279509cf87af38eb312d9b21114e3f1d5a8f7bac
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "value.h"
34 #include "gdbcmd.h"
35 #include "language.h"
36 #include "gdbcore.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbtypes.h"
40 #include "target.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "mips-tdep.h"
45 #include "block.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
48 #include "elf/mips.h"
49 #include "elf-bfd.h"
50 #include "symcat.h"
51 #include "sim-regno.h"
52 #include "dis-asm.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
56 #include "infcall.h"
57 #include "floatformat.h"
58
59 static const struct objfile_data *mips_pdr_data;
60
61 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
62
63 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
64 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
65 #define ST0_FR (1 << 26)
66
67 /* The sizes of floating point registers. */
68
69 enum
70 {
71 MIPS_FPU_SINGLE_REGSIZE = 4,
72 MIPS_FPU_DOUBLE_REGSIZE = 8
73 };
74
75
76 static const char *mips_abi_string;
77
78 static const char *mips_abi_strings[] = {
79 "auto",
80 "n32",
81 "o32",
82 "n64",
83 "o64",
84 "eabi32",
85 "eabi64",
86 NULL
87 };
88
89 /* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
91 them. */
92
93 static const char size_auto[] = "auto";
94 static const char size_32[] = "32";
95 static const char size_64[] = "64";
96
97 static const char *size_enums[] = {
98 size_auto,
99 size_32,
100 size_64,
101 0
102 };
103
104 /* Some MIPS boards don't support floating point while others only
105 support single-precision floating-point operations. */
106
107 enum mips_fpu_type
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
113
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116 #endif
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
119
120 static int mips_debug = 0;
121
122 /* MIPS specific per-architecture information */
123 struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int default_mask_address_p;
135 /* Is the target using 64-bit raw integer registers but only
136 storing a left-aligned 32-bit value in each? */
137 int mips64_transfers_32bit_regs_p;
138 /* Indexes for various registers. IRIX and embedded have
139 different values. This contains the "public" fields. Don't
140 add any that do not need to be public. */
141 const struct mips_regnum *regnum;
142 /* Register names table for the current register set. */
143 const char **mips_processor_reg_names;
144 };
145
146 static int
147 n32n64_floatformat_always_valid (const struct floatformat *fmt,
148 const char *from)
149 {
150 return 1;
151 }
152
153 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
154 They are implemented as a pair of 64bit doubles where the high
155 part holds the result of the operation rounded to double, and
156 the low double holds the difference between the exact result and
157 the rounded result. So "high" + "low" contains the result with
158 added precision. Unfortunately, the floatformat structure used
159 by GDB is not powerful enough to describe this format. As a temporary
160 measure, we define a 128bit floatformat that only uses the high part.
161 We lose a bit of precision but that's probably the best we can do
162 for now with the current infrastructure. */
163
164 static const struct floatformat floatformat_n32n64_long_double_big =
165 {
166 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
167 floatformat_intbit_no,
168 "floatformat_ieee_double_big",
169 n32n64_floatformat_always_valid
170 };
171
172 const struct mips_regnum *
173 mips_regnum (struct gdbarch *gdbarch)
174 {
175 return gdbarch_tdep (gdbarch)->regnum;
176 }
177
178 static int
179 mips_fpa0_regnum (struct gdbarch *gdbarch)
180 {
181 return mips_regnum (gdbarch)->fp0 + 12;
182 }
183
184 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
185 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
186
187 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
188
189 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
190
191 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
192
193 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
195
196 static CORE_ADDR
197 is_mips16_addr (CORE_ADDR addr)
198 {
199 return ((addr) & 1);
200 }
201
202 static CORE_ADDR
203 unmake_mips16_addr (CORE_ADDR addr)
204 {
205 return ((addr) & ~1);
206 }
207
208 /* Return the contents of register REGNUM as a signed integer. */
209
210 static LONGEST
211 read_signed_register (int regnum)
212 {
213 LONGEST val;
214 regcache_cooked_read_signed (current_regcache, regnum, &val);
215 return val;
216 }
217
218 static LONGEST
219 read_signed_register_pid (int regnum, ptid_t ptid)
220 {
221 ptid_t save_ptid;
222 LONGEST retval;
223
224 if (ptid_equal (ptid, inferior_ptid))
225 return read_signed_register (regnum);
226
227 save_ptid = inferior_ptid;
228
229 inferior_ptid = ptid;
230
231 retval = read_signed_register (regnum);
232
233 inferior_ptid = save_ptid;
234
235 return retval;
236 }
237
238 /* Return the MIPS ABI associated with GDBARCH. */
239 enum mips_abi
240 mips_abi (struct gdbarch *gdbarch)
241 {
242 return gdbarch_tdep (gdbarch)->mips_abi;
243 }
244
245 int
246 mips_isa_regsize (struct gdbarch *gdbarch)
247 {
248 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
249 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
250 }
251
252 /* Return the currently configured (or set) saved register size. */
253
254 static const char *mips_abi_regsize_string = size_auto;
255
256 unsigned int
257 mips_abi_regsize (struct gdbarch *gdbarch)
258 {
259 if (mips_abi_regsize_string == size_auto)
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
273 internal_error (__FILE__, __LINE__, "bad switch");
274 }
275 else if (mips_abi_regsize_string == size_64)
276 return 8;
277 else /* if (mips_abi_regsize_string == size_32) */
278 return 4;
279 }
280
281 /* Functions for setting and testing a bit in a minimal symbol that
282 marks it as 16-bit function. The MSB of the minimal symbol's
283 "info" field is used for this purpose.
284
285 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
286 i.e. refers to a 16-bit function, and sets a "special" bit in a
287 minimal symbol to mark it as a 16-bit function
288
289 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
290
291 static void
292 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
293 {
294 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
295 {
296 MSYMBOL_INFO (msym) = (char *)
297 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
298 SYMBOL_VALUE_ADDRESS (msym) |= 1;
299 }
300 }
301
302 static int
303 msymbol_is_special (struct minimal_symbol *msym)
304 {
305 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
306 }
307
308 /* XFER a value from the big/little/left end of the register.
309 Depending on the size of the value it might occupy the entire
310 register or just part of it. Make an allowance for this, aligning
311 things accordingly. */
312
313 static void
314 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
315 enum bfd_endian endian, bfd_byte * in,
316 const bfd_byte * out, int buf_offset)
317 {
318 int reg_offset = 0;
319 gdb_assert (reg_num >= NUM_REGS);
320 /* Need to transfer the left or right part of the register, based on
321 the targets byte order. */
322 switch (endian)
323 {
324 case BFD_ENDIAN_BIG:
325 reg_offset = register_size (current_gdbarch, reg_num) - length;
326 break;
327 case BFD_ENDIAN_LITTLE:
328 reg_offset = 0;
329 break;
330 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
331 reg_offset = 0;
332 break;
333 default:
334 internal_error (__FILE__, __LINE__, "bad switch");
335 }
336 if (mips_debug)
337 fprintf_unfiltered (gdb_stderr,
338 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
339 reg_num, reg_offset, buf_offset, length);
340 if (mips_debug && out != NULL)
341 {
342 int i;
343 fprintf_unfiltered (gdb_stdlog, "out ");
344 for (i = 0; i < length; i++)
345 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
346 }
347 if (in != NULL)
348 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
349 in + buf_offset);
350 if (out != NULL)
351 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
352 out + buf_offset);
353 if (mips_debug && in != NULL)
354 {
355 int i;
356 fprintf_unfiltered (gdb_stdlog, "in ");
357 for (i = 0; i < length; i++)
358 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
359 }
360 if (mips_debug)
361 fprintf_unfiltered (gdb_stdlog, "\n");
362 }
363
364 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
365 compatiblity mode. A return value of 1 means that we have
366 physical 64-bit registers, but should treat them as 32-bit registers. */
367
368 static int
369 mips2_fp_compat (void)
370 {
371 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
372 meaningful. */
373 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
374 4)
375 return 0;
376
377 #if 0
378 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
379 in all the places we deal with FP registers. PR gdb/413. */
380 /* Otherwise check the FR bit in the status register - it controls
381 the FP compatiblity mode. If it is clear we are in compatibility
382 mode. */
383 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
384 return 1;
385 #endif
386
387 return 0;
388 }
389
390 /* The amount of space reserved on the stack for registers. This is
391 different to MIPS_ABI_REGSIZE as it determines the alignment of
392 data allocated after the registers have run out. */
393
394 static const char *mips_stack_argsize_string = size_auto;
395
396 static unsigned int
397 mips_stack_argsize (struct gdbarch *gdbarch)
398 {
399 if (mips_stack_argsize_string == size_auto)
400 return mips_abi_regsize (gdbarch);
401 else if (mips_stack_argsize_string == size_64)
402 return 8;
403 else /* if (mips_stack_argsize_string == size_32) */
404 return 4;
405 }
406
407 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
408
409 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
410
411 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
412
413 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
414
415 static struct type *mips_float_register_type (void);
416 static struct type *mips_double_register_type (void);
417
418 /* The list of available "set mips " and "show mips " commands */
419
420 static struct cmd_list_element *setmipscmdlist = NULL;
421 static struct cmd_list_element *showmipscmdlist = NULL;
422
423 /* Integer registers 0 thru 31 are handled explicitly by
424 mips_register_name(). Processor specific registers 32 and above
425 are listed in the followign tables. */
426
427 enum
428 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
429
430 /* Generic MIPS. */
431
432 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
433 "sr", "lo", "hi", "bad", "cause", "pc",
434 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
435 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
436 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
437 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
438 "fsr", "fir", "" /*"fp" */ , "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 };
442
443 /* Names of IDT R3041 registers. */
444
445 static const char *mips_r3041_reg_names[] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "", /*"fp" */ "",
452 "", "", "bus", "ccfg", "", "", "", "",
453 "", "", "port", "cmp", "", "", "epc", "prid",
454 };
455
456 /* Names of tx39 registers. */
457
458 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "", "", "", "", "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 "", "", "", "", "", "", "", "",
463 "", "", "", "", "", "", "", "",
464 "", "", "", "",
465 "", "", "", "", "", "", "", "",
466 "", "", "config", "cache", "debug", "depc", "epc", ""
467 };
468
469 /* Names of IRIX registers. */
470 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
471 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
472 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
473 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
474 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
475 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
476 };
477
478
479 /* Return the name of the register corresponding to REGNO. */
480 static const char *
481 mips_register_name (int regno)
482 {
483 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
484 /* GPR names for all ABIs other than n32/n64. */
485 static char *mips_gpr_names[] = {
486 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
487 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
488 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
489 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
490 };
491
492 /* GPR names for n32 and n64 ABIs. */
493 static char *mips_n32_n64_gpr_names[] = {
494 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
495 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
496 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
497 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
498 };
499
500 enum mips_abi abi = mips_abi (current_gdbarch);
501
502 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
503 don't make the raw register names visible. */
504 int rawnum = regno % NUM_REGS;
505 if (regno < NUM_REGS)
506 return "";
507
508 /* The MIPS integer registers are always mapped from 0 to 31. The
509 names of the registers (which reflects the conventions regarding
510 register use) vary depending on the ABI. */
511 if (0 <= rawnum && rawnum < 32)
512 {
513 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
514 return mips_n32_n64_gpr_names[rawnum];
515 else
516 return mips_gpr_names[rawnum];
517 }
518 else if (32 <= rawnum && rawnum < NUM_REGS)
519 {
520 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
521 return tdep->mips_processor_reg_names[rawnum - 32];
522 }
523 else
524 internal_error (__FILE__, __LINE__,
525 "mips_register_name: bad register number %d", rawnum);
526 }
527
528 /* Return the groups that a MIPS register can be categorised into. */
529
530 static int
531 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
532 struct reggroup *reggroup)
533 {
534 int vector_p;
535 int float_p;
536 int raw_p;
537 int rawnum = regnum % NUM_REGS;
538 int pseudo = regnum / NUM_REGS;
539 if (reggroup == all_reggroup)
540 return pseudo;
541 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
542 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
543 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
544 (gdbarch), as not all architectures are multi-arch. */
545 raw_p = rawnum < NUM_REGS;
546 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
547 return 0;
548 if (reggroup == float_reggroup)
549 return float_p && pseudo;
550 if (reggroup == vector_reggroup)
551 return vector_p && pseudo;
552 if (reggroup == general_reggroup)
553 return (!vector_p && !float_p) && pseudo;
554 /* Save the pseudo registers. Need to make certain that any code
555 extracting register values from a saved register cache also uses
556 pseudo registers. */
557 if (reggroup == save_reggroup)
558 return raw_p && pseudo;
559 /* Restore the same pseudo register. */
560 if (reggroup == restore_reggroup)
561 return raw_p && pseudo;
562 return 0;
563 }
564
565 /* Map the symbol table registers which live in the range [1 *
566 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
567 registers. Take care of alignment and size problems. */
568
569 static void
570 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
571 int cookednum, void *buf)
572 {
573 int rawnum = cookednum % NUM_REGS;
574 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
575 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
576 regcache_raw_read (regcache, rawnum, buf);
577 else if (register_size (gdbarch, rawnum) >
578 register_size (gdbarch, cookednum))
579 {
580 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
581 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
582 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
583 else
584 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
585 }
586 else
587 internal_error (__FILE__, __LINE__, "bad register size");
588 }
589
590 static void
591 mips_pseudo_register_write (struct gdbarch *gdbarch,
592 struct regcache *regcache, int cookednum,
593 const void *buf)
594 {
595 int rawnum = cookednum % NUM_REGS;
596 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
597 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
598 regcache_raw_write (regcache, rawnum, buf);
599 else if (register_size (gdbarch, rawnum) >
600 register_size (gdbarch, cookednum))
601 {
602 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
603 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
604 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
605 else
606 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
607 }
608 else
609 internal_error (__FILE__, __LINE__, "bad register size");
610 }
611
612 /* Table to translate MIPS16 register field to actual register number. */
613 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
614
615 /* Heuristic_proc_start may hunt through the text section for a long
616 time across a 2400 baud serial line. Allows the user to limit this
617 search. */
618
619 static unsigned int heuristic_fence_post = 0;
620
621 /* Number of bytes of storage in the actual machine representation for
622 register N. NOTE: This defines the pseudo register type so need to
623 rebuild the architecture vector. */
624
625 static int mips64_transfers_32bit_regs_p = 0;
626
627 static void
628 set_mips64_transfers_32bit_regs (char *args, int from_tty,
629 struct cmd_list_element *c)
630 {
631 struct gdbarch_info info;
632 gdbarch_info_init (&info);
633 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
634 instead of relying on globals. Doing that would let generic code
635 handle the search for this specific architecture. */
636 if (!gdbarch_update_p (info))
637 {
638 mips64_transfers_32bit_regs_p = 0;
639 error ("32-bit compatibility mode not supported");
640 }
641 }
642
643 /* Convert to/from a register and the corresponding memory value. */
644
645 static int
646 mips_convert_register_p (int regnum, struct type *type)
647 {
648 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
649 && register_size (current_gdbarch, regnum) == 4
650 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
651 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
652 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
653 }
654
655 static void
656 mips_register_to_value (struct frame_info *frame, int regnum,
657 struct type *type, void *to)
658 {
659 get_frame_register (frame, regnum + 0, (char *) to + 4);
660 get_frame_register (frame, regnum + 1, (char *) to + 0);
661 }
662
663 static void
664 mips_value_to_register (struct frame_info *frame, int regnum,
665 struct type *type, const void *from)
666 {
667 put_frame_register (frame, regnum + 0, (const char *) from + 4);
668 put_frame_register (frame, regnum + 1, (const char *) from + 0);
669 }
670
671 /* Return the GDB type object for the "standard" data type of data in
672 register REG. */
673
674 static struct type *
675 mips_register_type (struct gdbarch *gdbarch, int regnum)
676 {
677 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
678 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
679 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
680 {
681 /* The floating-point registers raw, or cooked, always match
682 mips_isa_regsize(), and also map 1:1, byte for byte. */
683 switch (gdbarch_byte_order (gdbarch))
684 {
685 case BFD_ENDIAN_BIG:
686 if (mips_isa_regsize (gdbarch) == 4)
687 return builtin_type_ieee_single_big;
688 else
689 return builtin_type_ieee_double_big;
690 case BFD_ENDIAN_LITTLE:
691 if (mips_isa_regsize (gdbarch) == 4)
692 return builtin_type_ieee_single_little;
693 else
694 return builtin_type_ieee_double_little;
695 case BFD_ENDIAN_UNKNOWN:
696 default:
697 internal_error (__FILE__, __LINE__, "bad switch");
698 }
699 }
700 else if (regnum < NUM_REGS)
701 {
702 /* The raw or ISA registers. These are all sized according to
703 the ISA regsize. */
704 if (mips_isa_regsize (gdbarch) == 4)
705 return builtin_type_int32;
706 else
707 return builtin_type_int64;
708 }
709 else
710 {
711 /* The cooked or ABI registers. These are sized according to
712 the ABI (with a few complications). */
713 if (regnum >= (NUM_REGS
714 + mips_regnum (current_gdbarch)->fp_control_status)
715 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32;
719 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
720 /* The target, while possibly using a 64-bit register buffer,
721 is only transfering 32-bits of each integer register.
722 Reflect this in the cooked/pseudo (ABI) register value. */
723 return builtin_type_int32;
724 else if (mips_abi_regsize (gdbarch) == 4)
725 /* The ABI is restricted to 32-bit registers (the ISA could be
726 32- or 64-bit). */
727 return builtin_type_int32;
728 else
729 /* 64-bit ABI. */
730 return builtin_type_int64;
731 }
732 }
733
734 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
735
736 static CORE_ADDR
737 mips_read_sp (void)
738 {
739 return read_signed_register (MIPS_SP_REGNUM);
740 }
741
742 /* Should the upper word of 64-bit addresses be zeroed? */
743 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
744
745 static int
746 mips_mask_address_p (struct gdbarch_tdep *tdep)
747 {
748 switch (mask_address_var)
749 {
750 case AUTO_BOOLEAN_TRUE:
751 return 1;
752 case AUTO_BOOLEAN_FALSE:
753 return 0;
754 break;
755 case AUTO_BOOLEAN_AUTO:
756 return tdep->default_mask_address_p;
757 default:
758 internal_error (__FILE__, __LINE__, "mips_mask_address_p: bad switch");
759 return -1;
760 }
761 }
762
763 static void
764 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
765 {
766 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
767 switch (mask_address_var)
768 {
769 case AUTO_BOOLEAN_TRUE:
770 printf_filtered ("The 32 bit mips address mask is enabled\n");
771 break;
772 case AUTO_BOOLEAN_FALSE:
773 printf_filtered ("The 32 bit mips address mask is disabled\n");
774 break;
775 case AUTO_BOOLEAN_AUTO:
776 printf_filtered
777 ("The 32 bit address mask is set automatically. Currently %s\n",
778 mips_mask_address_p (tdep) ? "enabled" : "disabled");
779 break;
780 default:
781 internal_error (__FILE__, __LINE__, "show_mask_address: bad switch");
782 break;
783 }
784 }
785
786 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
787
788 int
789 mips_pc_is_mips16 (CORE_ADDR memaddr)
790 {
791 struct minimal_symbol *sym;
792
793 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
794 if (is_mips16_addr (memaddr))
795 return 1;
796
797 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
798 the high bit of the info field. Use this to decide if the function is
799 MIPS16 or normal MIPS. */
800 sym = lookup_minimal_symbol_by_pc (memaddr);
801 if (sym)
802 return msymbol_is_special (sym);
803 else
804 return 0;
805 }
806
807 /* MIPS believes that the PC has a sign extended value. Perhaps the
808 all registers should be sign extended for simplicity? */
809
810 static CORE_ADDR
811 mips_read_pc (ptid_t ptid)
812 {
813 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
814 }
815
816 static CORE_ADDR
817 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
818 {
819 return frame_unwind_register_signed (next_frame,
820 NUM_REGS + mips_regnum (gdbarch)->pc);
821 }
822
823 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
824 dummy frame. The frame ID's base needs to match the TOS value
825 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
826 breakpoint. */
827
828 static struct frame_id
829 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
830 {
831 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
832 frame_pc_unwind (next_frame));
833 }
834
835 static void
836 mips_write_pc (CORE_ADDR pc, ptid_t ptid)
837 {
838 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
839 }
840
841 /* Fetch and return instruction from the specified location. If the PC
842 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
843
844 static ULONGEST
845 mips_fetch_instruction (CORE_ADDR addr)
846 {
847 char buf[MIPS_INSN32_SIZE];
848 int instlen;
849 int status;
850
851 if (mips_pc_is_mips16 (addr))
852 {
853 instlen = MIPS_INSN16_SIZE;
854 addr = unmake_mips16_addr (addr);
855 }
856 else
857 instlen = MIPS_INSN32_SIZE;
858 status = deprecated_read_memory_nobpt (addr, buf, instlen);
859 if (status)
860 memory_error (status, addr);
861 return extract_unsigned_integer (buf, instlen);
862 }
863
864 /* These the fields of 32 bit mips instructions */
865 #define mips32_op(x) (x >> 26)
866 #define itype_op(x) (x >> 26)
867 #define itype_rs(x) ((x >> 21) & 0x1f)
868 #define itype_rt(x) ((x >> 16) & 0x1f)
869 #define itype_immediate(x) (x & 0xffff)
870
871 #define jtype_op(x) (x >> 26)
872 #define jtype_target(x) (x & 0x03ffffff)
873
874 #define rtype_op(x) (x >> 26)
875 #define rtype_rs(x) ((x >> 21) & 0x1f)
876 #define rtype_rt(x) ((x >> 16) & 0x1f)
877 #define rtype_rd(x) ((x >> 11) & 0x1f)
878 #define rtype_shamt(x) ((x >> 6) & 0x1f)
879 #define rtype_funct(x) (x & 0x3f)
880
881 static CORE_ADDR
882 mips32_relative_offset (unsigned long inst)
883 {
884 long x;
885 x = itype_immediate (inst);
886 if (x & 0x8000) /* sign bit set */
887 {
888 x |= 0xffff0000; /* sign extension */
889 }
890 x = x << 2;
891 return x;
892 }
893
894 /* Determine whate to set a single step breakpoint while considering
895 branch prediction */
896 static CORE_ADDR
897 mips32_next_pc (CORE_ADDR pc)
898 {
899 unsigned long inst;
900 int op;
901 inst = mips_fetch_instruction (pc);
902 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
903 {
904 if (itype_op (inst) >> 2 == 5)
905 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
906 {
907 op = (itype_op (inst) & 0x03);
908 switch (op)
909 {
910 case 0: /* BEQL */
911 goto equal_branch;
912 case 1: /* BNEL */
913 goto neq_branch;
914 case 2: /* BLEZL */
915 goto less_branch;
916 case 3: /* BGTZ */
917 goto greater_branch;
918 default:
919 pc += 4;
920 }
921 }
922 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
923 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
924 {
925 int tf = itype_rt (inst) & 0x01;
926 int cnum = itype_rt (inst) >> 2;
927 int fcrcs =
928 read_signed_register (mips_regnum (current_gdbarch)->
929 fp_control_status);
930 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
931
932 if (((cond >> cnum) & 0x01) == tf)
933 pc += mips32_relative_offset (inst) + 4;
934 else
935 pc += 8;
936 }
937 else
938 pc += 4; /* Not a branch, next instruction is easy */
939 }
940 else
941 { /* This gets way messy */
942
943 /* Further subdivide into SPECIAL, REGIMM and other */
944 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
945 {
946 case 0: /* SPECIAL */
947 op = rtype_funct (inst);
948 switch (op)
949 {
950 case 8: /* JR */
951 case 9: /* JALR */
952 /* Set PC to that address */
953 pc = read_signed_register (rtype_rs (inst));
954 break;
955 default:
956 pc += 4;
957 }
958
959 break; /* end SPECIAL */
960 case 1: /* REGIMM */
961 {
962 op = itype_rt (inst); /* branch condition */
963 switch (op)
964 {
965 case 0: /* BLTZ */
966 case 2: /* BLTZL */
967 case 16: /* BLTZAL */
968 case 18: /* BLTZALL */
969 less_branch:
970 if (read_signed_register (itype_rs (inst)) < 0)
971 pc += mips32_relative_offset (inst) + 4;
972 else
973 pc += 8; /* after the delay slot */
974 break;
975 case 1: /* BGEZ */
976 case 3: /* BGEZL */
977 case 17: /* BGEZAL */
978 case 19: /* BGEZALL */
979 if (read_signed_register (itype_rs (inst)) >= 0)
980 pc += mips32_relative_offset (inst) + 4;
981 else
982 pc += 8; /* after the delay slot */
983 break;
984 /* All of the other instructions in the REGIMM category */
985 default:
986 pc += 4;
987 }
988 }
989 break; /* end REGIMM */
990 case 2: /* J */
991 case 3: /* JAL */
992 {
993 unsigned long reg;
994 reg = jtype_target (inst) << 2;
995 /* Upper four bits get never changed... */
996 pc = reg + ((pc + 4) & 0xf0000000);
997 }
998 break;
999 /* FIXME case JALX : */
1000 {
1001 unsigned long reg;
1002 reg = jtype_target (inst) << 2;
1003 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1004 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1005 }
1006 break; /* The new PC will be alternate mode */
1007 case 4: /* BEQ, BEQL */
1008 equal_branch:
1009 if (read_signed_register (itype_rs (inst)) ==
1010 read_signed_register (itype_rt (inst)))
1011 pc += mips32_relative_offset (inst) + 4;
1012 else
1013 pc += 8;
1014 break;
1015 case 5: /* BNE, BNEL */
1016 neq_branch:
1017 if (read_signed_register (itype_rs (inst)) !=
1018 read_signed_register (itype_rt (inst)))
1019 pc += mips32_relative_offset (inst) + 4;
1020 else
1021 pc += 8;
1022 break;
1023 case 6: /* BLEZ, BLEZL */
1024 if (read_signed_register (itype_rs (inst)) <= 0)
1025 pc += mips32_relative_offset (inst) + 4;
1026 else
1027 pc += 8;
1028 break;
1029 case 7:
1030 default:
1031 greater_branch: /* BGTZ, BGTZL */
1032 if (read_signed_register (itype_rs (inst)) > 0)
1033 pc += mips32_relative_offset (inst) + 4;
1034 else
1035 pc += 8;
1036 break;
1037 } /* switch */
1038 } /* else */
1039 return pc;
1040 } /* mips32_next_pc */
1041
1042 /* Decoding the next place to set a breakpoint is irregular for the
1043 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1044 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1045 We dont want to set a single step instruction on the extend instruction
1046 either.
1047 */
1048
1049 /* Lots of mips16 instruction formats */
1050 /* Predicting jumps requires itype,ritype,i8type
1051 and their extensions extItype,extritype,extI8type
1052 */
1053 enum mips16_inst_fmts
1054 {
1055 itype, /* 0 immediate 5,10 */
1056 ritype, /* 1 5,3,8 */
1057 rrtype, /* 2 5,3,3,5 */
1058 rritype, /* 3 5,3,3,5 */
1059 rrrtype, /* 4 5,3,3,3,2 */
1060 rriatype, /* 5 5,3,3,1,4 */
1061 shifttype, /* 6 5,3,3,3,2 */
1062 i8type, /* 7 5,3,8 */
1063 i8movtype, /* 8 5,3,3,5 */
1064 i8mov32rtype, /* 9 5,3,5,3 */
1065 i64type, /* 10 5,3,8 */
1066 ri64type, /* 11 5,3,3,5 */
1067 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1068 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1069 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1070 extRRItype, /* 15 5,5,5,5,3,3,5 */
1071 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1072 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1073 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1074 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1075 extRi64type, /* 20 5,6,5,5,3,3,5 */
1076 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1077 };
1078 /* I am heaping all the fields of the formats into one structure and
1079 then, only the fields which are involved in instruction extension */
1080 struct upk_mips16
1081 {
1082 CORE_ADDR offset;
1083 unsigned int regx; /* Function in i8 type */
1084 unsigned int regy;
1085 };
1086
1087
1088 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1089 for the bits which make up the immediatate extension. */
1090
1091 static CORE_ADDR
1092 extended_offset (unsigned int extension)
1093 {
1094 CORE_ADDR value;
1095 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1096 value = value << 6;
1097 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1098 value = value << 5;
1099 value |= extension & 0x01f; /* extract 4:0 */
1100 return value;
1101 }
1102
1103 /* Only call this function if you know that this is an extendable
1104 instruction, It wont malfunction, but why make excess remote memory references?
1105 If the immediate operands get sign extended or somthing, do it after
1106 the extension is performed.
1107 */
1108 /* FIXME: Every one of these cases needs to worry about sign extension
1109 when the offset is to be used in relative addressing */
1110
1111
1112 static unsigned int
1113 fetch_mips_16 (CORE_ADDR pc)
1114 {
1115 char buf[8];
1116 pc &= 0xfffffffe; /* clear the low order bit */
1117 target_read_memory (pc, buf, 2);
1118 return extract_unsigned_integer (buf, 2);
1119 }
1120
1121 static void
1122 unpack_mips16 (CORE_ADDR pc,
1123 unsigned int extension,
1124 unsigned int inst,
1125 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1126 {
1127 CORE_ADDR offset;
1128 int regx;
1129 int regy;
1130 switch (insn_format)
1131 {
1132 case itype:
1133 {
1134 CORE_ADDR value;
1135 if (extension)
1136 {
1137 value = extended_offset (extension);
1138 value = value << 11; /* rom for the original value */
1139 value |= inst & 0x7ff; /* eleven bits from instruction */
1140 }
1141 else
1142 {
1143 value = inst & 0x7ff;
1144 /* FIXME : Consider sign extension */
1145 }
1146 offset = value;
1147 regx = -1;
1148 regy = -1;
1149 }
1150 break;
1151 case ritype:
1152 case i8type:
1153 { /* A register identifier and an offset */
1154 /* Most of the fields are the same as I type but the
1155 immediate value is of a different length */
1156 CORE_ADDR value;
1157 if (extension)
1158 {
1159 value = extended_offset (extension);
1160 value = value << 8; /* from the original instruction */
1161 value |= inst & 0xff; /* eleven bits from instruction */
1162 regx = (extension >> 8) & 0x07; /* or i8 funct */
1163 if (value & 0x4000) /* test the sign bit , bit 26 */
1164 {
1165 value &= ~0x3fff; /* remove the sign bit */
1166 value = -value;
1167 }
1168 }
1169 else
1170 {
1171 value = inst & 0xff; /* 8 bits */
1172 regx = (inst >> 8) & 0x07; /* or i8 funct */
1173 /* FIXME: Do sign extension , this format needs it */
1174 if (value & 0x80) /* THIS CONFUSES ME */
1175 {
1176 value &= 0xef; /* remove the sign bit */
1177 value = -value;
1178 }
1179 }
1180 offset = value;
1181 regy = -1;
1182 break;
1183 }
1184 case jalxtype:
1185 {
1186 unsigned long value;
1187 unsigned int nexthalf;
1188 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1189 value = value << 16;
1190 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1191 value |= nexthalf;
1192 offset = value;
1193 regx = -1;
1194 regy = -1;
1195 break;
1196 }
1197 default:
1198 internal_error (__FILE__, __LINE__, "bad switch");
1199 }
1200 upk->offset = offset;
1201 upk->regx = regx;
1202 upk->regy = regy;
1203 }
1204
1205
1206 static CORE_ADDR
1207 add_offset_16 (CORE_ADDR pc, int offset)
1208 {
1209 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1210 }
1211
1212 static CORE_ADDR
1213 extended_mips16_next_pc (CORE_ADDR pc,
1214 unsigned int extension, unsigned int insn)
1215 {
1216 int op = (insn >> 11);
1217 switch (op)
1218 {
1219 case 2: /* Branch */
1220 {
1221 CORE_ADDR offset;
1222 struct upk_mips16 upk;
1223 unpack_mips16 (pc, extension, insn, itype, &upk);
1224 offset = upk.offset;
1225 if (offset & 0x800)
1226 {
1227 offset &= 0xeff;
1228 offset = -offset;
1229 }
1230 pc += (offset << 1) + 2;
1231 break;
1232 }
1233 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1234 {
1235 struct upk_mips16 upk;
1236 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1237 pc = add_offset_16 (pc, upk.offset);
1238 if ((insn >> 10) & 0x01) /* Exchange mode */
1239 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1240 else
1241 pc |= 0x01;
1242 break;
1243 }
1244 case 4: /* beqz */
1245 {
1246 struct upk_mips16 upk;
1247 int reg;
1248 unpack_mips16 (pc, extension, insn, ritype, &upk);
1249 reg = read_signed_register (upk.regx);
1250 if (reg == 0)
1251 pc += (upk.offset << 1) + 2;
1252 else
1253 pc += 2;
1254 break;
1255 }
1256 case 5: /* bnez */
1257 {
1258 struct upk_mips16 upk;
1259 int reg;
1260 unpack_mips16 (pc, extension, insn, ritype, &upk);
1261 reg = read_signed_register (upk.regx);
1262 if (reg != 0)
1263 pc += (upk.offset << 1) + 2;
1264 else
1265 pc += 2;
1266 break;
1267 }
1268 case 12: /* I8 Formats btez btnez */
1269 {
1270 struct upk_mips16 upk;
1271 int reg;
1272 unpack_mips16 (pc, extension, insn, i8type, &upk);
1273 /* upk.regx contains the opcode */
1274 reg = read_signed_register (24); /* Test register is 24 */
1275 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1276 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1277 /* pc = add_offset_16(pc,upk.offset) ; */
1278 pc += (upk.offset << 1) + 2;
1279 else
1280 pc += 2;
1281 break;
1282 }
1283 case 29: /* RR Formats JR, JALR, JALR-RA */
1284 {
1285 struct upk_mips16 upk;
1286 /* upk.fmt = rrtype; */
1287 op = insn & 0x1f;
1288 if (op == 0)
1289 {
1290 int reg;
1291 upk.regx = (insn >> 8) & 0x07;
1292 upk.regy = (insn >> 5) & 0x07;
1293 switch (upk.regy)
1294 {
1295 case 0:
1296 reg = upk.regx;
1297 break;
1298 case 1:
1299 reg = 31;
1300 break; /* Function return instruction */
1301 case 2:
1302 reg = upk.regx;
1303 break;
1304 default:
1305 reg = 31;
1306 break; /* BOGUS Guess */
1307 }
1308 pc = read_signed_register (reg);
1309 }
1310 else
1311 pc += 2;
1312 break;
1313 }
1314 case 30:
1315 /* This is an instruction extension. Fetch the real instruction
1316 (which follows the extension) and decode things based on
1317 that. */
1318 {
1319 pc += 2;
1320 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1321 break;
1322 }
1323 default:
1324 {
1325 pc += 2;
1326 break;
1327 }
1328 }
1329 return pc;
1330 }
1331
1332 static CORE_ADDR
1333 mips16_next_pc (CORE_ADDR pc)
1334 {
1335 unsigned int insn = fetch_mips_16 (pc);
1336 return extended_mips16_next_pc (pc, 0, insn);
1337 }
1338
1339 /* The mips_next_pc function supports single_step when the remote
1340 target monitor or stub is not developed enough to do a single_step.
1341 It works by decoding the current instruction and predicting where a
1342 branch will go. This isnt hard because all the data is available.
1343 The MIPS32 and MIPS16 variants are quite different */
1344 CORE_ADDR
1345 mips_next_pc (CORE_ADDR pc)
1346 {
1347 if (pc & 0x01)
1348 return mips16_next_pc (pc);
1349 else
1350 return mips32_next_pc (pc);
1351 }
1352
1353 struct mips_frame_cache
1354 {
1355 CORE_ADDR base;
1356 struct trad_frame_saved_reg *saved_regs;
1357 };
1358
1359 /* Set a register's saved stack address in temp_saved_regs. If an
1360 address has already been set for this register, do nothing; this
1361 way we will only recognize the first save of a given register in a
1362 function prologue.
1363
1364 For simplicity, save the address in both [0 .. NUM_REGS) and
1365 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1366 is used as it is only second range (the ABI instead of ISA
1367 registers) that comes into play when finding saved registers in a
1368 frame. */
1369
1370 static void
1371 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1372 CORE_ADDR offset)
1373 {
1374 if (this_cache != NULL
1375 && this_cache->saved_regs[regnum].addr == -1)
1376 {
1377 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1378 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1379 }
1380 }
1381
1382
1383 /* Fetch the immediate value from a MIPS16 instruction.
1384 If the previous instruction was an EXTEND, use it to extend
1385 the upper bits of the immediate value. This is a helper function
1386 for mips16_scan_prologue. */
1387
1388 static int
1389 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1390 unsigned short inst, /* current instruction */
1391 int nbits, /* number of bits in imm field */
1392 int scale, /* scale factor to be applied to imm */
1393 int is_signed) /* is the imm field signed? */
1394 {
1395 int offset;
1396
1397 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1398 {
1399 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1400 if (offset & 0x8000) /* check for negative extend */
1401 offset = 0 - (0x10000 - (offset & 0xffff));
1402 return offset | (inst & 0x1f);
1403 }
1404 else
1405 {
1406 int max_imm = 1 << nbits;
1407 int mask = max_imm - 1;
1408 int sign_bit = max_imm >> 1;
1409
1410 offset = inst & mask;
1411 if (is_signed && (offset & sign_bit))
1412 offset = 0 - (max_imm - offset);
1413 return offset * scale;
1414 }
1415 }
1416
1417
1418 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1419 the associated FRAME_CACHE if not null.
1420 Return the address of the first instruction past the prologue. */
1421
1422 static CORE_ADDR
1423 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1424 struct frame_info *next_frame,
1425 struct mips_frame_cache *this_cache)
1426 {
1427 CORE_ADDR cur_pc;
1428 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1429 CORE_ADDR sp;
1430 long frame_offset = 0; /* Size of stack frame. */
1431 long frame_adjust = 0; /* Offset of FP from SP. */
1432 int frame_reg = MIPS_SP_REGNUM;
1433 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1434 unsigned inst = 0; /* current instruction */
1435 unsigned entry_inst = 0; /* the entry instruction */
1436 int reg, offset;
1437
1438 int extend_bytes = 0;
1439 int prev_extend_bytes;
1440 CORE_ADDR end_prologue_addr = 0;
1441
1442 /* Can be called when there's no process, and hence when there's no
1443 NEXT_FRAME. */
1444 if (next_frame != NULL)
1445 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1446 else
1447 sp = 0;
1448
1449 if (limit_pc > start_pc + 200)
1450 limit_pc = start_pc + 200;
1451
1452 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1453 {
1454 /* Save the previous instruction. If it's an EXTEND, we'll extract
1455 the immediate offset extension from it in mips16_get_imm. */
1456 prev_inst = inst;
1457
1458 /* Fetch and decode the instruction. */
1459 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1460
1461 /* Normally we ignore extend instructions. However, if it is
1462 not followed by a valid prologue instruction, then this
1463 instruction is not part of the prologue either. We must
1464 remember in this case to adjust the end_prologue_addr back
1465 over the extend. */
1466 if ((inst & 0xf800) == 0xf000) /* extend */
1467 {
1468 extend_bytes = MIPS_INSN16_SIZE;
1469 continue;
1470 }
1471
1472 prev_extend_bytes = extend_bytes;
1473 extend_bytes = 0;
1474
1475 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1476 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1477 {
1478 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1479 if (offset < 0) /* negative stack adjustment? */
1480 frame_offset -= offset;
1481 else
1482 /* Exit loop if a positive stack adjustment is found, which
1483 usually means that the stack cleanup code in the function
1484 epilogue is reached. */
1485 break;
1486 }
1487 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1488 {
1489 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1490 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1491 set_reg_offset (this_cache, reg, sp + offset);
1492 }
1493 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1494 {
1495 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1496 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1497 set_reg_offset (this_cache, reg, sp + offset);
1498 }
1499 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1500 {
1501 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1502 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1503 }
1504 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1505 {
1506 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1507 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1508 }
1509 else if (inst == 0x673d) /* move $s1, $sp */
1510 {
1511 frame_addr = sp;
1512 frame_reg = 17;
1513 }
1514 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1515 {
1516 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1517 frame_addr = sp + offset;
1518 frame_reg = 17;
1519 frame_adjust = offset;
1520 }
1521 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1522 {
1523 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1524 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1525 set_reg_offset (this_cache, reg, frame_addr + offset);
1526 }
1527 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1528 {
1529 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1530 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1531 set_reg_offset (this_cache, reg, frame_addr + offset);
1532 }
1533 else if ((inst & 0xf81f) == 0xe809
1534 && (inst & 0x700) != 0x700) /* entry */
1535 entry_inst = inst; /* save for later processing */
1536 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1537 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1538 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1539 {
1540 /* This instruction is part of the prologue, but we don't
1541 need to do anything special to handle it. */
1542 }
1543 else
1544 {
1545 /* This instruction is not an instruction typically found
1546 in a prologue, so we must have reached the end of the
1547 prologue. */
1548 if (end_prologue_addr == 0)
1549 end_prologue_addr = cur_pc - prev_extend_bytes;
1550 }
1551 }
1552
1553 /* The entry instruction is typically the first instruction in a function,
1554 and it stores registers at offsets relative to the value of the old SP
1555 (before the prologue). But the value of the sp parameter to this
1556 function is the new SP (after the prologue has been executed). So we
1557 can't calculate those offsets until we've seen the entire prologue,
1558 and can calculate what the old SP must have been. */
1559 if (entry_inst != 0)
1560 {
1561 int areg_count = (entry_inst >> 8) & 7;
1562 int sreg_count = (entry_inst >> 6) & 3;
1563
1564 /* The entry instruction always subtracts 32 from the SP. */
1565 frame_offset += 32;
1566
1567 /* Now we can calculate what the SP must have been at the
1568 start of the function prologue. */
1569 sp += frame_offset;
1570
1571 /* Check if a0-a3 were saved in the caller's argument save area. */
1572 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1573 {
1574 set_reg_offset (this_cache, reg, sp + offset);
1575 offset += mips_abi_regsize (current_gdbarch);
1576 }
1577
1578 /* Check if the ra register was pushed on the stack. */
1579 offset = -4;
1580 if (entry_inst & 0x20)
1581 {
1582 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1583 offset -= mips_abi_regsize (current_gdbarch);
1584 }
1585
1586 /* Check if the s0 and s1 registers were pushed on the stack. */
1587 for (reg = 16; reg < sreg_count + 16; reg++)
1588 {
1589 set_reg_offset (this_cache, reg, sp + offset);
1590 offset -= mips_abi_regsize (current_gdbarch);
1591 }
1592 }
1593
1594 if (this_cache != NULL)
1595 {
1596 this_cache->base =
1597 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1598 + frame_offset - frame_adjust);
1599 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1600 be able to get rid of the assignment below, evetually. But it's
1601 still needed for now. */
1602 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1603 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1604 }
1605
1606 /* If we didn't reach the end of the prologue when scanning the function
1607 instructions, then set end_prologue_addr to the address of the
1608 instruction immediately after the last one we scanned. */
1609 if (end_prologue_addr == 0)
1610 end_prologue_addr = cur_pc;
1611
1612 return end_prologue_addr;
1613 }
1614
1615 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1616 Procedures that use the 32-bit instruction set are handled by the
1617 mips_insn32 unwinder. */
1618
1619 static struct mips_frame_cache *
1620 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1621 {
1622 struct mips_frame_cache *cache;
1623
1624 if ((*this_cache) != NULL)
1625 return (*this_cache);
1626 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1627 (*this_cache) = cache;
1628 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1629
1630 /* Analyze the function prologue. */
1631 {
1632 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1633 CORE_ADDR start_addr;
1634
1635 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1636 if (start_addr == 0)
1637 start_addr = heuristic_proc_start (pc);
1638 /* We can't analyze the prologue if we couldn't find the begining
1639 of the function. */
1640 if (start_addr == 0)
1641 return cache;
1642
1643 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1644 }
1645
1646 /* SP_REGNUM, contains the value and not the address. */
1647 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1648
1649 return (*this_cache);
1650 }
1651
1652 static void
1653 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1654 struct frame_id *this_id)
1655 {
1656 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1657 this_cache);
1658 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1659 }
1660
1661 static void
1662 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1663 void **this_cache,
1664 int regnum, int *optimizedp,
1665 enum lval_type *lvalp, CORE_ADDR *addrp,
1666 int *realnump, void *valuep)
1667 {
1668 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1669 this_cache);
1670 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1671 optimizedp, lvalp, addrp, realnump, valuep);
1672 }
1673
1674 static const struct frame_unwind mips_insn16_frame_unwind =
1675 {
1676 NORMAL_FRAME,
1677 mips_insn16_frame_this_id,
1678 mips_insn16_frame_prev_register
1679 };
1680
1681 static const struct frame_unwind *
1682 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1683 {
1684 CORE_ADDR pc = frame_pc_unwind (next_frame);
1685 if (mips_pc_is_mips16 (pc))
1686 return &mips_insn16_frame_unwind;
1687 return NULL;
1688 }
1689
1690 static CORE_ADDR
1691 mips_insn16_frame_base_address (struct frame_info *next_frame,
1692 void **this_cache)
1693 {
1694 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1695 this_cache);
1696 return info->base;
1697 }
1698
1699 static const struct frame_base mips_insn16_frame_base =
1700 {
1701 &mips_insn16_frame_unwind,
1702 mips_insn16_frame_base_address,
1703 mips_insn16_frame_base_address,
1704 mips_insn16_frame_base_address
1705 };
1706
1707 static const struct frame_base *
1708 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1709 {
1710 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1711 return &mips_insn16_frame_base;
1712 else
1713 return NULL;
1714 }
1715
1716 /* Mark all the registers as unset in the saved_regs array
1717 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1718
1719 void
1720 reset_saved_regs (struct mips_frame_cache *this_cache)
1721 {
1722 if (this_cache == NULL || this_cache->saved_regs == NULL)
1723 return;
1724
1725 {
1726 const int num_regs = NUM_REGS;
1727 int i;
1728
1729 for (i = 0; i < num_regs; i++)
1730 {
1731 this_cache->saved_regs[i].addr = -1;
1732 }
1733 }
1734 }
1735
1736 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1737 the associated FRAME_CACHE if not null.
1738 Return the address of the first instruction past the prologue. */
1739
1740 static CORE_ADDR
1741 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1742 struct frame_info *next_frame,
1743 struct mips_frame_cache *this_cache)
1744 {
1745 CORE_ADDR cur_pc;
1746 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1747 CORE_ADDR sp;
1748 long frame_offset;
1749 int frame_reg = MIPS_SP_REGNUM;
1750
1751 CORE_ADDR end_prologue_addr = 0;
1752 int seen_sp_adjust = 0;
1753 int load_immediate_bytes = 0;
1754
1755 /* Can be called when there's no process, and hence when there's no
1756 NEXT_FRAME. */
1757 if (next_frame != NULL)
1758 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1759 else
1760 sp = 0;
1761
1762 if (limit_pc > start_pc + 200)
1763 limit_pc = start_pc + 200;
1764
1765 restart:
1766
1767 frame_offset = 0;
1768 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1769 {
1770 unsigned long inst, high_word, low_word;
1771 int reg;
1772
1773 /* Fetch the instruction. */
1774 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1775
1776 /* Save some code by pre-extracting some useful fields. */
1777 high_word = (inst >> 16) & 0xffff;
1778 low_word = inst & 0xffff;
1779 reg = high_word & 0x1f;
1780
1781 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1782 || high_word == 0x23bd /* addi $sp,$sp,-i */
1783 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1784 {
1785 if (low_word & 0x8000) /* negative stack adjustment? */
1786 frame_offset += 0x10000 - low_word;
1787 else
1788 /* Exit loop if a positive stack adjustment is found, which
1789 usually means that the stack cleanup code in the function
1790 epilogue is reached. */
1791 break;
1792 seen_sp_adjust = 1;
1793 }
1794 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1795 {
1796 set_reg_offset (this_cache, reg, sp + low_word);
1797 }
1798 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1799 {
1800 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1801 set_reg_offset (this_cache, reg, sp + low_word);
1802 }
1803 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1804 {
1805 /* Old gcc frame, r30 is virtual frame pointer. */
1806 if ((long) low_word != frame_offset)
1807 frame_addr = sp + low_word;
1808 else if (frame_reg == MIPS_SP_REGNUM)
1809 {
1810 unsigned alloca_adjust;
1811
1812 frame_reg = 30;
1813 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1814 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1815 if (alloca_adjust > 0)
1816 {
1817 /* FP > SP + frame_size. This may be because of
1818 an alloca or somethings similar. Fix sp to
1819 "pre-alloca" value, and try again. */
1820 sp += alloca_adjust;
1821 /* Need to reset the status of all registers. Otherwise,
1822 we will hit a guard that prevents the new address
1823 for each register to be recomputed during the second
1824 pass. */
1825 reset_saved_regs (this_cache);
1826 goto restart;
1827 }
1828 }
1829 }
1830 /* move $30,$sp. With different versions of gas this will be either
1831 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1832 Accept any one of these. */
1833 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1834 {
1835 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1836 if (frame_reg == MIPS_SP_REGNUM)
1837 {
1838 unsigned alloca_adjust;
1839
1840 frame_reg = 30;
1841 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1842 alloca_adjust = (unsigned) (frame_addr - sp);
1843 if (alloca_adjust > 0)
1844 {
1845 /* FP > SP + frame_size. This may be because of
1846 an alloca or somethings similar. Fix sp to
1847 "pre-alloca" value, and try again. */
1848 sp = frame_addr;
1849 /* Need to reset the status of all registers. Otherwise,
1850 we will hit a guard that prevents the new address
1851 for each register to be recomputed during the second
1852 pass. */
1853 reset_saved_regs (this_cache);
1854 goto restart;
1855 }
1856 }
1857 }
1858 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1859 {
1860 set_reg_offset (this_cache, reg, frame_addr + low_word);
1861 }
1862 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1863 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1864 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1865 || high_word == 0x3c1c /* lui $gp,n */
1866 || high_word == 0x279c /* addiu $gp,$gp,n */
1867 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1868 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1869 )
1870 {
1871 /* These instructions are part of the prologue, but we don't
1872 need to do anything special to handle them. */
1873 }
1874 /* The instructions below load $at or $t0 with an immediate
1875 value in preparation for a stack adjustment via
1876 subu $sp,$sp,[$at,$t0]. These instructions could also
1877 initialize a local variable, so we accept them only before
1878 a stack adjustment instruction was seen. */
1879 else if (!seen_sp_adjust
1880 && (high_word == 0x3c01 /* lui $at,n */
1881 || high_word == 0x3c08 /* lui $t0,n */
1882 || high_word == 0x3421 /* ori $at,$at,n */
1883 || high_word == 0x3508 /* ori $t0,$t0,n */
1884 || high_word == 0x3401 /* ori $at,$zero,n */
1885 || high_word == 0x3408 /* ori $t0,$zero,n */
1886 ))
1887 {
1888 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
1889 }
1890 else
1891 {
1892 /* This instruction is not an instruction typically found
1893 in a prologue, so we must have reached the end of the
1894 prologue. */
1895 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1896 loop now? Why would we need to continue scanning the function
1897 instructions? */
1898 if (end_prologue_addr == 0)
1899 end_prologue_addr = cur_pc;
1900 }
1901 }
1902
1903 if (this_cache != NULL)
1904 {
1905 this_cache->base =
1906 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1907 + frame_offset);
1908 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1909 this assignment below, eventually. But it's still needed
1910 for now. */
1911 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1912 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1913 }
1914
1915 /* If we didn't reach the end of the prologue when scanning the function
1916 instructions, then set end_prologue_addr to the address of the
1917 instruction immediately after the last one we scanned. */
1918 /* brobecker/2004-10-10: I don't think this would ever happen, but
1919 we may as well be careful and do our best if we have a null
1920 end_prologue_addr. */
1921 if (end_prologue_addr == 0)
1922 end_prologue_addr = cur_pc;
1923
1924 /* In a frameless function, we might have incorrectly
1925 skipped some load immediate instructions. Undo the skipping
1926 if the load immediate was not followed by a stack adjustment. */
1927 if (load_immediate_bytes && !seen_sp_adjust)
1928 end_prologue_addr -= load_immediate_bytes;
1929
1930 return end_prologue_addr;
1931 }
1932
1933 /* Heuristic unwinder for procedures using 32-bit instructions (covers
1934 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1935 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1936 unwinder. */
1937
1938 static struct mips_frame_cache *
1939 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
1940 {
1941 struct mips_frame_cache *cache;
1942
1943 if ((*this_cache) != NULL)
1944 return (*this_cache);
1945
1946 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1947 (*this_cache) = cache;
1948 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1949
1950 /* Analyze the function prologue. */
1951 {
1952 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1953 CORE_ADDR start_addr;
1954
1955 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1956 if (start_addr == 0)
1957 start_addr = heuristic_proc_start (pc);
1958 /* We can't analyze the prologue if we couldn't find the begining
1959 of the function. */
1960 if (start_addr == 0)
1961 return cache;
1962
1963 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1964 }
1965
1966 /* SP_REGNUM, contains the value and not the address. */
1967 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1968
1969 return (*this_cache);
1970 }
1971
1972 static void
1973 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1974 struct frame_id *this_id)
1975 {
1976 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1977 this_cache);
1978 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1979 }
1980
1981 static void
1982 mips_insn32_frame_prev_register (struct frame_info *next_frame,
1983 void **this_cache,
1984 int regnum, int *optimizedp,
1985 enum lval_type *lvalp, CORE_ADDR *addrp,
1986 int *realnump, void *valuep)
1987 {
1988 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1989 this_cache);
1990 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1991 optimizedp, lvalp, addrp, realnump, valuep);
1992 }
1993
1994 static const struct frame_unwind mips_insn32_frame_unwind =
1995 {
1996 NORMAL_FRAME,
1997 mips_insn32_frame_this_id,
1998 mips_insn32_frame_prev_register
1999 };
2000
2001 static const struct frame_unwind *
2002 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2003 {
2004 CORE_ADDR pc = frame_pc_unwind (next_frame);
2005 if (! mips_pc_is_mips16 (pc))
2006 return &mips_insn32_frame_unwind;
2007 return NULL;
2008 }
2009
2010 static CORE_ADDR
2011 mips_insn32_frame_base_address (struct frame_info *next_frame,
2012 void **this_cache)
2013 {
2014 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2015 this_cache);
2016 return info->base;
2017 }
2018
2019 static const struct frame_base mips_insn32_frame_base =
2020 {
2021 &mips_insn32_frame_unwind,
2022 mips_insn32_frame_base_address,
2023 mips_insn32_frame_base_address,
2024 mips_insn32_frame_base_address
2025 };
2026
2027 static const struct frame_base *
2028 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2029 {
2030 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2031 return &mips_insn32_frame_base;
2032 else
2033 return NULL;
2034 }
2035
2036 static struct trad_frame_cache *
2037 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2038 {
2039 CORE_ADDR pc;
2040 CORE_ADDR start_addr;
2041 CORE_ADDR stack_addr;
2042 struct trad_frame_cache *this_trad_cache;
2043
2044 if ((*this_cache) != NULL)
2045 return (*this_cache);
2046 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2047 (*this_cache) = this_trad_cache;
2048
2049 /* The return address is in the link register. */
2050 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
2051
2052 /* Frame ID, since it's a frameless / stackless function, no stack
2053 space is allocated and SP on entry is the current SP. */
2054 pc = frame_pc_unwind (next_frame);
2055 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2056 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2057 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2058
2059 /* Assume that the frame's base is the same as the
2060 stack-pointer. */
2061 trad_frame_set_this_base (this_trad_cache, stack_addr);
2062
2063 return this_trad_cache;
2064 }
2065
2066 static void
2067 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2068 struct frame_id *this_id)
2069 {
2070 struct trad_frame_cache *this_trad_cache
2071 = mips_stub_frame_cache (next_frame, this_cache);
2072 trad_frame_get_id (this_trad_cache, this_id);
2073 }
2074
2075 static void
2076 mips_stub_frame_prev_register (struct frame_info *next_frame,
2077 void **this_cache,
2078 int regnum, int *optimizedp,
2079 enum lval_type *lvalp, CORE_ADDR *addrp,
2080 int *realnump, void *valuep)
2081 {
2082 struct trad_frame_cache *this_trad_cache
2083 = mips_stub_frame_cache (next_frame, this_cache);
2084 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2085 lvalp, addrp, realnump, valuep);
2086 }
2087
2088 static const struct frame_unwind mips_stub_frame_unwind =
2089 {
2090 NORMAL_FRAME,
2091 mips_stub_frame_this_id,
2092 mips_stub_frame_prev_register
2093 };
2094
2095 static const struct frame_unwind *
2096 mips_stub_frame_sniffer (struct frame_info *next_frame)
2097 {
2098 CORE_ADDR pc = frame_pc_unwind (next_frame);
2099 if (in_plt_section (pc, NULL))
2100 return &mips_stub_frame_unwind;
2101 else
2102 return NULL;
2103 }
2104
2105 static CORE_ADDR
2106 mips_stub_frame_base_address (struct frame_info *next_frame,
2107 void **this_cache)
2108 {
2109 struct trad_frame_cache *this_trad_cache
2110 = mips_stub_frame_cache (next_frame, this_cache);
2111 return trad_frame_get_this_base (this_trad_cache);
2112 }
2113
2114 static const struct frame_base mips_stub_frame_base =
2115 {
2116 &mips_stub_frame_unwind,
2117 mips_stub_frame_base_address,
2118 mips_stub_frame_base_address,
2119 mips_stub_frame_base_address
2120 };
2121
2122 static const struct frame_base *
2123 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2124 {
2125 if (mips_stub_frame_sniffer (next_frame) != NULL)
2126 return &mips_stub_frame_base;
2127 else
2128 return NULL;
2129 }
2130
2131 static CORE_ADDR
2132 read_next_frame_reg (struct frame_info *fi, int regno)
2133 {
2134 /* Always a pseudo. */
2135 gdb_assert (regno >= NUM_REGS);
2136 if (fi == NULL)
2137 {
2138 LONGEST val;
2139 regcache_cooked_read_signed (current_regcache, regno, &val);
2140 return val;
2141 }
2142 else
2143 return frame_unwind_register_signed (fi, regno);
2144
2145 }
2146
2147 /* mips_addr_bits_remove - remove useless address bits */
2148
2149 static CORE_ADDR
2150 mips_addr_bits_remove (CORE_ADDR addr)
2151 {
2152 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2153 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2154 /* This hack is a work-around for existing boards using PMON, the
2155 simulator, and any other 64-bit targets that doesn't have true
2156 64-bit addressing. On these targets, the upper 32 bits of
2157 addresses are ignored by the hardware. Thus, the PC or SP are
2158 likely to have been sign extended to all 1s by instruction
2159 sequences that load 32-bit addresses. For example, a typical
2160 piece of code that loads an address is this:
2161
2162 lui $r2, <upper 16 bits>
2163 ori $r2, <lower 16 bits>
2164
2165 But the lui sign-extends the value such that the upper 32 bits
2166 may be all 1s. The workaround is simply to mask off these
2167 bits. In the future, gcc may be changed to support true 64-bit
2168 addressing, and this masking will have to be disabled. */
2169 return addr &= 0xffffffffUL;
2170 else
2171 return addr;
2172 }
2173
2174 /* mips_software_single_step() is called just before we want to resume
2175 the inferior, if we want to single-step it but there is no hardware
2176 or kernel single-step support (MIPS on GNU/Linux for example). We find
2177 the target of the coming instruction and breakpoint it.
2178
2179 single_step is also called just after the inferior stops. If we had
2180 set up a simulated single-step, we undo our damage. */
2181
2182 void
2183 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
2184 {
2185 static CORE_ADDR next_pc;
2186 typedef char binsn_quantum[BREAKPOINT_MAX];
2187 static binsn_quantum break_mem;
2188 CORE_ADDR pc;
2189
2190 if (insert_breakpoints_p)
2191 {
2192 pc = read_register (mips_regnum (current_gdbarch)->pc);
2193 next_pc = mips_next_pc (pc);
2194
2195 target_insert_breakpoint (next_pc, break_mem);
2196 }
2197 else
2198 target_remove_breakpoint (next_pc, break_mem);
2199 }
2200
2201 /* Test whether the PC points to the return instruction at the
2202 end of a function. */
2203
2204 static int
2205 mips_about_to_return (CORE_ADDR pc)
2206 {
2207 if (mips_pc_is_mips16 (pc))
2208 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2209 generates a "jr $ra"; other times it generates code to load
2210 the return address from the stack to an accessible register (such
2211 as $a3), then a "jr" using that register. This second case
2212 is almost impossible to distinguish from an indirect jump
2213 used for switch statements, so we don't even try. */
2214 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2215 else
2216 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2217 }
2218
2219
2220 /* This fencepost looks highly suspicious to me. Removing it also
2221 seems suspicious as it could affect remote debugging across serial
2222 lines. */
2223
2224 static CORE_ADDR
2225 heuristic_proc_start (CORE_ADDR pc)
2226 {
2227 CORE_ADDR start_pc;
2228 CORE_ADDR fence;
2229 int instlen;
2230 int seen_adjsp = 0;
2231
2232 pc = ADDR_BITS_REMOVE (pc);
2233 start_pc = pc;
2234 fence = start_pc - heuristic_fence_post;
2235 if (start_pc == 0)
2236 return 0;
2237
2238 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2239 fence = VM_MIN_ADDRESS;
2240
2241 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2242
2243 /* search back for previous return */
2244 for (start_pc -= instlen;; start_pc -= instlen)
2245 if (start_pc < fence)
2246 {
2247 /* It's not clear to me why we reach this point when
2248 stop_soon, but with this test, at least we
2249 don't print out warnings for every child forked (eg, on
2250 decstation). 22apr93 rich@cygnus.com. */
2251 if (stop_soon == NO_STOP_QUIETLY)
2252 {
2253 static int blurb_printed = 0;
2254
2255 warning ("GDB can't find the start of the function at 0x%s.",
2256 paddr_nz (pc));
2257
2258 if (!blurb_printed)
2259 {
2260 /* This actually happens frequently in embedded
2261 development, when you first connect to a board
2262 and your stack pointer and pc are nowhere in
2263 particular. This message needs to give people
2264 in that situation enough information to
2265 determine that it's no big deal. */
2266 printf_filtered ("\n\
2267 GDB is unable to find the start of the function at 0x%s\n\
2268 and thus can't determine the size of that function's stack frame.\n\
2269 This means that GDB may be unable to access that stack frame, or\n\
2270 the frames below it.\n\
2271 This problem is most likely caused by an invalid program counter or\n\
2272 stack pointer.\n\
2273 However, if you think GDB should simply search farther back\n\
2274 from 0x%s for code which looks like the beginning of a\n\
2275 function, you can increase the range of the search using the `set\n\
2276 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2277 blurb_printed = 1;
2278 }
2279 }
2280
2281 return 0;
2282 }
2283 else if (mips_pc_is_mips16 (start_pc))
2284 {
2285 unsigned short inst;
2286
2287 /* On MIPS16, any one of the following is likely to be the
2288 start of a function:
2289 entry
2290 addiu sp,-n
2291 daddiu sp,-n
2292 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2293 inst = mips_fetch_instruction (start_pc);
2294 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2295 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2296 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2297 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2298 break;
2299 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2300 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2301 seen_adjsp = 1;
2302 else
2303 seen_adjsp = 0;
2304 }
2305 else if (mips_about_to_return (start_pc))
2306 {
2307 /* Skip return and its delay slot. */
2308 start_pc += 2 * MIPS_INSN32_SIZE;
2309 break;
2310 }
2311
2312 return start_pc;
2313 }
2314
2315 struct mips_objfile_private
2316 {
2317 bfd_size_type size;
2318 char *contents;
2319 };
2320
2321 /* According to the current ABI, should the type be passed in a
2322 floating-point register (assuming that there is space)? When there
2323 is no FPU, FP are not even considered as possibile candidates for
2324 FP registers and, consequently this returns false - forces FP
2325 arguments into integer registers. */
2326
2327 static int
2328 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2329 {
2330 return ((typecode == TYPE_CODE_FLT
2331 || (MIPS_EABI
2332 && (typecode == TYPE_CODE_STRUCT
2333 || typecode == TYPE_CODE_UNION)
2334 && TYPE_NFIELDS (arg_type) == 1
2335 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2336 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2337 }
2338
2339 /* On o32, argument passing in GPRs depends on the alignment of the type being
2340 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2341
2342 static int
2343 mips_type_needs_double_align (struct type *type)
2344 {
2345 enum type_code typecode = TYPE_CODE (type);
2346
2347 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2348 return 1;
2349 else if (typecode == TYPE_CODE_STRUCT)
2350 {
2351 if (TYPE_NFIELDS (type) < 1)
2352 return 0;
2353 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2354 }
2355 else if (typecode == TYPE_CODE_UNION)
2356 {
2357 int i, n;
2358
2359 n = TYPE_NFIELDS (type);
2360 for (i = 0; i < n; i++)
2361 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2362 return 1;
2363 return 0;
2364 }
2365 return 0;
2366 }
2367
2368 /* Adjust the address downward (direction of stack growth) so that it
2369 is correctly aligned for a new stack frame. */
2370 static CORE_ADDR
2371 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2372 {
2373 return align_down (addr, 16);
2374 }
2375
2376 static CORE_ADDR
2377 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2378 struct regcache *regcache, CORE_ADDR bp_addr,
2379 int nargs, struct value **args, CORE_ADDR sp,
2380 int struct_return, CORE_ADDR struct_addr)
2381 {
2382 int argreg;
2383 int float_argreg;
2384 int argnum;
2385 int len = 0;
2386 int stack_offset = 0;
2387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2388 CORE_ADDR func_addr = find_function_addr (function, NULL);
2389
2390 /* For shared libraries, "t9" needs to point at the function
2391 address. */
2392 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2393
2394 /* Set the return address register to point to the entry point of
2395 the program, where a breakpoint lies in wait. */
2396 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2397
2398 /* First ensure that the stack and structure return address (if any)
2399 are properly aligned. The stack has to be at least 64-bit
2400 aligned even on 32-bit machines, because doubles must be 64-bit
2401 aligned. For n32 and n64, stack frames need to be 128-bit
2402 aligned, so we round to this widest known alignment. */
2403
2404 sp = align_down (sp, 16);
2405 struct_addr = align_down (struct_addr, 16);
2406
2407 /* Now make space on the stack for the args. We allocate more
2408 than necessary for EABI, because the first few arguments are
2409 passed in registers, but that's OK. */
2410 for (argnum = 0; argnum < nargs; argnum++)
2411 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2412 mips_stack_argsize (gdbarch));
2413 sp -= align_up (len, 16);
2414
2415 if (mips_debug)
2416 fprintf_unfiltered (gdb_stdlog,
2417 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2418 paddr_nz (sp), (long) align_up (len, 16));
2419
2420 /* Initialize the integer and float register pointers. */
2421 argreg = MIPS_A0_REGNUM;
2422 float_argreg = mips_fpa0_regnum (current_gdbarch);
2423
2424 /* The struct_return pointer occupies the first parameter-passing reg. */
2425 if (struct_return)
2426 {
2427 if (mips_debug)
2428 fprintf_unfiltered (gdb_stdlog,
2429 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2430 argreg, paddr_nz (struct_addr));
2431 write_register (argreg++, struct_addr);
2432 }
2433
2434 /* Now load as many as possible of the first arguments into
2435 registers, and push the rest onto the stack. Loop thru args
2436 from first to last. */
2437 for (argnum = 0; argnum < nargs; argnum++)
2438 {
2439 char *val;
2440 char valbuf[MAX_REGISTER_SIZE];
2441 struct value *arg = args[argnum];
2442 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2443 int len = TYPE_LENGTH (arg_type);
2444 enum type_code typecode = TYPE_CODE (arg_type);
2445
2446 if (mips_debug)
2447 fprintf_unfiltered (gdb_stdlog,
2448 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2449 argnum + 1, len, (int) typecode);
2450
2451 /* The EABI passes structures that do not fit in a register by
2452 reference. */
2453 if (len > mips_abi_regsize (gdbarch)
2454 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2455 {
2456 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
2457 VALUE_ADDRESS (arg));
2458 typecode = TYPE_CODE_PTR;
2459 len = mips_abi_regsize (gdbarch);
2460 val = valbuf;
2461 if (mips_debug)
2462 fprintf_unfiltered (gdb_stdlog, " push");
2463 }
2464 else
2465 val = (char *) VALUE_CONTENTS (arg);
2466
2467 /* 32-bit ABIs always start floating point arguments in an
2468 even-numbered floating point register. Round the FP register
2469 up before the check to see if there are any FP registers
2470 left. Non MIPS_EABI targets also pass the FP in the integer
2471 registers so also round up normal registers. */
2472 if (mips_abi_regsize (gdbarch) < 8
2473 && fp_register_arg_p (typecode, arg_type))
2474 {
2475 if ((float_argreg & 1))
2476 float_argreg++;
2477 }
2478
2479 /* Floating point arguments passed in registers have to be
2480 treated specially. On 32-bit architectures, doubles
2481 are passed in register pairs; the even register gets
2482 the low word, and the odd register gets the high word.
2483 On non-EABI processors, the first two floating point arguments are
2484 also copied to general registers, because MIPS16 functions
2485 don't use float registers for arguments. This duplication of
2486 arguments in general registers can't hurt non-MIPS16 functions
2487 because those registers are normally skipped. */
2488 /* MIPS_EABI squeezes a struct that contains a single floating
2489 point value into an FP register instead of pushing it onto the
2490 stack. */
2491 if (fp_register_arg_p (typecode, arg_type)
2492 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2493 {
2494 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
2495 {
2496 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2497 unsigned long regval;
2498
2499 /* Write the low word of the double to the even register(s). */
2500 regval = extract_unsigned_integer (val + low_offset, 4);
2501 if (mips_debug)
2502 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2503 float_argreg, phex (regval, 4));
2504 write_register (float_argreg++, regval);
2505
2506 /* Write the high word of the double to the odd register(s). */
2507 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2508 if (mips_debug)
2509 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2510 float_argreg, phex (regval, 4));
2511 write_register (float_argreg++, regval);
2512 }
2513 else
2514 {
2515 /* This is a floating point value that fits entirely
2516 in a single register. */
2517 /* On 32 bit ABI's the float_argreg is further adjusted
2518 above to ensure that it is even register aligned. */
2519 LONGEST regval = extract_unsigned_integer (val, len);
2520 if (mips_debug)
2521 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2522 float_argreg, phex (regval, len));
2523 write_register (float_argreg++, regval);
2524 }
2525 }
2526 else
2527 {
2528 /* Copy the argument to general registers or the stack in
2529 register-sized pieces. Large arguments are split between
2530 registers and stack. */
2531 /* Note: structs whose size is not a multiple of
2532 mips_abi_regsize() are treated specially: Irix cc passes
2533 them in registers where gcc sometimes puts them on the
2534 stack. For maximum compatibility, we will put them in
2535 both places. */
2536 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2537 && (len % mips_abi_regsize (gdbarch) != 0));
2538
2539 /* Note: Floating-point values that didn't fit into an FP
2540 register are only written to memory. */
2541 while (len > 0)
2542 {
2543 /* Remember if the argument was written to the stack. */
2544 int stack_used_p = 0;
2545 int partial_len = (len < mips_abi_regsize (gdbarch)
2546 ? len : mips_abi_regsize (gdbarch));
2547
2548 if (mips_debug)
2549 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2550 partial_len);
2551
2552 /* Write this portion of the argument to the stack. */
2553 if (argreg > MIPS_LAST_ARG_REGNUM
2554 || odd_sized_struct
2555 || fp_register_arg_p (typecode, arg_type))
2556 {
2557 /* Should shorter than int integer values be
2558 promoted to int before being stored? */
2559 int longword_offset = 0;
2560 CORE_ADDR addr;
2561 stack_used_p = 1;
2562 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2563 {
2564 if (mips_stack_argsize (gdbarch) == 8
2565 && (typecode == TYPE_CODE_INT
2566 || typecode == TYPE_CODE_PTR
2567 || typecode == TYPE_CODE_FLT) && len <= 4)
2568 longword_offset = mips_stack_argsize (gdbarch) - len;
2569 else if ((typecode == TYPE_CODE_STRUCT
2570 || typecode == TYPE_CODE_UNION)
2571 && (TYPE_LENGTH (arg_type)
2572 < mips_stack_argsize (gdbarch)))
2573 longword_offset = mips_stack_argsize (gdbarch) - len;
2574 }
2575
2576 if (mips_debug)
2577 {
2578 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2579 paddr_nz (stack_offset));
2580 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2581 paddr_nz (longword_offset));
2582 }
2583
2584 addr = sp + stack_offset + longword_offset;
2585
2586 if (mips_debug)
2587 {
2588 int i;
2589 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2590 paddr_nz (addr));
2591 for (i = 0; i < partial_len; i++)
2592 {
2593 fprintf_unfiltered (gdb_stdlog, "%02x",
2594 val[i] & 0xff);
2595 }
2596 }
2597 write_memory (addr, val, partial_len);
2598 }
2599
2600 /* Note!!! This is NOT an else clause. Odd sized
2601 structs may go thru BOTH paths. Floating point
2602 arguments will not. */
2603 /* Write this portion of the argument to a general
2604 purpose register. */
2605 if (argreg <= MIPS_LAST_ARG_REGNUM
2606 && !fp_register_arg_p (typecode, arg_type))
2607 {
2608 LONGEST regval =
2609 extract_unsigned_integer (val, partial_len);
2610
2611 if (mips_debug)
2612 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2613 argreg,
2614 phex (regval,
2615 mips_abi_regsize (gdbarch)));
2616 write_register (argreg, regval);
2617 argreg++;
2618 }
2619
2620 len -= partial_len;
2621 val += partial_len;
2622
2623 /* Compute the the offset into the stack at which we
2624 will copy the next parameter.
2625
2626 In the new EABI (and the NABI32), the stack_offset
2627 only needs to be adjusted when it has been used. */
2628
2629 if (stack_used_p)
2630 stack_offset += align_up (partial_len,
2631 mips_stack_argsize (gdbarch));
2632 }
2633 }
2634 if (mips_debug)
2635 fprintf_unfiltered (gdb_stdlog, "\n");
2636 }
2637
2638 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2639
2640 /* Return adjusted stack pointer. */
2641 return sp;
2642 }
2643
2644 /* Determin the return value convention being used. */
2645
2646 static enum return_value_convention
2647 mips_eabi_return_value (struct gdbarch *gdbarch,
2648 struct type *type, struct regcache *regcache,
2649 void *readbuf, const void *writebuf)
2650 {
2651 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2652 return RETURN_VALUE_STRUCT_CONVENTION;
2653 if (readbuf)
2654 memset (readbuf, 0, TYPE_LENGTH (type));
2655 return RETURN_VALUE_REGISTER_CONVENTION;
2656 }
2657
2658
2659 /* N32/N64 ABI stuff. */
2660
2661 static CORE_ADDR
2662 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2663 struct regcache *regcache, CORE_ADDR bp_addr,
2664 int nargs, struct value **args, CORE_ADDR sp,
2665 int struct_return, CORE_ADDR struct_addr)
2666 {
2667 int argreg;
2668 int float_argreg;
2669 int argnum;
2670 int len = 0;
2671 int stack_offset = 0;
2672 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2673 CORE_ADDR func_addr = find_function_addr (function, NULL);
2674
2675 /* For shared libraries, "t9" needs to point at the function
2676 address. */
2677 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2678
2679 /* Set the return address register to point to the entry point of
2680 the program, where a breakpoint lies in wait. */
2681 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2682
2683 /* First ensure that the stack and structure return address (if any)
2684 are properly aligned. The stack has to be at least 64-bit
2685 aligned even on 32-bit machines, because doubles must be 64-bit
2686 aligned. For n32 and n64, stack frames need to be 128-bit
2687 aligned, so we round to this widest known alignment. */
2688
2689 sp = align_down (sp, 16);
2690 struct_addr = align_down (struct_addr, 16);
2691
2692 /* Now make space on the stack for the args. */
2693 for (argnum = 0; argnum < nargs; argnum++)
2694 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2695 mips_stack_argsize (gdbarch));
2696 sp -= align_up (len, 16);
2697
2698 if (mips_debug)
2699 fprintf_unfiltered (gdb_stdlog,
2700 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2701 paddr_nz (sp), (long) align_up (len, 16));
2702
2703 /* Initialize the integer and float register pointers. */
2704 argreg = MIPS_A0_REGNUM;
2705 float_argreg = mips_fpa0_regnum (current_gdbarch);
2706
2707 /* The struct_return pointer occupies the first parameter-passing reg. */
2708 if (struct_return)
2709 {
2710 if (mips_debug)
2711 fprintf_unfiltered (gdb_stdlog,
2712 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2713 argreg, paddr_nz (struct_addr));
2714 write_register (argreg++, struct_addr);
2715 }
2716
2717 /* Now load as many as possible of the first arguments into
2718 registers, and push the rest onto the stack. Loop thru args
2719 from first to last. */
2720 for (argnum = 0; argnum < nargs; argnum++)
2721 {
2722 char *val;
2723 struct value *arg = args[argnum];
2724 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2725 int len = TYPE_LENGTH (arg_type);
2726 enum type_code typecode = TYPE_CODE (arg_type);
2727
2728 if (mips_debug)
2729 fprintf_unfiltered (gdb_stdlog,
2730 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2731 argnum + 1, len, (int) typecode);
2732
2733 val = (char *) VALUE_CONTENTS (arg);
2734
2735 if (fp_register_arg_p (typecode, arg_type)
2736 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2737 {
2738 /* This is a floating point value that fits entirely
2739 in a single register. */
2740 /* On 32 bit ABI's the float_argreg is further adjusted
2741 above to ensure that it is even register aligned. */
2742 LONGEST regval = extract_unsigned_integer (val, len);
2743 if (mips_debug)
2744 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2745 float_argreg, phex (regval, len));
2746 write_register (float_argreg++, regval);
2747
2748 if (mips_debug)
2749 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2750 argreg, phex (regval, len));
2751 write_register (argreg, regval);
2752 argreg += 1;
2753 }
2754 else
2755 {
2756 /* Copy the argument to general registers or the stack in
2757 register-sized pieces. Large arguments are split between
2758 registers and stack. */
2759 /* Note: structs whose size is not a multiple of
2760 mips_abi_regsize() are treated specially: Irix cc passes
2761 them in registers where gcc sometimes puts them on the
2762 stack. For maximum compatibility, we will put them in
2763 both places. */
2764 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2765 && (len % mips_abi_regsize (gdbarch) != 0));
2766 /* Note: Floating-point values that didn't fit into an FP
2767 register are only written to memory. */
2768 while (len > 0)
2769 {
2770 /* Rememer if the argument was written to the stack. */
2771 int stack_used_p = 0;
2772 int partial_len = (len < mips_abi_regsize (gdbarch)
2773 ? len : mips_abi_regsize (gdbarch));
2774
2775 if (mips_debug)
2776 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2777 partial_len);
2778
2779 /* Write this portion of the argument to the stack. */
2780 if (argreg > MIPS_LAST_ARG_REGNUM
2781 || odd_sized_struct
2782 || fp_register_arg_p (typecode, arg_type))
2783 {
2784 /* Should shorter than int integer values be
2785 promoted to int before being stored? */
2786 int longword_offset = 0;
2787 CORE_ADDR addr;
2788 stack_used_p = 1;
2789 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2790 {
2791 if (mips_stack_argsize (gdbarch) == 8
2792 && (typecode == TYPE_CODE_INT
2793 || typecode == TYPE_CODE_PTR
2794 || typecode == TYPE_CODE_FLT) && len <= 4)
2795 longword_offset = mips_stack_argsize (gdbarch) - len;
2796 }
2797
2798 if (mips_debug)
2799 {
2800 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2801 paddr_nz (stack_offset));
2802 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2803 paddr_nz (longword_offset));
2804 }
2805
2806 addr = sp + stack_offset + longword_offset;
2807
2808 if (mips_debug)
2809 {
2810 int i;
2811 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2812 paddr_nz (addr));
2813 for (i = 0; i < partial_len; i++)
2814 {
2815 fprintf_unfiltered (gdb_stdlog, "%02x",
2816 val[i] & 0xff);
2817 }
2818 }
2819 write_memory (addr, val, partial_len);
2820 }
2821
2822 /* Note!!! This is NOT an else clause. Odd sized
2823 structs may go thru BOTH paths. Floating point
2824 arguments will not. */
2825 /* Write this portion of the argument to a general
2826 purpose register. */
2827 if (argreg <= MIPS_LAST_ARG_REGNUM
2828 && !fp_register_arg_p (typecode, arg_type))
2829 {
2830 LONGEST regval =
2831 extract_unsigned_integer (val, partial_len);
2832
2833 /* A non-floating-point argument being passed in a
2834 general register. If a struct or union, and if
2835 the remaining length is smaller than the register
2836 size, we have to adjust the register value on
2837 big endian targets.
2838
2839 It does not seem to be necessary to do the
2840 same for integral types.
2841
2842 cagney/2001-07-23: gdb/179: Also, GCC, when
2843 outputting LE O32 with sizeof (struct) <
2844 mips_abi_regsize(), generates a left shift as
2845 part of storing the argument in a register a
2846 register (the left shift isn't generated when
2847 sizeof (struct) >= mips_abi_regsize()). Since
2848 it is quite possible that this is GCC
2849 contradicting the LE/O32 ABI, GDB has not been
2850 adjusted to accommodate this. Either someone
2851 needs to demonstrate that the LE/O32 ABI
2852 specifies such a left shift OR this new ABI gets
2853 identified as such and GDB gets tweaked
2854 accordingly. */
2855
2856 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2857 && partial_len < mips_abi_regsize (gdbarch)
2858 && (typecode == TYPE_CODE_STRUCT ||
2859 typecode == TYPE_CODE_UNION))
2860 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
2861 TARGET_CHAR_BIT);
2862
2863 if (mips_debug)
2864 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2865 argreg,
2866 phex (regval,
2867 mips_abi_regsize (gdbarch)));
2868 write_register (argreg, regval);
2869 argreg++;
2870 }
2871
2872 len -= partial_len;
2873 val += partial_len;
2874
2875 /* Compute the the offset into the stack at which we
2876 will copy the next parameter.
2877
2878 In N32 (N64?), the stack_offset only needs to be
2879 adjusted when it has been used. */
2880
2881 if (stack_used_p)
2882 stack_offset += align_up (partial_len,
2883 mips_stack_argsize (gdbarch));
2884 }
2885 }
2886 if (mips_debug)
2887 fprintf_unfiltered (gdb_stdlog, "\n");
2888 }
2889
2890 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2891
2892 /* Return adjusted stack pointer. */
2893 return sp;
2894 }
2895
2896 static enum return_value_convention
2897 mips_n32n64_return_value (struct gdbarch *gdbarch,
2898 struct type *type, struct regcache *regcache,
2899 void *readbuf, const void *writebuf)
2900 {
2901 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2902 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2903 || TYPE_CODE (type) == TYPE_CODE_UNION
2904 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2905 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2906 return RETURN_VALUE_STRUCT_CONVENTION;
2907 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2908 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2909 {
2910 /* A floating-point value belongs in the least significant part
2911 of FP0. */
2912 if (mips_debug)
2913 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2914 mips_xfer_register (regcache,
2915 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2916 TYPE_LENGTH (type),
2917 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2918 return RETURN_VALUE_REGISTER_CONVENTION;
2919 }
2920 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2921 && TYPE_NFIELDS (type) <= 2
2922 && TYPE_NFIELDS (type) >= 1
2923 && ((TYPE_NFIELDS (type) == 1
2924 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2925 == TYPE_CODE_FLT))
2926 || (TYPE_NFIELDS (type) == 2
2927 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2928 == TYPE_CODE_FLT)
2929 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2930 == TYPE_CODE_FLT)))
2931 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2932 {
2933 /* A struct that contains one or two floats. Each value is part
2934 in the least significant part of their floating point
2935 register.. */
2936 int regnum;
2937 int field;
2938 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2939 field < TYPE_NFIELDS (type); field++, regnum += 2)
2940 {
2941 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2942 / TARGET_CHAR_BIT);
2943 if (mips_debug)
2944 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2945 offset);
2946 mips_xfer_register (regcache, NUM_REGS + regnum,
2947 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2948 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2949 }
2950 return RETURN_VALUE_REGISTER_CONVENTION;
2951 }
2952 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2953 || TYPE_CODE (type) == TYPE_CODE_UNION)
2954 {
2955 /* A structure or union. Extract the left justified value,
2956 regardless of the byte order. I.e. DO NOT USE
2957 mips_xfer_lower. */
2958 int offset;
2959 int regnum;
2960 for (offset = 0, regnum = MIPS_V0_REGNUM;
2961 offset < TYPE_LENGTH (type);
2962 offset += register_size (current_gdbarch, regnum), regnum++)
2963 {
2964 int xfer = register_size (current_gdbarch, regnum);
2965 if (offset + xfer > TYPE_LENGTH (type))
2966 xfer = TYPE_LENGTH (type) - offset;
2967 if (mips_debug)
2968 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
2969 offset, xfer, regnum);
2970 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2971 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
2972 }
2973 return RETURN_VALUE_REGISTER_CONVENTION;
2974 }
2975 else
2976 {
2977 /* A scalar extract each part but least-significant-byte
2978 justified. */
2979 int offset;
2980 int regnum;
2981 for (offset = 0, regnum = MIPS_V0_REGNUM;
2982 offset < TYPE_LENGTH (type);
2983 offset += register_size (current_gdbarch, regnum), regnum++)
2984 {
2985 int xfer = register_size (current_gdbarch, regnum);
2986 if (offset + xfer > TYPE_LENGTH (type))
2987 xfer = TYPE_LENGTH (type) - offset;
2988 if (mips_debug)
2989 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
2990 offset, xfer, regnum);
2991 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2992 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2993 }
2994 return RETURN_VALUE_REGISTER_CONVENTION;
2995 }
2996 }
2997
2998 /* O32 ABI stuff. */
2999
3000 static CORE_ADDR
3001 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3002 struct regcache *regcache, CORE_ADDR bp_addr,
3003 int nargs, struct value **args, CORE_ADDR sp,
3004 int struct_return, CORE_ADDR struct_addr)
3005 {
3006 int argreg;
3007 int float_argreg;
3008 int argnum;
3009 int len = 0;
3010 int stack_offset = 0;
3011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3012 CORE_ADDR func_addr = find_function_addr (function, NULL);
3013
3014 /* For shared libraries, "t9" needs to point at the function
3015 address. */
3016 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3017
3018 /* Set the return address register to point to the entry point of
3019 the program, where a breakpoint lies in wait. */
3020 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3021
3022 /* First ensure that the stack and structure return address (if any)
3023 are properly aligned. The stack has to be at least 64-bit
3024 aligned even on 32-bit machines, because doubles must be 64-bit
3025 aligned. For n32 and n64, stack frames need to be 128-bit
3026 aligned, so we round to this widest known alignment. */
3027
3028 sp = align_down (sp, 16);
3029 struct_addr = align_down (struct_addr, 16);
3030
3031 /* Now make space on the stack for the args. */
3032 for (argnum = 0; argnum < nargs; argnum++)
3033 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3034 mips_stack_argsize (gdbarch));
3035 sp -= align_up (len, 16);
3036
3037 if (mips_debug)
3038 fprintf_unfiltered (gdb_stdlog,
3039 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3040 paddr_nz (sp), (long) align_up (len, 16));
3041
3042 /* Initialize the integer and float register pointers. */
3043 argreg = MIPS_A0_REGNUM;
3044 float_argreg = mips_fpa0_regnum (current_gdbarch);
3045
3046 /* The struct_return pointer occupies the first parameter-passing reg. */
3047 if (struct_return)
3048 {
3049 if (mips_debug)
3050 fprintf_unfiltered (gdb_stdlog,
3051 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3052 argreg, paddr_nz (struct_addr));
3053 write_register (argreg++, struct_addr);
3054 stack_offset += mips_stack_argsize (gdbarch);
3055 }
3056
3057 /* Now load as many as possible of the first arguments into
3058 registers, and push the rest onto the stack. Loop thru args
3059 from first to last. */
3060 for (argnum = 0; argnum < nargs; argnum++)
3061 {
3062 char *val;
3063 struct value *arg = args[argnum];
3064 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3065 int len = TYPE_LENGTH (arg_type);
3066 enum type_code typecode = TYPE_CODE (arg_type);
3067
3068 if (mips_debug)
3069 fprintf_unfiltered (gdb_stdlog,
3070 "mips_o32_push_dummy_call: %d len=%d type=%d",
3071 argnum + 1, len, (int) typecode);
3072
3073 val = (char *) VALUE_CONTENTS (arg);
3074
3075 /* 32-bit ABIs always start floating point arguments in an
3076 even-numbered floating point register. Round the FP register
3077 up before the check to see if there are any FP registers
3078 left. O32/O64 targets also pass the FP in the integer
3079 registers so also round up normal registers. */
3080 if (mips_abi_regsize (gdbarch) < 8
3081 && fp_register_arg_p (typecode, arg_type))
3082 {
3083 if ((float_argreg & 1))
3084 float_argreg++;
3085 }
3086
3087 /* Floating point arguments passed in registers have to be
3088 treated specially. On 32-bit architectures, doubles
3089 are passed in register pairs; the even register gets
3090 the low word, and the odd register gets the high word.
3091 On O32/O64, the first two floating point arguments are
3092 also copied to general registers, because MIPS16 functions
3093 don't use float registers for arguments. This duplication of
3094 arguments in general registers can't hurt non-MIPS16 functions
3095 because those registers are normally skipped. */
3096
3097 if (fp_register_arg_p (typecode, arg_type)
3098 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3099 {
3100 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3101 {
3102 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3103 unsigned long regval;
3104
3105 /* Write the low word of the double to the even register(s). */
3106 regval = extract_unsigned_integer (val + low_offset, 4);
3107 if (mips_debug)
3108 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3109 float_argreg, phex (regval, 4));
3110 write_register (float_argreg++, regval);
3111 if (mips_debug)
3112 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3113 argreg, phex (regval, 4));
3114 write_register (argreg++, regval);
3115
3116 /* Write the high word of the double to the odd register(s). */
3117 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3118 if (mips_debug)
3119 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3120 float_argreg, phex (regval, 4));
3121 write_register (float_argreg++, regval);
3122
3123 if (mips_debug)
3124 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3125 argreg, phex (regval, 4));
3126 write_register (argreg++, regval);
3127 }
3128 else
3129 {
3130 /* This is a floating point value that fits entirely
3131 in a single register. */
3132 /* On 32 bit ABI's the float_argreg is further adjusted
3133 above to ensure that it is even register aligned. */
3134 LONGEST regval = extract_unsigned_integer (val, len);
3135 if (mips_debug)
3136 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3137 float_argreg, phex (regval, len));
3138 write_register (float_argreg++, regval);
3139 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3140 registers for each argument. The below is (my
3141 guess) to ensure that the corresponding integer
3142 register has reserved the same space. */
3143 if (mips_debug)
3144 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3145 argreg, phex (regval, len));
3146 write_register (argreg, regval);
3147 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3148 }
3149 /* Reserve space for the FP register. */
3150 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3151 }
3152 else
3153 {
3154 /* Copy the argument to general registers or the stack in
3155 register-sized pieces. Large arguments are split between
3156 registers and stack. */
3157 /* Note: structs whose size is not a multiple of
3158 mips_abi_regsize() are treated specially: Irix cc passes
3159 them in registers where gcc sometimes puts them on the
3160 stack. For maximum compatibility, we will put them in
3161 both places. */
3162 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3163 && (len % mips_abi_regsize (gdbarch) != 0));
3164 /* Structures should be aligned to eight bytes (even arg registers)
3165 on MIPS_ABI_O32, if their first member has double precision. */
3166 if (mips_abi_regsize (gdbarch) < 8
3167 && mips_type_needs_double_align (arg_type))
3168 {
3169 if ((argreg & 1))
3170 argreg++;
3171 }
3172 /* Note: Floating-point values that didn't fit into an FP
3173 register are only written to memory. */
3174 while (len > 0)
3175 {
3176 /* Remember if the argument was written to the stack. */
3177 int stack_used_p = 0;
3178 int partial_len = (len < mips_abi_regsize (gdbarch)
3179 ? len : mips_abi_regsize (gdbarch));
3180
3181 if (mips_debug)
3182 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3183 partial_len);
3184
3185 /* Write this portion of the argument to the stack. */
3186 if (argreg > MIPS_LAST_ARG_REGNUM
3187 || odd_sized_struct
3188 || fp_register_arg_p (typecode, arg_type))
3189 {
3190 /* Should shorter than int integer values be
3191 promoted to int before being stored? */
3192 int longword_offset = 0;
3193 CORE_ADDR addr;
3194 stack_used_p = 1;
3195 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3196 {
3197 if (mips_stack_argsize (gdbarch) == 8
3198 && (typecode == TYPE_CODE_INT
3199 || typecode == TYPE_CODE_PTR
3200 || typecode == TYPE_CODE_FLT) && len <= 4)
3201 longword_offset = mips_stack_argsize (gdbarch) - len;
3202 }
3203
3204 if (mips_debug)
3205 {
3206 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3207 paddr_nz (stack_offset));
3208 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3209 paddr_nz (longword_offset));
3210 }
3211
3212 addr = sp + stack_offset + longword_offset;
3213
3214 if (mips_debug)
3215 {
3216 int i;
3217 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3218 paddr_nz (addr));
3219 for (i = 0; i < partial_len; i++)
3220 {
3221 fprintf_unfiltered (gdb_stdlog, "%02x",
3222 val[i] & 0xff);
3223 }
3224 }
3225 write_memory (addr, val, partial_len);
3226 }
3227
3228 /* Note!!! This is NOT an else clause. Odd sized
3229 structs may go thru BOTH paths. Floating point
3230 arguments will not. */
3231 /* Write this portion of the argument to a general
3232 purpose register. */
3233 if (argreg <= MIPS_LAST_ARG_REGNUM
3234 && !fp_register_arg_p (typecode, arg_type))
3235 {
3236 LONGEST regval = extract_signed_integer (val, partial_len);
3237 /* Value may need to be sign extended, because
3238 mips_isa_regsize() != mips_abi_regsize(). */
3239
3240 /* A non-floating-point argument being passed in a
3241 general register. If a struct or union, and if
3242 the remaining length is smaller than the register
3243 size, we have to adjust the register value on
3244 big endian targets.
3245
3246 It does not seem to be necessary to do the
3247 same for integral types.
3248
3249 Also don't do this adjustment on O64 binaries.
3250
3251 cagney/2001-07-23: gdb/179: Also, GCC, when
3252 outputting LE O32 with sizeof (struct) <
3253 mips_abi_regsize(), generates a left shift as
3254 part of storing the argument in a register a
3255 register (the left shift isn't generated when
3256 sizeof (struct) >= mips_abi_regsize()). Since
3257 it is quite possible that this is GCC
3258 contradicting the LE/O32 ABI, GDB has not been
3259 adjusted to accommodate this. Either someone
3260 needs to demonstrate that the LE/O32 ABI
3261 specifies such a left shift OR this new ABI gets
3262 identified as such and GDB gets tweaked
3263 accordingly. */
3264
3265 if (mips_abi_regsize (gdbarch) < 8
3266 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3267 && partial_len < mips_abi_regsize (gdbarch)
3268 && (typecode == TYPE_CODE_STRUCT ||
3269 typecode == TYPE_CODE_UNION))
3270 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3271 TARGET_CHAR_BIT);
3272
3273 if (mips_debug)
3274 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3275 argreg,
3276 phex (regval,
3277 mips_abi_regsize (gdbarch)));
3278 write_register (argreg, regval);
3279 argreg++;
3280
3281 /* Prevent subsequent floating point arguments from
3282 being passed in floating point registers. */
3283 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3284 }
3285
3286 len -= partial_len;
3287 val += partial_len;
3288
3289 /* Compute the the offset into the stack at which we
3290 will copy the next parameter.
3291
3292 In older ABIs, the caller reserved space for
3293 registers that contained arguments. This was loosely
3294 refered to as their "home". Consequently, space is
3295 always allocated. */
3296
3297 stack_offset += align_up (partial_len,
3298 mips_stack_argsize (gdbarch));
3299 }
3300 }
3301 if (mips_debug)
3302 fprintf_unfiltered (gdb_stdlog, "\n");
3303 }
3304
3305 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3306
3307 /* Return adjusted stack pointer. */
3308 return sp;
3309 }
3310
3311 static enum return_value_convention
3312 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3313 struct regcache *regcache,
3314 void *readbuf, const void *writebuf)
3315 {
3316 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3317
3318 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3319 || TYPE_CODE (type) == TYPE_CODE_UNION
3320 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3321 return RETURN_VALUE_STRUCT_CONVENTION;
3322 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3323 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3324 {
3325 /* A single-precision floating-point value. It fits in the
3326 least significant part of FP0. */
3327 if (mips_debug)
3328 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3329 mips_xfer_register (regcache,
3330 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3331 TYPE_LENGTH (type),
3332 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3333 return RETURN_VALUE_REGISTER_CONVENTION;
3334 }
3335 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3336 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3337 {
3338 /* A double-precision floating-point value. The most
3339 significant part goes in FP1, and the least significant in
3340 FP0. */
3341 if (mips_debug)
3342 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3343 switch (TARGET_BYTE_ORDER)
3344 {
3345 case BFD_ENDIAN_LITTLE:
3346 mips_xfer_register (regcache,
3347 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3348 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3349 mips_xfer_register (regcache,
3350 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3351 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3352 break;
3353 case BFD_ENDIAN_BIG:
3354 mips_xfer_register (regcache,
3355 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3356 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3357 mips_xfer_register (regcache,
3358 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3359 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3360 break;
3361 default:
3362 internal_error (__FILE__, __LINE__, "bad switch");
3363 }
3364 return RETURN_VALUE_REGISTER_CONVENTION;
3365 }
3366 #if 0
3367 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3368 && TYPE_NFIELDS (type) <= 2
3369 && TYPE_NFIELDS (type) >= 1
3370 && ((TYPE_NFIELDS (type) == 1
3371 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3372 == TYPE_CODE_FLT))
3373 || (TYPE_NFIELDS (type) == 2
3374 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3375 == TYPE_CODE_FLT)
3376 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3377 == TYPE_CODE_FLT)))
3378 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3379 {
3380 /* A struct that contains one or two floats. Each value is part
3381 in the least significant part of their floating point
3382 register.. */
3383 bfd_byte reg[MAX_REGISTER_SIZE];
3384 int regnum;
3385 int field;
3386 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3387 field < TYPE_NFIELDS (type); field++, regnum += 2)
3388 {
3389 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3390 / TARGET_CHAR_BIT);
3391 if (mips_debug)
3392 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3393 offset);
3394 mips_xfer_register (regcache, NUM_REGS + regnum,
3395 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3396 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3397 }
3398 return RETURN_VALUE_REGISTER_CONVENTION;
3399 }
3400 #endif
3401 #if 0
3402 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3403 || TYPE_CODE (type) == TYPE_CODE_UNION)
3404 {
3405 /* A structure or union. Extract the left justified value,
3406 regardless of the byte order. I.e. DO NOT USE
3407 mips_xfer_lower. */
3408 int offset;
3409 int regnum;
3410 for (offset = 0, regnum = MIPS_V0_REGNUM;
3411 offset < TYPE_LENGTH (type);
3412 offset += register_size (current_gdbarch, regnum), regnum++)
3413 {
3414 int xfer = register_size (current_gdbarch, regnum);
3415 if (offset + xfer > TYPE_LENGTH (type))
3416 xfer = TYPE_LENGTH (type) - offset;
3417 if (mips_debug)
3418 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3419 offset, xfer, regnum);
3420 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3421 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3422 }
3423 return RETURN_VALUE_REGISTER_CONVENTION;
3424 }
3425 #endif
3426 else
3427 {
3428 /* A scalar extract each part but least-significant-byte
3429 justified. o32 thinks registers are 4 byte, regardless of
3430 the ISA. mips_stack_argsize controls this. */
3431 int offset;
3432 int regnum;
3433 for (offset = 0, regnum = MIPS_V0_REGNUM;
3434 offset < TYPE_LENGTH (type);
3435 offset += mips_stack_argsize (gdbarch), regnum++)
3436 {
3437 int xfer = mips_stack_argsize (gdbarch);
3438 if (offset + xfer > TYPE_LENGTH (type))
3439 xfer = TYPE_LENGTH (type) - offset;
3440 if (mips_debug)
3441 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3442 offset, xfer, regnum);
3443 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3444 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3445 }
3446 return RETURN_VALUE_REGISTER_CONVENTION;
3447 }
3448 }
3449
3450 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3451 ABI. */
3452
3453 static CORE_ADDR
3454 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3455 struct regcache *regcache, CORE_ADDR bp_addr,
3456 int nargs,
3457 struct value **args, CORE_ADDR sp,
3458 int struct_return, CORE_ADDR struct_addr)
3459 {
3460 int argreg;
3461 int float_argreg;
3462 int argnum;
3463 int len = 0;
3464 int stack_offset = 0;
3465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3466 CORE_ADDR func_addr = find_function_addr (function, NULL);
3467
3468 /* For shared libraries, "t9" needs to point at the function
3469 address. */
3470 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3471
3472 /* Set the return address register to point to the entry point of
3473 the program, where a breakpoint lies in wait. */
3474 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3475
3476 /* First ensure that the stack and structure return address (if any)
3477 are properly aligned. The stack has to be at least 64-bit
3478 aligned even on 32-bit machines, because doubles must be 64-bit
3479 aligned. For n32 and n64, stack frames need to be 128-bit
3480 aligned, so we round to this widest known alignment. */
3481
3482 sp = align_down (sp, 16);
3483 struct_addr = align_down (struct_addr, 16);
3484
3485 /* Now make space on the stack for the args. */
3486 for (argnum = 0; argnum < nargs; argnum++)
3487 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3488 mips_stack_argsize (gdbarch));
3489 sp -= align_up (len, 16);
3490
3491 if (mips_debug)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3494 paddr_nz (sp), (long) align_up (len, 16));
3495
3496 /* Initialize the integer and float register pointers. */
3497 argreg = MIPS_A0_REGNUM;
3498 float_argreg = mips_fpa0_regnum (current_gdbarch);
3499
3500 /* The struct_return pointer occupies the first parameter-passing reg. */
3501 if (struct_return)
3502 {
3503 if (mips_debug)
3504 fprintf_unfiltered (gdb_stdlog,
3505 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3506 argreg, paddr_nz (struct_addr));
3507 write_register (argreg++, struct_addr);
3508 stack_offset += mips_stack_argsize (gdbarch);
3509 }
3510
3511 /* Now load as many as possible of the first arguments into
3512 registers, and push the rest onto the stack. Loop thru args
3513 from first to last. */
3514 for (argnum = 0; argnum < nargs; argnum++)
3515 {
3516 char *val;
3517 struct value *arg = args[argnum];
3518 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3519 int len = TYPE_LENGTH (arg_type);
3520 enum type_code typecode = TYPE_CODE (arg_type);
3521
3522 if (mips_debug)
3523 fprintf_unfiltered (gdb_stdlog,
3524 "mips_o64_push_dummy_call: %d len=%d type=%d",
3525 argnum + 1, len, (int) typecode);
3526
3527 val = (char *) VALUE_CONTENTS (arg);
3528
3529 /* 32-bit ABIs always start floating point arguments in an
3530 even-numbered floating point register. Round the FP register
3531 up before the check to see if there are any FP registers
3532 left. O32/O64 targets also pass the FP in the integer
3533 registers so also round up normal registers. */
3534 if (mips_abi_regsize (gdbarch) < 8
3535 && fp_register_arg_p (typecode, arg_type))
3536 {
3537 if ((float_argreg & 1))
3538 float_argreg++;
3539 }
3540
3541 /* Floating point arguments passed in registers have to be
3542 treated specially. On 32-bit architectures, doubles
3543 are passed in register pairs; the even register gets
3544 the low word, and the odd register gets the high word.
3545 On O32/O64, the first two floating point arguments are
3546 also copied to general registers, because MIPS16 functions
3547 don't use float registers for arguments. This duplication of
3548 arguments in general registers can't hurt non-MIPS16 functions
3549 because those registers are normally skipped. */
3550
3551 if (fp_register_arg_p (typecode, arg_type)
3552 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3553 {
3554 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3555 {
3556 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3557 unsigned long regval;
3558
3559 /* Write the low word of the double to the even register(s). */
3560 regval = extract_unsigned_integer (val + low_offset, 4);
3561 if (mips_debug)
3562 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3563 float_argreg, phex (regval, 4));
3564 write_register (float_argreg++, regval);
3565 if (mips_debug)
3566 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3567 argreg, phex (regval, 4));
3568 write_register (argreg++, regval);
3569
3570 /* Write the high word of the double to the odd register(s). */
3571 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3572 if (mips_debug)
3573 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3574 float_argreg, phex (regval, 4));
3575 write_register (float_argreg++, regval);
3576
3577 if (mips_debug)
3578 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3579 argreg, phex (regval, 4));
3580 write_register (argreg++, regval);
3581 }
3582 else
3583 {
3584 /* This is a floating point value that fits entirely
3585 in a single register. */
3586 /* On 32 bit ABI's the float_argreg is further adjusted
3587 above to ensure that it is even register aligned. */
3588 LONGEST regval = extract_unsigned_integer (val, len);
3589 if (mips_debug)
3590 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3591 float_argreg, phex (regval, len));
3592 write_register (float_argreg++, regval);
3593 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3594 registers for each argument. The below is (my
3595 guess) to ensure that the corresponding integer
3596 register has reserved the same space. */
3597 if (mips_debug)
3598 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3599 argreg, phex (regval, len));
3600 write_register (argreg, regval);
3601 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3602 }
3603 /* Reserve space for the FP register. */
3604 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3605 }
3606 else
3607 {
3608 /* Copy the argument to general registers or the stack in
3609 register-sized pieces. Large arguments are split between
3610 registers and stack. */
3611 /* Note: structs whose size is not a multiple of
3612 mips_abi_regsize() are treated specially: Irix cc passes
3613 them in registers where gcc sometimes puts them on the
3614 stack. For maximum compatibility, we will put them in
3615 both places. */
3616 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3617 && (len % mips_abi_regsize (gdbarch) != 0));
3618 /* Structures should be aligned to eight bytes (even arg registers)
3619 on MIPS_ABI_O32, if their first member has double precision. */
3620 if (mips_abi_regsize (gdbarch) < 8
3621 && mips_type_needs_double_align (arg_type))
3622 {
3623 if ((argreg & 1))
3624 argreg++;
3625 }
3626 /* Note: Floating-point values that didn't fit into an FP
3627 register are only written to memory. */
3628 while (len > 0)
3629 {
3630 /* Remember if the argument was written to the stack. */
3631 int stack_used_p = 0;
3632 int partial_len = (len < mips_abi_regsize (gdbarch)
3633 ? len : mips_abi_regsize (gdbarch));
3634
3635 if (mips_debug)
3636 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3637 partial_len);
3638
3639 /* Write this portion of the argument to the stack. */
3640 if (argreg > MIPS_LAST_ARG_REGNUM
3641 || odd_sized_struct
3642 || fp_register_arg_p (typecode, arg_type))
3643 {
3644 /* Should shorter than int integer values be
3645 promoted to int before being stored? */
3646 int longword_offset = 0;
3647 CORE_ADDR addr;
3648 stack_used_p = 1;
3649 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3650 {
3651 if (mips_stack_argsize (gdbarch) == 8
3652 && (typecode == TYPE_CODE_INT
3653 || typecode == TYPE_CODE_PTR
3654 || typecode == TYPE_CODE_FLT) && len <= 4)
3655 longword_offset = mips_stack_argsize (gdbarch) - len;
3656 }
3657
3658 if (mips_debug)
3659 {
3660 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3661 paddr_nz (stack_offset));
3662 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3663 paddr_nz (longword_offset));
3664 }
3665
3666 addr = sp + stack_offset + longword_offset;
3667
3668 if (mips_debug)
3669 {
3670 int i;
3671 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3672 paddr_nz (addr));
3673 for (i = 0; i < partial_len; i++)
3674 {
3675 fprintf_unfiltered (gdb_stdlog, "%02x",
3676 val[i] & 0xff);
3677 }
3678 }
3679 write_memory (addr, val, partial_len);
3680 }
3681
3682 /* Note!!! This is NOT an else clause. Odd sized
3683 structs may go thru BOTH paths. Floating point
3684 arguments will not. */
3685 /* Write this portion of the argument to a general
3686 purpose register. */
3687 if (argreg <= MIPS_LAST_ARG_REGNUM
3688 && !fp_register_arg_p (typecode, arg_type))
3689 {
3690 LONGEST regval = extract_signed_integer (val, partial_len);
3691 /* Value may need to be sign extended, because
3692 mips_isa_regsize() != mips_abi_regsize(). */
3693
3694 /* A non-floating-point argument being passed in a
3695 general register. If a struct or union, and if
3696 the remaining length is smaller than the register
3697 size, we have to adjust the register value on
3698 big endian targets.
3699
3700 It does not seem to be necessary to do the
3701 same for integral types.
3702
3703 Also don't do this adjustment on O64 binaries.
3704
3705 cagney/2001-07-23: gdb/179: Also, GCC, when
3706 outputting LE O32 with sizeof (struct) <
3707 mips_abi_regsize(), generates a left shift as
3708 part of storing the argument in a register a
3709 register (the left shift isn't generated when
3710 sizeof (struct) >= mips_abi_regsize()). Since
3711 it is quite possible that this is GCC
3712 contradicting the LE/O32 ABI, GDB has not been
3713 adjusted to accommodate this. Either someone
3714 needs to demonstrate that the LE/O32 ABI
3715 specifies such a left shift OR this new ABI gets
3716 identified as such and GDB gets tweaked
3717 accordingly. */
3718
3719 if (mips_abi_regsize (gdbarch) < 8
3720 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3721 && partial_len < mips_abi_regsize (gdbarch)
3722 && (typecode == TYPE_CODE_STRUCT ||
3723 typecode == TYPE_CODE_UNION))
3724 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3725 TARGET_CHAR_BIT);
3726
3727 if (mips_debug)
3728 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3729 argreg,
3730 phex (regval,
3731 mips_abi_regsize (gdbarch)));
3732 write_register (argreg, regval);
3733 argreg++;
3734
3735 /* Prevent subsequent floating point arguments from
3736 being passed in floating point registers. */
3737 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3738 }
3739
3740 len -= partial_len;
3741 val += partial_len;
3742
3743 /* Compute the the offset into the stack at which we
3744 will copy the next parameter.
3745
3746 In older ABIs, the caller reserved space for
3747 registers that contained arguments. This was loosely
3748 refered to as their "home". Consequently, space is
3749 always allocated. */
3750
3751 stack_offset += align_up (partial_len,
3752 mips_stack_argsize (gdbarch));
3753 }
3754 }
3755 if (mips_debug)
3756 fprintf_unfiltered (gdb_stdlog, "\n");
3757 }
3758
3759 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3760
3761 /* Return adjusted stack pointer. */
3762 return sp;
3763 }
3764
3765 static enum return_value_convention
3766 mips_o64_return_value (struct gdbarch *gdbarch,
3767 struct type *type, struct regcache *regcache,
3768 void *readbuf, const void *writebuf)
3769 {
3770 return RETURN_VALUE_STRUCT_CONVENTION;
3771 }
3772
3773 /* Floating point register management.
3774
3775 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3776 64bit operations, these early MIPS cpus treat fp register pairs
3777 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3778 registers and offer a compatibility mode that emulates the MIPS2 fp
3779 model. When operating in MIPS2 fp compat mode, later cpu's split
3780 double precision floats into two 32-bit chunks and store them in
3781 consecutive fp regs. To display 64-bit floats stored in this
3782 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3783 Throw in user-configurable endianness and you have a real mess.
3784
3785 The way this works is:
3786 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3787 double-precision value will be split across two logical registers.
3788 The lower-numbered logical register will hold the low-order bits,
3789 regardless of the processor's endianness.
3790 - If we are on a 64-bit processor, and we are looking for a
3791 single-precision value, it will be in the low ordered bits
3792 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3793 save slot in memory.
3794 - If we are in 64-bit mode, everything is straightforward.
3795
3796 Note that this code only deals with "live" registers at the top of the
3797 stack. We will attempt to deal with saved registers later, when
3798 the raw/cooked register interface is in place. (We need a general
3799 interface that can deal with dynamic saved register sizes -- fp
3800 regs could be 32 bits wide in one frame and 64 on the frame above
3801 and below). */
3802
3803 static struct type *
3804 mips_float_register_type (void)
3805 {
3806 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3807 return builtin_type_ieee_single_big;
3808 else
3809 return builtin_type_ieee_single_little;
3810 }
3811
3812 static struct type *
3813 mips_double_register_type (void)
3814 {
3815 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3816 return builtin_type_ieee_double_big;
3817 else
3818 return builtin_type_ieee_double_little;
3819 }
3820
3821 /* Copy a 32-bit single-precision value from the current frame
3822 into rare_buffer. */
3823
3824 static void
3825 mips_read_fp_register_single (struct frame_info *frame, int regno,
3826 char *rare_buffer)
3827 {
3828 int raw_size = register_size (current_gdbarch, regno);
3829 char *raw_buffer = alloca (raw_size);
3830
3831 if (!frame_register_read (frame, regno, raw_buffer))
3832 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3833 if (raw_size == 8)
3834 {
3835 /* We have a 64-bit value for this register. Find the low-order
3836 32 bits. */
3837 int offset;
3838
3839 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3840 offset = 4;
3841 else
3842 offset = 0;
3843
3844 memcpy (rare_buffer, raw_buffer + offset, 4);
3845 }
3846 else
3847 {
3848 memcpy (rare_buffer, raw_buffer, 4);
3849 }
3850 }
3851
3852 /* Copy a 64-bit double-precision value from the current frame into
3853 rare_buffer. This may include getting half of it from the next
3854 register. */
3855
3856 static void
3857 mips_read_fp_register_double (struct frame_info *frame, int regno,
3858 char *rare_buffer)
3859 {
3860 int raw_size = register_size (current_gdbarch, regno);
3861
3862 if (raw_size == 8 && !mips2_fp_compat ())
3863 {
3864 /* We have a 64-bit value for this register, and we should use
3865 all 64 bits. */
3866 if (!frame_register_read (frame, regno, rare_buffer))
3867 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3868 }
3869 else
3870 {
3871 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
3872 internal_error (__FILE__, __LINE__,
3873 "mips_read_fp_register_double: bad access to "
3874 "odd-numbered FP register");
3875
3876 /* mips_read_fp_register_single will find the correct 32 bits from
3877 each register. */
3878 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3879 {
3880 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3881 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3882 }
3883 else
3884 {
3885 mips_read_fp_register_single (frame, regno, rare_buffer);
3886 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
3887 }
3888 }
3889 }
3890
3891 static void
3892 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3893 int regnum)
3894 { /* do values for FP (float) regs */
3895 char *raw_buffer;
3896 double doub, flt1; /* doubles extracted from raw hex data */
3897 int inv1, inv2;
3898
3899 raw_buffer =
3900 (char *) alloca (2 *
3901 register_size (current_gdbarch,
3902 mips_regnum (current_gdbarch)->fp0));
3903
3904 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3905 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3906 "");
3907
3908 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
3909 {
3910 /* 4-byte registers: Print hex and floating. Also print even
3911 numbered registers as doubles. */
3912 mips_read_fp_register_single (frame, regnum, raw_buffer);
3913 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3914
3915 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3916 file);
3917
3918 fprintf_filtered (file, " flt: ");
3919 if (inv1)
3920 fprintf_filtered (file, " <invalid float> ");
3921 else
3922 fprintf_filtered (file, "%-17.9g", flt1);
3923
3924 if (regnum % 2 == 0)
3925 {
3926 mips_read_fp_register_double (frame, regnum, raw_buffer);
3927 doub = unpack_double (mips_double_register_type (), raw_buffer,
3928 &inv2);
3929
3930 fprintf_filtered (file, " dbl: ");
3931 if (inv2)
3932 fprintf_filtered (file, "<invalid double>");
3933 else
3934 fprintf_filtered (file, "%-24.17g", doub);
3935 }
3936 }
3937 else
3938 {
3939 /* Eight byte registers: print each one as hex, float and double. */
3940 mips_read_fp_register_single (frame, regnum, raw_buffer);
3941 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3942
3943 mips_read_fp_register_double (frame, regnum, raw_buffer);
3944 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3945
3946
3947 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
3948 file);
3949
3950 fprintf_filtered (file, " flt: ");
3951 if (inv1)
3952 fprintf_filtered (file, "<invalid float>");
3953 else
3954 fprintf_filtered (file, "%-17.9g", flt1);
3955
3956 fprintf_filtered (file, " dbl: ");
3957 if (inv2)
3958 fprintf_filtered (file, "<invalid double>");
3959 else
3960 fprintf_filtered (file, "%-24.17g", doub);
3961 }
3962 }
3963
3964 static void
3965 mips_print_register (struct ui_file *file, struct frame_info *frame,
3966 int regnum, int all)
3967 {
3968 struct gdbarch *gdbarch = get_frame_arch (frame);
3969 char raw_buffer[MAX_REGISTER_SIZE];
3970 int offset;
3971
3972 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
3973 {
3974 mips_print_fp_register (file, frame, regnum);
3975 return;
3976 }
3977
3978 /* Get the data in raw format. */
3979 if (!frame_register_read (frame, regnum, raw_buffer))
3980 {
3981 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
3982 return;
3983 }
3984
3985 fputs_filtered (REGISTER_NAME (regnum), file);
3986
3987 /* The problem with printing numeric register names (r26, etc.) is that
3988 the user can't use them on input. Probably the best solution is to
3989 fix it so that either the numeric or the funky (a2, etc.) names
3990 are accepted on input. */
3991 if (regnum < MIPS_NUMREGS)
3992 fprintf_filtered (file, "(r%d): ", regnum);
3993 else
3994 fprintf_filtered (file, ": ");
3995
3996 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3997 offset =
3998 register_size (current_gdbarch,
3999 regnum) - register_size (current_gdbarch, regnum);
4000 else
4001 offset = 0;
4002
4003 print_scalar_formatted (raw_buffer + offset,
4004 gdbarch_register_type (gdbarch, regnum), 'x', 0,
4005 file);
4006 }
4007
4008 /* Replacement for generic do_registers_info.
4009 Print regs in pretty columns. */
4010
4011 static int
4012 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4013 int regnum)
4014 {
4015 fprintf_filtered (file, " ");
4016 mips_print_fp_register (file, frame, regnum);
4017 fprintf_filtered (file, "\n");
4018 return regnum + 1;
4019 }
4020
4021
4022 /* Print a row's worth of GP (int) registers, with name labels above */
4023
4024 static int
4025 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4026 int start_regnum)
4027 {
4028 struct gdbarch *gdbarch = get_frame_arch (frame);
4029 /* do values for GP (int) regs */
4030 char raw_buffer[MAX_REGISTER_SIZE];
4031 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4032 int col, byte;
4033 int regnum;
4034
4035 /* For GP registers, we print a separate row of names above the vals */
4036 fprintf_filtered (file, " ");
4037 for (col = 0, regnum = start_regnum;
4038 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4039 {
4040 if (*REGISTER_NAME (regnum) == '\0')
4041 continue; /* unused register */
4042 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4043 TYPE_CODE_FLT)
4044 break; /* end the row: reached FP register */
4045 fprintf_filtered (file,
4046 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4047 REGISTER_NAME (regnum));
4048 col++;
4049 }
4050 /* print the R0 to R31 names */
4051 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4052 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4053 else
4054 fprintf_filtered (file, "\n ");
4055
4056 /* now print the values in hex, 4 or 8 to the row */
4057 for (col = 0, regnum = start_regnum;
4058 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4059 {
4060 if (*REGISTER_NAME (regnum) == '\0')
4061 continue; /* unused register */
4062 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4063 TYPE_CODE_FLT)
4064 break; /* end row: reached FP register */
4065 /* OK: get the data in raw format. */
4066 if (!frame_register_read (frame, regnum, raw_buffer))
4067 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4068 /* pad small registers */
4069 for (byte = 0;
4070 byte < (mips_abi_regsize (current_gdbarch)
4071 - register_size (current_gdbarch, regnum)); byte++)
4072 printf_filtered (" ");
4073 /* Now print the register value in hex, endian order. */
4074 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4075 for (byte =
4076 register_size (current_gdbarch,
4077 regnum) - register_size (current_gdbarch, regnum);
4078 byte < register_size (current_gdbarch, regnum); byte++)
4079 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4080 else
4081 for (byte = register_size (current_gdbarch, regnum) - 1;
4082 byte >= 0; byte--)
4083 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4084 fprintf_filtered (file, " ");
4085 col++;
4086 }
4087 if (col > 0) /* ie. if we actually printed anything... */
4088 fprintf_filtered (file, "\n");
4089
4090 return regnum;
4091 }
4092
4093 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4094
4095 static void
4096 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4097 struct frame_info *frame, int regnum, int all)
4098 {
4099 if (regnum != -1) /* do one specified register */
4100 {
4101 gdb_assert (regnum >= NUM_REGS);
4102 if (*(REGISTER_NAME (regnum)) == '\0')
4103 error ("Not a valid register for the current processor type");
4104
4105 mips_print_register (file, frame, regnum, 0);
4106 fprintf_filtered (file, "\n");
4107 }
4108 else
4109 /* do all (or most) registers */
4110 {
4111 regnum = NUM_REGS;
4112 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4113 {
4114 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4115 TYPE_CODE_FLT)
4116 {
4117 if (all) /* true for "INFO ALL-REGISTERS" command */
4118 regnum = print_fp_register_row (file, frame, regnum);
4119 else
4120 regnum += MIPS_NUMREGS; /* skip floating point regs */
4121 }
4122 else
4123 regnum = print_gp_register_row (file, frame, regnum);
4124 }
4125 }
4126 }
4127
4128 /* Is this a branch with a delay slot? */
4129
4130 static int
4131 is_delayed (unsigned long insn)
4132 {
4133 int i;
4134 for (i = 0; i < NUMOPCODES; ++i)
4135 if (mips_opcodes[i].pinfo != INSN_MACRO
4136 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4137 break;
4138 return (i < NUMOPCODES
4139 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4140 | INSN_COND_BRANCH_DELAY
4141 | INSN_COND_BRANCH_LIKELY)));
4142 }
4143
4144 int
4145 mips_single_step_through_delay (struct gdbarch *gdbarch,
4146 struct frame_info *frame)
4147 {
4148 CORE_ADDR pc = get_frame_pc (frame);
4149 char buf[MIPS_INSN32_SIZE];
4150
4151 /* There is no branch delay slot on MIPS16. */
4152 if (mips_pc_is_mips16 (pc))
4153 return 0;
4154
4155 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4156 /* If error reading memory, guess that it is not a delayed
4157 branch. */
4158 return 0;
4159 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4160 }
4161
4162 /* To skip prologues, I use this predicate. Returns either PC itself
4163 if the code at PC does not look like a function prologue; otherwise
4164 returns an address that (if we're lucky) follows the prologue. If
4165 LENIENT, then we must skip everything which is involved in setting
4166 up the frame (it's OK to skip more, just so long as we don't skip
4167 anything which might clobber the registers which are being saved.
4168 We must skip more in the case where part of the prologue is in the
4169 delay slot of a non-prologue instruction). */
4170
4171 static CORE_ADDR
4172 mips_skip_prologue (CORE_ADDR pc)
4173 {
4174 CORE_ADDR limit_pc;
4175 CORE_ADDR func_addr;
4176
4177 /* See if we can determine the end of the prologue via the symbol table.
4178 If so, then return either PC, or the PC after the prologue, whichever
4179 is greater. */
4180 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4181 {
4182 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4183 if (post_prologue_pc != 0)
4184 return max (pc, post_prologue_pc);
4185 }
4186
4187 /* Can't determine prologue from the symbol table, need to examine
4188 instructions. */
4189
4190 /* Find an upper limit on the function prologue using the debug
4191 information. If the debug information could not be used to provide
4192 that bound, then use an arbitrary large number as the upper bound. */
4193 limit_pc = skip_prologue_using_sal (pc);
4194 if (limit_pc == 0)
4195 limit_pc = pc + 100; /* Magic. */
4196
4197 if (mips_pc_is_mips16 (pc))
4198 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4199 else
4200 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4201 }
4202
4203 /* Root of all "set mips "/"show mips " commands. This will eventually be
4204 used for all MIPS-specific commands. */
4205
4206 static void
4207 show_mips_command (char *args, int from_tty)
4208 {
4209 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4210 }
4211
4212 static void
4213 set_mips_command (char *args, int from_tty)
4214 {
4215 printf_unfiltered
4216 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4217 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4218 }
4219
4220 /* Commands to show/set the MIPS FPU type. */
4221
4222 static void
4223 show_mipsfpu_command (char *args, int from_tty)
4224 {
4225 char *fpu;
4226 switch (MIPS_FPU_TYPE)
4227 {
4228 case MIPS_FPU_SINGLE:
4229 fpu = "single-precision";
4230 break;
4231 case MIPS_FPU_DOUBLE:
4232 fpu = "double-precision";
4233 break;
4234 case MIPS_FPU_NONE:
4235 fpu = "absent (none)";
4236 break;
4237 default:
4238 internal_error (__FILE__, __LINE__, "bad switch");
4239 }
4240 if (mips_fpu_type_auto)
4241 printf_unfiltered
4242 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4243 fpu);
4244 else
4245 printf_unfiltered
4246 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4247 }
4248
4249
4250 static void
4251 set_mipsfpu_command (char *args, int from_tty)
4252 {
4253 printf_unfiltered
4254 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4255 show_mipsfpu_command (args, from_tty);
4256 }
4257
4258 static void
4259 set_mipsfpu_single_command (char *args, int from_tty)
4260 {
4261 struct gdbarch_info info;
4262 gdbarch_info_init (&info);
4263 mips_fpu_type = MIPS_FPU_SINGLE;
4264 mips_fpu_type_auto = 0;
4265 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4266 instead of relying on globals. Doing that would let generic code
4267 handle the search for this specific architecture. */
4268 if (!gdbarch_update_p (info))
4269 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
4270 }
4271
4272 static void
4273 set_mipsfpu_double_command (char *args, int from_tty)
4274 {
4275 struct gdbarch_info info;
4276 gdbarch_info_init (&info);
4277 mips_fpu_type = MIPS_FPU_DOUBLE;
4278 mips_fpu_type_auto = 0;
4279 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4280 instead of relying on globals. Doing that would let generic code
4281 handle the search for this specific architecture. */
4282 if (!gdbarch_update_p (info))
4283 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
4284 }
4285
4286 static void
4287 set_mipsfpu_none_command (char *args, int from_tty)
4288 {
4289 struct gdbarch_info info;
4290 gdbarch_info_init (&info);
4291 mips_fpu_type = MIPS_FPU_NONE;
4292 mips_fpu_type_auto = 0;
4293 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4294 instead of relying on globals. Doing that would let generic code
4295 handle the search for this specific architecture. */
4296 if (!gdbarch_update_p (info))
4297 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
4298 }
4299
4300 static void
4301 set_mipsfpu_auto_command (char *args, int from_tty)
4302 {
4303 mips_fpu_type_auto = 1;
4304 }
4305
4306 /* Attempt to identify the particular processor model by reading the
4307 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4308 the relevant processor still exists (it dates back to '94) and
4309 secondly this is not the way to do this. The processor type should
4310 be set by forcing an architecture change. */
4311
4312 void
4313 deprecated_mips_set_processor_regs_hack (void)
4314 {
4315 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4316 CORE_ADDR prid;
4317
4318 prid = read_register (MIPS_PRID_REGNUM);
4319
4320 if ((prid & ~0xf) == 0x700)
4321 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4322 }
4323
4324 /* Just like reinit_frame_cache, but with the right arguments to be
4325 callable as an sfunc. */
4326
4327 static void
4328 reinit_frame_cache_sfunc (char *args, int from_tty,
4329 struct cmd_list_element *c)
4330 {
4331 reinit_frame_cache ();
4332 }
4333
4334 static int
4335 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4336 {
4337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4338
4339 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4340 disassembler needs to be able to locally determine the ISA, and
4341 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4342 work. */
4343 if (mips_pc_is_mips16 (memaddr))
4344 info->mach = bfd_mach_mips16;
4345
4346 /* Round down the instruction address to the appropriate boundary. */
4347 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4348
4349 /* Set the disassembler options. */
4350 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4351 {
4352 /* Set up the disassembler info, so that we get the right
4353 register names from libopcodes. */
4354 if (tdep->mips_abi == MIPS_ABI_N32)
4355 info->disassembler_options = "gpr-names=n32";
4356 else
4357 info->disassembler_options = "gpr-names=64";
4358 info->flavour = bfd_target_elf_flavour;
4359 }
4360 else
4361 /* This string is not recognized explicitly by the disassembler,
4362 but it tells the disassembler to not try to guess the ABI from
4363 the bfd elf headers, such that, if the user overrides the ABI
4364 of a program linked as NewABI, the disassembly will follow the
4365 register naming conventions specified by the user. */
4366 info->disassembler_options = "gpr-names=32";
4367
4368 /* Call the appropriate disassembler based on the target endian-ness. */
4369 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4370 return print_insn_big_mips (memaddr, info);
4371 else
4372 return print_insn_little_mips (memaddr, info);
4373 }
4374
4375 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4376 counter value to determine whether a 16- or 32-bit breakpoint should be
4377 used. It returns a pointer to a string of bytes that encode a breakpoint
4378 instruction, stores the length of the string to *lenptr, and adjusts pc
4379 (if necessary) to point to the actual memory location where the
4380 breakpoint should be inserted. */
4381
4382 static const unsigned char *
4383 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4384 {
4385 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4386 {
4387 if (mips_pc_is_mips16 (*pcptr))
4388 {
4389 static unsigned char mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4390 *pcptr = unmake_mips16_addr (*pcptr);
4391 *lenptr = sizeof (mips16_big_breakpoint);
4392 return mips16_big_breakpoint;
4393 }
4394 else
4395 {
4396 /* The IDT board uses an unusual breakpoint value, and
4397 sometimes gets confused when it sees the usual MIPS
4398 breakpoint instruction. */
4399 static unsigned char big_breakpoint[] = { 0, 0x5, 0, 0xd };
4400 static unsigned char pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4401 static unsigned char idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4402
4403 *lenptr = sizeof (big_breakpoint);
4404
4405 if (strcmp (target_shortname, "mips") == 0)
4406 return idt_big_breakpoint;
4407 else if (strcmp (target_shortname, "ddb") == 0
4408 || strcmp (target_shortname, "pmon") == 0
4409 || strcmp (target_shortname, "lsi") == 0)
4410 return pmon_big_breakpoint;
4411 else
4412 return big_breakpoint;
4413 }
4414 }
4415 else
4416 {
4417 if (mips_pc_is_mips16 (*pcptr))
4418 {
4419 static unsigned char mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4420 *pcptr = unmake_mips16_addr (*pcptr);
4421 *lenptr = sizeof (mips16_little_breakpoint);
4422 return mips16_little_breakpoint;
4423 }
4424 else
4425 {
4426 static unsigned char little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4427 static unsigned char pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4428 static unsigned char idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4429
4430 *lenptr = sizeof (little_breakpoint);
4431
4432 if (strcmp (target_shortname, "mips") == 0)
4433 return idt_little_breakpoint;
4434 else if (strcmp (target_shortname, "ddb") == 0
4435 || strcmp (target_shortname, "pmon") == 0
4436 || strcmp (target_shortname, "lsi") == 0)
4437 return pmon_little_breakpoint;
4438 else
4439 return little_breakpoint;
4440 }
4441 }
4442 }
4443
4444 /* If PC is in a mips16 call or return stub, return the address of the target
4445 PC, which is either the callee or the caller. There are several
4446 cases which must be handled:
4447
4448 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4449 target PC is in $31 ($ra).
4450 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4451 and the target PC is in $2.
4452 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4453 before the jal instruction, this is effectively a call stub
4454 and the the target PC is in $2. Otherwise this is effectively
4455 a return stub and the target PC is in $18.
4456
4457 See the source code for the stubs in gcc/config/mips/mips16.S for
4458 gory details. */
4459
4460 static CORE_ADDR
4461 mips_skip_trampoline_code (CORE_ADDR pc)
4462 {
4463 char *name;
4464 CORE_ADDR start_addr;
4465
4466 /* Find the starting address and name of the function containing the PC. */
4467 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4468 return 0;
4469
4470 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4471 target PC is in $31 ($ra). */
4472 if (strcmp (name, "__mips16_ret_sf") == 0
4473 || strcmp (name, "__mips16_ret_df") == 0)
4474 return read_signed_register (MIPS_RA_REGNUM);
4475
4476 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4477 {
4478 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4479 and the target PC is in $2. */
4480 if (name[19] >= '0' && name[19] <= '9')
4481 return read_signed_register (2);
4482
4483 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4484 before the jal instruction, this is effectively a call stub
4485 and the the target PC is in $2. Otherwise this is effectively
4486 a return stub and the target PC is in $18. */
4487 else if (name[19] == 's' || name[19] == 'd')
4488 {
4489 if (pc == start_addr)
4490 {
4491 /* Check if the target of the stub is a compiler-generated
4492 stub. Such a stub for a function bar might have a name
4493 like __fn_stub_bar, and might look like this:
4494 mfc1 $4,$f13
4495 mfc1 $5,$f12
4496 mfc1 $6,$f15
4497 mfc1 $7,$f14
4498 la $1,bar (becomes a lui/addiu pair)
4499 jr $1
4500 So scan down to the lui/addi and extract the target
4501 address from those two instructions. */
4502
4503 CORE_ADDR target_pc = read_signed_register (2);
4504 ULONGEST inst;
4505 int i;
4506
4507 /* See if the name of the target function is __fn_stub_*. */
4508 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4509 0)
4510 return target_pc;
4511 if (strncmp (name, "__fn_stub_", 10) != 0
4512 && strcmp (name, "etext") != 0
4513 && strcmp (name, "_etext") != 0)
4514 return target_pc;
4515
4516 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4517 The limit on the search is arbitrarily set to 20
4518 instructions. FIXME. */
4519 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4520 {
4521 inst = mips_fetch_instruction (target_pc);
4522 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4523 pc = (inst << 16) & 0xffff0000; /* high word */
4524 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4525 return pc | (inst & 0xffff); /* low word */
4526 }
4527
4528 /* Couldn't find the lui/addui pair, so return stub address. */
4529 return target_pc;
4530 }
4531 else
4532 /* This is the 'return' part of a call stub. The return
4533 address is in $r18. */
4534 return read_signed_register (18);
4535 }
4536 }
4537 return 0; /* not a stub */
4538 }
4539
4540 /* Return non-zero if the PC is inside a return thunk (aka stub or
4541 trampoline). */
4542
4543 static int
4544 mips_in_solib_return_trampoline (CORE_ADDR pc, char *name)
4545 {
4546 CORE_ADDR start_addr;
4547
4548 /* Find the starting address of the function containing the PC. */
4549 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
4550 return 0;
4551
4552 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
4553 if (strcmp (name, "__mips16_ret_sf") == 0
4554 || strcmp (name, "__mips16_ret_df") == 0)
4555 return 1;
4556
4557 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
4558 i.e. after the jal instruction, this is effectively a return stub. */
4559 if (strncmp (name, "__mips16_call_stub_", 19) == 0
4560 && (name[19] == 's' || name[19] == 'd') && pc != start_addr)
4561 return 1;
4562
4563 return 0; /* not a stub */
4564 }
4565
4566 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4567 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4568
4569 static int
4570 mips_stab_reg_to_regnum (int num)
4571 {
4572 int regnum;
4573 if (num >= 0 && num < 32)
4574 regnum = num;
4575 else if (num >= 38 && num < 70)
4576 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4577 else if (num == 70)
4578 regnum = mips_regnum (current_gdbarch)->hi;
4579 else if (num == 71)
4580 regnum = mips_regnum (current_gdbarch)->lo;
4581 else
4582 /* This will hopefully (eventually) provoke a warning. Should
4583 we be calling complaint() here? */
4584 return NUM_REGS + NUM_PSEUDO_REGS;
4585 return NUM_REGS + regnum;
4586 }
4587
4588
4589 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4590 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4591
4592 static int
4593 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4594 {
4595 int regnum;
4596 if (num >= 0 && num < 32)
4597 regnum = num;
4598 else if (num >= 32 && num < 64)
4599 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4600 else if (num == 64)
4601 regnum = mips_regnum (current_gdbarch)->hi;
4602 else if (num == 65)
4603 regnum = mips_regnum (current_gdbarch)->lo;
4604 else
4605 /* This will hopefully (eventually) provoke a warning. Should we
4606 be calling complaint() here? */
4607 return NUM_REGS + NUM_PSEUDO_REGS;
4608 return NUM_REGS + regnum;
4609 }
4610
4611 static int
4612 mips_register_sim_regno (int regnum)
4613 {
4614 /* Only makes sense to supply raw registers. */
4615 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4616 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4617 decide if it is valid. Should instead define a standard sim/gdb
4618 register numbering scheme. */
4619 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4620 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4621 return regnum;
4622 else
4623 return LEGACY_SIM_REGNO_IGNORE;
4624 }
4625
4626
4627 /* Convert an integer into an address. By first converting the value
4628 into a pointer and then extracting it signed, the address is
4629 guarenteed to be correctly sign extended. */
4630
4631 static CORE_ADDR
4632 mips_integer_to_address (struct type *type, void *buf)
4633 {
4634 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
4635 LONGEST val = unpack_long (type, buf);
4636 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
4637 return extract_signed_integer (tmp,
4638 TYPE_LENGTH (builtin_type_void_data_ptr));
4639 }
4640
4641 static void
4642 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4643 {
4644 enum mips_abi *abip = (enum mips_abi *) obj;
4645 const char *name = bfd_get_section_name (abfd, sect);
4646
4647 if (*abip != MIPS_ABI_UNKNOWN)
4648 return;
4649
4650 if (strncmp (name, ".mdebug.", 8) != 0)
4651 return;
4652
4653 if (strcmp (name, ".mdebug.abi32") == 0)
4654 *abip = MIPS_ABI_O32;
4655 else if (strcmp (name, ".mdebug.abiN32") == 0)
4656 *abip = MIPS_ABI_N32;
4657 else if (strcmp (name, ".mdebug.abi64") == 0)
4658 *abip = MIPS_ABI_N64;
4659 else if (strcmp (name, ".mdebug.abiO64") == 0)
4660 *abip = MIPS_ABI_O64;
4661 else if (strcmp (name, ".mdebug.eabi32") == 0)
4662 *abip = MIPS_ABI_EABI32;
4663 else if (strcmp (name, ".mdebug.eabi64") == 0)
4664 *abip = MIPS_ABI_EABI64;
4665 else
4666 warning ("unsupported ABI %s.", name + 8);
4667 }
4668
4669 static enum mips_abi
4670 global_mips_abi (void)
4671 {
4672 int i;
4673
4674 for (i = 0; mips_abi_strings[i] != NULL; i++)
4675 if (mips_abi_strings[i] == mips_abi_string)
4676 return (enum mips_abi) i;
4677
4678 internal_error (__FILE__, __LINE__, "unknown ABI string");
4679 }
4680
4681 static struct gdbarch *
4682 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4683 {
4684 struct gdbarch *gdbarch;
4685 struct gdbarch_tdep *tdep;
4686 int elf_flags;
4687 enum mips_abi mips_abi, found_abi, wanted_abi;
4688 int num_regs;
4689 enum mips_fpu_type fpu_type;
4690
4691 /* First of all, extract the elf_flags, if available. */
4692 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4693 elf_flags = elf_elfheader (info.abfd)->e_flags;
4694 else if (arches != NULL)
4695 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
4696 else
4697 elf_flags = 0;
4698 if (gdbarch_debug)
4699 fprintf_unfiltered (gdb_stdlog,
4700 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
4701
4702 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4703 switch ((elf_flags & EF_MIPS_ABI))
4704 {
4705 case E_MIPS_ABI_O32:
4706 found_abi = MIPS_ABI_O32;
4707 break;
4708 case E_MIPS_ABI_O64:
4709 found_abi = MIPS_ABI_O64;
4710 break;
4711 case E_MIPS_ABI_EABI32:
4712 found_abi = MIPS_ABI_EABI32;
4713 break;
4714 case E_MIPS_ABI_EABI64:
4715 found_abi = MIPS_ABI_EABI64;
4716 break;
4717 default:
4718 if ((elf_flags & EF_MIPS_ABI2))
4719 found_abi = MIPS_ABI_N32;
4720 else
4721 found_abi = MIPS_ABI_UNKNOWN;
4722 break;
4723 }
4724
4725 /* GCC creates a pseudo-section whose name describes the ABI. */
4726 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4727 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
4728
4729 /* If we have no useful BFD information, use the ABI from the last
4730 MIPS architecture (if there is one). */
4731 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4732 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4733
4734 /* Try the architecture for any hint of the correct ABI. */
4735 if (found_abi == MIPS_ABI_UNKNOWN
4736 && info.bfd_arch_info != NULL
4737 && info.bfd_arch_info->arch == bfd_arch_mips)
4738 {
4739 switch (info.bfd_arch_info->mach)
4740 {
4741 case bfd_mach_mips3900:
4742 found_abi = MIPS_ABI_EABI32;
4743 break;
4744 case bfd_mach_mips4100:
4745 case bfd_mach_mips5000:
4746 found_abi = MIPS_ABI_EABI64;
4747 break;
4748 case bfd_mach_mips8000:
4749 case bfd_mach_mips10000:
4750 /* On Irix, ELF64 executables use the N64 ABI. The
4751 pseudo-sections which describe the ABI aren't present
4752 on IRIX. (Even for executables created by gcc.) */
4753 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4754 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4755 found_abi = MIPS_ABI_N64;
4756 else
4757 found_abi = MIPS_ABI_N32;
4758 break;
4759 }
4760 }
4761
4762 if (gdbarch_debug)
4763 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4764 found_abi);
4765
4766 /* What has the user specified from the command line? */
4767 wanted_abi = global_mips_abi ();
4768 if (gdbarch_debug)
4769 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4770 wanted_abi);
4771
4772 /* Now that we have found what the ABI for this binary would be,
4773 check whether the user is overriding it. */
4774 if (wanted_abi != MIPS_ABI_UNKNOWN)
4775 mips_abi = wanted_abi;
4776 else if (found_abi != MIPS_ABI_UNKNOWN)
4777 mips_abi = found_abi;
4778 else
4779 mips_abi = MIPS_ABI_O32;
4780 if (gdbarch_debug)
4781 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4782 mips_abi);
4783
4784 /* Also used when doing an architecture lookup. */
4785 if (gdbarch_debug)
4786 fprintf_unfiltered (gdb_stdlog,
4787 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4788 mips64_transfers_32bit_regs_p);
4789
4790 /* Determine the MIPS FPU type. */
4791 if (!mips_fpu_type_auto)
4792 fpu_type = mips_fpu_type;
4793 else if (info.bfd_arch_info != NULL
4794 && info.bfd_arch_info->arch == bfd_arch_mips)
4795 switch (info.bfd_arch_info->mach)
4796 {
4797 case bfd_mach_mips3900:
4798 case bfd_mach_mips4100:
4799 case bfd_mach_mips4111:
4800 case bfd_mach_mips4120:
4801 fpu_type = MIPS_FPU_NONE;
4802 break;
4803 case bfd_mach_mips4650:
4804 fpu_type = MIPS_FPU_SINGLE;
4805 break;
4806 default:
4807 fpu_type = MIPS_FPU_DOUBLE;
4808 break;
4809 }
4810 else if (arches != NULL)
4811 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4812 else
4813 fpu_type = MIPS_FPU_DOUBLE;
4814 if (gdbarch_debug)
4815 fprintf_unfiltered (gdb_stdlog,
4816 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
4817
4818 /* try to find a pre-existing architecture */
4819 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4820 arches != NULL;
4821 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4822 {
4823 /* MIPS needs to be pedantic about which ABI the object is
4824 using. */
4825 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4826 continue;
4827 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4828 continue;
4829 /* Need to be pedantic about which register virtual size is
4830 used. */
4831 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4832 != mips64_transfers_32bit_regs_p)
4833 continue;
4834 /* Be pedantic about which FPU is selected. */
4835 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4836 continue;
4837 return arches->gdbarch;
4838 }
4839
4840 /* Need a new architecture. Fill in a target specific vector. */
4841 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4842 gdbarch = gdbarch_alloc (&info, tdep);
4843 tdep->elf_flags = elf_flags;
4844 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
4845 tdep->found_abi = found_abi;
4846 tdep->mips_abi = mips_abi;
4847 tdep->mips_fpu_type = fpu_type;
4848
4849 /* Initially set everything according to the default ABI/ISA. */
4850 set_gdbarch_short_bit (gdbarch, 16);
4851 set_gdbarch_int_bit (gdbarch, 32);
4852 set_gdbarch_float_bit (gdbarch, 32);
4853 set_gdbarch_double_bit (gdbarch, 64);
4854 set_gdbarch_long_double_bit (gdbarch, 64);
4855 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4856 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4857 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
4858
4859 set_gdbarch_elf_make_msymbol_special (gdbarch,
4860 mips_elf_make_msymbol_special);
4861
4862 /* Fill in the OS dependant register numbers and names. */
4863 {
4864 const char **reg_names;
4865 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4866 struct mips_regnum);
4867 if (info.osabi == GDB_OSABI_IRIX)
4868 {
4869 regnum->fp0 = 32;
4870 regnum->pc = 64;
4871 regnum->cause = 65;
4872 regnum->badvaddr = 66;
4873 regnum->hi = 67;
4874 regnum->lo = 68;
4875 regnum->fp_control_status = 69;
4876 regnum->fp_implementation_revision = 70;
4877 num_regs = 71;
4878 reg_names = mips_irix_reg_names;
4879 }
4880 else
4881 {
4882 regnum->lo = MIPS_EMBED_LO_REGNUM;
4883 regnum->hi = MIPS_EMBED_HI_REGNUM;
4884 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4885 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4886 regnum->pc = MIPS_EMBED_PC_REGNUM;
4887 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4888 regnum->fp_control_status = 70;
4889 regnum->fp_implementation_revision = 71;
4890 num_regs = 90;
4891 if (info.bfd_arch_info != NULL
4892 && info.bfd_arch_info->mach == bfd_mach_mips3900)
4893 reg_names = mips_tx39_reg_names;
4894 else
4895 reg_names = mips_generic_reg_names;
4896 }
4897 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4898 replaced by read_pc? */
4899 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
4900 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
4901 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
4902 set_gdbarch_num_regs (gdbarch, num_regs);
4903 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
4904 set_gdbarch_register_name (gdbarch, mips_register_name);
4905 tdep->mips_processor_reg_names = reg_names;
4906 tdep->regnum = regnum;
4907 }
4908
4909 switch (mips_abi)
4910 {
4911 case MIPS_ABI_O32:
4912 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
4913 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4914 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4915 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4916 tdep->default_mask_address_p = 0;
4917 set_gdbarch_long_bit (gdbarch, 32);
4918 set_gdbarch_ptr_bit (gdbarch, 32);
4919 set_gdbarch_long_long_bit (gdbarch, 64);
4920 break;
4921 case MIPS_ABI_O64:
4922 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
4923 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4924 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4925 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4926 tdep->default_mask_address_p = 0;
4927 set_gdbarch_long_bit (gdbarch, 32);
4928 set_gdbarch_ptr_bit (gdbarch, 32);
4929 set_gdbarch_long_long_bit (gdbarch, 64);
4930 break;
4931 case MIPS_ABI_EABI32:
4932 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4933 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4934 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4935 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4936 tdep->default_mask_address_p = 0;
4937 set_gdbarch_long_bit (gdbarch, 32);
4938 set_gdbarch_ptr_bit (gdbarch, 32);
4939 set_gdbarch_long_long_bit (gdbarch, 64);
4940 break;
4941 case MIPS_ABI_EABI64:
4942 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4943 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4944 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4945 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4946 tdep->default_mask_address_p = 0;
4947 set_gdbarch_long_bit (gdbarch, 64);
4948 set_gdbarch_ptr_bit (gdbarch, 64);
4949 set_gdbarch_long_long_bit (gdbarch, 64);
4950 break;
4951 case MIPS_ABI_N32:
4952 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
4953 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4954 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4955 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4956 tdep->default_mask_address_p = 0;
4957 set_gdbarch_long_bit (gdbarch, 32);
4958 set_gdbarch_ptr_bit (gdbarch, 32);
4959 set_gdbarch_long_long_bit (gdbarch, 64);
4960 set_gdbarch_long_double_bit (gdbarch, 128);
4961 set_gdbarch_long_double_format (gdbarch,
4962 &floatformat_n32n64_long_double_big);
4963 break;
4964 case MIPS_ABI_N64:
4965 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
4966 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4967 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4968 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4969 tdep->default_mask_address_p = 0;
4970 set_gdbarch_long_bit (gdbarch, 64);
4971 set_gdbarch_ptr_bit (gdbarch, 64);
4972 set_gdbarch_long_long_bit (gdbarch, 64);
4973 set_gdbarch_long_double_bit (gdbarch, 128);
4974 set_gdbarch_long_double_format (gdbarch,
4975 &floatformat_n32n64_long_double_big);
4976 break;
4977 default:
4978 internal_error (__FILE__, __LINE__, "unknown ABI in switch");
4979 }
4980
4981 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4982 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4983 comment:
4984
4985 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4986 flag in object files because to do so would make it impossible to
4987 link with libraries compiled without "-gp32". This is
4988 unnecessarily restrictive.
4989
4990 We could solve this problem by adding "-gp32" multilibs to gcc,
4991 but to set this flag before gcc is built with such multilibs will
4992 break too many systems.''
4993
4994 But even more unhelpfully, the default linker output target for
4995 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4996 for 64-bit programs - you need to change the ABI to change this,
4997 and not all gcc targets support that currently. Therefore using
4998 this flag to detect 32-bit mode would do the wrong thing given
4999 the current gcc - it would make GDB treat these 64-bit programs
5000 as 32-bit programs by default. */
5001
5002 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5003 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5004 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5005
5006 /* Add/remove bits from an address. The MIPS needs be careful to
5007 ensure that all 32 bit addresses are sign extended to 64 bits. */
5008 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5009
5010 /* Unwind the frame. */
5011 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5012 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5013
5014 /* Map debug register numbers onto internal register numbers. */
5015 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5016 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5017 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5018 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5019 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5020 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5021 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5022 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5023
5024 /* MIPS version of CALL_DUMMY */
5025
5026 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5027 replaced by a command, and all targets will default to on stack
5028 (regardless of the stack's execute status). */
5029 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5030 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5031
5032 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5033 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5034 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5035
5036 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5037 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5038
5039 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5040
5041 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5042 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5043 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5044
5045 set_gdbarch_register_type (gdbarch, mips_register_type);
5046
5047 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5048
5049 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5050
5051 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5052 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5053 need to all be folded into the target vector. Since they are
5054 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5055 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5056 is sitting on? */
5057 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5058
5059 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5060
5061 /* NOTE drow/2004-02-11: We overload the core solib trampoline code
5062 to support MIPS16. This is a bad thing. Make sure not to do it
5063 if we have an OS ABI that actually supports shared libraries, since
5064 shared library support is more important. If we have an OS someday
5065 that supports both shared libraries and MIPS16, we'll have to find
5066 a better place for these. */
5067 if (info.osabi == GDB_OSABI_UNKNOWN)
5068 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_solib_return_trampoline);
5069
5070 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5071
5072 /* Hook in OS ABI-specific overrides, if they have been registered. */
5073 gdbarch_init_osabi (info, gdbarch);
5074
5075 /* Unwind the frame. */
5076 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5077 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5078 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5079 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5080 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5081 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5082
5083 return gdbarch;
5084 }
5085
5086 static void
5087 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5088 {
5089 struct gdbarch_info info;
5090
5091 /* Force the architecture to update, and (if it's a MIPS architecture)
5092 mips_gdbarch_init will take care of the rest. */
5093 gdbarch_info_init (&info);
5094 gdbarch_update_p (info);
5095 }
5096
5097 /* Print out which MIPS ABI is in use. */
5098
5099 static void
5100 show_mips_abi (char *ignore_args, int from_tty)
5101 {
5102 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5103 printf_filtered
5104 ("The MIPS ABI is unknown because the current architecture is not MIPS.\n");
5105 else
5106 {
5107 enum mips_abi global_abi = global_mips_abi ();
5108 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5109 const char *actual_abi_str = mips_abi_strings[actual_abi];
5110
5111 if (global_abi == MIPS_ABI_UNKNOWN)
5112 printf_filtered
5113 ("The MIPS ABI is set automatically (currently \"%s\").\n",
5114 actual_abi_str);
5115 else if (global_abi == actual_abi)
5116 printf_filtered
5117 ("The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5118 actual_abi_str);
5119 else
5120 {
5121 /* Probably shouldn't happen... */
5122 printf_filtered
5123 ("The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5124 actual_abi_str, mips_abi_strings[global_abi]);
5125 }
5126 }
5127 }
5128
5129 static void
5130 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5131 {
5132 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5133 if (tdep != NULL)
5134 {
5135 int ef_mips_arch;
5136 int ef_mips_32bitmode;
5137 /* determine the ISA */
5138 switch (tdep->elf_flags & EF_MIPS_ARCH)
5139 {
5140 case E_MIPS_ARCH_1:
5141 ef_mips_arch = 1;
5142 break;
5143 case E_MIPS_ARCH_2:
5144 ef_mips_arch = 2;
5145 break;
5146 case E_MIPS_ARCH_3:
5147 ef_mips_arch = 3;
5148 break;
5149 case E_MIPS_ARCH_4:
5150 ef_mips_arch = 4;
5151 break;
5152 default:
5153 ef_mips_arch = 0;
5154 break;
5155 }
5156 /* determine the size of a pointer */
5157 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5158 fprintf_unfiltered (file,
5159 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5160 tdep->elf_flags);
5161 fprintf_unfiltered (file,
5162 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5163 ef_mips_32bitmode);
5164 fprintf_unfiltered (file,
5165 "mips_dump_tdep: ef_mips_arch = %d\n",
5166 ef_mips_arch);
5167 fprintf_unfiltered (file,
5168 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5169 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5170 fprintf_unfiltered (file,
5171 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5172 mips_mask_address_p (tdep),
5173 tdep->default_mask_address_p);
5174 }
5175 fprintf_unfiltered (file,
5176 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5177 MIPS_DEFAULT_FPU_TYPE,
5178 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5179 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5180 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5181 : "???"));
5182 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5183 fprintf_unfiltered (file,
5184 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5185 MIPS_FPU_TYPE,
5186 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5187 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5188 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5189 : "???"));
5190 fprintf_unfiltered (file,
5191 "mips_dump_tdep: mips_stack_argsize() = %d\n",
5192 mips_stack_argsize (current_gdbarch));
5193 }
5194
5195 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5196
5197 void
5198 _initialize_mips_tdep (void)
5199 {
5200 static struct cmd_list_element *mipsfpulist = NULL;
5201 struct cmd_list_element *c;
5202
5203 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5204 if (MIPS_ABI_LAST + 1
5205 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5206 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
5207
5208 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5209
5210 mips_pdr_data = register_objfile_data ();
5211
5212 /* Add root prefix command for all "set mips"/"show mips" commands */
5213 add_prefix_cmd ("mips", no_class, set_mips_command,
5214 "Various MIPS specific commands.",
5215 &setmipscmdlist, "set mips ", 0, &setlist);
5216
5217 add_prefix_cmd ("mips", no_class, show_mips_command,
5218 "Various MIPS specific commands.",
5219 &showmipscmdlist, "show mips ", 0, &showlist);
5220
5221 /* Allow the user to override the saved register size. */
5222 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
5223 size_enums, &mips_abi_regsize_string, "\
5224 Set size of general purpose registers saved on the stack.\n", "\
5225 Show size of general purpose registers saved on the stack.\n", "\
5226 This option can be set to one of:\n\
5227 32 - Force GDB to treat saved GP registers as 32-bit\n\
5228 64 - Force GDB to treat saved GP registers as 64-bit\n\
5229 auto - Allow GDB to use the target's default setting or autodetect the\n\
5230 saved GP register size from information contained in the executable.\n\
5231 (default: auto)", "\
5232 Size of general purpose registers saved on the stack is %s.\n",
5233 NULL, NULL, &setmipscmdlist, &showmipscmdlist);
5234
5235 /* Allow the user to override the argument stack size. */
5236 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
5237 size_enums, &mips_stack_argsize_string, "\
5238 Set the amount of stack space reserved for each argument.\n", "\
5239 Show the amount of stack space reserved for each argument.\n", "\
5240 This option can be set to one of:\n\
5241 32 - Force GDB to allocate 32-bit chunks per argument\n\
5242 64 - Force GDB to allocate 64-bit chunks per argument\n\
5243 auto - Allow GDB to determine the correct setting from the current\n\
5244 target and executable (default)", "\
5245 The amount of stack space reserved for each argument is %s.\n",
5246 NULL, NULL, &setmipscmdlist, &showmipscmdlist);
5247
5248 /* Allow the user to override the ABI. */
5249 c = add_set_enum_cmd
5250 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
5251 "Set the ABI used by this program.\n"
5252 "This option can be set to one of:\n"
5253 " auto - the default ABI associated with the current binary\n"
5254 " o32\n"
5255 " o64\n" " n32\n" " n64\n" " eabi32\n" " eabi64", &setmipscmdlist);
5256 set_cmd_sfunc (c, mips_abi_update);
5257 add_cmd ("abi", class_obscure, show_mips_abi,
5258 "Show ABI in use by MIPS target", &showmipscmdlist);
5259
5260 /* Let the user turn off floating point and set the fence post for
5261 heuristic_proc_start. */
5262
5263 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5264 "Set use of MIPS floating-point coprocessor.",
5265 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5266 add_cmd ("single", class_support, set_mipsfpu_single_command,
5267 "Select single-precision MIPS floating-point coprocessor.",
5268 &mipsfpulist);
5269 add_cmd ("double", class_support, set_mipsfpu_double_command,
5270 "Select double-precision MIPS floating-point coprocessor.",
5271 &mipsfpulist);
5272 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5273 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5274 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5275 add_cmd ("none", class_support, set_mipsfpu_none_command,
5276 "Select no MIPS floating-point coprocessor.", &mipsfpulist);
5277 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5278 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5279 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5280 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5281 "Select MIPS floating-point coprocessor automatically.",
5282 &mipsfpulist);
5283 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5284 "Show current use of MIPS floating-point coprocessor target.",
5285 &showlist);
5286
5287 /* We really would like to have both "0" and "unlimited" work, but
5288 command.c doesn't deal with that. So make it a var_zinteger
5289 because the user can always use "999999" or some such for unlimited. */
5290 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5291 &heuristic_fence_post, "\
5292 Set the distance searched for the start of a function.\n", "\
5293 Show the distance searched for the start of a function.\n", "\
5294 If you are debugging a stripped executable, GDB needs to search through the\n\
5295 program for the start of a function. This command sets the distance of the\n\
5296 search. The only need to set it is when debugging a stripped executable.", "\
5297 The distance searched for the start of a function is %s.\n",
5298 reinit_frame_cache_sfunc, NULL,
5299 &setlist, &showlist);
5300
5301 /* Allow the user to control whether the upper bits of 64-bit
5302 addresses should be zeroed. */
5303 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
5304 Set zeroing of upper 32 bits of 64-bit addresses.", "\
5305 Show zeroing of upper 32 bits of 64-bit addresses.", "\
5306 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5307 allow GDB to determine the correct value.\n", "\
5308 Zerroing of upper 32 bits of 64-bit address is %s.",
5309 NULL, show_mask_address, &setmipscmdlist, &showmipscmdlist);
5310
5311 /* Allow the user to control the size of 32 bit registers within the
5312 raw remote packet. */
5313 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5314 &mips64_transfers_32bit_regs_p, "\
5315 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities.", "\
5316 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities.", "\
5317 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5318 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5319 64 bits for others. Use \"off\" to disable compatibility mode", "\
5320 Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s.",
5321 set_mips64_transfers_32bit_regs, NULL, &setlist, &showlist);
5322
5323 /* Debug this files internals. */
5324 add_setshow_zinteger_cmd ("mips", class_maintenance,
5325 &mips_debug, "\
5326 Set mips debugging.\n", "\
5327 Show mips debugging.\n", "\
5328 When non-zero, mips specific debugging is enabled.\n", "\
5329 Mips debugging is currently %s.\n",
5330 NULL, NULL,
5331 &setdebuglist, &showdebuglist);
5332 }
This page took 0.150527 seconds and 4 git commands to generate.