* tracepoint.c (trace_save): Call the writer's start method.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "gdb_assert.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "value.h"
30 #include "gdbcmd.h"
31 #include "language.h"
32 #include "gdbcore.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdbtypes.h"
36 #include "target.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "osabi.h"
40 #include "mips-tdep.h"
41 #include "block.h"
42 #include "reggroups.h"
43 #include "opcode/mips.h"
44 #include "elf/mips.h"
45 #include "elf-bfd.h"
46 #include "symcat.h"
47 #include "sim-regno.h"
48 #include "dis-asm.h"
49 #include "frame-unwind.h"
50 #include "frame-base.h"
51 #include "trad-frame.h"
52 #include "infcall.h"
53 #include "floatformat.h"
54 #include "remote.h"
55 #include "target-descriptions.h"
56 #include "dwarf2-frame.h"
57 #include "user-regs.h"
58 #include "valprint.h"
59 #include "ax.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 static int mips32_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR);
66 static int micromips_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR,
67 int);
68 static int mips16_instruction_has_delay_slot (struct gdbarch *, CORE_ADDR,
69 int);
70
71 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
72 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
73 #define ST0_FR (1 << 26)
74
75 /* The sizes of floating point registers. */
76
77 enum
78 {
79 MIPS_FPU_SINGLE_REGSIZE = 4,
80 MIPS_FPU_DOUBLE_REGSIZE = 8
81 };
82
83 enum
84 {
85 MIPS32_REGSIZE = 4,
86 MIPS64_REGSIZE = 8
87 };
88
89 static const char *mips_abi_string;
90
91 static const char *const mips_abi_strings[] = {
92 "auto",
93 "n32",
94 "o32",
95 "n64",
96 "o64",
97 "eabi32",
98 "eabi64",
99 NULL
100 };
101
102 /* For backwards compatibility we default to MIPS16. This flag is
103 overridden as soon as unambiguous ELF file flags tell us the
104 compressed ISA encoding used. */
105 static const char mips_compression_mips16[] = "mips16";
106 static const char mips_compression_micromips[] = "micromips";
107 static const char *const mips_compression_strings[] =
108 {
109 mips_compression_mips16,
110 mips_compression_micromips,
111 NULL
112 };
113
114 static const char *mips_compression_string = mips_compression_mips16;
115
116 /* The standard register names, and all the valid aliases for them. */
117 struct register_alias
118 {
119 const char *name;
120 int regnum;
121 };
122
123 /* Aliases for o32 and most other ABIs. */
124 const struct register_alias mips_o32_aliases[] = {
125 { "ta0", 12 },
126 { "ta1", 13 },
127 { "ta2", 14 },
128 { "ta3", 15 }
129 };
130
131 /* Aliases for n32 and n64. */
132 const struct register_alias mips_n32_n64_aliases[] = {
133 { "ta0", 8 },
134 { "ta1", 9 },
135 { "ta2", 10 },
136 { "ta3", 11 }
137 };
138
139 /* Aliases for ABI-independent registers. */
140 const struct register_alias mips_register_aliases[] = {
141 /* The architecture manuals specify these ABI-independent names for
142 the GPRs. */
143 #define R(n) { "r" #n, n }
144 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
145 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
146 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
147 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
148 #undef R
149
150 /* k0 and k1 are sometimes called these instead (for "kernel
151 temp"). */
152 { "kt0", 26 },
153 { "kt1", 27 },
154
155 /* This is the traditional GDB name for the CP0 status register. */
156 { "sr", MIPS_PS_REGNUM },
157
158 /* This is the traditional GDB name for the CP0 BadVAddr register. */
159 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
160
161 /* This is the traditional GDB name for the FCSR. */
162 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
163 };
164
165 const struct register_alias mips_numeric_register_aliases[] = {
166 #define R(n) { #n, n }
167 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
168 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
169 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
170 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
171 #undef R
172 };
173
174 #ifndef MIPS_DEFAULT_FPU_TYPE
175 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
176 #endif
177 static int mips_fpu_type_auto = 1;
178 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
179
180 static unsigned int mips_debug = 0;
181
182 /* Properties (for struct target_desc) describing the g/G packet
183 layout. */
184 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
185 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
186
187 struct target_desc *mips_tdesc_gp32;
188 struct target_desc *mips_tdesc_gp64;
189
190 const struct mips_regnum *
191 mips_regnum (struct gdbarch *gdbarch)
192 {
193 return gdbarch_tdep (gdbarch)->regnum;
194 }
195
196 static int
197 mips_fpa0_regnum (struct gdbarch *gdbarch)
198 {
199 return mips_regnum (gdbarch)->fp0 + 12;
200 }
201
202 /* Return 1 if REGNUM refers to a floating-point general register, raw
203 or cooked. Otherwise return 0. */
204
205 static int
206 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
207 {
208 int rawnum = regnum % gdbarch_num_regs (gdbarch);
209
210 return (rawnum >= mips_regnum (gdbarch)->fp0
211 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
212 }
213
214 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
215 == MIPS_ABI_EABI32 \
216 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
217
218 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
219 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
220
221 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
222 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
223
224 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
225
226 /* Return the MIPS ABI associated with GDBARCH. */
227 enum mips_abi
228 mips_abi (struct gdbarch *gdbarch)
229 {
230 return gdbarch_tdep (gdbarch)->mips_abi;
231 }
232
233 int
234 mips_isa_regsize (struct gdbarch *gdbarch)
235 {
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237
238 /* If we know how big the registers are, use that size. */
239 if (tdep->register_size_valid_p)
240 return tdep->register_size;
241
242 /* Fall back to the previous behavior. */
243 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
244 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
245 }
246
247 /* Return the currently configured (or set) saved register size. */
248
249 unsigned int
250 mips_abi_regsize (struct gdbarch *gdbarch)
251 {
252 switch (mips_abi (gdbarch))
253 {
254 case MIPS_ABI_EABI32:
255 case MIPS_ABI_O32:
256 return 4;
257 case MIPS_ABI_N32:
258 case MIPS_ABI_N64:
259 case MIPS_ABI_O64:
260 case MIPS_ABI_EABI64:
261 return 8;
262 case MIPS_ABI_UNKNOWN:
263 case MIPS_ABI_LAST:
264 default:
265 internal_error (__FILE__, __LINE__, _("bad switch"));
266 }
267 }
268
269 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
270 are some functions to handle addresses associated with compressed
271 code including but not limited to testing, setting, or clearing
272 bit 0 of such addresses. */
273
274 /* Return one iff compressed code is the MIPS16 instruction set. */
275
276 static int
277 is_mips16_isa (struct gdbarch *gdbarch)
278 {
279 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
280 }
281
282 /* Return one iff compressed code is the microMIPS instruction set. */
283
284 static int
285 is_micromips_isa (struct gdbarch *gdbarch)
286 {
287 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
288 }
289
290 /* Return one iff ADDR denotes compressed code. */
291
292 static int
293 is_compact_addr (CORE_ADDR addr)
294 {
295 return ((addr) & 1);
296 }
297
298 /* Return one iff ADDR denotes standard ISA code. */
299
300 static int
301 is_mips_addr (CORE_ADDR addr)
302 {
303 return !is_compact_addr (addr);
304 }
305
306 /* Return one iff ADDR denotes MIPS16 code. */
307
308 static int
309 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
310 {
311 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
312 }
313
314 /* Return one iff ADDR denotes microMIPS code. */
315
316 static int
317 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
318 {
319 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
320 }
321
322 /* Strip the ISA (compression) bit off from ADDR. */
323
324 static CORE_ADDR
325 unmake_compact_addr (CORE_ADDR addr)
326 {
327 return ((addr) & ~(CORE_ADDR) 1);
328 }
329
330 /* Add the ISA (compression) bit to ADDR. */
331
332 static CORE_ADDR
333 make_compact_addr (CORE_ADDR addr)
334 {
335 return ((addr) | (CORE_ADDR) 1);
336 }
337
338 /* Functions for setting and testing a bit in a minimal symbol that
339 marks it as MIPS16 or microMIPS function. The MSB of the minimal
340 symbol's "info" field is used for this purpose.
341
342 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
343 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
344 one of the "special" bits in a minimal symbol to mark it accordingly.
345 The test checks an ELF-private flag that is valid for true function
346 symbols only; in particular synthetic symbols such as for PLT stubs
347 have no ELF-private part at all.
348
349 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
350 in a minimal symbol. */
351
352 static void
353 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
354 {
355 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
356
357 if ((sym->flags & BSF_SYNTHETIC) != 0)
358 return;
359
360 if (ELF_ST_IS_MICROMIPS (elfsym->internal_elf_sym.st_other))
361 MSYMBOL_TARGET_FLAG_2 (msym) = 1;
362 else if (ELF_ST_IS_MIPS16 (elfsym->internal_elf_sym.st_other))
363 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
364 }
365
366 /* Return one iff MSYM refers to standard ISA code. */
367
368 static int
369 msymbol_is_mips (struct minimal_symbol *msym)
370 {
371 return !(MSYMBOL_TARGET_FLAG_1 (msym) | MSYMBOL_TARGET_FLAG_2 (msym));
372 }
373
374 /* Return one iff MSYM refers to MIPS16 code. */
375
376 static int
377 msymbol_is_mips16 (struct minimal_symbol *msym)
378 {
379 return MSYMBOL_TARGET_FLAG_1 (msym);
380 }
381
382 /* Return one iff MSYM refers to microMIPS code. */
383
384 static int
385 msymbol_is_micromips (struct minimal_symbol *msym)
386 {
387 return MSYMBOL_TARGET_FLAG_2 (msym);
388 }
389
390 /* XFER a value from the big/little/left end of the register.
391 Depending on the size of the value it might occupy the entire
392 register or just part of it. Make an allowance for this, aligning
393 things accordingly. */
394
395 static void
396 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
397 int reg_num, int length,
398 enum bfd_endian endian, gdb_byte *in,
399 const gdb_byte *out, int buf_offset)
400 {
401 int reg_offset = 0;
402
403 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
404 /* Need to transfer the left or right part of the register, based on
405 the targets byte order. */
406 switch (endian)
407 {
408 case BFD_ENDIAN_BIG:
409 reg_offset = register_size (gdbarch, reg_num) - length;
410 break;
411 case BFD_ENDIAN_LITTLE:
412 reg_offset = 0;
413 break;
414 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
415 reg_offset = 0;
416 break;
417 default:
418 internal_error (__FILE__, __LINE__, _("bad switch"));
419 }
420 if (mips_debug)
421 fprintf_unfiltered (gdb_stderr,
422 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
423 reg_num, reg_offset, buf_offset, length);
424 if (mips_debug && out != NULL)
425 {
426 int i;
427 fprintf_unfiltered (gdb_stdlog, "out ");
428 for (i = 0; i < length; i++)
429 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
430 }
431 if (in != NULL)
432 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
433 in + buf_offset);
434 if (out != NULL)
435 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
436 out + buf_offset);
437 if (mips_debug && in != NULL)
438 {
439 int i;
440 fprintf_unfiltered (gdb_stdlog, "in ");
441 for (i = 0; i < length; i++)
442 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
443 }
444 if (mips_debug)
445 fprintf_unfiltered (gdb_stdlog, "\n");
446 }
447
448 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
449 compatiblity mode. A return value of 1 means that we have
450 physical 64-bit registers, but should treat them as 32-bit registers. */
451
452 static int
453 mips2_fp_compat (struct frame_info *frame)
454 {
455 struct gdbarch *gdbarch = get_frame_arch (frame);
456 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
457 meaningful. */
458 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
459 return 0;
460
461 #if 0
462 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
463 in all the places we deal with FP registers. PR gdb/413. */
464 /* Otherwise check the FR bit in the status register - it controls
465 the FP compatiblity mode. If it is clear we are in compatibility
466 mode. */
467 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
468 return 1;
469 #endif
470
471 return 0;
472 }
473
474 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
475
476 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
477
478 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
479
480 /* The list of available "set mips " and "show mips " commands. */
481
482 static struct cmd_list_element *setmipscmdlist = NULL;
483 static struct cmd_list_element *showmipscmdlist = NULL;
484
485 /* Integer registers 0 thru 31 are handled explicitly by
486 mips_register_name(). Processor specific registers 32 and above
487 are listed in the following tables. */
488
489 enum
490 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
491
492 /* Generic MIPS. */
493
494 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
495 "sr", "lo", "hi", "bad", "cause", "pc",
496 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
497 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
498 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
499 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
500 "fsr", "fir",
501 };
502
503 /* Names of IDT R3041 registers. */
504
505 static const char *mips_r3041_reg_names[] = {
506 "sr", "lo", "hi", "bad", "cause", "pc",
507 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
508 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
509 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
510 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
511 "fsr", "fir", "", /*"fp" */ "",
512 "", "", "bus", "ccfg", "", "", "", "",
513 "", "", "port", "cmp", "", "", "epc", "prid",
514 };
515
516 /* Names of tx39 registers. */
517
518 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
519 "sr", "lo", "hi", "bad", "cause", "pc",
520 "", "", "", "", "", "", "", "",
521 "", "", "", "", "", "", "", "",
522 "", "", "", "", "", "", "", "",
523 "", "", "", "", "", "", "", "",
524 "", "", "", "",
525 "", "", "", "", "", "", "", "",
526 "", "", "config", "cache", "debug", "depc", "epc",
527 };
528
529 /* Names of IRIX registers. */
530 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
531 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
532 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
533 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
534 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
535 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
536 };
537
538 /* Names of registers with Linux kernels. */
539 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
540 "sr", "lo", "hi", "bad", "cause", "pc",
541 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
542 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
543 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
544 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
545 "fsr", "fir"
546 };
547
548
549 /* Return the name of the register corresponding to REGNO. */
550 static const char *
551 mips_register_name (struct gdbarch *gdbarch, int regno)
552 {
553 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
554 /* GPR names for all ABIs other than n32/n64. */
555 static char *mips_gpr_names[] = {
556 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
557 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
558 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
559 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
560 };
561
562 /* GPR names for n32 and n64 ABIs. */
563 static char *mips_n32_n64_gpr_names[] = {
564 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
565 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
566 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
567 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
568 };
569
570 enum mips_abi abi = mips_abi (gdbarch);
571
572 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
573 but then don't make the raw register names visible. This (upper)
574 range of user visible register numbers are the pseudo-registers.
575
576 This approach was adopted accommodate the following scenario:
577 It is possible to debug a 64-bit device using a 32-bit
578 programming model. In such instances, the raw registers are
579 configured to be 64-bits wide, while the pseudo registers are
580 configured to be 32-bits wide. The registers that the user
581 sees - the pseudo registers - match the users expectations
582 given the programming model being used. */
583 int rawnum = regno % gdbarch_num_regs (gdbarch);
584 if (regno < gdbarch_num_regs (gdbarch))
585 return "";
586
587 /* The MIPS integer registers are always mapped from 0 to 31. The
588 names of the registers (which reflects the conventions regarding
589 register use) vary depending on the ABI. */
590 if (0 <= rawnum && rawnum < 32)
591 {
592 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
593 return mips_n32_n64_gpr_names[rawnum];
594 else
595 return mips_gpr_names[rawnum];
596 }
597 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
598 return tdesc_register_name (gdbarch, rawnum);
599 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
600 {
601 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
602 if (tdep->mips_processor_reg_names[rawnum - 32])
603 return tdep->mips_processor_reg_names[rawnum - 32];
604 return "";
605 }
606 else
607 internal_error (__FILE__, __LINE__,
608 _("mips_register_name: bad register number %d"), rawnum);
609 }
610
611 /* Return the groups that a MIPS register can be categorised into. */
612
613 static int
614 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
615 struct reggroup *reggroup)
616 {
617 int vector_p;
618 int float_p;
619 int raw_p;
620 int rawnum = regnum % gdbarch_num_regs (gdbarch);
621 int pseudo = regnum / gdbarch_num_regs (gdbarch);
622 if (reggroup == all_reggroup)
623 return pseudo;
624 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
625 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
626 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
627 (gdbarch), as not all architectures are multi-arch. */
628 raw_p = rawnum < gdbarch_num_regs (gdbarch);
629 if (gdbarch_register_name (gdbarch, regnum) == NULL
630 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
631 return 0;
632 if (reggroup == float_reggroup)
633 return float_p && pseudo;
634 if (reggroup == vector_reggroup)
635 return vector_p && pseudo;
636 if (reggroup == general_reggroup)
637 return (!vector_p && !float_p) && pseudo;
638 /* Save the pseudo registers. Need to make certain that any code
639 extracting register values from a saved register cache also uses
640 pseudo registers. */
641 if (reggroup == save_reggroup)
642 return raw_p && pseudo;
643 /* Restore the same pseudo register. */
644 if (reggroup == restore_reggroup)
645 return raw_p && pseudo;
646 return 0;
647 }
648
649 /* Return the groups that a MIPS register can be categorised into.
650 This version is only used if we have a target description which
651 describes real registers (and their groups). */
652
653 static int
654 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
655 struct reggroup *reggroup)
656 {
657 int rawnum = regnum % gdbarch_num_regs (gdbarch);
658 int pseudo = regnum / gdbarch_num_regs (gdbarch);
659 int ret;
660
661 /* Only save, restore, and display the pseudo registers. Need to
662 make certain that any code extracting register values from a
663 saved register cache also uses pseudo registers.
664
665 Note: saving and restoring the pseudo registers is slightly
666 strange; if we have 64 bits, we should save and restore all
667 64 bits. But this is hard and has little benefit. */
668 if (!pseudo)
669 return 0;
670
671 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
672 if (ret != -1)
673 return ret;
674
675 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
676 }
677
678 /* Map the symbol table registers which live in the range [1 *
679 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
680 registers. Take care of alignment and size problems. */
681
682 static enum register_status
683 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
684 int cookednum, gdb_byte *buf)
685 {
686 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
687 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
688 && cookednum < 2 * gdbarch_num_regs (gdbarch));
689 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
690 return regcache_raw_read (regcache, rawnum, buf);
691 else if (register_size (gdbarch, rawnum) >
692 register_size (gdbarch, cookednum))
693 {
694 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
695 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
696 else
697 {
698 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
699 LONGEST regval;
700 enum register_status status;
701
702 status = regcache_raw_read_signed (regcache, rawnum, &regval);
703 if (status == REG_VALID)
704 store_signed_integer (buf, 4, byte_order, regval);
705 return status;
706 }
707 }
708 else
709 internal_error (__FILE__, __LINE__, _("bad register size"));
710 }
711
712 static void
713 mips_pseudo_register_write (struct gdbarch *gdbarch,
714 struct regcache *regcache, int cookednum,
715 const gdb_byte *buf)
716 {
717 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
718 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
719 && cookednum < 2 * gdbarch_num_regs (gdbarch));
720 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
721 regcache_raw_write (regcache, rawnum, buf);
722 else if (register_size (gdbarch, rawnum) >
723 register_size (gdbarch, cookednum))
724 {
725 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
726 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
727 else
728 {
729 /* Sign extend the shortened version of the register prior
730 to placing it in the raw register. This is required for
731 some mips64 parts in order to avoid unpredictable behavior. */
732 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
733 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
734 regcache_raw_write_signed (regcache, rawnum, regval);
735 }
736 }
737 else
738 internal_error (__FILE__, __LINE__, _("bad register size"));
739 }
740
741 static int
742 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
743 struct agent_expr *ax, int reg)
744 {
745 int rawnum = reg % gdbarch_num_regs (gdbarch);
746 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
747 && reg < 2 * gdbarch_num_regs (gdbarch));
748
749 ax_reg_mask (ax, rawnum);
750
751 return 0;
752 }
753
754 static int
755 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
756 struct agent_expr *ax, int reg)
757 {
758 int rawnum = reg % gdbarch_num_regs (gdbarch);
759 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
760 && reg < 2 * gdbarch_num_regs (gdbarch));
761 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
762 {
763 ax_reg (ax, rawnum);
764
765 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
766 {
767 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
768 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
769 {
770 ax_const_l (ax, 32);
771 ax_simple (ax, aop_lsh);
772 }
773 ax_const_l (ax, 32);
774 ax_simple (ax, aop_rsh_signed);
775 }
776 }
777 else
778 internal_error (__FILE__, __LINE__, _("bad register size"));
779
780 return 0;
781 }
782
783 /* Table to translate 3-bit register field to actual register number. */
784 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
785
786 /* Heuristic_proc_start may hunt through the text section for a long
787 time across a 2400 baud serial line. Allows the user to limit this
788 search. */
789
790 static int heuristic_fence_post = 0;
791
792 /* Number of bytes of storage in the actual machine representation for
793 register N. NOTE: This defines the pseudo register type so need to
794 rebuild the architecture vector. */
795
796 static int mips64_transfers_32bit_regs_p = 0;
797
798 static void
799 set_mips64_transfers_32bit_regs (char *args, int from_tty,
800 struct cmd_list_element *c)
801 {
802 struct gdbarch_info info;
803 gdbarch_info_init (&info);
804 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
805 instead of relying on globals. Doing that would let generic code
806 handle the search for this specific architecture. */
807 if (!gdbarch_update_p (info))
808 {
809 mips64_transfers_32bit_regs_p = 0;
810 error (_("32-bit compatibility mode not supported"));
811 }
812 }
813
814 /* Convert to/from a register and the corresponding memory value. */
815
816 /* This predicate tests for the case of an 8 byte floating point
817 value that is being transferred to or from a pair of floating point
818 registers each of which are (or are considered to be) only 4 bytes
819 wide. */
820 static int
821 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
822 struct type *type)
823 {
824 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
825 && register_size (gdbarch, regnum) == 4
826 && mips_float_register_p (gdbarch, regnum)
827 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
828 }
829
830 /* This predicate tests for the case of a value of less than 8
831 bytes in width that is being transfered to or from an 8 byte
832 general purpose register. */
833 static int
834 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
835 struct type *type)
836 {
837 int num_regs = gdbarch_num_regs (gdbarch);
838
839 return (register_size (gdbarch, regnum) == 8
840 && regnum % num_regs > 0 && regnum % num_regs < 32
841 && TYPE_LENGTH (type) < 8);
842 }
843
844 static int
845 mips_convert_register_p (struct gdbarch *gdbarch,
846 int regnum, struct type *type)
847 {
848 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
849 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
850 }
851
852 static int
853 mips_register_to_value (struct frame_info *frame, int regnum,
854 struct type *type, gdb_byte *to,
855 int *optimizedp, int *unavailablep)
856 {
857 struct gdbarch *gdbarch = get_frame_arch (frame);
858
859 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
860 {
861 get_frame_register (frame, regnum + 0, to + 4);
862 get_frame_register (frame, regnum + 1, to + 0);
863
864 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
865 optimizedp, unavailablep))
866 return 0;
867
868 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
869 optimizedp, unavailablep))
870 return 0;
871 *optimizedp = *unavailablep = 0;
872 return 1;
873 }
874 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
875 {
876 int len = TYPE_LENGTH (type);
877 CORE_ADDR offset;
878
879 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
880 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
881 optimizedp, unavailablep))
882 return 0;
883
884 *optimizedp = *unavailablep = 0;
885 return 1;
886 }
887 else
888 {
889 internal_error (__FILE__, __LINE__,
890 _("mips_register_to_value: unrecognized case"));
891 }
892 }
893
894 static void
895 mips_value_to_register (struct frame_info *frame, int regnum,
896 struct type *type, const gdb_byte *from)
897 {
898 struct gdbarch *gdbarch = get_frame_arch (frame);
899
900 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
901 {
902 put_frame_register (frame, regnum + 0, from + 4);
903 put_frame_register (frame, regnum + 1, from + 0);
904 }
905 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
906 {
907 gdb_byte fill[8];
908 int len = TYPE_LENGTH (type);
909
910 /* Sign extend values, irrespective of type, that are stored to
911 a 64-bit general purpose register. (32-bit unsigned values
912 are stored as signed quantities within a 64-bit register.
913 When performing an operation, in compiled code, that combines
914 a 32-bit unsigned value with a signed 64-bit value, a type
915 conversion is first performed that zeroes out the high 32 bits.) */
916 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
917 {
918 if (from[0] & 0x80)
919 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
920 else
921 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
922 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
923 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
924 }
925 else
926 {
927 if (from[len-1] & 0x80)
928 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
929 else
930 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
931 put_frame_register_bytes (frame, regnum, 0, len, from);
932 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
933 }
934 }
935 else
936 {
937 internal_error (__FILE__, __LINE__,
938 _("mips_value_to_register: unrecognized case"));
939 }
940 }
941
942 /* Return the GDB type object for the "standard" data type of data in
943 register REG. */
944
945 static struct type *
946 mips_register_type (struct gdbarch *gdbarch, int regnum)
947 {
948 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
949 if (mips_float_register_p (gdbarch, regnum))
950 {
951 /* The floating-point registers raw, or cooked, always match
952 mips_isa_regsize(), and also map 1:1, byte for byte. */
953 if (mips_isa_regsize (gdbarch) == 4)
954 return builtin_type (gdbarch)->builtin_float;
955 else
956 return builtin_type (gdbarch)->builtin_double;
957 }
958 else if (regnum < gdbarch_num_regs (gdbarch))
959 {
960 /* The raw or ISA registers. These are all sized according to
961 the ISA regsize. */
962 if (mips_isa_regsize (gdbarch) == 4)
963 return builtin_type (gdbarch)->builtin_int32;
964 else
965 return builtin_type (gdbarch)->builtin_int64;
966 }
967 else
968 {
969 int rawnum = regnum - gdbarch_num_regs (gdbarch);
970
971 /* The cooked or ABI registers. These are sized according to
972 the ABI (with a few complications). */
973 if (rawnum == mips_regnum (gdbarch)->fp_control_status
974 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
975 return builtin_type (gdbarch)->builtin_int32;
976 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
977 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
978 && rawnum >= MIPS_FIRST_EMBED_REGNUM
979 && rawnum <= MIPS_LAST_EMBED_REGNUM)
980 /* The pseudo/cooked view of the embedded registers is always
981 32-bit. The raw view is handled below. */
982 return builtin_type (gdbarch)->builtin_int32;
983 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
984 /* The target, while possibly using a 64-bit register buffer,
985 is only transfering 32-bits of each integer register.
986 Reflect this in the cooked/pseudo (ABI) register value. */
987 return builtin_type (gdbarch)->builtin_int32;
988 else if (mips_abi_regsize (gdbarch) == 4)
989 /* The ABI is restricted to 32-bit registers (the ISA could be
990 32- or 64-bit). */
991 return builtin_type (gdbarch)->builtin_int32;
992 else
993 /* 64-bit ABI. */
994 return builtin_type (gdbarch)->builtin_int64;
995 }
996 }
997
998 /* Return the GDB type for the pseudo register REGNUM, which is the
999 ABI-level view. This function is only called if there is a target
1000 description which includes registers, so we know precisely the
1001 types of hardware registers. */
1002
1003 static struct type *
1004 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1005 {
1006 const int num_regs = gdbarch_num_regs (gdbarch);
1007 int rawnum = regnum % num_regs;
1008 struct type *rawtype;
1009
1010 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1011
1012 /* Absent registers are still absent. */
1013 rawtype = gdbarch_register_type (gdbarch, rawnum);
1014 if (TYPE_LENGTH (rawtype) == 0)
1015 return rawtype;
1016
1017 if (mips_float_register_p (gdbarch, rawnum))
1018 /* Present the floating point registers however the hardware did;
1019 do not try to convert between FPU layouts. */
1020 return rawtype;
1021
1022 /* Use pointer types for registers if we can. For n32 we can not,
1023 since we do not have a 64-bit pointer type. */
1024 if (mips_abi_regsize (gdbarch)
1025 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1026 {
1027 if (rawnum == MIPS_SP_REGNUM
1028 || rawnum == mips_regnum (gdbarch)->badvaddr)
1029 return builtin_type (gdbarch)->builtin_data_ptr;
1030 else if (rawnum == mips_regnum (gdbarch)->pc)
1031 return builtin_type (gdbarch)->builtin_func_ptr;
1032 }
1033
1034 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1035 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1036 || rawnum == mips_regnum (gdbarch)->lo
1037 || rawnum == mips_regnum (gdbarch)->hi
1038 || rawnum == mips_regnum (gdbarch)->badvaddr
1039 || rawnum == mips_regnum (gdbarch)->cause
1040 || rawnum == mips_regnum (gdbarch)->pc
1041 || (mips_regnum (gdbarch)->dspacc != -1
1042 && rawnum >= mips_regnum (gdbarch)->dspacc
1043 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1044 return builtin_type (gdbarch)->builtin_int32;
1045
1046 if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1047 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1048 && rawnum >= MIPS_EMBED_FP0_REGNUM + 32
1049 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1050 {
1051 /* The pseudo/cooked view of embedded registers is always
1052 32-bit, even if the target transfers 64-bit values for them.
1053 New targets relying on XML descriptions should only transfer
1054 the necessary 32 bits, but older versions of GDB expected 64,
1055 so allow the target to provide 64 bits without interfering
1056 with the displayed type. */
1057 return builtin_type (gdbarch)->builtin_int32;
1058 }
1059
1060 /* For all other registers, pass through the hardware type. */
1061 return rawtype;
1062 }
1063
1064 /* Should the upper word of 64-bit addresses be zeroed? */
1065 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1066
1067 static int
1068 mips_mask_address_p (struct gdbarch_tdep *tdep)
1069 {
1070 switch (mask_address_var)
1071 {
1072 case AUTO_BOOLEAN_TRUE:
1073 return 1;
1074 case AUTO_BOOLEAN_FALSE:
1075 return 0;
1076 break;
1077 case AUTO_BOOLEAN_AUTO:
1078 return tdep->default_mask_address_p;
1079 default:
1080 internal_error (__FILE__, __LINE__,
1081 _("mips_mask_address_p: bad switch"));
1082 return -1;
1083 }
1084 }
1085
1086 static void
1087 show_mask_address (struct ui_file *file, int from_tty,
1088 struct cmd_list_element *c, const char *value)
1089 {
1090 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1091
1092 deprecated_show_value_hack (file, from_tty, c, value);
1093 switch (mask_address_var)
1094 {
1095 case AUTO_BOOLEAN_TRUE:
1096 printf_filtered ("The 32 bit mips address mask is enabled\n");
1097 break;
1098 case AUTO_BOOLEAN_FALSE:
1099 printf_filtered ("The 32 bit mips address mask is disabled\n");
1100 break;
1101 case AUTO_BOOLEAN_AUTO:
1102 printf_filtered
1103 ("The 32 bit address mask is set automatically. Currently %s\n",
1104 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1105 break;
1106 default:
1107 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1108 break;
1109 }
1110 }
1111
1112 /* Tell if the program counter value in MEMADDR is in a standard ISA
1113 function. */
1114
1115 int
1116 mips_pc_is_mips (CORE_ADDR memaddr)
1117 {
1118 struct bound_minimal_symbol sym;
1119
1120 /* Flags indicating that this is a MIPS16 or microMIPS function is
1121 stored by elfread.c in the high bit of the info field. Use this
1122 to decide if the function is standard MIPS. Otherwise if bit 0
1123 of the address is clear, then this is a standard MIPS function. */
1124 sym = lookup_minimal_symbol_by_pc (memaddr);
1125 if (sym.minsym)
1126 return msymbol_is_mips (sym.minsym);
1127 else
1128 return is_mips_addr (memaddr);
1129 }
1130
1131 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1132
1133 int
1134 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1135 {
1136 struct bound_minimal_symbol sym;
1137
1138 /* A flag indicating that this is a MIPS16 function is stored by
1139 elfread.c in the high bit of the info field. Use this to decide
1140 if the function is MIPS16. Otherwise if bit 0 of the address is
1141 set, then ELF file flags will tell if this is a MIPS16 function. */
1142 sym = lookup_minimal_symbol_by_pc (memaddr);
1143 if (sym.minsym)
1144 return msymbol_is_mips16 (sym.minsym);
1145 else
1146 return is_mips16_addr (gdbarch, memaddr);
1147 }
1148
1149 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1150
1151 int
1152 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1153 {
1154 struct bound_minimal_symbol sym;
1155
1156 /* A flag indicating that this is a microMIPS function is stored by
1157 elfread.c in the high bit of the info field. Use this to decide
1158 if the function is microMIPS. Otherwise if bit 0 of the address
1159 is set, then ELF file flags will tell if this is a microMIPS
1160 function. */
1161 sym = lookup_minimal_symbol_by_pc (memaddr);
1162 if (sym.minsym)
1163 return msymbol_is_micromips (sym.minsym);
1164 else
1165 return is_micromips_addr (gdbarch, memaddr);
1166 }
1167
1168 /* Tell the ISA type of the function the program counter value in MEMADDR
1169 is in. */
1170
1171 static enum mips_isa
1172 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1173 {
1174 struct bound_minimal_symbol sym;
1175
1176 /* A flag indicating that this is a MIPS16 or a microMIPS function
1177 is stored by elfread.c in the high bit of the info field. Use
1178 this to decide if the function is MIPS16 or microMIPS or normal
1179 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1180 flags will tell if this is a MIPS16 or a microMIPS function. */
1181 sym = lookup_minimal_symbol_by_pc (memaddr);
1182 if (sym.minsym)
1183 {
1184 if (msymbol_is_micromips (sym.minsym))
1185 return ISA_MICROMIPS;
1186 else if (msymbol_is_mips16 (sym.minsym))
1187 return ISA_MIPS16;
1188 else
1189 return ISA_MIPS;
1190 }
1191 else
1192 {
1193 if (is_mips_addr (memaddr))
1194 return ISA_MIPS;
1195 else if (is_micromips_addr (gdbarch, memaddr))
1196 return ISA_MICROMIPS;
1197 else
1198 return ISA_MIPS16;
1199 }
1200 }
1201
1202 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1203
1204 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1205 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1206 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1207 static const char mips_str_call_stub[] = "__call_stub_";
1208 static const char mips_str_fn_stub[] = "__fn_stub_";
1209
1210 /* This is used as a PIC thunk prefix. */
1211
1212 static const char mips_str_pic[] = ".pic.";
1213
1214 /* Return non-zero if the PC is inside a call thunk (aka stub or
1215 trampoline) that should be treated as a temporary frame. */
1216
1217 static int
1218 mips_in_frame_stub (CORE_ADDR pc)
1219 {
1220 CORE_ADDR start_addr;
1221 const char *name;
1222
1223 /* Find the starting address of the function containing the PC. */
1224 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1225 return 0;
1226
1227 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1228 if (strncmp (name, mips_str_mips16_call_stub,
1229 strlen (mips_str_mips16_call_stub)) == 0)
1230 return 1;
1231 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1232 if (strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
1233 return 1;
1234 /* If the PC is in __fn_stub_*, this is a call stub. */
1235 if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0)
1236 return 1;
1237
1238 return 0; /* Not a stub. */
1239 }
1240
1241 /* MIPS believes that the PC has a sign extended value. Perhaps the
1242 all registers should be sign extended for simplicity? */
1243
1244 static CORE_ADDR
1245 mips_read_pc (struct regcache *regcache)
1246 {
1247 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1248 LONGEST pc;
1249
1250 regcache_cooked_read_signed (regcache, regnum, &pc);
1251 if (is_compact_addr (pc))
1252 pc = unmake_compact_addr (pc);
1253 return pc;
1254 }
1255
1256 static CORE_ADDR
1257 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1258 {
1259 CORE_ADDR pc;
1260
1261 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1262 if (is_compact_addr (pc))
1263 pc = unmake_compact_addr (pc);
1264 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1265 intermediate frames. In this case we can get the caller's address
1266 from $ra, or if $ra contains an address within a thunk as well, then
1267 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1268 and thus the caller's address is in $s2. */
1269 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1270 {
1271 pc = frame_unwind_register_signed
1272 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1273 if (is_compact_addr (pc))
1274 pc = unmake_compact_addr (pc);
1275 if (mips_in_frame_stub (pc))
1276 {
1277 pc = frame_unwind_register_signed
1278 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1279 if (is_compact_addr (pc))
1280 pc = unmake_compact_addr (pc);
1281 }
1282 }
1283 return pc;
1284 }
1285
1286 static CORE_ADDR
1287 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1288 {
1289 return frame_unwind_register_signed
1290 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1291 }
1292
1293 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1294 dummy frame. The frame ID's base needs to match the TOS value
1295 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1296 breakpoint. */
1297
1298 static struct frame_id
1299 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1300 {
1301 return frame_id_build
1302 (get_frame_register_signed (this_frame,
1303 gdbarch_num_regs (gdbarch)
1304 + MIPS_SP_REGNUM),
1305 get_frame_pc (this_frame));
1306 }
1307
1308 /* Implement the "write_pc" gdbarch method. */
1309
1310 void
1311 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1312 {
1313 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1314
1315 if (mips_pc_is_mips (pc))
1316 regcache_cooked_write_unsigned (regcache, regnum, pc);
1317 else
1318 regcache_cooked_write_unsigned (regcache, regnum, make_compact_addr (pc));
1319 }
1320
1321 /* Fetch and return instruction from the specified location. Handle
1322 MIPS16/microMIPS as appropriate. */
1323
1324 static ULONGEST
1325 mips_fetch_instruction (struct gdbarch *gdbarch,
1326 enum mips_isa isa, CORE_ADDR addr, int *statusp)
1327 {
1328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1329 gdb_byte buf[MIPS_INSN32_SIZE];
1330 int instlen;
1331 int status;
1332
1333 switch (isa)
1334 {
1335 case ISA_MICROMIPS:
1336 case ISA_MIPS16:
1337 instlen = MIPS_INSN16_SIZE;
1338 addr = unmake_compact_addr (addr);
1339 break;
1340 case ISA_MIPS:
1341 instlen = MIPS_INSN32_SIZE;
1342 break;
1343 default:
1344 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1345 break;
1346 }
1347 status = target_read_memory (addr, buf, instlen);
1348 if (statusp != NULL)
1349 *statusp = status;
1350 if (status)
1351 {
1352 if (statusp == NULL)
1353 memory_error (status, addr);
1354 return 0;
1355 }
1356 return extract_unsigned_integer (buf, instlen, byte_order);
1357 }
1358
1359 /* These are the fields of 32 bit mips instructions. */
1360 #define mips32_op(x) (x >> 26)
1361 #define itype_op(x) (x >> 26)
1362 #define itype_rs(x) ((x >> 21) & 0x1f)
1363 #define itype_rt(x) ((x >> 16) & 0x1f)
1364 #define itype_immediate(x) (x & 0xffff)
1365
1366 #define jtype_op(x) (x >> 26)
1367 #define jtype_target(x) (x & 0x03ffffff)
1368
1369 #define rtype_op(x) (x >> 26)
1370 #define rtype_rs(x) ((x >> 21) & 0x1f)
1371 #define rtype_rt(x) ((x >> 16) & 0x1f)
1372 #define rtype_rd(x) ((x >> 11) & 0x1f)
1373 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1374 #define rtype_funct(x) (x & 0x3f)
1375
1376 /* MicroMIPS instruction fields. */
1377 #define micromips_op(x) ((x) >> 10)
1378
1379 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1380 bit and the size respectively of the field extracted. */
1381 #define b0s4_imm(x) ((x) & 0xf)
1382 #define b0s5_imm(x) ((x) & 0x1f)
1383 #define b0s5_reg(x) ((x) & 0x1f)
1384 #define b0s7_imm(x) ((x) & 0x7f)
1385 #define b0s10_imm(x) ((x) & 0x3ff)
1386 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1387 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1388 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1389 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1390 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1391 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1392 #define b6s4_op(x) (((x) >> 6) & 0xf)
1393 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1394
1395 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1396 respectively of the field extracted. */
1397 #define b0s6_op(x) ((x) & 0x3f)
1398 #define b0s11_op(x) ((x) & 0x7ff)
1399 #define b0s12_imm(x) ((x) & 0xfff)
1400 #define b0s16_imm(x) ((x) & 0xffff)
1401 #define b0s26_imm(x) ((x) & 0x3ffffff)
1402 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1403 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1404 #define b12s4_op(x) (((x) >> 12) & 0xf)
1405
1406 /* Return the size in bytes of the instruction INSN encoded in the ISA
1407 instruction set. */
1408
1409 static int
1410 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1411 {
1412 switch (isa)
1413 {
1414 case ISA_MICROMIPS:
1415 if (micromips_op (insn) == 0x1f)
1416 return 3 * MIPS_INSN16_SIZE;
1417 else if (((micromips_op (insn) & 0x4) == 0x4)
1418 || ((micromips_op (insn) & 0x7) == 0x0))
1419 return 2 * MIPS_INSN16_SIZE;
1420 else
1421 return MIPS_INSN16_SIZE;
1422 case ISA_MIPS16:
1423 if ((insn & 0xf800) == 0xf000)
1424 return 2 * MIPS_INSN16_SIZE;
1425 else
1426 return MIPS_INSN16_SIZE;
1427 case ISA_MIPS:
1428 return MIPS_INSN32_SIZE;
1429 }
1430 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1431 }
1432
1433 static LONGEST
1434 mips32_relative_offset (ULONGEST inst)
1435 {
1436 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1437 }
1438
1439 /* Determine the address of the next instruction executed after the INST
1440 floating condition branch instruction at PC. COUNT specifies the
1441 number of the floating condition bits tested by the branch. */
1442
1443 static CORE_ADDR
1444 mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1445 ULONGEST inst, CORE_ADDR pc, int count)
1446 {
1447 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1448 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1449 int tf = itype_rt (inst) & 1;
1450 int mask = (1 << count) - 1;
1451 ULONGEST fcs;
1452 int cond;
1453
1454 if (fcsr == -1)
1455 /* No way to handle; it'll most likely trap anyway. */
1456 return pc;
1457
1458 fcs = get_frame_register_unsigned (frame, fcsr);
1459 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1460
1461 if (((cond >> cnum) & mask) != mask * !tf)
1462 pc += mips32_relative_offset (inst);
1463 else
1464 pc += 4;
1465
1466 return pc;
1467 }
1468
1469 /* Return nonzero if the gdbarch is an Octeon series. */
1470
1471 static int
1472 is_octeon (struct gdbarch *gdbarch)
1473 {
1474 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1475
1476 return (info->mach == bfd_mach_mips_octeon
1477 || info->mach == bfd_mach_mips_octeonp
1478 || info->mach == bfd_mach_mips_octeon2);
1479 }
1480
1481 /* Return true if the OP represents the Octeon's BBIT instruction. */
1482
1483 static int
1484 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1485 {
1486 if (!is_octeon (gdbarch))
1487 return 0;
1488 /* BBIT0 is encoded as LWC2: 110 010. */
1489 /* BBIT032 is encoded as LDC2: 110 110. */
1490 /* BBIT1 is encoded as SWC2: 111 010. */
1491 /* BBIT132 is encoded as SDC2: 111 110. */
1492 if (op == 50 || op == 54 || op == 58 || op == 62)
1493 return 1;
1494 return 0;
1495 }
1496
1497
1498 /* Determine where to set a single step breakpoint while considering
1499 branch prediction. */
1500
1501 static CORE_ADDR
1502 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
1503 {
1504 struct gdbarch *gdbarch = get_frame_arch (frame);
1505 unsigned long inst;
1506 int op;
1507 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1508 op = itype_op (inst);
1509 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1510 instruction. */
1511 {
1512 if (op >> 2 == 5)
1513 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1514 {
1515 switch (op & 0x03)
1516 {
1517 case 0: /* BEQL */
1518 goto equal_branch;
1519 case 1: /* BNEL */
1520 goto neq_branch;
1521 case 2: /* BLEZL */
1522 goto less_branch;
1523 case 3: /* BGTZL */
1524 goto greater_branch;
1525 default:
1526 pc += 4;
1527 }
1528 }
1529 else if (op == 17 && itype_rs (inst) == 8)
1530 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1531 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
1532 else if (op == 17 && itype_rs (inst) == 9
1533 && (itype_rt (inst) & 2) == 0)
1534 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1535 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
1536 else if (op == 17 && itype_rs (inst) == 10
1537 && (itype_rt (inst) & 2) == 0)
1538 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1539 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
1540 else if (op == 29)
1541 /* JALX: 011101 */
1542 /* The new PC will be alternate mode. */
1543 {
1544 unsigned long reg;
1545
1546 reg = jtype_target (inst) << 2;
1547 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1548 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1549 }
1550 else if (is_octeon_bbit_op (op, gdbarch))
1551 {
1552 int bit, branch_if;
1553
1554 branch_if = op == 58 || op == 62;
1555 bit = itype_rt (inst);
1556
1557 /* Take into account the *32 instructions. */
1558 if (op == 54 || op == 62)
1559 bit += 32;
1560
1561 if (((get_frame_register_signed (frame,
1562 itype_rs (inst)) >> bit) & 1)
1563 == branch_if)
1564 pc += mips32_relative_offset (inst) + 4;
1565 else
1566 pc += 8; /* After the delay slot. */
1567 }
1568
1569 else
1570 pc += 4; /* Not a branch, next instruction is easy. */
1571 }
1572 else
1573 { /* This gets way messy. */
1574
1575 /* Further subdivide into SPECIAL, REGIMM and other. */
1576 switch (op & 0x07) /* Extract bits 28,27,26. */
1577 {
1578 case 0: /* SPECIAL */
1579 op = rtype_funct (inst);
1580 switch (op)
1581 {
1582 case 8: /* JR */
1583 case 9: /* JALR */
1584 /* Set PC to that address. */
1585 pc = get_frame_register_signed (frame, rtype_rs (inst));
1586 break;
1587 case 12: /* SYSCALL */
1588 {
1589 struct gdbarch_tdep *tdep;
1590
1591 tdep = gdbarch_tdep (get_frame_arch (frame));
1592 if (tdep->syscall_next_pc != NULL)
1593 pc = tdep->syscall_next_pc (frame);
1594 else
1595 pc += 4;
1596 }
1597 break;
1598 default:
1599 pc += 4;
1600 }
1601
1602 break; /* end SPECIAL */
1603 case 1: /* REGIMM */
1604 {
1605 op = itype_rt (inst); /* branch condition */
1606 switch (op)
1607 {
1608 case 0: /* BLTZ */
1609 case 2: /* BLTZL */
1610 case 16: /* BLTZAL */
1611 case 18: /* BLTZALL */
1612 less_branch:
1613 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1614 pc += mips32_relative_offset (inst) + 4;
1615 else
1616 pc += 8; /* after the delay slot */
1617 break;
1618 case 1: /* BGEZ */
1619 case 3: /* BGEZL */
1620 case 17: /* BGEZAL */
1621 case 19: /* BGEZALL */
1622 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1623 pc += mips32_relative_offset (inst) + 4;
1624 else
1625 pc += 8; /* after the delay slot */
1626 break;
1627 case 0x1c: /* BPOSGE32 */
1628 case 0x1e: /* BPOSGE64 */
1629 pc += 4;
1630 if (itype_rs (inst) == 0)
1631 {
1632 unsigned int pos = (op & 2) ? 64 : 32;
1633 int dspctl = mips_regnum (gdbarch)->dspctl;
1634
1635 if (dspctl == -1)
1636 /* No way to handle; it'll most likely trap anyway. */
1637 break;
1638
1639 if ((get_frame_register_unsigned (frame,
1640 dspctl) & 0x7f) >= pos)
1641 pc += mips32_relative_offset (inst);
1642 else
1643 pc += 4;
1644 }
1645 break;
1646 /* All of the other instructions in the REGIMM category */
1647 default:
1648 pc += 4;
1649 }
1650 }
1651 break; /* end REGIMM */
1652 case 2: /* J */
1653 case 3: /* JAL */
1654 {
1655 unsigned long reg;
1656 reg = jtype_target (inst) << 2;
1657 /* Upper four bits get never changed... */
1658 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1659 }
1660 break;
1661 case 4: /* BEQ, BEQL */
1662 equal_branch:
1663 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1664 get_frame_register_signed (frame, itype_rt (inst)))
1665 pc += mips32_relative_offset (inst) + 4;
1666 else
1667 pc += 8;
1668 break;
1669 case 5: /* BNE, BNEL */
1670 neq_branch:
1671 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1672 get_frame_register_signed (frame, itype_rt (inst)))
1673 pc += mips32_relative_offset (inst) + 4;
1674 else
1675 pc += 8;
1676 break;
1677 case 6: /* BLEZ, BLEZL */
1678 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1679 pc += mips32_relative_offset (inst) + 4;
1680 else
1681 pc += 8;
1682 break;
1683 case 7:
1684 default:
1685 greater_branch: /* BGTZ, BGTZL */
1686 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1687 pc += mips32_relative_offset (inst) + 4;
1688 else
1689 pc += 8;
1690 break;
1691 } /* switch */
1692 } /* else */
1693 return pc;
1694 } /* mips32_next_pc */
1695
1696 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1697 INSN. */
1698
1699 static LONGEST
1700 micromips_relative_offset7 (ULONGEST insn)
1701 {
1702 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1703 }
1704
1705 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1706 INSN. */
1707
1708 static LONGEST
1709 micromips_relative_offset10 (ULONGEST insn)
1710 {
1711 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1712 }
1713
1714 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1715 INSN. */
1716
1717 static LONGEST
1718 micromips_relative_offset16 (ULONGEST insn)
1719 {
1720 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1721 }
1722
1723 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1724
1725 static int
1726 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1727 {
1728 ULONGEST insn;
1729
1730 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1731 return mips_insn_size (ISA_MICROMIPS, insn);
1732 }
1733
1734 /* Calculate the address of the next microMIPS instruction to execute
1735 after the INSN coprocessor 1 conditional branch instruction at the
1736 address PC. COUNT denotes the number of coprocessor condition bits
1737 examined by the branch. */
1738
1739 static CORE_ADDR
1740 micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1741 ULONGEST insn, CORE_ADDR pc, int count)
1742 {
1743 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1744 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1745 int tf = b5s5_op (insn >> 16) & 1;
1746 int mask = (1 << count) - 1;
1747 ULONGEST fcs;
1748 int cond;
1749
1750 if (fcsr == -1)
1751 /* No way to handle; it'll most likely trap anyway. */
1752 return pc;
1753
1754 fcs = get_frame_register_unsigned (frame, fcsr);
1755 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1756
1757 if (((cond >> cnum) & mask) != mask * !tf)
1758 pc += micromips_relative_offset16 (insn);
1759 else
1760 pc += micromips_pc_insn_size (gdbarch, pc);
1761
1762 return pc;
1763 }
1764
1765 /* Calculate the address of the next microMIPS instruction to execute
1766 after the instruction at the address PC. */
1767
1768 static CORE_ADDR
1769 micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1770 {
1771 struct gdbarch *gdbarch = get_frame_arch (frame);
1772 ULONGEST insn;
1773
1774 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1775 pc += MIPS_INSN16_SIZE;
1776 switch (mips_insn_size (ISA_MICROMIPS, insn))
1777 {
1778 /* 48-bit instructions. */
1779 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
1780 /* No branch or jump instructions in this category. */
1781 pc += 2 * MIPS_INSN16_SIZE;
1782 break;
1783
1784 /* 32-bit instructions. */
1785 case 2 * MIPS_INSN16_SIZE:
1786 insn <<= 16;
1787 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1788 pc += MIPS_INSN16_SIZE;
1789 switch (micromips_op (insn >> 16))
1790 {
1791 case 0x00: /* POOL32A: bits 000000 */
1792 if (b0s6_op (insn) == 0x3c
1793 /* POOL32Axf: bits 000000 ... 111100 */
1794 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1795 /* JALR, JALR.HB: 000000 000x111100 111100 */
1796 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1797 pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
1798 break;
1799
1800 case 0x10: /* POOL32I: bits 010000 */
1801 switch (b5s5_op (insn >> 16))
1802 {
1803 case 0x00: /* BLTZ: bits 010000 00000 */
1804 case 0x01: /* BLTZAL: bits 010000 00001 */
1805 case 0x11: /* BLTZALS: bits 010000 10001 */
1806 if (get_frame_register_signed (frame,
1807 b0s5_reg (insn >> 16)) < 0)
1808 pc += micromips_relative_offset16 (insn);
1809 else
1810 pc += micromips_pc_insn_size (gdbarch, pc);
1811 break;
1812
1813 case 0x02: /* BGEZ: bits 010000 00010 */
1814 case 0x03: /* BGEZAL: bits 010000 00011 */
1815 case 0x13: /* BGEZALS: bits 010000 10011 */
1816 if (get_frame_register_signed (frame,
1817 b0s5_reg (insn >> 16)) >= 0)
1818 pc += micromips_relative_offset16 (insn);
1819 else
1820 pc += micromips_pc_insn_size (gdbarch, pc);
1821 break;
1822
1823 case 0x04: /* BLEZ: bits 010000 00100 */
1824 if (get_frame_register_signed (frame,
1825 b0s5_reg (insn >> 16)) <= 0)
1826 pc += micromips_relative_offset16 (insn);
1827 else
1828 pc += micromips_pc_insn_size (gdbarch, pc);
1829 break;
1830
1831 case 0x05: /* BNEZC: bits 010000 00101 */
1832 if (get_frame_register_signed (frame,
1833 b0s5_reg (insn >> 16)) != 0)
1834 pc += micromips_relative_offset16 (insn);
1835 break;
1836
1837 case 0x06: /* BGTZ: bits 010000 00110 */
1838 if (get_frame_register_signed (frame,
1839 b0s5_reg (insn >> 16)) > 0)
1840 pc += micromips_relative_offset16 (insn);
1841 else
1842 pc += micromips_pc_insn_size (gdbarch, pc);
1843 break;
1844
1845 case 0x07: /* BEQZC: bits 010000 00111 */
1846 if (get_frame_register_signed (frame,
1847 b0s5_reg (insn >> 16)) == 0)
1848 pc += micromips_relative_offset16 (insn);
1849 break;
1850
1851 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1852 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1853 if (((insn >> 16) & 0x3) == 0x0)
1854 /* BC2F, BC2T: don't know how to handle these. */
1855 break;
1856 break;
1857
1858 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1859 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1860 {
1861 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1862 int dspctl = mips_regnum (gdbarch)->dspctl;
1863
1864 if (dspctl == -1)
1865 /* No way to handle; it'll most likely trap anyway. */
1866 break;
1867
1868 if ((get_frame_register_unsigned (frame,
1869 dspctl) & 0x7f) >= pos)
1870 pc += micromips_relative_offset16 (insn);
1871 else
1872 pc += micromips_pc_insn_size (gdbarch, pc);
1873 }
1874 break;
1875
1876 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1877 /* BC1ANY2F: bits 010000 11100 xxx01 */
1878 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1879 /* BC1ANY2T: bits 010000 11101 xxx01 */
1880 if (((insn >> 16) & 0x2) == 0x0)
1881 pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
1882 ((insn >> 16) & 0x1) + 1);
1883 break;
1884
1885 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1886 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1887 if (((insn >> 16) & 0x3) == 0x1)
1888 pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
1889 break;
1890 }
1891 break;
1892
1893 case 0x1d: /* JALS: bits 011101 */
1894 case 0x35: /* J: bits 110101 */
1895 case 0x3d: /* JAL: bits 111101 */
1896 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1897 break;
1898
1899 case 0x25: /* BEQ: bits 100101 */
1900 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1901 == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
1902 pc += micromips_relative_offset16 (insn);
1903 else
1904 pc += micromips_pc_insn_size (gdbarch, pc);
1905 break;
1906
1907 case 0x2d: /* BNE: bits 101101 */
1908 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1909 != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
1910 pc += micromips_relative_offset16 (insn);
1911 else
1912 pc += micromips_pc_insn_size (gdbarch, pc);
1913 break;
1914
1915 case 0x3c: /* JALX: bits 111100 */
1916 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
1917 break;
1918 }
1919 break;
1920
1921 /* 16-bit instructions. */
1922 case MIPS_INSN16_SIZE:
1923 switch (micromips_op (insn))
1924 {
1925 case 0x11: /* POOL16C: bits 010001 */
1926 if ((b5s5_op (insn) & 0x1c) == 0xc)
1927 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
1928 pc = get_frame_register_signed (frame, b0s5_reg (insn));
1929 else if (b5s5_op (insn) == 0x18)
1930 /* JRADDIUSP: bits 010001 11000 */
1931 pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
1932 break;
1933
1934 case 0x23: /* BEQZ16: bits 100011 */
1935 {
1936 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
1937
1938 if (get_frame_register_signed (frame, rs) == 0)
1939 pc += micromips_relative_offset7 (insn);
1940 else
1941 pc += micromips_pc_insn_size (gdbarch, pc);
1942 }
1943 break;
1944
1945 case 0x2b: /* BNEZ16: bits 101011 */
1946 {
1947 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
1948
1949 if (get_frame_register_signed (frame, rs) != 0)
1950 pc += micromips_relative_offset7 (insn);
1951 else
1952 pc += micromips_pc_insn_size (gdbarch, pc);
1953 }
1954 break;
1955
1956 case 0x33: /* B16: bits 110011 */
1957 pc += micromips_relative_offset10 (insn);
1958 break;
1959 }
1960 break;
1961 }
1962
1963 return pc;
1964 }
1965
1966 /* Decoding the next place to set a breakpoint is irregular for the
1967 mips 16 variant, but fortunately, there fewer instructions. We have
1968 to cope ith extensions for 16 bit instructions and a pair of actual
1969 32 bit instructions. We dont want to set a single step instruction
1970 on the extend instruction either. */
1971
1972 /* Lots of mips16 instruction formats */
1973 /* Predicting jumps requires itype,ritype,i8type
1974 and their extensions extItype,extritype,extI8type. */
1975 enum mips16_inst_fmts
1976 {
1977 itype, /* 0 immediate 5,10 */
1978 ritype, /* 1 5,3,8 */
1979 rrtype, /* 2 5,3,3,5 */
1980 rritype, /* 3 5,3,3,5 */
1981 rrrtype, /* 4 5,3,3,3,2 */
1982 rriatype, /* 5 5,3,3,1,4 */
1983 shifttype, /* 6 5,3,3,3,2 */
1984 i8type, /* 7 5,3,8 */
1985 i8movtype, /* 8 5,3,3,5 */
1986 i8mov32rtype, /* 9 5,3,5,3 */
1987 i64type, /* 10 5,3,8 */
1988 ri64type, /* 11 5,3,3,5 */
1989 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1990 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1991 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1992 extRRItype, /* 15 5,5,5,5,3,3,5 */
1993 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1994 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1995 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1996 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1997 extRi64type, /* 20 5,6,5,5,3,3,5 */
1998 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1999 };
2000 /* I am heaping all the fields of the formats into one structure and
2001 then, only the fields which are involved in instruction extension. */
2002 struct upk_mips16
2003 {
2004 CORE_ADDR offset;
2005 unsigned int regx; /* Function in i8 type. */
2006 unsigned int regy;
2007 };
2008
2009
2010 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2011 for the bits which make up the immediate extension. */
2012
2013 static CORE_ADDR
2014 extended_offset (unsigned int extension)
2015 {
2016 CORE_ADDR value;
2017
2018 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2019 value = value << 6;
2020 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2021 value = value << 5;
2022 value |= extension & 0x1f; /* Extract 4:0. */
2023
2024 return value;
2025 }
2026
2027 /* Only call this function if you know that this is an extendable
2028 instruction. It won't malfunction, but why make excess remote memory
2029 references? If the immediate operands get sign extended or something,
2030 do it after the extension is performed. */
2031 /* FIXME: Every one of these cases needs to worry about sign extension
2032 when the offset is to be used in relative addressing. */
2033
2034 static unsigned int
2035 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2036 {
2037 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2038 gdb_byte buf[8];
2039 pc &= 0xfffffffe; /* Clear the low order bit. */
2040 target_read_memory (pc, buf, 2);
2041 return extract_unsigned_integer (buf, 2, byte_order);
2042 }
2043
2044 static void
2045 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2046 unsigned int extension,
2047 unsigned int inst,
2048 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2049 {
2050 CORE_ADDR offset;
2051 int regx;
2052 int regy;
2053 switch (insn_format)
2054 {
2055 case itype:
2056 {
2057 CORE_ADDR value;
2058 if (extension)
2059 {
2060 value = extended_offset ((extension << 16) | inst);
2061 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2062 }
2063 else
2064 {
2065 value = inst & 0x7ff;
2066 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2067 }
2068 offset = value;
2069 regx = -1;
2070 regy = -1;
2071 }
2072 break;
2073 case ritype:
2074 case i8type:
2075 { /* A register identifier and an offset. */
2076 /* Most of the fields are the same as I type but the
2077 immediate value is of a different length. */
2078 CORE_ADDR value;
2079 if (extension)
2080 {
2081 value = extended_offset ((extension << 16) | inst);
2082 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2083 }
2084 else
2085 {
2086 value = inst & 0xff; /* 8 bits */
2087 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2088 }
2089 offset = value;
2090 regx = (inst >> 8) & 0x07; /* i8 funct */
2091 regy = -1;
2092 break;
2093 }
2094 case jalxtype:
2095 {
2096 unsigned long value;
2097 unsigned int nexthalf;
2098 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2099 value = value << 16;
2100 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2101 /* Low bit still set. */
2102 value |= nexthalf;
2103 offset = value;
2104 regx = -1;
2105 regy = -1;
2106 break;
2107 }
2108 default:
2109 internal_error (__FILE__, __LINE__, _("bad switch"));
2110 }
2111 upk->offset = offset;
2112 upk->regx = regx;
2113 upk->regy = regy;
2114 }
2115
2116
2117 static CORE_ADDR
2118 add_offset_16 (CORE_ADDR pc, int offset)
2119 {
2120 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
2121 }
2122
2123 static CORE_ADDR
2124 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
2125 unsigned int extension, unsigned int insn)
2126 {
2127 struct gdbarch *gdbarch = get_frame_arch (frame);
2128 int op = (insn >> 11);
2129 switch (op)
2130 {
2131 case 2: /* Branch */
2132 {
2133 struct upk_mips16 upk;
2134 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2135 pc += (upk.offset << 1) + 2;
2136 break;
2137 }
2138 case 3: /* JAL , JALX - Watch out, these are 32 bit
2139 instructions. */
2140 {
2141 struct upk_mips16 upk;
2142 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2143 pc = add_offset_16 (pc, upk.offset);
2144 if ((insn >> 10) & 0x01) /* Exchange mode */
2145 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2146 else
2147 pc |= 0x01;
2148 break;
2149 }
2150 case 4: /* beqz */
2151 {
2152 struct upk_mips16 upk;
2153 int reg;
2154 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2155 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2156 if (reg == 0)
2157 pc += (upk.offset << 1) + 2;
2158 else
2159 pc += 2;
2160 break;
2161 }
2162 case 5: /* bnez */
2163 {
2164 struct upk_mips16 upk;
2165 int reg;
2166 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2167 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2168 if (reg != 0)
2169 pc += (upk.offset << 1) + 2;
2170 else
2171 pc += 2;
2172 break;
2173 }
2174 case 12: /* I8 Formats btez btnez */
2175 {
2176 struct upk_mips16 upk;
2177 int reg;
2178 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2179 /* upk.regx contains the opcode */
2180 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
2181 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2182 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2183 /* pc = add_offset_16(pc,upk.offset) ; */
2184 pc += (upk.offset << 1) + 2;
2185 else
2186 pc += 2;
2187 break;
2188 }
2189 case 29: /* RR Formats JR, JALR, JALR-RA */
2190 {
2191 struct upk_mips16 upk;
2192 /* upk.fmt = rrtype; */
2193 op = insn & 0x1f;
2194 if (op == 0)
2195 {
2196 int reg;
2197 upk.regx = (insn >> 8) & 0x07;
2198 upk.regy = (insn >> 5) & 0x07;
2199 if ((upk.regy & 1) == 0)
2200 reg = mips_reg3_to_reg[upk.regx];
2201 else
2202 reg = 31; /* Function return instruction. */
2203 pc = get_frame_register_signed (frame, reg);
2204 }
2205 else
2206 pc += 2;
2207 break;
2208 }
2209 case 30:
2210 /* This is an instruction extension. Fetch the real instruction
2211 (which follows the extension) and decode things based on
2212 that. */
2213 {
2214 pc += 2;
2215 pc = extended_mips16_next_pc (frame, pc, insn,
2216 fetch_mips_16 (gdbarch, pc));
2217 break;
2218 }
2219 default:
2220 {
2221 pc += 2;
2222 break;
2223 }
2224 }
2225 return pc;
2226 }
2227
2228 static CORE_ADDR
2229 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
2230 {
2231 struct gdbarch *gdbarch = get_frame_arch (frame);
2232 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2233 return extended_mips16_next_pc (frame, pc, 0, insn);
2234 }
2235
2236 /* The mips_next_pc function supports single_step when the remote
2237 target monitor or stub is not developed enough to do a single_step.
2238 It works by decoding the current instruction and predicting where a
2239 branch will go. This isnt hard because all the data is available.
2240 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2241 static CORE_ADDR
2242 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
2243 {
2244 struct gdbarch *gdbarch = get_frame_arch (frame);
2245
2246 if (mips_pc_is_mips16 (gdbarch, pc))
2247 return mips16_next_pc (frame, pc);
2248 else if (mips_pc_is_micromips (gdbarch, pc))
2249 return micromips_next_pc (frame, pc);
2250 else
2251 return mips32_next_pc (frame, pc);
2252 }
2253
2254 struct mips_frame_cache
2255 {
2256 CORE_ADDR base;
2257 struct trad_frame_saved_reg *saved_regs;
2258 };
2259
2260 /* Set a register's saved stack address in temp_saved_regs. If an
2261 address has already been set for this register, do nothing; this
2262 way we will only recognize the first save of a given register in a
2263 function prologue.
2264
2265 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2266 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2267 Strictly speaking, only the second range is used as it is only second
2268 range (the ABI instead of ISA registers) that comes into play when finding
2269 saved registers in a frame. */
2270
2271 static void
2272 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2273 int regnum, CORE_ADDR offset)
2274 {
2275 if (this_cache != NULL
2276 && this_cache->saved_regs[regnum].addr == -1)
2277 {
2278 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2279 = offset;
2280 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2281 = offset;
2282 }
2283 }
2284
2285
2286 /* Fetch the immediate value from a MIPS16 instruction.
2287 If the previous instruction was an EXTEND, use it to extend
2288 the upper bits of the immediate value. This is a helper function
2289 for mips16_scan_prologue. */
2290
2291 static int
2292 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2293 unsigned short inst, /* current instruction */
2294 int nbits, /* number of bits in imm field */
2295 int scale, /* scale factor to be applied to imm */
2296 int is_signed) /* is the imm field signed? */
2297 {
2298 int offset;
2299
2300 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2301 {
2302 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2303 if (offset & 0x8000) /* check for negative extend */
2304 offset = 0 - (0x10000 - (offset & 0xffff));
2305 return offset | (inst & 0x1f);
2306 }
2307 else
2308 {
2309 int max_imm = 1 << nbits;
2310 int mask = max_imm - 1;
2311 int sign_bit = max_imm >> 1;
2312
2313 offset = inst & mask;
2314 if (is_signed && (offset & sign_bit))
2315 offset = 0 - (max_imm - offset);
2316 return offset * scale;
2317 }
2318 }
2319
2320
2321 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2322 the associated FRAME_CACHE if not null.
2323 Return the address of the first instruction past the prologue. */
2324
2325 static CORE_ADDR
2326 mips16_scan_prologue (struct gdbarch *gdbarch,
2327 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2328 struct frame_info *this_frame,
2329 struct mips_frame_cache *this_cache)
2330 {
2331 CORE_ADDR cur_pc;
2332 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2333 CORE_ADDR sp;
2334 long frame_offset = 0; /* Size of stack frame. */
2335 long frame_adjust = 0; /* Offset of FP from SP. */
2336 int frame_reg = MIPS_SP_REGNUM;
2337 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2338 unsigned inst = 0; /* current instruction */
2339 unsigned entry_inst = 0; /* the entry instruction */
2340 unsigned save_inst = 0; /* the save instruction */
2341 int reg, offset;
2342
2343 int extend_bytes = 0;
2344 int prev_extend_bytes;
2345 CORE_ADDR end_prologue_addr = 0;
2346
2347 /* Can be called when there's no process, and hence when there's no
2348 THIS_FRAME. */
2349 if (this_frame != NULL)
2350 sp = get_frame_register_signed (this_frame,
2351 gdbarch_num_regs (gdbarch)
2352 + MIPS_SP_REGNUM);
2353 else
2354 sp = 0;
2355
2356 if (limit_pc > start_pc + 200)
2357 limit_pc = start_pc + 200;
2358
2359 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2360 {
2361 /* Save the previous instruction. If it's an EXTEND, we'll extract
2362 the immediate offset extension from it in mips16_get_imm. */
2363 prev_inst = inst;
2364
2365 /* Fetch and decode the instruction. */
2366 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2367 cur_pc, NULL);
2368
2369 /* Normally we ignore extend instructions. However, if it is
2370 not followed by a valid prologue instruction, then this
2371 instruction is not part of the prologue either. We must
2372 remember in this case to adjust the end_prologue_addr back
2373 over the extend. */
2374 if ((inst & 0xf800) == 0xf000) /* extend */
2375 {
2376 extend_bytes = MIPS_INSN16_SIZE;
2377 continue;
2378 }
2379
2380 prev_extend_bytes = extend_bytes;
2381 extend_bytes = 0;
2382
2383 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2384 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2385 {
2386 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2387 if (offset < 0) /* Negative stack adjustment? */
2388 frame_offset -= offset;
2389 else
2390 /* Exit loop if a positive stack adjustment is found, which
2391 usually means that the stack cleanup code in the function
2392 epilogue is reached. */
2393 break;
2394 }
2395 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2396 {
2397 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2398 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2399 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2400 }
2401 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2402 {
2403 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2404 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2405 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2406 }
2407 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2408 {
2409 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2410 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2411 }
2412 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2413 {
2414 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2415 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2416 }
2417 else if (inst == 0x673d) /* move $s1, $sp */
2418 {
2419 frame_addr = sp;
2420 frame_reg = 17;
2421 }
2422 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2423 {
2424 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2425 frame_addr = sp + offset;
2426 frame_reg = 17;
2427 frame_adjust = offset;
2428 }
2429 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2430 {
2431 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2432 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2433 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2434 }
2435 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2436 {
2437 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2438 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2439 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2440 }
2441 else if ((inst & 0xf81f) == 0xe809
2442 && (inst & 0x700) != 0x700) /* entry */
2443 entry_inst = inst; /* Save for later processing. */
2444 else if ((inst & 0xff80) == 0x6480) /* save */
2445 {
2446 save_inst = inst; /* Save for later processing. */
2447 if (prev_extend_bytes) /* extend */
2448 save_inst |= prev_inst << 16;
2449 }
2450 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2451 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2452 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2453 {
2454 /* This instruction is part of the prologue, but we don't
2455 need to do anything special to handle it. */
2456 }
2457 else
2458 {
2459 /* This instruction is not an instruction typically found
2460 in a prologue, so we must have reached the end of the
2461 prologue. */
2462 if (end_prologue_addr == 0)
2463 end_prologue_addr = cur_pc - prev_extend_bytes;
2464 }
2465 }
2466
2467 /* The entry instruction is typically the first instruction in a function,
2468 and it stores registers at offsets relative to the value of the old SP
2469 (before the prologue). But the value of the sp parameter to this
2470 function is the new SP (after the prologue has been executed). So we
2471 can't calculate those offsets until we've seen the entire prologue,
2472 and can calculate what the old SP must have been. */
2473 if (entry_inst != 0)
2474 {
2475 int areg_count = (entry_inst >> 8) & 7;
2476 int sreg_count = (entry_inst >> 6) & 3;
2477
2478 /* The entry instruction always subtracts 32 from the SP. */
2479 frame_offset += 32;
2480
2481 /* Now we can calculate what the SP must have been at the
2482 start of the function prologue. */
2483 sp += frame_offset;
2484
2485 /* Check if a0-a3 were saved in the caller's argument save area. */
2486 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2487 {
2488 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2489 offset += mips_abi_regsize (gdbarch);
2490 }
2491
2492 /* Check if the ra register was pushed on the stack. */
2493 offset = -4;
2494 if (entry_inst & 0x20)
2495 {
2496 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2497 offset -= mips_abi_regsize (gdbarch);
2498 }
2499
2500 /* Check if the s0 and s1 registers were pushed on the stack. */
2501 for (reg = 16; reg < sreg_count + 16; reg++)
2502 {
2503 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2504 offset -= mips_abi_regsize (gdbarch);
2505 }
2506 }
2507
2508 /* The SAVE instruction is similar to ENTRY, except that defined by the
2509 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2510 size of the frame is specified as an immediate field of instruction
2511 and an extended variation exists which lets additional registers and
2512 frame space to be specified. The instruction always treats registers
2513 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2514 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2515 {
2516 static int args_table[16] = {
2517 0, 0, 0, 0, 1, 1, 1, 1,
2518 2, 2, 2, 0, 3, 3, 4, -1,
2519 };
2520 static int astatic_table[16] = {
2521 0, 1, 2, 3, 0, 1, 2, 3,
2522 0, 1, 2, 4, 0, 1, 0, -1,
2523 };
2524 int aregs = (save_inst >> 16) & 0xf;
2525 int xsregs = (save_inst >> 24) & 0x7;
2526 int args = args_table[aregs];
2527 int astatic = astatic_table[aregs];
2528 long frame_size;
2529
2530 if (args < 0)
2531 {
2532 warning (_("Invalid number of argument registers encoded in SAVE."));
2533 args = 0;
2534 }
2535 if (astatic < 0)
2536 {
2537 warning (_("Invalid number of static registers encoded in SAVE."));
2538 astatic = 0;
2539 }
2540
2541 /* For standard SAVE the frame size of 0 means 128. */
2542 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2543 if (frame_size == 0 && (save_inst >> 16) == 0)
2544 frame_size = 16;
2545 frame_size *= 8;
2546 frame_offset += frame_size;
2547
2548 /* Now we can calculate what the SP must have been at the
2549 start of the function prologue. */
2550 sp += frame_offset;
2551
2552 /* Check if A0-A3 were saved in the caller's argument save area. */
2553 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2554 {
2555 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2556 offset += mips_abi_regsize (gdbarch);
2557 }
2558
2559 offset = -4;
2560
2561 /* Check if the RA register was pushed on the stack. */
2562 if (save_inst & 0x40)
2563 {
2564 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2565 offset -= mips_abi_regsize (gdbarch);
2566 }
2567
2568 /* Check if the S8 register was pushed on the stack. */
2569 if (xsregs > 6)
2570 {
2571 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2572 offset -= mips_abi_regsize (gdbarch);
2573 xsregs--;
2574 }
2575 /* Check if S2-S7 were pushed on the stack. */
2576 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2577 {
2578 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2579 offset -= mips_abi_regsize (gdbarch);
2580 }
2581
2582 /* Check if the S1 register was pushed on the stack. */
2583 if (save_inst & 0x10)
2584 {
2585 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2586 offset -= mips_abi_regsize (gdbarch);
2587 }
2588 /* Check if the S0 register was pushed on the stack. */
2589 if (save_inst & 0x20)
2590 {
2591 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2592 offset -= mips_abi_regsize (gdbarch);
2593 }
2594
2595 /* Check if A0-A3 were pushed on the stack. */
2596 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2597 {
2598 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2599 offset -= mips_abi_regsize (gdbarch);
2600 }
2601 }
2602
2603 if (this_cache != NULL)
2604 {
2605 this_cache->base =
2606 (get_frame_register_signed (this_frame,
2607 gdbarch_num_regs (gdbarch) + frame_reg)
2608 + frame_offset - frame_adjust);
2609 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2610 be able to get rid of the assignment below, evetually. But it's
2611 still needed for now. */
2612 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2613 + mips_regnum (gdbarch)->pc]
2614 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2615 }
2616
2617 /* If we didn't reach the end of the prologue when scanning the function
2618 instructions, then set end_prologue_addr to the address of the
2619 instruction immediately after the last one we scanned. */
2620 if (end_prologue_addr == 0)
2621 end_prologue_addr = cur_pc;
2622
2623 return end_prologue_addr;
2624 }
2625
2626 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2627 Procedures that use the 32-bit instruction set are handled by the
2628 mips_insn32 unwinder. */
2629
2630 static struct mips_frame_cache *
2631 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2632 {
2633 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2634 struct mips_frame_cache *cache;
2635
2636 if ((*this_cache) != NULL)
2637 return (*this_cache);
2638 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2639 (*this_cache) = cache;
2640 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2641
2642 /* Analyze the function prologue. */
2643 {
2644 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2645 CORE_ADDR start_addr;
2646
2647 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2648 if (start_addr == 0)
2649 start_addr = heuristic_proc_start (gdbarch, pc);
2650 /* We can't analyze the prologue if we couldn't find the begining
2651 of the function. */
2652 if (start_addr == 0)
2653 return cache;
2654
2655 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
2656 }
2657
2658 /* gdbarch_sp_regnum contains the value and not the address. */
2659 trad_frame_set_value (cache->saved_regs,
2660 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2661 cache->base);
2662
2663 return (*this_cache);
2664 }
2665
2666 static void
2667 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2668 struct frame_id *this_id)
2669 {
2670 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2671 this_cache);
2672 /* This marks the outermost frame. */
2673 if (info->base == 0)
2674 return;
2675 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2676 }
2677
2678 static struct value *
2679 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2680 void **this_cache, int regnum)
2681 {
2682 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2683 this_cache);
2684 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2685 }
2686
2687 static int
2688 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2689 struct frame_info *this_frame, void **this_cache)
2690 {
2691 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2692 CORE_ADDR pc = get_frame_pc (this_frame);
2693 if (mips_pc_is_mips16 (gdbarch, pc))
2694 return 1;
2695 return 0;
2696 }
2697
2698 static const struct frame_unwind mips_insn16_frame_unwind =
2699 {
2700 NORMAL_FRAME,
2701 default_frame_unwind_stop_reason,
2702 mips_insn16_frame_this_id,
2703 mips_insn16_frame_prev_register,
2704 NULL,
2705 mips_insn16_frame_sniffer
2706 };
2707
2708 static CORE_ADDR
2709 mips_insn16_frame_base_address (struct frame_info *this_frame,
2710 void **this_cache)
2711 {
2712 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2713 this_cache);
2714 return info->base;
2715 }
2716
2717 static const struct frame_base mips_insn16_frame_base =
2718 {
2719 &mips_insn16_frame_unwind,
2720 mips_insn16_frame_base_address,
2721 mips_insn16_frame_base_address,
2722 mips_insn16_frame_base_address
2723 };
2724
2725 static const struct frame_base *
2726 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2727 {
2728 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2729 CORE_ADDR pc = get_frame_pc (this_frame);
2730 if (mips_pc_is_mips16 (gdbarch, pc))
2731 return &mips_insn16_frame_base;
2732 else
2733 return NULL;
2734 }
2735
2736 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2737 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2738 interpreted directly, and then multiplied by 4. */
2739
2740 static int
2741 micromips_decode_imm9 (int imm)
2742 {
2743 imm = (imm ^ 0x100) - 0x100;
2744 if (imm > -3 && imm < 2)
2745 imm ^= 0x100;
2746 return imm << 2;
2747 }
2748
2749 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2750 the address of the first instruction past the prologue. */
2751
2752 static CORE_ADDR
2753 micromips_scan_prologue (struct gdbarch *gdbarch,
2754 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2755 struct frame_info *this_frame,
2756 struct mips_frame_cache *this_cache)
2757 {
2758 CORE_ADDR end_prologue_addr = 0;
2759 int prev_non_prologue_insn = 0;
2760 int frame_reg = MIPS_SP_REGNUM;
2761 int this_non_prologue_insn;
2762 int non_prologue_insns = 0;
2763 long frame_offset = 0; /* Size of stack frame. */
2764 long frame_adjust = 0; /* Offset of FP from SP. */
2765 CORE_ADDR frame_addr = 0; /* Value of $30, used as frame pointer. */
2766 CORE_ADDR prev_pc;
2767 CORE_ADDR cur_pc;
2768 ULONGEST insn; /* current instruction */
2769 CORE_ADDR sp;
2770 long offset;
2771 long sp_adj;
2772 long v1_off = 0; /* The assumption is LUI will replace it. */
2773 int reglist;
2774 int breg;
2775 int dreg;
2776 int sreg;
2777 int treg;
2778 int loc;
2779 int op;
2780 int s;
2781 int i;
2782
2783 /* Can be called when there's no process, and hence when there's no
2784 THIS_FRAME. */
2785 if (this_frame != NULL)
2786 sp = get_frame_register_signed (this_frame,
2787 gdbarch_num_regs (gdbarch)
2788 + MIPS_SP_REGNUM);
2789 else
2790 sp = 0;
2791
2792 if (limit_pc > start_pc + 200)
2793 limit_pc = start_pc + 200;
2794 prev_pc = start_pc;
2795
2796 /* Permit at most one non-prologue non-control-transfer instruction
2797 in the middle which may have been reordered by the compiler for
2798 optimisation. */
2799 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2800 {
2801 this_non_prologue_insn = 0;
2802 sp_adj = 0;
2803 loc = 0;
2804 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2805 loc += MIPS_INSN16_SIZE;
2806 switch (mips_insn_size (ISA_MICROMIPS, insn))
2807 {
2808 /* 48-bit instructions. */
2809 case 3 * MIPS_INSN16_SIZE:
2810 /* No prologue instructions in this category. */
2811 this_non_prologue_insn = 1;
2812 loc += 2 * MIPS_INSN16_SIZE;
2813 break;
2814
2815 /* 32-bit instructions. */
2816 case 2 * MIPS_INSN16_SIZE:
2817 insn <<= 16;
2818 insn |= mips_fetch_instruction (gdbarch,
2819 ISA_MICROMIPS, cur_pc + loc, NULL);
2820 loc += MIPS_INSN16_SIZE;
2821 switch (micromips_op (insn >> 16))
2822 {
2823 /* Record $sp/$fp adjustment. */
2824 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2825 case 0x0: /* POOL32A: bits 000000 */
2826 case 0x16: /* POOL32S: bits 010110 */
2827 op = b0s11_op (insn);
2828 sreg = b0s5_reg (insn >> 16);
2829 treg = b5s5_reg (insn >> 16);
2830 dreg = b11s5_reg (insn);
2831 if (op == 0x1d0
2832 /* SUBU: bits 000000 00111010000 */
2833 /* DSUBU: bits 010110 00111010000 */
2834 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
2835 && treg == 3)
2836 /* (D)SUBU $sp, $v1 */
2837 sp_adj = v1_off;
2838 else if (op != 0x150
2839 /* ADDU: bits 000000 00101010000 */
2840 /* DADDU: bits 010110 00101010000 */
2841 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
2842 this_non_prologue_insn = 1;
2843 break;
2844
2845 case 0x8: /* POOL32B: bits 001000 */
2846 op = b12s4_op (insn);
2847 breg = b0s5_reg (insn >> 16);
2848 reglist = sreg = b5s5_reg (insn >> 16);
2849 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
2850 if ((op == 0x9 || op == 0xc)
2851 /* SWP: bits 001000 1001 */
2852 /* SDP: bits 001000 1100 */
2853 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
2854 /* S[DW]P reg,offset($sp) */
2855 {
2856 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
2857 set_reg_offset (gdbarch, this_cache,
2858 sreg, sp + offset);
2859 set_reg_offset (gdbarch, this_cache,
2860 sreg + 1, sp + offset + s);
2861 }
2862 else if ((op == 0xd || op == 0xf)
2863 /* SWM: bits 001000 1101 */
2864 /* SDM: bits 001000 1111 */
2865 && breg == MIPS_SP_REGNUM
2866 /* SWM reglist,offset($sp) */
2867 && ((reglist >= 1 && reglist <= 9)
2868 || (reglist >= 16 && reglist <= 25)))
2869 {
2870 int sreglist = min(reglist & 0xf, 8);
2871
2872 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
2873 for (i = 0; i < sreglist; i++)
2874 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
2875 if ((reglist & 0xf) > 8)
2876 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
2877 if ((reglist & 0x10) == 0x10)
2878 set_reg_offset (gdbarch, this_cache,
2879 MIPS_RA_REGNUM, sp + s * i++);
2880 }
2881 else
2882 this_non_prologue_insn = 1;
2883 break;
2884
2885 /* Record $sp/$fp adjustment. */
2886 /* Discard (D)ADDIU $gp used for PIC code. */
2887 case 0xc: /* ADDIU: bits 001100 */
2888 case 0x17: /* DADDIU: bits 010111 */
2889 sreg = b0s5_reg (insn >> 16);
2890 dreg = b5s5_reg (insn >> 16);
2891 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
2892 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
2893 /* (D)ADDIU $sp, imm */
2894 sp_adj = offset;
2895 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
2896 /* (D)ADDIU $fp, $sp, imm */
2897 {
2898 frame_addr = sp + offset;
2899 frame_adjust = offset;
2900 frame_reg = 30;
2901 }
2902 else if (sreg != 28 || dreg != 28)
2903 /* (D)ADDIU $gp, imm */
2904 this_non_prologue_insn = 1;
2905 break;
2906
2907 /* LUI $v1 is used for larger $sp adjustments. */
2908 /* Discard LUI $gp is used for PIC code. */
2909 case 0x10: /* POOL32I: bits 010000 */
2910 if (b5s5_op (insn >> 16) == 0xd
2911 /* LUI: bits 010000 001101 */
2912 && b0s5_reg (insn >> 16) == 3)
2913 /* LUI $v1, imm */
2914 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
2915 else if (b5s5_op (insn >> 16) != 0xd
2916 /* LUI: bits 010000 001101 */
2917 || b0s5_reg (insn >> 16) != 28)
2918 /* LUI $gp, imm */
2919 this_non_prologue_insn = 1;
2920 break;
2921
2922 /* ORI $v1 is used for larger $sp adjustments. */
2923 case 0x14: /* ORI: bits 010100 */
2924 sreg = b0s5_reg (insn >> 16);
2925 dreg = b5s5_reg (insn >> 16);
2926 if (sreg == 3 && dreg == 3)
2927 /* ORI $v1, imm */
2928 v1_off |= b0s16_imm (insn);
2929 else
2930 this_non_prologue_insn = 1;
2931 break;
2932
2933 case 0x26: /* SWC1: bits 100110 */
2934 case 0x2e: /* SDC1: bits 101110 */
2935 breg = b0s5_reg (insn >> 16);
2936 if (breg != MIPS_SP_REGNUM)
2937 /* S[DW]C1 reg,offset($sp) */
2938 this_non_prologue_insn = 1;
2939 break;
2940
2941 case 0x36: /* SD: bits 110110 */
2942 case 0x3e: /* SW: bits 111110 */
2943 breg = b0s5_reg (insn >> 16);
2944 sreg = b5s5_reg (insn >> 16);
2945 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
2946 if (breg == MIPS_SP_REGNUM)
2947 /* S[DW] reg,offset($sp) */
2948 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
2949 else
2950 this_non_prologue_insn = 1;
2951 break;
2952
2953 default:
2954 this_non_prologue_insn = 1;
2955 break;
2956 }
2957 break;
2958
2959 /* 16-bit instructions. */
2960 case MIPS_INSN16_SIZE:
2961 switch (micromips_op (insn))
2962 {
2963 case 0x3: /* MOVE: bits 000011 */
2964 sreg = b0s5_reg (insn);
2965 dreg = b5s5_reg (insn);
2966 if (sreg == MIPS_SP_REGNUM && dreg == 30)
2967 /* MOVE $fp, $sp */
2968 {
2969 frame_addr = sp;
2970 frame_reg = 30;
2971 }
2972 else if ((sreg & 0x1c) != 0x4)
2973 /* MOVE reg, $a0-$a3 */
2974 this_non_prologue_insn = 1;
2975 break;
2976
2977 case 0x11: /* POOL16C: bits 010001 */
2978 if (b6s4_op (insn) == 0x5)
2979 /* SWM: bits 010001 0101 */
2980 {
2981 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
2982 reglist = b4s2_regl (insn);
2983 for (i = 0; i <= reglist; i++)
2984 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
2985 set_reg_offset (gdbarch, this_cache,
2986 MIPS_RA_REGNUM, sp + 4 * i++);
2987 }
2988 else
2989 this_non_prologue_insn = 1;
2990 break;
2991
2992 case 0x13: /* POOL16D: bits 010011 */
2993 if ((insn & 0x1) == 0x1)
2994 /* ADDIUSP: bits 010011 1 */
2995 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
2996 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
2997 /* ADDIUS5: bits 010011 0 */
2998 /* ADDIUS5 $sp, imm */
2999 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3000 else
3001 this_non_prologue_insn = 1;
3002 break;
3003
3004 case 0x32: /* SWSP: bits 110010 */
3005 offset = b0s5_imm (insn) << 2;
3006 sreg = b5s5_reg (insn);
3007 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3008 break;
3009
3010 default:
3011 this_non_prologue_insn = 1;
3012 break;
3013 }
3014 break;
3015 }
3016 if (sp_adj < 0)
3017 frame_offset -= sp_adj;
3018
3019 non_prologue_insns += this_non_prologue_insn;
3020 /* Enough non-prologue insns seen or positive stack adjustment? */
3021 if (end_prologue_addr == 0 && (non_prologue_insns > 1 || sp_adj > 0))
3022 {
3023 end_prologue_addr = prev_non_prologue_insn ? prev_pc : cur_pc;
3024 break;
3025 }
3026 prev_non_prologue_insn = this_non_prologue_insn;
3027 prev_pc = cur_pc;
3028 }
3029
3030 if (this_cache != NULL)
3031 {
3032 this_cache->base =
3033 (get_frame_register_signed (this_frame,
3034 gdbarch_num_regs (gdbarch) + frame_reg)
3035 + frame_offset - frame_adjust);
3036 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3037 be able to get rid of the assignment below, evetually. But it's
3038 still needed for now. */
3039 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3040 + mips_regnum (gdbarch)->pc]
3041 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3042 }
3043
3044 /* If we didn't reach the end of the prologue when scanning the function
3045 instructions, then set end_prologue_addr to the address of the
3046 instruction immediately after the last one we scanned. Unless the
3047 last one looked like a non-prologue instruction (and we looked ahead),
3048 in which case use its address instead. */
3049 if (end_prologue_addr == 0)
3050 end_prologue_addr = prev_non_prologue_insn ? prev_pc : cur_pc;
3051
3052 return end_prologue_addr;
3053 }
3054
3055 /* Heuristic unwinder for procedures using microMIPS instructions.
3056 Procedures that use the 32-bit instruction set are handled by the
3057 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3058
3059 static struct mips_frame_cache *
3060 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3061 {
3062 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3063 struct mips_frame_cache *cache;
3064
3065 if ((*this_cache) != NULL)
3066 return (*this_cache);
3067
3068 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3069 (*this_cache) = cache;
3070 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3071
3072 /* Analyze the function prologue. */
3073 {
3074 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3075 CORE_ADDR start_addr;
3076
3077 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3078 if (start_addr == 0)
3079 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3080 /* We can't analyze the prologue if we couldn't find the begining
3081 of the function. */
3082 if (start_addr == 0)
3083 return cache;
3084
3085 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
3086 }
3087
3088 /* gdbarch_sp_regnum contains the value and not the address. */
3089 trad_frame_set_value (cache->saved_regs,
3090 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3091 cache->base);
3092
3093 return (*this_cache);
3094 }
3095
3096 static void
3097 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3098 struct frame_id *this_id)
3099 {
3100 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3101 this_cache);
3102 /* This marks the outermost frame. */
3103 if (info->base == 0)
3104 return;
3105 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3106 }
3107
3108 static struct value *
3109 mips_micro_frame_prev_register (struct frame_info *this_frame,
3110 void **this_cache, int regnum)
3111 {
3112 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3113 this_cache);
3114 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3115 }
3116
3117 static int
3118 mips_micro_frame_sniffer (const struct frame_unwind *self,
3119 struct frame_info *this_frame, void **this_cache)
3120 {
3121 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3122 CORE_ADDR pc = get_frame_pc (this_frame);
3123
3124 if (mips_pc_is_micromips (gdbarch, pc))
3125 return 1;
3126 return 0;
3127 }
3128
3129 static const struct frame_unwind mips_micro_frame_unwind =
3130 {
3131 NORMAL_FRAME,
3132 default_frame_unwind_stop_reason,
3133 mips_micro_frame_this_id,
3134 mips_micro_frame_prev_register,
3135 NULL,
3136 mips_micro_frame_sniffer
3137 };
3138
3139 static CORE_ADDR
3140 mips_micro_frame_base_address (struct frame_info *this_frame,
3141 void **this_cache)
3142 {
3143 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3144 this_cache);
3145 return info->base;
3146 }
3147
3148 static const struct frame_base mips_micro_frame_base =
3149 {
3150 &mips_micro_frame_unwind,
3151 mips_micro_frame_base_address,
3152 mips_micro_frame_base_address,
3153 mips_micro_frame_base_address
3154 };
3155
3156 static const struct frame_base *
3157 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3158 {
3159 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3160 CORE_ADDR pc = get_frame_pc (this_frame);
3161
3162 if (mips_pc_is_micromips (gdbarch, pc))
3163 return &mips_micro_frame_base;
3164 else
3165 return NULL;
3166 }
3167
3168 /* Mark all the registers as unset in the saved_regs array
3169 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3170
3171 static void
3172 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3173 {
3174 if (this_cache == NULL || this_cache->saved_regs == NULL)
3175 return;
3176
3177 {
3178 const int num_regs = gdbarch_num_regs (gdbarch);
3179 int i;
3180
3181 for (i = 0; i < num_regs; i++)
3182 {
3183 this_cache->saved_regs[i].addr = -1;
3184 }
3185 }
3186 }
3187
3188 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3189 the associated FRAME_CACHE if not null.
3190 Return the address of the first instruction past the prologue. */
3191
3192 static CORE_ADDR
3193 mips32_scan_prologue (struct gdbarch *gdbarch,
3194 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3195 struct frame_info *this_frame,
3196 struct mips_frame_cache *this_cache)
3197 {
3198 CORE_ADDR cur_pc;
3199 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3200 frame-pointer. */
3201 CORE_ADDR sp;
3202 long frame_offset;
3203 int frame_reg = MIPS_SP_REGNUM;
3204
3205 CORE_ADDR end_prologue_addr = 0;
3206 int seen_sp_adjust = 0;
3207 int load_immediate_bytes = 0;
3208 int in_delay_slot = 0;
3209 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3210
3211 /* Can be called when there's no process, and hence when there's no
3212 THIS_FRAME. */
3213 if (this_frame != NULL)
3214 sp = get_frame_register_signed (this_frame,
3215 gdbarch_num_regs (gdbarch)
3216 + MIPS_SP_REGNUM);
3217 else
3218 sp = 0;
3219
3220 if (limit_pc > start_pc + 200)
3221 limit_pc = start_pc + 200;
3222
3223 restart:
3224
3225 frame_offset = 0;
3226 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3227 {
3228 unsigned long inst, high_word, low_word;
3229 int reg;
3230
3231 /* Fetch the instruction. */
3232 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3233 cur_pc, NULL);
3234
3235 /* Save some code by pre-extracting some useful fields. */
3236 high_word = (inst >> 16) & 0xffff;
3237 low_word = inst & 0xffff;
3238 reg = high_word & 0x1f;
3239
3240 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3241 || high_word == 0x23bd /* addi $sp,$sp,-i */
3242 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3243 {
3244 if (low_word & 0x8000) /* Negative stack adjustment? */
3245 frame_offset += 0x10000 - low_word;
3246 else
3247 /* Exit loop if a positive stack adjustment is found, which
3248 usually means that the stack cleanup code in the function
3249 epilogue is reached. */
3250 break;
3251 seen_sp_adjust = 1;
3252 }
3253 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3254 && !regsize_is_64_bits)
3255 {
3256 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
3257 }
3258 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3259 && regsize_is_64_bits)
3260 {
3261 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3262 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
3263 }
3264 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3265 {
3266 /* Old gcc frame, r30 is virtual frame pointer. */
3267 if ((long) low_word != frame_offset)
3268 frame_addr = sp + low_word;
3269 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3270 {
3271 unsigned alloca_adjust;
3272
3273 frame_reg = 30;
3274 frame_addr = get_frame_register_signed
3275 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3276 frame_offset = 0;
3277
3278 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
3279 if (alloca_adjust > 0)
3280 {
3281 /* FP > SP + frame_size. This may be because of
3282 an alloca or somethings similar. Fix sp to
3283 "pre-alloca" value, and try again. */
3284 sp += alloca_adjust;
3285 /* Need to reset the status of all registers. Otherwise,
3286 we will hit a guard that prevents the new address
3287 for each register to be recomputed during the second
3288 pass. */
3289 reset_saved_regs (gdbarch, this_cache);
3290 goto restart;
3291 }
3292 }
3293 }
3294 /* move $30,$sp. With different versions of gas this will be either
3295 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3296 Accept any one of these. */
3297 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3298 {
3299 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3300 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3301 {
3302 unsigned alloca_adjust;
3303
3304 frame_reg = 30;
3305 frame_addr = get_frame_register_signed
3306 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3307
3308 alloca_adjust = (unsigned) (frame_addr - sp);
3309 if (alloca_adjust > 0)
3310 {
3311 /* FP > SP + frame_size. This may be because of
3312 an alloca or somethings similar. Fix sp to
3313 "pre-alloca" value, and try again. */
3314 sp = frame_addr;
3315 /* Need to reset the status of all registers. Otherwise,
3316 we will hit a guard that prevents the new address
3317 for each register to be recomputed during the second
3318 pass. */
3319 reset_saved_regs (gdbarch, this_cache);
3320 goto restart;
3321 }
3322 }
3323 }
3324 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3325 && !regsize_is_64_bits)
3326 {
3327 set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
3328 }
3329 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3330 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3331 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3332 || high_word == 0x3c1c /* lui $gp,n */
3333 || high_word == 0x279c /* addiu $gp,$gp,n */
3334 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3335 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3336 )
3337 {
3338 /* These instructions are part of the prologue, but we don't
3339 need to do anything special to handle them. */
3340 }
3341 /* The instructions below load $at or $t0 with an immediate
3342 value in preparation for a stack adjustment via
3343 subu $sp,$sp,[$at,$t0]. These instructions could also
3344 initialize a local variable, so we accept them only before
3345 a stack adjustment instruction was seen. */
3346 else if (!seen_sp_adjust
3347 && (high_word == 0x3c01 /* lui $at,n */
3348 || high_word == 0x3c08 /* lui $t0,n */
3349 || high_word == 0x3421 /* ori $at,$at,n */
3350 || high_word == 0x3508 /* ori $t0,$t0,n */
3351 || high_word == 0x3401 /* ori $at,$zero,n */
3352 || high_word == 0x3408 /* ori $t0,$zero,n */
3353 ))
3354 {
3355 if (end_prologue_addr == 0)
3356 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3357 }
3358 else
3359 {
3360 /* This instruction is not an instruction typically found
3361 in a prologue, so we must have reached the end of the
3362 prologue. */
3363 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
3364 loop now? Why would we need to continue scanning the function
3365 instructions? */
3366 if (end_prologue_addr == 0)
3367 end_prologue_addr = cur_pc;
3368
3369 /* Check for branches and jumps. For now, only jump to
3370 register are caught (i.e. returns). */
3371 if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
3372 in_delay_slot = 1;
3373 }
3374
3375 /* If the previous instruction was a jump, we must have reached
3376 the end of the prologue by now. Stop scanning so that we do
3377 not go past the function return. */
3378 if (in_delay_slot)
3379 break;
3380 }
3381
3382 if (this_cache != NULL)
3383 {
3384 this_cache->base =
3385 (get_frame_register_signed (this_frame,
3386 gdbarch_num_regs (gdbarch) + frame_reg)
3387 + frame_offset);
3388 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3389 this assignment below, eventually. But it's still needed
3390 for now. */
3391 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3392 + mips_regnum (gdbarch)->pc]
3393 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3394 + MIPS_RA_REGNUM];
3395 }
3396
3397 /* If we didn't reach the end of the prologue when scanning the function
3398 instructions, then set end_prologue_addr to the address of the
3399 instruction immediately after the last one we scanned. */
3400 /* brobecker/2004-10-10: I don't think this would ever happen, but
3401 we may as well be careful and do our best if we have a null
3402 end_prologue_addr. */
3403 if (end_prologue_addr == 0)
3404 end_prologue_addr = cur_pc;
3405
3406 /* In a frameless function, we might have incorrectly
3407 skipped some load immediate instructions. Undo the skipping
3408 if the load immediate was not followed by a stack adjustment. */
3409 if (load_immediate_bytes && !seen_sp_adjust)
3410 end_prologue_addr -= load_immediate_bytes;
3411
3412 return end_prologue_addr;
3413 }
3414
3415 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3416 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3417 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3418 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3419
3420 static struct mips_frame_cache *
3421 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3422 {
3423 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3424 struct mips_frame_cache *cache;
3425
3426 if ((*this_cache) != NULL)
3427 return (*this_cache);
3428
3429 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3430 (*this_cache) = cache;
3431 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3432
3433 /* Analyze the function prologue. */
3434 {
3435 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3436 CORE_ADDR start_addr;
3437
3438 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3439 if (start_addr == 0)
3440 start_addr = heuristic_proc_start (gdbarch, pc);
3441 /* We can't analyze the prologue if we couldn't find the begining
3442 of the function. */
3443 if (start_addr == 0)
3444 return cache;
3445
3446 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
3447 }
3448
3449 /* gdbarch_sp_regnum contains the value and not the address. */
3450 trad_frame_set_value (cache->saved_regs,
3451 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3452 cache->base);
3453
3454 return (*this_cache);
3455 }
3456
3457 static void
3458 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3459 struct frame_id *this_id)
3460 {
3461 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3462 this_cache);
3463 /* This marks the outermost frame. */
3464 if (info->base == 0)
3465 return;
3466 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3467 }
3468
3469 static struct value *
3470 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3471 void **this_cache, int regnum)
3472 {
3473 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3474 this_cache);
3475 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3476 }
3477
3478 static int
3479 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3480 struct frame_info *this_frame, void **this_cache)
3481 {
3482 CORE_ADDR pc = get_frame_pc (this_frame);
3483 if (mips_pc_is_mips (pc))
3484 return 1;
3485 return 0;
3486 }
3487
3488 static const struct frame_unwind mips_insn32_frame_unwind =
3489 {
3490 NORMAL_FRAME,
3491 default_frame_unwind_stop_reason,
3492 mips_insn32_frame_this_id,
3493 mips_insn32_frame_prev_register,
3494 NULL,
3495 mips_insn32_frame_sniffer
3496 };
3497
3498 static CORE_ADDR
3499 mips_insn32_frame_base_address (struct frame_info *this_frame,
3500 void **this_cache)
3501 {
3502 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3503 this_cache);
3504 return info->base;
3505 }
3506
3507 static const struct frame_base mips_insn32_frame_base =
3508 {
3509 &mips_insn32_frame_unwind,
3510 mips_insn32_frame_base_address,
3511 mips_insn32_frame_base_address,
3512 mips_insn32_frame_base_address
3513 };
3514
3515 static const struct frame_base *
3516 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3517 {
3518 CORE_ADDR pc = get_frame_pc (this_frame);
3519 if (mips_pc_is_mips (pc))
3520 return &mips_insn32_frame_base;
3521 else
3522 return NULL;
3523 }
3524
3525 static struct trad_frame_cache *
3526 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3527 {
3528 CORE_ADDR pc;
3529 CORE_ADDR start_addr;
3530 CORE_ADDR stack_addr;
3531 struct trad_frame_cache *this_trad_cache;
3532 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3533 int num_regs = gdbarch_num_regs (gdbarch);
3534
3535 if ((*this_cache) != NULL)
3536 return (*this_cache);
3537 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3538 (*this_cache) = this_trad_cache;
3539
3540 /* The return address is in the link register. */
3541 trad_frame_set_reg_realreg (this_trad_cache,
3542 gdbarch_pc_regnum (gdbarch),
3543 num_regs + MIPS_RA_REGNUM);
3544
3545 /* Frame ID, since it's a frameless / stackless function, no stack
3546 space is allocated and SP on entry is the current SP. */
3547 pc = get_frame_pc (this_frame);
3548 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3549 stack_addr = get_frame_register_signed (this_frame,
3550 num_regs + MIPS_SP_REGNUM);
3551 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3552
3553 /* Assume that the frame's base is the same as the
3554 stack-pointer. */
3555 trad_frame_set_this_base (this_trad_cache, stack_addr);
3556
3557 return this_trad_cache;
3558 }
3559
3560 static void
3561 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3562 struct frame_id *this_id)
3563 {
3564 struct trad_frame_cache *this_trad_cache
3565 = mips_stub_frame_cache (this_frame, this_cache);
3566 trad_frame_get_id (this_trad_cache, this_id);
3567 }
3568
3569 static struct value *
3570 mips_stub_frame_prev_register (struct frame_info *this_frame,
3571 void **this_cache, int regnum)
3572 {
3573 struct trad_frame_cache *this_trad_cache
3574 = mips_stub_frame_cache (this_frame, this_cache);
3575 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3576 }
3577
3578 static int
3579 mips_stub_frame_sniffer (const struct frame_unwind *self,
3580 struct frame_info *this_frame, void **this_cache)
3581 {
3582 gdb_byte dummy[4];
3583 struct obj_section *s;
3584 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3585 struct bound_minimal_symbol msym;
3586
3587 /* Use the stub unwinder for unreadable code. */
3588 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3589 return 1;
3590
3591 if (in_plt_section (pc, NULL))
3592 return 1;
3593
3594 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
3595 s = find_pc_section (pc);
3596
3597 if (s != NULL
3598 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
3599 ".MIPS.stubs") == 0)
3600 return 1;
3601
3602 /* Calling a PIC function from a non-PIC function passes through a
3603 stub. The stub for foo is named ".pic.foo". */
3604 msym = lookup_minimal_symbol_by_pc (pc);
3605 if (msym.minsym != NULL
3606 && SYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3607 && strncmp (SYMBOL_LINKAGE_NAME (msym.minsym), ".pic.", 5) == 0)
3608 return 1;
3609
3610 return 0;
3611 }
3612
3613 static const struct frame_unwind mips_stub_frame_unwind =
3614 {
3615 NORMAL_FRAME,
3616 default_frame_unwind_stop_reason,
3617 mips_stub_frame_this_id,
3618 mips_stub_frame_prev_register,
3619 NULL,
3620 mips_stub_frame_sniffer
3621 };
3622
3623 static CORE_ADDR
3624 mips_stub_frame_base_address (struct frame_info *this_frame,
3625 void **this_cache)
3626 {
3627 struct trad_frame_cache *this_trad_cache
3628 = mips_stub_frame_cache (this_frame, this_cache);
3629 return trad_frame_get_this_base (this_trad_cache);
3630 }
3631
3632 static const struct frame_base mips_stub_frame_base =
3633 {
3634 &mips_stub_frame_unwind,
3635 mips_stub_frame_base_address,
3636 mips_stub_frame_base_address,
3637 mips_stub_frame_base_address
3638 };
3639
3640 static const struct frame_base *
3641 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3642 {
3643 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3644 return &mips_stub_frame_base;
3645 else
3646 return NULL;
3647 }
3648
3649 /* mips_addr_bits_remove - remove useless address bits */
3650
3651 static CORE_ADDR
3652 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3653 {
3654 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3655
3656 if (is_compact_addr (addr))
3657 addr = unmake_compact_addr (addr);
3658
3659 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3660 /* This hack is a work-around for existing boards using PMON, the
3661 simulator, and any other 64-bit targets that doesn't have true
3662 64-bit addressing. On these targets, the upper 32 bits of
3663 addresses are ignored by the hardware. Thus, the PC or SP are
3664 likely to have been sign extended to all 1s by instruction
3665 sequences that load 32-bit addresses. For example, a typical
3666 piece of code that loads an address is this:
3667
3668 lui $r2, <upper 16 bits>
3669 ori $r2, <lower 16 bits>
3670
3671 But the lui sign-extends the value such that the upper 32 bits
3672 may be all 1s. The workaround is simply to mask off these
3673 bits. In the future, gcc may be changed to support true 64-bit
3674 addressing, and this masking will have to be disabled. */
3675 return addr &= 0xffffffffUL;
3676 else
3677 return addr;
3678 }
3679
3680
3681 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3682 instruction and ending with a SC/SCD instruction. If such a sequence
3683 is found, attempt to step through it. A breakpoint is placed at the end of
3684 the sequence. */
3685
3686 /* Instructions used during single-stepping of atomic sequences, standard
3687 ISA version. */
3688 #define LL_OPCODE 0x30
3689 #define LLD_OPCODE 0x34
3690 #define SC_OPCODE 0x38
3691 #define SCD_OPCODE 0x3c
3692
3693 static int
3694 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3695 struct address_space *aspace, CORE_ADDR pc)
3696 {
3697 CORE_ADDR breaks[2] = {-1, -1};
3698 CORE_ADDR loc = pc;
3699 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3700 ULONGEST insn;
3701 int insn_count;
3702 int index;
3703 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3704 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3705
3706 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3707 /* Assume all atomic sequences start with a ll/lld instruction. */
3708 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3709 return 0;
3710
3711 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3712 instructions. */
3713 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3714 {
3715 int is_branch = 0;
3716 loc += MIPS_INSN32_SIZE;
3717 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3718
3719 /* Assume that there is at most one branch in the atomic
3720 sequence. If a branch is found, put a breakpoint in its
3721 destination address. */
3722 switch (itype_op (insn))
3723 {
3724 case 0: /* SPECIAL */
3725 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3726 return 0; /* fallback to the standard single-step code. */
3727 break;
3728 case 1: /* REGIMM */
3729 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3730 || ((itype_rt (insn) & 0x1e) == 0
3731 && itype_rs (insn) == 0)); /* BPOSGE* */
3732 break;
3733 case 2: /* J */
3734 case 3: /* JAL */
3735 return 0; /* fallback to the standard single-step code. */
3736 case 4: /* BEQ */
3737 case 5: /* BNE */
3738 case 6: /* BLEZ */
3739 case 7: /* BGTZ */
3740 case 20: /* BEQL */
3741 case 21: /* BNEL */
3742 case 22: /* BLEZL */
3743 case 23: /* BGTTL */
3744 is_branch = 1;
3745 break;
3746 case 17: /* COP1 */
3747 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3748 && (itype_rt (insn) & 0x2) == 0);
3749 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3750 break;
3751 /* Fall through. */
3752 case 18: /* COP2 */
3753 case 19: /* COP3 */
3754 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3755 break;
3756 }
3757 if (is_branch)
3758 {
3759 branch_bp = loc + mips32_relative_offset (insn) + 4;
3760 if (last_breakpoint >= 1)
3761 return 0; /* More than one branch found, fallback to the
3762 standard single-step code. */
3763 breaks[1] = branch_bp;
3764 last_breakpoint++;
3765 }
3766
3767 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3768 break;
3769 }
3770
3771 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3772 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3773 return 0;
3774
3775 loc += MIPS_INSN32_SIZE;
3776
3777 /* Insert a breakpoint right after the end of the atomic sequence. */
3778 breaks[0] = loc;
3779
3780 /* Check for duplicated breakpoints. Check also for a breakpoint
3781 placed (branch instruction's destination) in the atomic sequence. */
3782 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3783 last_breakpoint = 0;
3784
3785 /* Effectively inserts the breakpoints. */
3786 for (index = 0; index <= last_breakpoint; index++)
3787 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3788
3789 return 1;
3790 }
3791
3792 static int
3793 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3794 struct address_space *aspace,
3795 CORE_ADDR pc)
3796 {
3797 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3798 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3799 CORE_ADDR breaks[2] = {-1, -1};
3800 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3801 destination. */
3802 CORE_ADDR loc = pc;
3803 int sc_found = 0;
3804 ULONGEST insn;
3805 int insn_count;
3806 int index;
3807
3808 /* Assume all atomic sequences start with a ll/lld instruction. */
3809 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3810 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
3811 return 0;
3812 loc += MIPS_INSN16_SIZE;
3813 insn <<= 16;
3814 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3815 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
3816 return 0;
3817 loc += MIPS_INSN16_SIZE;
3818
3819 /* Assume all atomic sequences end with an sc/scd instruction. Assume
3820 that no atomic sequence is longer than "atomic_sequence_length"
3821 instructions. */
3822 for (insn_count = 0;
3823 !sc_found && insn_count < atomic_sequence_length;
3824 ++insn_count)
3825 {
3826 int is_branch = 0;
3827
3828 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3829 loc += MIPS_INSN16_SIZE;
3830
3831 /* Assume that there is at most one conditional branch in the
3832 atomic sequence. If a branch is found, put a breakpoint in
3833 its destination address. */
3834 switch (mips_insn_size (ISA_MICROMIPS, insn))
3835 {
3836 /* 48-bit instructions. */
3837 case 3 * MIPS_INSN16_SIZE: /* POOL48A: bits 011111 */
3838 loc += 2 * MIPS_INSN16_SIZE;
3839 break;
3840
3841 /* 32-bit instructions. */
3842 case 2 * MIPS_INSN16_SIZE:
3843 switch (micromips_op (insn))
3844 {
3845 case 0x10: /* POOL32I: bits 010000 */
3846 if ((b5s5_op (insn) & 0x18) != 0x0
3847 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
3848 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
3849 && (b5s5_op (insn) & 0x1d) != 0x11
3850 /* BLTZALS, BGEZALS: bits 010000 100x1 */
3851 && ((b5s5_op (insn) & 0x1e) != 0x14
3852 || (insn & 0x3) != 0x0)
3853 /* BC2F, BC2T: bits 010000 1010x xxx00 */
3854 && (b5s5_op (insn) & 0x1e) != 0x1a
3855 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
3856 && ((b5s5_op (insn) & 0x1e) != 0x1c
3857 || (insn & 0x3) != 0x0)
3858 /* BC1F, BC1T: bits 010000 1110x xxx00 */
3859 && ((b5s5_op (insn) & 0x1c) != 0x1c
3860 || (insn & 0x3) != 0x1))
3861 /* BC1ANY*: bits 010000 111xx xxx01 */
3862 break;
3863 /* Fall through. */
3864
3865 case 0x25: /* BEQ: bits 100101 */
3866 case 0x2d: /* BNE: bits 101101 */
3867 insn <<= 16;
3868 insn |= mips_fetch_instruction (gdbarch,
3869 ISA_MICROMIPS, loc, NULL);
3870 branch_bp = (loc + MIPS_INSN16_SIZE
3871 + micromips_relative_offset16 (insn));
3872 is_branch = 1;
3873 break;
3874
3875 case 0x00: /* POOL32A: bits 000000 */
3876 insn <<= 16;
3877 insn |= mips_fetch_instruction (gdbarch,
3878 ISA_MICROMIPS, loc, NULL);
3879 if (b0s6_op (insn) != 0x3c
3880 /* POOL32Axf: bits 000000 ... 111100 */
3881 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
3882 /* JALR, JALR.HB: 000000 000x111100 111100 */
3883 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
3884 break;
3885 /* Fall through. */
3886
3887 case 0x1d: /* JALS: bits 011101 */
3888 case 0x35: /* J: bits 110101 */
3889 case 0x3d: /* JAL: bits 111101 */
3890 case 0x3c: /* JALX: bits 111100 */
3891 return 0; /* Fall back to the standard single-step code. */
3892
3893 case 0x18: /* POOL32C: bits 011000 */
3894 if ((b12s4_op (insn) & 0xb) == 0xb)
3895 /* SC, SCD: bits 011000 1x11 */
3896 sc_found = 1;
3897 break;
3898 }
3899 loc += MIPS_INSN16_SIZE;
3900 break;
3901
3902 /* 16-bit instructions. */
3903 case MIPS_INSN16_SIZE:
3904 switch (micromips_op (insn))
3905 {
3906 case 0x23: /* BEQZ16: bits 100011 */
3907 case 0x2b: /* BNEZ16: bits 101011 */
3908 branch_bp = loc + micromips_relative_offset7 (insn);
3909 is_branch = 1;
3910 break;
3911
3912 case 0x11: /* POOL16C: bits 010001 */
3913 if ((b5s5_op (insn) & 0x1c) != 0xc
3914 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
3915 && b5s5_op (insn) != 0x18)
3916 /* JRADDIUSP: bits 010001 11000 */
3917 break;
3918 return 0; /* Fall back to the standard single-step code. */
3919
3920 case 0x33: /* B16: bits 110011 */
3921 return 0; /* Fall back to the standard single-step code. */
3922 }
3923 break;
3924 }
3925 if (is_branch)
3926 {
3927 if (last_breakpoint >= 1)
3928 return 0; /* More than one branch found, fallback to the
3929 standard single-step code. */
3930 breaks[1] = branch_bp;
3931 last_breakpoint++;
3932 }
3933 }
3934 if (!sc_found)
3935 return 0;
3936
3937 /* Insert a breakpoint right after the end of the atomic sequence. */
3938 breaks[0] = loc;
3939
3940 /* Check for duplicated breakpoints. Check also for a breakpoint
3941 placed (branch instruction's destination) in the atomic sequence */
3942 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3943 last_breakpoint = 0;
3944
3945 /* Effectively inserts the breakpoints. */
3946 for (index = 0; index <= last_breakpoint; index++)
3947 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3948
3949 return 1;
3950 }
3951
3952 static int
3953 deal_with_atomic_sequence (struct gdbarch *gdbarch,
3954 struct address_space *aspace, CORE_ADDR pc)
3955 {
3956 if (mips_pc_is_mips (pc))
3957 return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
3958 else if (mips_pc_is_micromips (gdbarch, pc))
3959 return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
3960 else
3961 return 0;
3962 }
3963
3964 /* mips_software_single_step() is called just before we want to resume
3965 the inferior, if we want to single-step it but there is no hardware
3966 or kernel single-step support (MIPS on GNU/Linux for example). We find
3967 the target of the coming instruction and breakpoint it. */
3968
3969 int
3970 mips_software_single_step (struct frame_info *frame)
3971 {
3972 struct gdbarch *gdbarch = get_frame_arch (frame);
3973 struct address_space *aspace = get_frame_address_space (frame);
3974 CORE_ADDR pc, next_pc;
3975
3976 pc = get_frame_pc (frame);
3977 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
3978 return 1;
3979
3980 next_pc = mips_next_pc (frame, pc);
3981
3982 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
3983 return 1;
3984 }
3985
3986 /* Test whether the PC points to the return instruction at the
3987 end of a function. */
3988
3989 static int
3990 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
3991 {
3992 ULONGEST insn;
3993 ULONGEST hint;
3994
3995 /* This used to check for MIPS16, but this piece of code is never
3996 called for MIPS16 functions. And likewise microMIPS ones. */
3997 gdb_assert (mips_pc_is_mips (pc));
3998
3999 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4000 hint = 0x7c0;
4001 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4002 }
4003
4004
4005 /* This fencepost looks highly suspicious to me. Removing it also
4006 seems suspicious as it could affect remote debugging across serial
4007 lines. */
4008
4009 static CORE_ADDR
4010 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4011 {
4012 CORE_ADDR start_pc;
4013 CORE_ADDR fence;
4014 int instlen;
4015 int seen_adjsp = 0;
4016 struct inferior *inf;
4017
4018 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4019 start_pc = pc;
4020 fence = start_pc - heuristic_fence_post;
4021 if (start_pc == 0)
4022 return 0;
4023
4024 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4025 fence = VM_MIN_ADDRESS;
4026
4027 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4028
4029 inf = current_inferior ();
4030
4031 /* Search back for previous return. */
4032 for (start_pc -= instlen;; start_pc -= instlen)
4033 if (start_pc < fence)
4034 {
4035 /* It's not clear to me why we reach this point when
4036 stop_soon, but with this test, at least we
4037 don't print out warnings for every child forked (eg, on
4038 decstation). 22apr93 rich@cygnus.com. */
4039 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4040 {
4041 static int blurb_printed = 0;
4042
4043 warning (_("GDB can't find the start of the function at %s."),
4044 paddress (gdbarch, pc));
4045
4046 if (!blurb_printed)
4047 {
4048 /* This actually happens frequently in embedded
4049 development, when you first connect to a board
4050 and your stack pointer and pc are nowhere in
4051 particular. This message needs to give people
4052 in that situation enough information to
4053 determine that it's no big deal. */
4054 printf_filtered ("\n\
4055 GDB is unable to find the start of the function at %s\n\
4056 and thus can't determine the size of that function's stack frame.\n\
4057 This means that GDB may be unable to access that stack frame, or\n\
4058 the frames below it.\n\
4059 This problem is most likely caused by an invalid program counter or\n\
4060 stack pointer.\n\
4061 However, if you think GDB should simply search farther back\n\
4062 from %s for code which looks like the beginning of a\n\
4063 function, you can increase the range of the search using the `set\n\
4064 heuristic-fence-post' command.\n",
4065 paddress (gdbarch, pc), paddress (gdbarch, pc));
4066 blurb_printed = 1;
4067 }
4068 }
4069
4070 return 0;
4071 }
4072 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4073 {
4074 unsigned short inst;
4075
4076 /* On MIPS16, any one of the following is likely to be the
4077 start of a function:
4078 extend save
4079 save
4080 entry
4081 addiu sp,-n
4082 daddiu sp,-n
4083 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4084 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4085 if ((inst & 0xff80) == 0x6480) /* save */
4086 {
4087 if (start_pc - instlen >= fence)
4088 {
4089 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4090 start_pc - instlen, NULL);
4091 if ((inst & 0xf800) == 0xf000) /* extend */
4092 start_pc -= instlen;
4093 }
4094 break;
4095 }
4096 else if (((inst & 0xf81f) == 0xe809
4097 && (inst & 0x700) != 0x700) /* entry */
4098 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4099 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4100 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4101 break;
4102 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4103 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4104 seen_adjsp = 1;
4105 else
4106 seen_adjsp = 0;
4107 }
4108 else if (mips_pc_is_micromips (gdbarch, start_pc))
4109 {
4110 ULONGEST insn;
4111 int stop = 0;
4112 long offset;
4113 int dreg;
4114 int sreg;
4115
4116 /* On microMIPS, any one of the following is likely to be the
4117 start of a function:
4118 ADDIUSP -imm
4119 (D)ADDIU $sp, -imm
4120 LUI $gp, imm */
4121 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4122 switch (micromips_op (insn))
4123 {
4124 case 0xc: /* ADDIU: bits 001100 */
4125 case 0x17: /* DADDIU: bits 010111 */
4126 sreg = b0s5_reg (insn);
4127 dreg = b5s5_reg (insn);
4128 insn <<= 16;
4129 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4130 pc + MIPS_INSN16_SIZE, NULL);
4131 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4132 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4133 /* (D)ADDIU $sp, imm */
4134 && offset < 0)
4135 stop = 1;
4136 break;
4137
4138 case 0x10: /* POOL32I: bits 010000 */
4139 if (b5s5_op (insn) == 0xd
4140 /* LUI: bits 010000 001101 */
4141 && b0s5_reg (insn >> 16) == 28)
4142 /* LUI $gp, imm */
4143 stop = 1;
4144 break;
4145
4146 case 0x13: /* POOL16D: bits 010011 */
4147 if ((insn & 0x1) == 0x1)
4148 /* ADDIUSP: bits 010011 1 */
4149 {
4150 offset = micromips_decode_imm9 (b1s9_imm (insn));
4151 if (offset < 0)
4152 /* ADDIUSP -imm */
4153 stop = 1;
4154 }
4155 else
4156 /* ADDIUS5: bits 010011 0 */
4157 {
4158 dreg = b5s5_reg (insn);
4159 offset = (b1s4_imm (insn) ^ 8) - 8;
4160 if (dreg == MIPS_SP_REGNUM && offset < 0)
4161 /* ADDIUS5 $sp, -imm */
4162 stop = 1;
4163 }
4164 break;
4165 }
4166 if (stop)
4167 break;
4168 }
4169 else if (mips_about_to_return (gdbarch, start_pc))
4170 {
4171 /* Skip return and its delay slot. */
4172 start_pc += 2 * MIPS_INSN32_SIZE;
4173 break;
4174 }
4175
4176 return start_pc;
4177 }
4178
4179 struct mips_objfile_private
4180 {
4181 bfd_size_type size;
4182 char *contents;
4183 };
4184
4185 /* According to the current ABI, should the type be passed in a
4186 floating-point register (assuming that there is space)? When there
4187 is no FPU, FP are not even considered as possible candidates for
4188 FP registers and, consequently this returns false - forces FP
4189 arguments into integer registers. */
4190
4191 static int
4192 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4193 struct type *arg_type)
4194 {
4195 return ((typecode == TYPE_CODE_FLT
4196 || (MIPS_EABI (gdbarch)
4197 && (typecode == TYPE_CODE_STRUCT
4198 || typecode == TYPE_CODE_UNION)
4199 && TYPE_NFIELDS (arg_type) == 1
4200 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4201 == TYPE_CODE_FLT))
4202 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4203 }
4204
4205 /* On o32, argument passing in GPRs depends on the alignment of the type being
4206 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4207
4208 static int
4209 mips_type_needs_double_align (struct type *type)
4210 {
4211 enum type_code typecode = TYPE_CODE (type);
4212
4213 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4214 return 1;
4215 else if (typecode == TYPE_CODE_STRUCT)
4216 {
4217 if (TYPE_NFIELDS (type) < 1)
4218 return 0;
4219 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4220 }
4221 else if (typecode == TYPE_CODE_UNION)
4222 {
4223 int i, n;
4224
4225 n = TYPE_NFIELDS (type);
4226 for (i = 0; i < n; i++)
4227 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4228 return 1;
4229 return 0;
4230 }
4231 return 0;
4232 }
4233
4234 /* Adjust the address downward (direction of stack growth) so that it
4235 is correctly aligned for a new stack frame. */
4236 static CORE_ADDR
4237 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4238 {
4239 return align_down (addr, 16);
4240 }
4241
4242 /* Implement the "push_dummy_code" gdbarch method. */
4243
4244 static CORE_ADDR
4245 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4246 CORE_ADDR funaddr, struct value **args,
4247 int nargs, struct type *value_type,
4248 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4249 struct regcache *regcache)
4250 {
4251 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4252 CORE_ADDR nop_addr;
4253 CORE_ADDR bp_slot;
4254
4255 /* Reserve enough room on the stack for our breakpoint instruction. */
4256 bp_slot = sp - sizeof (nop_insn);
4257
4258 /* Return to microMIPS mode if calling microMIPS code to avoid
4259 triggering an address error exception on processors that only
4260 support microMIPS execution. */
4261 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4262 ? make_compact_addr (bp_slot) : bp_slot);
4263
4264 /* The breakpoint layer automatically adjusts the address of
4265 breakpoints inserted in a branch delay slot. With enough
4266 bad luck, the 4 bytes located just before our breakpoint
4267 instruction could look like a branch instruction, and thus
4268 trigger the adjustement, and break the function call entirely.
4269 So, we reserve those 4 bytes and write a nop instruction
4270 to prevent that from happening. */
4271 nop_addr = bp_slot - sizeof (nop_insn);
4272 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4273 sp = mips_frame_align (gdbarch, nop_addr);
4274
4275 /* Inferior resumes at the function entry point. */
4276 *real_pc = funaddr;
4277
4278 return sp;
4279 }
4280
4281 static CORE_ADDR
4282 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4283 struct regcache *regcache, CORE_ADDR bp_addr,
4284 int nargs, struct value **args, CORE_ADDR sp,
4285 int struct_return, CORE_ADDR struct_addr)
4286 {
4287 int argreg;
4288 int float_argreg;
4289 int argnum;
4290 int len = 0;
4291 int stack_offset = 0;
4292 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4293 CORE_ADDR func_addr = find_function_addr (function, NULL);
4294 int regsize = mips_abi_regsize (gdbarch);
4295
4296 /* For shared libraries, "t9" needs to point at the function
4297 address. */
4298 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4299
4300 /* Set the return address register to point to the entry point of
4301 the program, where a breakpoint lies in wait. */
4302 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4303
4304 /* First ensure that the stack and structure return address (if any)
4305 are properly aligned. The stack has to be at least 64-bit
4306 aligned even on 32-bit machines, because doubles must be 64-bit
4307 aligned. For n32 and n64, stack frames need to be 128-bit
4308 aligned, so we round to this widest known alignment. */
4309
4310 sp = align_down (sp, 16);
4311 struct_addr = align_down (struct_addr, 16);
4312
4313 /* Now make space on the stack for the args. We allocate more
4314 than necessary for EABI, because the first few arguments are
4315 passed in registers, but that's OK. */
4316 for (argnum = 0; argnum < nargs; argnum++)
4317 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
4318 sp -= align_up (len, 16);
4319
4320 if (mips_debug)
4321 fprintf_unfiltered (gdb_stdlog,
4322 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4323 paddress (gdbarch, sp), (long) align_up (len, 16));
4324
4325 /* Initialize the integer and float register pointers. */
4326 argreg = MIPS_A0_REGNUM;
4327 float_argreg = mips_fpa0_regnum (gdbarch);
4328
4329 /* The struct_return pointer occupies the first parameter-passing reg. */
4330 if (struct_return)
4331 {
4332 if (mips_debug)
4333 fprintf_unfiltered (gdb_stdlog,
4334 "mips_eabi_push_dummy_call: "
4335 "struct_return reg=%d %s\n",
4336 argreg, paddress (gdbarch, struct_addr));
4337 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4338 }
4339
4340 /* Now load as many as possible of the first arguments into
4341 registers, and push the rest onto the stack. Loop thru args
4342 from first to last. */
4343 for (argnum = 0; argnum < nargs; argnum++)
4344 {
4345 const gdb_byte *val;
4346 gdb_byte valbuf[MAX_REGISTER_SIZE];
4347 struct value *arg = args[argnum];
4348 struct type *arg_type = check_typedef (value_type (arg));
4349 int len = TYPE_LENGTH (arg_type);
4350 enum type_code typecode = TYPE_CODE (arg_type);
4351
4352 if (mips_debug)
4353 fprintf_unfiltered (gdb_stdlog,
4354 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4355 argnum + 1, len, (int) typecode);
4356
4357 /* Function pointer arguments to mips16 code need to be made into
4358 mips16 pointers. */
4359 if (typecode == TYPE_CODE_PTR
4360 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
4361 {
4362 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
4363 len, byte_order);
4364 if (mips_pc_is_mips (addr))
4365 val = value_contents (arg);
4366 else
4367 {
4368 store_signed_integer (valbuf, len, byte_order,
4369 make_compact_addr (addr));
4370 val = valbuf;
4371 }
4372 }
4373 /* The EABI passes structures that do not fit in a register by
4374 reference. */
4375 else if (len > regsize
4376 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4377 {
4378 store_unsigned_integer (valbuf, regsize, byte_order,
4379 value_address (arg));
4380 typecode = TYPE_CODE_PTR;
4381 len = regsize;
4382 val = valbuf;
4383 if (mips_debug)
4384 fprintf_unfiltered (gdb_stdlog, " push");
4385 }
4386 else
4387 val = value_contents (arg);
4388
4389 /* 32-bit ABIs always start floating point arguments in an
4390 even-numbered floating point register. Round the FP register
4391 up before the check to see if there are any FP registers
4392 left. Non MIPS_EABI targets also pass the FP in the integer
4393 registers so also round up normal registers. */
4394 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4395 {
4396 if ((float_argreg & 1))
4397 float_argreg++;
4398 }
4399
4400 /* Floating point arguments passed in registers have to be
4401 treated specially. On 32-bit architectures, doubles
4402 are passed in register pairs; the even register gets
4403 the low word, and the odd register gets the high word.
4404 On non-EABI processors, the first two floating point arguments are
4405 also copied to general registers, because MIPS16 functions
4406 don't use float registers for arguments. This duplication of
4407 arguments in general registers can't hurt non-MIPS16 functions
4408 because those registers are normally skipped. */
4409 /* MIPS_EABI squeezes a struct that contains a single floating
4410 point value into an FP register instead of pushing it onto the
4411 stack. */
4412 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4413 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4414 {
4415 /* EABI32 will pass doubles in consecutive registers, even on
4416 64-bit cores. At one time, we used to check the size of
4417 `float_argreg' to determine whether or not to pass doubles
4418 in consecutive registers, but this is not sufficient for
4419 making the ABI determination. */
4420 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4421 {
4422 int low_offset = gdbarch_byte_order (gdbarch)
4423 == BFD_ENDIAN_BIG ? 4 : 0;
4424 long regval;
4425
4426 /* Write the low word of the double to the even register(s). */
4427 regval = extract_signed_integer (val + low_offset,
4428 4, byte_order);
4429 if (mips_debug)
4430 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4431 float_argreg, phex (regval, 4));
4432 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4433
4434 /* Write the high word of the double to the odd register(s). */
4435 regval = extract_signed_integer (val + 4 - low_offset,
4436 4, byte_order);
4437 if (mips_debug)
4438 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4439 float_argreg, phex (regval, 4));
4440 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4441 }
4442 else
4443 {
4444 /* This is a floating point value that fits entirely
4445 in a single register. */
4446 /* On 32 bit ABI's the float_argreg is further adjusted
4447 above to ensure that it is even register aligned. */
4448 LONGEST regval = extract_signed_integer (val, len, byte_order);
4449 if (mips_debug)
4450 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4451 float_argreg, phex (regval, len));
4452 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4453 }
4454 }
4455 else
4456 {
4457 /* Copy the argument to general registers or the stack in
4458 register-sized pieces. Large arguments are split between
4459 registers and stack. */
4460 /* Note: structs whose size is not a multiple of regsize
4461 are treated specially: Irix cc passes
4462 them in registers where gcc sometimes puts them on the
4463 stack. For maximum compatibility, we will put them in
4464 both places. */
4465 int odd_sized_struct = (len > regsize && len % regsize != 0);
4466
4467 /* Note: Floating-point values that didn't fit into an FP
4468 register are only written to memory. */
4469 while (len > 0)
4470 {
4471 /* Remember if the argument was written to the stack. */
4472 int stack_used_p = 0;
4473 int partial_len = (len < regsize ? len : regsize);
4474
4475 if (mips_debug)
4476 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4477 partial_len);
4478
4479 /* Write this portion of the argument to the stack. */
4480 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4481 || odd_sized_struct
4482 || fp_register_arg_p (gdbarch, typecode, arg_type))
4483 {
4484 /* Should shorter than int integer values be
4485 promoted to int before being stored? */
4486 int longword_offset = 0;
4487 CORE_ADDR addr;
4488 stack_used_p = 1;
4489 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4490 {
4491 if (regsize == 8
4492 && (typecode == TYPE_CODE_INT
4493 || typecode == TYPE_CODE_PTR
4494 || typecode == TYPE_CODE_FLT) && len <= 4)
4495 longword_offset = regsize - len;
4496 else if ((typecode == TYPE_CODE_STRUCT
4497 || typecode == TYPE_CODE_UNION)
4498 && TYPE_LENGTH (arg_type) < regsize)
4499 longword_offset = regsize - len;
4500 }
4501
4502 if (mips_debug)
4503 {
4504 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4505 paddress (gdbarch, stack_offset));
4506 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4507 paddress (gdbarch, longword_offset));
4508 }
4509
4510 addr = sp + stack_offset + longword_offset;
4511
4512 if (mips_debug)
4513 {
4514 int i;
4515 fprintf_unfiltered (gdb_stdlog, " @%s ",
4516 paddress (gdbarch, addr));
4517 for (i = 0; i < partial_len; i++)
4518 {
4519 fprintf_unfiltered (gdb_stdlog, "%02x",
4520 val[i] & 0xff);
4521 }
4522 }
4523 write_memory (addr, val, partial_len);
4524 }
4525
4526 /* Note!!! This is NOT an else clause. Odd sized
4527 structs may go thru BOTH paths. Floating point
4528 arguments will not. */
4529 /* Write this portion of the argument to a general
4530 purpose register. */
4531 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4532 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4533 {
4534 LONGEST regval =
4535 extract_signed_integer (val, partial_len, byte_order);
4536
4537 if (mips_debug)
4538 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4539 argreg,
4540 phex (regval, regsize));
4541 regcache_cooked_write_signed (regcache, argreg, regval);
4542 argreg++;
4543 }
4544
4545 len -= partial_len;
4546 val += partial_len;
4547
4548 /* Compute the offset into the stack at which we will
4549 copy the next parameter.
4550
4551 In the new EABI (and the NABI32), the stack_offset
4552 only needs to be adjusted when it has been used. */
4553
4554 if (stack_used_p)
4555 stack_offset += align_up (partial_len, regsize);
4556 }
4557 }
4558 if (mips_debug)
4559 fprintf_unfiltered (gdb_stdlog, "\n");
4560 }
4561
4562 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4563
4564 /* Return adjusted stack pointer. */
4565 return sp;
4566 }
4567
4568 /* Determine the return value convention being used. */
4569
4570 static enum return_value_convention
4571 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4572 struct type *type, struct regcache *regcache,
4573 gdb_byte *readbuf, const gdb_byte *writebuf)
4574 {
4575 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4576 int fp_return_type = 0;
4577 int offset, regnum, xfer;
4578
4579 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4580 return RETURN_VALUE_STRUCT_CONVENTION;
4581
4582 /* Floating point type? */
4583 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4584 {
4585 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4586 fp_return_type = 1;
4587 /* Structs with a single field of float type
4588 are returned in a floating point register. */
4589 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4590 || TYPE_CODE (type) == TYPE_CODE_UNION)
4591 && TYPE_NFIELDS (type) == 1)
4592 {
4593 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4594
4595 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4596 fp_return_type = 1;
4597 }
4598 }
4599
4600 if (fp_return_type)
4601 {
4602 /* A floating-point value belongs in the least significant part
4603 of FP0/FP1. */
4604 if (mips_debug)
4605 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4606 regnum = mips_regnum (gdbarch)->fp0;
4607 }
4608 else
4609 {
4610 /* An integer value goes in V0/V1. */
4611 if (mips_debug)
4612 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4613 regnum = MIPS_V0_REGNUM;
4614 }
4615 for (offset = 0;
4616 offset < TYPE_LENGTH (type);
4617 offset += mips_abi_regsize (gdbarch), regnum++)
4618 {
4619 xfer = mips_abi_regsize (gdbarch);
4620 if (offset + xfer > TYPE_LENGTH (type))
4621 xfer = TYPE_LENGTH (type) - offset;
4622 mips_xfer_register (gdbarch, regcache,
4623 gdbarch_num_regs (gdbarch) + regnum, xfer,
4624 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4625 offset);
4626 }
4627
4628 return RETURN_VALUE_REGISTER_CONVENTION;
4629 }
4630
4631
4632 /* N32/N64 ABI stuff. */
4633
4634 /* Search for a naturally aligned double at OFFSET inside a struct
4635 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4636 registers. */
4637
4638 static int
4639 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4640 int offset)
4641 {
4642 int i;
4643
4644 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4645 return 0;
4646
4647 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4648 return 0;
4649
4650 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4651 return 0;
4652
4653 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4654 {
4655 int pos;
4656 struct type *field_type;
4657
4658 /* We're only looking at normal fields. */
4659 if (field_is_static (&TYPE_FIELD (arg_type, i))
4660 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4661 continue;
4662
4663 /* If we have gone past the offset, there is no double to pass. */
4664 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4665 if (pos > offset)
4666 return 0;
4667
4668 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4669
4670 /* If this field is entirely before the requested offset, go
4671 on to the next one. */
4672 if (pos + TYPE_LENGTH (field_type) <= offset)
4673 continue;
4674
4675 /* If this is our special aligned double, we can stop. */
4676 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4677 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4678 return 1;
4679
4680 /* This field starts at or before the requested offset, and
4681 overlaps it. If it is a structure, recurse inwards. */
4682 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4683 }
4684
4685 return 0;
4686 }
4687
4688 static CORE_ADDR
4689 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4690 struct regcache *regcache, CORE_ADDR bp_addr,
4691 int nargs, struct value **args, CORE_ADDR sp,
4692 int struct_return, CORE_ADDR struct_addr)
4693 {
4694 int argreg;
4695 int float_argreg;
4696 int argnum;
4697 int len = 0;
4698 int stack_offset = 0;
4699 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4700 CORE_ADDR func_addr = find_function_addr (function, NULL);
4701
4702 /* For shared libraries, "t9" needs to point at the function
4703 address. */
4704 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4705
4706 /* Set the return address register to point to the entry point of
4707 the program, where a breakpoint lies in wait. */
4708 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4709
4710 /* First ensure that the stack and structure return address (if any)
4711 are properly aligned. The stack has to be at least 64-bit
4712 aligned even on 32-bit machines, because doubles must be 64-bit
4713 aligned. For n32 and n64, stack frames need to be 128-bit
4714 aligned, so we round to this widest known alignment. */
4715
4716 sp = align_down (sp, 16);
4717 struct_addr = align_down (struct_addr, 16);
4718
4719 /* Now make space on the stack for the args. */
4720 for (argnum = 0; argnum < nargs; argnum++)
4721 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4722 sp -= align_up (len, 16);
4723
4724 if (mips_debug)
4725 fprintf_unfiltered (gdb_stdlog,
4726 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4727 paddress (gdbarch, sp), (long) align_up (len, 16));
4728
4729 /* Initialize the integer and float register pointers. */
4730 argreg = MIPS_A0_REGNUM;
4731 float_argreg = mips_fpa0_regnum (gdbarch);
4732
4733 /* The struct_return pointer occupies the first parameter-passing reg. */
4734 if (struct_return)
4735 {
4736 if (mips_debug)
4737 fprintf_unfiltered (gdb_stdlog,
4738 "mips_n32n64_push_dummy_call: "
4739 "struct_return reg=%d %s\n",
4740 argreg, paddress (gdbarch, struct_addr));
4741 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4742 }
4743
4744 /* Now load as many as possible of the first arguments into
4745 registers, and push the rest onto the stack. Loop thru args
4746 from first to last. */
4747 for (argnum = 0; argnum < nargs; argnum++)
4748 {
4749 const gdb_byte *val;
4750 struct value *arg = args[argnum];
4751 struct type *arg_type = check_typedef (value_type (arg));
4752 int len = TYPE_LENGTH (arg_type);
4753 enum type_code typecode = TYPE_CODE (arg_type);
4754
4755 if (mips_debug)
4756 fprintf_unfiltered (gdb_stdlog,
4757 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4758 argnum + 1, len, (int) typecode);
4759
4760 val = value_contents (arg);
4761
4762 /* A 128-bit long double value requires an even-odd pair of
4763 floating-point registers. */
4764 if (len == 16
4765 && fp_register_arg_p (gdbarch, typecode, arg_type)
4766 && (float_argreg & 1))
4767 {
4768 float_argreg++;
4769 argreg++;
4770 }
4771
4772 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4773 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4774 {
4775 /* This is a floating point value that fits entirely
4776 in a single register or a pair of registers. */
4777 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4778 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4779 if (mips_debug)
4780 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4781 float_argreg, phex (regval, reglen));
4782 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4783
4784 if (mips_debug)
4785 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4786 argreg, phex (regval, reglen));
4787 regcache_cooked_write_unsigned (regcache, argreg, regval);
4788 float_argreg++;
4789 argreg++;
4790 if (len == 16)
4791 {
4792 regval = extract_unsigned_integer (val + reglen,
4793 reglen, byte_order);
4794 if (mips_debug)
4795 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4796 float_argreg, phex (regval, reglen));
4797 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4798
4799 if (mips_debug)
4800 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4801 argreg, phex (regval, reglen));
4802 regcache_cooked_write_unsigned (regcache, argreg, regval);
4803 float_argreg++;
4804 argreg++;
4805 }
4806 }
4807 else
4808 {
4809 /* Copy the argument to general registers or the stack in
4810 register-sized pieces. Large arguments are split between
4811 registers and stack. */
4812 /* For N32/N64, structs, unions, or other composite types are
4813 treated as a sequence of doublewords, and are passed in integer
4814 or floating point registers as though they were simple scalar
4815 parameters to the extent that they fit, with any excess on the
4816 stack packed according to the normal memory layout of the
4817 object.
4818 The caller does not reserve space for the register arguments;
4819 the callee is responsible for reserving it if required. */
4820 /* Note: Floating-point values that didn't fit into an FP
4821 register are only written to memory. */
4822 while (len > 0)
4823 {
4824 /* Remember if the argument was written to the stack. */
4825 int stack_used_p = 0;
4826 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4827
4828 if (mips_debug)
4829 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4830 partial_len);
4831
4832 if (fp_register_arg_p (gdbarch, typecode, arg_type))
4833 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
4834
4835 /* Write this portion of the argument to the stack. */
4836 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
4837 {
4838 /* Should shorter than int integer values be
4839 promoted to int before being stored? */
4840 int longword_offset = 0;
4841 CORE_ADDR addr;
4842 stack_used_p = 1;
4843 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4844 {
4845 if ((typecode == TYPE_CODE_INT
4846 || typecode == TYPE_CODE_PTR)
4847 && len <= 4)
4848 longword_offset = MIPS64_REGSIZE - len;
4849 }
4850
4851 if (mips_debug)
4852 {
4853 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4854 paddress (gdbarch, stack_offset));
4855 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4856 paddress (gdbarch, longword_offset));
4857 }
4858
4859 addr = sp + stack_offset + longword_offset;
4860
4861 if (mips_debug)
4862 {
4863 int i;
4864 fprintf_unfiltered (gdb_stdlog, " @%s ",
4865 paddress (gdbarch, addr));
4866 for (i = 0; i < partial_len; i++)
4867 {
4868 fprintf_unfiltered (gdb_stdlog, "%02x",
4869 val[i] & 0xff);
4870 }
4871 }
4872 write_memory (addr, val, partial_len);
4873 }
4874
4875 /* Note!!! This is NOT an else clause. Odd sized
4876 structs may go thru BOTH paths. */
4877 /* Write this portion of the argument to a general
4878 purpose register. */
4879 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4880 {
4881 LONGEST regval;
4882
4883 /* Sign extend pointers, 32-bit integers and signed
4884 16-bit and 8-bit integers; everything else is taken
4885 as is. */
4886
4887 if ((partial_len == 4
4888 && (typecode == TYPE_CODE_PTR
4889 || typecode == TYPE_CODE_INT))
4890 || (partial_len < 4
4891 && typecode == TYPE_CODE_INT
4892 && !TYPE_UNSIGNED (arg_type)))
4893 regval = extract_signed_integer (val, partial_len,
4894 byte_order);
4895 else
4896 regval = extract_unsigned_integer (val, partial_len,
4897 byte_order);
4898
4899 /* A non-floating-point argument being passed in a
4900 general register. If a struct or union, and if
4901 the remaining length is smaller than the register
4902 size, we have to adjust the register value on
4903 big endian targets.
4904
4905 It does not seem to be necessary to do the
4906 same for integral types. */
4907
4908 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
4909 && partial_len < MIPS64_REGSIZE
4910 && (typecode == TYPE_CODE_STRUCT
4911 || typecode == TYPE_CODE_UNION))
4912 regval <<= ((MIPS64_REGSIZE - partial_len)
4913 * TARGET_CHAR_BIT);
4914
4915 if (mips_debug)
4916 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4917 argreg,
4918 phex (regval, MIPS64_REGSIZE));
4919 regcache_cooked_write_unsigned (regcache, argreg, regval);
4920
4921 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
4922 TYPE_LENGTH (arg_type) - len))
4923 {
4924 if (mips_debug)
4925 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
4926 float_argreg,
4927 phex (regval, MIPS64_REGSIZE));
4928 regcache_cooked_write_unsigned (regcache, float_argreg,
4929 regval);
4930 }
4931
4932 float_argreg++;
4933 argreg++;
4934 }
4935
4936 len -= partial_len;
4937 val += partial_len;
4938
4939 /* Compute the offset into the stack at which we will
4940 copy the next parameter.
4941
4942 In N32 (N64?), the stack_offset only needs to be
4943 adjusted when it has been used. */
4944
4945 if (stack_used_p)
4946 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
4947 }
4948 }
4949 if (mips_debug)
4950 fprintf_unfiltered (gdb_stdlog, "\n");
4951 }
4952
4953 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4954
4955 /* Return adjusted stack pointer. */
4956 return sp;
4957 }
4958
4959 static enum return_value_convention
4960 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
4961 struct type *type, struct regcache *regcache,
4962 gdb_byte *readbuf, const gdb_byte *writebuf)
4963 {
4964 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4965
4966 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
4967
4968 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
4969 if needed), as appropriate for the type. Composite results (struct,
4970 union, or array) are returned in $2/$f0 and $3/$f2 according to the
4971 following rules:
4972
4973 * A struct with only one or two floating point fields is returned in $f0
4974 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
4975 case.
4976
4977 * Any other composite results of at most 128 bits are returned in
4978 $2 (first 64 bits) and $3 (remainder, if necessary).
4979
4980 * Larger composite results are handled by converting the function to a
4981 procedure with an implicit first parameter, which is a pointer to an area
4982 reserved by the caller to receive the result. [The o32-bit ABI requires
4983 that all composite results be handled by conversion to implicit first
4984 parameters. The MIPS/SGI Fortran implementation has always made a
4985 specific exception to return COMPLEX results in the floating point
4986 registers.] */
4987
4988 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
4989 return RETURN_VALUE_STRUCT_CONVENTION;
4990 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4991 && TYPE_LENGTH (type) == 16
4992 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4993 {
4994 /* A 128-bit floating-point value fills both $f0 and $f2. The
4995 two registers are used in the same as memory order, so the
4996 eight bytes with the lower memory address are in $f0. */
4997 if (mips_debug)
4998 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
4999 mips_xfer_register (gdbarch, regcache,
5000 (gdbarch_num_regs (gdbarch)
5001 + mips_regnum (gdbarch)->fp0),
5002 8, gdbarch_byte_order (gdbarch),
5003 readbuf, writebuf, 0);
5004 mips_xfer_register (gdbarch, regcache,
5005 (gdbarch_num_regs (gdbarch)
5006 + mips_regnum (gdbarch)->fp0 + 2),
5007 8, gdbarch_byte_order (gdbarch),
5008 readbuf ? readbuf + 8 : readbuf,
5009 writebuf ? writebuf + 8 : writebuf, 0);
5010 return RETURN_VALUE_REGISTER_CONVENTION;
5011 }
5012 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5013 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5014 {
5015 /* A single or double floating-point value that fits in FP0. */
5016 if (mips_debug)
5017 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5018 mips_xfer_register (gdbarch, regcache,
5019 (gdbarch_num_regs (gdbarch)
5020 + mips_regnum (gdbarch)->fp0),
5021 TYPE_LENGTH (type),
5022 gdbarch_byte_order (gdbarch),
5023 readbuf, writebuf, 0);
5024 return RETURN_VALUE_REGISTER_CONVENTION;
5025 }
5026 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5027 && TYPE_NFIELDS (type) <= 2
5028 && TYPE_NFIELDS (type) >= 1
5029 && ((TYPE_NFIELDS (type) == 1
5030 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5031 == TYPE_CODE_FLT))
5032 || (TYPE_NFIELDS (type) == 2
5033 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5034 == TYPE_CODE_FLT)
5035 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5036 == TYPE_CODE_FLT))))
5037 {
5038 /* A struct that contains one or two floats. Each value is part
5039 in the least significant part of their floating point
5040 register (or GPR, for soft float). */
5041 int regnum;
5042 int field;
5043 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5044 ? mips_regnum (gdbarch)->fp0
5045 : MIPS_V0_REGNUM);
5046 field < TYPE_NFIELDS (type); field++, regnum += 2)
5047 {
5048 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5049 / TARGET_CHAR_BIT);
5050 if (mips_debug)
5051 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5052 offset);
5053 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5054 {
5055 /* A 16-byte long double field goes in two consecutive
5056 registers. */
5057 mips_xfer_register (gdbarch, regcache,
5058 gdbarch_num_regs (gdbarch) + regnum,
5059 8,
5060 gdbarch_byte_order (gdbarch),
5061 readbuf, writebuf, offset);
5062 mips_xfer_register (gdbarch, regcache,
5063 gdbarch_num_regs (gdbarch) + regnum + 1,
5064 8,
5065 gdbarch_byte_order (gdbarch),
5066 readbuf, writebuf, offset + 8);
5067 }
5068 else
5069 mips_xfer_register (gdbarch, regcache,
5070 gdbarch_num_regs (gdbarch) + regnum,
5071 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5072 gdbarch_byte_order (gdbarch),
5073 readbuf, writebuf, offset);
5074 }
5075 return RETURN_VALUE_REGISTER_CONVENTION;
5076 }
5077 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5078 || TYPE_CODE (type) == TYPE_CODE_UNION
5079 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5080 {
5081 /* A composite type. Extract the left justified value,
5082 regardless of the byte order. I.e. DO NOT USE
5083 mips_xfer_lower. */
5084 int offset;
5085 int regnum;
5086 for (offset = 0, regnum = MIPS_V0_REGNUM;
5087 offset < TYPE_LENGTH (type);
5088 offset += register_size (gdbarch, regnum), regnum++)
5089 {
5090 int xfer = register_size (gdbarch, regnum);
5091 if (offset + xfer > TYPE_LENGTH (type))
5092 xfer = TYPE_LENGTH (type) - offset;
5093 if (mips_debug)
5094 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5095 offset, xfer, regnum);
5096 mips_xfer_register (gdbarch, regcache,
5097 gdbarch_num_regs (gdbarch) + regnum,
5098 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5099 offset);
5100 }
5101 return RETURN_VALUE_REGISTER_CONVENTION;
5102 }
5103 else
5104 {
5105 /* A scalar extract each part but least-significant-byte
5106 justified. */
5107 int offset;
5108 int regnum;
5109 for (offset = 0, regnum = MIPS_V0_REGNUM;
5110 offset < TYPE_LENGTH (type);
5111 offset += register_size (gdbarch, regnum), regnum++)
5112 {
5113 int xfer = register_size (gdbarch, regnum);
5114 if (offset + xfer > TYPE_LENGTH (type))
5115 xfer = TYPE_LENGTH (type) - offset;
5116 if (mips_debug)
5117 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5118 offset, xfer, regnum);
5119 mips_xfer_register (gdbarch, regcache,
5120 gdbarch_num_regs (gdbarch) + regnum,
5121 xfer, gdbarch_byte_order (gdbarch),
5122 readbuf, writebuf, offset);
5123 }
5124 return RETURN_VALUE_REGISTER_CONVENTION;
5125 }
5126 }
5127
5128 /* Which registers to use for passing floating-point values between
5129 function calls, one of floating-point, general and both kinds of
5130 registers. O32 and O64 use different register kinds for standard
5131 MIPS and MIPS16 code; to make the handling of cases where we may
5132 not know what kind of code is being used (e.g. no debug information)
5133 easier we sometimes use both kinds. */
5134
5135 enum mips_fval_reg
5136 {
5137 mips_fval_fpr,
5138 mips_fval_gpr,
5139 mips_fval_both
5140 };
5141
5142 /* O32 ABI stuff. */
5143
5144 static CORE_ADDR
5145 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5146 struct regcache *regcache, CORE_ADDR bp_addr,
5147 int nargs, struct value **args, CORE_ADDR sp,
5148 int struct_return, CORE_ADDR struct_addr)
5149 {
5150 int argreg;
5151 int float_argreg;
5152 int argnum;
5153 int len = 0;
5154 int stack_offset = 0;
5155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5156 CORE_ADDR func_addr = find_function_addr (function, NULL);
5157
5158 /* For shared libraries, "t9" needs to point at the function
5159 address. */
5160 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5161
5162 /* Set the return address register to point to the entry point of
5163 the program, where a breakpoint lies in wait. */
5164 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5165
5166 /* First ensure that the stack and structure return address (if any)
5167 are properly aligned. The stack has to be at least 64-bit
5168 aligned even on 32-bit machines, because doubles must be 64-bit
5169 aligned. For n32 and n64, stack frames need to be 128-bit
5170 aligned, so we round to this widest known alignment. */
5171
5172 sp = align_down (sp, 16);
5173 struct_addr = align_down (struct_addr, 16);
5174
5175 /* Now make space on the stack for the args. */
5176 for (argnum = 0; argnum < nargs; argnum++)
5177 {
5178 struct type *arg_type = check_typedef (value_type (args[argnum]));
5179
5180 /* Align to double-word if necessary. */
5181 if (mips_type_needs_double_align (arg_type))
5182 len = align_up (len, MIPS32_REGSIZE * 2);
5183 /* Allocate space on the stack. */
5184 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5185 }
5186 sp -= align_up (len, 16);
5187
5188 if (mips_debug)
5189 fprintf_unfiltered (gdb_stdlog,
5190 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5191 paddress (gdbarch, sp), (long) align_up (len, 16));
5192
5193 /* Initialize the integer and float register pointers. */
5194 argreg = MIPS_A0_REGNUM;
5195 float_argreg = mips_fpa0_regnum (gdbarch);
5196
5197 /* The struct_return pointer occupies the first parameter-passing reg. */
5198 if (struct_return)
5199 {
5200 if (mips_debug)
5201 fprintf_unfiltered (gdb_stdlog,
5202 "mips_o32_push_dummy_call: "
5203 "struct_return reg=%d %s\n",
5204 argreg, paddress (gdbarch, struct_addr));
5205 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5206 stack_offset += MIPS32_REGSIZE;
5207 }
5208
5209 /* Now load as many as possible of the first arguments into
5210 registers, and push the rest onto the stack. Loop thru args
5211 from first to last. */
5212 for (argnum = 0; argnum < nargs; argnum++)
5213 {
5214 const gdb_byte *val;
5215 struct value *arg = args[argnum];
5216 struct type *arg_type = check_typedef (value_type (arg));
5217 int len = TYPE_LENGTH (arg_type);
5218 enum type_code typecode = TYPE_CODE (arg_type);
5219
5220 if (mips_debug)
5221 fprintf_unfiltered (gdb_stdlog,
5222 "mips_o32_push_dummy_call: %d len=%d type=%d",
5223 argnum + 1, len, (int) typecode);
5224
5225 val = value_contents (arg);
5226
5227 /* 32-bit ABIs always start floating point arguments in an
5228 even-numbered floating point register. Round the FP register
5229 up before the check to see if there are any FP registers
5230 left. O32 targets also pass the FP in the integer registers
5231 so also round up normal registers. */
5232 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5233 {
5234 if ((float_argreg & 1))
5235 float_argreg++;
5236 }
5237
5238 /* Floating point arguments passed in registers have to be
5239 treated specially. On 32-bit architectures, doubles are
5240 passed in register pairs; the even FP register gets the
5241 low word, and the odd FP register gets the high word.
5242 On O32, the first two floating point arguments are also
5243 copied to general registers, following their memory order,
5244 because MIPS16 functions don't use float registers for
5245 arguments. This duplication of arguments in general
5246 registers can't hurt non-MIPS16 functions, because those
5247 registers are normally skipped. */
5248
5249 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5250 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5251 {
5252 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5253 {
5254 int freg_offset = gdbarch_byte_order (gdbarch)
5255 == BFD_ENDIAN_BIG ? 1 : 0;
5256 unsigned long regval;
5257
5258 /* First word. */
5259 regval = extract_unsigned_integer (val, 4, byte_order);
5260 if (mips_debug)
5261 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5262 float_argreg + freg_offset,
5263 phex (regval, 4));
5264 regcache_cooked_write_unsigned (regcache,
5265 float_argreg++ + freg_offset,
5266 regval);
5267 if (mips_debug)
5268 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5269 argreg, phex (regval, 4));
5270 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5271
5272 /* Second word. */
5273 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5274 if (mips_debug)
5275 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5276 float_argreg - freg_offset,
5277 phex (regval, 4));
5278 regcache_cooked_write_unsigned (regcache,
5279 float_argreg++ - freg_offset,
5280 regval);
5281 if (mips_debug)
5282 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5283 argreg, phex (regval, 4));
5284 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5285 }
5286 else
5287 {
5288 /* This is a floating point value that fits entirely
5289 in a single register. */
5290 /* On 32 bit ABI's the float_argreg is further adjusted
5291 above to ensure that it is even register aligned. */
5292 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5293 if (mips_debug)
5294 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5295 float_argreg, phex (regval, len));
5296 regcache_cooked_write_unsigned (regcache,
5297 float_argreg++, regval);
5298 /* Although two FP registers are reserved for each
5299 argument, only one corresponding integer register is
5300 reserved. */
5301 if (mips_debug)
5302 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5303 argreg, phex (regval, len));
5304 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5305 }
5306 /* Reserve space for the FP register. */
5307 stack_offset += align_up (len, MIPS32_REGSIZE);
5308 }
5309 else
5310 {
5311 /* Copy the argument to general registers or the stack in
5312 register-sized pieces. Large arguments are split between
5313 registers and stack. */
5314 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5315 are treated specially: Irix cc passes
5316 them in registers where gcc sometimes puts them on the
5317 stack. For maximum compatibility, we will put them in
5318 both places. */
5319 int odd_sized_struct = (len > MIPS32_REGSIZE
5320 && len % MIPS32_REGSIZE != 0);
5321 /* Structures should be aligned to eight bytes (even arg registers)
5322 on MIPS_ABI_O32, if their first member has double precision. */
5323 if (mips_type_needs_double_align (arg_type))
5324 {
5325 if ((argreg & 1))
5326 {
5327 argreg++;
5328 stack_offset += MIPS32_REGSIZE;
5329 }
5330 }
5331 while (len > 0)
5332 {
5333 /* Remember if the argument was written to the stack. */
5334 int stack_used_p = 0;
5335 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5336
5337 if (mips_debug)
5338 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5339 partial_len);
5340
5341 /* Write this portion of the argument to the stack. */
5342 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5343 || odd_sized_struct)
5344 {
5345 /* Should shorter than int integer values be
5346 promoted to int before being stored? */
5347 int longword_offset = 0;
5348 CORE_ADDR addr;
5349 stack_used_p = 1;
5350
5351 if (mips_debug)
5352 {
5353 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5354 paddress (gdbarch, stack_offset));
5355 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5356 paddress (gdbarch, longword_offset));
5357 }
5358
5359 addr = sp + stack_offset + longword_offset;
5360
5361 if (mips_debug)
5362 {
5363 int i;
5364 fprintf_unfiltered (gdb_stdlog, " @%s ",
5365 paddress (gdbarch, addr));
5366 for (i = 0; i < partial_len; i++)
5367 {
5368 fprintf_unfiltered (gdb_stdlog, "%02x",
5369 val[i] & 0xff);
5370 }
5371 }
5372 write_memory (addr, val, partial_len);
5373 }
5374
5375 /* Note!!! This is NOT an else clause. Odd sized
5376 structs may go thru BOTH paths. */
5377 /* Write this portion of the argument to a general
5378 purpose register. */
5379 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5380 {
5381 LONGEST regval = extract_signed_integer (val, partial_len,
5382 byte_order);
5383 /* Value may need to be sign extended, because
5384 mips_isa_regsize() != mips_abi_regsize(). */
5385
5386 /* A non-floating-point argument being passed in a
5387 general register. If a struct or union, and if
5388 the remaining length is smaller than the register
5389 size, we have to adjust the register value on
5390 big endian targets.
5391
5392 It does not seem to be necessary to do the
5393 same for integral types.
5394
5395 Also don't do this adjustment on O64 binaries.
5396
5397 cagney/2001-07-23: gdb/179: Also, GCC, when
5398 outputting LE O32 with sizeof (struct) <
5399 mips_abi_regsize(), generates a left shift
5400 as part of storing the argument in a register
5401 (the left shift isn't generated when
5402 sizeof (struct) >= mips_abi_regsize()). Since
5403 it is quite possible that this is GCC
5404 contradicting the LE/O32 ABI, GDB has not been
5405 adjusted to accommodate this. Either someone
5406 needs to demonstrate that the LE/O32 ABI
5407 specifies such a left shift OR this new ABI gets
5408 identified as such and GDB gets tweaked
5409 accordingly. */
5410
5411 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5412 && partial_len < MIPS32_REGSIZE
5413 && (typecode == TYPE_CODE_STRUCT
5414 || typecode == TYPE_CODE_UNION))
5415 regval <<= ((MIPS32_REGSIZE - partial_len)
5416 * TARGET_CHAR_BIT);
5417
5418 if (mips_debug)
5419 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5420 argreg,
5421 phex (regval, MIPS32_REGSIZE));
5422 regcache_cooked_write_unsigned (regcache, argreg, regval);
5423 argreg++;
5424
5425 /* Prevent subsequent floating point arguments from
5426 being passed in floating point registers. */
5427 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5428 }
5429
5430 len -= partial_len;
5431 val += partial_len;
5432
5433 /* Compute the offset into the stack at which we will
5434 copy the next parameter.
5435
5436 In older ABIs, the caller reserved space for
5437 registers that contained arguments. This was loosely
5438 refered to as their "home". Consequently, space is
5439 always allocated. */
5440
5441 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5442 }
5443 }
5444 if (mips_debug)
5445 fprintf_unfiltered (gdb_stdlog, "\n");
5446 }
5447
5448 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5449
5450 /* Return adjusted stack pointer. */
5451 return sp;
5452 }
5453
5454 static enum return_value_convention
5455 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5456 struct type *type, struct regcache *regcache,
5457 gdb_byte *readbuf, const gdb_byte *writebuf)
5458 {
5459 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5460 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5462 enum mips_fval_reg fval_reg;
5463
5464 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5465 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5466 || TYPE_CODE (type) == TYPE_CODE_UNION
5467 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5468 return RETURN_VALUE_STRUCT_CONVENTION;
5469 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5470 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5471 {
5472 /* A single-precision floating-point value. If reading in or copying,
5473 then we get it from/put it to FP0 for standard MIPS code or GPR2
5474 for MIPS16 code. If writing out only, then we put it to both FP0
5475 and GPR2. We do not support reading in with no function known, if
5476 this safety check ever triggers, then we'll have to try harder. */
5477 gdb_assert (function || !readbuf);
5478 if (mips_debug)
5479 switch (fval_reg)
5480 {
5481 case mips_fval_fpr:
5482 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5483 break;
5484 case mips_fval_gpr:
5485 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5486 break;
5487 case mips_fval_both:
5488 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5489 break;
5490 }
5491 if (fval_reg != mips_fval_gpr)
5492 mips_xfer_register (gdbarch, regcache,
5493 (gdbarch_num_regs (gdbarch)
5494 + mips_regnum (gdbarch)->fp0),
5495 TYPE_LENGTH (type),
5496 gdbarch_byte_order (gdbarch),
5497 readbuf, writebuf, 0);
5498 if (fval_reg != mips_fval_fpr)
5499 mips_xfer_register (gdbarch, regcache,
5500 gdbarch_num_regs (gdbarch) + 2,
5501 TYPE_LENGTH (type),
5502 gdbarch_byte_order (gdbarch),
5503 readbuf, writebuf, 0);
5504 return RETURN_VALUE_REGISTER_CONVENTION;
5505 }
5506 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5507 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5508 {
5509 /* A double-precision floating-point value. If reading in or copying,
5510 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5511 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5512 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5513 no function known, if this safety check ever triggers, then we'll
5514 have to try harder. */
5515 gdb_assert (function || !readbuf);
5516 if (mips_debug)
5517 switch (fval_reg)
5518 {
5519 case mips_fval_fpr:
5520 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5521 break;
5522 case mips_fval_gpr:
5523 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5524 break;
5525 case mips_fval_both:
5526 fprintf_unfiltered (gdb_stderr,
5527 "Return float in $fp1/$fp0 and $2/$3\n");
5528 break;
5529 }
5530 if (fval_reg != mips_fval_gpr)
5531 {
5532 /* The most significant part goes in FP1, and the least significant
5533 in FP0. */
5534 switch (gdbarch_byte_order (gdbarch))
5535 {
5536 case BFD_ENDIAN_LITTLE:
5537 mips_xfer_register (gdbarch, regcache,
5538 (gdbarch_num_regs (gdbarch)
5539 + mips_regnum (gdbarch)->fp0 + 0),
5540 4, gdbarch_byte_order (gdbarch),
5541 readbuf, writebuf, 0);
5542 mips_xfer_register (gdbarch, regcache,
5543 (gdbarch_num_regs (gdbarch)
5544 + mips_regnum (gdbarch)->fp0 + 1),
5545 4, gdbarch_byte_order (gdbarch),
5546 readbuf, writebuf, 4);
5547 break;
5548 case BFD_ENDIAN_BIG:
5549 mips_xfer_register (gdbarch, regcache,
5550 (gdbarch_num_regs (gdbarch)
5551 + mips_regnum (gdbarch)->fp0 + 1),
5552 4, gdbarch_byte_order (gdbarch),
5553 readbuf, writebuf, 0);
5554 mips_xfer_register (gdbarch, regcache,
5555 (gdbarch_num_regs (gdbarch)
5556 + mips_regnum (gdbarch)->fp0 + 0),
5557 4, gdbarch_byte_order (gdbarch),
5558 readbuf, writebuf, 4);
5559 break;
5560 default:
5561 internal_error (__FILE__, __LINE__, _("bad switch"));
5562 }
5563 }
5564 if (fval_reg != mips_fval_fpr)
5565 {
5566 /* The two 32-bit parts are always placed in GPR2 and GPR3
5567 following these registers' memory order. */
5568 mips_xfer_register (gdbarch, regcache,
5569 gdbarch_num_regs (gdbarch) + 2,
5570 4, gdbarch_byte_order (gdbarch),
5571 readbuf, writebuf, 0);
5572 mips_xfer_register (gdbarch, regcache,
5573 gdbarch_num_regs (gdbarch) + 3,
5574 4, gdbarch_byte_order (gdbarch),
5575 readbuf, writebuf, 4);
5576 }
5577 return RETURN_VALUE_REGISTER_CONVENTION;
5578 }
5579 #if 0
5580 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5581 && TYPE_NFIELDS (type) <= 2
5582 && TYPE_NFIELDS (type) >= 1
5583 && ((TYPE_NFIELDS (type) == 1
5584 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5585 == TYPE_CODE_FLT))
5586 || (TYPE_NFIELDS (type) == 2
5587 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5588 == TYPE_CODE_FLT)
5589 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5590 == TYPE_CODE_FLT)))
5591 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5592 {
5593 /* A struct that contains one or two floats. Each value is part
5594 in the least significant part of their floating point
5595 register.. */
5596 gdb_byte reg[MAX_REGISTER_SIZE];
5597 int regnum;
5598 int field;
5599 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5600 field < TYPE_NFIELDS (type); field++, regnum += 2)
5601 {
5602 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5603 / TARGET_CHAR_BIT);
5604 if (mips_debug)
5605 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5606 offset);
5607 mips_xfer_register (gdbarch, regcache,
5608 gdbarch_num_regs (gdbarch) + regnum,
5609 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5610 gdbarch_byte_order (gdbarch),
5611 readbuf, writebuf, offset);
5612 }
5613 return RETURN_VALUE_REGISTER_CONVENTION;
5614 }
5615 #endif
5616 #if 0
5617 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5618 || TYPE_CODE (type) == TYPE_CODE_UNION)
5619 {
5620 /* A structure or union. Extract the left justified value,
5621 regardless of the byte order. I.e. DO NOT USE
5622 mips_xfer_lower. */
5623 int offset;
5624 int regnum;
5625 for (offset = 0, regnum = MIPS_V0_REGNUM;
5626 offset < TYPE_LENGTH (type);
5627 offset += register_size (gdbarch, regnum), regnum++)
5628 {
5629 int xfer = register_size (gdbarch, regnum);
5630 if (offset + xfer > TYPE_LENGTH (type))
5631 xfer = TYPE_LENGTH (type) - offset;
5632 if (mips_debug)
5633 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5634 offset, xfer, regnum);
5635 mips_xfer_register (gdbarch, regcache,
5636 gdbarch_num_regs (gdbarch) + regnum, xfer,
5637 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5638 }
5639 return RETURN_VALUE_REGISTER_CONVENTION;
5640 }
5641 #endif
5642 else
5643 {
5644 /* A scalar extract each part but least-significant-byte
5645 justified. o32 thinks registers are 4 byte, regardless of
5646 the ISA. */
5647 int offset;
5648 int regnum;
5649 for (offset = 0, regnum = MIPS_V0_REGNUM;
5650 offset < TYPE_LENGTH (type);
5651 offset += MIPS32_REGSIZE, regnum++)
5652 {
5653 int xfer = MIPS32_REGSIZE;
5654 if (offset + xfer > TYPE_LENGTH (type))
5655 xfer = TYPE_LENGTH (type) - offset;
5656 if (mips_debug)
5657 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5658 offset, xfer, regnum);
5659 mips_xfer_register (gdbarch, regcache,
5660 gdbarch_num_regs (gdbarch) + regnum, xfer,
5661 gdbarch_byte_order (gdbarch),
5662 readbuf, writebuf, offset);
5663 }
5664 return RETURN_VALUE_REGISTER_CONVENTION;
5665 }
5666 }
5667
5668 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5669 ABI. */
5670
5671 static CORE_ADDR
5672 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5673 struct regcache *regcache, CORE_ADDR bp_addr,
5674 int nargs,
5675 struct value **args, CORE_ADDR sp,
5676 int struct_return, CORE_ADDR struct_addr)
5677 {
5678 int argreg;
5679 int float_argreg;
5680 int argnum;
5681 int len = 0;
5682 int stack_offset = 0;
5683 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5684 CORE_ADDR func_addr = find_function_addr (function, NULL);
5685
5686 /* For shared libraries, "t9" needs to point at the function
5687 address. */
5688 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5689
5690 /* Set the return address register to point to the entry point of
5691 the program, where a breakpoint lies in wait. */
5692 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5693
5694 /* First ensure that the stack and structure return address (if any)
5695 are properly aligned. The stack has to be at least 64-bit
5696 aligned even on 32-bit machines, because doubles must be 64-bit
5697 aligned. For n32 and n64, stack frames need to be 128-bit
5698 aligned, so we round to this widest known alignment. */
5699
5700 sp = align_down (sp, 16);
5701 struct_addr = align_down (struct_addr, 16);
5702
5703 /* Now make space on the stack for the args. */
5704 for (argnum = 0; argnum < nargs; argnum++)
5705 {
5706 struct type *arg_type = check_typedef (value_type (args[argnum]));
5707
5708 /* Allocate space on the stack. */
5709 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5710 }
5711 sp -= align_up (len, 16);
5712
5713 if (mips_debug)
5714 fprintf_unfiltered (gdb_stdlog,
5715 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5716 paddress (gdbarch, sp), (long) align_up (len, 16));
5717
5718 /* Initialize the integer and float register pointers. */
5719 argreg = MIPS_A0_REGNUM;
5720 float_argreg = mips_fpa0_regnum (gdbarch);
5721
5722 /* The struct_return pointer occupies the first parameter-passing reg. */
5723 if (struct_return)
5724 {
5725 if (mips_debug)
5726 fprintf_unfiltered (gdb_stdlog,
5727 "mips_o64_push_dummy_call: "
5728 "struct_return reg=%d %s\n",
5729 argreg, paddress (gdbarch, struct_addr));
5730 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5731 stack_offset += MIPS64_REGSIZE;
5732 }
5733
5734 /* Now load as many as possible of the first arguments into
5735 registers, and push the rest onto the stack. Loop thru args
5736 from first to last. */
5737 for (argnum = 0; argnum < nargs; argnum++)
5738 {
5739 const gdb_byte *val;
5740 gdb_byte valbuf[MAX_REGISTER_SIZE];
5741 struct value *arg = args[argnum];
5742 struct type *arg_type = check_typedef (value_type (arg));
5743 int len = TYPE_LENGTH (arg_type);
5744 enum type_code typecode = TYPE_CODE (arg_type);
5745
5746 if (mips_debug)
5747 fprintf_unfiltered (gdb_stdlog,
5748 "mips_o64_push_dummy_call: %d len=%d type=%d",
5749 argnum + 1, len, (int) typecode);
5750
5751 val = value_contents (arg);
5752
5753 /* Function pointer arguments to mips16 code need to be made into
5754 mips16 pointers. */
5755 if (typecode == TYPE_CODE_PTR
5756 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
5757 {
5758 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
5759 len, byte_order);
5760 if (!mips_pc_is_mips (addr))
5761 {
5762 store_signed_integer (valbuf, len, byte_order,
5763 make_compact_addr (addr));
5764 val = valbuf;
5765 }
5766 }
5767
5768 /* Floating point arguments passed in registers have to be
5769 treated specially. On 32-bit architectures, doubles are
5770 passed in register pairs; the even FP register gets the
5771 low word, and the odd FP register gets the high word.
5772 On O64, the first two floating point arguments are also
5773 copied to general registers, because MIPS16 functions
5774 don't use float registers for arguments. This duplication
5775 of arguments in general registers can't hurt non-MIPS16
5776 functions because those registers are normally skipped. */
5777
5778 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5779 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5780 {
5781 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5782 if (mips_debug)
5783 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5784 float_argreg, phex (regval, len));
5785 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5786 if (mips_debug)
5787 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5788 argreg, phex (regval, len));
5789 regcache_cooked_write_unsigned (regcache, argreg, regval);
5790 argreg++;
5791 /* Reserve space for the FP register. */
5792 stack_offset += align_up (len, MIPS64_REGSIZE);
5793 }
5794 else
5795 {
5796 /* Copy the argument to general registers or the stack in
5797 register-sized pieces. Large arguments are split between
5798 registers and stack. */
5799 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5800 are treated specially: Irix cc passes them in registers
5801 where gcc sometimes puts them on the stack. For maximum
5802 compatibility, we will put them in both places. */
5803 int odd_sized_struct = (len > MIPS64_REGSIZE
5804 && len % MIPS64_REGSIZE != 0);
5805 while (len > 0)
5806 {
5807 /* Remember if the argument was written to the stack. */
5808 int stack_used_p = 0;
5809 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5810
5811 if (mips_debug)
5812 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5813 partial_len);
5814
5815 /* Write this portion of the argument to the stack. */
5816 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5817 || odd_sized_struct)
5818 {
5819 /* Should shorter than int integer values be
5820 promoted to int before being stored? */
5821 int longword_offset = 0;
5822 CORE_ADDR addr;
5823 stack_used_p = 1;
5824 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5825 {
5826 if ((typecode == TYPE_CODE_INT
5827 || typecode == TYPE_CODE_PTR
5828 || typecode == TYPE_CODE_FLT)
5829 && len <= 4)
5830 longword_offset = MIPS64_REGSIZE - len;
5831 }
5832
5833 if (mips_debug)
5834 {
5835 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5836 paddress (gdbarch, stack_offset));
5837 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5838 paddress (gdbarch, longword_offset));
5839 }
5840
5841 addr = sp + stack_offset + longword_offset;
5842
5843 if (mips_debug)
5844 {
5845 int i;
5846 fprintf_unfiltered (gdb_stdlog, " @%s ",
5847 paddress (gdbarch, addr));
5848 for (i = 0; i < partial_len; i++)
5849 {
5850 fprintf_unfiltered (gdb_stdlog, "%02x",
5851 val[i] & 0xff);
5852 }
5853 }
5854 write_memory (addr, val, partial_len);
5855 }
5856
5857 /* Note!!! This is NOT an else clause. Odd sized
5858 structs may go thru BOTH paths. */
5859 /* Write this portion of the argument to a general
5860 purpose register. */
5861 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5862 {
5863 LONGEST regval = extract_signed_integer (val, partial_len,
5864 byte_order);
5865 /* Value may need to be sign extended, because
5866 mips_isa_regsize() != mips_abi_regsize(). */
5867
5868 /* A non-floating-point argument being passed in a
5869 general register. If a struct or union, and if
5870 the remaining length is smaller than the register
5871 size, we have to adjust the register value on
5872 big endian targets.
5873
5874 It does not seem to be necessary to do the
5875 same for integral types. */
5876
5877 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5878 && partial_len < MIPS64_REGSIZE
5879 && (typecode == TYPE_CODE_STRUCT
5880 || typecode == TYPE_CODE_UNION))
5881 regval <<= ((MIPS64_REGSIZE - partial_len)
5882 * TARGET_CHAR_BIT);
5883
5884 if (mips_debug)
5885 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5886 argreg,
5887 phex (regval, MIPS64_REGSIZE));
5888 regcache_cooked_write_unsigned (regcache, argreg, regval);
5889 argreg++;
5890
5891 /* Prevent subsequent floating point arguments from
5892 being passed in floating point registers. */
5893 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5894 }
5895
5896 len -= partial_len;
5897 val += partial_len;
5898
5899 /* Compute the offset into the stack at which we will
5900 copy the next parameter.
5901
5902 In older ABIs, the caller reserved space for
5903 registers that contained arguments. This was loosely
5904 refered to as their "home". Consequently, space is
5905 always allocated. */
5906
5907 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5908 }
5909 }
5910 if (mips_debug)
5911 fprintf_unfiltered (gdb_stdlog, "\n");
5912 }
5913
5914 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5915
5916 /* Return adjusted stack pointer. */
5917 return sp;
5918 }
5919
5920 static enum return_value_convention
5921 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
5922 struct type *type, struct regcache *regcache,
5923 gdb_byte *readbuf, const gdb_byte *writebuf)
5924 {
5925 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5926 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5927 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5928 enum mips_fval_reg fval_reg;
5929
5930 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5931 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5932 || TYPE_CODE (type) == TYPE_CODE_UNION
5933 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5934 return RETURN_VALUE_STRUCT_CONVENTION;
5935 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
5936 {
5937 /* A floating-point value. If reading in or copying, then we get it
5938 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
5939 If writing out only, then we put it to both FP0 and GPR2. We do
5940 not support reading in with no function known, if this safety
5941 check ever triggers, then we'll have to try harder. */
5942 gdb_assert (function || !readbuf);
5943 if (mips_debug)
5944 switch (fval_reg)
5945 {
5946 case mips_fval_fpr:
5947 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5948 break;
5949 case mips_fval_gpr:
5950 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5951 break;
5952 case mips_fval_both:
5953 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5954 break;
5955 }
5956 if (fval_reg != mips_fval_gpr)
5957 mips_xfer_register (gdbarch, regcache,
5958 (gdbarch_num_regs (gdbarch)
5959 + mips_regnum (gdbarch)->fp0),
5960 TYPE_LENGTH (type),
5961 gdbarch_byte_order (gdbarch),
5962 readbuf, writebuf, 0);
5963 if (fval_reg != mips_fval_fpr)
5964 mips_xfer_register (gdbarch, regcache,
5965 gdbarch_num_regs (gdbarch) + 2,
5966 TYPE_LENGTH (type),
5967 gdbarch_byte_order (gdbarch),
5968 readbuf, writebuf, 0);
5969 return RETURN_VALUE_REGISTER_CONVENTION;
5970 }
5971 else
5972 {
5973 /* A scalar extract each part but least-significant-byte
5974 justified. */
5975 int offset;
5976 int regnum;
5977 for (offset = 0, regnum = MIPS_V0_REGNUM;
5978 offset < TYPE_LENGTH (type);
5979 offset += MIPS64_REGSIZE, regnum++)
5980 {
5981 int xfer = MIPS64_REGSIZE;
5982 if (offset + xfer > TYPE_LENGTH (type))
5983 xfer = TYPE_LENGTH (type) - offset;
5984 if (mips_debug)
5985 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5986 offset, xfer, regnum);
5987 mips_xfer_register (gdbarch, regcache,
5988 gdbarch_num_regs (gdbarch) + regnum,
5989 xfer, gdbarch_byte_order (gdbarch),
5990 readbuf, writebuf, offset);
5991 }
5992 return RETURN_VALUE_REGISTER_CONVENTION;
5993 }
5994 }
5995
5996 /* Floating point register management.
5997
5998 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
5999 64bit operations, these early MIPS cpus treat fp register pairs
6000 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6001 registers and offer a compatibility mode that emulates the MIPS2 fp
6002 model. When operating in MIPS2 fp compat mode, later cpu's split
6003 double precision floats into two 32-bit chunks and store them in
6004 consecutive fp regs. To display 64-bit floats stored in this
6005 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6006 Throw in user-configurable endianness and you have a real mess.
6007
6008 The way this works is:
6009 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6010 double-precision value will be split across two logical registers.
6011 The lower-numbered logical register will hold the low-order bits,
6012 regardless of the processor's endianness.
6013 - If we are on a 64-bit processor, and we are looking for a
6014 single-precision value, it will be in the low ordered bits
6015 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6016 save slot in memory.
6017 - If we are in 64-bit mode, everything is straightforward.
6018
6019 Note that this code only deals with "live" registers at the top of the
6020 stack. We will attempt to deal with saved registers later, when
6021 the raw/cooked register interface is in place. (We need a general
6022 interface that can deal with dynamic saved register sizes -- fp
6023 regs could be 32 bits wide in one frame and 64 on the frame above
6024 and below). */
6025
6026 /* Copy a 32-bit single-precision value from the current frame
6027 into rare_buffer. */
6028
6029 static void
6030 mips_read_fp_register_single (struct frame_info *frame, int regno,
6031 gdb_byte *rare_buffer)
6032 {
6033 struct gdbarch *gdbarch = get_frame_arch (frame);
6034 int raw_size = register_size (gdbarch, regno);
6035 gdb_byte *raw_buffer = alloca (raw_size);
6036
6037 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6038 error (_("can't read register %d (%s)"),
6039 regno, gdbarch_register_name (gdbarch, regno));
6040 if (raw_size == 8)
6041 {
6042 /* We have a 64-bit value for this register. Find the low-order
6043 32 bits. */
6044 int offset;
6045
6046 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6047 offset = 4;
6048 else
6049 offset = 0;
6050
6051 memcpy (rare_buffer, raw_buffer + offset, 4);
6052 }
6053 else
6054 {
6055 memcpy (rare_buffer, raw_buffer, 4);
6056 }
6057 }
6058
6059 /* Copy a 64-bit double-precision value from the current frame into
6060 rare_buffer. This may include getting half of it from the next
6061 register. */
6062
6063 static void
6064 mips_read_fp_register_double (struct frame_info *frame, int regno,
6065 gdb_byte *rare_buffer)
6066 {
6067 struct gdbarch *gdbarch = get_frame_arch (frame);
6068 int raw_size = register_size (gdbarch, regno);
6069
6070 if (raw_size == 8 && !mips2_fp_compat (frame))
6071 {
6072 /* We have a 64-bit value for this register, and we should use
6073 all 64 bits. */
6074 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6075 error (_("can't read register %d (%s)"),
6076 regno, gdbarch_register_name (gdbarch, regno));
6077 }
6078 else
6079 {
6080 int rawnum = regno % gdbarch_num_regs (gdbarch);
6081
6082 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6083 internal_error (__FILE__, __LINE__,
6084 _("mips_read_fp_register_double: bad access to "
6085 "odd-numbered FP register"));
6086
6087 /* mips_read_fp_register_single will find the correct 32 bits from
6088 each register. */
6089 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6090 {
6091 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6092 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6093 }
6094 else
6095 {
6096 mips_read_fp_register_single (frame, regno, rare_buffer);
6097 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6098 }
6099 }
6100 }
6101
6102 static void
6103 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6104 int regnum)
6105 { /* Do values for FP (float) regs. */
6106 struct gdbarch *gdbarch = get_frame_arch (frame);
6107 gdb_byte *raw_buffer;
6108 double doub, flt1; /* Doubles extracted from raw hex data. */
6109 int inv1, inv2;
6110
6111 raw_buffer = alloca (2 * register_size (gdbarch,
6112 mips_regnum (gdbarch)->fp0));
6113
6114 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6115 fprintf_filtered (file, "%*s",
6116 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6117 "");
6118
6119 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6120 {
6121 struct value_print_options opts;
6122
6123 /* 4-byte registers: Print hex and floating. Also print even
6124 numbered registers as doubles. */
6125 mips_read_fp_register_single (frame, regnum, raw_buffer);
6126 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6127 raw_buffer, &inv1);
6128
6129 get_formatted_print_options (&opts, 'x');
6130 print_scalar_formatted (raw_buffer,
6131 builtin_type (gdbarch)->builtin_uint32,
6132 &opts, 'w', file);
6133
6134 fprintf_filtered (file, " flt: ");
6135 if (inv1)
6136 fprintf_filtered (file, " <invalid float> ");
6137 else
6138 fprintf_filtered (file, "%-17.9g", flt1);
6139
6140 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6141 {
6142 mips_read_fp_register_double (frame, regnum, raw_buffer);
6143 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6144 raw_buffer, &inv2);
6145
6146 fprintf_filtered (file, " dbl: ");
6147 if (inv2)
6148 fprintf_filtered (file, "<invalid double>");
6149 else
6150 fprintf_filtered (file, "%-24.17g", doub);
6151 }
6152 }
6153 else
6154 {
6155 struct value_print_options opts;
6156
6157 /* Eight byte registers: print each one as hex, float and double. */
6158 mips_read_fp_register_single (frame, regnum, raw_buffer);
6159 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6160 raw_buffer, &inv1);
6161
6162 mips_read_fp_register_double (frame, regnum, raw_buffer);
6163 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6164 raw_buffer, &inv2);
6165
6166 get_formatted_print_options (&opts, 'x');
6167 print_scalar_formatted (raw_buffer,
6168 builtin_type (gdbarch)->builtin_uint64,
6169 &opts, 'g', file);
6170
6171 fprintf_filtered (file, " flt: ");
6172 if (inv1)
6173 fprintf_filtered (file, "<invalid float>");
6174 else
6175 fprintf_filtered (file, "%-17.9g", flt1);
6176
6177 fprintf_filtered (file, " dbl: ");
6178 if (inv2)
6179 fprintf_filtered (file, "<invalid double>");
6180 else
6181 fprintf_filtered (file, "%-24.17g", doub);
6182 }
6183 }
6184
6185 static void
6186 mips_print_register (struct ui_file *file, struct frame_info *frame,
6187 int regnum)
6188 {
6189 struct gdbarch *gdbarch = get_frame_arch (frame);
6190 struct value_print_options opts;
6191 struct value *val;
6192
6193 if (mips_float_register_p (gdbarch, regnum))
6194 {
6195 mips_print_fp_register (file, frame, regnum);
6196 return;
6197 }
6198
6199 val = get_frame_register_value (frame, regnum);
6200 if (value_optimized_out (val))
6201 {
6202 fprintf_filtered (file, "%s: [Invalid]",
6203 gdbarch_register_name (gdbarch, regnum));
6204 return;
6205 }
6206
6207 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6208
6209 /* The problem with printing numeric register names (r26, etc.) is that
6210 the user can't use them on input. Probably the best solution is to
6211 fix it so that either the numeric or the funky (a2, etc.) names
6212 are accepted on input. */
6213 if (regnum < MIPS_NUMREGS)
6214 fprintf_filtered (file, "(r%d): ", regnum);
6215 else
6216 fprintf_filtered (file, ": ");
6217
6218 get_formatted_print_options (&opts, 'x');
6219 val_print_scalar_formatted (value_type (val),
6220 value_contents_for_printing (val),
6221 value_embedded_offset (val),
6222 val,
6223 &opts, 0, file);
6224 }
6225
6226 /* Replacement for generic do_registers_info.
6227 Print regs in pretty columns. */
6228
6229 static int
6230 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6231 int regnum)
6232 {
6233 fprintf_filtered (file, " ");
6234 mips_print_fp_register (file, frame, regnum);
6235 fprintf_filtered (file, "\n");
6236 return regnum + 1;
6237 }
6238
6239
6240 /* Print a row's worth of GP (int) registers, with name labels above. */
6241
6242 static int
6243 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6244 int start_regnum)
6245 {
6246 struct gdbarch *gdbarch = get_frame_arch (frame);
6247 /* Do values for GP (int) regs. */
6248 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
6249 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6250 per row. */
6251 int col, byte;
6252 int regnum;
6253
6254 /* For GP registers, we print a separate row of names above the vals. */
6255 for (col = 0, regnum = start_regnum;
6256 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6257 + gdbarch_num_pseudo_regs (gdbarch);
6258 regnum++)
6259 {
6260 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6261 continue; /* unused register */
6262 if (mips_float_register_p (gdbarch, regnum))
6263 break; /* End the row: reached FP register. */
6264 /* Large registers are handled separately. */
6265 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6266 {
6267 if (col > 0)
6268 break; /* End the row before this register. */
6269
6270 /* Print this register on a row by itself. */
6271 mips_print_register (file, frame, regnum);
6272 fprintf_filtered (file, "\n");
6273 return regnum + 1;
6274 }
6275 if (col == 0)
6276 fprintf_filtered (file, " ");
6277 fprintf_filtered (file,
6278 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6279 gdbarch_register_name (gdbarch, regnum));
6280 col++;
6281 }
6282
6283 if (col == 0)
6284 return regnum;
6285
6286 /* Print the R0 to R31 names. */
6287 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6288 fprintf_filtered (file, "\n R%-4d",
6289 start_regnum % gdbarch_num_regs (gdbarch));
6290 else
6291 fprintf_filtered (file, "\n ");
6292
6293 /* Now print the values in hex, 4 or 8 to the row. */
6294 for (col = 0, regnum = start_regnum;
6295 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6296 + gdbarch_num_pseudo_regs (gdbarch);
6297 regnum++)
6298 {
6299 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6300 continue; /* unused register */
6301 if (mips_float_register_p (gdbarch, regnum))
6302 break; /* End row: reached FP register. */
6303 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6304 break; /* End row: large register. */
6305
6306 /* OK: get the data in raw format. */
6307 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
6308 error (_("can't read register %d (%s)"),
6309 regnum, gdbarch_register_name (gdbarch, regnum));
6310 /* pad small registers */
6311 for (byte = 0;
6312 byte < (mips_abi_regsize (gdbarch)
6313 - register_size (gdbarch, regnum)); byte++)
6314 printf_filtered (" ");
6315 /* Now print the register value in hex, endian order. */
6316 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6317 for (byte =
6318 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6319 byte < register_size (gdbarch, regnum); byte++)
6320 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6321 else
6322 for (byte = register_size (gdbarch, regnum) - 1;
6323 byte >= 0; byte--)
6324 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6325 fprintf_filtered (file, " ");
6326 col++;
6327 }
6328 if (col > 0) /* ie. if we actually printed anything... */
6329 fprintf_filtered (file, "\n");
6330
6331 return regnum;
6332 }
6333
6334 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6335
6336 static void
6337 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6338 struct frame_info *frame, int regnum, int all)
6339 {
6340 if (regnum != -1) /* Do one specified register. */
6341 {
6342 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6343 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6344 error (_("Not a valid register for the current processor type"));
6345
6346 mips_print_register (file, frame, regnum);
6347 fprintf_filtered (file, "\n");
6348 }
6349 else
6350 /* Do all (or most) registers. */
6351 {
6352 regnum = gdbarch_num_regs (gdbarch);
6353 while (regnum < gdbarch_num_regs (gdbarch)
6354 + gdbarch_num_pseudo_regs (gdbarch))
6355 {
6356 if (mips_float_register_p (gdbarch, regnum))
6357 {
6358 if (all) /* True for "INFO ALL-REGISTERS" command. */
6359 regnum = print_fp_register_row (file, frame, regnum);
6360 else
6361 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6362 }
6363 else
6364 regnum = print_gp_register_row (file, frame, regnum);
6365 }
6366 }
6367 }
6368
6369 static int
6370 mips_single_step_through_delay (struct gdbarch *gdbarch,
6371 struct frame_info *frame)
6372 {
6373 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6374 CORE_ADDR pc = get_frame_pc (frame);
6375 struct address_space *aspace;
6376 enum mips_isa isa;
6377 ULONGEST insn;
6378 int status;
6379 int size;
6380
6381 if ((mips_pc_is_mips (pc)
6382 && !mips32_instruction_has_delay_slot (gdbarch, pc))
6383 || (mips_pc_is_micromips (gdbarch, pc)
6384 && !micromips_instruction_has_delay_slot (gdbarch, pc, 0))
6385 || (mips_pc_is_mips16 (gdbarch, pc)
6386 && !mips16_instruction_has_delay_slot (gdbarch, pc, 0)))
6387 return 0;
6388
6389 isa = mips_pc_isa (gdbarch, pc);
6390 /* _has_delay_slot above will have validated the read. */
6391 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6392 size = mips_insn_size (isa, insn);
6393 aspace = get_frame_address_space (frame);
6394 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6395 }
6396
6397 /* To skip prologues, I use this predicate. Returns either PC itself
6398 if the code at PC does not look like a function prologue; otherwise
6399 returns an address that (if we're lucky) follows the prologue. If
6400 LENIENT, then we must skip everything which is involved in setting
6401 up the frame (it's OK to skip more, just so long as we don't skip
6402 anything which might clobber the registers which are being saved.
6403 We must skip more in the case where part of the prologue is in the
6404 delay slot of a non-prologue instruction). */
6405
6406 static CORE_ADDR
6407 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6408 {
6409 CORE_ADDR limit_pc;
6410 CORE_ADDR func_addr;
6411
6412 /* See if we can determine the end of the prologue via the symbol table.
6413 If so, then return either PC, or the PC after the prologue, whichever
6414 is greater. */
6415 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6416 {
6417 CORE_ADDR post_prologue_pc
6418 = skip_prologue_using_sal (gdbarch, func_addr);
6419 if (post_prologue_pc != 0)
6420 return max (pc, post_prologue_pc);
6421 }
6422
6423 /* Can't determine prologue from the symbol table, need to examine
6424 instructions. */
6425
6426 /* Find an upper limit on the function prologue using the debug
6427 information. If the debug information could not be used to provide
6428 that bound, then use an arbitrary large number as the upper bound. */
6429 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6430 if (limit_pc == 0)
6431 limit_pc = pc + 100; /* Magic. */
6432
6433 if (mips_pc_is_mips16 (gdbarch, pc))
6434 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6435 else if (mips_pc_is_micromips (gdbarch, pc))
6436 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6437 else
6438 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6439 }
6440
6441 /* Check whether the PC is in a function epilogue (32-bit version).
6442 This is a helper function for mips_in_function_epilogue_p. */
6443 static int
6444 mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6445 {
6446 CORE_ADDR func_addr = 0, func_end = 0;
6447
6448 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6449 {
6450 /* The MIPS epilogue is max. 12 bytes long. */
6451 CORE_ADDR addr = func_end - 12;
6452
6453 if (addr < func_addr + 4)
6454 addr = func_addr + 4;
6455 if (pc < addr)
6456 return 0;
6457
6458 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6459 {
6460 unsigned long high_word;
6461 unsigned long inst;
6462
6463 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6464 high_word = (inst >> 16) & 0xffff;
6465
6466 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6467 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6468 && inst != 0x03e00008 /* jr $ra */
6469 && inst != 0x00000000) /* nop */
6470 return 0;
6471 }
6472
6473 return 1;
6474 }
6475
6476 return 0;
6477 }
6478
6479 /* Check whether the PC is in a function epilogue (microMIPS version).
6480 This is a helper function for mips_in_function_epilogue_p. */
6481
6482 static int
6483 micromips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6484 {
6485 CORE_ADDR func_addr = 0;
6486 CORE_ADDR func_end = 0;
6487 CORE_ADDR addr;
6488 ULONGEST insn;
6489 long offset;
6490 int dreg;
6491 int sreg;
6492 int loc;
6493
6494 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6495 return 0;
6496
6497 /* The microMIPS epilogue is max. 12 bytes long. */
6498 addr = func_end - 12;
6499
6500 if (addr < func_addr + 2)
6501 addr = func_addr + 2;
6502 if (pc < addr)
6503 return 0;
6504
6505 for (; pc < func_end; pc += loc)
6506 {
6507 loc = 0;
6508 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6509 loc += MIPS_INSN16_SIZE;
6510 switch (mips_insn_size (ISA_MICROMIPS, insn))
6511 {
6512 /* 48-bit instructions. */
6513 case 3 * MIPS_INSN16_SIZE:
6514 /* No epilogue instructions in this category. */
6515 return 0;
6516
6517 /* 32-bit instructions. */
6518 case 2 * MIPS_INSN16_SIZE:
6519 insn <<= 16;
6520 insn |= mips_fetch_instruction (gdbarch,
6521 ISA_MICROMIPS, pc + loc, NULL);
6522 loc += MIPS_INSN16_SIZE;
6523 switch (micromips_op (insn >> 16))
6524 {
6525 case 0xc: /* ADDIU: bits 001100 */
6526 case 0x17: /* DADDIU: bits 010111 */
6527 sreg = b0s5_reg (insn >> 16);
6528 dreg = b5s5_reg (insn >> 16);
6529 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6530 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6531 /* (D)ADDIU $sp, imm */
6532 && offset >= 0)
6533 break;
6534 return 0;
6535
6536 default:
6537 return 0;
6538 }
6539 break;
6540
6541 /* 16-bit instructions. */
6542 case MIPS_INSN16_SIZE:
6543 switch (micromips_op (insn))
6544 {
6545 case 0x3: /* MOVE: bits 000011 */
6546 sreg = b0s5_reg (insn);
6547 dreg = b5s5_reg (insn);
6548 if (sreg == 0 && dreg == 0)
6549 /* MOVE $zero, $zero aka NOP */
6550 break;
6551 return 0;
6552
6553 case 0x11: /* POOL16C: bits 010001 */
6554 if (b5s5_op (insn) == 0x18
6555 /* JRADDIUSP: bits 010011 11000 */
6556 || (b5s5_op (insn) == 0xd
6557 /* JRC: bits 010011 01101 */
6558 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6559 /* JRC $ra */
6560 break;
6561 return 0;
6562
6563 case 0x13: /* POOL16D: bits 010011 */
6564 offset = micromips_decode_imm9 (b1s9_imm (insn));
6565 if ((insn & 0x1) == 0x1
6566 /* ADDIUSP: bits 010011 1 */
6567 && offset > 0)
6568 break;
6569 return 0;
6570
6571 default:
6572 return 0;
6573 }
6574 }
6575 }
6576
6577 return 1;
6578 }
6579
6580 /* Check whether the PC is in a function epilogue (16-bit version).
6581 This is a helper function for mips_in_function_epilogue_p. */
6582 static int
6583 mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6584 {
6585 CORE_ADDR func_addr = 0, func_end = 0;
6586
6587 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6588 {
6589 /* The MIPS epilogue is max. 12 bytes long. */
6590 CORE_ADDR addr = func_end - 12;
6591
6592 if (addr < func_addr + 4)
6593 addr = func_addr + 4;
6594 if (pc < addr)
6595 return 0;
6596
6597 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6598 {
6599 unsigned short inst;
6600
6601 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6602
6603 if ((inst & 0xf800) == 0xf000) /* extend */
6604 continue;
6605
6606 if (inst != 0x6300 /* addiu $sp,offset */
6607 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6608 && inst != 0xe820 /* jr $ra */
6609 && inst != 0xe8a0 /* jrc $ra */
6610 && inst != 0x6500) /* nop */
6611 return 0;
6612 }
6613
6614 return 1;
6615 }
6616
6617 return 0;
6618 }
6619
6620 /* The epilogue is defined here as the area at the end of a function,
6621 after an instruction which destroys the function's stack frame. */
6622 static int
6623 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6624 {
6625 if (mips_pc_is_mips16 (gdbarch, pc))
6626 return mips16_in_function_epilogue_p (gdbarch, pc);
6627 else if (mips_pc_is_micromips (gdbarch, pc))
6628 return micromips_in_function_epilogue_p (gdbarch, pc);
6629 else
6630 return mips32_in_function_epilogue_p (gdbarch, pc);
6631 }
6632
6633 /* Root of all "set mips "/"show mips " commands. This will eventually be
6634 used for all MIPS-specific commands. */
6635
6636 static void
6637 show_mips_command (char *args, int from_tty)
6638 {
6639 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6640 }
6641
6642 static void
6643 set_mips_command (char *args, int from_tty)
6644 {
6645 printf_unfiltered
6646 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6647 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6648 }
6649
6650 /* Commands to show/set the MIPS FPU type. */
6651
6652 static void
6653 show_mipsfpu_command (char *args, int from_tty)
6654 {
6655 char *fpu;
6656
6657 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6658 {
6659 printf_unfiltered
6660 ("The MIPS floating-point coprocessor is unknown "
6661 "because the current architecture is not MIPS.\n");
6662 return;
6663 }
6664
6665 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6666 {
6667 case MIPS_FPU_SINGLE:
6668 fpu = "single-precision";
6669 break;
6670 case MIPS_FPU_DOUBLE:
6671 fpu = "double-precision";
6672 break;
6673 case MIPS_FPU_NONE:
6674 fpu = "absent (none)";
6675 break;
6676 default:
6677 internal_error (__FILE__, __LINE__, _("bad switch"));
6678 }
6679 if (mips_fpu_type_auto)
6680 printf_unfiltered ("The MIPS floating-point coprocessor "
6681 "is set automatically (currently %s)\n",
6682 fpu);
6683 else
6684 printf_unfiltered
6685 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6686 }
6687
6688
6689 static void
6690 set_mipsfpu_command (char *args, int from_tty)
6691 {
6692 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6693 "\"single\",\"none\" or \"auto\".\n");
6694 show_mipsfpu_command (args, from_tty);
6695 }
6696
6697 static void
6698 set_mipsfpu_single_command (char *args, int from_tty)
6699 {
6700 struct gdbarch_info info;
6701 gdbarch_info_init (&info);
6702 mips_fpu_type = MIPS_FPU_SINGLE;
6703 mips_fpu_type_auto = 0;
6704 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6705 instead of relying on globals. Doing that would let generic code
6706 handle the search for this specific architecture. */
6707 if (!gdbarch_update_p (info))
6708 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6709 }
6710
6711 static void
6712 set_mipsfpu_double_command (char *args, int from_tty)
6713 {
6714 struct gdbarch_info info;
6715 gdbarch_info_init (&info);
6716 mips_fpu_type = MIPS_FPU_DOUBLE;
6717 mips_fpu_type_auto = 0;
6718 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6719 instead of relying on globals. Doing that would let generic code
6720 handle the search for this specific architecture. */
6721 if (!gdbarch_update_p (info))
6722 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6723 }
6724
6725 static void
6726 set_mipsfpu_none_command (char *args, int from_tty)
6727 {
6728 struct gdbarch_info info;
6729 gdbarch_info_init (&info);
6730 mips_fpu_type = MIPS_FPU_NONE;
6731 mips_fpu_type_auto = 0;
6732 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6733 instead of relying on globals. Doing that would let generic code
6734 handle the search for this specific architecture. */
6735 if (!gdbarch_update_p (info))
6736 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6737 }
6738
6739 static void
6740 set_mipsfpu_auto_command (char *args, int from_tty)
6741 {
6742 mips_fpu_type_auto = 1;
6743 }
6744
6745 /* Attempt to identify the particular processor model by reading the
6746 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
6747 the relevant processor still exists (it dates back to '94) and
6748 secondly this is not the way to do this. The processor type should
6749 be set by forcing an architecture change. */
6750
6751 void
6752 deprecated_mips_set_processor_regs_hack (void)
6753 {
6754 struct regcache *regcache = get_current_regcache ();
6755 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6757 ULONGEST prid;
6758
6759 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
6760 if ((prid & ~0xf) == 0x700)
6761 tdep->mips_processor_reg_names = mips_r3041_reg_names;
6762 }
6763
6764 /* Just like reinit_frame_cache, but with the right arguments to be
6765 callable as an sfunc. */
6766
6767 static void
6768 reinit_frame_cache_sfunc (char *args, int from_tty,
6769 struct cmd_list_element *c)
6770 {
6771 reinit_frame_cache ();
6772 }
6773
6774 static int
6775 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
6776 {
6777 struct gdbarch *gdbarch = info->application_data;
6778
6779 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6780 disassembler needs to be able to locally determine the ISA, and
6781 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6782 work. */
6783 if (mips_pc_is_mips16 (gdbarch, memaddr))
6784 info->mach = bfd_mach_mips16;
6785 else if (mips_pc_is_micromips (gdbarch, memaddr))
6786 info->mach = bfd_mach_mips_micromips;
6787
6788 /* Round down the instruction address to the appropriate boundary. */
6789 memaddr &= (info->mach == bfd_mach_mips16
6790 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
6791
6792 /* Set the disassembler options. */
6793 if (!info->disassembler_options)
6794 /* This string is not recognized explicitly by the disassembler,
6795 but it tells the disassembler to not try to guess the ABI from
6796 the bfd elf headers, such that, if the user overrides the ABI
6797 of a program linked as NewABI, the disassembly will follow the
6798 register naming conventions specified by the user. */
6799 info->disassembler_options = "gpr-names=32";
6800
6801 /* Call the appropriate disassembler based on the target endian-ness. */
6802 if (info->endian == BFD_ENDIAN_BIG)
6803 return print_insn_big_mips (memaddr, info);
6804 else
6805 return print_insn_little_mips (memaddr, info);
6806 }
6807
6808 static int
6809 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
6810 {
6811 /* Set up the disassembler info, so that we get the right
6812 register names from libopcodes. */
6813 info->disassembler_options = "gpr-names=n32";
6814 info->flavour = bfd_target_elf_flavour;
6815
6816 return gdb_print_insn_mips (memaddr, info);
6817 }
6818
6819 static int
6820 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
6821 {
6822 /* Set up the disassembler info, so that we get the right
6823 register names from libopcodes. */
6824 info->disassembler_options = "gpr-names=64";
6825 info->flavour = bfd_target_elf_flavour;
6826
6827 return gdb_print_insn_mips (memaddr, info);
6828 }
6829
6830 /* This function implements gdbarch_breakpoint_from_pc. It uses the
6831 program counter value to determine whether a 16- or 32-bit breakpoint
6832 should be used. It returns a pointer to a string of bytes that encode a
6833 breakpoint instruction, stores the length of the string to *lenptr, and
6834 adjusts pc (if necessary) to point to the actual memory location where
6835 the breakpoint should be inserted. */
6836
6837 static const gdb_byte *
6838 mips_breakpoint_from_pc (struct gdbarch *gdbarch,
6839 CORE_ADDR *pcptr, int *lenptr)
6840 {
6841 CORE_ADDR pc = *pcptr;
6842
6843 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6844 {
6845 if (mips_pc_is_mips16 (gdbarch, pc))
6846 {
6847 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
6848 *pcptr = unmake_compact_addr (pc);
6849 *lenptr = sizeof (mips16_big_breakpoint);
6850 return mips16_big_breakpoint;
6851 }
6852 else if (mips_pc_is_micromips (gdbarch, pc))
6853 {
6854 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
6855 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
6856 ULONGEST insn;
6857 int status;
6858 int size;
6859
6860 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6861 size = status ? 2
6862 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6863 *pcptr = unmake_compact_addr (pc);
6864 *lenptr = size;
6865 return (size == 2) ? micromips16_big_breakpoint
6866 : micromips32_big_breakpoint;
6867 }
6868 else
6869 {
6870 /* The IDT board uses an unusual breakpoint value, and
6871 sometimes gets confused when it sees the usual MIPS
6872 breakpoint instruction. */
6873 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
6874 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
6875 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
6876 /* Likewise, IRIX appears to expect a different breakpoint,
6877 although this is not apparent until you try to use pthreads. */
6878 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
6879
6880 *lenptr = sizeof (big_breakpoint);
6881
6882 if (strcmp (target_shortname, "mips") == 0)
6883 return idt_big_breakpoint;
6884 else if (strcmp (target_shortname, "ddb") == 0
6885 || strcmp (target_shortname, "pmon") == 0
6886 || strcmp (target_shortname, "lsi") == 0)
6887 return pmon_big_breakpoint;
6888 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
6889 return irix_big_breakpoint;
6890 else
6891 return big_breakpoint;
6892 }
6893 }
6894 else
6895 {
6896 if (mips_pc_is_mips16 (gdbarch, pc))
6897 {
6898 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
6899 *pcptr = unmake_compact_addr (pc);
6900 *lenptr = sizeof (mips16_little_breakpoint);
6901 return mips16_little_breakpoint;
6902 }
6903 else if (mips_pc_is_micromips (gdbarch, pc))
6904 {
6905 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
6906 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
6907 ULONGEST insn;
6908 int status;
6909 int size;
6910
6911 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6912 size = status ? 2
6913 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6914 *pcptr = unmake_compact_addr (pc);
6915 *lenptr = size;
6916 return (size == 2) ? micromips16_little_breakpoint
6917 : micromips32_little_breakpoint;
6918 }
6919 else
6920 {
6921 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
6922 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
6923 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
6924
6925 *lenptr = sizeof (little_breakpoint);
6926
6927 if (strcmp (target_shortname, "mips") == 0)
6928 return idt_little_breakpoint;
6929 else if (strcmp (target_shortname, "ddb") == 0
6930 || strcmp (target_shortname, "pmon") == 0
6931 || strcmp (target_shortname, "lsi") == 0)
6932 return pmon_little_breakpoint;
6933 else
6934 return little_breakpoint;
6935 }
6936 }
6937 }
6938
6939 /* Determine the remote breakpoint kind suitable for the PC. The following
6940 kinds are used:
6941
6942 * 2 -- 16-bit MIPS16 mode breakpoint,
6943
6944 * 3 -- 16-bit microMIPS mode breakpoint,
6945
6946 * 4 -- 32-bit standard MIPS mode breakpoint,
6947
6948 * 5 -- 32-bit microMIPS mode breakpoint. */
6949
6950 static void
6951 mips_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
6952 int *kindptr)
6953 {
6954 CORE_ADDR pc = *pcptr;
6955
6956 if (mips_pc_is_mips16 (gdbarch, pc))
6957 {
6958 *pcptr = unmake_compact_addr (pc);
6959 *kindptr = 2;
6960 }
6961 else if (mips_pc_is_micromips (gdbarch, pc))
6962 {
6963 ULONGEST insn;
6964 int status;
6965 int size;
6966
6967 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
6968 size = status ? 2 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
6969 *pcptr = unmake_compact_addr (pc);
6970 *kindptr = size | 1;
6971 }
6972 else
6973 *kindptr = 4;
6974 }
6975
6976 /* Return non-zero if the ADDR instruction has a branch delay slot
6977 (i.e. it is a jump or branch instruction). This function is based
6978 on mips32_next_pc. */
6979
6980 static int
6981 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
6982 {
6983 unsigned long inst;
6984 int status;
6985 int op;
6986 int rs;
6987 int rt;
6988
6989 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
6990 if (status)
6991 return 0;
6992
6993 op = itype_op (inst);
6994 if ((inst & 0xe0000000) != 0)
6995 {
6996 rs = itype_rs (inst);
6997 rt = itype_rt (inst);
6998 return (is_octeon_bbit_op (op, gdbarch)
6999 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7000 || op == 29 /* JALX: bits 011101 */
7001 || (op == 17
7002 && (rs == 8
7003 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7004 || (rs == 9 && (rt & 0x2) == 0)
7005 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7006 || (rs == 10 && (rt & 0x2) == 0))));
7007 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7008 }
7009 else
7010 switch (op & 0x07) /* extract bits 28,27,26 */
7011 {
7012 case 0: /* SPECIAL */
7013 op = rtype_funct (inst);
7014 return (op == 8 /* JR */
7015 || op == 9); /* JALR */
7016 break; /* end SPECIAL */
7017 case 1: /* REGIMM */
7018 rs = itype_rs (inst);
7019 rt = itype_rt (inst); /* branch condition */
7020 return ((rt & 0xc) == 0
7021 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7022 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7023 || ((rt & 0x1e) == 0x1c && rs == 0));
7024 /* BPOSGE32, BPOSGE64: bits 1110x */
7025 break; /* end REGIMM */
7026 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7027 return 1;
7028 break;
7029 }
7030 }
7031
7032 /* Return non-zero if the ADDR instruction, which must be a 32-bit
7033 instruction if MUSTBE32 is set or can be any instruction otherwise,
7034 has a branch delay slot (i.e. it is a non-compact jump instruction). */
7035
7036 static int
7037 micromips_instruction_has_delay_slot (struct gdbarch *gdbarch,
7038 CORE_ADDR addr, int mustbe32)
7039 {
7040 ULONGEST insn;
7041 int status;
7042
7043 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7044 if (status)
7045 return 0;
7046
7047 if (!mustbe32) /* 16-bit instructions. */
7048 return (micromips_op (insn) == 0x11
7049 /* POOL16C: bits 010001 */
7050 && (b5s5_op (insn) == 0xc
7051 /* JR16: bits 010001 01100 */
7052 || (b5s5_op (insn) & 0x1e) == 0xe))
7053 /* JALR16, JALRS16: bits 010001 0111x */
7054 || (micromips_op (insn) & 0x37) == 0x23
7055 /* BEQZ16, BNEZ16: bits 10x011 */
7056 || micromips_op (insn) == 0x33;
7057 /* B16: bits 110011 */
7058
7059 /* 32-bit instructions. */
7060 if (micromips_op (insn) == 0x0)
7061 /* POOL32A: bits 000000 */
7062 {
7063 insn <<= 16;
7064 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7065 if (status)
7066 return 0;
7067 return b0s6_op (insn) == 0x3c
7068 /* POOL32Axf: bits 000000 ... 111100 */
7069 && (b6s10_ext (insn) & 0x2bf) == 0x3c;
7070 /* JALR, JALR.HB: 000000 000x111100 111100 */
7071 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7072 }
7073
7074 return (micromips_op (insn) == 0x10
7075 /* POOL32I: bits 010000 */
7076 && ((b5s5_op (insn) & 0x1c) == 0x0
7077 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7078 || (b5s5_op (insn) & 0x1d) == 0x4
7079 /* BLEZ, BGTZ: bits 010000 001x0 */
7080 || (b5s5_op (insn) & 0x1d) == 0x11
7081 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7082 || ((b5s5_op (insn) & 0x1e) == 0x14
7083 && (insn & 0x3) == 0x0)
7084 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7085 || (b5s5_op (insn) & 0x1e) == 0x1a
7086 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7087 || ((b5s5_op (insn) & 0x1e) == 0x1c
7088 && (insn & 0x3) == 0x0)
7089 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7090 || ((b5s5_op (insn) & 0x1c) == 0x1c
7091 && (insn & 0x3) == 0x1)))
7092 /* BC1ANY*: bits 010000 111xx xxx01 */
7093 || (micromips_op (insn) & 0x1f) == 0x1d
7094 /* JALS, JAL: bits x11101 */
7095 || (micromips_op (insn) & 0x37) == 0x25
7096 /* BEQ, BNE: bits 10x101 */
7097 || micromips_op (insn) == 0x35
7098 /* J: bits 110101 */
7099 || micromips_op (insn) == 0x3c;
7100 /* JALX: bits 111100 */
7101 }
7102
7103 static int
7104 mips16_instruction_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr,
7105 int mustbe32)
7106 {
7107 unsigned short inst;
7108 int status;
7109
7110 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7111 if (status)
7112 return 0;
7113
7114 if (!mustbe32)
7115 return (inst & 0xf89f) == 0xe800; /* JR/JALR (16-bit instruction) */
7116 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7117 }
7118
7119 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7120 This assumes KSSEG exists. */
7121
7122 static CORE_ADDR
7123 mips_segment_boundary (CORE_ADDR bpaddr)
7124 {
7125 CORE_ADDR mask = CORE_ADDR_MAX;
7126 int segsize;
7127
7128 if (sizeof (CORE_ADDR) == 8)
7129 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7130 a compiler warning produced where CORE_ADDR is a 32-bit type even
7131 though in that case this is dead code). */
7132 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7133 {
7134 case 3:
7135 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7136 segsize = 29; /* 32-bit compatibility segment */
7137 else
7138 segsize = 62; /* xkseg */
7139 break;
7140 case 2: /* xkphys */
7141 segsize = 59;
7142 break;
7143 default: /* xksseg (1), xkuseg/kuseg (0) */
7144 segsize = 62;
7145 break;
7146 }
7147 else if (bpaddr & 0x80000000) /* kernel segment */
7148 segsize = 29;
7149 else
7150 segsize = 31; /* user segment */
7151 mask <<= segsize;
7152 return bpaddr & mask;
7153 }
7154
7155 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7156 it backwards if necessary. Return the address of the new location. */
7157
7158 static CORE_ADDR
7159 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7160 {
7161 CORE_ADDR prev_addr;
7162 CORE_ADDR boundary;
7163 CORE_ADDR func_addr;
7164
7165 /* If a breakpoint is set on the instruction in a branch delay slot,
7166 GDB gets confused. When the breakpoint is hit, the PC isn't on
7167 the instruction in the branch delay slot, the PC will point to
7168 the branch instruction. Since the PC doesn't match any known
7169 breakpoints, GDB reports a trap exception.
7170
7171 There are two possible fixes for this problem.
7172
7173 1) When the breakpoint gets hit, see if the BD bit is set in the
7174 Cause register (which indicates the last exception occurred in a
7175 branch delay slot). If the BD bit is set, fix the PC to point to
7176 the instruction in the branch delay slot.
7177
7178 2) When the user sets the breakpoint, don't allow him to set the
7179 breakpoint on the instruction in the branch delay slot. Instead
7180 move the breakpoint to the branch instruction (which will have
7181 the same result).
7182
7183 The problem with the first solution is that if the user then
7184 single-steps the processor, the branch instruction will get
7185 skipped (since GDB thinks the PC is on the instruction in the
7186 branch delay slot).
7187
7188 So, we'll use the second solution. To do this we need to know if
7189 the instruction we're trying to set the breakpoint on is in the
7190 branch delay slot. */
7191
7192 boundary = mips_segment_boundary (bpaddr);
7193
7194 /* Make sure we don't scan back before the beginning of the current
7195 function, since we may fetch constant data or insns that look like
7196 a jump. Of course we might do that anyway if the compiler has
7197 moved constants inline. :-( */
7198 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7199 && func_addr > boundary && func_addr <= bpaddr)
7200 boundary = func_addr;
7201
7202 if (mips_pc_is_mips (bpaddr))
7203 {
7204 if (bpaddr == boundary)
7205 return bpaddr;
7206
7207 /* If the previous instruction has a branch delay slot, we have
7208 to move the breakpoint to the branch instruction. */
7209 prev_addr = bpaddr - 4;
7210 if (mips32_instruction_has_delay_slot (gdbarch, prev_addr))
7211 bpaddr = prev_addr;
7212 }
7213 else
7214 {
7215 int (*instruction_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7216 CORE_ADDR addr, jmpaddr;
7217 int i;
7218
7219 boundary = unmake_compact_addr (boundary);
7220
7221 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7222 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7223 so try for that first, then try the 2 byte JALR/JR.
7224 The microMIPS ASE has a whole range of jumps and branches
7225 with delay slots, some of which take 4 bytes and some take
7226 2 bytes, so the idea is the same.
7227 FIXME: We have to assume that bpaddr is not the second half
7228 of an extended instruction. */
7229 instruction_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7230 ? micromips_instruction_has_delay_slot
7231 : mips16_instruction_has_delay_slot);
7232
7233 jmpaddr = 0;
7234 addr = bpaddr;
7235 for (i = 1; i < 4; i++)
7236 {
7237 if (unmake_compact_addr (addr) == boundary)
7238 break;
7239 addr -= MIPS_INSN16_SIZE;
7240 if (i == 1 && instruction_has_delay_slot (gdbarch, addr, 0))
7241 /* Looks like a JR/JALR at [target-1], but it could be
7242 the second word of a previous JAL/JALX, so record it
7243 and check back one more. */
7244 jmpaddr = addr;
7245 else if (i > 1 && instruction_has_delay_slot (gdbarch, addr, 1))
7246 {
7247 if (i == 2)
7248 /* Looks like a JAL/JALX at [target-2], but it could also
7249 be the second word of a previous JAL/JALX, record it,
7250 and check back one more. */
7251 jmpaddr = addr;
7252 else
7253 /* Looks like a JAL/JALX at [target-3], so any previously
7254 recorded JAL/JALX or JR/JALR must be wrong, because:
7255
7256 >-3: JAL
7257 -2: JAL-ext (can't be JAL/JALX)
7258 -1: bdslot (can't be JR/JALR)
7259 0: target insn
7260
7261 Of course it could be another JAL-ext which looks
7262 like a JAL, but in that case we'd have broken out
7263 of this loop at [target-2]:
7264
7265 -4: JAL
7266 >-3: JAL-ext
7267 -2: bdslot (can't be jmp)
7268 -1: JR/JALR
7269 0: target insn */
7270 jmpaddr = 0;
7271 }
7272 else
7273 {
7274 /* Not a jump instruction: if we're at [target-1] this
7275 could be the second word of a JAL/JALX, so continue;
7276 otherwise we're done. */
7277 if (i > 1)
7278 break;
7279 }
7280 }
7281
7282 if (jmpaddr)
7283 bpaddr = jmpaddr;
7284 }
7285
7286 return bpaddr;
7287 }
7288
7289 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7290 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7291
7292 static int
7293 mips_is_stub_suffix (const char *suffix, int zero)
7294 {
7295 switch (suffix[0])
7296 {
7297 case '0':
7298 return zero && suffix[1] == '\0';
7299 case '1':
7300 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7301 case '2':
7302 case '5':
7303 case '6':
7304 case '9':
7305 return suffix[1] == '\0';
7306 default:
7307 return 0;
7308 }
7309 }
7310
7311 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7312 call stubs, one of sf, df, sc, or dc. */
7313
7314 static int
7315 mips_is_stub_mode (const char *mode)
7316 {
7317 return ((mode[0] == 's' || mode[0] == 'd')
7318 && (mode[1] == 'f' || mode[1] == 'c'));
7319 }
7320
7321 /* Code at PC is a compiler-generated stub. Such a stub for a function
7322 bar might have a name like __fn_stub_bar, and might look like this:
7323
7324 mfc1 $4, $f13
7325 mfc1 $5, $f12
7326 mfc1 $6, $f15
7327 mfc1 $7, $f14
7328
7329 followed by (or interspersed with):
7330
7331 j bar
7332
7333 or:
7334
7335 lui $25, %hi(bar)
7336 addiu $25, $25, %lo(bar)
7337 jr $25
7338
7339 ($1 may be used in old code; for robustness we accept any register)
7340 or, in PIC code:
7341
7342 lui $28, %hi(_gp_disp)
7343 addiu $28, $28, %lo(_gp_disp)
7344 addu $28, $28, $25
7345 lw $25, %got(bar)
7346 addiu $25, $25, %lo(bar)
7347 jr $25
7348
7349 In the case of a __call_stub_bar stub, the sequence to set up
7350 arguments might look like this:
7351
7352 mtc1 $4, $f13
7353 mtc1 $5, $f12
7354 mtc1 $6, $f15
7355 mtc1 $7, $f14
7356
7357 followed by (or interspersed with) one of the jump sequences above.
7358
7359 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7360 of J or JR, respectively, followed by:
7361
7362 mfc1 $2, $f0
7363 mfc1 $3, $f1
7364 jr $18
7365
7366 We are at the beginning of the stub here, and scan down and extract
7367 the target address from the jump immediate instruction or, if a jump
7368 register instruction is used, from the register referred. Return
7369 the value of PC calculated or 0 if inconclusive.
7370
7371 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7372
7373 static CORE_ADDR
7374 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7375 {
7376 struct gdbarch *gdbarch = get_frame_arch (frame);
7377 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7378 int addrreg = MIPS_ZERO_REGNUM;
7379 CORE_ADDR start_pc = pc;
7380 CORE_ADDR target_pc = 0;
7381 CORE_ADDR addr = 0;
7382 CORE_ADDR gp = 0;
7383 int status = 0;
7384 int i;
7385
7386 for (i = 0;
7387 status == 0 && target_pc == 0 && i < 20;
7388 i++, pc += MIPS_INSN32_SIZE)
7389 {
7390 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7391 CORE_ADDR imm;
7392 int rt;
7393 int rs;
7394 int rd;
7395
7396 switch (itype_op (inst))
7397 {
7398 case 0: /* SPECIAL */
7399 switch (rtype_funct (inst))
7400 {
7401 case 8: /* JR */
7402 case 9: /* JALR */
7403 rs = rtype_rs (inst);
7404 if (rs == MIPS_GP_REGNUM)
7405 target_pc = gp; /* Hmm... */
7406 else if (rs == addrreg)
7407 target_pc = addr;
7408 break;
7409
7410 case 0x21: /* ADDU */
7411 rt = rtype_rt (inst);
7412 rs = rtype_rs (inst);
7413 rd = rtype_rd (inst);
7414 if (rd == MIPS_GP_REGNUM
7415 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7416 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7417 gp += start_pc;
7418 break;
7419 }
7420 break;
7421
7422 case 2: /* J */
7423 case 3: /* JAL */
7424 target_pc = jtype_target (inst) << 2;
7425 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7426 break;
7427
7428 case 9: /* ADDIU */
7429 rt = itype_rt (inst);
7430 rs = itype_rs (inst);
7431 if (rt == rs)
7432 {
7433 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7434 if (rt == MIPS_GP_REGNUM)
7435 gp += imm;
7436 else if (rt == addrreg)
7437 addr += imm;
7438 }
7439 break;
7440
7441 case 0xf: /* LUI */
7442 rt = itype_rt (inst);
7443 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7444 if (rt == MIPS_GP_REGNUM)
7445 gp = imm;
7446 else if (rt != MIPS_ZERO_REGNUM)
7447 {
7448 addrreg = rt;
7449 addr = imm;
7450 }
7451 break;
7452
7453 case 0x23: /* LW */
7454 rt = itype_rt (inst);
7455 rs = itype_rs (inst);
7456 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7457 if (gp != 0 && rs == MIPS_GP_REGNUM)
7458 {
7459 gdb_byte buf[4];
7460
7461 memset (buf, 0, sizeof (buf));
7462 status = target_read_memory (gp + imm, buf, sizeof (buf));
7463 addrreg = rt;
7464 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7465 }
7466 break;
7467 }
7468 }
7469
7470 return target_pc;
7471 }
7472
7473 /* If PC is in a MIPS16 call or return stub, return the address of the
7474 target PC, which is either the callee or the caller. There are several
7475 cases which must be handled:
7476
7477 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7478 and the target PC is in $31 ($ra).
7479 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7480 and the target PC is in $2.
7481 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7482 i.e. before the JALR instruction, this is effectively a call stub
7483 and the target PC is in $2. Otherwise this is effectively
7484 a return stub and the target PC is in $18.
7485 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7486 JAL or JALR instruction, this is effectively a call stub and the
7487 target PC is buried in the instruction stream. Otherwise this
7488 is effectively a return stub and the target PC is in $18.
7489 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7490 stub and the target PC is buried in the instruction stream.
7491
7492 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7493 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7494 gory details. */
7495
7496 static CORE_ADDR
7497 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7498 {
7499 struct gdbarch *gdbarch = get_frame_arch (frame);
7500 CORE_ADDR start_addr;
7501 const char *name;
7502 size_t prefixlen;
7503
7504 /* Find the starting address and name of the function containing the PC. */
7505 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7506 return 0;
7507
7508 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7509 and the target PC is in $31 ($ra). */
7510 prefixlen = strlen (mips_str_mips16_ret_stub);
7511 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7512 && mips_is_stub_mode (name + prefixlen)
7513 && name[prefixlen + 2] == '\0')
7514 return get_frame_register_signed
7515 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7516
7517 /* If the PC is in __mips16_call_stub_*, this is one of the call
7518 call/return stubs. */
7519 prefixlen = strlen (mips_str_mips16_call_stub);
7520 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7521 {
7522 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7523 and the target PC is in $2. */
7524 if (mips_is_stub_suffix (name + prefixlen, 0))
7525 return get_frame_register_signed
7526 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7527
7528 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7529 i.e. before the JALR instruction, this is effectively a call stub
7530 and the target PC is in $2. Otherwise this is effectively
7531 a return stub and the target PC is in $18. */
7532 else if (mips_is_stub_mode (name + prefixlen)
7533 && name[prefixlen + 2] == '_'
7534 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7535 {
7536 if (pc == start_addr)
7537 /* This is the 'call' part of a call stub. The return
7538 address is in $2. */
7539 return get_frame_register_signed
7540 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7541 else
7542 /* This is the 'return' part of a call stub. The return
7543 address is in $18. */
7544 return get_frame_register_signed
7545 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7546 }
7547 else
7548 return 0; /* Not a stub. */
7549 }
7550
7551 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7552 compiler-generated call or call/return stubs. */
7553 if (strncmp (name, mips_str_fn_stub, strlen (mips_str_fn_stub)) == 0
7554 || strncmp (name, mips_str_call_stub, strlen (mips_str_call_stub)) == 0)
7555 {
7556 if (pc == start_addr)
7557 /* This is the 'call' part of a call stub. Call this helper
7558 to scan through this code for interesting instructions
7559 and determine the final PC. */
7560 return mips_get_mips16_fn_stub_pc (frame, pc);
7561 else
7562 /* This is the 'return' part of a call stub. The return address
7563 is in $18. */
7564 return get_frame_register_signed
7565 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7566 }
7567
7568 return 0; /* Not a stub. */
7569 }
7570
7571 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7572 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7573
7574 static int
7575 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7576 {
7577 CORE_ADDR start_addr;
7578 size_t prefixlen;
7579
7580 /* Find the starting address of the function containing the PC. */
7581 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7582 return 0;
7583
7584 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7585 the start, i.e. after the JALR instruction, this is effectively
7586 a return stub. */
7587 prefixlen = strlen (mips_str_mips16_call_stub);
7588 if (pc != start_addr
7589 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7590 && mips_is_stub_mode (name + prefixlen)
7591 && name[prefixlen + 2] == '_'
7592 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7593 return 1;
7594
7595 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7596 the JAL or JALR instruction, this is effectively a return stub. */
7597 prefixlen = strlen (mips_str_call_fp_stub);
7598 if (pc != start_addr
7599 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7600 return 1;
7601
7602 /* Consume the .pic. prefix of any PIC stub, this function must return
7603 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7604 or the call stub path will trigger in handle_inferior_event causing
7605 it to go astray. */
7606 prefixlen = strlen (mips_str_pic);
7607 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7608 name += prefixlen;
7609
7610 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7611 prefixlen = strlen (mips_str_mips16_ret_stub);
7612 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7613 && mips_is_stub_mode (name + prefixlen)
7614 && name[prefixlen + 2] == '\0')
7615 return 1;
7616
7617 return 0; /* Not a stub. */
7618 }
7619
7620 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7621 PC of the stub target. The stub just loads $t9 and jumps to it,
7622 so that $t9 has the correct value at function entry. */
7623
7624 static CORE_ADDR
7625 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7626 {
7627 struct gdbarch *gdbarch = get_frame_arch (frame);
7628 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7629 struct bound_minimal_symbol msym;
7630 int i;
7631 gdb_byte stub_code[16];
7632 int32_t stub_words[4];
7633
7634 /* The stub for foo is named ".pic.foo", and is either two
7635 instructions inserted before foo or a three instruction sequence
7636 which jumps to foo. */
7637 msym = lookup_minimal_symbol_by_pc (pc);
7638 if (msym.minsym == NULL
7639 || SYMBOL_VALUE_ADDRESS (msym.minsym) != pc
7640 || SYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7641 || strncmp (SYMBOL_LINKAGE_NAME (msym.minsym), ".pic.", 5) != 0)
7642 return 0;
7643
7644 /* A two-instruction header. */
7645 if (MSYMBOL_SIZE (msym.minsym) == 8)
7646 return pc + 8;
7647
7648 /* A three-instruction (plus delay slot) trampoline. */
7649 if (MSYMBOL_SIZE (msym.minsym) == 16)
7650 {
7651 if (target_read_memory (pc, stub_code, 16) != 0)
7652 return 0;
7653 for (i = 0; i < 4; i++)
7654 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7655 4, byte_order);
7656
7657 /* A stub contains these instructions:
7658 lui t9, %hi(target)
7659 j target
7660 addiu t9, t9, %lo(target)
7661 nop
7662
7663 This works even for N64, since stubs are only generated with
7664 -msym32. */
7665 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7666 && (stub_words[1] & 0xfc000000U) == 0x08000000
7667 && (stub_words[2] & 0xffff0000U) == 0x27390000
7668 && stub_words[3] == 0x00000000)
7669 return ((((stub_words[0] & 0x0000ffff) << 16)
7670 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7671 }
7672
7673 /* Not a recognized stub. */
7674 return 0;
7675 }
7676
7677 static CORE_ADDR
7678 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7679 {
7680 CORE_ADDR requested_pc = pc;
7681 CORE_ADDR target_pc;
7682 CORE_ADDR new_pc;
7683
7684 do
7685 {
7686 target_pc = pc;
7687
7688 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7689 if (new_pc)
7690 {
7691 pc = new_pc;
7692 if (is_compact_addr (pc))
7693 pc = unmake_compact_addr (pc);
7694 }
7695
7696 new_pc = find_solib_trampoline_target (frame, pc);
7697 if (new_pc)
7698 {
7699 pc = new_pc;
7700 if (is_compact_addr (pc))
7701 pc = unmake_compact_addr (pc);
7702 }
7703
7704 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7705 if (new_pc)
7706 {
7707 pc = new_pc;
7708 if (is_compact_addr (pc))
7709 pc = unmake_compact_addr (pc);
7710 }
7711 }
7712 while (pc != target_pc);
7713
7714 return pc != requested_pc ? pc : 0;
7715 }
7716
7717 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7718 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7719
7720 static int
7721 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7722 {
7723 int regnum;
7724 if (num >= 0 && num < 32)
7725 regnum = num;
7726 else if (num >= 38 && num < 70)
7727 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7728 else if (num == 70)
7729 regnum = mips_regnum (gdbarch)->hi;
7730 else if (num == 71)
7731 regnum = mips_regnum (gdbarch)->lo;
7732 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7733 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7734 else
7735 /* This will hopefully (eventually) provoke a warning. Should
7736 we be calling complaint() here? */
7737 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
7738 return gdbarch_num_regs (gdbarch) + regnum;
7739 }
7740
7741
7742 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7743 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7744
7745 static int
7746 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7747 {
7748 int regnum;
7749 if (num >= 0 && num < 32)
7750 regnum = num;
7751 else if (num >= 32 && num < 64)
7752 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7753 else if (num == 64)
7754 regnum = mips_regnum (gdbarch)->hi;
7755 else if (num == 65)
7756 regnum = mips_regnum (gdbarch)->lo;
7757 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7758 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7759 else
7760 /* This will hopefully (eventually) provoke a warning. Should we
7761 be calling complaint() here? */
7762 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
7763 return gdbarch_num_regs (gdbarch) + regnum;
7764 }
7765
7766 static int
7767 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
7768 {
7769 /* Only makes sense to supply raw registers. */
7770 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
7771 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7772 decide if it is valid. Should instead define a standard sim/gdb
7773 register numbering scheme. */
7774 if (gdbarch_register_name (gdbarch,
7775 gdbarch_num_regs (gdbarch) + regnum) != NULL
7776 && gdbarch_register_name (gdbarch,
7777 gdbarch_num_regs (gdbarch)
7778 + regnum)[0] != '\0')
7779 return regnum;
7780 else
7781 return LEGACY_SIM_REGNO_IGNORE;
7782 }
7783
7784
7785 /* Convert an integer into an address. Extracting the value signed
7786 guarantees a correctly sign extended address. */
7787
7788 static CORE_ADDR
7789 mips_integer_to_address (struct gdbarch *gdbarch,
7790 struct type *type, const gdb_byte *buf)
7791 {
7792 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7793 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
7794 }
7795
7796 /* Dummy virtual frame pointer method. This is no more or less accurate
7797 than most other architectures; we just need to be explicit about it,
7798 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7799 an assertion failure. */
7800
7801 static void
7802 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7803 CORE_ADDR pc, int *reg, LONGEST *offset)
7804 {
7805 *reg = MIPS_SP_REGNUM;
7806 *offset = 0;
7807 }
7808
7809 static void
7810 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7811 {
7812 enum mips_abi *abip = (enum mips_abi *) obj;
7813 const char *name = bfd_get_section_name (abfd, sect);
7814
7815 if (*abip != MIPS_ABI_UNKNOWN)
7816 return;
7817
7818 if (strncmp (name, ".mdebug.", 8) != 0)
7819 return;
7820
7821 if (strcmp (name, ".mdebug.abi32") == 0)
7822 *abip = MIPS_ABI_O32;
7823 else if (strcmp (name, ".mdebug.abiN32") == 0)
7824 *abip = MIPS_ABI_N32;
7825 else if (strcmp (name, ".mdebug.abi64") == 0)
7826 *abip = MIPS_ABI_N64;
7827 else if (strcmp (name, ".mdebug.abiO64") == 0)
7828 *abip = MIPS_ABI_O64;
7829 else if (strcmp (name, ".mdebug.eabi32") == 0)
7830 *abip = MIPS_ABI_EABI32;
7831 else if (strcmp (name, ".mdebug.eabi64") == 0)
7832 *abip = MIPS_ABI_EABI64;
7833 else
7834 warning (_("unsupported ABI %s."), name + 8);
7835 }
7836
7837 static void
7838 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
7839 {
7840 int *lbp = (int *) obj;
7841 const char *name = bfd_get_section_name (abfd, sect);
7842
7843 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
7844 *lbp = 32;
7845 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
7846 *lbp = 64;
7847 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
7848 warning (_("unrecognized .gcc_compiled_longXX"));
7849 }
7850
7851 static enum mips_abi
7852 global_mips_abi (void)
7853 {
7854 int i;
7855
7856 for (i = 0; mips_abi_strings[i] != NULL; i++)
7857 if (mips_abi_strings[i] == mips_abi_string)
7858 return (enum mips_abi) i;
7859
7860 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
7861 }
7862
7863 /* Return the default compressed instruction set, either of MIPS16
7864 or microMIPS, selected when none could have been determined from
7865 the ELF header of the binary being executed (or no binary has been
7866 selected. */
7867
7868 static enum mips_isa
7869 global_mips_compression (void)
7870 {
7871 int i;
7872
7873 for (i = 0; mips_compression_strings[i] != NULL; i++)
7874 if (mips_compression_strings[i] == mips_compression_string)
7875 return (enum mips_isa) i;
7876
7877 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
7878 }
7879
7880 static void
7881 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
7882 {
7883 /* If the size matches the set of 32-bit or 64-bit integer registers,
7884 assume that's what we've got. */
7885 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
7886 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
7887
7888 /* If the size matches the full set of registers GDB traditionally
7889 knows about, including floating point, for either 32-bit or
7890 64-bit, assume that's what we've got. */
7891 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
7892 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
7893
7894 /* Otherwise we don't have a useful guess. */
7895 }
7896
7897 static struct value *
7898 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
7899 {
7900 const int *reg_p = baton;
7901 return value_of_register (*reg_p, frame);
7902 }
7903
7904 static struct gdbarch *
7905 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7906 {
7907 struct gdbarch *gdbarch;
7908 struct gdbarch_tdep *tdep;
7909 int elf_flags;
7910 enum mips_abi mips_abi, found_abi, wanted_abi;
7911 int i, num_regs;
7912 enum mips_fpu_type fpu_type;
7913 struct tdesc_arch_data *tdesc_data = NULL;
7914 int elf_fpu_type = 0;
7915 const char **reg_names;
7916 struct mips_regnum mips_regnum, *regnum;
7917 enum mips_isa mips_isa;
7918 int dspacc;
7919 int dspctl;
7920
7921 /* Fill in the OS dependent register numbers and names. */
7922 if (info.osabi == GDB_OSABI_IRIX)
7923 {
7924 mips_regnum.fp0 = 32;
7925 mips_regnum.pc = 64;
7926 mips_regnum.cause = 65;
7927 mips_regnum.badvaddr = 66;
7928 mips_regnum.hi = 67;
7929 mips_regnum.lo = 68;
7930 mips_regnum.fp_control_status = 69;
7931 mips_regnum.fp_implementation_revision = 70;
7932 mips_regnum.dspacc = dspacc = -1;
7933 mips_regnum.dspctl = dspctl = -1;
7934 num_regs = 71;
7935 reg_names = mips_irix_reg_names;
7936 }
7937 else if (info.osabi == GDB_OSABI_LINUX)
7938 {
7939 mips_regnum.fp0 = 38;
7940 mips_regnum.pc = 37;
7941 mips_regnum.cause = 36;
7942 mips_regnum.badvaddr = 35;
7943 mips_regnum.hi = 34;
7944 mips_regnum.lo = 33;
7945 mips_regnum.fp_control_status = 70;
7946 mips_regnum.fp_implementation_revision = 71;
7947 mips_regnum.dspacc = -1;
7948 mips_regnum.dspctl = -1;
7949 dspacc = 72;
7950 dspctl = 78;
7951 num_regs = 79;
7952 reg_names = mips_linux_reg_names;
7953 }
7954 else
7955 {
7956 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
7957 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
7958 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
7959 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
7960 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
7961 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
7962 mips_regnum.fp_control_status = 70;
7963 mips_regnum.fp_implementation_revision = 71;
7964 mips_regnum.dspacc = dspacc = -1;
7965 mips_regnum.dspctl = dspctl = -1;
7966 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
7967 if (info.bfd_arch_info != NULL
7968 && info.bfd_arch_info->mach == bfd_mach_mips3900)
7969 reg_names = mips_tx39_reg_names;
7970 else
7971 reg_names = mips_generic_reg_names;
7972 }
7973
7974 /* Check any target description for validity. */
7975 if (tdesc_has_registers (info.target_desc))
7976 {
7977 static const char *const mips_gprs[] = {
7978 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
7979 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
7980 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
7981 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
7982 };
7983 static const char *const mips_fprs[] = {
7984 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
7985 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
7986 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
7987 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
7988 };
7989
7990 const struct tdesc_feature *feature;
7991 int valid_p;
7992
7993 feature = tdesc_find_feature (info.target_desc,
7994 "org.gnu.gdb.mips.cpu");
7995 if (feature == NULL)
7996 return NULL;
7997
7998 tdesc_data = tdesc_data_alloc ();
7999
8000 valid_p = 1;
8001 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8002 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8003 mips_gprs[i]);
8004
8005
8006 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8007 mips_regnum.lo, "lo");
8008 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8009 mips_regnum.hi, "hi");
8010 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8011 mips_regnum.pc, "pc");
8012
8013 if (!valid_p)
8014 {
8015 tdesc_data_cleanup (tdesc_data);
8016 return NULL;
8017 }
8018
8019 feature = tdesc_find_feature (info.target_desc,
8020 "org.gnu.gdb.mips.cp0");
8021 if (feature == NULL)
8022 {
8023 tdesc_data_cleanup (tdesc_data);
8024 return NULL;
8025 }
8026
8027 valid_p = 1;
8028 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8029 mips_regnum.badvaddr, "badvaddr");
8030 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8031 MIPS_PS_REGNUM, "status");
8032 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8033 mips_regnum.cause, "cause");
8034
8035 if (!valid_p)
8036 {
8037 tdesc_data_cleanup (tdesc_data);
8038 return NULL;
8039 }
8040
8041 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8042 backend is not prepared for that, though. */
8043 feature = tdesc_find_feature (info.target_desc,
8044 "org.gnu.gdb.mips.fpu");
8045 if (feature == NULL)
8046 {
8047 tdesc_data_cleanup (tdesc_data);
8048 return NULL;
8049 }
8050
8051 valid_p = 1;
8052 for (i = 0; i < 32; i++)
8053 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8054 i + mips_regnum.fp0, mips_fprs[i]);
8055
8056 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8057 mips_regnum.fp_control_status,
8058 "fcsr");
8059 valid_p
8060 &= tdesc_numbered_register (feature, tdesc_data,
8061 mips_regnum.fp_implementation_revision,
8062 "fir");
8063
8064 if (!valid_p)
8065 {
8066 tdesc_data_cleanup (tdesc_data);
8067 return NULL;
8068 }
8069
8070 if (dspacc >= 0)
8071 {
8072 feature = tdesc_find_feature (info.target_desc,
8073 "org.gnu.gdb.mips.dsp");
8074 /* The DSP registers are optional; it's OK if they are absent. */
8075 if (feature != NULL)
8076 {
8077 i = 0;
8078 valid_p = 1;
8079 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8080 dspacc + i++, "hi1");
8081 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8082 dspacc + i++, "lo1");
8083 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8084 dspacc + i++, "hi2");
8085 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8086 dspacc + i++, "lo2");
8087 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8088 dspacc + i++, "hi3");
8089 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8090 dspacc + i++, "lo3");
8091
8092 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8093 dspctl, "dspctl");
8094
8095 if (!valid_p)
8096 {
8097 tdesc_data_cleanup (tdesc_data);
8098 return NULL;
8099 }
8100
8101 mips_regnum.dspacc = dspacc;
8102 mips_regnum.dspctl = dspctl;
8103 }
8104 }
8105
8106 /* It would be nice to detect an attempt to use a 64-bit ABI
8107 when only 32-bit registers are provided. */
8108 reg_names = NULL;
8109 }
8110
8111 /* First of all, extract the elf_flags, if available. */
8112 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8113 elf_flags = elf_elfheader (info.abfd)->e_flags;
8114 else if (arches != NULL)
8115 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8116 else
8117 elf_flags = 0;
8118 if (gdbarch_debug)
8119 fprintf_unfiltered (gdb_stdlog,
8120 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8121
8122 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8123 switch ((elf_flags & EF_MIPS_ABI))
8124 {
8125 case E_MIPS_ABI_O32:
8126 found_abi = MIPS_ABI_O32;
8127 break;
8128 case E_MIPS_ABI_O64:
8129 found_abi = MIPS_ABI_O64;
8130 break;
8131 case E_MIPS_ABI_EABI32:
8132 found_abi = MIPS_ABI_EABI32;
8133 break;
8134 case E_MIPS_ABI_EABI64:
8135 found_abi = MIPS_ABI_EABI64;
8136 break;
8137 default:
8138 if ((elf_flags & EF_MIPS_ABI2))
8139 found_abi = MIPS_ABI_N32;
8140 else
8141 found_abi = MIPS_ABI_UNKNOWN;
8142 break;
8143 }
8144
8145 /* GCC creates a pseudo-section whose name describes the ABI. */
8146 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8147 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8148
8149 /* If we have no useful BFD information, use the ABI from the last
8150 MIPS architecture (if there is one). */
8151 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8152 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8153
8154 /* Try the architecture for any hint of the correct ABI. */
8155 if (found_abi == MIPS_ABI_UNKNOWN
8156 && info.bfd_arch_info != NULL
8157 && info.bfd_arch_info->arch == bfd_arch_mips)
8158 {
8159 switch (info.bfd_arch_info->mach)
8160 {
8161 case bfd_mach_mips3900:
8162 found_abi = MIPS_ABI_EABI32;
8163 break;
8164 case bfd_mach_mips4100:
8165 case bfd_mach_mips5000:
8166 found_abi = MIPS_ABI_EABI64;
8167 break;
8168 case bfd_mach_mips8000:
8169 case bfd_mach_mips10000:
8170 /* On Irix, ELF64 executables use the N64 ABI. The
8171 pseudo-sections which describe the ABI aren't present
8172 on IRIX. (Even for executables created by gcc.) */
8173 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8174 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8175 found_abi = MIPS_ABI_N64;
8176 else
8177 found_abi = MIPS_ABI_N32;
8178 break;
8179 }
8180 }
8181
8182 /* Default 64-bit objects to N64 instead of O32. */
8183 if (found_abi == MIPS_ABI_UNKNOWN
8184 && info.abfd != NULL
8185 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8186 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8187 found_abi = MIPS_ABI_N64;
8188
8189 if (gdbarch_debug)
8190 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8191 found_abi);
8192
8193 /* What has the user specified from the command line? */
8194 wanted_abi = global_mips_abi ();
8195 if (gdbarch_debug)
8196 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8197 wanted_abi);
8198
8199 /* Now that we have found what the ABI for this binary would be,
8200 check whether the user is overriding it. */
8201 if (wanted_abi != MIPS_ABI_UNKNOWN)
8202 mips_abi = wanted_abi;
8203 else if (found_abi != MIPS_ABI_UNKNOWN)
8204 mips_abi = found_abi;
8205 else
8206 mips_abi = MIPS_ABI_O32;
8207 if (gdbarch_debug)
8208 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8209 mips_abi);
8210
8211 /* Determine the default compressed ISA. */
8212 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8213 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8214 mips_isa = ISA_MICROMIPS;
8215 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8216 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8217 mips_isa = ISA_MIPS16;
8218 else
8219 mips_isa = global_mips_compression ();
8220 mips_compression_string = mips_compression_strings[mips_isa];
8221
8222 /* Also used when doing an architecture lookup. */
8223 if (gdbarch_debug)
8224 fprintf_unfiltered (gdb_stdlog,
8225 "mips_gdbarch_init: "
8226 "mips64_transfers_32bit_regs_p = %d\n",
8227 mips64_transfers_32bit_regs_p);
8228
8229 /* Determine the MIPS FPU type. */
8230 #ifdef HAVE_ELF
8231 if (info.abfd
8232 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8233 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8234 Tag_GNU_MIPS_ABI_FP);
8235 #endif /* HAVE_ELF */
8236
8237 if (!mips_fpu_type_auto)
8238 fpu_type = mips_fpu_type;
8239 else if (elf_fpu_type != 0)
8240 {
8241 switch (elf_fpu_type)
8242 {
8243 case 1:
8244 fpu_type = MIPS_FPU_DOUBLE;
8245 break;
8246 case 2:
8247 fpu_type = MIPS_FPU_SINGLE;
8248 break;
8249 case 3:
8250 default:
8251 /* Soft float or unknown. */
8252 fpu_type = MIPS_FPU_NONE;
8253 break;
8254 }
8255 }
8256 else if (info.bfd_arch_info != NULL
8257 && info.bfd_arch_info->arch == bfd_arch_mips)
8258 switch (info.bfd_arch_info->mach)
8259 {
8260 case bfd_mach_mips3900:
8261 case bfd_mach_mips4100:
8262 case bfd_mach_mips4111:
8263 case bfd_mach_mips4120:
8264 fpu_type = MIPS_FPU_NONE;
8265 break;
8266 case bfd_mach_mips4650:
8267 fpu_type = MIPS_FPU_SINGLE;
8268 break;
8269 default:
8270 fpu_type = MIPS_FPU_DOUBLE;
8271 break;
8272 }
8273 else if (arches != NULL)
8274 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8275 else
8276 fpu_type = MIPS_FPU_DOUBLE;
8277 if (gdbarch_debug)
8278 fprintf_unfiltered (gdb_stdlog,
8279 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8280
8281 /* Check for blatant incompatibilities. */
8282
8283 /* If we have only 32-bit registers, then we can't debug a 64-bit
8284 ABI. */
8285 if (info.target_desc
8286 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8287 && mips_abi != MIPS_ABI_EABI32
8288 && mips_abi != MIPS_ABI_O32)
8289 {
8290 if (tdesc_data != NULL)
8291 tdesc_data_cleanup (tdesc_data);
8292 return NULL;
8293 }
8294
8295 /* Try to find a pre-existing architecture. */
8296 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8297 arches != NULL;
8298 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8299 {
8300 /* MIPS needs to be pedantic about which ABI the object is
8301 using. */
8302 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8303 continue;
8304 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8305 continue;
8306 /* Need to be pedantic about which register virtual size is
8307 used. */
8308 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8309 != mips64_transfers_32bit_regs_p)
8310 continue;
8311 /* Be pedantic about which FPU is selected. */
8312 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8313 continue;
8314
8315 if (tdesc_data != NULL)
8316 tdesc_data_cleanup (tdesc_data);
8317 return arches->gdbarch;
8318 }
8319
8320 /* Need a new architecture. Fill in a target specific vector. */
8321 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
8322 gdbarch = gdbarch_alloc (&info, tdep);
8323 tdep->elf_flags = elf_flags;
8324 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8325 tdep->found_abi = found_abi;
8326 tdep->mips_abi = mips_abi;
8327 tdep->mips_isa = mips_isa;
8328 tdep->mips_fpu_type = fpu_type;
8329 tdep->register_size_valid_p = 0;
8330 tdep->register_size = 0;
8331 tdep->gregset = NULL;
8332 tdep->gregset64 = NULL;
8333 tdep->fpregset = NULL;
8334 tdep->fpregset64 = NULL;
8335
8336 if (info.target_desc)
8337 {
8338 /* Some useful properties can be inferred from the target. */
8339 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8340 {
8341 tdep->register_size_valid_p = 1;
8342 tdep->register_size = 4;
8343 }
8344 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8345 {
8346 tdep->register_size_valid_p = 1;
8347 tdep->register_size = 8;
8348 }
8349 }
8350
8351 /* Initially set everything according to the default ABI/ISA. */
8352 set_gdbarch_short_bit (gdbarch, 16);
8353 set_gdbarch_int_bit (gdbarch, 32);
8354 set_gdbarch_float_bit (gdbarch, 32);
8355 set_gdbarch_double_bit (gdbarch, 64);
8356 set_gdbarch_long_double_bit (gdbarch, 64);
8357 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8358 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8359 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8360
8361 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8362 mips_ax_pseudo_register_collect);
8363 set_gdbarch_ax_pseudo_register_push_stack
8364 (gdbarch, mips_ax_pseudo_register_push_stack);
8365
8366 set_gdbarch_elf_make_msymbol_special (gdbarch,
8367 mips_elf_make_msymbol_special);
8368
8369 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8370 *regnum = mips_regnum;
8371 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8372 set_gdbarch_num_regs (gdbarch, num_regs);
8373 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8374 set_gdbarch_register_name (gdbarch, mips_register_name);
8375 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8376 tdep->mips_processor_reg_names = reg_names;
8377 tdep->regnum = regnum;
8378
8379 switch (mips_abi)
8380 {
8381 case MIPS_ABI_O32:
8382 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8383 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8384 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8385 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8386 tdep->default_mask_address_p = 0;
8387 set_gdbarch_long_bit (gdbarch, 32);
8388 set_gdbarch_ptr_bit (gdbarch, 32);
8389 set_gdbarch_long_long_bit (gdbarch, 64);
8390 break;
8391 case MIPS_ABI_O64:
8392 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8393 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8394 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8395 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8396 tdep->default_mask_address_p = 0;
8397 set_gdbarch_long_bit (gdbarch, 32);
8398 set_gdbarch_ptr_bit (gdbarch, 32);
8399 set_gdbarch_long_long_bit (gdbarch, 64);
8400 break;
8401 case MIPS_ABI_EABI32:
8402 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8403 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8404 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8405 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8406 tdep->default_mask_address_p = 0;
8407 set_gdbarch_long_bit (gdbarch, 32);
8408 set_gdbarch_ptr_bit (gdbarch, 32);
8409 set_gdbarch_long_long_bit (gdbarch, 64);
8410 break;
8411 case MIPS_ABI_EABI64:
8412 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8413 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8414 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8415 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8416 tdep->default_mask_address_p = 0;
8417 set_gdbarch_long_bit (gdbarch, 64);
8418 set_gdbarch_ptr_bit (gdbarch, 64);
8419 set_gdbarch_long_long_bit (gdbarch, 64);
8420 break;
8421 case MIPS_ABI_N32:
8422 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8423 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8424 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8425 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8426 tdep->default_mask_address_p = 0;
8427 set_gdbarch_long_bit (gdbarch, 32);
8428 set_gdbarch_ptr_bit (gdbarch, 32);
8429 set_gdbarch_long_long_bit (gdbarch, 64);
8430 set_gdbarch_long_double_bit (gdbarch, 128);
8431 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8432 break;
8433 case MIPS_ABI_N64:
8434 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8435 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8436 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8437 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8438 tdep->default_mask_address_p = 0;
8439 set_gdbarch_long_bit (gdbarch, 64);
8440 set_gdbarch_ptr_bit (gdbarch, 64);
8441 set_gdbarch_long_long_bit (gdbarch, 64);
8442 set_gdbarch_long_double_bit (gdbarch, 128);
8443 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8444 break;
8445 default:
8446 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8447 }
8448
8449 /* GCC creates a pseudo-section whose name specifies the size of
8450 longs, since -mlong32 or -mlong64 may be used independent of
8451 other options. How those options affect pointer sizes is ABI and
8452 architecture dependent, so use them to override the default sizes
8453 set by the ABI. This table shows the relationship between ABI,
8454 -mlongXX, and size of pointers:
8455
8456 ABI -mlongXX ptr bits
8457 --- -------- --------
8458 o32 32 32
8459 o32 64 32
8460 n32 32 32
8461 n32 64 64
8462 o64 32 32
8463 o64 64 64
8464 n64 32 32
8465 n64 64 64
8466 eabi32 32 32
8467 eabi32 64 32
8468 eabi64 32 32
8469 eabi64 64 64
8470
8471 Note that for o32 and eabi32, pointers are always 32 bits
8472 regardless of any -mlongXX option. For all others, pointers and
8473 longs are the same, as set by -mlongXX or set by defaults. */
8474
8475 if (info.abfd != NULL)
8476 {
8477 int long_bit = 0;
8478
8479 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8480 if (long_bit)
8481 {
8482 set_gdbarch_long_bit (gdbarch, long_bit);
8483 switch (mips_abi)
8484 {
8485 case MIPS_ABI_O32:
8486 case MIPS_ABI_EABI32:
8487 break;
8488 case MIPS_ABI_N32:
8489 case MIPS_ABI_O64:
8490 case MIPS_ABI_N64:
8491 case MIPS_ABI_EABI64:
8492 set_gdbarch_ptr_bit (gdbarch, long_bit);
8493 break;
8494 default:
8495 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8496 }
8497 }
8498 }
8499
8500 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8501 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8502 comment:
8503
8504 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8505 flag in object files because to do so would make it impossible to
8506 link with libraries compiled without "-gp32". This is
8507 unnecessarily restrictive.
8508
8509 We could solve this problem by adding "-gp32" multilibs to gcc,
8510 but to set this flag before gcc is built with such multilibs will
8511 break too many systems.''
8512
8513 But even more unhelpfully, the default linker output target for
8514 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8515 for 64-bit programs - you need to change the ABI to change this,
8516 and not all gcc targets support that currently. Therefore using
8517 this flag to detect 32-bit mode would do the wrong thing given
8518 the current gcc - it would make GDB treat these 64-bit programs
8519 as 32-bit programs by default. */
8520
8521 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8522 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8523
8524 /* Add/remove bits from an address. The MIPS needs be careful to
8525 ensure that all 32 bit addresses are sign extended to 64 bits. */
8526 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8527
8528 /* Unwind the frame. */
8529 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8530 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8531 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8532
8533 /* Map debug register numbers onto internal register numbers. */
8534 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8535 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8536 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8537 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8538 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8539 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8540
8541 /* MIPS version of CALL_DUMMY. */
8542
8543 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8544 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8545 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8546
8547 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8548 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8549 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8550
8551 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8552 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
8553 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8554 mips_remote_breakpoint_from_pc);
8555 set_gdbarch_adjust_breakpoint_address (gdbarch,
8556 mips_adjust_breakpoint_address);
8557
8558 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8559
8560 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
8561
8562 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8563 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8564 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8565
8566 set_gdbarch_register_type (gdbarch, mips_register_type);
8567
8568 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8569
8570 if (mips_abi == MIPS_ABI_N32)
8571 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8572 else if (mips_abi == MIPS_ABI_N64)
8573 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8574 else
8575 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8576
8577 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8578 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8579 need to all be folded into the target vector. Since they are
8580 being used as guards for target_stopped_by_watchpoint, why not have
8581 target_stopped_by_watchpoint return the type of watchpoint that the code
8582 is sitting on? */
8583 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8584
8585 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8586
8587 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8588 to support MIPS16. This is a bad thing. Make sure not to do it
8589 if we have an OS ABI that actually supports shared libraries, since
8590 shared library support is more important. If we have an OS someday
8591 that supports both shared libraries and MIPS16, we'll have to find
8592 a better place for these.
8593 macro/2012-04-25: But that applies to return trampolines only and
8594 currently no MIPS OS ABI uses shared libraries that have them. */
8595 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8596
8597 set_gdbarch_single_step_through_delay (gdbarch,
8598 mips_single_step_through_delay);
8599
8600 /* Virtual tables. */
8601 set_gdbarch_vbit_in_delta (gdbarch, 1);
8602
8603 mips_register_g_packet_guesses (gdbarch);
8604
8605 /* Hook in OS ABI-specific overrides, if they have been registered. */
8606 info.tdep_info = (void *) tdesc_data;
8607 gdbarch_init_osabi (info, gdbarch);
8608
8609 /* The hook may have adjusted num_regs, fetch the final value and
8610 set pc_regnum and sp_regnum now that it has been fixed. */
8611 num_regs = gdbarch_num_regs (gdbarch);
8612 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8613 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8614
8615 /* Unwind the frame. */
8616 dwarf2_append_unwinders (gdbarch);
8617 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8618 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8619 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8620 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8621 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8622 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8623 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8624 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8625 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8626
8627 if (tdesc_data)
8628 {
8629 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8630 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8631
8632 /* Override the normal target description methods to handle our
8633 dual real and pseudo registers. */
8634 set_gdbarch_register_name (gdbarch, mips_register_name);
8635 set_gdbarch_register_reggroup_p (gdbarch,
8636 mips_tdesc_register_reggroup_p);
8637
8638 num_regs = gdbarch_num_regs (gdbarch);
8639 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8640 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8641 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8642 }
8643
8644 /* Add ABI-specific aliases for the registers. */
8645 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8646 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8647 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8648 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8649 else
8650 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8651 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8652 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8653
8654 /* Add some other standard aliases. */
8655 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8656 user_reg_add (gdbarch, mips_register_aliases[i].name,
8657 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8658
8659 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8660 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8661 value_of_mips_user_reg,
8662 &mips_numeric_register_aliases[i].regnum);
8663
8664 return gdbarch;
8665 }
8666
8667 static void
8668 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
8669 {
8670 struct gdbarch_info info;
8671
8672 /* Force the architecture to update, and (if it's a MIPS architecture)
8673 mips_gdbarch_init will take care of the rest. */
8674 gdbarch_info_init (&info);
8675 gdbarch_update_p (info);
8676 }
8677
8678 /* Print out which MIPS ABI is in use. */
8679
8680 static void
8681 show_mips_abi (struct ui_file *file,
8682 int from_tty,
8683 struct cmd_list_element *ignored_cmd,
8684 const char *ignored_value)
8685 {
8686 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8687 fprintf_filtered
8688 (file,
8689 "The MIPS ABI is unknown because the current architecture "
8690 "is not MIPS.\n");
8691 else
8692 {
8693 enum mips_abi global_abi = global_mips_abi ();
8694 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8695 const char *actual_abi_str = mips_abi_strings[actual_abi];
8696
8697 if (global_abi == MIPS_ABI_UNKNOWN)
8698 fprintf_filtered
8699 (file,
8700 "The MIPS ABI is set automatically (currently \"%s\").\n",
8701 actual_abi_str);
8702 else if (global_abi == actual_abi)
8703 fprintf_filtered
8704 (file,
8705 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8706 actual_abi_str);
8707 else
8708 {
8709 /* Probably shouldn't happen... */
8710 fprintf_filtered (file,
8711 "The (auto detected) MIPS ABI \"%s\" is in use "
8712 "even though the user setting was \"%s\".\n",
8713 actual_abi_str, mips_abi_strings[global_abi]);
8714 }
8715 }
8716 }
8717
8718 /* Print out which MIPS compressed ISA encoding is used. */
8719
8720 static void
8721 show_mips_compression (struct ui_file *file, int from_tty,
8722 struct cmd_list_element *c, const char *value)
8723 {
8724 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8725 value);
8726 }
8727
8728 static void
8729 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8730 {
8731 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8732 if (tdep != NULL)
8733 {
8734 int ef_mips_arch;
8735 int ef_mips_32bitmode;
8736 /* Determine the ISA. */
8737 switch (tdep->elf_flags & EF_MIPS_ARCH)
8738 {
8739 case E_MIPS_ARCH_1:
8740 ef_mips_arch = 1;
8741 break;
8742 case E_MIPS_ARCH_2:
8743 ef_mips_arch = 2;
8744 break;
8745 case E_MIPS_ARCH_3:
8746 ef_mips_arch = 3;
8747 break;
8748 case E_MIPS_ARCH_4:
8749 ef_mips_arch = 4;
8750 break;
8751 default:
8752 ef_mips_arch = 0;
8753 break;
8754 }
8755 /* Determine the size of a pointer. */
8756 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8757 fprintf_unfiltered (file,
8758 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8759 tdep->elf_flags);
8760 fprintf_unfiltered (file,
8761 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8762 ef_mips_32bitmode);
8763 fprintf_unfiltered (file,
8764 "mips_dump_tdep: ef_mips_arch = %d\n",
8765 ef_mips_arch);
8766 fprintf_unfiltered (file,
8767 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8768 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
8769 fprintf_unfiltered (file,
8770 "mips_dump_tdep: "
8771 "mips_mask_address_p() %d (default %d)\n",
8772 mips_mask_address_p (tdep),
8773 tdep->default_mask_address_p);
8774 }
8775 fprintf_unfiltered (file,
8776 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8777 MIPS_DEFAULT_FPU_TYPE,
8778 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
8779 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
8780 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
8781 : "???"));
8782 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8783 MIPS_EABI (gdbarch));
8784 fprintf_unfiltered (file,
8785 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8786 MIPS_FPU_TYPE (gdbarch),
8787 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
8788 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
8789 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
8790 : "???"));
8791 }
8792
8793 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
8794
8795 void
8796 _initialize_mips_tdep (void)
8797 {
8798 static struct cmd_list_element *mipsfpulist = NULL;
8799 struct cmd_list_element *c;
8800
8801 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
8802 if (MIPS_ABI_LAST + 1
8803 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
8804 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
8805
8806 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
8807
8808 mips_pdr_data = register_objfile_data ();
8809
8810 /* Create feature sets with the appropriate properties. The values
8811 are not important. */
8812 mips_tdesc_gp32 = allocate_target_description ();
8813 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8814
8815 mips_tdesc_gp64 = allocate_target_description ();
8816 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8817
8818 /* Add root prefix command for all "set mips"/"show mips" commands. */
8819 add_prefix_cmd ("mips", no_class, set_mips_command,
8820 _("Various MIPS specific commands."),
8821 &setmipscmdlist, "set mips ", 0, &setlist);
8822
8823 add_prefix_cmd ("mips", no_class, show_mips_command,
8824 _("Various MIPS specific commands."),
8825 &showmipscmdlist, "show mips ", 0, &showlist);
8826
8827 /* Allow the user to override the ABI. */
8828 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
8829 &mips_abi_string, _("\
8830 Set the MIPS ABI used by this program."), _("\
8831 Show the MIPS ABI used by this program."), _("\
8832 This option can be set to one of:\n\
8833 auto - the default ABI associated with the current binary\n\
8834 o32\n\
8835 o64\n\
8836 n32\n\
8837 n64\n\
8838 eabi32\n\
8839 eabi64"),
8840 mips_abi_update,
8841 show_mips_abi,
8842 &setmipscmdlist, &showmipscmdlist);
8843
8844 /* Allow the user to set the ISA to assume for compressed code if ELF
8845 file flags don't tell or there is no program file selected. This
8846 setting is updated whenever unambiguous ELF file flags are interpreted,
8847 and carried over to subsequent sessions. */
8848 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
8849 &mips_compression_string, _("\
8850 Set the compressed ISA encoding used by MIPS code."), _("\
8851 Show the compressed ISA encoding used by MIPS code."), _("\
8852 Select the compressed ISA encoding used in functions that have no symbol\n\
8853 information available. The encoding can be set to either of:\n\
8854 mips16\n\
8855 micromips\n\
8856 and is updated automatically from ELF file flags if available."),
8857 mips_abi_update,
8858 show_mips_compression,
8859 &setmipscmdlist, &showmipscmdlist);
8860
8861 /* Let the user turn off floating point and set the fence post for
8862 heuristic_proc_start. */
8863
8864 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
8865 _("Set use of MIPS floating-point coprocessor."),
8866 &mipsfpulist, "set mipsfpu ", 0, &setlist);
8867 add_cmd ("single", class_support, set_mipsfpu_single_command,
8868 _("Select single-precision MIPS floating-point coprocessor."),
8869 &mipsfpulist);
8870 add_cmd ("double", class_support, set_mipsfpu_double_command,
8871 _("Select double-precision MIPS floating-point coprocessor."),
8872 &mipsfpulist);
8873 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
8874 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
8875 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
8876 add_cmd ("none", class_support, set_mipsfpu_none_command,
8877 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
8878 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
8879 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
8880 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
8881 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
8882 _("Select MIPS floating-point coprocessor automatically."),
8883 &mipsfpulist);
8884 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
8885 _("Show current use of MIPS floating-point coprocessor target."),
8886 &showlist);
8887
8888 /* We really would like to have both "0" and "unlimited" work, but
8889 command.c doesn't deal with that. So make it a var_zinteger
8890 because the user can always use "999999" or some such for unlimited. */
8891 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
8892 &heuristic_fence_post, _("\
8893 Set the distance searched for the start of a function."), _("\
8894 Show the distance searched for the start of a function."), _("\
8895 If you are debugging a stripped executable, GDB needs to search through the\n\
8896 program for the start of a function. This command sets the distance of the\n\
8897 search. The only need to set it is when debugging a stripped executable."),
8898 reinit_frame_cache_sfunc,
8899 NULL, /* FIXME: i18n: The distance searched for
8900 the start of a function is %s. */
8901 &setlist, &showlist);
8902
8903 /* Allow the user to control whether the upper bits of 64-bit
8904 addresses should be zeroed. */
8905 add_setshow_auto_boolean_cmd ("mask-address", no_class,
8906 &mask_address_var, _("\
8907 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
8908 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
8909 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
8910 allow GDB to determine the correct value."),
8911 NULL, show_mask_address,
8912 &setmipscmdlist, &showmipscmdlist);
8913
8914 /* Allow the user to control the size of 32 bit registers within the
8915 raw remote packet. */
8916 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
8917 &mips64_transfers_32bit_regs_p, _("\
8918 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
8919 _("\
8920 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
8921 _("\
8922 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
8923 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
8924 64 bits for others. Use \"off\" to disable compatibility mode"),
8925 set_mips64_transfers_32bit_regs,
8926 NULL, /* FIXME: i18n: Compatibility with 64-bit
8927 MIPS target that transfers 32-bit
8928 quantities is %s. */
8929 &setlist, &showlist);
8930
8931 /* Debug this files internals. */
8932 add_setshow_zuinteger_cmd ("mips", class_maintenance,
8933 &mips_debug, _("\
8934 Set mips debugging."), _("\
8935 Show mips debugging."), _("\
8936 When non-zero, mips specific debugging is enabled."),
8937 NULL,
8938 NULL, /* FIXME: i18n: Mips debugging is
8939 currently %s. */
8940 &setdebuglist, &showdebuglist);
8941 }
This page took 0.389461 seconds and 4 git commands to generate.