;
2982 for (offset = 0, regnum = MIPS_V0_REGNUM;
2983 offset < TYPE_LENGTH (type);
2984 offset += register_size (current_gdbarch, regnum), regnum++)
2985 {
2986 int xfer = register_size (current_gdbarch, regnum);
2987 if (offset + xfer > TYPE_LENGTH (type))
2988 xfer = TYPE_LENGTH (type) - offset;
2989 if (mips_debug)
2990 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
2991 offset, xfer, regnum);
2992 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2993 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
2994 }
2995 return RETURN_VALUE_REGISTER_CONVENTION;
2996 }
2997 else
2998 {
2999 /* A scalar extract each part but least-significant-byte
3000 justified. */
3001 int offset;
3002 int regnum;
3003 for (offset = 0, regnum = MIPS_V0_REGNUM;
3004 offset < TYPE_LENGTH (type);
3005 offset += register_size (current_gdbarch, regnum), regnum++)
3006 {
3007 int xfer = register_size (current_gdbarch, regnum);
3008 if (offset + xfer > TYPE_LENGTH (type))
3009 xfer = TYPE_LENGTH (type) - offset;
3010 if (mips_debug)
3011 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3012 offset, xfer, regnum);
3013 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3014 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3015 }
3016 return RETURN_VALUE_REGISTER_CONVENTION;
3017 }
3018 }
3019
3020 /* O32 ABI stuff. */
3021
3022 static CORE_ADDR
3023 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3024 struct regcache *regcache, CORE_ADDR bp_addr,
3025 int nargs, struct value **args, CORE_ADDR sp,
3026 int struct_return, CORE_ADDR struct_addr)
3027 {
3028 int argreg;
3029 int float_argreg;
3030 int argnum;
3031 int len = 0;
3032 int stack_offset = 0;
3033 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3034 CORE_ADDR func_addr = find_function_addr (function, NULL);
3035
3036 /* For shared libraries, "t9" needs to point at the function
3037 address. */
3038 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3039
3040 /* Set the return address register to point to the entry point of
3041 the program, where a breakpoint lies in wait. */
3042 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3043
3044 /* First ensure that the stack and structure return address (if any)
3045 are properly aligned. The stack has to be at least 64-bit
3046 aligned even on 32-bit machines, because doubles must be 64-bit
3047 aligned. For n32 and n64, stack frames need to be 128-bit
3048 aligned, so we round to this widest known alignment. */
3049
3050 sp = align_down (sp, 16);
3051 struct_addr = align_down (struct_addr, 16);
3052
3053 /* Now make space on the stack for the args. */
3054 for (argnum = 0; argnum < nargs; argnum++)
3055 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
3056 mips_stack_argsize (gdbarch));
3057 sp -= align_up (len, 16);
3058
3059 if (mips_debug)
3060 fprintf_unfiltered (gdb_stdlog,
3061 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3062 paddr_nz (sp), (long) align_up (len, 16));
3063
3064 /* Initialize the integer and float register pointers. */
3065 argreg = MIPS_A0_REGNUM;
3066 float_argreg = mips_fpa0_regnum (current_gdbarch);
3067
3068 /* The struct_return pointer occupies the first parameter-passing reg. */
3069 if (struct_return)
3070 {
3071 if (mips_debug)
3072 fprintf_unfiltered (gdb_stdlog,
3073 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3074 argreg, paddr_nz (struct_addr));
3075 write_register (argreg++, struct_addr);
3076 stack_offset += mips_stack_argsize (gdbarch);
3077 }
3078
3079 /* Now load as many as possible of the first arguments into
3080 registers, and push the rest onto the stack. Loop thru args
3081 from first to last. */
3082 for (argnum = 0; argnum < nargs; argnum++)
3083 {
3084 const gdb_byte *val;
3085 struct value *arg = args[argnum];
3086 struct type *arg_type = check_typedef (value_type (arg));
3087 int len = TYPE_LENGTH (arg_type);
3088 enum type_code typecode = TYPE_CODE (arg_type);
3089
3090 if (mips_debug)
3091 fprintf_unfiltered (gdb_stdlog,
3092 "mips_o32_push_dummy_call: %d len=%d type=%d",
3093 argnum + 1, len, (int) typecode);
3094
3095 val = value_contents (arg);
3096
3097 /* 32-bit ABIs always start floating point arguments in an
3098 even-numbered floating point register. Round the FP register
3099 up before the check to see if there are any FP registers
3100 left. O32/O64 targets also pass the FP in the integer
3101 registers so also round up normal registers. */
3102 if (mips_abi_regsize (gdbarch) < 8
3103 && fp_register_arg_p (typecode, arg_type))
3104 {
3105 if ((float_argreg & 1))
3106 float_argreg++;
3107 }
3108
3109 /* Floating point arguments passed in registers have to be
3110 treated specially. On 32-bit architectures, doubles
3111 are passed in register pairs; the even register gets
3112 the low word, and the odd register gets the high word.
3113 On O32/O64, the first two floating point arguments are
3114 also copied to general registers, because MIPS16 functions
3115 don't use float registers for arguments. This duplication of
3116 arguments in general registers can't hurt non-MIPS16 functions
3117 because those registers are normally skipped. */
3118
3119 if (fp_register_arg_p (typecode, arg_type)
3120 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3121 {
3122 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3123 {
3124 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3125 unsigned long regval;
3126
3127 /* Write the low word of the double to the even register(s). */
3128 regval = extract_unsigned_integer (val + low_offset, 4);
3129 if (mips_debug)
3130 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3131 float_argreg, phex (regval, 4));
3132 write_register (float_argreg++, regval);
3133 if (mips_debug)
3134 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3135 argreg, phex (regval, 4));
3136 write_register (argreg++, regval);
3137
3138 /* Write the high word of the double to the odd register(s). */
3139 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3140 if (mips_debug)
3141 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3142 float_argreg, phex (regval, 4));
3143 write_register (float_argreg++, regval);
3144
3145 if (mips_debug)
3146 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3147 argreg, phex (regval, 4));
3148 write_register (argreg++, regval);
3149 }
3150 else
3151 {
3152 /* This is a floating point value that fits entirely
3153 in a single register. */
3154 /* On 32 bit ABI's the float_argreg is further adjusted
3155 above to ensure that it is even register aligned. */
3156 LONGEST regval = extract_unsigned_integer (val, len);
3157 if (mips_debug)
3158 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3159 float_argreg, phex (regval, len));
3160 write_register (float_argreg++, regval);
3161 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3162 registers for each argument. The below is (my
3163 guess) to ensure that the corresponding integer
3164 register has reserved the same space. */
3165 if (mips_debug)
3166 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3167 argreg, phex (regval, len));
3168 write_register (argreg, regval);
3169 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3170 }
3171 /* Reserve space for the FP register. */
3172 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3173 }
3174 else
3175 {
3176 /* Copy the argument to general registers or the stack in
3177 register-sized pieces. Large arguments are split between
3178 registers and stack. */
3179 /* Note: structs whose size is not a multiple of
3180 mips_abi_regsize() are treated specially: Irix cc passes
3181 them in registers where gcc sometimes puts them on the
3182 stack. For maximum compatibility, we will put them in
3183 both places. */
3184 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3185 && (len % mips_abi_regsize (gdbarch) != 0));
3186 /* Structures should be aligned to eight bytes (even arg registers)
3187 on MIPS_ABI_O32, if their first member has double precision. */
3188 if (mips_abi_regsize (gdbarch) < 8
3189 && mips_type_needs_double_align (arg_type))
3190 {
3191 if ((argreg & 1))
3192 argreg++;
3193 }
3194 /* Note: Floating-point values that didn't fit into an FP
3195 register are only written to memory. */
3196 while (len > 0)
3197 {
3198 /* Remember if the argument was written to the stack. */
3199 int stack_used_p = 0;
3200 int partial_len = (len < mips_abi_regsize (gdbarch)
3201 ? len : mips_abi_regsize (gdbarch));
3202
3203 if (mips_debug)
3204 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3205 partial_len);
3206
3207 /* Write this portion of the argument to the stack. */
3208 if (argreg > MIPS_LAST_ARG_REGNUM
3209 || odd_sized_struct
3210 || fp_register_arg_p (typecode, arg_type))
3211 {
3212 /* Should shorter than int integer values be
3213 promoted to int before being stored? */
3214 int longword_offset = 0;
3215 CORE_ADDR addr;
3216 stack_used_p = 1;
3217 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3218 {
3219 if (mips_stack_argsize (gdbarch) == 8
3220 && (typecode == TYPE_CODE_INT
3221 || typecode == TYPE_CODE_PTR
3222 || typecode == TYPE_CODE_FLT) && len <= 4)
3223 longword_offset = mips_stack_argsize (gdbarch) - len;
3224 }
3225
3226 if (mips_debug)
3227 {
3228 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3229 paddr_nz (stack_offset));
3230 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3231 paddr_nz (longword_offset));
3232 }
3233
3234 addr = sp + stack_offset + longword_offset;
3235
3236 if (mips_debug)
3237 {
3238 int i;
3239 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3240 paddr_nz (addr));
3241 for (i = 0; i < partial_len; i++)
3242 {
3243 fprintf_unfiltered (gdb_stdlog, "%02x",
3244 val[i] & 0xff);
3245 }
3246 }
3247 write_memory (addr, val, partial_len);
3248 }
3249
3250 /* Note!!! This is NOT an else clause. Odd sized
3251 structs may go thru BOTH paths. Floating point
3252 arguments will not. */
3253 /* Write this portion of the argument to a general
3254 purpose register. */
3255 if (argreg <= MIPS_LAST_ARG_REGNUM
3256 && !fp_register_arg_p (typecode, arg_type))
3257 {
3258 LONGEST regval = extract_signed_integer (val, partial_len);
3259 /* Value may need to be sign extended, because
3260 mips_isa_regsize() != mips_abi_regsize(). */
3261
3262 /* A non-floating-point argument being passed in a
3263 general register. If a struct or union, and if
3264 the remaining length is smaller than the register
3265 size, we have to adjust the register value on
3266 big endian targets.
3267
3268 It does not seem to be necessary to do the
3269 same for integral types.
3270
3271 Also don't do this adjustment on O64 binaries.
3272
3273 cagney/2001-07-23: gdb/179: Also, GCC, when
3274 outputting LE O32 with sizeof (struct) <
3275 mips_abi_regsize(), generates a left shift as
3276 part of storing the argument in a register a
3277 register (the left shift isn't generated when
3278 sizeof (struct) >= mips_abi_regsize()). Since
3279 it is quite possible that this is GCC
3280 contradicting the LE/O32 ABI, GDB has not been
3281 adjusted to accommodate this. Either someone
3282 needs to demonstrate that the LE/O32 ABI
3283 specifies such a left shift OR this new ABI gets
3284 identified as such and GDB gets tweaked
3285 accordingly. */
3286
3287 if (mips_abi_regsize (gdbarch) < 8
3288 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3289 && partial_len < mips_abi_regsize (gdbarch)
3290 && (typecode == TYPE_CODE_STRUCT ||
3291 typecode == TYPE_CODE_UNION))
3292 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3293 TARGET_CHAR_BIT);
3294
3295 if (mips_debug)
3296 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3297 argreg,
3298 phex (regval,
3299 mips_abi_regsize (gdbarch)));
3300 write_register (argreg, regval);
3301 argreg++;
3302
3303 /* Prevent subsequent floating point arguments from
3304 being passed in floating point registers. */
3305 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3306 }
3307
3308 len -= partial_len;
3309 val += partial_len;
3310
3311 /* Compute the the offset into the stack at which we
3312 will copy the next parameter.
3313
3314 In older ABIs, the caller reserved space for
3315 registers that contained arguments. This was loosely
3316 refered to as their "home". Consequently, space is
3317 always allocated. */
3318
3319 stack_offset += align_up (partial_len,
3320 mips_stack_argsize (gdbarch));
3321 }
3322 }
3323 if (mips_debug)
3324 fprintf_unfiltered (gdb_stdlog, "\n");
3325 }
3326
3327 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3328
3329 /* Return adjusted stack pointer. */
3330 return sp;
3331 }
3332
3333 static enum return_value_convention
3334 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3335 struct regcache *regcache,
3336 gdb_byte *readbuf, const gdb_byte *writebuf)
3337 {
3338 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3339
3340 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3341 || TYPE_CODE (type) == TYPE_CODE_UNION
3342 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3343 return RETURN_VALUE_STRUCT_CONVENTION;
3344 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3345 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3346 {
3347 /* A single-precision floating-point value. It fits in the
3348 least significant part of FP0. */
3349 if (mips_debug)
3350 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3351 mips_xfer_register (regcache,
3352 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3353 TYPE_LENGTH (type),
3354 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3355 return RETURN_VALUE_REGISTER_CONVENTION;
3356 }
3357 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3358 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3359 {
3360 /* A double-precision floating-point value. The most
3361 significant part goes in FP1, and the least significant in
3362 FP0. */
3363 if (mips_debug)
3364 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3365 switch (TARGET_BYTE_ORDER)
3366 {
3367 case BFD_ENDIAN_LITTLE:
3368 mips_xfer_register (regcache,
3369 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3370 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3371 mips_xfer_register (regcache,
3372 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3373 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3374 break;
3375 case BFD_ENDIAN_BIG:
3376 mips_xfer_register (regcache,
3377 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3378 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3379 mips_xfer_register (regcache,
3380 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3381 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3382 break;
3383 default:
3384 internal_error (__FILE__, __LINE__, _("bad switch"));
3385 }
3386 return RETURN_VALUE_REGISTER_CONVENTION;
3387 }
3388 #if 0
3389 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3390 && TYPE_NFIELDS (type) <= 2
3391 && TYPE_NFIELDS (type) >= 1
3392 && ((TYPE_NFIELDS (type) == 1
3393 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3394 == TYPE_CODE_FLT))
3395 || (TYPE_NFIELDS (type) == 2
3396 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3397 == TYPE_CODE_FLT)
3398 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3399 == TYPE_CODE_FLT)))
3400 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3401 {
3402 /* A struct that contains one or two floats. Each value is part
3403 in the least significant part of their floating point
3404 register.. */
3405 gdb_byte reg[MAX_REGISTER_SIZE];
3406 int regnum;
3407 int field;
3408 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3409 field < TYPE_NFIELDS (type); field++, regnum += 2)
3410 {
3411 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3412 / TARGET_CHAR_BIT);
3413 if (mips_debug)
3414 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3415 offset);
3416 mips_xfer_register (regcache, NUM_REGS + regnum,
3417 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3418 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3419 }
3420 return RETURN_VALUE_REGISTER_CONVENTION;
3421 }
3422 #endif
3423 #if 0
3424 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3425 || TYPE_CODE (type) == TYPE_CODE_UNION)
3426 {
3427 /* A structure or union. Extract the left justified value,
3428 regardless of the byte order. I.e. DO NOT USE
3429 mips_xfer_lower. */
3430 int offset;
3431 int regnum;
3432 for (offset = 0, regnum = MIPS_V0_REGNUM;
3433 offset < TYPE_LENGTH (type);
3434 offset += register_size (current_gdbarch, regnum), regnum++)
3435 {
3436 int xfer = register_size (current_gdbarch, regnum);
3437 if (offset + xfer > TYPE_LENGTH (type))
3438 xfer = TYPE_LENGTH (type) - offset;
3439 if (mips_debug)
3440 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3441 offset, xfer, regnum);
3442 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3443 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3444 }
3445 return RETURN_VALUE_REGISTER_CONVENTION;
3446 }
3447 #endif
3448 else
3449 {
3450 /* A scalar extract each part but least-significant-byte
3451 justified. o32 thinks registers are 4 byte, regardless of
3452 the ISA. mips_stack_argsize controls this. */
3453 int offset;
3454 int regnum;
3455 for (offset = 0, regnum = MIPS_V0_REGNUM;
3456 offset < TYPE_LENGTH (type);
3457 offset += mips_stack_argsize (gdbarch), regnum++)
3458 {
3459 int xfer = mips_stack_argsize (gdbarch);
3460 if (offset + xfer > TYPE_LENGTH (type))
3461 xfer = TYPE_LENGTH (type) - offset;
3462 if (mips_debug)
3463 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3464 offset, xfer, regnum);
3465 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3466 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3467 }
3468 return RETURN_VALUE_REGISTER_CONVENTION;
3469 }
3470 }
3471
3472 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3473 ABI. */
3474
3475 static CORE_ADDR
3476 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3477 struct regcache *regcache, CORE_ADDR bp_addr,
3478 int nargs,
3479 struct value **args, CORE_ADDR sp,
3480 int struct_return, CORE_ADDR struct_addr)
3481 {
3482 int argreg;
3483 int float_argreg;
3484 int argnum;
3485 int len = 0;
3486 int stack_offset = 0;
3487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3488 CORE_ADDR func_addr = find_function_addr (function, NULL);
3489
3490 /* For shared libraries, "t9" needs to point at the function
3491 address. */
3492 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3493
3494 /* Set the return address register to point to the entry point of
3495 the program, where a breakpoint lies in wait. */
3496 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3497
3498 /* First ensure that the stack and structure return address (if any)
3499 are properly aligned. The stack has to be at least 64-bit
3500 aligned even on 32-bit machines, because doubles must be 64-bit
3501 aligned. For n32 and n64, stack frames need to be 128-bit
3502 aligned, so we round to this widest known alignment. */
3503
3504 sp = align_down (sp, 16);
3505 struct_addr = align_down (struct_addr, 16);
3506
3507 /* Now make space on the stack for the args. */
3508 for (argnum = 0; argnum < nargs; argnum++)
3509 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
3510 mips_stack_argsize (gdbarch));
3511 sp -= align_up (len, 16);
3512
3513 if (mips_debug)
3514 fprintf_unfiltered (gdb_stdlog,
3515 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3516 paddr_nz (sp), (long) align_up (len, 16));
3517
3518 /* Initialize the integer and float register pointers. */
3519 argreg = MIPS_A0_REGNUM;
3520 float_argreg = mips_fpa0_regnum (current_gdbarch);
3521
3522 /* The struct_return pointer occupies the first parameter-passing reg. */
3523 if (struct_return)
3524 {
3525 if (mips_debug)
3526 fprintf_unfiltered (gdb_stdlog,
3527 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3528 argreg, paddr_nz (struct_addr));
3529 write_register (argreg++, struct_addr);
3530 stack_offset += mips_stack_argsize (gdbarch);
3531 }
3532
3533 /* Now load as many as possible of the first arguments into
3534 registers, and push the rest onto the stack. Loop thru args
3535 from first to last. */
3536 for (argnum = 0; argnum < nargs; argnum++)
3537 {
3538 const gdb_byte *val;
3539 struct value *arg = args[argnum];
3540 struct type *arg_type = check_typedef (value_type (arg));
3541 int len = TYPE_LENGTH (arg_type);
3542 enum type_code typecode = TYPE_CODE (arg_type);
3543
3544 if (mips_debug)
3545 fprintf_unfiltered (gdb_stdlog,
3546 "mips_o64_push_dummy_call: %d len=%d type=%d",
3547 argnum + 1, len, (int) typecode);
3548
3549 val = value_contents (arg);
3550
3551 /* 32-bit ABIs always start floating point arguments in an
3552 even-numbered floating point register. Round the FP register
3553 up before the check to see if there are any FP registers
3554 left. O32/O64 targets also pass the FP in the integer
3555 registers so also round up normal registers. */
3556 if (mips_abi_regsize (gdbarch) < 8
3557 && fp_register_arg_p (typecode, arg_type))
3558 {
3559 if ((float_argreg & 1))
3560 float_argreg++;
3561 }
3562
3563 /* Floating point arguments passed in registers have to be
3564 treated specially. On 32-bit architectures, doubles
3565 are passed in register pairs; the even register gets
3566 the low word, and the odd register gets the high word.
3567 On O32/O64, the first two floating point arguments are
3568 also copied to general registers, because MIPS16 functions
3569 don't use float registers for arguments. This duplication of
3570 arguments in general registers can't hurt non-MIPS16 functions
3571 because those registers are normally skipped. */
3572
3573 if (fp_register_arg_p (typecode, arg_type)
3574 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3575 {
3576 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3577 {
3578 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3579 unsigned long regval;
3580
3581 /* Write the low word of the double to the even register(s). */
3582 regval = extract_unsigned_integer (val + low_offset, 4);
3583 if (mips_debug)
3584 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3585 float_argreg, phex (regval, 4));
3586 write_register (float_argreg++, regval);
3587 if (mips_debug)
3588 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3589 argreg, phex (regval, 4));
3590 write_register (argreg++, regval);
3591
3592 /* Write the high word of the double to the odd register(s). */
3593 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3594 if (mips_debug)
3595 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3596 float_argreg, phex (regval, 4));
3597 write_register (float_argreg++, regval);
3598
3599 if (mips_debug)
3600 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3601 argreg, phex (regval, 4));
3602 write_register (argreg++, regval);
3603 }
3604 else
3605 {
3606 /* This is a floating point value that fits entirely
3607 in a single register. */
3608 /* On 32 bit ABI's the float_argreg is further adjusted
3609 above to ensure that it is even register aligned. */
3610 LONGEST regval = extract_unsigned_integer (val, len);
3611 if (mips_debug)
3612 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3613 float_argreg, phex (regval, len));
3614 write_register (float_argreg++, regval);
3615 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3616 registers for each argument. The below is (my
3617 guess) to ensure that the corresponding integer
3618 register has reserved the same space. */
3619 if (mips_debug)
3620 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3621 argreg, phex (regval, len));
3622 write_register (argreg, regval);
3623 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3624 }
3625 /* Reserve space for the FP register. */
3626 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3627 }
3628 else
3629 {
3630 /* Copy the argument to general registers or the stack in
3631 register-sized pieces. Large arguments are split between
3632 registers and stack. */
3633 /* Note: structs whose size is not a multiple of
3634 mips_abi_regsize() are treated specially: Irix cc passes
3635 them in registers where gcc sometimes puts them on the
3636 stack. For maximum compatibility, we will put them in
3637 both places. */
3638 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3639 && (len % mips_abi_regsize (gdbarch) != 0));
3640 /* Structures should be aligned to eight bytes (even arg registers)
3641 on MIPS_ABI_O32, if their first member has double precision. */
3642 if (mips_abi_regsize (gdbarch) < 8
3643 && mips_type_needs_double_align (arg_type))
3644 {
3645 if ((argreg & 1))
3646 argreg++;
3647 }
3648 /* Note: Floating-point values that didn't fit into an FP
3649 register are only written to memory. */
3650 while (len > 0)
3651 {
3652 /* Remember if the argument was written to the stack. */
3653 int stack_used_p = 0;
3654 int partial_len = (len < mips_abi_regsize (gdbarch)
3655 ? len : mips_abi_regsize (gdbarch));
3656
3657 if (mips_debug)
3658 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3659 partial_len);
3660
3661 /* Write this portion of the argument to the stack. */
3662 if (argreg > MIPS_LAST_ARG_REGNUM
3663 || odd_sized_struct
3664 || fp_register_arg_p (typecode, arg_type))
3665 {
3666 /* Should shorter than int integer values be
3667 promoted to int before being stored? */
3668 int longword_offset = 0;
3669 CORE_ADDR addr;
3670 stack_used_p = 1;
3671 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3672 {
3673 if (mips_stack_argsize (gdbarch) == 8
3674 && (typecode == TYPE_CODE_INT
3675 || typecode == TYPE_CODE_PTR
3676 || typecode == TYPE_CODE_FLT) && len <= 4)
3677 longword_offset = mips_stack_argsize (gdbarch) - len;
3678 }
3679
3680 if (mips_debug)
3681 {
3682 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3683 paddr_nz (stack_offset));
3684 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3685 paddr_nz (longword_offset));
3686 }
3687
3688 addr = sp + stack_offset + longword_offset;
3689
3690 if (mips_debug)
3691 {
3692 int i;
3693 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3694 paddr_nz (addr));
3695 for (i = 0; i < partial_len; i++)
3696 {
3697 fprintf_unfiltered (gdb_stdlog, "%02x",
3698 val[i] & 0xff);
3699 }
3700 }
3701 write_memory (addr, val, partial_len);
3702 }
3703
3704 /* Note!!! This is NOT an else clause. Odd sized
3705 structs may go thru BOTH paths. Floating point
3706 arguments will not. */
3707 /* Write this portion of the argument to a general
3708 purpose register. */
3709 if (argreg <= MIPS_LAST_ARG_REGNUM
3710 && !fp_register_arg_p (typecode, arg_type))
3711 {
3712 LONGEST regval = extract_signed_integer (val, partial_len);
3713 /* Value may need to be sign extended, because
3714 mips_isa_regsize() != mips_abi_regsize(). */
3715
3716 /* A non-floating-point argument being passed in a
3717 general register. If a struct or union, and if
3718 the remaining length is smaller than the register
3719 size, we have to adjust the register value on
3720 big endian targets.
3721
3722 It does not seem to be necessary to do the
3723 same for integral types. */
3724
3725 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3726 && partial_len < mips_abi_regsize (gdbarch)
3727 && (typecode == TYPE_CODE_STRUCT ||
3728 typecode == TYPE_CODE_UNION))
3729 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3730 TARGET_CHAR_BIT);
3731
3732 if (mips_debug)
3733 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3734 argreg,
3735 phex (regval,
3736 mips_abi_regsize (gdbarch)));
3737 write_register (argreg, regval);
3738 argreg++;
3739
3740 /* Prevent subsequent floating point arguments from
3741 being passed in floating point registers. */
3742 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3743 }
3744
3745 len -= partial_len;
3746 val += partial_len;
3747
3748 /* Compute the the offset into the stack at which we
3749 will copy the next parameter.
3750
3751 In older ABIs, the caller reserved space for
3752 registers that contained arguments. This was loosely
3753 refered to as their "home". Consequently, space is
3754 always allocated. */
3755
3756 stack_offset += align_up (partial_len,
3757 mips_stack_argsize (gdbarch));
3758 }
3759 }
3760 if (mips_debug)
3761 fprintf_unfiltered (gdb_stdlog, "\n");
3762 }
3763
3764 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3765
3766 /* Return adjusted stack pointer. */
3767 return sp;
3768 }
3769
3770 static enum return_value_convention
3771 mips_o64_return_value (struct gdbarch *gdbarch,
3772 struct type *type, struct regcache *regcache,
3773 gdb_byte *readbuf, const gdb_byte *writebuf)
3774 {
3775 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3776
3777 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3778 || TYPE_CODE (type) == TYPE_CODE_UNION
3779 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3780 return RETURN_VALUE_STRUCT_CONVENTION;
3781 else if (fp_register_arg_p (TYPE_CODE (type), type))
3782 {
3783 /* A floating-point value. It fits in the least significant
3784 part of FP0. */
3785 if (mips_debug)
3786 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3787 mips_xfer_register (regcache,
3788 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3789 TYPE_LENGTH (type),
3790 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3791 return RETURN_VALUE_REGISTER_CONVENTION;
3792 }
3793 else
3794 {
3795 /* A scalar extract each part but least-significant-byte
3796 justified. */
3797 int offset;
3798 int regnum;
3799 for (offset = 0, regnum = MIPS_V0_REGNUM;
3800 offset < TYPE_LENGTH (type);
3801 offset += mips_stack_argsize (gdbarch), regnum++)
3802 {
3803 int xfer = mips_stack_argsize (gdbarch);
3804 if (offset + xfer > TYPE_LENGTH (type))
3805 xfer = TYPE_LENGTH (type) - offset;
3806 if (mips_debug)
3807 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3808 offset, xfer, regnum);
3809 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3810 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3811 }
3812 return RETURN_VALUE_REGISTER_CONVENTION;
3813 }
3814 }
3815
3816 /* Floating point register management.
3817
3818 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3819 64bit operations, these early MIPS cpus treat fp register pairs
3820 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3821 registers and offer a compatibility mode that emulates the MIPS2 fp
3822 model. When operating in MIPS2 fp compat mode, later cpu's split
3823 double precision floats into two 32-bit chunks and store them in
3824 consecutive fp regs. To display 64-bit floats stored in this
3825 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3826 Throw in user-configurable endianness and you have a real mess.
3827
3828 The way this works is:
3829 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3830 double-precision value will be split across two logical registers.
3831 The lower-numbered logical register will hold the low-order bits,
3832 regardless of the processor's endianness.
3833 - If we are on a 64-bit processor, and we are looking for a
3834 single-precision value, it will be in the low ordered bits
3835 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3836 save slot in memory.
3837 - If we are in 64-bit mode, everything is straightforward.
3838
3839 Note that this code only deals with "live" registers at the top of the
3840 stack. We will attempt to deal with saved registers later, when
3841 the raw/cooked register interface is in place. (We need a general
3842 interface that can deal with dynamic saved register sizes -- fp
3843 regs could be 32 bits wide in one frame and 64 on the frame above
3844 and below). */
3845
3846 static struct type *
3847 mips_float_register_type (void)
3848 {
3849 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3850 return builtin_type_ieee_single_big;
3851 else
3852 return builtin_type_ieee_single_little;
3853 }
3854
3855 static struct type *
3856 mips_double_register_type (void)
3857 {
3858 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3859 return builtin_type_ieee_double_big;
3860 else
3861 return builtin_type_ieee_double_little;
3862 }
3863
3864 /* Copy a 32-bit single-precision value from the current frame
3865 into rare_buffer. */
3866
3867 static void
3868 mips_read_fp_register_single (struct frame_info *frame, int regno,
3869 gdb_byte *rare_buffer)
3870 {
3871 int raw_size = register_size (current_gdbarch, regno);
3872 gdb_byte *raw_buffer = alloca (raw_size);
3873
3874 if (!frame_register_read (frame, regno, raw_buffer))
3875 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3876 if (raw_size == 8)
3877 {
3878 /* We have a 64-bit value for this register. Find the low-order
3879 32 bits. */
3880 int offset;
3881
3882 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3883 offset = 4;
3884 else
3885 offset = 0;
3886
3887 memcpy (rare_buffer, raw_buffer + offset, 4);
3888 }
3889 else
3890 {
3891 memcpy (rare_buffer, raw_buffer, 4);
3892 }
3893 }
3894
3895 /* Copy a 64-bit double-precision value from the current frame into
3896 rare_buffer. This may include getting half of it from the next
3897 register. */
3898
3899 static void
3900 mips_read_fp_register_double (struct frame_info *frame, int regno,
3901 gdb_byte *rare_buffer)
3902 {
3903 int raw_size = register_size (current_gdbarch, regno);
3904
3905 if (raw_size == 8 && !mips2_fp_compat ())
3906 {
3907 /* We have a 64-bit value for this register, and we should use
3908 all 64 bits. */
3909 if (!frame_register_read (frame, regno, rare_buffer))
3910 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3911 }
3912 else
3913 {
3914 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
3915 internal_error (__FILE__, __LINE__,
3916 _("mips_read_fp_register_double: bad access to "
3917 "odd-numbered FP register"));
3918
3919 /* mips_read_fp_register_single will find the correct 32 bits from
3920 each register. */
3921 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3922 {
3923 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3924 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3925 }
3926 else
3927 {
3928 mips_read_fp_register_single (frame, regno, rare_buffer);
3929 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
3930 }
3931 }
3932 }
3933
3934 static void
3935 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3936 int regnum)
3937 { /* do values for FP (float) regs */
3938 gdb_byte *raw_buffer;
3939 double doub, flt1; /* doubles extracted from raw hex data */
3940 int inv1, inv2;
3941
3942 raw_buffer = alloca (2 * register_size (current_gdbarch,
3943 mips_regnum (current_gdbarch)->fp0));
3944
3945 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3946 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3947 "");
3948
3949 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
3950 {
3951 /* 4-byte registers: Print hex and floating. Also print even
3952 numbered registers as doubles. */
3953 mips_read_fp_register_single (frame, regnum, raw_buffer);
3954 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3955
3956 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3957 file);
3958
3959 fprintf_filtered (file, " flt: ");
3960 if (inv1)
3961 fprintf_filtered (file, " <invalid float> ");
3962 else
3963 fprintf_filtered (file, "%-17.9g", flt1);
3964
3965 if (regnum % 2 == 0)
3966 {
3967 mips_read_fp_register_double (frame, regnum, raw_buffer);
3968 doub = unpack_double (mips_double_register_type (), raw_buffer,
3969 &inv2);
3970
3971 fprintf_filtered (file, " dbl: ");
3972 if (inv2)
3973 fprintf_filtered (file, "<invalid double>");
3974 else
3975 fprintf_filtered (file, "%-24.17g", doub);
3976 }
3977 }
3978 else
3979 {
3980 /* Eight byte registers: print each one as hex, float and double. */
3981 mips_read_fp_register_single (frame, regnum, raw_buffer);
3982 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3983
3984 mips_read_fp_register_double (frame, regnum, raw_buffer);
3985 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3986
3987
3988 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
3989 file);
3990
3991 fprintf_filtered (file, " flt: ");
3992 if (inv1)
3993 fprintf_filtered (file, "<invalid float>");
3994 else
3995 fprintf_filtered (file, "%-17.9g", flt1);
3996
3997 fprintf_filtered (file, " dbl: ");
3998 if (inv2)
3999 fprintf_filtered (file, "<invalid double>");
4000 else
4001 fprintf_filtered (file, "%-24.17g", doub);
4002 }
4003 }
4004
4005 static void
4006 mips_print_register (struct ui_file *file, struct frame_info *frame,
4007 int regnum, int all)
4008 {
4009 struct gdbarch *gdbarch = get_frame_arch (frame);
4010 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4011 int offset;
4012
4013 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4014 {
4015 mips_print_fp_register (file, frame, regnum);
4016 return;
4017 }
4018
4019 /* Get the data in raw format. */
4020 if (!frame_register_read (frame, regnum, raw_buffer))
4021 {
4022 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4023 return;
4024 }
4025
4026 fputs_filtered (REGISTER_NAME (regnum), file);
4027
4028 /* The problem with printing numeric register names (r26, etc.) is that
4029 the user can't use them on input. Probably the best solution is to
4030 fix it so that either the numeric or the funky (a2, etc.) names
4031 are accepted on input. */
4032 if (regnum < MIPS_NUMREGS)
4033 fprintf_filtered (file, "(r%d): ", regnum);
4034 else
4035 fprintf_filtered (file, ": ");
4036
4037 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4038 offset =
4039 register_size (current_gdbarch,
4040 regnum) - register_size (current_gdbarch, regnum);
4041 else
4042 offset = 0;
4043
4044 print_scalar_formatted (raw_buffer + offset,
4045 gdbarch_register_type (gdbarch, regnum), 'x', 0,
4046 file);
4047 }
4048
4049 /* Replacement for generic do_registers_info.
4050 Print regs in pretty columns. */
4051
4052 static int
4053 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4054 int regnum)
4055 {
4056 fprintf_filtered (file, " ");
4057 mips_print_fp_register (file, frame, regnum);
4058 fprintf_filtered (file, "\n");
4059 return regnum + 1;
4060 }
4061
4062
4063 /* Print a row's worth of GP (int) registers, with name labels above */
4064
4065 static int
4066 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4067 int start_regnum)
4068 {
4069 struct gdbarch *gdbarch = get_frame_arch (frame);
4070 /* do values for GP (int) regs */
4071 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4072 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4073 int col, byte;
4074 int regnum;
4075
4076 /* For GP registers, we print a separate row of names above the vals */
4077 for (col = 0, regnum = start_regnum;
4078 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4079 {
4080 if (*REGISTER_NAME (regnum) == '\0')
4081 continue; /* unused register */
4082 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4083 TYPE_CODE_FLT)
4084 break; /* end the row: reached FP register */
4085 if (col == 0)
4086 fprintf_filtered (file, " ");
4087 fprintf_filtered (file,
4088 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4089 REGISTER_NAME (regnum));
4090 col++;
4091 }
4092
4093 if (col == 0)
4094 return regnum;
4095
4096 /* print the R0 to R31 names */
4097 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4098 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4099 else
4100 fprintf_filtered (file, "\n ");
4101
4102 /* now print the values in hex, 4 or 8 to the row */
4103 for (col = 0, regnum = start_regnum;
4104 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4105 {
4106 if (*REGISTER_NAME (regnum) == '\0')
4107 continue; /* unused register */
4108 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4109 TYPE_CODE_FLT)
4110 break; /* end row: reached FP register */
4111 /* OK: get the data in raw format. */
4112 if (!frame_register_read (frame, regnum, raw_buffer))
4113 error (_("can't read register %d (%s)"), regnum, REGISTER_NAME (regnum));
4114 /* pad small registers */
4115 for (byte = 0;
4116 byte < (mips_abi_regsize (current_gdbarch)
4117 - register_size (current_gdbarch, regnum)); byte++)
4118 printf_filtered (" ");
4119 /* Now print the register value in hex, endian order. */
4120 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4121 for (byte =
4122 register_size (current_gdbarch,
4123 regnum) - register_size (current_gdbarch, regnum);
4124 byte < register_size (current_gdbarch, regnum); byte++)
4125 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4126 else
4127 for (byte = register_size (current_gdbarch, regnum) - 1;
4128 byte >= 0; byte--)
4129 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4130 fprintf_filtered (file, " ");
4131 col++;
4132 }
4133 if (col > 0) /* ie. if we actually printed anything... */
4134 fprintf_filtered (file, "\n");
4135
4136 return regnum;
4137 }
4138
4139 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4140
4141 static void
4142 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4143 struct frame_info *frame, int regnum, int all)
4144 {
4145 if (regnum != -1) /* do one specified register */
4146 {
4147 gdb_assert (regnum >= NUM_REGS);
4148 if (*(REGISTER_NAME (regnum)) == '\0')
4149 error (_("Not a valid register for the current processor type"));
4150
4151 mips_print_register (file, frame, regnum, 0);
4152 fprintf_filtered (file, "\n");
4153 }
4154 else
4155 /* do all (or most) registers */
4156 {
4157 regnum = NUM_REGS;
4158 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4159 {
4160 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4161 TYPE_CODE_FLT)
4162 {
4163 if (all) /* true for "INFO ALL-REGISTERS" command */
4164 regnum = print_fp_register_row (file, frame, regnum);
4165 else
4166 regnum += MIPS_NUMREGS; /* skip floating point regs */
4167 }
4168 else
4169 regnum = print_gp_register_row (file, frame, regnum);
4170 }
4171 }
4172 }
4173
4174 /* Is this a branch with a delay slot? */
4175
4176 static int
4177 is_delayed (unsigned long insn)
4178 {
4179 int i;
4180 for (i = 0; i < NUMOPCODES; ++i)
4181 if (mips_opcodes[i].pinfo != INSN_MACRO
4182 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4183 break;
4184 return (i < NUMOPCODES
4185 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4186 | INSN_COND_BRANCH_DELAY
4187 | INSN_COND_BRANCH_LIKELY)));
4188 }
4189
4190 int
4191 mips_single_step_through_delay (struct gdbarch *gdbarch,
4192 struct frame_info *frame)
4193 {
4194 CORE_ADDR pc = get_frame_pc (frame);
4195 gdb_byte buf[MIPS_INSN32_SIZE];
4196
4197 /* There is no branch delay slot on MIPS16. */
4198 if (mips_pc_is_mips16 (pc))
4199 return 0;
4200
4201 if (!breakpoint_here_p (pc + 4))
4202 return 0;
4203
4204 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4205 /* If error reading memory, guess that it is not a delayed
4206 branch. */
4207 return 0;
4208 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4209 }
4210
4211 /* To skip prologues, I use this predicate. Returns either PC itself
4212 if the code at PC does not look like a function prologue; otherwise
4213 returns an address that (if we're lucky) follows the prologue. If
4214 LENIENT, then we must skip everything which is involved in setting
4215 up the frame (it's OK to skip more, just so long as we don't skip
4216 anything which might clobber the registers which are being saved.
4217 We must skip more in the case where part of the prologue is in the
4218 delay slot of a non-prologue instruction). */
4219
4220 static CORE_ADDR
4221 mips_skip_prologue (CORE_ADDR pc)
4222 {
4223 CORE_ADDR limit_pc;
4224 CORE_ADDR func_addr;
4225
4226 /* See if we can determine the end of the prologue via the symbol table.
4227 If so, then return either PC, or the PC after the prologue, whichever
4228 is greater. */
4229 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4230 {
4231 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4232 if (post_prologue_pc != 0)
4233 return max (pc, post_prologue_pc);
4234 }
4235
4236 /* Can't determine prologue from the symbol table, need to examine
4237 instructions. */
4238
4239 /* Find an upper limit on the function prologue using the debug
4240 information. If the debug information could not be used to provide
4241 that bound, then use an arbitrary large number as the upper bound. */
4242 limit_pc = skip_prologue_using_sal (pc);
4243 if (limit_pc == 0)
4244 limit_pc = pc + 100; /* Magic. */
4245
4246 if (mips_pc_is_mips16 (pc))
4247 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4248 else
4249 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4250 }
4251
4252 /* Root of all "set mips "/"show mips " commands. This will eventually be
4253 used for all MIPS-specific commands. */
4254
4255 static void
4256 show_mips_command (char *args, int from_tty)
4257 {
4258 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4259 }
4260
4261 static void
4262 set_mips_command (char *args, int from_tty)
4263 {
4264 printf_unfiltered
4265 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4266 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4267 }
4268
4269 /* Commands to show/set the MIPS FPU type. */
4270
4271 static void
4272 show_mipsfpu_command (char *args, int from_tty)
4273 {
4274 char *fpu;
4275 switch (MIPS_FPU_TYPE)
4276 {
4277 case MIPS_FPU_SINGLE:
4278 fpu = "single-precision";
4279 break;
4280 case MIPS_FPU_DOUBLE:
4281 fpu = "double-precision";
4282 break;
4283 case MIPS_FPU_NONE:
4284 fpu = "absent (none)";
4285 break;
4286 default:
4287 internal_error (__FILE__, __LINE__, _("bad switch"));
4288 }
4289 if (mips_fpu_type_auto)
4290 printf_unfiltered
4291 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4292 fpu);
4293 else
4294 printf_unfiltered
4295 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4296 }
4297
4298
4299 static void
4300 set_mipsfpu_command (char *args, int from_tty)
4301 {
4302 printf_unfiltered
4303 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4304 show_mipsfpu_command (args, from_tty);
4305 }
4306
4307 static void
4308 set_mipsfpu_single_command (char *args, int from_tty)
4309 {
4310 struct gdbarch_info info;
4311 gdbarch_info_init (&info);
4312 mips_fpu_type = MIPS_FPU_SINGLE;
4313 mips_fpu_type_auto = 0;
4314 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4315 instead of relying on globals. Doing that would let generic code
4316 handle the search for this specific architecture. */
4317 if (!gdbarch_update_p (info))
4318 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4319 }
4320
4321 static void
4322 set_mipsfpu_double_command (char *args, int from_tty)
4323 {
4324 struct gdbarch_info info;
4325 gdbarch_info_init (&info);
4326 mips_fpu_type = MIPS_FPU_DOUBLE;
4327 mips_fpu_type_auto = 0;
4328 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4329 instead of relying on globals. Doing that would let generic code
4330 handle the search for this specific architecture. */
4331 if (!gdbarch_update_p (info))
4332 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4333 }
4334
4335 static void
4336 set_mipsfpu_none_command (char *args, int from_tty)
4337 {
4338 struct gdbarch_info info;
4339 gdbarch_info_init (&info);
4340 mips_fpu_type = MIPS_FPU_NONE;
4341 mips_fpu_type_auto = 0;
4342 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4343 instead of relying on globals. Doing that would let generic code
4344 handle the search for this specific architecture. */
4345 if (!gdbarch_update_p (info))
4346 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4347 }
4348
4349 static void
4350 set_mipsfpu_auto_command (char *args, int from_tty)
4351 {
4352 mips_fpu_type_auto = 1;
4353 }
4354
4355 /* Attempt to identify the particular processor model by reading the
4356 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4357 the relevant processor still exists (it dates back to '94) and
4358 secondly this is not the way to do this. The processor type should
4359 be set by forcing an architecture change. */
4360
4361 void
4362 deprecated_mips_set_processor_regs_hack (void)
4363 {
4364 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4365 CORE_ADDR prid;
4366
4367 prid = read_register (MIPS_PRID_REGNUM);
4368
4369 if ((prid & ~0xf) == 0x700)
4370 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4371 }
4372
4373 /* Just like reinit_frame_cache, but with the right arguments to be
4374 callable as an sfunc. */
4375
4376 static void
4377 reinit_frame_cache_sfunc (char *args, int from_tty,
4378 struct cmd_list_element *c)
4379 {
4380 reinit_frame_cache ();
4381 }
4382
4383 static int
4384 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4385 {
4386 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4387
4388 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4389 disassembler needs to be able to locally determine the ISA, and
4390 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4391 work. */
4392 if (mips_pc_is_mips16 (memaddr))
4393 info->mach = bfd_mach_mips16;
4394
4395 /* Round down the instruction address to the appropriate boundary. */
4396 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4397
4398 /* Set the disassembler options. */
4399 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4400 {
4401 /* Set up the disassembler info, so that we get the right
4402 register names from libopcodes. */
4403 if (tdep->mips_abi == MIPS_ABI_N32)
4404 info->disassembler_options = "gpr-names=n32";
4405 else
4406 info->disassembler_options = "gpr-names=64";
4407 info->flavour = bfd_target_elf_flavour;
4408 }
4409 else
4410 /* This string is not recognized explicitly by the disassembler,
4411 but it tells the disassembler to not try to guess the ABI from
4412 the bfd elf headers, such that, if the user overrides the ABI
4413 of a program linked as NewABI, the disassembly will follow the
4414 register naming conventions specified by the user. */
4415 info->disassembler_options = "gpr-names=32";
4416
4417 /* Call the appropriate disassembler based on the target endian-ness. */
4418 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4419 return print_insn_big_mips (memaddr, info);
4420 else
4421 return print_insn_little_mips (memaddr, info);
4422 }
4423
4424 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4425 counter value to determine whether a 16- or 32-bit breakpoint should be
4426 used. It returns a pointer to a string of bytes that encode a breakpoint
4427 instruction, stores the length of the string to *lenptr, and adjusts pc
4428 (if necessary) to point to the actual memory location where the
4429 breakpoint should be inserted. */
4430
4431 static const gdb_byte *
4432 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4433 {
4434 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4435 {
4436 if (mips_pc_is_mips16 (*pcptr))
4437 {
4438 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4439 *pcptr = unmake_mips16_addr (*pcptr);
4440 *lenptr = sizeof (mips16_big_breakpoint);
4441 return mips16_big_breakpoint;
4442 }
4443 else
4444 {
4445 /* The IDT board uses an unusual breakpoint value, and
4446 sometimes gets confused when it sees the usual MIPS
4447 breakpoint instruction. */
4448 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4449 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4450 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4451
4452 *lenptr = sizeof (big_breakpoint);
4453
4454 if (strcmp (target_shortname, "mips") == 0)
4455 return idt_big_breakpoint;
4456 else if (strcmp (target_shortname, "ddb") == 0
4457 || strcmp (target_shortname, "pmon") == 0
4458 || strcmp (target_shortname, "lsi") == 0)
4459 return pmon_big_breakpoint;
4460 else
4461 return big_breakpoint;
4462 }
4463 }
4464 else
4465 {
4466 if (mips_pc_is_mips16 (*pcptr))
4467 {
4468 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4469 *pcptr = unmake_mips16_addr (*pcptr);
4470 *lenptr = sizeof (mips16_little_breakpoint);
4471 return mips16_little_breakpoint;
4472 }
4473 else
4474 {
4475 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4476 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4477 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4478
4479 *lenptr = sizeof (little_breakpoint);
4480
4481 if (strcmp (target_shortname, "mips") == 0)
4482 return idt_little_breakpoint;
4483 else if (strcmp (target_shortname, "ddb") == 0
4484 || strcmp (target_shortname, "pmon") == 0
4485 || strcmp (target_shortname, "lsi") == 0)
4486 return pmon_little_breakpoint;
4487 else
4488 return little_breakpoint;
4489 }
4490 }
4491 }
4492
4493 /* If PC is in a mips16 call or return stub, return the address of the target
4494 PC, which is either the callee or the caller. There are several
4495 cases which must be handled:
4496
4497 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4498 target PC is in $31 ($ra).
4499 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4500 and the target PC is in $2.
4501 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4502 before the jal instruction, this is effectively a call stub
4503 and the the target PC is in $2. Otherwise this is effectively
4504 a return stub and the target PC is in $18.
4505
4506 See the source code for the stubs in gcc/config/mips/mips16.S for
4507 gory details. */
4508
4509 static CORE_ADDR
4510 mips_skip_trampoline_code (CORE_ADDR pc)
4511 {
4512 char *name;
4513 CORE_ADDR start_addr;
4514
4515 /* Find the starting address and name of the function containing the PC. */
4516 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4517 return 0;
4518
4519 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4520 target PC is in $31 ($ra). */
4521 if (strcmp (name, "__mips16_ret_sf") == 0
4522 || strcmp (name, "__mips16_ret_df") == 0)
4523 return read_signed_register (MIPS_RA_REGNUM);
4524
4525 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4526 {
4527 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4528 and the target PC is in $2. */
4529 if (name[19] >= '0' && name[19] <= '9')
4530 return read_signed_register (2);
4531
4532 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4533 before the jal instruction, this is effectively a call stub
4534 and the the target PC is in $2. Otherwise this is effectively
4535 a return stub and the target PC is in $18. */
4536 else if (name[19] == 's' || name[19] == 'd')
4537 {
4538 if (pc == start_addr)
4539 {
4540 /* Check if the target of the stub is a compiler-generated
4541 stub. Such a stub for a function bar might have a name
4542 like __fn_stub_bar, and might look like this:
4543 mfc1 $4,$f13
4544 mfc1 $5,$f12
4545 mfc1 $6,$f15
4546 mfc1 $7,$f14
4547 la $1,bar (becomes a lui/addiu pair)
4548 jr $1
4549 So scan down to the lui/addi and extract the target
4550 address from those two instructions. */
4551
4552 CORE_ADDR target_pc = read_signed_register (2);
4553 ULONGEST inst;
4554 int i;
4555
4556 /* See if the name of the target function is __fn_stub_*. */
4557 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4558 0)
4559 return target_pc;
4560 if (strncmp (name, "__fn_stub_", 10) != 0
4561 && strcmp (name, "etext") != 0
4562 && strcmp (name, "_etext") != 0)
4563 return target_pc;
4564
4565 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4566 The limit on the search is arbitrarily set to 20
4567 instructions. FIXME. */
4568 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4569 {
4570 inst = mips_fetch_instruction (target_pc);
4571 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4572 pc = (inst << 16) & 0xffff0000; /* high word */
4573 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4574 return pc | (inst & 0xffff); /* low word */
4575 }
4576
4577 /* Couldn't find the lui/addui pair, so return stub address. */
4578 return target_pc;
4579 }
4580 else
4581 /* This is the 'return' part of a call stub. The return
4582 address is in $r18. */
4583 return read_signed_register (18);
4584 }
4585 }
4586 return 0; /* not a stub */
4587 }
4588
4589 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4590 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4591
4592 static int
4593 mips_stab_reg_to_regnum (int num)
4594 {
4595 int regnum;
4596 if (num >= 0 && num < 32)
4597 regnum = num;
4598 else if (num >= 38 && num < 70)
4599 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4600 else if (num == 70)
4601 regnum = mips_regnum (current_gdbarch)->hi;
4602 else if (num == 71)
4603 regnum = mips_regnum (current_gdbarch)->lo;
4604 else
4605 /* This will hopefully (eventually) provoke a warning. Should
4606 we be calling complaint() here? */
4607 return NUM_REGS + NUM_PSEUDO_REGS;
4608 return NUM_REGS + regnum;
4609 }
4610
4611
4612 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4613 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4614
4615 static int
4616 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4617 {
4618 int regnum;
4619 if (num >= 0 && num < 32)
4620 regnum = num;
4621 else if (num >= 32 && num < 64)
4622 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4623 else if (num == 64)
4624 regnum = mips_regnum (current_gdbarch)->hi;
4625 else if (num == 65)
4626 regnum = mips_regnum (current_gdbarch)->lo;
4627 else
4628 /* This will hopefully (eventually) provoke a warning. Should we
4629 be calling complaint() here? */
4630 return NUM_REGS + NUM_PSEUDO_REGS;
4631 return NUM_REGS + regnum;
4632 }
4633
4634 static int
4635 mips_register_sim_regno (int regnum)
4636 {
4637 /* Only makes sense to supply raw registers. */
4638 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4639 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4640 decide if it is valid. Should instead define a standard sim/gdb
4641 register numbering scheme. */
4642 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4643 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4644 return regnum;
4645 else
4646 return LEGACY_SIM_REGNO_IGNORE;
4647 }
4648
4649
4650 /* Convert an integer into an address. Extracting the value signed
4651 guarantees a correctly sign extended address. */
4652
4653 static CORE_ADDR
4654 mips_integer_to_address (struct gdbarch *gdbarch,
4655 struct type *type, const gdb_byte *buf)
4656 {
4657 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
4658 }
4659
4660 static void
4661 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4662 {
4663 enum mips_abi *abip = (enum mips_abi *) obj;
4664 const char *name = bfd_get_section_name (abfd, sect);
4665
4666 if (*abip != MIPS_ABI_UNKNOWN)
4667 return;
4668
4669 if (strncmp (name, ".mdebug.", 8) != 0)
4670 return;
4671
4672 if (strcmp (name, ".mdebug.abi32") == 0)
4673 *abip = MIPS_ABI_O32;
4674 else if (strcmp (name, ".mdebug.abiN32") == 0)
4675 *abip = MIPS_ABI_N32;
4676 else if (strcmp (name, ".mdebug.abi64") == 0)
4677 *abip = MIPS_ABI_N64;
4678 else if (strcmp (name, ".mdebug.abiO64") == 0)
4679 *abip = MIPS_ABI_O64;
4680 else if (strcmp (name, ".mdebug.eabi32") == 0)
4681 *abip = MIPS_ABI_EABI32;
4682 else if (strcmp (name, ".mdebug.eabi64") == 0)
4683 *abip = MIPS_ABI_EABI64;
4684 else
4685 warning (_("unsupported ABI %s."), name + 8);
4686 }
4687
4688 static void
4689 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4690 {
4691 int *lbp = (int *) obj;
4692 const char *name = bfd_get_section_name (abfd, sect);
4693
4694 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4695 *lbp = 32;
4696 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4697 *lbp = 64;
4698 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4699 warning (_("unrecognized .gcc_compiled_longXX"));
4700 }
4701
4702 static enum mips_abi
4703 global_mips_abi (void)
4704 {
4705 int i;
4706
4707 for (i = 0; mips_abi_strings[i] != NULL; i++)
4708 if (mips_abi_strings[i] == mips_abi_string)
4709 return (enum mips_abi) i;
4710
4711 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4712 }
4713
4714 static struct gdbarch *
4715 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4716 {
4717 struct gdbarch *gdbarch;
4718 struct gdbarch_tdep *tdep;
4719 int elf_flags;
4720 enum mips_abi mips_abi, found_abi, wanted_abi;
4721 int num_regs;
4722 enum mips_fpu_type fpu_type;
4723
4724 /* First of all, extract the elf_flags, if available. */
4725 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4726 elf_flags = elf_elfheader (info.abfd)->e_flags;
4727 else if (arches != NULL)
4728 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
4729 else
4730 elf_flags = 0;
4731 if (gdbarch_debug)
4732 fprintf_unfiltered (gdb_stdlog,
4733 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
4734
4735 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4736 switch ((elf_flags & EF_MIPS_ABI))
4737 {
4738 case E_MIPS_ABI_O32:
4739 found_abi = MIPS_ABI_O32;
4740 break;
4741 case E_MIPS_ABI_O64:
4742 found_abi = MIPS_ABI_O64;
4743 break;
4744 case E_MIPS_ABI_EABI32:
4745 found_abi = MIPS_ABI_EABI32;
4746 break;
4747 case E_MIPS_ABI_EABI64:
4748 found_abi = MIPS_ABI_EABI64;
4749 break;
4750 default:
4751 if ((elf_flags & EF_MIPS_ABI2))
4752 found_abi = MIPS_ABI_N32;
4753 else
4754 found_abi = MIPS_ABI_UNKNOWN;
4755 break;
4756 }
4757
4758 /* GCC creates a pseudo-section whose name describes the ABI. */
4759 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4760 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
4761
4762 /* If we have no useful BFD information, use the ABI from the last
4763 MIPS architecture (if there is one). */
4764 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4765 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4766
4767 /* Try the architecture for any hint of the correct ABI. */
4768 if (found_abi == MIPS_ABI_UNKNOWN
4769 && info.bfd_arch_info != NULL
4770 && info.bfd_arch_info->arch == bfd_arch_mips)
4771 {
4772 switch (info.bfd_arch_info->mach)
4773 {
4774 case bfd_mach_mips3900:
4775 found_abi = MIPS_ABI_EABI32;
4776 break;
4777 case bfd_mach_mips4100:
4778 case bfd_mach_mips5000:
4779 found_abi = MIPS_ABI_EABI64;
4780 break;
4781 case bfd_mach_mips8000:
4782 case bfd_mach_mips10000:
4783 /* On Irix, ELF64 executables use the N64 ABI. The
4784 pseudo-sections which describe the ABI aren't present
4785 on IRIX. (Even for executables created by gcc.) */
4786 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4787 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4788 found_abi = MIPS_ABI_N64;
4789 else
4790 found_abi = MIPS_ABI_N32;
4791 break;
4792 }
4793 }
4794
4795 /* Default 64-bit objects to N64 instead of O32. */
4796 if (found_abi == MIPS_ABI_UNKNOWN
4797 && info.abfd != NULL
4798 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4799 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4800 found_abi = MIPS_ABI_N64;
4801
4802 if (gdbarch_debug)
4803 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4804 found_abi);
4805
4806 /* What has the user specified from the command line? */
4807 wanted_abi = global_mips_abi ();
4808 if (gdbarch_debug)
4809 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4810 wanted_abi);
4811
4812 /* Now that we have found what the ABI for this binary would be,
4813 check whether the user is overriding it. */
4814 if (wanted_abi != MIPS_ABI_UNKNOWN)
4815 mips_abi = wanted_abi;
4816 else if (found_abi != MIPS_ABI_UNKNOWN)
4817 mips_abi = found_abi;
4818 else
4819 mips_abi = MIPS_ABI_O32;
4820 if (gdbarch_debug)
4821 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4822 mips_abi);
4823
4824 /* Also used when doing an architecture lookup. */
4825 if (gdbarch_debug)
4826 fprintf_unfiltered (gdb_stdlog,
4827 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4828 mips64_transfers_32bit_regs_p);
4829
4830 /* Determine the MIPS FPU type. */
4831 if (!mips_fpu_type_auto)
4832 fpu_type = mips_fpu_type;
4833 else if (info.bfd_arch_info != NULL
4834 && info.bfd_arch_info->arch == bfd_arch_mips)
4835 switch (info.bfd_arch_info->mach)
4836 {
4837 case bfd_mach_mips3900:
4838 case bfd_mach_mips4100:
4839 case bfd_mach_mips4111:
4840 case bfd_mach_mips4120:
4841 fpu_type = MIPS_FPU_NONE;
4842 break;
4843 case bfd_mach_mips4650:
4844 fpu_type = MIPS_FPU_SINGLE;
4845 break;
4846 default:
4847 fpu_type = MIPS_FPU_DOUBLE;
4848 break;
4849 }
4850 else if (arches != NULL)
4851 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4852 else
4853 fpu_type = MIPS_FPU_DOUBLE;
4854 if (gdbarch_debug)
4855 fprintf_unfiltered (gdb_stdlog,
4856 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
4857
4858 /* try to find a pre-existing architecture */
4859 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4860 arches != NULL;
4861 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4862 {
4863 /* MIPS needs to be pedantic about which ABI the object is
4864 using. */
4865 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4866 continue;
4867 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4868 continue;
4869 /* Need to be pedantic about which register virtual size is
4870 used. */
4871 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4872 != mips64_transfers_32bit_regs_p)
4873 continue;
4874 /* Be pedantic about which FPU is selected. */
4875 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4876 continue;
4877 return arches->gdbarch;
4878 }
4879
4880 /* Need a new architecture. Fill in a target specific vector. */
4881 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4882 gdbarch = gdbarch_alloc (&info, tdep);
4883 tdep->elf_flags = elf_flags;
4884 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
4885 tdep->found_abi = found_abi;
4886 tdep->mips_abi = mips_abi;
4887 tdep->mips_fpu_type = fpu_type;
4888
4889 /* Initially set everything according to the default ABI/ISA. */
4890 set_gdbarch_short_bit (gdbarch, 16);
4891 set_gdbarch_int_bit (gdbarch, 32);
4892 set_gdbarch_float_bit (gdbarch, 32);
4893 set_gdbarch_double_bit (gdbarch, 64);
4894 set_gdbarch_long_double_bit (gdbarch, 64);
4895 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4896 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4897 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
4898
4899 set_gdbarch_elf_make_msymbol_special (gdbarch,
4900 mips_elf_make_msymbol_special);
4901
4902 /* Fill in the OS dependant register numbers and names. */
4903 {
4904 const char **reg_names;
4905 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4906 struct mips_regnum);
4907 if (info.osabi == GDB_OSABI_IRIX)
4908 {
4909 regnum->fp0 = 32;
4910 regnum->pc = 64;
4911 regnum->cause = 65;
4912 regnum->badvaddr = 66;
4913 regnum->hi = 67;
4914 regnum->lo = 68;
4915 regnum->fp_control_status = 69;
4916 regnum->fp_implementation_revision = 70;
4917 num_regs = 71;
4918 reg_names = mips_irix_reg_names;
4919 }
4920 else
4921 {
4922 regnum->lo = MIPS_EMBED_LO_REGNUM;
4923 regnum->hi = MIPS_EMBED_HI_REGNUM;
4924 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4925 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4926 regnum->pc = MIPS_EMBED_PC_REGNUM;
4927 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4928 regnum->fp_control_status = 70;
4929 regnum->fp_implementation_revision = 71;
4930 num_regs = 90;
4931 if (info.bfd_arch_info != NULL
4932 && info.bfd_arch_info->mach == bfd_mach_mips3900)
4933 reg_names = mips_tx39_reg_names;
4934 else
4935 reg_names = mips_generic_reg_names;
4936 }
4937 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4938 replaced by read_pc? */
4939 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
4940 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
4941 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
4942 set_gdbarch_num_regs (gdbarch, num_regs);
4943 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
4944 set_gdbarch_register_name (gdbarch, mips_register_name);
4945 tdep->mips_processor_reg_names = reg_names;
4946 tdep->regnum = regnum;
4947 }
4948
4949 switch (mips_abi)
4950 {
4951 case MIPS_ABI_O32:
4952 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
4953 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4954 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4955 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4956 tdep->default_mask_address_p = 0;
4957 set_gdbarch_long_bit (gdbarch, 32);
4958 set_gdbarch_ptr_bit (gdbarch, 32);
4959 set_gdbarch_long_long_bit (gdbarch, 64);
4960 break;
4961 case MIPS_ABI_O64:
4962 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
4963 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4964 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4965 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4966 tdep->default_mask_address_p = 0;
4967 set_gdbarch_long_bit (gdbarch, 32);
4968 set_gdbarch_ptr_bit (gdbarch, 32);
4969 set_gdbarch_long_long_bit (gdbarch, 64);
4970 break;
4971 case MIPS_ABI_EABI32:
4972 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4973 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4974 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4975 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4976 tdep->default_mask_address_p = 0;
4977 set_gdbarch_long_bit (gdbarch, 32);
4978 set_gdbarch_ptr_bit (gdbarch, 32);
4979 set_gdbarch_long_long_bit (gdbarch, 64);
4980 break;
4981 case MIPS_ABI_EABI64:
4982 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4983 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4984 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4985 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4986 tdep->default_mask_address_p = 0;
4987 set_gdbarch_long_bit (gdbarch, 64);
4988 set_gdbarch_ptr_bit (gdbarch, 64);
4989 set_gdbarch_long_long_bit (gdbarch, 64);
4990 break;
4991 case MIPS_ABI_N32:
4992 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
4993 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4994 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4995 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4996 tdep->default_mask_address_p = 0;
4997 set_gdbarch_long_bit (gdbarch, 32);
4998 set_gdbarch_ptr_bit (gdbarch, 32);
4999 set_gdbarch_long_long_bit (gdbarch, 64);
5000 set_gdbarch_long_double_bit (gdbarch, 128);
5001 set_gdbarch_long_double_format (gdbarch,
5002 &floatformat_n32n64_long_double_big);
5003 break;
5004 case MIPS_ABI_N64:
5005 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5006 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5007 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5008 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5009 tdep->default_mask_address_p = 0;
5010 set_gdbarch_long_bit (gdbarch, 64);
5011 set_gdbarch_ptr_bit (gdbarch, 64);
5012 set_gdbarch_long_long_bit (gdbarch, 64);
5013 set_gdbarch_long_double_bit (gdbarch, 128);
5014 set_gdbarch_long_double_format (gdbarch,
5015 &floatformat_n32n64_long_double_big);
5016 break;
5017 default:
5018 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5019 }
5020
5021 /* GCC creates a pseudo-section whose name specifies the size of
5022 longs, since -mlong32 or -mlong64 may be used independent of
5023 other options. How those options affect pointer sizes is ABI and
5024 architecture dependent, so use them to override the default sizes
5025 set by the ABI. This table shows the relationship between ABI,
5026 -mlongXX, and size of pointers:
5027
5028 ABI -mlongXX ptr bits
5029 --- -------- --------
5030 o32 32 32
5031 o32 64 32
5032 n32 32 32
5033 n32 64 64
5034 o64 32 32
5035 o64 64 64
5036 n64 32 32
5037 n64 64 64
5038 eabi32 32 32
5039 eabi32 64 32
5040 eabi64 32 32
5041 eabi64 64 64
5042
5043 Note that for o32 and eabi32, pointers are always 32 bits
5044 regardless of any -mlongXX option. For all others, pointers and
5045 longs are the same, as set by -mlongXX or set by defaults.
5046 */
5047
5048 if (info.abfd != NULL)
5049 {
5050 int long_bit = 0;
5051
5052 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5053 if (long_bit)
5054 {
5055 set_gdbarch_long_bit (gdbarch, long_bit);
5056 switch (mips_abi)
5057 {
5058 case MIPS_ABI_O32:
5059 case MIPS_ABI_EABI32:
5060 break;
5061 case MIPS_ABI_N32:
5062 case MIPS_ABI_O64:
5063 case MIPS_ABI_N64:
5064 case MIPS_ABI_EABI64:
5065 set_gdbarch_ptr_bit (gdbarch, long_bit);
5066 break;
5067 default:
5068 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5069 }
5070 }
5071 }
5072
5073 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5074 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5075 comment:
5076
5077 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5078 flag in object files because to do so would make it impossible to
5079 link with libraries compiled without "-gp32". This is
5080 unnecessarily restrictive.
5081
5082 We could solve this problem by adding "-gp32" multilibs to gcc,
5083 but to set this flag before gcc is built with such multilibs will
5084 break too many systems.''
5085
5086 But even more unhelpfully, the default linker output target for
5087 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5088 for 64-bit programs - you need to change the ABI to change this,
5089 and not all gcc targets support that currently. Therefore using
5090 this flag to detect 32-bit mode would do the wrong thing given
5091 the current gcc - it would make GDB treat these 64-bit programs
5092 as 32-bit programs by default. */
5093
5094 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5095 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5096 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5097
5098 /* Add/remove bits from an address. The MIPS needs be careful to
5099 ensure that all 32 bit addresses are sign extended to 64 bits. */
5100 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5101
5102 /* Unwind the frame. */
5103 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5104 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5105
5106 /* Map debug register numbers onto internal register numbers. */
5107 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5108 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5109 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5110 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5111 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5112 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5113 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5114 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5115
5116 /* MIPS version of CALL_DUMMY */
5117
5118 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5119 replaced by a command, and all targets will default to on stack
5120 (regardless of the stack's execute status). */
5121 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5122 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5123
5124 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5125 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5126 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5127
5128 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5129 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5130
5131 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5132
5133 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5134 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5135 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5136
5137 set_gdbarch_register_type (gdbarch, mips_register_type);
5138
5139 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5140
5141 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5142
5143 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5144 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5145 need to all be folded into the target vector. Since they are
5146 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5147 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5148 is sitting on? */
5149 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5150
5151 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5152
5153 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5154
5155 /* Hook in OS ABI-specific overrides, if they have been registered. */
5156 gdbarch_init_osabi (info, gdbarch);
5157
5158 /* Unwind the frame. */
5159 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5160 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5161 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5162 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5163 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5164 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5165
5166 return gdbarch;
5167 }
5168
5169 static void
5170 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5171 {
5172 struct gdbarch_info info;
5173
5174 /* Force the architecture to update, and (if it's a MIPS architecture)
5175 mips_gdbarch_init will take care of the rest. */
5176 gdbarch_info_init (&info);
5177 gdbarch_update_p (info);
5178 }
5179
5180 /* Print out which MIPS ABI is in use. */
5181
5182 static void
5183 show_mips_abi (struct ui_file *file,
5184 int from_tty,
5185 struct cmd_list_element *ignored_cmd,
5186 const char *ignored_value)
5187 {
5188 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5189 fprintf_filtered
5190 (file,
5191 "The MIPS ABI is unknown because the current architecture "
5192 "is not MIPS.\n");
5193 else
5194 {
5195 enum mips_abi global_abi = global_mips_abi ();
5196 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5197 const char *actual_abi_str = mips_abi_strings[actual_abi];
5198
5199 if (global_abi == MIPS_ABI_UNKNOWN)
5200 fprintf_filtered
5201 (file,
5202 "The MIPS ABI is set automatically (currently \"%s\").\n",
5203 actual_abi_str);
5204 else if (global_abi == actual_abi)
5205 fprintf_filtered
5206 (file,
5207 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5208 actual_abi_str);
5209 else
5210 {
5211 /* Probably shouldn't happen... */
5212 fprintf_filtered
5213 (file,
5214 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5215 actual_abi_str, mips_abi_strings[global_abi]);
5216 }
5217 }
5218 }
5219
5220 static void
5221 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5222 {
5223 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5224 if (tdep != NULL)
5225 {
5226 int ef_mips_arch;
5227 int ef_mips_32bitmode;
5228 /* Determine the ISA. */
5229 switch (tdep->elf_flags & EF_MIPS_ARCH)
5230 {
5231 case E_MIPS_ARCH_1:
5232 ef_mips_arch = 1;
5233 break;
5234 case E_MIPS_ARCH_2:
5235 ef_mips_arch = 2;
5236 break;
5237 case E_MIPS_ARCH_3:
5238 ef_mips_arch = 3;
5239 break;
5240 case E_MIPS_ARCH_4:
5241 ef_mips_arch = 4;
5242 break;
5243 default:
5244 ef_mips_arch = 0;
5245 break;
5246 }
5247 /* Determine the size of a pointer. */
5248 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5249 fprintf_unfiltered (file,
5250 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5251 tdep->elf_flags);
5252 fprintf_unfiltered (file,
5253 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5254 ef_mips_32bitmode);
5255 fprintf_unfiltered (file,
5256 "mips_dump_tdep: ef_mips_arch = %d\n",
5257 ef_mips_arch);
5258 fprintf_unfiltered (file,
5259 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5260 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5261 fprintf_unfiltered (file,
5262 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5263 mips_mask_address_p (tdep),
5264 tdep->default_mask_address_p);
5265 }
5266 fprintf_unfiltered (file,
5267 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5268 MIPS_DEFAULT_FPU_TYPE,
5269 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5270 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5271 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5272 : "???"));
5273 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5274 fprintf_unfiltered (file,
5275 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5276 MIPS_FPU_TYPE,
5277 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5278 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5279 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5280 : "???"));
5281 fprintf_unfiltered (file,
5282 "mips_dump_tdep: mips_stack_argsize() = %d\n",
5283 mips_stack_argsize (current_gdbarch));
5284 }
5285
5286 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5287
5288 void
5289 _initialize_mips_tdep (void)
5290 {
5291 static struct cmd_list_element *mipsfpulist = NULL;
5292 struct cmd_list_element *c;
5293
5294 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5295 if (MIPS_ABI_LAST + 1
5296 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5297 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5298
5299 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5300
5301 mips_pdr_data = register_objfile_data ();
5302
5303 /* Add root prefix command for all "set mips"/"show mips" commands */
5304 add_prefix_cmd ("mips", no_class, set_mips_command,
5305 _("Various MIPS specific commands."),
5306 &setmipscmdlist, "set mips ", 0, &setlist);
5307
5308 add_prefix_cmd ("mips", no_class, show_mips_command,
5309 _("Various MIPS specific commands."),
5310 &showmipscmdlist, "show mips ", 0, &showlist);
5311
5312 /* Allow the user to override the saved register size. */
5313 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
5314 size_enums, &mips_abi_regsize_string, _("\
5315 Set size of general purpose registers saved on the stack."), _("\
5316 Show size of general purpose registers saved on the stack."), _("\
5317 This option can be set to one of:\n\
5318 32 - Force GDB to treat saved GP registers as 32-bit\n\
5319 64 - Force GDB to treat saved GP registers as 64-bit\n\
5320 auto - Allow GDB to use the target's default setting or autodetect the\n\
5321 saved GP register size from information contained in the\n\
5322 executable (default)."),
5323 NULL,
5324 NULL, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
5325 &setmipscmdlist, &showmipscmdlist);
5326
5327 /* Allow the user to override the argument stack size. */
5328 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
5329 size_enums, &mips_stack_argsize_string, _("\
5330 Set the amount of stack space reserved for each argument."), _("\
5331 Show the amount of stack space reserved for each argument."), _("\
5332 This option can be set to one of:\n\
5333 32 - Force GDB to allocate 32-bit chunks per argument\n\
5334 64 - Force GDB to allocate 64-bit chunks per argument\n\
5335 auto - Allow GDB to determine the correct setting from the current\n\
5336 target and executable (default)"),
5337 NULL,
5338 NULL, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
5339 &setmipscmdlist, &showmipscmdlist);
5340
5341 /* Allow the user to override the ABI. */
5342 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5343 &mips_abi_string, _("\
5344 Set the MIPS ABI used by this program."), _("\
5345 Show the MIPS ABI used by this program."), _("\
5346 This option can be set to one of:\n\
5347 auto - the default ABI associated with the current binary\n\
5348 o32\n\
5349 o64\n\
5350 n32\n\
5351 n64\n\
5352 eabi32\n\
5353 eabi64"),
5354 mips_abi_update,
5355 show_mips_abi,
5356 &setmipscmdlist, &showmipscmdlist);
5357
5358 /* Let the user turn off floating point and set the fence post for
5359 heuristic_proc_start. */
5360
5361 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5362 _("Set use of MIPS floating-point coprocessor."),
5363 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5364 add_cmd ("single", class_support, set_mipsfpu_single_command,
5365 _("Select single-precision MIPS floating-point coprocessor."),
5366 &mipsfpulist);
5367 add_cmd ("double", class_support, set_mipsfpu_double_command,
5368 _("Select double-precision MIPS floating-point coprocessor."),
5369 &mipsfpulist);
5370 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5371 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5372 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5373 add_cmd ("none", class_support, set_mipsfpu_none_command,
5374 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5375 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5376 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5377 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5378 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5379 _("Select MIPS floating-point coprocessor automatically."),
5380 &mipsfpulist);
5381 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5382 _("Show current use of MIPS floating-point coprocessor target."),
5383 &showlist);
5384
5385 /* We really would like to have both "0" and "unlimited" work, but
5386 command.c doesn't deal with that. So make it a var_zinteger
5387 because the user can always use "999999" or some such for unlimited. */
5388 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5389 &heuristic_fence_post, _("\
5390 Set the distance searched for the start of a function."), _("\
5391 Show the distance searched for the start of a function."), _("\
5392 If you are debugging a stripped executable, GDB needs to search through the\n\
5393 program for the start of a function. This command sets the distance of the\n\
5394 search. The only need to set it is when debugging a stripped executable."),
5395 reinit_frame_cache_sfunc,
5396 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5397 &setlist, &showlist);
5398
5399 /* Allow the user to control whether the upper bits of 64-bit
5400 addresses should be zeroed. */
5401 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5402 &mask_address_var, _("\
5403 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5404 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5405 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5406 allow GDB to determine the correct value."),
5407 NULL, show_mask_address,
5408 &setmipscmdlist, &showmipscmdlist);
5409
5410 /* Allow the user to control the size of 32 bit registers within the
5411 raw remote packet. */
5412 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5413 &mips64_transfers_32bit_regs_p, _("\
5414 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5415 _("\
5416 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5417 _("\
5418 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5419 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5420 64 bits for others. Use \"off\" to disable compatibility mode"),
5421 set_mips64_transfers_32bit_regs,
5422 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5423 &setlist, &showlist);
5424
5425 /* Debug this files internals. */
5426 add_setshow_zinteger_cmd ("mips", class_maintenance,
5427 &mips_debug, _("\
5428 Set mips debugging."), _("\
5429 Show mips debugging."), _("\
5430 When non-zero, mips specific debugging is enabled."),
5431 NULL,
5432 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5433 &setdebuglist, &showdebuglist);
5434 }
This page took 0.141713 seconds and 4 git commands to generate.