*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "value.h"
33 #include "gdbcmd.h"
34 #include "language.h"
35 #include "gdbcore.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "gdbtypes.h"
39 #include "target.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "osabi.h"
43 #include "mips-tdep.h"
44 #include "block.h"
45 #include "reggroups.h"
46 #include "opcode/mips.h"
47 #include "elf/mips.h"
48 #include "elf-bfd.h"
49 #include "symcat.h"
50 #include "sim-regno.h"
51 #include "dis-asm.h"
52
53 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
54 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
55
56 /* A useful bit in the CP0 status register (PS_REGNUM). */
57 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
58 #define ST0_FR (1 << 26)
59
60 /* The sizes of floating point registers. */
61
62 enum
63 {
64 MIPS_FPU_SINGLE_REGSIZE = 4,
65 MIPS_FPU_DOUBLE_REGSIZE = 8
66 };
67
68
69 static const char *mips_abi_string;
70
71 static const char *mips_abi_strings[] = {
72 "auto",
73 "n32",
74 "o32",
75 "n64",
76 "o64",
77 "eabi32",
78 "eabi64",
79 NULL
80 };
81
82 struct frame_extra_info
83 {
84 mips_extra_func_info_t proc_desc;
85 int num_args;
86 };
87
88 /* Various MIPS ISA options (related to stack analysis) can be
89 overridden dynamically. Establish an enum/array for managing
90 them. */
91
92 static const char size_auto[] = "auto";
93 static const char size_32[] = "32";
94 static const char size_64[] = "64";
95
96 static const char *size_enums[] = {
97 size_auto,
98 size_32,
99 size_64,
100 0
101 };
102
103 /* Some MIPS boards don't support floating point while others only
104 support single-precision floating-point operations. See also
105 FP_REGISTER_DOUBLE. */
106
107 enum mips_fpu_type
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
113
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116 #endif
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
119
120 static int mips_debug = 0;
121
122 /* MIPS specific per-architecture information */
123 struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int mips_default_saved_regsize;
135 int mips_fp_register_double;
136 int mips_default_stack_argsize;
137 int default_mask_address_p;
138 /* Is the target using 64-bit raw integer registers but only
139 storing a left-aligned 32-bit value in each? */
140 int mips64_transfers_32bit_regs_p;
141 /* Indexes for various registers. IRIX and embedded have
142 different values. This contains the "public" fields. Don't
143 add any that do not need to be public. */
144 const struct mips_regnum *regnum;
145 /* Register names table for the current register set. */
146 const char **mips_processor_reg_names;
147 };
148
149 const struct mips_regnum *
150 mips_regnum (struct gdbarch *gdbarch)
151 {
152 return gdbarch_tdep (gdbarch)->regnum;
153 }
154
155 static int
156 mips_fpa0_regnum (struct gdbarch *gdbarch)
157 {
158 return mips_regnum (gdbarch)->fp0 + 12;
159 }
160
161 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
162 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
163
164 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
165
166 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
167
168 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
169
170 /* Return the currently configured (or set) saved register size. */
171
172 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
173
174 static const char *mips_saved_regsize_string = size_auto;
175
176 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
177
178 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
179 functions to test, set, or clear bit 0 of addresses. */
180
181 static CORE_ADDR
182 is_mips16_addr (CORE_ADDR addr)
183 {
184 return ((addr) & 1);
185 }
186
187 static CORE_ADDR
188 make_mips16_addr (CORE_ADDR addr)
189 {
190 return ((addr) | 1);
191 }
192
193 static CORE_ADDR
194 unmake_mips16_addr (CORE_ADDR addr)
195 {
196 return ((addr) & ~1);
197 }
198
199 /* Return the contents of register REGNUM as a signed integer. */
200
201 static LONGEST
202 read_signed_register (int regnum)
203 {
204 void *buf = alloca (register_size (current_gdbarch, regnum));
205 deprecated_read_register_gen (regnum, buf);
206 return (extract_signed_integer (buf, register_size (current_gdbarch, regnum)));
207 }
208
209 static LONGEST
210 read_signed_register_pid (int regnum, ptid_t ptid)
211 {
212 ptid_t save_ptid;
213 LONGEST retval;
214
215 if (ptid_equal (ptid, inferior_ptid))
216 return read_signed_register (regnum);
217
218 save_ptid = inferior_ptid;
219
220 inferior_ptid = ptid;
221
222 retval = read_signed_register (regnum);
223
224 inferior_ptid = save_ptid;
225
226 return retval;
227 }
228
229 /* Return the MIPS ABI associated with GDBARCH. */
230 enum mips_abi
231 mips_abi (struct gdbarch *gdbarch)
232 {
233 return gdbarch_tdep (gdbarch)->mips_abi;
234 }
235
236 int
237 mips_regsize (struct gdbarch *gdbarch)
238 {
239 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
240 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
241 }
242
243 static unsigned int
244 mips_saved_regsize (void)
245 {
246 if (mips_saved_regsize_string == size_auto)
247 return MIPS_DEFAULT_SAVED_REGSIZE;
248 else if (mips_saved_regsize_string == size_64)
249 return 8;
250 else /* if (mips_saved_regsize_string == size_32) */
251 return 4;
252 }
253
254 /* Functions for setting and testing a bit in a minimal symbol that
255 marks it as 16-bit function. The MSB of the minimal symbol's
256 "info" field is used for this purpose.
257
258 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
259 i.e. refers to a 16-bit function, and sets a "special" bit in a
260 minimal symbol to mark it as a 16-bit function
261
262 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
263
264 static void
265 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
266 {
267 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
268 {
269 MSYMBOL_INFO (msym) = (char *)
270 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
271 SYMBOL_VALUE_ADDRESS (msym) |= 1;
272 }
273 }
274
275 static int
276 msymbol_is_special (struct minimal_symbol *msym)
277 {
278 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
279 }
280
281 /* XFER a value from the big/little/left end of the register.
282 Depending on the size of the value it might occupy the entire
283 register or just part of it. Make an allowance for this, aligning
284 things accordingly. */
285
286 static void
287 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
288 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
289 int buf_offset)
290 {
291 bfd_byte reg[MAX_REGISTER_SIZE];
292 int reg_offset = 0;
293 gdb_assert (reg_num >= NUM_REGS);
294 /* Need to transfer the left or right part of the register, based on
295 the targets byte order. */
296 switch (endian)
297 {
298 case BFD_ENDIAN_BIG:
299 reg_offset = register_size (current_gdbarch, reg_num) - length;
300 break;
301 case BFD_ENDIAN_LITTLE:
302 reg_offset = 0;
303 break;
304 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
305 reg_offset = 0;
306 break;
307 default:
308 internal_error (__FILE__, __LINE__, "bad switch");
309 }
310 if (mips_debug)
311 fprintf_unfiltered (gdb_stderr,
312 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
313 reg_num, reg_offset, buf_offset, length);
314 if (mips_debug && out != NULL)
315 {
316 int i;
317 fprintf_unfiltered (gdb_stdlog, "out ");
318 for (i = 0; i < length; i++)
319 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
320 }
321 if (in != NULL)
322 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
323 if (out != NULL)
324 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
325 if (mips_debug && in != NULL)
326 {
327 int i;
328 fprintf_unfiltered (gdb_stdlog, "in ");
329 for (i = 0; i < length; i++)
330 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
331 }
332 if (mips_debug)
333 fprintf_unfiltered (gdb_stdlog, "\n");
334 }
335
336 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
337 compatiblity mode. A return value of 1 means that we have
338 physical 64-bit registers, but should treat them as 32-bit registers. */
339
340 static int
341 mips2_fp_compat (void)
342 {
343 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
344 meaningful. */
345 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 4)
346 return 0;
347
348 #if 0
349 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
350 in all the places we deal with FP registers. PR gdb/413. */
351 /* Otherwise check the FR bit in the status register - it controls
352 the FP compatiblity mode. If it is clear we are in compatibility
353 mode. */
354 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
355 return 1;
356 #endif
357
358 return 0;
359 }
360
361 /* Indicate that the ABI makes use of double-precision registers
362 provided by the FPU (rather than combining pairs of registers to
363 form double-precision values). See also MIPS_FPU_TYPE. */
364 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
365
366 /* The amount of space reserved on the stack for registers. This is
367 different to MIPS_SAVED_REGSIZE as it determines the alignment of
368 data allocated after the registers have run out. */
369
370 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
371
372 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
373
374 static const char *mips_stack_argsize_string = size_auto;
375
376 static unsigned int
377 mips_stack_argsize (void)
378 {
379 if (mips_stack_argsize_string == size_auto)
380 return MIPS_DEFAULT_STACK_ARGSIZE;
381 else if (mips_stack_argsize_string == size_64)
382 return 8;
383 else /* if (mips_stack_argsize_string == size_32) */
384 return 4;
385 }
386
387 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
388
389 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
390
391 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
392 struct frame_info *, int);
393
394 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
395
396 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
397
398 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
399
400 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
401 struct frame_info *next_frame,
402 int cur_frame);
403
404 static CORE_ADDR after_prologue (CORE_ADDR pc,
405 mips_extra_func_info_t proc_desc);
406
407 static struct type *mips_float_register_type (void);
408 static struct type *mips_double_register_type (void);
409
410 /* The list of available "set mips " and "show mips " commands */
411
412 static struct cmd_list_element *setmipscmdlist = NULL;
413 static struct cmd_list_element *showmipscmdlist = NULL;
414
415 /* Integer registers 0 thru 31 are handled explicitly by
416 mips_register_name(). Processor specific registers 32 and above
417 are listed in the followign tables. */
418
419 enum { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
420
421 /* Generic MIPS. */
422
423 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
424 "sr", "lo", "hi", "bad", "cause","pc",
425 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
426 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
427 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
428 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
429 "fsr", "fir", ""/*"fp"*/, "",
430 "", "", "", "", "", "", "", "",
431 "", "", "", "", "", "", "", "",
432 };
433
434 /* Names of IDT R3041 registers. */
435
436 static const char *mips_r3041_reg_names[] = {
437 "sr", "lo", "hi", "bad", "cause","pc",
438 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
439 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
440 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
441 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
442 "fsr", "fir", "",/*"fp"*/ "",
443 "", "", "bus", "ccfg", "", "", "", "",
444 "", "", "port", "cmp", "", "", "epc", "prid",
445 };
446
447 /* Names of tx39 registers. */
448
449 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
450 "sr", "lo", "hi", "bad", "cause","pc",
451 "", "", "", "", "", "", "", "",
452 "", "", "", "", "", "", "", "",
453 "", "", "", "", "", "", "", "",
454 "", "", "", "", "", "", "", "",
455 "", "", "", "",
456 "", "", "", "", "", "", "", "",
457 "", "", "config", "cache", "debug", "depc", "epc", ""
458 };
459
460 /* Names of IRIX registers. */
461 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
462 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
463 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
464 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
465 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
466 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
467 };
468
469
470 /* Return the name of the register corresponding to REGNO. */
471 static const char *
472 mips_register_name (int regno)
473 {
474 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
475 /* GPR names for all ABIs other than n32/n64. */
476 static char *mips_gpr_names[] = {
477 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
478 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
479 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
480 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
481 };
482
483 /* GPR names for n32 and n64 ABIs. */
484 static char *mips_n32_n64_gpr_names[] = {
485 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
486 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
487 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
488 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
489 };
490
491 enum mips_abi abi = mips_abi (current_gdbarch);
492
493 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
494 don't make the raw register names visible. */
495 int rawnum = regno % NUM_REGS;
496 if (regno < NUM_REGS)
497 return "";
498
499 /* The MIPS integer registers are always mapped from 0 to 31. The
500 names of the registers (which reflects the conventions regarding
501 register use) vary depending on the ABI. */
502 if (0 <= rawnum && rawnum < 32)
503 {
504 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
505 return mips_n32_n64_gpr_names[rawnum];
506 else
507 return mips_gpr_names[rawnum];
508 }
509 else if (32 <= rawnum && rawnum < NUM_REGS)
510 {
511 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
512 return tdep->mips_processor_reg_names[rawnum - 32];
513 }
514 else
515 internal_error (__FILE__, __LINE__,
516 "mips_register_name: bad register number %d", rawnum);
517 }
518
519 /* Return the groups that a MIPS register can be categorised into. */
520
521 static int
522 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
523 struct reggroup *reggroup)
524 {
525 int vector_p;
526 int float_p;
527 int raw_p;
528 int rawnum = regnum % NUM_REGS;
529 int pseudo = regnum / NUM_REGS;
530 if (reggroup == all_reggroup)
531 return pseudo;
532 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
533 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
534 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
535 (gdbarch), as not all architectures are multi-arch. */
536 raw_p = rawnum < NUM_REGS;
537 if (REGISTER_NAME (regnum) == NULL
538 || REGISTER_NAME (regnum)[0] == '\0')
539 return 0;
540 if (reggroup == float_reggroup)
541 return float_p && pseudo;
542 if (reggroup == vector_reggroup)
543 return vector_p && pseudo;
544 if (reggroup == general_reggroup)
545 return (!vector_p && !float_p) && pseudo;
546 /* Save the pseudo registers. Need to make certain that any code
547 extracting register values from a saved register cache also uses
548 pseudo registers. */
549 if (reggroup == save_reggroup)
550 return raw_p && pseudo;
551 /* Restore the same pseudo register. */
552 if (reggroup == restore_reggroup)
553 return raw_p && pseudo;
554 return 0;
555 }
556
557 /* Map the symbol table registers which live in the range [1 *
558 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
559 registers. Take care of alignment and size problems. */
560
561 static void
562 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
563 int cookednum, void *buf)
564 {
565 int rawnum = cookednum % NUM_REGS;
566 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
567 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
568 return regcache_raw_read (regcache, rawnum, buf);
569 else if (register_size (gdbarch, rawnum) > register_size (gdbarch, cookednum))
570 {
571 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
572 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
573 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
574 else
575 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
576 }
577 else
578 internal_error (__FILE__, __LINE__, "bad register size");
579 }
580
581 static void
582 mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
583 int cookednum, const void *buf)
584 {
585 int rawnum = cookednum % NUM_REGS;
586 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
587 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
588 return regcache_raw_write (regcache, rawnum, buf);
589 else if (register_size (gdbarch, rawnum) > register_size (gdbarch, cookednum))
590 {
591 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
592 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
593 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
594 else
595 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
596 }
597 else
598 internal_error (__FILE__, __LINE__, "bad register size");
599 }
600
601 /* Table to translate MIPS16 register field to actual register number. */
602 static int mips16_to_32_reg[8] =
603 {16, 17, 2, 3, 4, 5, 6, 7};
604
605 /* Heuristic_proc_start may hunt through the text section for a long
606 time across a 2400 baud serial line. Allows the user to limit this
607 search. */
608
609 static unsigned int heuristic_fence_post = 0;
610
611 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
612 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
613 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
614 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
615 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
616 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
617 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
618 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
619 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
620 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
621 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
622 this will corrupt pdr.iline. Fortunately we don't use it. */
623 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
624 #define _PROC_MAGIC_ 0x0F0F0F0F
625 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
626 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
627
628 struct linked_proc_info
629 {
630 struct mips_extra_func_info info;
631 struct linked_proc_info *next;
632 }
633 *linked_proc_desc_table = NULL;
634
635 /* Number of bytes of storage in the actual machine representation for
636 register N. NOTE: This defines the pseudo register type so need to
637 rebuild the architecture vector. */
638
639 static int mips64_transfers_32bit_regs_p = 0;
640
641 static void
642 set_mips64_transfers_32bit_regs (char *args, int from_tty,
643 struct cmd_list_element *c)
644 {
645 struct gdbarch_info info;
646 gdbarch_info_init (&info);
647 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
648 instead of relying on globals. Doing that would let generic code
649 handle the search for this specific architecture. */
650 if (!gdbarch_update_p (info))
651 {
652 mips64_transfers_32bit_regs_p = 0;
653 error ("32-bit compatibility mode not supported");
654 }
655 }
656
657 /* Convert to/from a register and the corresponding memory value. */
658
659 static int
660 mips_convert_register_p (int regnum, struct type *type)
661 {
662 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
663 && register_size (current_gdbarch, regnum) == 4
664 && (regnum) >= mips_regnum (current_gdbarch)->fp0 && (regnum) < mips_regnum (current_gdbarch)->fp0 + 32
665 && TYPE_CODE(type) == TYPE_CODE_FLT
666 && TYPE_LENGTH(type) == 8);
667 }
668
669 static void
670 mips_register_to_value (struct frame_info *frame, int regnum,
671 struct type *type, void *to)
672 {
673 get_frame_register (frame, regnum + 0, (char *) to + 4);
674 get_frame_register (frame, regnum + 1, (char *) to + 0);
675 }
676
677 static void
678 mips_value_to_register (struct frame_info *frame, int regnum,
679 struct type *type, const void *from)
680 {
681 put_frame_register (frame, regnum + 0, (const char *) from + 4);
682 put_frame_register (frame, regnum + 1, (const char *) from + 0);
683 }
684
685 /* Return the GDB type object for the "standard" data type of data in
686 register REG. */
687
688 static struct type *
689 mips_register_type (struct gdbarch *gdbarch, int regnum)
690 {
691 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
692 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
693 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
694 {
695 /* The floating-point registers raw, or cooked, always match
696 mips_regsize(), and also map 1:1, byte for byte. */
697 switch (gdbarch_byte_order (gdbarch))
698 {
699 case BFD_ENDIAN_BIG:
700 if (mips_regsize (gdbarch) == 4)
701 return builtin_type_ieee_single_big;
702 else
703 return builtin_type_ieee_double_big;
704 case BFD_ENDIAN_LITTLE:
705 if (mips_regsize (gdbarch) == 4)
706 return builtin_type_ieee_single_little;
707 else
708 return builtin_type_ieee_double_little;
709 case BFD_ENDIAN_UNKNOWN:
710 default:
711 internal_error (__FILE__, __LINE__, "bad switch");
712 }
713 }
714 else if (regnum >= (NUM_REGS + mips_regnum (current_gdbarch)->fp_control_status)
715 && regnum <= NUM_REGS + LAST_EMBED_REGNUM)
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32;
719 else if (regnum >= NUM_REGS && mips_regsize (gdbarch)
720 && gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
721 /* The target, while using a 64-bit register buffer, is only
722 transfering 32-bits of each integer register. Reflect this in
723 the cooked/pseudo register value. */
724 return builtin_type_int32;
725 else if (mips_regsize (gdbarch) == 8)
726 /* 64-bit ISA. */
727 return builtin_type_int64;
728 else
729 /* 32-bit ISA. */
730 return builtin_type_int32;
731 }
732
733 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
734
735 static CORE_ADDR
736 mips_read_sp (void)
737 {
738 return read_signed_register (SP_REGNUM);
739 }
740
741 /* Should the upper word of 64-bit addresses be zeroed? */
742 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
743
744 static int
745 mips_mask_address_p (void)
746 {
747 switch (mask_address_var)
748 {
749 case AUTO_BOOLEAN_TRUE:
750 return 1;
751 case AUTO_BOOLEAN_FALSE:
752 return 0;
753 break;
754 case AUTO_BOOLEAN_AUTO:
755 return MIPS_DEFAULT_MASK_ADDRESS_P;
756 default:
757 internal_error (__FILE__, __LINE__,
758 "mips_mask_address_p: bad switch");
759 return -1;
760 }
761 }
762
763 static void
764 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
765 {
766 switch (mask_address_var)
767 {
768 case AUTO_BOOLEAN_TRUE:
769 printf_filtered ("The 32 bit mips address mask is enabled\n");
770 break;
771 case AUTO_BOOLEAN_FALSE:
772 printf_filtered ("The 32 bit mips address mask is disabled\n");
773 break;
774 case AUTO_BOOLEAN_AUTO:
775 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
776 mips_mask_address_p () ? "enabled" : "disabled");
777 break;
778 default:
779 internal_error (__FILE__, __LINE__,
780 "show_mask_address: bad switch");
781 break;
782 }
783 }
784
785 /* Should call_function allocate stack space for a struct return? */
786
787 static int
788 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
789 {
790 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
791 }
792
793 /* Should call_function pass struct by reference?
794 For each architecture, structs are passed either by
795 value or by reference, depending on their size. */
796
797 static int
798 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
799 {
800 enum type_code typecode = TYPE_CODE (check_typedef (type));
801 int len = TYPE_LENGTH (check_typedef (type));
802
803 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
804 return (len > MIPS_SAVED_REGSIZE);
805
806 return 0;
807 }
808
809 static int
810 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
811 {
812 return 0; /* Assumption: N32/N64 never passes struct by ref. */
813 }
814
815 static int
816 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
817 {
818 return 0; /* Assumption: O32/O64 never passes struct by ref. */
819 }
820
821 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
822
823 static int
824 pc_is_mips16 (bfd_vma memaddr)
825 {
826 struct minimal_symbol *sym;
827
828 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
829 if (is_mips16_addr (memaddr))
830 return 1;
831
832 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
833 the high bit of the info field. Use this to decide if the function is
834 MIPS16 or normal MIPS. */
835 sym = lookup_minimal_symbol_by_pc (memaddr);
836 if (sym)
837 return msymbol_is_special (sym);
838 else
839 return 0;
840 }
841
842 /* MIPS believes that the PC has a sign extended value. Perhaphs the
843 all registers should be sign extended for simplicity? */
844
845 static CORE_ADDR
846 mips_read_pc (ptid_t ptid)
847 {
848 return read_signed_register_pid (PC_REGNUM, ptid);
849 }
850
851 /* This returns the PC of the first inst after the prologue. If we can't
852 find the prologue, then return 0. */
853
854 static CORE_ADDR
855 after_prologue (CORE_ADDR pc,
856 mips_extra_func_info_t proc_desc)
857 {
858 struct symtab_and_line sal;
859 CORE_ADDR func_addr, func_end;
860
861 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
862 to read the stack pointer from the current machine state, because
863 the current machine state has nothing to do with the information
864 we need from the proc_desc; and the process may or may not exist
865 right now. */
866 if (!proc_desc)
867 proc_desc = find_proc_desc (pc, NULL, 0);
868
869 if (proc_desc)
870 {
871 /* If function is frameless, then we need to do it the hard way. I
872 strongly suspect that frameless always means prologueless... */
873 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
874 && PROC_FRAME_OFFSET (proc_desc) == 0)
875 return 0;
876 }
877
878 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
879 return 0; /* Unknown */
880
881 sal = find_pc_line (func_addr, 0);
882
883 if (sal.end < func_end)
884 return sal.end;
885
886 /* The line after the prologue is after the end of the function. In this
887 case, tell the caller to find the prologue the hard way. */
888
889 return 0;
890 }
891
892 /* Decode a MIPS32 instruction that saves a register in the stack, and
893 set the appropriate bit in the general register mask or float register mask
894 to indicate which register is saved. This is a helper function
895 for mips_find_saved_regs. */
896
897 static void
898 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
899 unsigned long *float_mask)
900 {
901 int reg;
902
903 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
904 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
905 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
906 {
907 /* It might be possible to use the instruction to
908 find the offset, rather than the code below which
909 is based on things being in a certain order in the
910 frame, but figuring out what the instruction's offset
911 is relative to might be a little tricky. */
912 reg = (inst & 0x001f0000) >> 16;
913 *gen_mask |= (1 << reg);
914 }
915 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
916 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
917 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
918
919 {
920 reg = ((inst & 0x001f0000) >> 16);
921 *float_mask |= (1 << reg);
922 }
923 }
924
925 /* Decode a MIPS16 instruction that saves a register in the stack, and
926 set the appropriate bit in the general register or float register mask
927 to indicate which register is saved. This is a helper function
928 for mips_find_saved_regs. */
929
930 static void
931 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
932 {
933 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
934 {
935 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
936 *gen_mask |= (1 << reg);
937 }
938 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
939 {
940 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
941 *gen_mask |= (1 << reg);
942 }
943 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
944 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
945 *gen_mask |= (1 << RA_REGNUM);
946 }
947
948
949 /* Fetch and return instruction from the specified location. If the PC
950 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
951
952 static t_inst
953 mips_fetch_instruction (CORE_ADDR addr)
954 {
955 char buf[MIPS_INSTLEN];
956 int instlen;
957 int status;
958
959 if (pc_is_mips16 (addr))
960 {
961 instlen = MIPS16_INSTLEN;
962 addr = unmake_mips16_addr (addr);
963 }
964 else
965 instlen = MIPS_INSTLEN;
966 status = read_memory_nobpt (addr, buf, instlen);
967 if (status)
968 memory_error (status, addr);
969 return extract_unsigned_integer (buf, instlen);
970 }
971
972
973 /* These the fields of 32 bit mips instructions */
974 #define mips32_op(x) (x >> 26)
975 #define itype_op(x) (x >> 26)
976 #define itype_rs(x) ((x >> 21) & 0x1f)
977 #define itype_rt(x) ((x >> 16) & 0x1f)
978 #define itype_immediate(x) (x & 0xffff)
979
980 #define jtype_op(x) (x >> 26)
981 #define jtype_target(x) (x & 0x03ffffff)
982
983 #define rtype_op(x) (x >> 26)
984 #define rtype_rs(x) ((x >> 21) & 0x1f)
985 #define rtype_rt(x) ((x >> 16) & 0x1f)
986 #define rtype_rd(x) ((x >> 11) & 0x1f)
987 #define rtype_shamt(x) ((x >> 6) & 0x1f)
988 #define rtype_funct(x) (x & 0x3f)
989
990 static CORE_ADDR
991 mips32_relative_offset (unsigned long inst)
992 {
993 long x;
994 x = itype_immediate (inst);
995 if (x & 0x8000) /* sign bit set */
996 {
997 x |= 0xffff0000; /* sign extension */
998 }
999 x = x << 2;
1000 return x;
1001 }
1002
1003 /* Determine whate to set a single step breakpoint while considering
1004 branch prediction */
1005 static CORE_ADDR
1006 mips32_next_pc (CORE_ADDR pc)
1007 {
1008 unsigned long inst;
1009 int op;
1010 inst = mips_fetch_instruction (pc);
1011 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1012 {
1013 if (itype_op (inst) >> 2 == 5)
1014 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1015 {
1016 op = (itype_op (inst) & 0x03);
1017 switch (op)
1018 {
1019 case 0: /* BEQL */
1020 goto equal_branch;
1021 case 1: /* BNEL */
1022 goto neq_branch;
1023 case 2: /* BLEZL */
1024 goto less_branch;
1025 case 3: /* BGTZ */
1026 goto greater_branch;
1027 default:
1028 pc += 4;
1029 }
1030 }
1031 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1032 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1033 {
1034 int tf = itype_rt (inst) & 0x01;
1035 int cnum = itype_rt (inst) >> 2;
1036 int fcrcs = read_signed_register (mips_regnum (current_gdbarch)->fp_control_status);
1037 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1038
1039 if (((cond >> cnum) & 0x01) == tf)
1040 pc += mips32_relative_offset (inst) + 4;
1041 else
1042 pc += 8;
1043 }
1044 else
1045 pc += 4; /* Not a branch, next instruction is easy */
1046 }
1047 else
1048 { /* This gets way messy */
1049
1050 /* Further subdivide into SPECIAL, REGIMM and other */
1051 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1052 {
1053 case 0: /* SPECIAL */
1054 op = rtype_funct (inst);
1055 switch (op)
1056 {
1057 case 8: /* JR */
1058 case 9: /* JALR */
1059 /* Set PC to that address */
1060 pc = read_signed_register (rtype_rs (inst));
1061 break;
1062 default:
1063 pc += 4;
1064 }
1065
1066 break; /* end SPECIAL */
1067 case 1: /* REGIMM */
1068 {
1069 op = itype_rt (inst); /* branch condition */
1070 switch (op)
1071 {
1072 case 0: /* BLTZ */
1073 case 2: /* BLTZL */
1074 case 16: /* BLTZAL */
1075 case 18: /* BLTZALL */
1076 less_branch:
1077 if (read_signed_register (itype_rs (inst)) < 0)
1078 pc += mips32_relative_offset (inst) + 4;
1079 else
1080 pc += 8; /* after the delay slot */
1081 break;
1082 case 1: /* BGEZ */
1083 case 3: /* BGEZL */
1084 case 17: /* BGEZAL */
1085 case 19: /* BGEZALL */
1086 greater_equal_branch:
1087 if (read_signed_register (itype_rs (inst)) >= 0)
1088 pc += mips32_relative_offset (inst) + 4;
1089 else
1090 pc += 8; /* after the delay slot */
1091 break;
1092 /* All of the other instructions in the REGIMM category */
1093 default:
1094 pc += 4;
1095 }
1096 }
1097 break; /* end REGIMM */
1098 case 2: /* J */
1099 case 3: /* JAL */
1100 {
1101 unsigned long reg;
1102 reg = jtype_target (inst) << 2;
1103 /* Upper four bits get never changed... */
1104 pc = reg + ((pc + 4) & 0xf0000000);
1105 }
1106 break;
1107 /* FIXME case JALX : */
1108 {
1109 unsigned long reg;
1110 reg = jtype_target (inst) << 2;
1111 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1112 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1113 }
1114 break; /* The new PC will be alternate mode */
1115 case 4: /* BEQ, BEQL */
1116 equal_branch:
1117 if (read_signed_register (itype_rs (inst)) ==
1118 read_signed_register (itype_rt (inst)))
1119 pc += mips32_relative_offset (inst) + 4;
1120 else
1121 pc += 8;
1122 break;
1123 case 5: /* BNE, BNEL */
1124 neq_branch:
1125 if (read_signed_register (itype_rs (inst)) !=
1126 read_signed_register (itype_rt (inst)))
1127 pc += mips32_relative_offset (inst) + 4;
1128 else
1129 pc += 8;
1130 break;
1131 case 6: /* BLEZ, BLEZL */
1132 less_zero_branch:
1133 if (read_signed_register (itype_rs (inst) <= 0))
1134 pc += mips32_relative_offset (inst) + 4;
1135 else
1136 pc += 8;
1137 break;
1138 case 7:
1139 default:
1140 greater_branch: /* BGTZ, BGTZL */
1141 if (read_signed_register (itype_rs (inst) > 0))
1142 pc += mips32_relative_offset (inst) + 4;
1143 else
1144 pc += 8;
1145 break;
1146 } /* switch */
1147 } /* else */
1148 return pc;
1149 } /* mips32_next_pc */
1150
1151 /* Decoding the next place to set a breakpoint is irregular for the
1152 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1153 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1154 We dont want to set a single step instruction on the extend instruction
1155 either.
1156 */
1157
1158 /* Lots of mips16 instruction formats */
1159 /* Predicting jumps requires itype,ritype,i8type
1160 and their extensions extItype,extritype,extI8type
1161 */
1162 enum mips16_inst_fmts
1163 {
1164 itype, /* 0 immediate 5,10 */
1165 ritype, /* 1 5,3,8 */
1166 rrtype, /* 2 5,3,3,5 */
1167 rritype, /* 3 5,3,3,5 */
1168 rrrtype, /* 4 5,3,3,3,2 */
1169 rriatype, /* 5 5,3,3,1,4 */
1170 shifttype, /* 6 5,3,3,3,2 */
1171 i8type, /* 7 5,3,8 */
1172 i8movtype, /* 8 5,3,3,5 */
1173 i8mov32rtype, /* 9 5,3,5,3 */
1174 i64type, /* 10 5,3,8 */
1175 ri64type, /* 11 5,3,3,5 */
1176 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1177 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1178 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1179 extRRItype, /* 15 5,5,5,5,3,3,5 */
1180 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1181 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1182 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1183 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1184 extRi64type, /* 20 5,6,5,5,3,3,5 */
1185 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1186 };
1187 /* I am heaping all the fields of the formats into one structure and
1188 then, only the fields which are involved in instruction extension */
1189 struct upk_mips16
1190 {
1191 CORE_ADDR offset;
1192 unsigned int regx; /* Function in i8 type */
1193 unsigned int regy;
1194 };
1195
1196
1197 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1198 for the bits which make up the immediatate extension. */
1199
1200 static CORE_ADDR
1201 extended_offset (unsigned int extension)
1202 {
1203 CORE_ADDR value;
1204 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1205 value = value << 6;
1206 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1207 value = value << 5;
1208 value |= extension & 0x01f; /* extract 4:0 */
1209 return value;
1210 }
1211
1212 /* Only call this function if you know that this is an extendable
1213 instruction, It wont malfunction, but why make excess remote memory references?
1214 If the immediate operands get sign extended or somthing, do it after
1215 the extension is performed.
1216 */
1217 /* FIXME: Every one of these cases needs to worry about sign extension
1218 when the offset is to be used in relative addressing */
1219
1220
1221 static unsigned int
1222 fetch_mips_16 (CORE_ADDR pc)
1223 {
1224 char buf[8];
1225 pc &= 0xfffffffe; /* clear the low order bit */
1226 target_read_memory (pc, buf, 2);
1227 return extract_unsigned_integer (buf, 2);
1228 }
1229
1230 static void
1231 unpack_mips16 (CORE_ADDR pc,
1232 unsigned int extension,
1233 unsigned int inst,
1234 enum mips16_inst_fmts insn_format,
1235 struct upk_mips16 *upk)
1236 {
1237 CORE_ADDR offset;
1238 int regx;
1239 int regy;
1240 switch (insn_format)
1241 {
1242 case itype:
1243 {
1244 CORE_ADDR value;
1245 if (extension)
1246 {
1247 value = extended_offset (extension);
1248 value = value << 11; /* rom for the original value */
1249 value |= inst & 0x7ff; /* eleven bits from instruction */
1250 }
1251 else
1252 {
1253 value = inst & 0x7ff;
1254 /* FIXME : Consider sign extension */
1255 }
1256 offset = value;
1257 regx = -1;
1258 regy = -1;
1259 }
1260 break;
1261 case ritype:
1262 case i8type:
1263 { /* A register identifier and an offset */
1264 /* Most of the fields are the same as I type but the
1265 immediate value is of a different length */
1266 CORE_ADDR value;
1267 if (extension)
1268 {
1269 value = extended_offset (extension);
1270 value = value << 8; /* from the original instruction */
1271 value |= inst & 0xff; /* eleven bits from instruction */
1272 regx = (extension >> 8) & 0x07; /* or i8 funct */
1273 if (value & 0x4000) /* test the sign bit , bit 26 */
1274 {
1275 value &= ~0x3fff; /* remove the sign bit */
1276 value = -value;
1277 }
1278 }
1279 else
1280 {
1281 value = inst & 0xff; /* 8 bits */
1282 regx = (inst >> 8) & 0x07; /* or i8 funct */
1283 /* FIXME: Do sign extension , this format needs it */
1284 if (value & 0x80) /* THIS CONFUSES ME */
1285 {
1286 value &= 0xef; /* remove the sign bit */
1287 value = -value;
1288 }
1289 }
1290 offset = value;
1291 regy = -1;
1292 break;
1293 }
1294 case jalxtype:
1295 {
1296 unsigned long value;
1297 unsigned int nexthalf;
1298 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1299 value = value << 16;
1300 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1301 value |= nexthalf;
1302 offset = value;
1303 regx = -1;
1304 regy = -1;
1305 break;
1306 }
1307 default:
1308 internal_error (__FILE__, __LINE__,
1309 "bad switch");
1310 }
1311 upk->offset = offset;
1312 upk->regx = regx;
1313 upk->regy = regy;
1314 }
1315
1316
1317 static CORE_ADDR
1318 add_offset_16 (CORE_ADDR pc, int offset)
1319 {
1320 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1321 }
1322
1323 static CORE_ADDR
1324 extended_mips16_next_pc (CORE_ADDR pc,
1325 unsigned int extension,
1326 unsigned int insn)
1327 {
1328 int op = (insn >> 11);
1329 switch (op)
1330 {
1331 case 2: /* Branch */
1332 {
1333 CORE_ADDR offset;
1334 struct upk_mips16 upk;
1335 unpack_mips16 (pc, extension, insn, itype, &upk);
1336 offset = upk.offset;
1337 if (offset & 0x800)
1338 {
1339 offset &= 0xeff;
1340 offset = -offset;
1341 }
1342 pc += (offset << 1) + 2;
1343 break;
1344 }
1345 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1346 {
1347 struct upk_mips16 upk;
1348 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1349 pc = add_offset_16 (pc, upk.offset);
1350 if ((insn >> 10) & 0x01) /* Exchange mode */
1351 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1352 else
1353 pc |= 0x01;
1354 break;
1355 }
1356 case 4: /* beqz */
1357 {
1358 struct upk_mips16 upk;
1359 int reg;
1360 unpack_mips16 (pc, extension, insn, ritype, &upk);
1361 reg = read_signed_register (upk.regx);
1362 if (reg == 0)
1363 pc += (upk.offset << 1) + 2;
1364 else
1365 pc += 2;
1366 break;
1367 }
1368 case 5: /* bnez */
1369 {
1370 struct upk_mips16 upk;
1371 int reg;
1372 unpack_mips16 (pc, extension, insn, ritype, &upk);
1373 reg = read_signed_register (upk.regx);
1374 if (reg != 0)
1375 pc += (upk.offset << 1) + 2;
1376 else
1377 pc += 2;
1378 break;
1379 }
1380 case 12: /* I8 Formats btez btnez */
1381 {
1382 struct upk_mips16 upk;
1383 int reg;
1384 unpack_mips16 (pc, extension, insn, i8type, &upk);
1385 /* upk.regx contains the opcode */
1386 reg = read_signed_register (24); /* Test register is 24 */
1387 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1388 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1389 /* pc = add_offset_16(pc,upk.offset) ; */
1390 pc += (upk.offset << 1) + 2;
1391 else
1392 pc += 2;
1393 break;
1394 }
1395 case 29: /* RR Formats JR, JALR, JALR-RA */
1396 {
1397 struct upk_mips16 upk;
1398 /* upk.fmt = rrtype; */
1399 op = insn & 0x1f;
1400 if (op == 0)
1401 {
1402 int reg;
1403 upk.regx = (insn >> 8) & 0x07;
1404 upk.regy = (insn >> 5) & 0x07;
1405 switch (upk.regy)
1406 {
1407 case 0:
1408 reg = upk.regx;
1409 break;
1410 case 1:
1411 reg = 31;
1412 break; /* Function return instruction */
1413 case 2:
1414 reg = upk.regx;
1415 break;
1416 default:
1417 reg = 31;
1418 break; /* BOGUS Guess */
1419 }
1420 pc = read_signed_register (reg);
1421 }
1422 else
1423 pc += 2;
1424 break;
1425 }
1426 case 30:
1427 /* This is an instruction extension. Fetch the real instruction
1428 (which follows the extension) and decode things based on
1429 that. */
1430 {
1431 pc += 2;
1432 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1433 break;
1434 }
1435 default:
1436 {
1437 pc += 2;
1438 break;
1439 }
1440 }
1441 return pc;
1442 }
1443
1444 static CORE_ADDR
1445 mips16_next_pc (CORE_ADDR pc)
1446 {
1447 unsigned int insn = fetch_mips_16 (pc);
1448 return extended_mips16_next_pc (pc, 0, insn);
1449 }
1450
1451 /* The mips_next_pc function supports single_step when the remote
1452 target monitor or stub is not developed enough to do a single_step.
1453 It works by decoding the current instruction and predicting where a
1454 branch will go. This isnt hard because all the data is available.
1455 The MIPS32 and MIPS16 variants are quite different */
1456 CORE_ADDR
1457 mips_next_pc (CORE_ADDR pc)
1458 {
1459 if (pc & 0x01)
1460 return mips16_next_pc (pc);
1461 else
1462 return mips32_next_pc (pc);
1463 }
1464
1465 /* Set up the 'saved_regs' array. This is a data structure containing
1466 the addresses on the stack where each register has been saved, for
1467 each stack frame. Registers that have not been saved will have
1468 zero here. The stack pointer register is special: rather than the
1469 address where the stack register has been saved,
1470 saved_regs[SP_REGNUM] will have the actual value of the previous
1471 frame's stack register. */
1472
1473 static void
1474 mips_find_saved_regs (struct frame_info *fci)
1475 {
1476 int ireg;
1477 /* r0 bit means kernel trap */
1478 int kernel_trap;
1479 /* What registers have been saved? Bitmasks. */
1480 unsigned long gen_mask, float_mask;
1481 mips_extra_func_info_t proc_desc;
1482 t_inst inst;
1483 CORE_ADDR *saved_regs;
1484
1485 if (deprecated_get_frame_saved_regs (fci) != NULL)
1486 return;
1487 saved_regs = frame_saved_regs_zalloc (fci);
1488
1489 /* If it is the frame for sigtramp, the saved registers are located
1490 in a sigcontext structure somewhere on the stack. If the stack
1491 layout for sigtramp changes we might have to change these
1492 constants and the companion fixup_sigtramp in mdebugread.c */
1493 #ifndef SIGFRAME_BASE
1494 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1495 above the sigtramp frame. */
1496 #define SIGFRAME_BASE mips_regsize (current_gdbarch)
1497 /* FIXME! Are these correct?? */
1498 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * mips_regsize (current_gdbarch))
1499 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * mips_regsize (current_gdbarch))
1500 #define SIGFRAME_FPREGSAVE_OFF \
1501 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * mips_regsize (current_gdbarch) + 3 * mips_regsize (current_gdbarch))
1502 #endif
1503 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1504 {
1505 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1506 {
1507 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1508 + ireg * mips_regsize (current_gdbarch));
1509 set_reg_offset (saved_regs, ireg, reg_position);
1510 }
1511 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1512 {
1513 CORE_ADDR reg_position = (get_frame_base (fci)
1514 + SIGFRAME_FPREGSAVE_OFF
1515 + ireg * mips_regsize (current_gdbarch));
1516 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
1517 }
1518
1519 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1520 /* SP_REGNUM, contains the value and not the address. */
1521 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1522 return;
1523 }
1524
1525 proc_desc = get_frame_extra_info (fci)->proc_desc;
1526 if (proc_desc == NULL)
1527 /* I'm not sure how/whether this can happen. Normally when we
1528 can't find a proc_desc, we "synthesize" one using
1529 heuristic_proc_desc and set the saved_regs right away. */
1530 return;
1531
1532 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1533 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1534 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1535
1536 if (/* In any frame other than the innermost or a frame interrupted
1537 by a signal, we assume that all registers have been saved.
1538 This assumes that all register saves in a function happen
1539 before the first function call. */
1540 (get_next_frame (fci) == NULL
1541 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1542
1543 /* In a dummy frame we know exactly where things are saved. */
1544 && !PROC_DESC_IS_DUMMY (proc_desc)
1545
1546 /* Don't bother unless we are inside a function prologue.
1547 Outside the prologue, we know where everything is. */
1548
1549 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1550
1551 /* Not sure exactly what kernel_trap means, but if it means the
1552 kernel saves the registers without a prologue doing it, we
1553 better not examine the prologue to see whether registers
1554 have been saved yet. */
1555 && !kernel_trap)
1556 {
1557 /* We need to figure out whether the registers that the
1558 proc_desc claims are saved have been saved yet. */
1559
1560 CORE_ADDR addr;
1561
1562 /* Bitmasks; set if we have found a save for the register. */
1563 unsigned long gen_save_found = 0;
1564 unsigned long float_save_found = 0;
1565 int instlen;
1566
1567 /* If the address is odd, assume this is MIPS16 code. */
1568 addr = PROC_LOW_ADDR (proc_desc);
1569 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1570
1571 /* Scan through this function's instructions preceding the
1572 current PC, and look for those that save registers. */
1573 while (addr < get_frame_pc (fci))
1574 {
1575 inst = mips_fetch_instruction (addr);
1576 if (pc_is_mips16 (addr))
1577 mips16_decode_reg_save (inst, &gen_save_found);
1578 else
1579 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1580 addr += instlen;
1581 }
1582 gen_mask = gen_save_found;
1583 float_mask = float_save_found;
1584 }
1585
1586 /* Fill in the offsets for the registers which gen_mask says were
1587 saved. */
1588 {
1589 CORE_ADDR reg_position = (get_frame_base (fci)
1590 + PROC_REG_OFFSET (proc_desc));
1591 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1592 if (gen_mask & 0x80000000)
1593 {
1594 set_reg_offset (saved_regs, ireg, reg_position);
1595 reg_position -= MIPS_SAVED_REGSIZE;
1596 }
1597 }
1598
1599 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1600 order of that normally used by gcc. Therefore, we have to fetch
1601 the first instruction of the function, and if it's an entry
1602 instruction that saves $s0 or $s1, correct their saved addresses. */
1603 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1604 {
1605 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1606 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1607 /* entry */
1608 {
1609 int reg;
1610 int sreg_count = (inst >> 6) & 3;
1611
1612 /* Check if the ra register was pushed on the stack. */
1613 CORE_ADDR reg_position = (get_frame_base (fci)
1614 + PROC_REG_OFFSET (proc_desc));
1615 if (inst & 0x20)
1616 reg_position -= MIPS_SAVED_REGSIZE;
1617
1618 /* Check if the s0 and s1 registers were pushed on the
1619 stack. */
1620 for (reg = 16; reg < sreg_count + 16; reg++)
1621 {
1622 set_reg_offset (saved_regs, reg, reg_position);
1623 reg_position -= MIPS_SAVED_REGSIZE;
1624 }
1625 }
1626 }
1627
1628 /* Fill in the offsets for the registers which float_mask says were
1629 saved. */
1630 {
1631 CORE_ADDR reg_position = (get_frame_base (fci)
1632 + PROC_FREG_OFFSET (proc_desc));
1633
1634 /* Fill in the offsets for the float registers which float_mask
1635 says were saved. */
1636 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1637 if (float_mask & 0x80000000)
1638 {
1639 if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1640 {
1641 /* On a big endian 32 bit ABI, floating point registers
1642 are paired to form doubles such that the most
1643 significant part is in $f[N+1] and the least
1644 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1645 registers are also spilled as a pair and stored as a
1646 double.
1647
1648 When little-endian the least significant part is
1649 stored first leading to the memory order $f[N] and
1650 then $f[N+1].
1651
1652 Unfortunately, when big-endian the most significant
1653 part of the double is stored first, and the least
1654 significant is stored second. This leads to the
1655 registers being ordered in memory as firt $f[N+1] and
1656 then $f[N].
1657
1658 For the big-endian case make certain that the
1659 addresses point at the correct (swapped) locations
1660 $f[N] and $f[N+1] pair (keep in mind that
1661 reg_position is decremented each time through the
1662 loop). */
1663 if ((ireg & 1))
1664 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
1665 reg_position - MIPS_SAVED_REGSIZE);
1666 else
1667 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
1668 reg_position + MIPS_SAVED_REGSIZE);
1669 }
1670 else
1671 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
1672 reg_position -= MIPS_SAVED_REGSIZE;
1673 }
1674
1675 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1676 }
1677
1678 /* SP_REGNUM, contains the value and not the address. */
1679 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1680 }
1681
1682 static CORE_ADDR
1683 read_next_frame_reg (struct frame_info *fi, int regno)
1684 {
1685 /* Always a pseudo. */
1686 gdb_assert (regno >= NUM_REGS);
1687 if (fi == NULL)
1688 {
1689 LONGEST val;
1690 regcache_cooked_read_signed (current_regcache, regno, &val);
1691 return val;
1692 }
1693 else if ((regno % NUM_REGS) == SP_REGNUM)
1694 /* The SP_REGNUM is special, its value is stored in saved_regs.
1695 In fact, it is so special that it can even only be fetched
1696 using a raw register number! Once this code as been converted
1697 to frame-unwind the problem goes away. */
1698 return frame_unwind_register_signed (fi, regno % NUM_REGS);
1699 else
1700 return frame_unwind_register_signed (fi, regno);
1701
1702 }
1703
1704 /* mips_addr_bits_remove - remove useless address bits */
1705
1706 static CORE_ADDR
1707 mips_addr_bits_remove (CORE_ADDR addr)
1708 {
1709 if (mips_mask_address_p ()
1710 && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
1711 /* This hack is a work-around for existing boards using PMON, the
1712 simulator, and any other 64-bit targets that doesn't have true
1713 64-bit addressing. On these targets, the upper 32 bits of
1714 addresses are ignored by the hardware. Thus, the PC or SP are
1715 likely to have been sign extended to all 1s by instruction
1716 sequences that load 32-bit addresses. For example, a typical
1717 piece of code that loads an address is this:
1718
1719 lui $r2, <upper 16 bits>
1720 ori $r2, <lower 16 bits>
1721
1722 But the lui sign-extends the value such that the upper 32 bits
1723 may be all 1s. The workaround is simply to mask off these
1724 bits. In the future, gcc may be changed to support true 64-bit
1725 addressing, and this masking will have to be disabled. */
1726 return addr &= 0xffffffffUL;
1727 else
1728 return addr;
1729 }
1730
1731 /* mips_software_single_step() is called just before we want to resume
1732 the inferior, if we want to single-step it but there is no hardware
1733 or kernel single-step support (MIPS on GNU/Linux for example). We find
1734 the target of the coming instruction and breakpoint it.
1735
1736 single_step is also called just after the inferior stops. If we had
1737 set up a simulated single-step, we undo our damage. */
1738
1739 void
1740 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1741 {
1742 static CORE_ADDR next_pc;
1743 typedef char binsn_quantum[BREAKPOINT_MAX];
1744 static binsn_quantum break_mem;
1745 CORE_ADDR pc;
1746
1747 if (insert_breakpoints_p)
1748 {
1749 pc = read_register (PC_REGNUM);
1750 next_pc = mips_next_pc (pc);
1751
1752 target_insert_breakpoint (next_pc, break_mem);
1753 }
1754 else
1755 target_remove_breakpoint (next_pc, break_mem);
1756 }
1757
1758 static CORE_ADDR
1759 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1760 {
1761 CORE_ADDR pc, tmp;
1762
1763 pc = ((fromleaf)
1764 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
1765 : get_next_frame (prev)
1766 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1767 : read_pc ());
1768 tmp = SKIP_TRAMPOLINE_CODE (pc);
1769 return tmp ? tmp : pc;
1770 }
1771
1772
1773 static CORE_ADDR
1774 mips_frame_saved_pc (struct frame_info *frame)
1775 {
1776 CORE_ADDR saved_pc;
1777
1778 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1779 {
1780 /* Always unwind the cooked PC register value. */
1781 saved_pc = frame_unwind_register_signed (frame, NUM_REGS + PC_REGNUM);
1782 }
1783 else
1784 {
1785 mips_extra_func_info_t proc_desc
1786 = get_frame_extra_info (frame)->proc_desc;
1787 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1788 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1789 else
1790 {
1791 /* We have to get the saved pc from the sigcontext if it is
1792 a signal handler frame. */
1793 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1794 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1795 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1796 }
1797 }
1798 return ADDR_BITS_REMOVE (saved_pc);
1799 }
1800
1801 static struct mips_extra_func_info temp_proc_desc;
1802
1803 /* This hack will go away once the get_prev_frame() code has been
1804 modified to set the frame's type first. That is BEFORE init extra
1805 frame info et.al. is called. This is because it will become
1806 possible to skip the init extra info call for sigtramp and dummy
1807 frames. */
1808 static CORE_ADDR *temp_saved_regs;
1809
1810 /* Set a register's saved stack address in temp_saved_regs. If an
1811 address has already been set for this register, do nothing; this
1812 way we will only recognize the first save of a given register in a
1813 function prologue.
1814
1815 For simplicity, save the address in both [0 .. NUM_REGS) and
1816 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1817 is used as it is only second range (the ABI instead of ISA
1818 registers) that comes into play when finding saved registers in a
1819 frame. */
1820
1821 static void
1822 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1823 {
1824 if (saved_regs[regno] == 0)
1825 {
1826 saved_regs[regno + 0 * NUM_REGS] = offset;
1827 saved_regs[regno + 1 * NUM_REGS] = offset;
1828 }
1829 }
1830
1831
1832 /* Test whether the PC points to the return instruction at the
1833 end of a function. */
1834
1835 static int
1836 mips_about_to_return (CORE_ADDR pc)
1837 {
1838 if (pc_is_mips16 (pc))
1839 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1840 generates a "jr $ra"; other times it generates code to load
1841 the return address from the stack to an accessible register (such
1842 as $a3), then a "jr" using that register. This second case
1843 is almost impossible to distinguish from an indirect jump
1844 used for switch statements, so we don't even try. */
1845 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1846 else
1847 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1848 }
1849
1850
1851 /* This fencepost looks highly suspicious to me. Removing it also
1852 seems suspicious as it could affect remote debugging across serial
1853 lines. */
1854
1855 static CORE_ADDR
1856 heuristic_proc_start (CORE_ADDR pc)
1857 {
1858 CORE_ADDR start_pc;
1859 CORE_ADDR fence;
1860 int instlen;
1861 int seen_adjsp = 0;
1862
1863 pc = ADDR_BITS_REMOVE (pc);
1864 start_pc = pc;
1865 fence = start_pc - heuristic_fence_post;
1866 if (start_pc == 0)
1867 return 0;
1868
1869 if (heuristic_fence_post == UINT_MAX
1870 || fence < VM_MIN_ADDRESS)
1871 fence = VM_MIN_ADDRESS;
1872
1873 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1874
1875 /* search back for previous return */
1876 for (start_pc -= instlen;; start_pc -= instlen)
1877 if (start_pc < fence)
1878 {
1879 /* It's not clear to me why we reach this point when
1880 stop_soon, but with this test, at least we
1881 don't print out warnings for every child forked (eg, on
1882 decstation). 22apr93 rich@cygnus.com. */
1883 if (stop_soon == NO_STOP_QUIETLY)
1884 {
1885 static int blurb_printed = 0;
1886
1887 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1888 paddr_nz (pc));
1889
1890 if (!blurb_printed)
1891 {
1892 /* This actually happens frequently in embedded
1893 development, when you first connect to a board
1894 and your stack pointer and pc are nowhere in
1895 particular. This message needs to give people
1896 in that situation enough information to
1897 determine that it's no big deal. */
1898 printf_filtered ("\n\
1899 GDB is unable to find the start of the function at 0x%s\n\
1900 and thus can't determine the size of that function's stack frame.\n\
1901 This means that GDB may be unable to access that stack frame, or\n\
1902 the frames below it.\n\
1903 This problem is most likely caused by an invalid program counter or\n\
1904 stack pointer.\n\
1905 However, if you think GDB should simply search farther back\n\
1906 from 0x%s for code which looks like the beginning of a\n\
1907 function, you can increase the range of the search using the `set\n\
1908 heuristic-fence-post' command.\n",
1909 paddr_nz (pc), paddr_nz (pc));
1910 blurb_printed = 1;
1911 }
1912 }
1913
1914 return 0;
1915 }
1916 else if (pc_is_mips16 (start_pc))
1917 {
1918 unsigned short inst;
1919
1920 /* On MIPS16, any one of the following is likely to be the
1921 start of a function:
1922 entry
1923 addiu sp,-n
1924 daddiu sp,-n
1925 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1926 inst = mips_fetch_instruction (start_pc);
1927 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1928 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1929 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1930 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1931 break;
1932 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1933 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1934 seen_adjsp = 1;
1935 else
1936 seen_adjsp = 0;
1937 }
1938 else if (mips_about_to_return (start_pc))
1939 {
1940 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1941 break;
1942 }
1943
1944 return start_pc;
1945 }
1946
1947 /* Fetch the immediate value from a MIPS16 instruction.
1948 If the previous instruction was an EXTEND, use it to extend
1949 the upper bits of the immediate value. This is a helper function
1950 for mips16_heuristic_proc_desc. */
1951
1952 static int
1953 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1954 unsigned short inst, /* current instruction */
1955 int nbits, /* number of bits in imm field */
1956 int scale, /* scale factor to be applied to imm */
1957 int is_signed) /* is the imm field signed? */
1958 {
1959 int offset;
1960
1961 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1962 {
1963 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1964 if (offset & 0x8000) /* check for negative extend */
1965 offset = 0 - (0x10000 - (offset & 0xffff));
1966 return offset | (inst & 0x1f);
1967 }
1968 else
1969 {
1970 int max_imm = 1 << nbits;
1971 int mask = max_imm - 1;
1972 int sign_bit = max_imm >> 1;
1973
1974 offset = inst & mask;
1975 if (is_signed && (offset & sign_bit))
1976 offset = 0 - (max_imm - offset);
1977 return offset * scale;
1978 }
1979 }
1980
1981
1982 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1983 stream from start_pc to limit_pc. */
1984
1985 static void
1986 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1987 struct frame_info *next_frame, CORE_ADDR sp)
1988 {
1989 CORE_ADDR cur_pc;
1990 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1991 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1992 unsigned inst = 0; /* current instruction */
1993 unsigned entry_inst = 0; /* the entry instruction */
1994 int reg, offset;
1995
1996 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1997 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1998
1999 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2000 {
2001 /* Save the previous instruction. If it's an EXTEND, we'll extract
2002 the immediate offset extension from it in mips16_get_imm. */
2003 prev_inst = inst;
2004
2005 /* Fetch and decode the instruction. */
2006 inst = (unsigned short) mips_fetch_instruction (cur_pc);
2007 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2008 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2009 {
2010 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2011 if (offset < 0) /* negative stack adjustment? */
2012 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
2013 else
2014 /* Exit loop if a positive stack adjustment is found, which
2015 usually means that the stack cleanup code in the function
2016 epilogue is reached. */
2017 break;
2018 }
2019 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2020 {
2021 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2022 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
2023 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2024 set_reg_offset (temp_saved_regs, reg, sp + offset);
2025 }
2026 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2027 {
2028 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2029 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2030 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2031 set_reg_offset (temp_saved_regs, reg, sp + offset);
2032 }
2033 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2034 {
2035 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2036 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2037 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2038 }
2039 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2040 {
2041 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2042 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2043 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2044 }
2045 else if (inst == 0x673d) /* move $s1, $sp */
2046 {
2047 frame_addr = sp;
2048 PROC_FRAME_REG (&temp_proc_desc) = 17;
2049 }
2050 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2051 {
2052 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2053 frame_addr = sp + offset;
2054 PROC_FRAME_REG (&temp_proc_desc) = 17;
2055 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2056 }
2057 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2058 {
2059 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2060 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2061 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2062 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2063 }
2064 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2065 {
2066 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2067 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2068 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2069 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2070 }
2071 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2072 entry_inst = inst; /* save for later processing */
2073 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2074 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
2075 }
2076
2077 /* The entry instruction is typically the first instruction in a function,
2078 and it stores registers at offsets relative to the value of the old SP
2079 (before the prologue). But the value of the sp parameter to this
2080 function is the new SP (after the prologue has been executed). So we
2081 can't calculate those offsets until we've seen the entire prologue,
2082 and can calculate what the old SP must have been. */
2083 if (entry_inst != 0)
2084 {
2085 int areg_count = (entry_inst >> 8) & 7;
2086 int sreg_count = (entry_inst >> 6) & 3;
2087
2088 /* The entry instruction always subtracts 32 from the SP. */
2089 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2090
2091 /* Now we can calculate what the SP must have been at the
2092 start of the function prologue. */
2093 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2094
2095 /* Check if a0-a3 were saved in the caller's argument save area. */
2096 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2097 {
2098 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2099 set_reg_offset (temp_saved_regs, reg, sp + offset);
2100 offset += MIPS_SAVED_REGSIZE;
2101 }
2102
2103 /* Check if the ra register was pushed on the stack. */
2104 offset = -4;
2105 if (entry_inst & 0x20)
2106 {
2107 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2108 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2109 offset -= MIPS_SAVED_REGSIZE;
2110 }
2111
2112 /* Check if the s0 and s1 registers were pushed on the stack. */
2113 for (reg = 16; reg < sreg_count + 16; reg++)
2114 {
2115 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2116 set_reg_offset (temp_saved_regs, reg, sp + offset);
2117 offset -= MIPS_SAVED_REGSIZE;
2118 }
2119 }
2120 }
2121
2122 static void
2123 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2124 struct frame_info *next_frame, CORE_ADDR sp)
2125 {
2126 CORE_ADDR cur_pc;
2127 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2128 restart:
2129 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2130 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2131 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2132 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2133 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2134 {
2135 unsigned long inst, high_word, low_word;
2136 int reg;
2137
2138 /* Fetch the instruction. */
2139 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2140
2141 /* Save some code by pre-extracting some useful fields. */
2142 high_word = (inst >> 16) & 0xffff;
2143 low_word = inst & 0xffff;
2144 reg = high_word & 0x1f;
2145
2146 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2147 || high_word == 0x23bd /* addi $sp,$sp,-i */
2148 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2149 {
2150 if (low_word & 0x8000) /* negative stack adjustment? */
2151 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2152 else
2153 /* Exit loop if a positive stack adjustment is found, which
2154 usually means that the stack cleanup code in the function
2155 epilogue is reached. */
2156 break;
2157 }
2158 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2159 {
2160 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2161 set_reg_offset (temp_saved_regs, reg, sp + low_word);
2162 }
2163 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2164 {
2165 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2166 but the register size used is only 32 bits. Make the address
2167 for the saved register point to the lower 32 bits. */
2168 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2169 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - mips_regsize (current_gdbarch));
2170 }
2171 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2172 {
2173 /* Old gcc frame, r30 is virtual frame pointer. */
2174 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2175 frame_addr = sp + low_word;
2176 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2177 {
2178 unsigned alloca_adjust;
2179 PROC_FRAME_REG (&temp_proc_desc) = 30;
2180 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2181 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2182 if (alloca_adjust > 0)
2183 {
2184 /* FP > SP + frame_size. This may be because
2185 * of an alloca or somethings similar.
2186 * Fix sp to "pre-alloca" value, and try again.
2187 */
2188 sp += alloca_adjust;
2189 goto restart;
2190 }
2191 }
2192 }
2193 /* move $30,$sp. With different versions of gas this will be either
2194 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2195 Accept any one of these. */
2196 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2197 {
2198 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2199 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2200 {
2201 unsigned alloca_adjust;
2202 PROC_FRAME_REG (&temp_proc_desc) = 30;
2203 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2204 alloca_adjust = (unsigned) (frame_addr - sp);
2205 if (alloca_adjust > 0)
2206 {
2207 /* FP > SP + frame_size. This may be because
2208 * of an alloca or somethings similar.
2209 * Fix sp to "pre-alloca" value, and try again.
2210 */
2211 sp += alloca_adjust;
2212 goto restart;
2213 }
2214 }
2215 }
2216 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2217 {
2218 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2219 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2220 }
2221 }
2222 }
2223
2224 static mips_extra_func_info_t
2225 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2226 struct frame_info *next_frame, int cur_frame)
2227 {
2228 CORE_ADDR sp;
2229
2230 if (cur_frame)
2231 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
2232 else
2233 sp = 0;
2234
2235 if (start_pc == 0)
2236 return NULL;
2237 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2238 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2239 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2240 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2241 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2242 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2243
2244 if (start_pc + 200 < limit_pc)
2245 limit_pc = start_pc + 200;
2246 if (pc_is_mips16 (start_pc))
2247 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2248 else
2249 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2250 return &temp_proc_desc;
2251 }
2252
2253 struct mips_objfile_private
2254 {
2255 bfd_size_type size;
2256 char *contents;
2257 };
2258
2259 /* Global used to communicate between non_heuristic_proc_desc and
2260 compare_pdr_entries within qsort (). */
2261 static bfd *the_bfd;
2262
2263 static int
2264 compare_pdr_entries (const void *a, const void *b)
2265 {
2266 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2267 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2268
2269 if (lhs < rhs)
2270 return -1;
2271 else if (lhs == rhs)
2272 return 0;
2273 else
2274 return 1;
2275 }
2276
2277 static mips_extra_func_info_t
2278 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2279 {
2280 CORE_ADDR startaddr;
2281 mips_extra_func_info_t proc_desc;
2282 struct block *b = block_for_pc (pc);
2283 struct symbol *sym;
2284 struct obj_section *sec;
2285 struct mips_objfile_private *priv;
2286
2287 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2288 return NULL;
2289
2290 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2291 if (addrptr)
2292 *addrptr = startaddr;
2293
2294 priv = NULL;
2295
2296 sec = find_pc_section (pc);
2297 if (sec != NULL)
2298 {
2299 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2300
2301 /* Search the ".pdr" section generated by GAS. This includes most of
2302 the information normally found in ECOFF PDRs. */
2303
2304 the_bfd = sec->objfile->obfd;
2305 if (priv == NULL
2306 && (the_bfd->format == bfd_object
2307 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2308 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2309 {
2310 /* Right now GAS only outputs the address as a four-byte sequence.
2311 This means that we should not bother with this method on 64-bit
2312 targets (until that is fixed). */
2313
2314 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2315 sizeof (struct mips_objfile_private));
2316 priv->size = 0;
2317 sec->objfile->obj_private = priv;
2318 }
2319 else if (priv == NULL)
2320 {
2321 asection *bfdsec;
2322
2323 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2324 sizeof (struct mips_objfile_private));
2325
2326 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2327 if (bfdsec != NULL)
2328 {
2329 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2330 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2331 priv->size);
2332 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2333 priv->contents, 0, priv->size);
2334
2335 /* In general, the .pdr section is sorted. However, in the
2336 presence of multiple code sections (and other corner cases)
2337 it can become unsorted. Sort it so that we can use a faster
2338 binary search. */
2339 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2340 }
2341 else
2342 priv->size = 0;
2343
2344 sec->objfile->obj_private = priv;
2345 }
2346 the_bfd = NULL;
2347
2348 if (priv->size != 0)
2349 {
2350 int low, mid, high;
2351 char *ptr;
2352
2353 low = 0;
2354 high = priv->size / 32;
2355
2356 do
2357 {
2358 CORE_ADDR pdr_pc;
2359
2360 mid = (low + high) / 2;
2361
2362 ptr = priv->contents + mid * 32;
2363 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2364 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2365 SECT_OFF_TEXT (sec->objfile));
2366 if (pdr_pc == startaddr)
2367 break;
2368 if (pdr_pc > startaddr)
2369 high = mid;
2370 else
2371 low = mid + 1;
2372 }
2373 while (low != high);
2374
2375 if (low != high)
2376 {
2377 struct symbol *sym = find_pc_function (pc);
2378
2379 /* Fill in what we need of the proc_desc. */
2380 proc_desc = (mips_extra_func_info_t)
2381 obstack_alloc (&sec->objfile->psymbol_obstack,
2382 sizeof (struct mips_extra_func_info));
2383 PROC_LOW_ADDR (proc_desc) = startaddr;
2384
2385 /* Only used for dummy frames. */
2386 PROC_HIGH_ADDR (proc_desc) = 0;
2387
2388 PROC_FRAME_OFFSET (proc_desc)
2389 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2390 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2391 ptr + 24);
2392 PROC_FRAME_ADJUST (proc_desc) = 0;
2393 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2394 ptr + 4);
2395 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2396 ptr + 12);
2397 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2398 ptr + 8);
2399 PROC_FREG_OFFSET (proc_desc)
2400 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2401 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2402 ptr + 28);
2403 proc_desc->pdr.isym = (long) sym;
2404
2405 return proc_desc;
2406 }
2407 }
2408 }
2409
2410 if (b == NULL)
2411 return NULL;
2412
2413 if (startaddr > BLOCK_START (b))
2414 {
2415 /* This is the "pathological" case referred to in a comment in
2416 print_frame_info. It might be better to move this check into
2417 symbol reading. */
2418 return NULL;
2419 }
2420
2421 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2422
2423 /* If we never found a PDR for this function in symbol reading, then
2424 examine prologues to find the information. */
2425 if (sym)
2426 {
2427 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2428 if (PROC_FRAME_REG (proc_desc) == -1)
2429 return NULL;
2430 else
2431 return proc_desc;
2432 }
2433 else
2434 return NULL;
2435 }
2436
2437
2438 static mips_extra_func_info_t
2439 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2440 {
2441 mips_extra_func_info_t proc_desc;
2442 CORE_ADDR startaddr = 0;
2443
2444 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2445
2446 if (proc_desc)
2447 {
2448 /* IF this is the topmost frame AND
2449 * (this proc does not have debugging information OR
2450 * the PC is in the procedure prologue)
2451 * THEN create a "heuristic" proc_desc (by analyzing
2452 * the actual code) to replace the "official" proc_desc.
2453 */
2454 if (next_frame == NULL)
2455 {
2456 struct symtab_and_line val;
2457 struct symbol *proc_symbol =
2458 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2459
2460 if (proc_symbol)
2461 {
2462 val = find_pc_line (BLOCK_START
2463 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2464 0);
2465 val.pc = val.end ? val.end : pc;
2466 }
2467 if (!proc_symbol || pc < val.pc)
2468 {
2469 mips_extra_func_info_t found_heuristic =
2470 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2471 pc, next_frame, cur_frame);
2472 if (found_heuristic)
2473 proc_desc = found_heuristic;
2474 }
2475 }
2476 }
2477 else
2478 {
2479 /* Is linked_proc_desc_table really necessary? It only seems to be used
2480 by procedure call dummys. However, the procedures being called ought
2481 to have their own proc_descs, and even if they don't,
2482 heuristic_proc_desc knows how to create them! */
2483
2484 struct linked_proc_info *link;
2485
2486 for (link = linked_proc_desc_table; link; link = link->next)
2487 if (PROC_LOW_ADDR (&link->info) <= pc
2488 && PROC_HIGH_ADDR (&link->info) > pc)
2489 return &link->info;
2490
2491 if (startaddr == 0)
2492 startaddr = heuristic_proc_start (pc);
2493
2494 proc_desc =
2495 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2496 }
2497 return proc_desc;
2498 }
2499
2500 static CORE_ADDR
2501 get_frame_pointer (struct frame_info *frame,
2502 mips_extra_func_info_t proc_desc)
2503 {
2504 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
2505 + PROC_FRAME_OFFSET (proc_desc)
2506 - PROC_FRAME_ADJUST (proc_desc));
2507 }
2508
2509 static mips_extra_func_info_t cached_proc_desc;
2510
2511 static CORE_ADDR
2512 mips_frame_chain (struct frame_info *frame)
2513 {
2514 mips_extra_func_info_t proc_desc;
2515 CORE_ADDR tmp;
2516 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2517
2518 /* Check if the PC is inside a call stub. If it is, fetch the
2519 PC of the caller of that stub. */
2520 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2521 saved_pc = tmp;
2522
2523 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2524 {
2525 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2526 is well, frame->frame the bottom of the current frame will
2527 contain that value. */
2528 return get_frame_base (frame);
2529 }
2530
2531 /* Look up the procedure descriptor for this PC. */
2532 proc_desc = find_proc_desc (saved_pc, frame, 1);
2533 if (!proc_desc)
2534 return 0;
2535
2536 cached_proc_desc = proc_desc;
2537
2538 /* If no frame pointer and frame size is zero, we must be at end
2539 of stack (or otherwise hosed). If we don't check frame size,
2540 we loop forever if we see a zero size frame. */
2541 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2542 && PROC_FRAME_OFFSET (proc_desc) == 0
2543 /* The previous frame from a sigtramp frame might be frameless
2544 and have frame size zero. */
2545 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2546 /* For a generic dummy frame, let get_frame_pointer() unwind a
2547 register value saved as part of the dummy frame call. */
2548 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2549 return 0;
2550 else
2551 return get_frame_pointer (frame, proc_desc);
2552 }
2553
2554 static void
2555 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2556 {
2557 int regnum;
2558 mips_extra_func_info_t proc_desc;
2559
2560 if (get_frame_type (fci) == DUMMY_FRAME)
2561 return;
2562
2563 /* Use proc_desc calculated in frame_chain. When there is no
2564 next frame, i.e, get_next_frame (fci) == NULL, we call
2565 find_proc_desc () to calculate it, passing an explicit
2566 NULL as the frame parameter. */
2567 proc_desc =
2568 get_next_frame (fci)
2569 ? cached_proc_desc
2570 : find_proc_desc (get_frame_pc (fci),
2571 NULL /* i.e, get_next_frame (fci) */,
2572 1);
2573
2574 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2575
2576 get_frame_extra_info (fci)->proc_desc =
2577 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2578 if (proc_desc)
2579 {
2580 /* Fixup frame-pointer - only needed for top frame */
2581 /* This may not be quite right, if proc has a real frame register.
2582 Get the value of the frame relative sp, procedure might have been
2583 interrupted by a signal at it's very start. */
2584 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2585 && !PROC_DESC_IS_DUMMY (proc_desc))
2586 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
2587 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2588 /* Do not ``fix'' fci->frame. It will have the value of the
2589 generic dummy frame's top-of-stack (since the draft
2590 fci->frame is obtained by returning the unwound stack
2591 pointer) and that is what we want. That way the fci->frame
2592 value will match the top-of-stack value that was saved as
2593 part of the dummy frames data. */
2594 /* Do nothing. */;
2595 else
2596 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2597
2598 if (proc_desc == &temp_proc_desc)
2599 {
2600 char *name;
2601
2602 /* Do not set the saved registers for a sigtramp frame,
2603 mips_find_saved_registers will do that for us. We can't
2604 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2605 yet set. */
2606 /* FIXME: cagney/2002-11-18: This problem will go away once
2607 frame.c:get_prev_frame() is modified to set the frame's
2608 type before calling functions like this. */
2609 find_pc_partial_function (get_frame_pc (fci), &name,
2610 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2611 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2612 {
2613 frame_saved_regs_zalloc (fci);
2614 /* Set value of previous frame's stack pointer.
2615 Remember that saved_regs[SP_REGNUM] is special in
2616 that it contains the value of the stack pointer
2617 register. The other saved_regs values are addresses
2618 (in the inferior) at which a given register's value
2619 may be found. */
2620 set_reg_offset (temp_saved_regs, SP_REGNUM,
2621 get_frame_base (fci));
2622 set_reg_offset (temp_saved_regs, PC_REGNUM,
2623 temp_saved_regs[RA_REGNUM]);
2624 memcpy (deprecated_get_frame_saved_regs (fci), temp_saved_regs,
2625 SIZEOF_FRAME_SAVED_REGS);
2626 }
2627 }
2628
2629 /* hack: if argument regs are saved, guess these contain args */
2630 /* assume we can't tell how many args for now */
2631 get_frame_extra_info (fci)->num_args = -1;
2632 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2633 {
2634 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2635 {
2636 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2637 break;
2638 }
2639 }
2640 }
2641 }
2642
2643 /* MIPS stack frames are almost impenetrable. When execution stops,
2644 we basically have to look at symbol information for the function
2645 that we stopped in, which tells us *which* register (if any) is
2646 the base of the frame pointer, and what offset from that register
2647 the frame itself is at.
2648
2649 This presents a problem when trying to examine a stack in memory
2650 (that isn't executing at the moment), using the "frame" command. We
2651 don't have a PC, nor do we have any registers except SP.
2652
2653 This routine takes two arguments, SP and PC, and tries to make the
2654 cached frames look as if these two arguments defined a frame on the
2655 cache. This allows the rest of info frame to extract the important
2656 arguments without difficulty. */
2657
2658 struct frame_info *
2659 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2660 {
2661 if (argc != 2)
2662 error ("MIPS frame specifications require two arguments: sp and pc");
2663
2664 return create_new_frame (argv[0], argv[1]);
2665 }
2666
2667 /* According to the current ABI, should the type be passed in a
2668 floating-point register (assuming that there is space)? When there
2669 is no FPU, FP are not even considered as possibile candidates for
2670 FP registers and, consequently this returns false - forces FP
2671 arguments into integer registers. */
2672
2673 static int
2674 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2675 {
2676 return ((typecode == TYPE_CODE_FLT
2677 || (MIPS_EABI
2678 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2679 && TYPE_NFIELDS (arg_type) == 1
2680 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2681 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2682 }
2683
2684 /* On o32, argument passing in GPRs depends on the alignment of the type being
2685 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2686
2687 static int
2688 mips_type_needs_double_align (struct type *type)
2689 {
2690 enum type_code typecode = TYPE_CODE (type);
2691
2692 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2693 return 1;
2694 else if (typecode == TYPE_CODE_STRUCT)
2695 {
2696 if (TYPE_NFIELDS (type) < 1)
2697 return 0;
2698 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2699 }
2700 else if (typecode == TYPE_CODE_UNION)
2701 {
2702 int i, n;
2703
2704 n = TYPE_NFIELDS (type);
2705 for (i = 0; i < n; i++)
2706 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2707 return 1;
2708 return 0;
2709 }
2710 return 0;
2711 }
2712
2713 /* Adjust the address downward (direction of stack growth) so that it
2714 is correctly aligned for a new stack frame. */
2715 static CORE_ADDR
2716 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2717 {
2718 return align_down (addr, 16);
2719 }
2720
2721 static CORE_ADDR
2722 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2723 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2724 struct value **args, CORE_ADDR sp, int struct_return,
2725 CORE_ADDR struct_addr)
2726 {
2727 int argreg;
2728 int float_argreg;
2729 int argnum;
2730 int len = 0;
2731 int stack_offset = 0;
2732
2733 /* For shared libraries, "t9" needs to point at the function
2734 address. */
2735 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2736
2737 /* Set the return address register to point to the entry point of
2738 the program, where a breakpoint lies in wait. */
2739 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2740
2741 /* First ensure that the stack and structure return address (if any)
2742 are properly aligned. The stack has to be at least 64-bit
2743 aligned even on 32-bit machines, because doubles must be 64-bit
2744 aligned. For n32 and n64, stack frames need to be 128-bit
2745 aligned, so we round to this widest known alignment. */
2746
2747 sp = align_down (sp, 16);
2748 struct_addr = align_down (struct_addr, 16);
2749
2750 /* Now make space on the stack for the args. We allocate more
2751 than necessary for EABI, because the first few arguments are
2752 passed in registers, but that's OK. */
2753 for (argnum = 0; argnum < nargs; argnum++)
2754 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2755 MIPS_STACK_ARGSIZE);
2756 sp -= align_up (len, 16);
2757
2758 if (mips_debug)
2759 fprintf_unfiltered (gdb_stdlog,
2760 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2761 paddr_nz (sp), (long) align_up (len, 16));
2762
2763 /* Initialize the integer and float register pointers. */
2764 argreg = A0_REGNUM;
2765 float_argreg = mips_fpa0_regnum (current_gdbarch);
2766
2767 /* The struct_return pointer occupies the first parameter-passing reg. */
2768 if (struct_return)
2769 {
2770 if (mips_debug)
2771 fprintf_unfiltered (gdb_stdlog,
2772 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2773 argreg, paddr_nz (struct_addr));
2774 write_register (argreg++, struct_addr);
2775 }
2776
2777 /* Now load as many as possible of the first arguments into
2778 registers, and push the rest onto the stack. Loop thru args
2779 from first to last. */
2780 for (argnum = 0; argnum < nargs; argnum++)
2781 {
2782 char *val;
2783 char valbuf[MAX_REGISTER_SIZE];
2784 struct value *arg = args[argnum];
2785 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2786 int len = TYPE_LENGTH (arg_type);
2787 enum type_code typecode = TYPE_CODE (arg_type);
2788
2789 if (mips_debug)
2790 fprintf_unfiltered (gdb_stdlog,
2791 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2792 argnum + 1, len, (int) typecode);
2793
2794 /* The EABI passes structures that do not fit in a register by
2795 reference. */
2796 if (len > MIPS_SAVED_REGSIZE
2797 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2798 {
2799 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2800 typecode = TYPE_CODE_PTR;
2801 len = MIPS_SAVED_REGSIZE;
2802 val = valbuf;
2803 if (mips_debug)
2804 fprintf_unfiltered (gdb_stdlog, " push");
2805 }
2806 else
2807 val = (char *) VALUE_CONTENTS (arg);
2808
2809 /* 32-bit ABIs always start floating point arguments in an
2810 even-numbered floating point register. Round the FP register
2811 up before the check to see if there are any FP registers
2812 left. Non MIPS_EABI targets also pass the FP in the integer
2813 registers so also round up normal registers. */
2814 if (!FP_REGISTER_DOUBLE
2815 && fp_register_arg_p (typecode, arg_type))
2816 {
2817 if ((float_argreg & 1))
2818 float_argreg++;
2819 }
2820
2821 /* Floating point arguments passed in registers have to be
2822 treated specially. On 32-bit architectures, doubles
2823 are passed in register pairs; the even register gets
2824 the low word, and the odd register gets the high word.
2825 On non-EABI processors, the first two floating point arguments are
2826 also copied to general registers, because MIPS16 functions
2827 don't use float registers for arguments. This duplication of
2828 arguments in general registers can't hurt non-MIPS16 functions
2829 because those registers are normally skipped. */
2830 /* MIPS_EABI squeezes a struct that contains a single floating
2831 point value into an FP register instead of pushing it onto the
2832 stack. */
2833 if (fp_register_arg_p (typecode, arg_type)
2834 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2835 {
2836 if (!FP_REGISTER_DOUBLE && len == 8)
2837 {
2838 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2839 unsigned long regval;
2840
2841 /* Write the low word of the double to the even register(s). */
2842 regval = extract_unsigned_integer (val + low_offset, 4);
2843 if (mips_debug)
2844 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2845 float_argreg, phex (regval, 4));
2846 write_register (float_argreg++, regval);
2847
2848 /* Write the high word of the double to the odd register(s). */
2849 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2850 if (mips_debug)
2851 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2852 float_argreg, phex (regval, 4));
2853 write_register (float_argreg++, regval);
2854 }
2855 else
2856 {
2857 /* This is a floating point value that fits entirely
2858 in a single register. */
2859 /* On 32 bit ABI's the float_argreg is further adjusted
2860 above to ensure that it is even register aligned. */
2861 LONGEST regval = extract_unsigned_integer (val, len);
2862 if (mips_debug)
2863 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2864 float_argreg, phex (regval, len));
2865 write_register (float_argreg++, regval);
2866 }
2867 }
2868 else
2869 {
2870 /* Copy the argument to general registers or the stack in
2871 register-sized pieces. Large arguments are split between
2872 registers and stack. */
2873 /* Note: structs whose size is not a multiple of
2874 mips_regsize() are treated specially: Irix cc passes them
2875 in registers where gcc sometimes puts them on the stack.
2876 For maximum compatibility, we will put them in both
2877 places. */
2878 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2879 (len % MIPS_SAVED_REGSIZE != 0));
2880
2881 /* Note: Floating-point values that didn't fit into an FP
2882 register are only written to memory. */
2883 while (len > 0)
2884 {
2885 /* Remember if the argument was written to the stack. */
2886 int stack_used_p = 0;
2887 int partial_len =
2888 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2889
2890 if (mips_debug)
2891 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2892 partial_len);
2893
2894 /* Write this portion of the argument to the stack. */
2895 if (argreg > MIPS_LAST_ARG_REGNUM
2896 || odd_sized_struct
2897 || fp_register_arg_p (typecode, arg_type))
2898 {
2899 /* Should shorter than int integer values be
2900 promoted to int before being stored? */
2901 int longword_offset = 0;
2902 CORE_ADDR addr;
2903 stack_used_p = 1;
2904 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2905 {
2906 if (MIPS_STACK_ARGSIZE == 8 &&
2907 (typecode == TYPE_CODE_INT ||
2908 typecode == TYPE_CODE_PTR ||
2909 typecode == TYPE_CODE_FLT) && len <= 4)
2910 longword_offset = MIPS_STACK_ARGSIZE - len;
2911 else if ((typecode == TYPE_CODE_STRUCT ||
2912 typecode == TYPE_CODE_UNION) &&
2913 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2914 longword_offset = MIPS_STACK_ARGSIZE - len;
2915 }
2916
2917 if (mips_debug)
2918 {
2919 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2920 paddr_nz (stack_offset));
2921 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2922 paddr_nz (longword_offset));
2923 }
2924
2925 addr = sp + stack_offset + longword_offset;
2926
2927 if (mips_debug)
2928 {
2929 int i;
2930 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2931 paddr_nz (addr));
2932 for (i = 0; i < partial_len; i++)
2933 {
2934 fprintf_unfiltered (gdb_stdlog, "%02x",
2935 val[i] & 0xff);
2936 }
2937 }
2938 write_memory (addr, val, partial_len);
2939 }
2940
2941 /* Note!!! This is NOT an else clause. Odd sized
2942 structs may go thru BOTH paths. Floating point
2943 arguments will not. */
2944 /* Write this portion of the argument to a general
2945 purpose register. */
2946 if (argreg <= MIPS_LAST_ARG_REGNUM
2947 && !fp_register_arg_p (typecode, arg_type))
2948 {
2949 LONGEST regval = extract_unsigned_integer (val, partial_len);
2950
2951 if (mips_debug)
2952 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2953 argreg,
2954 phex (regval, MIPS_SAVED_REGSIZE));
2955 write_register (argreg, regval);
2956 argreg++;
2957 }
2958
2959 len -= partial_len;
2960 val += partial_len;
2961
2962 /* Compute the the offset into the stack at which we
2963 will copy the next parameter.
2964
2965 In the new EABI (and the NABI32), the stack_offset
2966 only needs to be adjusted when it has been used. */
2967
2968 if (stack_used_p)
2969 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
2970 }
2971 }
2972 if (mips_debug)
2973 fprintf_unfiltered (gdb_stdlog, "\n");
2974 }
2975
2976 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
2977
2978 /* Return adjusted stack pointer. */
2979 return sp;
2980 }
2981
2982 /* N32/N64 version of push_dummy_call. */
2983
2984 static CORE_ADDR
2985 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2986 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2987 struct value **args, CORE_ADDR sp, int struct_return,
2988 CORE_ADDR struct_addr)
2989 {
2990 int argreg;
2991 int float_argreg;
2992 int argnum;
2993 int len = 0;
2994 int stack_offset = 0;
2995
2996 /* For shared libraries, "t9" needs to point at the function
2997 address. */
2998 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2999
3000 /* Set the return address register to point to the entry point of
3001 the program, where a breakpoint lies in wait. */
3002 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3003
3004 /* First ensure that the stack and structure return address (if any)
3005 are properly aligned. The stack has to be at least 64-bit
3006 aligned even on 32-bit machines, because doubles must be 64-bit
3007 aligned. For n32 and n64, stack frames need to be 128-bit
3008 aligned, so we round to this widest known alignment. */
3009
3010 sp = align_down (sp, 16);
3011 struct_addr = align_down (struct_addr, 16);
3012
3013 /* Now make space on the stack for the args. */
3014 for (argnum = 0; argnum < nargs; argnum++)
3015 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3016 MIPS_STACK_ARGSIZE);
3017 sp -= align_up (len, 16);
3018
3019 if (mips_debug)
3020 fprintf_unfiltered (gdb_stdlog,
3021 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
3022 paddr_nz (sp), (long) align_up (len, 16));
3023
3024 /* Initialize the integer and float register pointers. */
3025 argreg = A0_REGNUM;
3026 float_argreg = mips_fpa0_regnum (current_gdbarch);
3027
3028 /* The struct_return pointer occupies the first parameter-passing reg. */
3029 if (struct_return)
3030 {
3031 if (mips_debug)
3032 fprintf_unfiltered (gdb_stdlog,
3033 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3034 argreg, paddr_nz (struct_addr));
3035 write_register (argreg++, struct_addr);
3036 }
3037
3038 /* Now load as many as possible of the first arguments into
3039 registers, and push the rest onto the stack. Loop thru args
3040 from first to last. */
3041 for (argnum = 0; argnum < nargs; argnum++)
3042 {
3043 char *val;
3044 char valbuf[MAX_REGISTER_SIZE];
3045 struct value *arg = args[argnum];
3046 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3047 int len = TYPE_LENGTH (arg_type);
3048 enum type_code typecode = TYPE_CODE (arg_type);
3049
3050 if (mips_debug)
3051 fprintf_unfiltered (gdb_stdlog,
3052 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3053 argnum + 1, len, (int) typecode);
3054
3055 val = (char *) VALUE_CONTENTS (arg);
3056
3057 if (fp_register_arg_p (typecode, arg_type)
3058 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3059 {
3060 /* This is a floating point value that fits entirely
3061 in a single register. */
3062 /* On 32 bit ABI's the float_argreg is further adjusted
3063 above to ensure that it is even register aligned. */
3064 LONGEST regval = extract_unsigned_integer (val, len);
3065 if (mips_debug)
3066 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3067 float_argreg, phex (regval, len));
3068 write_register (float_argreg++, regval);
3069
3070 if (mips_debug)
3071 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3072 argreg, phex (regval, len));
3073 write_register (argreg, regval);
3074 argreg += 1;
3075 }
3076 else
3077 {
3078 /* Copy the argument to general registers or the stack in
3079 register-sized pieces. Large arguments are split between
3080 registers and stack. */
3081 /* Note: structs whose size is not a multiple of
3082 mips_regsize() are treated specially: Irix cc passes them
3083 in registers where gcc sometimes puts them on the stack.
3084 For maximum compatibility, we will put them in both
3085 places. */
3086 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3087 (len % MIPS_SAVED_REGSIZE != 0));
3088 /* Note: Floating-point values that didn't fit into an FP
3089 register are only written to memory. */
3090 while (len > 0)
3091 {
3092 /* Rememer if the argument was written to the stack. */
3093 int stack_used_p = 0;
3094 int partial_len = len < MIPS_SAVED_REGSIZE ?
3095 len : MIPS_SAVED_REGSIZE;
3096
3097 if (mips_debug)
3098 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3099 partial_len);
3100
3101 /* Write this portion of the argument to the stack. */
3102 if (argreg > MIPS_LAST_ARG_REGNUM
3103 || odd_sized_struct
3104 || fp_register_arg_p (typecode, arg_type))
3105 {
3106 /* Should shorter than int integer values be
3107 promoted to int before being stored? */
3108 int longword_offset = 0;
3109 CORE_ADDR addr;
3110 stack_used_p = 1;
3111 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3112 {
3113 if (MIPS_STACK_ARGSIZE == 8 &&
3114 (typecode == TYPE_CODE_INT ||
3115 typecode == TYPE_CODE_PTR ||
3116 typecode == TYPE_CODE_FLT) && len <= 4)
3117 longword_offset = MIPS_STACK_ARGSIZE - len;
3118 }
3119
3120 if (mips_debug)
3121 {
3122 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3123 paddr_nz (stack_offset));
3124 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3125 paddr_nz (longword_offset));
3126 }
3127
3128 addr = sp + stack_offset + longword_offset;
3129
3130 if (mips_debug)
3131 {
3132 int i;
3133 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3134 paddr_nz (addr));
3135 for (i = 0; i < partial_len; i++)
3136 {
3137 fprintf_unfiltered (gdb_stdlog, "%02x",
3138 val[i] & 0xff);
3139 }
3140 }
3141 write_memory (addr, val, partial_len);
3142 }
3143
3144 /* Note!!! This is NOT an else clause. Odd sized
3145 structs may go thru BOTH paths. Floating point
3146 arguments will not. */
3147 /* Write this portion of the argument to a general
3148 purpose register. */
3149 if (argreg <= MIPS_LAST_ARG_REGNUM
3150 && !fp_register_arg_p (typecode, arg_type))
3151 {
3152 LONGEST regval = extract_unsigned_integer (val, partial_len);
3153
3154 /* A non-floating-point argument being passed in a
3155 general register. If a struct or union, and if
3156 the remaining length is smaller than the register
3157 size, we have to adjust the register value on
3158 big endian targets.
3159
3160 It does not seem to be necessary to do the
3161 same for integral types.
3162
3163 cagney/2001-07-23: gdb/179: Also, GCC, when
3164 outputting LE O32 with sizeof (struct) <
3165 MIPS_SAVED_REGSIZE, generates a left shift as
3166 part of storing the argument in a register a
3167 register (the left shift isn't generated when
3168 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3169 is quite possible that this is GCC contradicting
3170 the LE/O32 ABI, GDB has not been adjusted to
3171 accommodate this. Either someone needs to
3172 demonstrate that the LE/O32 ABI specifies such a
3173 left shift OR this new ABI gets identified as
3174 such and GDB gets tweaked accordingly. */
3175
3176 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3177 && partial_len < MIPS_SAVED_REGSIZE
3178 && (typecode == TYPE_CODE_STRUCT ||
3179 typecode == TYPE_CODE_UNION))
3180 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3181 TARGET_CHAR_BIT);
3182
3183 if (mips_debug)
3184 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3185 argreg,
3186 phex (regval, MIPS_SAVED_REGSIZE));
3187 write_register (argreg, regval);
3188 argreg++;
3189 }
3190
3191 len -= partial_len;
3192 val += partial_len;
3193
3194 /* Compute the the offset into the stack at which we
3195 will copy the next parameter.
3196
3197 In N32 (N64?), the stack_offset only needs to be
3198 adjusted when it has been used. */
3199
3200 if (stack_used_p)
3201 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3202 }
3203 }
3204 if (mips_debug)
3205 fprintf_unfiltered (gdb_stdlog, "\n");
3206 }
3207
3208 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3209
3210 /* Return adjusted stack pointer. */
3211 return sp;
3212 }
3213
3214 /* O32 version of push_dummy_call. */
3215
3216 static CORE_ADDR
3217 mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3218 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3219 struct value **args, CORE_ADDR sp, int struct_return,
3220 CORE_ADDR struct_addr)
3221 {
3222 int argreg;
3223 int float_argreg;
3224 int argnum;
3225 int len = 0;
3226 int stack_offset = 0;
3227
3228 /* For shared libraries, "t9" needs to point at the function
3229 address. */
3230 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3231
3232 /* Set the return address register to point to the entry point of
3233 the program, where a breakpoint lies in wait. */
3234 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3235
3236 /* First ensure that the stack and structure return address (if any)
3237 are properly aligned. The stack has to be at least 64-bit
3238 aligned even on 32-bit machines, because doubles must be 64-bit
3239 aligned. For n32 and n64, stack frames need to be 128-bit
3240 aligned, so we round to this widest known alignment. */
3241
3242 sp = align_down (sp, 16);
3243 struct_addr = align_down (struct_addr, 16);
3244
3245 /* Now make space on the stack for the args. */
3246 for (argnum = 0; argnum < nargs; argnum++)
3247 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3248 MIPS_STACK_ARGSIZE);
3249 sp -= align_up (len, 16);
3250
3251 if (mips_debug)
3252 fprintf_unfiltered (gdb_stdlog,
3253 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3254 paddr_nz (sp), (long) align_up (len, 16));
3255
3256 /* Initialize the integer and float register pointers. */
3257 argreg = A0_REGNUM;
3258 float_argreg = mips_fpa0_regnum (current_gdbarch);
3259
3260 /* The struct_return pointer occupies the first parameter-passing reg. */
3261 if (struct_return)
3262 {
3263 if (mips_debug)
3264 fprintf_unfiltered (gdb_stdlog,
3265 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3266 argreg, paddr_nz (struct_addr));
3267 write_register (argreg++, struct_addr);
3268 stack_offset += MIPS_STACK_ARGSIZE;
3269 }
3270
3271 /* Now load as many as possible of the first arguments into
3272 registers, and push the rest onto the stack. Loop thru args
3273 from first to last. */
3274 for (argnum = 0; argnum < nargs; argnum++)
3275 {
3276 char *val;
3277 char valbuf[MAX_REGISTER_SIZE];
3278 struct value *arg = args[argnum];
3279 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3280 int len = TYPE_LENGTH (arg_type);
3281 enum type_code typecode = TYPE_CODE (arg_type);
3282
3283 if (mips_debug)
3284 fprintf_unfiltered (gdb_stdlog,
3285 "mips_o32_push_dummy_call: %d len=%d type=%d",
3286 argnum + 1, len, (int) typecode);
3287
3288 val = (char *) VALUE_CONTENTS (arg);
3289
3290 /* 32-bit ABIs always start floating point arguments in an
3291 even-numbered floating point register. Round the FP register
3292 up before the check to see if there are any FP registers
3293 left. O32/O64 targets also pass the FP in the integer
3294 registers so also round up normal registers. */
3295 if (!FP_REGISTER_DOUBLE
3296 && fp_register_arg_p (typecode, arg_type))
3297 {
3298 if ((float_argreg & 1))
3299 float_argreg++;
3300 }
3301
3302 /* Floating point arguments passed in registers have to be
3303 treated specially. On 32-bit architectures, doubles
3304 are passed in register pairs; the even register gets
3305 the low word, and the odd register gets the high word.
3306 On O32/O64, the first two floating point arguments are
3307 also copied to general registers, because MIPS16 functions
3308 don't use float registers for arguments. This duplication of
3309 arguments in general registers can't hurt non-MIPS16 functions
3310 because those registers are normally skipped. */
3311
3312 if (fp_register_arg_p (typecode, arg_type)
3313 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3314 {
3315 if (!FP_REGISTER_DOUBLE && len == 8)
3316 {
3317 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3318 unsigned long regval;
3319
3320 /* Write the low word of the double to the even register(s). */
3321 regval = extract_unsigned_integer (val + low_offset, 4);
3322 if (mips_debug)
3323 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3324 float_argreg, phex (regval, 4));
3325 write_register (float_argreg++, regval);
3326 if (mips_debug)
3327 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3328 argreg, phex (regval, 4));
3329 write_register (argreg++, regval);
3330
3331 /* Write the high word of the double to the odd register(s). */
3332 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3333 if (mips_debug)
3334 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3335 float_argreg, phex (regval, 4));
3336 write_register (float_argreg++, regval);
3337
3338 if (mips_debug)
3339 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3340 argreg, phex (regval, 4));
3341 write_register (argreg++, regval);
3342 }
3343 else
3344 {
3345 /* This is a floating point value that fits entirely
3346 in a single register. */
3347 /* On 32 bit ABI's the float_argreg is further adjusted
3348 above to ensure that it is even register aligned. */
3349 LONGEST regval = extract_unsigned_integer (val, len);
3350 if (mips_debug)
3351 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3352 float_argreg, phex (regval, len));
3353 write_register (float_argreg++, regval);
3354 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3355 registers for each argument. The below is (my
3356 guess) to ensure that the corresponding integer
3357 register has reserved the same space. */
3358 if (mips_debug)
3359 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3360 argreg, phex (regval, len));
3361 write_register (argreg, regval);
3362 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3363 }
3364 /* Reserve space for the FP register. */
3365 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
3366 }
3367 else
3368 {
3369 /* Copy the argument to general registers or the stack in
3370 register-sized pieces. Large arguments are split between
3371 registers and stack. */
3372 /* Note: structs whose size is not a multiple of
3373 mips_regsize() are treated specially: Irix cc passes them
3374 in registers where gcc sometimes puts them on the stack.
3375 For maximum compatibility, we will put them in both
3376 places. */
3377 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3378 (len % MIPS_SAVED_REGSIZE != 0));
3379 /* Structures should be aligned to eight bytes (even arg registers)
3380 on MIPS_ABI_O32, if their first member has double precision. */
3381 if (MIPS_SAVED_REGSIZE < 8
3382 && mips_type_needs_double_align (arg_type))
3383 {
3384 if ((argreg & 1))
3385 argreg++;
3386 }
3387 /* Note: Floating-point values that didn't fit into an FP
3388 register are only written to memory. */
3389 while (len > 0)
3390 {
3391 /* Remember if the argument was written to the stack. */
3392 int stack_used_p = 0;
3393 int partial_len =
3394 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3395
3396 if (mips_debug)
3397 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3398 partial_len);
3399
3400 /* Write this portion of the argument to the stack. */
3401 if (argreg > MIPS_LAST_ARG_REGNUM
3402 || odd_sized_struct
3403 || fp_register_arg_p (typecode, arg_type))
3404 {
3405 /* Should shorter than int integer values be
3406 promoted to int before being stored? */
3407 int longword_offset = 0;
3408 CORE_ADDR addr;
3409 stack_used_p = 1;
3410 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3411 {
3412 if (MIPS_STACK_ARGSIZE == 8 &&
3413 (typecode == TYPE_CODE_INT ||
3414 typecode == TYPE_CODE_PTR ||
3415 typecode == TYPE_CODE_FLT) && len <= 4)
3416 longword_offset = MIPS_STACK_ARGSIZE - len;
3417 }
3418
3419 if (mips_debug)
3420 {
3421 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3422 paddr_nz (stack_offset));
3423 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3424 paddr_nz (longword_offset));
3425 }
3426
3427 addr = sp + stack_offset + longword_offset;
3428
3429 if (mips_debug)
3430 {
3431 int i;
3432 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3433 paddr_nz (addr));
3434 for (i = 0; i < partial_len; i++)
3435 {
3436 fprintf_unfiltered (gdb_stdlog, "%02x",
3437 val[i] & 0xff);
3438 }
3439 }
3440 write_memory (addr, val, partial_len);
3441 }
3442
3443 /* Note!!! This is NOT an else clause. Odd sized
3444 structs may go thru BOTH paths. Floating point
3445 arguments will not. */
3446 /* Write this portion of the argument to a general
3447 purpose register. */
3448 if (argreg <= MIPS_LAST_ARG_REGNUM
3449 && !fp_register_arg_p (typecode, arg_type))
3450 {
3451 LONGEST regval = extract_signed_integer (val, partial_len);
3452 /* Value may need to be sign extended, because
3453 mips_regsize() != MIPS_SAVED_REGSIZE. */
3454
3455 /* A non-floating-point argument being passed in a
3456 general register. If a struct or union, and if
3457 the remaining length is smaller than the register
3458 size, we have to adjust the register value on
3459 big endian targets.
3460
3461 It does not seem to be necessary to do the
3462 same for integral types.
3463
3464 Also don't do this adjustment on O64 binaries.
3465
3466 cagney/2001-07-23: gdb/179: Also, GCC, when
3467 outputting LE O32 with sizeof (struct) <
3468 MIPS_SAVED_REGSIZE, generates a left shift as
3469 part of storing the argument in a register a
3470 register (the left shift isn't generated when
3471 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3472 is quite possible that this is GCC contradicting
3473 the LE/O32 ABI, GDB has not been adjusted to
3474 accommodate this. Either someone needs to
3475 demonstrate that the LE/O32 ABI specifies such a
3476 left shift OR this new ABI gets identified as
3477 such and GDB gets tweaked accordingly. */
3478
3479 if (MIPS_SAVED_REGSIZE < 8
3480 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3481 && partial_len < MIPS_SAVED_REGSIZE
3482 && (typecode == TYPE_CODE_STRUCT ||
3483 typecode == TYPE_CODE_UNION))
3484 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3485 TARGET_CHAR_BIT);
3486
3487 if (mips_debug)
3488 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3489 argreg,
3490 phex (regval, MIPS_SAVED_REGSIZE));
3491 write_register (argreg, regval);
3492 argreg++;
3493
3494 /* Prevent subsequent floating point arguments from
3495 being passed in floating point registers. */
3496 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3497 }
3498
3499 len -= partial_len;
3500 val += partial_len;
3501
3502 /* Compute the the offset into the stack at which we
3503 will copy the next parameter.
3504
3505 In older ABIs, the caller reserved space for
3506 registers that contained arguments. This was loosely
3507 refered to as their "home". Consequently, space is
3508 always allocated. */
3509
3510 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3511 }
3512 }
3513 if (mips_debug)
3514 fprintf_unfiltered (gdb_stdlog, "\n");
3515 }
3516
3517 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3518
3519 /* Return adjusted stack pointer. */
3520 return sp;
3521 }
3522
3523 /* O64 version of push_dummy_call. */
3524
3525 static CORE_ADDR
3526 mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3527 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3528 struct value **args, CORE_ADDR sp, int struct_return,
3529 CORE_ADDR struct_addr)
3530 {
3531 int argreg;
3532 int float_argreg;
3533 int argnum;
3534 int len = 0;
3535 int stack_offset = 0;
3536
3537 /* For shared libraries, "t9" needs to point at the function
3538 address. */
3539 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3540
3541 /* Set the return address register to point to the entry point of
3542 the program, where a breakpoint lies in wait. */
3543 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3544
3545 /* First ensure that the stack and structure return address (if any)
3546 are properly aligned. The stack has to be at least 64-bit
3547 aligned even on 32-bit machines, because doubles must be 64-bit
3548 aligned. For n32 and n64, stack frames need to be 128-bit
3549 aligned, so we round to this widest known alignment. */
3550
3551 sp = align_down (sp, 16);
3552 struct_addr = align_down (struct_addr, 16);
3553
3554 /* Now make space on the stack for the args. */
3555 for (argnum = 0; argnum < nargs; argnum++)
3556 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3557 MIPS_STACK_ARGSIZE);
3558 sp -= align_up (len, 16);
3559
3560 if (mips_debug)
3561 fprintf_unfiltered (gdb_stdlog,
3562 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3563 paddr_nz (sp), (long) align_up (len, 16));
3564
3565 /* Initialize the integer and float register pointers. */
3566 argreg = A0_REGNUM;
3567 float_argreg = mips_fpa0_regnum (current_gdbarch);
3568
3569 /* The struct_return pointer occupies the first parameter-passing reg. */
3570 if (struct_return)
3571 {
3572 if (mips_debug)
3573 fprintf_unfiltered (gdb_stdlog,
3574 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3575 argreg, paddr_nz (struct_addr));
3576 write_register (argreg++, struct_addr);
3577 stack_offset += MIPS_STACK_ARGSIZE;
3578 }
3579
3580 /* Now load as many as possible of the first arguments into
3581 registers, and push the rest onto the stack. Loop thru args
3582 from first to last. */
3583 for (argnum = 0; argnum < nargs; argnum++)
3584 {
3585 char *val;
3586 char valbuf[MAX_REGISTER_SIZE];
3587 struct value *arg = args[argnum];
3588 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3589 int len = TYPE_LENGTH (arg_type);
3590 enum type_code typecode = TYPE_CODE (arg_type);
3591
3592 if (mips_debug)
3593 fprintf_unfiltered (gdb_stdlog,
3594 "mips_o64_push_dummy_call: %d len=%d type=%d",
3595 argnum + 1, len, (int) typecode);
3596
3597 val = (char *) VALUE_CONTENTS (arg);
3598
3599 /* 32-bit ABIs always start floating point arguments in an
3600 even-numbered floating point register. Round the FP register
3601 up before the check to see if there are any FP registers
3602 left. O32/O64 targets also pass the FP in the integer
3603 registers so also round up normal registers. */
3604 if (!FP_REGISTER_DOUBLE
3605 && fp_register_arg_p (typecode, arg_type))
3606 {
3607 if ((float_argreg & 1))
3608 float_argreg++;
3609 }
3610
3611 /* Floating point arguments passed in registers have to be
3612 treated specially. On 32-bit architectures, doubles
3613 are passed in register pairs; the even register gets
3614 the low word, and the odd register gets the high word.
3615 On O32/O64, the first two floating point arguments are
3616 also copied to general registers, because MIPS16 functions
3617 don't use float registers for arguments. This duplication of
3618 arguments in general registers can't hurt non-MIPS16 functions
3619 because those registers are normally skipped. */
3620
3621 if (fp_register_arg_p (typecode, arg_type)
3622 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3623 {
3624 if (!FP_REGISTER_DOUBLE && len == 8)
3625 {
3626 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3627 unsigned long regval;
3628
3629 /* Write the low word of the double to the even register(s). */
3630 regval = extract_unsigned_integer (val + low_offset, 4);
3631 if (mips_debug)
3632 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3633 float_argreg, phex (regval, 4));
3634 write_register (float_argreg++, regval);
3635 if (mips_debug)
3636 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3637 argreg, phex (regval, 4));
3638 write_register (argreg++, regval);
3639
3640 /* Write the high word of the double to the odd register(s). */
3641 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3642 if (mips_debug)
3643 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3644 float_argreg, phex (regval, 4));
3645 write_register (float_argreg++, regval);
3646
3647 if (mips_debug)
3648 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3649 argreg, phex (regval, 4));
3650 write_register (argreg++, regval);
3651 }
3652 else
3653 {
3654 /* This is a floating point value that fits entirely
3655 in a single register. */
3656 /* On 32 bit ABI's the float_argreg is further adjusted
3657 above to ensure that it is even register aligned. */
3658 LONGEST regval = extract_unsigned_integer (val, len);
3659 if (mips_debug)
3660 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3661 float_argreg, phex (regval, len));
3662 write_register (float_argreg++, regval);
3663 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3664 registers for each argument. The below is (my
3665 guess) to ensure that the corresponding integer
3666 register has reserved the same space. */
3667 if (mips_debug)
3668 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3669 argreg, phex (regval, len));
3670 write_register (argreg, regval);
3671 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3672 }
3673 /* Reserve space for the FP register. */
3674 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
3675 }
3676 else
3677 {
3678 /* Copy the argument to general registers or the stack in
3679 register-sized pieces. Large arguments are split between
3680 registers and stack. */
3681 /* Note: structs whose size is not a multiple of
3682 mips_regsize() are treated specially: Irix cc passes them
3683 in registers where gcc sometimes puts them on the stack.
3684 For maximum compatibility, we will put them in both
3685 places. */
3686 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3687 (len % MIPS_SAVED_REGSIZE != 0));
3688 /* Structures should be aligned to eight bytes (even arg registers)
3689 on MIPS_ABI_O32, if their first member has double precision. */
3690 if (MIPS_SAVED_REGSIZE < 8
3691 && mips_type_needs_double_align (arg_type))
3692 {
3693 if ((argreg & 1))
3694 argreg++;
3695 }
3696 /* Note: Floating-point values that didn't fit into an FP
3697 register are only written to memory. */
3698 while (len > 0)
3699 {
3700 /* Remember if the argument was written to the stack. */
3701 int stack_used_p = 0;
3702 int partial_len =
3703 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3704
3705 if (mips_debug)
3706 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3707 partial_len);
3708
3709 /* Write this portion of the argument to the stack. */
3710 if (argreg > MIPS_LAST_ARG_REGNUM
3711 || odd_sized_struct
3712 || fp_register_arg_p (typecode, arg_type))
3713 {
3714 /* Should shorter than int integer values be
3715 promoted to int before being stored? */
3716 int longword_offset = 0;
3717 CORE_ADDR addr;
3718 stack_used_p = 1;
3719 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3720 {
3721 if (MIPS_STACK_ARGSIZE == 8 &&
3722 (typecode == TYPE_CODE_INT ||
3723 typecode == TYPE_CODE_PTR ||
3724 typecode == TYPE_CODE_FLT) && len <= 4)
3725 longword_offset = MIPS_STACK_ARGSIZE - len;
3726 }
3727
3728 if (mips_debug)
3729 {
3730 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3731 paddr_nz (stack_offset));
3732 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3733 paddr_nz (longword_offset));
3734 }
3735
3736 addr = sp + stack_offset + longword_offset;
3737
3738 if (mips_debug)
3739 {
3740 int i;
3741 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3742 paddr_nz (addr));
3743 for (i = 0; i < partial_len; i++)
3744 {
3745 fprintf_unfiltered (gdb_stdlog, "%02x",
3746 val[i] & 0xff);
3747 }
3748 }
3749 write_memory (addr, val, partial_len);
3750 }
3751
3752 /* Note!!! This is NOT an else clause. Odd sized
3753 structs may go thru BOTH paths. Floating point
3754 arguments will not. */
3755 /* Write this portion of the argument to a general
3756 purpose register. */
3757 if (argreg <= MIPS_LAST_ARG_REGNUM
3758 && !fp_register_arg_p (typecode, arg_type))
3759 {
3760 LONGEST regval = extract_signed_integer (val, partial_len);
3761 /* Value may need to be sign extended, because
3762 mips_regsize() != MIPS_SAVED_REGSIZE. */
3763
3764 /* A non-floating-point argument being passed in a
3765 general register. If a struct or union, and if
3766 the remaining length is smaller than the register
3767 size, we have to adjust the register value on
3768 big endian targets.
3769
3770 It does not seem to be necessary to do the
3771 same for integral types.
3772
3773 Also don't do this adjustment on O64 binaries.
3774
3775 cagney/2001-07-23: gdb/179: Also, GCC, when
3776 outputting LE O32 with sizeof (struct) <
3777 MIPS_SAVED_REGSIZE, generates a left shift as
3778 part of storing the argument in a register a
3779 register (the left shift isn't generated when
3780 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3781 is quite possible that this is GCC contradicting
3782 the LE/O32 ABI, GDB has not been adjusted to
3783 accommodate this. Either someone needs to
3784 demonstrate that the LE/O32 ABI specifies such a
3785 left shift OR this new ABI gets identified as
3786 such and GDB gets tweaked accordingly. */
3787
3788 if (MIPS_SAVED_REGSIZE < 8
3789 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3790 && partial_len < MIPS_SAVED_REGSIZE
3791 && (typecode == TYPE_CODE_STRUCT ||
3792 typecode == TYPE_CODE_UNION))
3793 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3794 TARGET_CHAR_BIT);
3795
3796 if (mips_debug)
3797 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3798 argreg,
3799 phex (regval, MIPS_SAVED_REGSIZE));
3800 write_register (argreg, regval);
3801 argreg++;
3802
3803 /* Prevent subsequent floating point arguments from
3804 being passed in floating point registers. */
3805 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3806 }
3807
3808 len -= partial_len;
3809 val += partial_len;
3810
3811 /* Compute the the offset into the stack at which we
3812 will copy the next parameter.
3813
3814 In older ABIs, the caller reserved space for
3815 registers that contained arguments. This was loosely
3816 refered to as their "home". Consequently, space is
3817 always allocated. */
3818
3819 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3820 }
3821 }
3822 if (mips_debug)
3823 fprintf_unfiltered (gdb_stdlog, "\n");
3824 }
3825
3826 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3827
3828 /* Return adjusted stack pointer. */
3829 return sp;
3830 }
3831
3832 static void
3833 mips_pop_frame (void)
3834 {
3835 int regnum;
3836 struct frame_info *frame = get_current_frame ();
3837 CORE_ADDR new_sp = get_frame_base (frame);
3838 mips_extra_func_info_t proc_desc;
3839
3840 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3841 {
3842 generic_pop_dummy_frame ();
3843 flush_cached_frames ();
3844 return;
3845 }
3846
3847 proc_desc = get_frame_extra_info (frame)->proc_desc;
3848 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3849 mips_find_saved_regs (frame);
3850 for (regnum = 0; regnum < NUM_REGS; regnum++)
3851 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3852 && deprecated_get_frame_saved_regs (frame)[regnum])
3853 {
3854 /* Floating point registers must not be sign extended,
3855 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3856
3857 if (mips_regnum (current_gdbarch)->fp0 <= regnum && regnum < mips_regnum (current_gdbarch)->fp0 + 32)
3858 write_register (regnum,
3859 read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
3860 MIPS_SAVED_REGSIZE));
3861 else
3862 write_register (regnum,
3863 read_memory_integer (deprecated_get_frame_saved_regs (frame)[regnum],
3864 MIPS_SAVED_REGSIZE));
3865 }
3866
3867 write_register (SP_REGNUM, new_sp);
3868 flush_cached_frames ();
3869
3870 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3871 {
3872 struct linked_proc_info *pi_ptr, *prev_ptr;
3873
3874 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3875 pi_ptr != NULL;
3876 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3877 {
3878 if (&pi_ptr->info == proc_desc)
3879 break;
3880 }
3881
3882 if (pi_ptr == NULL)
3883 error ("Can't locate dummy extra frame info\n");
3884
3885 if (prev_ptr != NULL)
3886 prev_ptr->next = pi_ptr->next;
3887 else
3888 linked_proc_desc_table = pi_ptr->next;
3889
3890 xfree (pi_ptr);
3891
3892 write_register (mips_regnum (current_gdbarch)->hi,
3893 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3894 MIPS_SAVED_REGSIZE));
3895 write_register (mips_regnum (current_gdbarch)->lo,
3896 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3897 MIPS_SAVED_REGSIZE));
3898 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3899 write_register (mips_regnum (current_gdbarch)->fp_control_status,
3900 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3901 MIPS_SAVED_REGSIZE));
3902 }
3903 }
3904
3905 /* Floating point register management.
3906
3907 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3908 64bit operations, these early MIPS cpus treat fp register pairs
3909 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3910 registers and offer a compatibility mode that emulates the MIPS2 fp
3911 model. When operating in MIPS2 fp compat mode, later cpu's split
3912 double precision floats into two 32-bit chunks and store them in
3913 consecutive fp regs. To display 64-bit floats stored in this
3914 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3915 Throw in user-configurable endianness and you have a real mess.
3916
3917 The way this works is:
3918 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3919 double-precision value will be split across two logical registers.
3920 The lower-numbered logical register will hold the low-order bits,
3921 regardless of the processor's endianness.
3922 - If we are on a 64-bit processor, and we are looking for a
3923 single-precision value, it will be in the low ordered bits
3924 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3925 save slot in memory.
3926 - If we are in 64-bit mode, everything is straightforward.
3927
3928 Note that this code only deals with "live" registers at the top of the
3929 stack. We will attempt to deal with saved registers later, when
3930 the raw/cooked register interface is in place. (We need a general
3931 interface that can deal with dynamic saved register sizes -- fp
3932 regs could be 32 bits wide in one frame and 64 on the frame above
3933 and below). */
3934
3935 static struct type *
3936 mips_float_register_type (void)
3937 {
3938 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3939 return builtin_type_ieee_single_big;
3940 else
3941 return builtin_type_ieee_single_little;
3942 }
3943
3944 static struct type *
3945 mips_double_register_type (void)
3946 {
3947 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3948 return builtin_type_ieee_double_big;
3949 else
3950 return builtin_type_ieee_double_little;
3951 }
3952
3953 /* Copy a 32-bit single-precision value from the current frame
3954 into rare_buffer. */
3955
3956 static void
3957 mips_read_fp_register_single (struct frame_info *frame, int regno,
3958 char *rare_buffer)
3959 {
3960 int raw_size = register_size (current_gdbarch, regno);
3961 char *raw_buffer = alloca (raw_size);
3962
3963 if (!frame_register_read (frame, regno, raw_buffer))
3964 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3965 if (raw_size == 8)
3966 {
3967 /* We have a 64-bit value for this register. Find the low-order
3968 32 bits. */
3969 int offset;
3970
3971 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3972 offset = 4;
3973 else
3974 offset = 0;
3975
3976 memcpy (rare_buffer, raw_buffer + offset, 4);
3977 }
3978 else
3979 {
3980 memcpy (rare_buffer, raw_buffer, 4);
3981 }
3982 }
3983
3984 /* Copy a 64-bit double-precision value from the current frame into
3985 rare_buffer. This may include getting half of it from the next
3986 register. */
3987
3988 static void
3989 mips_read_fp_register_double (struct frame_info *frame, int regno,
3990 char *rare_buffer)
3991 {
3992 int raw_size = register_size (current_gdbarch, regno);
3993
3994 if (raw_size == 8 && !mips2_fp_compat ())
3995 {
3996 /* We have a 64-bit value for this register, and we should use
3997 all 64 bits. */
3998 if (!frame_register_read (frame, regno, rare_buffer))
3999 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4000 }
4001 else
4002 {
4003 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
4004 internal_error (__FILE__, __LINE__,
4005 "mips_read_fp_register_double: bad access to "
4006 "odd-numbered FP register");
4007
4008 /* mips_read_fp_register_single will find the correct 32 bits from
4009 each register. */
4010 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4011 {
4012 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4013 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4014 }
4015 else
4016 {
4017 mips_read_fp_register_single (frame, regno, rare_buffer);
4018 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4019 }
4020 }
4021 }
4022
4023 static void
4024 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4025 int regnum)
4026 { /* do values for FP (float) regs */
4027 char *raw_buffer;
4028 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4029 int inv1, inv2, namelen;
4030
4031 raw_buffer = (char *) alloca (2 * register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0));
4032
4033 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4034 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4035 "");
4036
4037 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
4038 {
4039 /* 4-byte registers: Print hex and floating. Also print even
4040 numbered registers as doubles. */
4041 mips_read_fp_register_single (frame, regnum, raw_buffer);
4042 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4043
4044 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
4045
4046 fprintf_filtered (file, " flt: ");
4047 if (inv1)
4048 fprintf_filtered (file, " <invalid float> ");
4049 else
4050 fprintf_filtered (file, "%-17.9g", flt1);
4051
4052 if (regnum % 2 == 0)
4053 {
4054 mips_read_fp_register_double (frame, regnum, raw_buffer);
4055 doub = unpack_double (mips_double_register_type (), raw_buffer,
4056 &inv2);
4057
4058 fprintf_filtered (file, " dbl: ");
4059 if (inv2)
4060 fprintf_filtered (file, "<invalid double>");
4061 else
4062 fprintf_filtered (file, "%-24.17g", doub);
4063 }
4064 }
4065 else
4066 {
4067 /* Eight byte registers: print each one as hex, float and double. */
4068 mips_read_fp_register_single (frame, regnum, raw_buffer);
4069 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4070
4071 mips_read_fp_register_double (frame, regnum, raw_buffer);
4072 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4073
4074
4075 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
4076
4077 fprintf_filtered (file, " flt: ");
4078 if (inv1)
4079 fprintf_filtered (file, "<invalid float>");
4080 else
4081 fprintf_filtered (file, "%-17.9g", flt1);
4082
4083 fprintf_filtered (file, " dbl: ");
4084 if (inv2)
4085 fprintf_filtered (file, "<invalid double>");
4086 else
4087 fprintf_filtered (file, "%-24.17g", doub);
4088 }
4089 }
4090
4091 static void
4092 mips_print_register (struct ui_file *file, struct frame_info *frame,
4093 int regnum, int all)
4094 {
4095 struct gdbarch *gdbarch = get_frame_arch (frame);
4096 char raw_buffer[MAX_REGISTER_SIZE];
4097 int offset;
4098
4099 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4100 {
4101 mips_print_fp_register (file, frame, regnum);
4102 return;
4103 }
4104
4105 /* Get the data in raw format. */
4106 if (!frame_register_read (frame, regnum, raw_buffer))
4107 {
4108 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4109 return;
4110 }
4111
4112 fputs_filtered (REGISTER_NAME (regnum), file);
4113
4114 /* The problem with printing numeric register names (r26, etc.) is that
4115 the user can't use them on input. Probably the best solution is to
4116 fix it so that either the numeric or the funky (a2, etc.) names
4117 are accepted on input. */
4118 if (regnum < MIPS_NUMREGS)
4119 fprintf_filtered (file, "(r%d): ", regnum);
4120 else
4121 fprintf_filtered (file, ": ");
4122
4123 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4124 offset = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
4125 else
4126 offset = 0;
4127
4128 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
4129 'x', 0, file);
4130 }
4131
4132 /* Replacement for generic do_registers_info.
4133 Print regs in pretty columns. */
4134
4135 static int
4136 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4137 int regnum)
4138 {
4139 fprintf_filtered (file, " ");
4140 mips_print_fp_register (file, frame, regnum);
4141 fprintf_filtered (file, "\n");
4142 return regnum + 1;
4143 }
4144
4145
4146 /* Print a row's worth of GP (int) registers, with name labels above */
4147
4148 static int
4149 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4150 int start_regnum)
4151 {
4152 struct gdbarch *gdbarch = get_frame_arch (frame);
4153 /* do values for GP (int) regs */
4154 char raw_buffer[MAX_REGISTER_SIZE];
4155 int ncols = (mips_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4156 int col, byte;
4157 int regnum;
4158
4159 /* For GP registers, we print a separate row of names above the vals */
4160 fprintf_filtered (file, " ");
4161 for (col = 0, regnum = start_regnum;
4162 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4163 regnum++)
4164 {
4165 if (*REGISTER_NAME (regnum) == '\0')
4166 continue; /* unused register */
4167 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4168 break; /* end the row: reached FP register */
4169 fprintf_filtered (file, mips_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4170 REGISTER_NAME (regnum));
4171 col++;
4172 }
4173 /* print the R0 to R31 names */
4174 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4175 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4176 else
4177 fprintf_filtered (file, "\n ");
4178
4179 /* now print the values in hex, 4 or 8 to the row */
4180 for (col = 0, regnum = start_regnum;
4181 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4182 regnum++)
4183 {
4184 if (*REGISTER_NAME (regnum) == '\0')
4185 continue; /* unused register */
4186 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4187 break; /* end row: reached FP register */
4188 /* OK: get the data in raw format. */
4189 if (!frame_register_read (frame, regnum, raw_buffer))
4190 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4191 /* pad small registers */
4192 for (byte = 0;
4193 byte < (mips_regsize (current_gdbarch)
4194 - register_size (current_gdbarch, regnum));
4195 byte++)
4196 printf_filtered (" ");
4197 /* Now print the register value in hex, endian order. */
4198 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4199 for (byte = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
4200 byte < register_size (current_gdbarch, regnum);
4201 byte++)
4202 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4203 else
4204 for (byte = register_size (current_gdbarch, regnum) - 1;
4205 byte >= 0;
4206 byte--)
4207 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4208 fprintf_filtered (file, " ");
4209 col++;
4210 }
4211 if (col > 0) /* ie. if we actually printed anything... */
4212 fprintf_filtered (file, "\n");
4213
4214 return regnum;
4215 }
4216
4217 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4218
4219 static void
4220 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4221 struct frame_info *frame, int regnum, int all)
4222 {
4223 if (regnum != -1) /* do one specified register */
4224 {
4225 gdb_assert (regnum >= NUM_REGS);
4226 if (*(REGISTER_NAME (regnum)) == '\0')
4227 error ("Not a valid register for the current processor type");
4228
4229 mips_print_register (file, frame, regnum, 0);
4230 fprintf_filtered (file, "\n");
4231 }
4232 else
4233 /* do all (or most) registers */
4234 {
4235 regnum = NUM_REGS;
4236 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4237 {
4238 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4239 {
4240 if (all) /* true for "INFO ALL-REGISTERS" command */
4241 regnum = print_fp_register_row (file, frame, regnum);
4242 else
4243 regnum += MIPS_NUMREGS; /* skip floating point regs */
4244 }
4245 else
4246 regnum = print_gp_register_row (file, frame, regnum);
4247 }
4248 }
4249 }
4250
4251 /* Is this a branch with a delay slot? */
4252
4253 static int is_delayed (unsigned long);
4254
4255 static int
4256 is_delayed (unsigned long insn)
4257 {
4258 int i;
4259 for (i = 0; i < NUMOPCODES; ++i)
4260 if (mips_opcodes[i].pinfo != INSN_MACRO
4261 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4262 break;
4263 return (i < NUMOPCODES
4264 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4265 | INSN_COND_BRANCH_DELAY
4266 | INSN_COND_BRANCH_LIKELY)));
4267 }
4268
4269 int
4270 mips_step_skips_delay (CORE_ADDR pc)
4271 {
4272 char buf[MIPS_INSTLEN];
4273
4274 /* There is no branch delay slot on MIPS16. */
4275 if (pc_is_mips16 (pc))
4276 return 0;
4277
4278 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4279 /* If error reading memory, guess that it is not a delayed branch. */
4280 return 0;
4281 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4282 }
4283
4284
4285 /* Given PC at the function's start address, attempt to find the
4286 prologue end using SAL information. Return zero if the skip fails.
4287
4288 A non-optimized prologue traditionally has one SAL for the function
4289 and a second for the function body. A single line function has
4290 them both pointing at the same line.
4291
4292 An optimized prologue is similar but the prologue may contain
4293 instructions (SALs) from the instruction body. Need to skip those
4294 while not getting into the function body.
4295
4296 The functions end point and an increasing SAL line are used as
4297 indicators of the prologue's endpoint.
4298
4299 This code is based on the function refine_prologue_limit (versions
4300 found in both ia64 and ppc). */
4301
4302 static CORE_ADDR
4303 skip_prologue_using_sal (CORE_ADDR func_addr)
4304 {
4305 struct symtab_and_line prologue_sal;
4306 CORE_ADDR start_pc;
4307 CORE_ADDR end_pc;
4308
4309 /* Get an initial range for the function. */
4310 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4311 start_pc += FUNCTION_START_OFFSET;
4312
4313 prologue_sal = find_pc_line (start_pc, 0);
4314 if (prologue_sal.line != 0)
4315 {
4316 while (prologue_sal.end < end_pc)
4317 {
4318 struct symtab_and_line sal;
4319
4320 sal = find_pc_line (prologue_sal.end, 0);
4321 if (sal.line == 0)
4322 break;
4323 /* Assume that a consecutive SAL for the same (or larger)
4324 line mark the prologue -> body transition. */
4325 if (sal.line >= prologue_sal.line)
4326 break;
4327 /* The case in which compiler's optimizer/scheduler has
4328 moved instructions into the prologue. We look ahead in
4329 the function looking for address ranges whose
4330 corresponding line number is less the first one that we
4331 found for the function. This is more conservative then
4332 refine_prologue_limit which scans a large number of SALs
4333 looking for any in the prologue */
4334 prologue_sal = sal;
4335 }
4336 }
4337 return prologue_sal.end;
4338 }
4339
4340 /* Skip the PC past function prologue instructions (32-bit version).
4341 This is a helper function for mips_skip_prologue. */
4342
4343 static CORE_ADDR
4344 mips32_skip_prologue (CORE_ADDR pc)
4345 {
4346 t_inst inst;
4347 CORE_ADDR end_pc;
4348 int seen_sp_adjust = 0;
4349 int load_immediate_bytes = 0;
4350
4351 /* Find an upper bound on the prologue. */
4352 end_pc = skip_prologue_using_sal (pc);
4353 if (end_pc == 0)
4354 end_pc = pc + 100; /* Magic. */
4355
4356 /* Skip the typical prologue instructions. These are the stack adjustment
4357 instruction and the instructions that save registers on the stack
4358 or in the gcc frame. */
4359 for (; pc < end_pc; pc += MIPS_INSTLEN)
4360 {
4361 unsigned long high_word;
4362
4363 inst = mips_fetch_instruction (pc);
4364 high_word = (inst >> 16) & 0xffff;
4365
4366 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4367 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4368 seen_sp_adjust = 1;
4369 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4370 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4371 seen_sp_adjust = 1;
4372 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4373 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4374 && (inst & 0x001F0000)) /* reg != $zero */
4375 continue;
4376
4377 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4378 continue;
4379 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4380 /* sx reg,n($s8) */
4381 continue; /* reg != $zero */
4382
4383 /* move $s8,$sp. With different versions of gas this will be either
4384 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4385 Accept any one of these. */
4386 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4387 continue;
4388
4389 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4390 continue;
4391 else if (high_word == 0x3c1c) /* lui $gp,n */
4392 continue;
4393 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4394 continue;
4395 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4396 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4397 continue;
4398 /* The following instructions load $at or $t0 with an immediate
4399 value in preparation for a stack adjustment via
4400 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4401 a local variable, so we accept them only before a stack adjustment
4402 instruction was seen. */
4403 else if (!seen_sp_adjust)
4404 {
4405 if (high_word == 0x3c01 || /* lui $at,n */
4406 high_word == 0x3c08) /* lui $t0,n */
4407 {
4408 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4409 continue;
4410 }
4411 else if (high_word == 0x3421 || /* ori $at,$at,n */
4412 high_word == 0x3508 || /* ori $t0,$t0,n */
4413 high_word == 0x3401 || /* ori $at,$zero,n */
4414 high_word == 0x3408) /* ori $t0,$zero,n */
4415 {
4416 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4417 continue;
4418 }
4419 else
4420 break;
4421 }
4422 else
4423 break;
4424 }
4425
4426 /* In a frameless function, we might have incorrectly
4427 skipped some load immediate instructions. Undo the skipping
4428 if the load immediate was not followed by a stack adjustment. */
4429 if (load_immediate_bytes && !seen_sp_adjust)
4430 pc -= load_immediate_bytes;
4431 return pc;
4432 }
4433
4434 /* Skip the PC past function prologue instructions (16-bit version).
4435 This is a helper function for mips_skip_prologue. */
4436
4437 static CORE_ADDR
4438 mips16_skip_prologue (CORE_ADDR pc)
4439 {
4440 CORE_ADDR end_pc;
4441 int extend_bytes = 0;
4442 int prev_extend_bytes;
4443
4444 /* Table of instructions likely to be found in a function prologue. */
4445 static struct
4446 {
4447 unsigned short inst;
4448 unsigned short mask;
4449 }
4450 table[] =
4451 {
4452 {
4453 0x6300, 0xff00
4454 }
4455 , /* addiu $sp,offset */
4456 {
4457 0xfb00, 0xff00
4458 }
4459 , /* daddiu $sp,offset */
4460 {
4461 0xd000, 0xf800
4462 }
4463 , /* sw reg,n($sp) */
4464 {
4465 0xf900, 0xff00
4466 }
4467 , /* sd reg,n($sp) */
4468 {
4469 0x6200, 0xff00
4470 }
4471 , /* sw $ra,n($sp) */
4472 {
4473 0xfa00, 0xff00
4474 }
4475 , /* sd $ra,n($sp) */
4476 {
4477 0x673d, 0xffff
4478 }
4479 , /* move $s1,sp */
4480 {
4481 0xd980, 0xff80
4482 }
4483 , /* sw $a0-$a3,n($s1) */
4484 {
4485 0x6704, 0xff1c
4486 }
4487 , /* move reg,$a0-$a3 */
4488 {
4489 0xe809, 0xf81f
4490 }
4491 , /* entry pseudo-op */
4492 {
4493 0x0100, 0xff00
4494 }
4495 , /* addiu $s1,$sp,n */
4496 {
4497 0, 0
4498 } /* end of table marker */
4499 };
4500
4501 /* Find an upper bound on the prologue. */
4502 end_pc = skip_prologue_using_sal (pc);
4503 if (end_pc == 0)
4504 end_pc = pc + 100; /* Magic. */
4505
4506 /* Skip the typical prologue instructions. These are the stack adjustment
4507 instruction and the instructions that save registers on the stack
4508 or in the gcc frame. */
4509 for (; pc < end_pc; pc += MIPS16_INSTLEN)
4510 {
4511 unsigned short inst;
4512 int i;
4513
4514 inst = mips_fetch_instruction (pc);
4515
4516 /* Normally we ignore an extend instruction. However, if it is
4517 not followed by a valid prologue instruction, we must adjust
4518 the pc back over the extend so that it won't be considered
4519 part of the prologue. */
4520 if ((inst & 0xf800) == 0xf000) /* extend */
4521 {
4522 extend_bytes = MIPS16_INSTLEN;
4523 continue;
4524 }
4525 prev_extend_bytes = extend_bytes;
4526 extend_bytes = 0;
4527
4528 /* Check for other valid prologue instructions besides extend. */
4529 for (i = 0; table[i].mask != 0; i++)
4530 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4531 break;
4532 if (table[i].mask != 0) /* it was in table? */
4533 continue; /* ignore it */
4534 else
4535 /* non-prologue */
4536 {
4537 /* Return the current pc, adjusted backwards by 2 if
4538 the previous instruction was an extend. */
4539 return pc - prev_extend_bytes;
4540 }
4541 }
4542 return pc;
4543 }
4544
4545 /* To skip prologues, I use this predicate. Returns either PC itself
4546 if the code at PC does not look like a function prologue; otherwise
4547 returns an address that (if we're lucky) follows the prologue. If
4548 LENIENT, then we must skip everything which is involved in setting
4549 up the frame (it's OK to skip more, just so long as we don't skip
4550 anything which might clobber the registers which are being saved.
4551 We must skip more in the case where part of the prologue is in the
4552 delay slot of a non-prologue instruction). */
4553
4554 static CORE_ADDR
4555 mips_skip_prologue (CORE_ADDR pc)
4556 {
4557 /* See if we can determine the end of the prologue via the symbol table.
4558 If so, then return either PC, or the PC after the prologue, whichever
4559 is greater. */
4560
4561 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4562
4563 if (post_prologue_pc != 0)
4564 return max (pc, post_prologue_pc);
4565
4566 /* Can't determine prologue from the symbol table, need to examine
4567 instructions. */
4568
4569 if (pc_is_mips16 (pc))
4570 return mips16_skip_prologue (pc);
4571 else
4572 return mips32_skip_prologue (pc);
4573 }
4574
4575 /* Determine how a return value is stored within the MIPS register
4576 file, given the return type `valtype'. */
4577
4578 struct return_value_word
4579 {
4580 int len;
4581 int reg;
4582 int reg_offset;
4583 int buf_offset;
4584 };
4585
4586 static void
4587 return_value_location (struct type *valtype,
4588 struct return_value_word *hi,
4589 struct return_value_word *lo)
4590 {
4591 int len = TYPE_LENGTH (valtype);
4592
4593 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4594 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4595 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4596 {
4597 if (!FP_REGISTER_DOUBLE && len == 8)
4598 {
4599 /* We need to break a 64bit float in two 32 bit halves and
4600 spread them across a floating-point register pair. */
4601 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4602 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4603 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4604 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8)
4605 ? 4 : 0);
4606 hi->reg_offset = lo->reg_offset;
4607 lo->reg = mips_regnum (current_gdbarch)->fp0 + 0;
4608 hi->reg = mips_regnum (current_gdbarch)->fp0 + 1;
4609 lo->len = 4;
4610 hi->len = 4;
4611 }
4612 else
4613 {
4614 /* The floating point value fits in a single floating-point
4615 register. */
4616 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4617 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8
4618 && len == 4)
4619 ? 4 : 0);
4620 lo->reg = mips_regnum (current_gdbarch)->fp0;
4621 lo->len = len;
4622 lo->buf_offset = 0;
4623 hi->len = 0;
4624 hi->reg_offset = 0;
4625 hi->buf_offset = 0;
4626 hi->reg = 0;
4627 }
4628 }
4629 else
4630 {
4631 /* Locate a result possibly spread across two registers. */
4632 int regnum = 2;
4633 lo->reg = regnum + 0;
4634 hi->reg = regnum + 1;
4635 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4636 && len < MIPS_SAVED_REGSIZE)
4637 {
4638 /* "un-left-justify" the value in the low register */
4639 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4640 lo->len = len;
4641 hi->reg_offset = 0;
4642 hi->len = 0;
4643 }
4644 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4645 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4646 && len < MIPS_SAVED_REGSIZE * 2
4647 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4648 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4649 {
4650 /* "un-left-justify" the value spread across two registers. */
4651 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4652 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4653 hi->reg_offset = 0;
4654 hi->len = len - lo->len;
4655 }
4656 else
4657 {
4658 /* Only perform a partial copy of the second register. */
4659 lo->reg_offset = 0;
4660 hi->reg_offset = 0;
4661 if (len > MIPS_SAVED_REGSIZE)
4662 {
4663 lo->len = MIPS_SAVED_REGSIZE;
4664 hi->len = len - MIPS_SAVED_REGSIZE;
4665 }
4666 else
4667 {
4668 lo->len = len;
4669 hi->len = 0;
4670 }
4671 }
4672 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4673 && register_size (current_gdbarch, regnum) == 8
4674 && MIPS_SAVED_REGSIZE == 4)
4675 {
4676 /* Account for the fact that only the least-signficant part
4677 of the register is being used */
4678 lo->reg_offset += 4;
4679 hi->reg_offset += 4;
4680 }
4681 lo->buf_offset = 0;
4682 hi->buf_offset = lo->len;
4683 }
4684 }
4685
4686 /* Given a return value in `regbuf' with a type `valtype', extract and
4687 copy its value into `valbuf'. */
4688
4689 static void
4690 mips_eabi_extract_return_value (struct type *valtype,
4691 char regbuf[],
4692 char *valbuf)
4693 {
4694 struct return_value_word lo;
4695 struct return_value_word hi;
4696 return_value_location (valtype, &hi, &lo);
4697
4698 memcpy (valbuf + lo.buf_offset,
4699 regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) + lo.reg_offset,
4700 lo.len);
4701
4702 if (hi.len > 0)
4703 memcpy (valbuf + hi.buf_offset,
4704 regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) + hi.reg_offset,
4705 hi.len);
4706 }
4707
4708 static void
4709 mips_o64_extract_return_value (struct type *valtype,
4710 char regbuf[],
4711 char *valbuf)
4712 {
4713 struct return_value_word lo;
4714 struct return_value_word hi;
4715 return_value_location (valtype, &hi, &lo);
4716
4717 memcpy (valbuf + lo.buf_offset,
4718 regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + lo.reg) + lo.reg_offset,
4719 lo.len);
4720
4721 if (hi.len > 0)
4722 memcpy (valbuf + hi.buf_offset,
4723 regbuf + DEPRECATED_REGISTER_BYTE (NUM_REGS + hi.reg) + hi.reg_offset,
4724 hi.len);
4725 }
4726
4727 /* Given a return value in `valbuf' with a type `valtype', write it's
4728 value into the appropriate register. */
4729
4730 static void
4731 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4732 {
4733 char raw_buffer[MAX_REGISTER_SIZE];
4734 struct return_value_word lo;
4735 struct return_value_word hi;
4736 return_value_location (valtype, &hi, &lo);
4737
4738 memset (raw_buffer, 0, sizeof (raw_buffer));
4739 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4740 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
4741 register_size (current_gdbarch, lo.reg));
4742
4743 if (hi.len > 0)
4744 {
4745 memset (raw_buffer, 0, sizeof (raw_buffer));
4746 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4747 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
4748 register_size (current_gdbarch, hi.reg));
4749 }
4750 }
4751
4752 static void
4753 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4754 {
4755 char raw_buffer[MAX_REGISTER_SIZE];
4756 struct return_value_word lo;
4757 struct return_value_word hi;
4758 return_value_location (valtype, &hi, &lo);
4759
4760 memset (raw_buffer, 0, sizeof (raw_buffer));
4761 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4762 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
4763 register_size (current_gdbarch, lo.reg));
4764
4765 if (hi.len > 0)
4766 {
4767 memset (raw_buffer, 0, sizeof (raw_buffer));
4768 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4769 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
4770 register_size (current_gdbarch, hi.reg));
4771 }
4772 }
4773
4774 /* O32 ABI stuff. */
4775
4776 static enum return_value_convention
4777 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
4778 struct regcache *regcache,
4779 void *readbuf, const void *writebuf)
4780 {
4781 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4782
4783 if (TYPE_CODE (type)== TYPE_CODE_STRUCT
4784 || TYPE_CODE (type)== TYPE_CODE_UNION
4785 || TYPE_CODE (type)== TYPE_CODE_ARRAY)
4786 return RETURN_VALUE_STRUCT_CONVENTION;
4787 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4788 && TYPE_LENGTH (type) == 4
4789 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4790 {
4791 /* A single-precision floating-point value. It fits in the
4792 least significant part of FP0. */
4793 if (mips_debug)
4794 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4795 mips_xfer_register (regcache,
4796 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
4797 TYPE_LENGTH (type),
4798 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4799 return RETURN_VALUE_REGISTER_CONVENTION;
4800 }
4801 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4802 && TYPE_LENGTH (type) == 8
4803 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4804 {
4805 /* A double-precision floating-point value. The most
4806 significant part goes in FP1, and the least significant in
4807 FP0. */
4808 if (mips_debug)
4809 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4810 switch (TARGET_BYTE_ORDER)
4811 {
4812 case BFD_ENDIAN_LITTLE:
4813 mips_xfer_register (regcache,
4814 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0,
4815 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4816 mips_xfer_register (regcache,
4817 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1,
4818 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
4819 break;
4820 case BFD_ENDIAN_BIG:
4821 mips_xfer_register (regcache,
4822 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1,
4823 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4824 mips_xfer_register (regcache,
4825 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0,
4826 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
4827 break;
4828 default:
4829 internal_error (__FILE__, __LINE__, "bad switch");
4830 }
4831 return RETURN_VALUE_REGISTER_CONVENTION;
4832 }
4833 #if 0
4834 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4835 && TYPE_NFIELDS (type) <= 2
4836 && TYPE_NFIELDS (type) >= 1
4837 && ((TYPE_NFIELDS (type) == 1
4838 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4839 == TYPE_CODE_FLT))
4840 || (TYPE_NFIELDS (type) == 2
4841 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4842 == TYPE_CODE_FLT)
4843 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4844 == TYPE_CODE_FLT)))
4845 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4846 {
4847 /* A struct that contains one or two floats. Each value is part
4848 in the least significant part of their floating point
4849 register.. */
4850 bfd_byte reg[MAX_REGISTER_SIZE];
4851 int regnum;
4852 int field;
4853 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
4854 field < TYPE_NFIELDS (type);
4855 field++, regnum += 2)
4856 {
4857 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4858 / TARGET_CHAR_BIT);
4859 if (mips_debug)
4860 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4861 mips_xfer_register (regcache, NUM_REGS + regnum,
4862 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4863 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
4864 }
4865 return RETURN_VALUE_REGISTER_CONVENTION;
4866 }
4867 #endif
4868 #if 0
4869 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4870 || TYPE_CODE (type) == TYPE_CODE_UNION)
4871 {
4872 /* A structure or union. Extract the left justified value,
4873 regardless of the byte order. I.e. DO NOT USE
4874 mips_xfer_lower. */
4875 int offset;
4876 int regnum;
4877 for (offset = 0, regnum = V0_REGNUM;
4878 offset < TYPE_LENGTH (type);
4879 offset += register_size (current_gdbarch, regnum), regnum++)
4880 {
4881 int xfer = register_size (current_gdbarch, regnum);
4882 if (offset + xfer > TYPE_LENGTH (type))
4883 xfer = TYPE_LENGTH (type) - offset;
4884 if (mips_debug)
4885 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4886 offset, xfer, regnum);
4887 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4888 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
4889 }
4890 return RETURN_VALUE_REGISTER_CONVENTION;
4891 }
4892 #endif
4893 else
4894 {
4895 /* A scalar extract each part but least-significant-byte
4896 justified. o32 thinks registers are 4 byte, regardless of
4897 the ISA. mips_stack_argsize controls this. */
4898 int offset;
4899 int regnum;
4900 for (offset = 0, regnum = V0_REGNUM;
4901 offset < TYPE_LENGTH (type);
4902 offset += mips_stack_argsize (), regnum++)
4903 {
4904 int xfer = mips_stack_argsize ();
4905 int pos = 0;
4906 if (offset + xfer > TYPE_LENGTH (type))
4907 xfer = TYPE_LENGTH (type) - offset;
4908 if (mips_debug)
4909 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4910 offset, xfer, regnum);
4911 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4912 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
4913 }
4914 return RETURN_VALUE_REGISTER_CONVENTION;
4915 }
4916 }
4917
4918 /* N32/N44 ABI stuff. */
4919
4920 static enum return_value_convention
4921 mips_n32n64_return_value (struct gdbarch *gdbarch,
4922 struct type *type, struct regcache *regcache,
4923 void *readbuf, const void *writebuf)
4924 {
4925 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4926 if (TYPE_CODE (type)== TYPE_CODE_STRUCT
4927 || TYPE_CODE (type)== TYPE_CODE_UNION
4928 || TYPE_CODE (type)== TYPE_CODE_ARRAY
4929 || TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE)
4930 return RETURN_VALUE_STRUCT_CONVENTION;
4931 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4932 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4933 {
4934 /* A floating-point value belongs in the least significant part
4935 of FP0. */
4936 if (mips_debug)
4937 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4938 mips_xfer_register (regcache,
4939 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
4940 TYPE_LENGTH (type),
4941 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4942 return RETURN_VALUE_REGISTER_CONVENTION;
4943 }
4944 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4945 && TYPE_NFIELDS (type) <= 2
4946 && TYPE_NFIELDS (type) >= 1
4947 && ((TYPE_NFIELDS (type) == 1
4948 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4949 == TYPE_CODE_FLT))
4950 || (TYPE_NFIELDS (type) == 2
4951 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4952 == TYPE_CODE_FLT)
4953 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4954 == TYPE_CODE_FLT)))
4955 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4956 {
4957 /* A struct that contains one or two floats. Each value is part
4958 in the least significant part of their floating point
4959 register.. */
4960 bfd_byte reg[MAX_REGISTER_SIZE];
4961 int regnum;
4962 int field;
4963 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
4964 field < TYPE_NFIELDS (type);
4965 field++, regnum += 2)
4966 {
4967 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4968 / TARGET_CHAR_BIT);
4969 if (mips_debug)
4970 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4971 mips_xfer_register (regcache, NUM_REGS + regnum,
4972 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4973 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
4974 }
4975 return RETURN_VALUE_REGISTER_CONVENTION;
4976 }
4977 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4978 || TYPE_CODE (type) == TYPE_CODE_UNION)
4979 {
4980 /* A structure or union. Extract the left justified value,
4981 regardless of the byte order. I.e. DO NOT USE
4982 mips_xfer_lower. */
4983 int offset;
4984 int regnum;
4985 for (offset = 0, regnum = V0_REGNUM;
4986 offset < TYPE_LENGTH (type);
4987 offset += register_size (current_gdbarch, regnum), regnum++)
4988 {
4989 int xfer = register_size (current_gdbarch, regnum);
4990 if (offset + xfer > TYPE_LENGTH (type))
4991 xfer = TYPE_LENGTH (type) - offset;
4992 if (mips_debug)
4993 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4994 offset, xfer, regnum);
4995 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4996 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
4997 }
4998 return RETURN_VALUE_REGISTER_CONVENTION;
4999 }
5000 else
5001 {
5002 /* A scalar extract each part but least-significant-byte
5003 justified. */
5004 int offset;
5005 int regnum;
5006 for (offset = 0, regnum = V0_REGNUM;
5007 offset < TYPE_LENGTH (type);
5008 offset += register_size (current_gdbarch, regnum), regnum++)
5009 {
5010 int xfer = register_size (current_gdbarch, regnum);
5011 int pos = 0;
5012 if (offset + xfer > TYPE_LENGTH (type))
5013 xfer = TYPE_LENGTH (type) - offset;
5014 if (mips_debug)
5015 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5016 offset, xfer, regnum);
5017 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5018 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
5019 }
5020 return RETURN_VALUE_REGISTER_CONVENTION;
5021 }
5022 }
5023
5024 static CORE_ADDR
5025 mips_extract_struct_value_address (struct regcache *regcache)
5026 {
5027 /* FIXME: This will only work at random. The caller passes the
5028 struct_return address in V0, but it is not preserved. It may
5029 still be there, or this may be a random value. */
5030 LONGEST val;
5031
5032 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
5033 return val;
5034 }
5035
5036 /* Exported procedure: Is PC in the signal trampoline code */
5037
5038 static int
5039 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
5040 {
5041 if (sigtramp_address == 0)
5042 fixup_sigtramp ();
5043 return (pc >= sigtramp_address && pc < sigtramp_end);
5044 }
5045
5046 /* Root of all "set mips "/"show mips " commands. This will eventually be
5047 used for all MIPS-specific commands. */
5048
5049 static void
5050 show_mips_command (char *args, int from_tty)
5051 {
5052 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5053 }
5054
5055 static void
5056 set_mips_command (char *args, int from_tty)
5057 {
5058 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5059 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5060 }
5061
5062 /* Commands to show/set the MIPS FPU type. */
5063
5064 static void
5065 show_mipsfpu_command (char *args, int from_tty)
5066 {
5067 char *fpu;
5068 switch (MIPS_FPU_TYPE)
5069 {
5070 case MIPS_FPU_SINGLE:
5071 fpu = "single-precision";
5072 break;
5073 case MIPS_FPU_DOUBLE:
5074 fpu = "double-precision";
5075 break;
5076 case MIPS_FPU_NONE:
5077 fpu = "absent (none)";
5078 break;
5079 default:
5080 internal_error (__FILE__, __LINE__, "bad switch");
5081 }
5082 if (mips_fpu_type_auto)
5083 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5084 fpu);
5085 else
5086 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5087 fpu);
5088 }
5089
5090
5091 static void
5092 set_mipsfpu_command (char *args, int from_tty)
5093 {
5094 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5095 show_mipsfpu_command (args, from_tty);
5096 }
5097
5098 static void
5099 set_mipsfpu_single_command (char *args, int from_tty)
5100 {
5101 mips_fpu_type = MIPS_FPU_SINGLE;
5102 mips_fpu_type_auto = 0;
5103 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5104 }
5105
5106 static void
5107 set_mipsfpu_double_command (char *args, int from_tty)
5108 {
5109 mips_fpu_type = MIPS_FPU_DOUBLE;
5110 mips_fpu_type_auto = 0;
5111 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5112 }
5113
5114 static void
5115 set_mipsfpu_none_command (char *args, int from_tty)
5116 {
5117 mips_fpu_type = MIPS_FPU_NONE;
5118 mips_fpu_type_auto = 0;
5119 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5120 }
5121
5122 static void
5123 set_mipsfpu_auto_command (char *args, int from_tty)
5124 {
5125 mips_fpu_type_auto = 1;
5126 }
5127
5128 /* Attempt to identify the particular processor model by reading the
5129 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
5130 the relevant processor still exists (it dates back to '94) and
5131 secondly this is not the way to do this. The processor type should
5132 be set by forcing an architecture change. */
5133
5134 void
5135 deprecated_mips_set_processor_regs_hack (void)
5136 {
5137 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5138 CORE_ADDR prid;
5139
5140 prid = read_register (PRID_REGNUM);
5141
5142 if ((prid & ~0xf) == 0x700)
5143 tdep->mips_processor_reg_names = mips_r3041_reg_names;
5144 }
5145
5146 /* Just like reinit_frame_cache, but with the right arguments to be
5147 callable as an sfunc. */
5148
5149 static void
5150 reinit_frame_cache_sfunc (char *args, int from_tty,
5151 struct cmd_list_element *c)
5152 {
5153 reinit_frame_cache ();
5154 }
5155
5156 static int
5157 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
5158 {
5159 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5160 mips_extra_func_info_t proc_desc;
5161
5162 /* Search for the function containing this address. Set the low bit
5163 of the address when searching, in case we were given an even address
5164 that is the start of a 16-bit function. If we didn't do this,
5165 the search would fail because the symbol table says the function
5166 starts at an odd address, i.e. 1 byte past the given address. */
5167 memaddr = ADDR_BITS_REMOVE (memaddr);
5168 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
5169
5170 /* Make an attempt to determine if this is a 16-bit function. If
5171 the procedure descriptor exists and the address therein is odd,
5172 it's definitely a 16-bit function. Otherwise, we have to just
5173 guess that if the address passed in is odd, it's 16-bits. */
5174 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5175 disassembler needs to be able to locally determine the ISA, and
5176 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5177 work. */
5178 if (proc_desc)
5179 {
5180 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5181 info->mach = bfd_mach_mips16;
5182 }
5183 else
5184 {
5185 if (pc_is_mips16 (memaddr))
5186 info->mach = bfd_mach_mips16;
5187 }
5188
5189 /* Round down the instruction address to the appropriate boundary. */
5190 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5191
5192 /* Set the disassembler options. */
5193 if (tdep->mips_abi == MIPS_ABI_N32
5194 || tdep->mips_abi == MIPS_ABI_N64)
5195 {
5196 /* Set up the disassembler info, so that we get the right
5197 register names from libopcodes. */
5198 if (tdep->mips_abi == MIPS_ABI_N32)
5199 info->disassembler_options = "gpr-names=n32";
5200 else
5201 info->disassembler_options = "gpr-names=64";
5202 info->flavour = bfd_target_elf_flavour;
5203 }
5204 else
5205 /* This string is not recognized explicitly by the disassembler,
5206 but it tells the disassembler to not try to guess the ABI from
5207 the bfd elf headers, such that, if the user overrides the ABI
5208 of a program linked as NewABI, the disassembly will follow the
5209 register naming conventions specified by the user. */
5210 info->disassembler_options = "gpr-names=32";
5211
5212 /* Call the appropriate disassembler based on the target endian-ness. */
5213 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5214 return print_insn_big_mips (memaddr, info);
5215 else
5216 return print_insn_little_mips (memaddr, info);
5217 }
5218
5219 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5220 counter value to determine whether a 16- or 32-bit breakpoint should be
5221 used. It returns a pointer to a string of bytes that encode a breakpoint
5222 instruction, stores the length of the string to *lenptr, and adjusts pc
5223 (if necessary) to point to the actual memory location where the
5224 breakpoint should be inserted. */
5225
5226 static const unsigned char *
5227 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5228 {
5229 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5230 {
5231 if (pc_is_mips16 (*pcptr))
5232 {
5233 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
5234 *pcptr = unmake_mips16_addr (*pcptr);
5235 *lenptr = sizeof (mips16_big_breakpoint);
5236 return mips16_big_breakpoint;
5237 }
5238 else
5239 {
5240 /* The IDT board uses an unusual breakpoint value, and
5241 sometimes gets confused when it sees the usual MIPS
5242 breakpoint instruction. */
5243 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5244 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5245 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
5246
5247 *lenptr = sizeof (big_breakpoint);
5248
5249 if (strcmp (target_shortname, "mips") == 0)
5250 return idt_big_breakpoint;
5251 else if (strcmp (target_shortname, "ddb") == 0
5252 || strcmp (target_shortname, "pmon") == 0
5253 || strcmp (target_shortname, "lsi") == 0)
5254 return pmon_big_breakpoint;
5255 else
5256 return big_breakpoint;
5257 }
5258 }
5259 else
5260 {
5261 if (pc_is_mips16 (*pcptr))
5262 {
5263 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
5264 *pcptr = unmake_mips16_addr (*pcptr);
5265 *lenptr = sizeof (mips16_little_breakpoint);
5266 return mips16_little_breakpoint;
5267 }
5268 else
5269 {
5270 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5271 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5272 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
5273
5274 *lenptr = sizeof (little_breakpoint);
5275
5276 if (strcmp (target_shortname, "mips") == 0)
5277 return idt_little_breakpoint;
5278 else if (strcmp (target_shortname, "ddb") == 0
5279 || strcmp (target_shortname, "pmon") == 0
5280 || strcmp (target_shortname, "lsi") == 0)
5281 return pmon_little_breakpoint;
5282 else
5283 return little_breakpoint;
5284 }
5285 }
5286 }
5287
5288 /* If PC is in a mips16 call or return stub, return the address of the target
5289 PC, which is either the callee or the caller. There are several
5290 cases which must be handled:
5291
5292 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5293 target PC is in $31 ($ra).
5294 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5295 and the target PC is in $2.
5296 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5297 before the jal instruction, this is effectively a call stub
5298 and the the target PC is in $2. Otherwise this is effectively
5299 a return stub and the target PC is in $18.
5300
5301 See the source code for the stubs in gcc/config/mips/mips16.S for
5302 gory details.
5303
5304 This function implements the SKIP_TRAMPOLINE_CODE macro.
5305 */
5306
5307 static CORE_ADDR
5308 mips_skip_stub (CORE_ADDR pc)
5309 {
5310 char *name;
5311 CORE_ADDR start_addr;
5312
5313 /* Find the starting address and name of the function containing the PC. */
5314 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5315 return 0;
5316
5317 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5318 target PC is in $31 ($ra). */
5319 if (strcmp (name, "__mips16_ret_sf") == 0
5320 || strcmp (name, "__mips16_ret_df") == 0)
5321 return read_signed_register (RA_REGNUM);
5322
5323 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5324 {
5325 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5326 and the target PC is in $2. */
5327 if (name[19] >= '0' && name[19] <= '9')
5328 return read_signed_register (2);
5329
5330 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5331 before the jal instruction, this is effectively a call stub
5332 and the the target PC is in $2. Otherwise this is effectively
5333 a return stub and the target PC is in $18. */
5334 else if (name[19] == 's' || name[19] == 'd')
5335 {
5336 if (pc == start_addr)
5337 {
5338 /* Check if the target of the stub is a compiler-generated
5339 stub. Such a stub for a function bar might have a name
5340 like __fn_stub_bar, and might look like this:
5341 mfc1 $4,$f13
5342 mfc1 $5,$f12
5343 mfc1 $6,$f15
5344 mfc1 $7,$f14
5345 la $1,bar (becomes a lui/addiu pair)
5346 jr $1
5347 So scan down to the lui/addi and extract the target
5348 address from those two instructions. */
5349
5350 CORE_ADDR target_pc = read_signed_register (2);
5351 t_inst inst;
5352 int i;
5353
5354 /* See if the name of the target function is __fn_stub_*. */
5355 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5356 return target_pc;
5357 if (strncmp (name, "__fn_stub_", 10) != 0
5358 && strcmp (name, "etext") != 0
5359 && strcmp (name, "_etext") != 0)
5360 return target_pc;
5361
5362 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5363 The limit on the search is arbitrarily set to 20
5364 instructions. FIXME. */
5365 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5366 {
5367 inst = mips_fetch_instruction (target_pc);
5368 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5369 pc = (inst << 16) & 0xffff0000; /* high word */
5370 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5371 return pc | (inst & 0xffff); /* low word */
5372 }
5373
5374 /* Couldn't find the lui/addui pair, so return stub address. */
5375 return target_pc;
5376 }
5377 else
5378 /* This is the 'return' part of a call stub. The return
5379 address is in $r18. */
5380 return read_signed_register (18);
5381 }
5382 }
5383 return 0; /* not a stub */
5384 }
5385
5386
5387 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5388 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5389
5390 static int
5391 mips_in_call_stub (CORE_ADDR pc, char *name)
5392 {
5393 CORE_ADDR start_addr;
5394
5395 /* Find the starting address of the function containing the PC. If the
5396 caller didn't give us a name, look it up at the same time. */
5397 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5398 return 0;
5399
5400 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5401 {
5402 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5403 if (name[19] >= '0' && name[19] <= '9')
5404 return 1;
5405 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5406 before the jal instruction, this is effectively a call stub. */
5407 else if (name[19] == 's' || name[19] == 'd')
5408 return pc == start_addr;
5409 }
5410
5411 return 0; /* not a stub */
5412 }
5413
5414
5415 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5416 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5417
5418 static int
5419 mips_in_return_stub (CORE_ADDR pc, char *name)
5420 {
5421 CORE_ADDR start_addr;
5422
5423 /* Find the starting address of the function containing the PC. */
5424 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5425 return 0;
5426
5427 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5428 if (strcmp (name, "__mips16_ret_sf") == 0
5429 || strcmp (name, "__mips16_ret_df") == 0)
5430 return 1;
5431
5432 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5433 i.e. after the jal instruction, this is effectively a return stub. */
5434 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5435 && (name[19] == 's' || name[19] == 'd')
5436 && pc != start_addr)
5437 return 1;
5438
5439 return 0; /* not a stub */
5440 }
5441
5442
5443 /* Return non-zero if the PC is in a library helper function that should
5444 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5445
5446 int
5447 mips_ignore_helper (CORE_ADDR pc)
5448 {
5449 char *name;
5450
5451 /* Find the starting address and name of the function containing the PC. */
5452 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5453 return 0;
5454
5455 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5456 that we want to ignore. */
5457 return (strcmp (name, "__mips16_ret_sf") == 0
5458 || strcmp (name, "__mips16_ret_df") == 0);
5459 }
5460
5461
5462 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5463 the register stored on the stack (32) is different to its real raw
5464 size (64). The below ensures that registers are fetched from the
5465 stack using their ABI size and then stored into the RAW_BUFFER
5466 using their raw size.
5467
5468 The alternative to adding this function would be to add an ABI
5469 macro - REGISTER_STACK_SIZE(). */
5470
5471 static void
5472 mips_get_saved_register (char *raw_buffer,
5473 int *optimizedp,
5474 CORE_ADDR *addrp,
5475 struct frame_info *frame,
5476 int regnum,
5477 enum lval_type *lvalp)
5478 {
5479 CORE_ADDR addrx;
5480 enum lval_type lvalx;
5481 int optimizedx;
5482 int realnumx;
5483
5484 /* Always a pseudo. */
5485 gdb_assert (regnum >= NUM_REGS);
5486
5487 /* Make certain that all needed parameters are present. */
5488 if (addrp == NULL)
5489 addrp = &addrx;
5490 if (lvalp == NULL)
5491 lvalp = &lvalx;
5492 if (optimizedp == NULL)
5493 optimizedp = &optimizedx;
5494
5495 if ((regnum % NUM_REGS) == SP_REGNUM)
5496 /* The SP_REGNUM is special, its value is stored in saved_regs.
5497 In fact, it is so special that it can even only be fetched
5498 using a raw register number! Once this code as been converted
5499 to frame-unwind the problem goes away. */
5500 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5501 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5502 &realnumx, raw_buffer);
5503 else
5504 /* Get it from the next frame. */
5505 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5506 regnum, optimizedp, lvalp, addrp,
5507 &realnumx, raw_buffer);
5508 }
5509
5510 /* Immediately after a function call, return the saved pc.
5511 Can't always go through the frames for this because on some machines
5512 the new frame is not set up until the new function executes
5513 some instructions. */
5514
5515 static CORE_ADDR
5516 mips_saved_pc_after_call (struct frame_info *frame)
5517 {
5518 return read_signed_register (RA_REGNUM);
5519 }
5520
5521
5522 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5523 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5524
5525 static int
5526 mips_stab_reg_to_regnum (int num)
5527 {
5528 int regnum;
5529 if (num >= 0 && num < 32)
5530 regnum = num;
5531 else if (num >= 38 && num < 70)
5532 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
5533 else if (num == 70)
5534 regnum = mips_regnum (current_gdbarch)->hi;
5535 else if (num == 71)
5536 regnum = mips_regnum (current_gdbarch)->lo;
5537 else
5538 /* This will hopefully (eventually) provoke a warning. Should
5539 we be calling complaint() here? */
5540 return NUM_REGS + NUM_PSEUDO_REGS;
5541 return NUM_REGS + regnum;
5542 }
5543
5544
5545 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5546 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5547
5548 static int
5549 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5550 {
5551 int regnum;
5552 if (num >= 0 && num < 32)
5553 regnum = num;
5554 else if (num >= 32 && num < 64)
5555 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
5556 else if (num == 64)
5557 regnum = mips_regnum (current_gdbarch)->hi;
5558 else if (num == 65)
5559 regnum = mips_regnum (current_gdbarch)->lo;
5560 else
5561 /* This will hopefully (eventually) provoke a warning. Should we
5562 be calling complaint() here? */
5563 return NUM_REGS + NUM_PSEUDO_REGS;
5564 return NUM_REGS + regnum;
5565 }
5566
5567 static int
5568 mips_register_sim_regno (int regnum)
5569 {
5570 /* Only makes sense to supply raw registers. */
5571 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5572 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5573 decide if it is valid. Should instead define a standard sim/gdb
5574 register numbering scheme. */
5575 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5576 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5577 return regnum;
5578 else
5579 return LEGACY_SIM_REGNO_IGNORE;
5580 }
5581
5582
5583 /* Convert an integer into an address. By first converting the value
5584 into a pointer and then extracting it signed, the address is
5585 guarenteed to be correctly sign extended. */
5586
5587 static CORE_ADDR
5588 mips_integer_to_address (struct type *type, void *buf)
5589 {
5590 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5591 LONGEST val = unpack_long (type, buf);
5592 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5593 return extract_signed_integer (tmp,
5594 TYPE_LENGTH (builtin_type_void_data_ptr));
5595 }
5596
5597 static void
5598 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5599 {
5600 enum mips_abi *abip = (enum mips_abi *) obj;
5601 const char *name = bfd_get_section_name (abfd, sect);
5602
5603 if (*abip != MIPS_ABI_UNKNOWN)
5604 return;
5605
5606 if (strncmp (name, ".mdebug.", 8) != 0)
5607 return;
5608
5609 if (strcmp (name, ".mdebug.abi32") == 0)
5610 *abip = MIPS_ABI_O32;
5611 else if (strcmp (name, ".mdebug.abiN32") == 0)
5612 *abip = MIPS_ABI_N32;
5613 else if (strcmp (name, ".mdebug.abi64") == 0)
5614 *abip = MIPS_ABI_N64;
5615 else if (strcmp (name, ".mdebug.abiO64") == 0)
5616 *abip = MIPS_ABI_O64;
5617 else if (strcmp (name, ".mdebug.eabi32") == 0)
5618 *abip = MIPS_ABI_EABI32;
5619 else if (strcmp (name, ".mdebug.eabi64") == 0)
5620 *abip = MIPS_ABI_EABI64;
5621 else
5622 warning ("unsupported ABI %s.", name + 8);
5623 }
5624
5625 static enum mips_abi
5626 global_mips_abi (void)
5627 {
5628 int i;
5629
5630 for (i = 0; mips_abi_strings[i] != NULL; i++)
5631 if (mips_abi_strings[i] == mips_abi_string)
5632 return (enum mips_abi) i;
5633
5634 internal_error (__FILE__, __LINE__,
5635 "unknown ABI string");
5636 }
5637
5638 static struct gdbarch *
5639 mips_gdbarch_init (struct gdbarch_info info,
5640 struct gdbarch_list *arches)
5641 {
5642 struct gdbarch *gdbarch;
5643 struct gdbarch_tdep *tdep;
5644 int elf_flags;
5645 enum mips_abi mips_abi, found_abi, wanted_abi;
5646 int num_regs;
5647
5648 elf_flags = 0;
5649
5650 if (info.abfd)
5651 {
5652 /* First of all, extract the elf_flags, if available. */
5653 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5654 elf_flags = elf_elfheader (info.abfd)->e_flags;
5655 }
5656
5657 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5658 switch ((elf_flags & EF_MIPS_ABI))
5659 {
5660 case E_MIPS_ABI_O32:
5661 mips_abi = MIPS_ABI_O32;
5662 break;
5663 case E_MIPS_ABI_O64:
5664 mips_abi = MIPS_ABI_O64;
5665 break;
5666 case E_MIPS_ABI_EABI32:
5667 mips_abi = MIPS_ABI_EABI32;
5668 break;
5669 case E_MIPS_ABI_EABI64:
5670 mips_abi = MIPS_ABI_EABI64;
5671 break;
5672 default:
5673 if ((elf_flags & EF_MIPS_ABI2))
5674 mips_abi = MIPS_ABI_N32;
5675 else
5676 mips_abi = MIPS_ABI_UNKNOWN;
5677 break;
5678 }
5679
5680 /* GCC creates a pseudo-section whose name describes the ABI. */
5681 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5682 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5683
5684 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5685 Use the ABI from the last architecture if there is one. */
5686 if (info.abfd == NULL && arches != NULL)
5687 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5688
5689 /* Try the architecture for any hint of the correct ABI. */
5690 if (mips_abi == MIPS_ABI_UNKNOWN
5691 && info.bfd_arch_info != NULL
5692 && info.bfd_arch_info->arch == bfd_arch_mips)
5693 {
5694 switch (info.bfd_arch_info->mach)
5695 {
5696 case bfd_mach_mips3900:
5697 mips_abi = MIPS_ABI_EABI32;
5698 break;
5699 case bfd_mach_mips4100:
5700 case bfd_mach_mips5000:
5701 mips_abi = MIPS_ABI_EABI64;
5702 break;
5703 case bfd_mach_mips8000:
5704 case bfd_mach_mips10000:
5705 /* On Irix, ELF64 executables use the N64 ABI. The
5706 pseudo-sections which describe the ABI aren't present
5707 on IRIX. (Even for executables created by gcc.) */
5708 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5709 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5710 mips_abi = MIPS_ABI_N64;
5711 else
5712 mips_abi = MIPS_ABI_N32;
5713 break;
5714 }
5715 }
5716
5717 if (mips_abi == MIPS_ABI_UNKNOWN)
5718 mips_abi = MIPS_ABI_O32;
5719
5720 /* Now that we have found what the ABI for this binary would be,
5721 check whether the user is overriding it. */
5722 found_abi = mips_abi;
5723 wanted_abi = global_mips_abi ();
5724 if (wanted_abi != MIPS_ABI_UNKNOWN)
5725 mips_abi = wanted_abi;
5726
5727 if (gdbarch_debug)
5728 {
5729 fprintf_unfiltered (gdb_stdlog,
5730 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5731 elf_flags);
5732 fprintf_unfiltered (gdb_stdlog,
5733 "mips_gdbarch_init: mips_abi = %d\n",
5734 mips_abi);
5735 fprintf_unfiltered (gdb_stdlog,
5736 "mips_gdbarch_init: found_mips_abi = %d\n",
5737 found_abi);
5738 }
5739
5740 /* try to find a pre-existing architecture */
5741 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5742 arches != NULL;
5743 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5744 {
5745 /* MIPS needs to be pedantic about which ABI the object is
5746 using. */
5747 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5748 continue;
5749 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5750 continue;
5751 /* Need to be pedantic about which register virtual size is
5752 used. */
5753 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5754 != mips64_transfers_32bit_regs_p)
5755 continue;
5756 return arches->gdbarch;
5757 }
5758
5759 /* Need a new architecture. Fill in a target specific vector. */
5760 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5761 gdbarch = gdbarch_alloc (&info, tdep);
5762 tdep->elf_flags = elf_flags;
5763 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5764
5765 /* Initially set everything according to the default ABI/ISA. */
5766 set_gdbarch_short_bit (gdbarch, 16);
5767 set_gdbarch_int_bit (gdbarch, 32);
5768 set_gdbarch_float_bit (gdbarch, 32);
5769 set_gdbarch_double_bit (gdbarch, 64);
5770 set_gdbarch_long_double_bit (gdbarch, 64);
5771 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5772 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5773 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5774 tdep->found_abi = found_abi;
5775 tdep->mips_abi = mips_abi;
5776
5777 set_gdbarch_elf_make_msymbol_special (gdbarch,
5778 mips_elf_make_msymbol_special);
5779
5780 /* Fill in the OS dependant register numbers. */
5781 {
5782 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5783 struct mips_regnum);
5784 tdep->regnum = regnum;
5785 if (info.osabi == GDB_OSABI_IRIX)
5786 {
5787 regnum->fp0 = 32;
5788 regnum->pc = 64;
5789 regnum->cause = 65;
5790 regnum->badvaddr = 66;
5791 regnum->hi = 67;
5792 regnum->lo = 68;
5793 regnum->fp_control_status = 69;
5794 regnum->fp_implementation_revision = 70;
5795 num_regs = 71;
5796 }
5797 else
5798 {
5799 regnum->lo = MIPS_EMBED_LO_REGNUM;
5800 regnum->hi = MIPS_EMBED_HI_REGNUM;
5801 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5802 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5803 regnum->pc = MIPS_EMBED_PC_REGNUM;
5804 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5805 regnum->fp_control_status = 70;
5806 regnum->fp_implementation_revision = 71;
5807 num_regs = 90;
5808 }
5809 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
5810 replaced by read_pc? */
5811 set_gdbarch_pc_regnum (gdbarch, regnum->pc);
5812 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5813 set_gdbarch_num_regs (gdbarch, num_regs);
5814 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5815 }
5816
5817 switch (mips_abi)
5818 {
5819 case MIPS_ABI_O32:
5820 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5821 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5822 tdep->mips_default_saved_regsize = 4;
5823 tdep->mips_default_stack_argsize = 4;
5824 tdep->mips_fp_register_double = 0;
5825 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5826 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5827 tdep->default_mask_address_p = 0;
5828 set_gdbarch_long_bit (gdbarch, 32);
5829 set_gdbarch_ptr_bit (gdbarch, 32);
5830 set_gdbarch_long_long_bit (gdbarch, 64);
5831 set_gdbarch_deprecated_reg_struct_has_addr
5832 (gdbarch, mips_o32_reg_struct_has_addr);
5833 break;
5834 case MIPS_ABI_O64:
5835 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5836 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5837 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5838 tdep->mips_default_saved_regsize = 8;
5839 tdep->mips_default_stack_argsize = 8;
5840 tdep->mips_fp_register_double = 1;
5841 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5842 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5843 tdep->default_mask_address_p = 0;
5844 set_gdbarch_long_bit (gdbarch, 32);
5845 set_gdbarch_ptr_bit (gdbarch, 32);
5846 set_gdbarch_long_long_bit (gdbarch, 64);
5847 set_gdbarch_deprecated_reg_struct_has_addr
5848 (gdbarch, mips_o32_reg_struct_has_addr);
5849 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
5850 break;
5851 case MIPS_ABI_EABI32:
5852 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5853 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5854 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5855 tdep->mips_default_saved_regsize = 4;
5856 tdep->mips_default_stack_argsize = 4;
5857 tdep->mips_fp_register_double = 0;
5858 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5859 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5860 tdep->default_mask_address_p = 0;
5861 set_gdbarch_long_bit (gdbarch, 32);
5862 set_gdbarch_ptr_bit (gdbarch, 32);
5863 set_gdbarch_long_long_bit (gdbarch, 64);
5864 set_gdbarch_deprecated_reg_struct_has_addr
5865 (gdbarch, mips_eabi_reg_struct_has_addr);
5866 set_gdbarch_use_struct_convention (gdbarch,
5867 mips_eabi_use_struct_convention);
5868 break;
5869 case MIPS_ABI_EABI64:
5870 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5871 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5872 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5873 tdep->mips_default_saved_regsize = 8;
5874 tdep->mips_default_stack_argsize = 8;
5875 tdep->mips_fp_register_double = 1;
5876 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5877 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5878 tdep->default_mask_address_p = 0;
5879 set_gdbarch_long_bit (gdbarch, 64);
5880 set_gdbarch_ptr_bit (gdbarch, 64);
5881 set_gdbarch_long_long_bit (gdbarch, 64);
5882 set_gdbarch_deprecated_reg_struct_has_addr
5883 (gdbarch, mips_eabi_reg_struct_has_addr);
5884 set_gdbarch_use_struct_convention (gdbarch,
5885 mips_eabi_use_struct_convention);
5886 break;
5887 case MIPS_ABI_N32:
5888 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5889 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5890 tdep->mips_default_saved_regsize = 8;
5891 tdep->mips_default_stack_argsize = 8;
5892 tdep->mips_fp_register_double = 1;
5893 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5894 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5895 tdep->default_mask_address_p = 0;
5896 set_gdbarch_long_bit (gdbarch, 32);
5897 set_gdbarch_ptr_bit (gdbarch, 32);
5898 set_gdbarch_long_long_bit (gdbarch, 64);
5899 set_gdbarch_deprecated_reg_struct_has_addr
5900 (gdbarch, mips_n32n64_reg_struct_has_addr);
5901 break;
5902 case MIPS_ABI_N64:
5903 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5904 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5905 tdep->mips_default_saved_regsize = 8;
5906 tdep->mips_default_stack_argsize = 8;
5907 tdep->mips_fp_register_double = 1;
5908 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5909 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5910 tdep->default_mask_address_p = 0;
5911 set_gdbarch_long_bit (gdbarch, 64);
5912 set_gdbarch_ptr_bit (gdbarch, 64);
5913 set_gdbarch_long_long_bit (gdbarch, 64);
5914 set_gdbarch_deprecated_reg_struct_has_addr
5915 (gdbarch, mips_n32n64_reg_struct_has_addr);
5916 break;
5917 default:
5918 internal_error (__FILE__, __LINE__,
5919 "unknown ABI in switch");
5920 }
5921
5922 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5923 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5924 comment:
5925
5926 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5927 flag in object files because to do so would make it impossible to
5928 link with libraries compiled without "-gp32". This is
5929 unnecessarily restrictive.
5930
5931 We could solve this problem by adding "-gp32" multilibs to gcc,
5932 but to set this flag before gcc is built with such multilibs will
5933 break too many systems.''
5934
5935 But even more unhelpfully, the default linker output target for
5936 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5937 for 64-bit programs - you need to change the ABI to change this,
5938 and not all gcc targets support that currently. Therefore using
5939 this flag to detect 32-bit mode would do the wrong thing given
5940 the current gcc - it would make GDB treat these 64-bit programs
5941 as 32-bit programs by default. */
5942
5943 /* enable/disable the MIPS FPU */
5944 if (!mips_fpu_type_auto)
5945 tdep->mips_fpu_type = mips_fpu_type;
5946 else if (info.bfd_arch_info != NULL
5947 && info.bfd_arch_info->arch == bfd_arch_mips)
5948 switch (info.bfd_arch_info->mach)
5949 {
5950 case bfd_mach_mips3900:
5951 case bfd_mach_mips4100:
5952 case bfd_mach_mips4111:
5953 tdep->mips_fpu_type = MIPS_FPU_NONE;
5954 break;
5955 case bfd_mach_mips4650:
5956 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5957 break;
5958 default:
5959 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5960 break;
5961 }
5962 else
5963 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5964
5965 /* MIPS version of register names. */
5966 set_gdbarch_register_name (gdbarch, mips_register_name);
5967 if (info.osabi == GDB_OSABI_IRIX)
5968 tdep->mips_processor_reg_names = mips_irix_reg_names;
5969 else if (info.bfd_arch_info != NULL && info.bfd_arch_info->mach == bfd_mach_mips3900)
5970 tdep->mips_processor_reg_names = mips_tx39_reg_names;
5971 else
5972 tdep->mips_processor_reg_names = mips_generic_reg_names;
5973 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5974 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5975 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5976 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5977
5978 /* Add/remove bits from an address. The MIPS needs be careful to
5979 ensure that all 32 bit addresses are sign extended to 64 bits. */
5980 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5981
5982 /* There's a mess in stack frame creation. See comments in
5983 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5984 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5985
5986 /* Map debug register numbers onto internal register numbers. */
5987 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5988 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5989 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5990 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5991 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5992
5993 /* Initialize a frame */
5994 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
5995 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5996
5997 /* MIPS version of CALL_DUMMY */
5998
5999 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6000 replaced by a command, and all targets will default to on stack
6001 (regardless of the stack's execute status). */
6002 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
6003 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
6004 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6005 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6006
6007 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
6008 set_gdbarch_frameless_function_invocation (gdbarch,
6009 generic_frameless_function_invocation_not);
6010 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6011 set_gdbarch_frame_args_skip (gdbarch, 0);
6012
6013 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
6014
6015 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6016 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6017 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6018
6019 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6020 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6021
6022 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6023 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6024 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6025
6026 set_gdbarch_function_start_offset (gdbarch, 0);
6027
6028 set_gdbarch_register_type (gdbarch, mips_register_type);
6029
6030 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
6031 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6032
6033 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6034
6035 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6036 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6037 need to all be folded into the target vector. Since they are
6038 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6039 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6040 is sitting on? */
6041 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6042
6043 /* Hook in OS ABI-specific overrides, if they have been registered. */
6044 gdbarch_init_osabi (info, gdbarch);
6045
6046 set_gdbarch_extract_struct_value_address (gdbarch,
6047 mips_extract_struct_value_address);
6048
6049 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6050
6051 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6052 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6053
6054 return gdbarch;
6055 }
6056
6057 static void
6058 mips_abi_update (char *ignore_args, int from_tty,
6059 struct cmd_list_element *c)
6060 {
6061 struct gdbarch_info info;
6062
6063 /* Force the architecture to update, and (if it's a MIPS architecture)
6064 mips_gdbarch_init will take care of the rest. */
6065 gdbarch_info_init (&info);
6066 gdbarch_update_p (info);
6067 }
6068
6069 /* Print out which MIPS ABI is in use. */
6070
6071 static void
6072 show_mips_abi (char *ignore_args, int from_tty)
6073 {
6074 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6075 printf_filtered (
6076 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6077 else
6078 {
6079 enum mips_abi global_abi = global_mips_abi ();
6080 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6081 const char *actual_abi_str = mips_abi_strings[actual_abi];
6082
6083 if (global_abi == MIPS_ABI_UNKNOWN)
6084 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6085 actual_abi_str);
6086 else if (global_abi == actual_abi)
6087 printf_filtered (
6088 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6089 actual_abi_str);
6090 else
6091 {
6092 /* Probably shouldn't happen... */
6093 printf_filtered (
6094 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6095 actual_abi_str,
6096 mips_abi_strings[global_abi]);
6097 }
6098 }
6099 }
6100
6101 static void
6102 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6103 {
6104 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6105 if (tdep != NULL)
6106 {
6107 int ef_mips_arch;
6108 int ef_mips_32bitmode;
6109 /* determine the ISA */
6110 switch (tdep->elf_flags & EF_MIPS_ARCH)
6111 {
6112 case E_MIPS_ARCH_1:
6113 ef_mips_arch = 1;
6114 break;
6115 case E_MIPS_ARCH_2:
6116 ef_mips_arch = 2;
6117 break;
6118 case E_MIPS_ARCH_3:
6119 ef_mips_arch = 3;
6120 break;
6121 case E_MIPS_ARCH_4:
6122 ef_mips_arch = 4;
6123 break;
6124 default:
6125 ef_mips_arch = 0;
6126 break;
6127 }
6128 /* determine the size of a pointer */
6129 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6130 fprintf_unfiltered (file,
6131 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6132 tdep->elf_flags);
6133 fprintf_unfiltered (file,
6134 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6135 ef_mips_32bitmode);
6136 fprintf_unfiltered (file,
6137 "mips_dump_tdep: ef_mips_arch = %d\n",
6138 ef_mips_arch);
6139 fprintf_unfiltered (file,
6140 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6141 tdep->mips_abi,
6142 mips_abi_strings[tdep->mips_abi]);
6143 fprintf_unfiltered (file,
6144 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6145 mips_mask_address_p (),
6146 tdep->default_mask_address_p);
6147 }
6148 fprintf_unfiltered (file,
6149 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6150 FP_REGISTER_DOUBLE);
6151 fprintf_unfiltered (file,
6152 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6153 MIPS_DEFAULT_FPU_TYPE,
6154 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6155 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6156 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6157 : "???"));
6158 fprintf_unfiltered (file,
6159 "mips_dump_tdep: MIPS_EABI = %d\n",
6160 MIPS_EABI);
6161 fprintf_unfiltered (file,
6162 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6163 MIPS_FPU_TYPE,
6164 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6165 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6166 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6167 : "???"));
6168 fprintf_unfiltered (file,
6169 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6170 MIPS_DEFAULT_SAVED_REGSIZE);
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6173 FP_REGISTER_DOUBLE);
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6176 MIPS_DEFAULT_STACK_ARGSIZE);
6177 fprintf_unfiltered (file,
6178 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6179 MIPS_STACK_ARGSIZE);
6180 fprintf_unfiltered (file,
6181 "mips_dump_tdep: A0_REGNUM = %d\n",
6182 A0_REGNUM);
6183 fprintf_unfiltered (file,
6184 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6185 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6186 fprintf_unfiltered (file,
6187 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6188 XSTRING (ATTACH_DETACH));
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6191 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6194 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6195 fprintf_unfiltered (file,
6196 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6197 FIRST_EMBED_REGNUM);
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6200 XSTRING (IGNORE_HELPER_CALL (PC)));
6201 fprintf_unfiltered (file,
6202 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6203 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6204 fprintf_unfiltered (file,
6205 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6206 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6207 fprintf_unfiltered (file,
6208 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6209 LAST_EMBED_REGNUM);
6210 #ifdef MACHINE_CPROC_FP_OFFSET
6211 fprintf_unfiltered (file,
6212 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6213 MACHINE_CPROC_FP_OFFSET);
6214 #endif
6215 #ifdef MACHINE_CPROC_PC_OFFSET
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6218 MACHINE_CPROC_PC_OFFSET);
6219 #endif
6220 #ifdef MACHINE_CPROC_SP_OFFSET
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6223 MACHINE_CPROC_SP_OFFSET);
6224 #endif
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6227 MIPS16_INSTLEN);
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6232 fprintf_unfiltered (file,
6233 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6234 MIPS_INSTLEN);
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6237 MIPS_LAST_ARG_REGNUM,
6238 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6241 MIPS_NUMREGS);
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6244 MIPS_SAVED_REGSIZE);
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: PRID_REGNUM = %d\n",
6247 PRID_REGNUM);
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6250 fprintf_unfiltered (file,
6251 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: PROC_PC_REG = function?\n");
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: PS_REGNUM = %d\n",
6274 PS_REGNUM);
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: RA_REGNUM = %d\n",
6277 RA_REGNUM);
6278 #ifdef SAVED_BYTES
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: SAVED_BYTES = %d\n",
6281 SAVED_BYTES);
6282 #endif
6283 #ifdef SAVED_FP
6284 fprintf_unfiltered (file,
6285 "mips_dump_tdep: SAVED_FP = %d\n",
6286 SAVED_FP);
6287 #endif
6288 #ifdef SAVED_PC
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: SAVED_PC = %d\n",
6291 SAVED_PC);
6292 #endif
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6295 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6296 fprintf_unfiltered (file,
6297 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6300 SIGFRAME_BASE);
6301 fprintf_unfiltered (file,
6302 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6303 SIGFRAME_FPREGSAVE_OFF);
6304 fprintf_unfiltered (file,
6305 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6306 SIGFRAME_PC_OFF);
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6309 SIGFRAME_REGSAVE_OFF);
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6312 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6313 fprintf_unfiltered (file,
6314 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6315 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6318 SOFTWARE_SINGLE_STEP_P ());
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6321 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6322 #ifdef STACK_END_ADDR
6323 fprintf_unfiltered (file,
6324 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6325 STACK_END_ADDR);
6326 #endif
6327 fprintf_unfiltered (file,
6328 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6329 XSTRING (STEP_SKIPS_DELAY (PC)));
6330 fprintf_unfiltered (file,
6331 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6332 STEP_SKIPS_DELAY_P);
6333 fprintf_unfiltered (file,
6334 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6335 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6336 fprintf_unfiltered (file,
6337 "mips_dump_tdep: T9_REGNUM = %d\n",
6338 T9_REGNUM);
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6343 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6346 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6347 #ifdef TRACE_CLEAR
6348 fprintf_unfiltered (file,
6349 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6350 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6351 #endif
6352 #ifdef TRACE_FLAVOR
6353 fprintf_unfiltered (file,
6354 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6355 TRACE_FLAVOR);
6356 #endif
6357 #ifdef TRACE_FLAVOR_SIZE
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6360 TRACE_FLAVOR_SIZE);
6361 #endif
6362 #ifdef TRACE_SET
6363 fprintf_unfiltered (file,
6364 "mips_dump_tdep: TRACE_SET # %s\n",
6365 XSTRING (TRACE_SET (X,STATE)));
6366 #endif
6367 #ifdef UNUSED_REGNUM
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6370 UNUSED_REGNUM);
6371 #endif
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: V0_REGNUM = %d\n",
6374 V0_REGNUM);
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6377 (long) VM_MIN_ADDRESS);
6378 fprintf_unfiltered (file,
6379 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6380 ZERO_REGNUM);
6381 fprintf_unfiltered (file,
6382 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6383 _PROC_MAGIC_);
6384 }
6385
6386 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6387
6388 void
6389 _initialize_mips_tdep (void)
6390 {
6391 static struct cmd_list_element *mipsfpulist = NULL;
6392 struct cmd_list_element *c;
6393
6394 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6395 if (MIPS_ABI_LAST + 1
6396 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6397 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6398
6399 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6400
6401 /* Add root prefix command for all "set mips"/"show mips" commands */
6402 add_prefix_cmd ("mips", no_class, set_mips_command,
6403 "Various MIPS specific commands.",
6404 &setmipscmdlist, "set mips ", 0, &setlist);
6405
6406 add_prefix_cmd ("mips", no_class, show_mips_command,
6407 "Various MIPS specific commands.",
6408 &showmipscmdlist, "show mips ", 0, &showlist);
6409
6410 /* Allow the user to override the saved register size. */
6411 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6412 class_obscure,
6413 size_enums,
6414 &mips_saved_regsize_string, "\
6415 Set size of general purpose registers saved on the stack.\n\
6416 This option can be set to one of:\n\
6417 32 - Force GDB to treat saved GP registers as 32-bit\n\
6418 64 - Force GDB to treat saved GP registers as 64-bit\n\
6419 auto - Allow GDB to use the target's default setting or autodetect the\n\
6420 saved GP register size from information contained in the executable.\n\
6421 (default: auto)",
6422 &setmipscmdlist),
6423 &showmipscmdlist);
6424
6425 /* Allow the user to override the argument stack size. */
6426 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6427 class_obscure,
6428 size_enums,
6429 &mips_stack_argsize_string, "\
6430 Set the amount of stack space reserved for each argument.\n\
6431 This option can be set to one of:\n\
6432 32 - Force GDB to allocate 32-bit chunks per argument\n\
6433 64 - Force GDB to allocate 64-bit chunks per argument\n\
6434 auto - Allow GDB to determine the correct setting from the current\n\
6435 target and executable (default)",
6436 &setmipscmdlist),
6437 &showmipscmdlist);
6438
6439 /* Allow the user to override the ABI. */
6440 c = add_set_enum_cmd
6441 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6442 "Set the ABI used by this program.\n"
6443 "This option can be set to one of:\n"
6444 " auto - the default ABI associated with the current binary\n"
6445 " o32\n"
6446 " o64\n"
6447 " n32\n"
6448 " n64\n"
6449 " eabi32\n"
6450 " eabi64",
6451 &setmipscmdlist);
6452 set_cmd_sfunc (c, mips_abi_update);
6453 add_cmd ("abi", class_obscure, show_mips_abi,
6454 "Show ABI in use by MIPS target", &showmipscmdlist);
6455
6456 /* Let the user turn off floating point and set the fence post for
6457 heuristic_proc_start. */
6458
6459 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6460 "Set use of MIPS floating-point coprocessor.",
6461 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6462 add_cmd ("single", class_support, set_mipsfpu_single_command,
6463 "Select single-precision MIPS floating-point coprocessor.",
6464 &mipsfpulist);
6465 add_cmd ("double", class_support, set_mipsfpu_double_command,
6466 "Select double-precision MIPS floating-point coprocessor.",
6467 &mipsfpulist);
6468 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6469 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6470 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6471 add_cmd ("none", class_support, set_mipsfpu_none_command,
6472 "Select no MIPS floating-point coprocessor.",
6473 &mipsfpulist);
6474 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6475 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6476 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6477 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6478 "Select MIPS floating-point coprocessor automatically.",
6479 &mipsfpulist);
6480 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6481 "Show current use of MIPS floating-point coprocessor target.",
6482 &showlist);
6483
6484 /* We really would like to have both "0" and "unlimited" work, but
6485 command.c doesn't deal with that. So make it a var_zinteger
6486 because the user can always use "999999" or some such for unlimited. */
6487 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6488 (char *) &heuristic_fence_post,
6489 "\
6490 Set the distance searched for the start of a function.\n\
6491 If you are debugging a stripped executable, GDB needs to search through the\n\
6492 program for the start of a function. This command sets the distance of the\n\
6493 search. The only need to set it is when debugging a stripped executable.",
6494 &setlist);
6495 /* We need to throw away the frame cache when we set this, since it
6496 might change our ability to get backtraces. */
6497 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6498 add_show_from_set (c, &showlist);
6499
6500 /* Allow the user to control whether the upper bits of 64-bit
6501 addresses should be zeroed. */
6502 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6503 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6504 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6505 allow GDB to determine the correct value.\n", "\
6506 Show zeroing of upper 32 bits of 64-bit addresses.",
6507 NULL, show_mask_address,
6508 &setmipscmdlist, &showmipscmdlist);
6509
6510 /* Allow the user to control the size of 32 bit registers within the
6511 raw remote packet. */
6512 add_setshow_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6513 var_boolean, &mips64_transfers_32bit_regs_p, "\
6514 Set compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
6515 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6516 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6517 64 bits for others. Use \"off\" to disable compatibility mode", "\
6518 Show compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
6519 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6520 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6521 64 bits for others. Use \"off\" to disable compatibility mode",
6522 set_mips64_transfers_32bit_regs, NULL,
6523 &setlist, &showlist);
6524
6525 /* Debug this files internals. */
6526 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6527 &mips_debug, "Set mips debugging.\n\
6528 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6529 &showdebuglist);
6530 }
This page took 0.166829 seconds and 4 git commands to generate.