* breakpoint.c (remove_sal): New.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43 #include "block.h"
44 #include "reggroups.h"
45 #include "opcode/mips.h"
46 #include "elf/mips.h"
47 #include "elf-bfd.h"
48 #include "symcat.h"
49 #include "sim-regno.h"
50 #include "dis-asm.h"
51 #include "frame-unwind.h"
52 #include "frame-base.h"
53 #include "trad-frame.h"
54 #include "infcall.h"
55 #include "floatformat.h"
56 #include "remote.h"
57 #include "target-descriptions.h"
58 #include "dwarf2-frame.h"
59 #include "user-regs.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67 #define ST0_FR (1 << 26)
68
69 /* The sizes of floating point registers. */
70
71 enum
72 {
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75 };
76
77 enum
78 {
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81 };
82
83 static const char *mips_abi_string;
84
85 static const char *mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
89 "n64",
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94 };
95
96 /* The standard register names, and all the valid aliases for them. */
97 struct register_alias
98 {
99 const char *name;
100 int regnum;
101 };
102
103 /* Aliases for o32 and most other ABIs. */
104 const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109 };
110
111 /* Aliases for n32 and n64. */
112 const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117 };
118
119 /* Aliases for ABI-independent registers. */
120 const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123 #define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128 #undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143 };
144
145 /* Some MIPS boards don't support floating point while others only
146 support single-precision floating-point operations. */
147
148 enum mips_fpu_type
149 {
150 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
151 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
152 MIPS_FPU_NONE /* No floating point. */
153 };
154
155 #ifndef MIPS_DEFAULT_FPU_TYPE
156 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157 #endif
158 static int mips_fpu_type_auto = 1;
159 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
160
161 static int mips_debug = 0;
162
163 /* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
166 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
168 struct target_desc *mips_tdesc_gp32;
169 struct target_desc *mips_tdesc_gp64;
170
171 /* MIPS specific per-architecture information */
172 struct gdbarch_tdep
173 {
174 /* from the elf header */
175 int elf_flags;
176
177 /* mips options */
178 enum mips_abi mips_abi;
179 enum mips_abi found_abi;
180 enum mips_fpu_type mips_fpu_type;
181 int mips_last_arg_regnum;
182 int mips_last_fp_arg_regnum;
183 int default_mask_address_p;
184 /* Is the target using 64-bit raw integer registers but only
185 storing a left-aligned 32-bit value in each? */
186 int mips64_transfers_32bit_regs_p;
187 /* Indexes for various registers. IRIX and embedded have
188 different values. This contains the "public" fields. Don't
189 add any that do not need to be public. */
190 const struct mips_regnum *regnum;
191 /* Register names table for the current register set. */
192 const char **mips_processor_reg_names;
193
194 /* The size of register data available from the target, if known.
195 This doesn't quite obsolete the manual
196 mips64_transfers_32bit_regs_p, since that is documented to force
197 left alignment even for big endian (very strange). */
198 int register_size_valid_p;
199 int register_size;
200 };
201
202 static int
203 n32n64_floatformat_always_valid (const struct floatformat *fmt,
204 const void *from)
205 {
206 return 1;
207 }
208
209 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
210 They are implemented as a pair of 64bit doubles where the high
211 part holds the result of the operation rounded to double, and
212 the low double holds the difference between the exact result and
213 the rounded result. So "high" + "low" contains the result with
214 added precision. Unfortunately, the floatformat structure used
215 by GDB is not powerful enough to describe this format. As a temporary
216 measure, we define a 128bit floatformat that only uses the high part.
217 We lose a bit of precision but that's probably the best we can do
218 for now with the current infrastructure. */
219
220 static const struct floatformat floatformat_n32n64_long_double_big =
221 {
222 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
223 floatformat_intbit_no,
224 "floatformat_n32n64_long_double_big",
225 n32n64_floatformat_always_valid
226 };
227
228 static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
229 {
230 &floatformat_n32n64_long_double_big,
231 &floatformat_n32n64_long_double_big
232 };
233
234 const struct mips_regnum *
235 mips_regnum (struct gdbarch *gdbarch)
236 {
237 return gdbarch_tdep (gdbarch)->regnum;
238 }
239
240 static int
241 mips_fpa0_regnum (struct gdbarch *gdbarch)
242 {
243 return mips_regnum (gdbarch)->fp0 + 12;
244 }
245
246 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
247 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
248
249 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
250
251 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
252
253 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
254
255 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
256 functions to test, set, or clear bit 0 of addresses. */
257
258 static CORE_ADDR
259 is_mips16_addr (CORE_ADDR addr)
260 {
261 return ((addr) & 1);
262 }
263
264 static CORE_ADDR
265 unmake_mips16_addr (CORE_ADDR addr)
266 {
267 return ((addr) & ~(CORE_ADDR) 1);
268 }
269
270 /* Return the MIPS ABI associated with GDBARCH. */
271 enum mips_abi
272 mips_abi (struct gdbarch *gdbarch)
273 {
274 return gdbarch_tdep (gdbarch)->mips_abi;
275 }
276
277 int
278 mips_isa_regsize (struct gdbarch *gdbarch)
279 {
280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
281
282 /* If we know how big the registers are, use that size. */
283 if (tdep->register_size_valid_p)
284 return tdep->register_size;
285
286 /* Fall back to the previous behavior. */
287 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
288 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
289 }
290
291 /* Return the currently configured (or set) saved register size. */
292
293 unsigned int
294 mips_abi_regsize (struct gdbarch *gdbarch)
295 {
296 switch (mips_abi (gdbarch))
297 {
298 case MIPS_ABI_EABI32:
299 case MIPS_ABI_O32:
300 return 4;
301 case MIPS_ABI_N32:
302 case MIPS_ABI_N64:
303 case MIPS_ABI_O64:
304 case MIPS_ABI_EABI64:
305 return 8;
306 case MIPS_ABI_UNKNOWN:
307 case MIPS_ABI_LAST:
308 default:
309 internal_error (__FILE__, __LINE__, _("bad switch"));
310 }
311 }
312
313 /* Functions for setting and testing a bit in a minimal symbol that
314 marks it as 16-bit function. The MSB of the minimal symbol's
315 "info" field is used for this purpose.
316
317 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
318 i.e. refers to a 16-bit function, and sets a "special" bit in a
319 minimal symbol to mark it as a 16-bit function
320
321 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
322
323 static void
324 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
325 {
326 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
327 {
328 MSYMBOL_INFO (msym) = (char *)
329 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
330 SYMBOL_VALUE_ADDRESS (msym) |= 1;
331 }
332 }
333
334 static int
335 msymbol_is_special (struct minimal_symbol *msym)
336 {
337 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
338 }
339
340 /* XFER a value from the big/little/left end of the register.
341 Depending on the size of the value it might occupy the entire
342 register or just part of it. Make an allowance for this, aligning
343 things accordingly. */
344
345 static void
346 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
347 enum bfd_endian endian, gdb_byte *in,
348 const gdb_byte *out, int buf_offset)
349 {
350 int reg_offset = 0;
351 gdb_assert (reg_num >= gdbarch_num_regs (current_gdbarch));
352 /* Need to transfer the left or right part of the register, based on
353 the targets byte order. */
354 switch (endian)
355 {
356 case BFD_ENDIAN_BIG:
357 reg_offset = register_size (current_gdbarch, reg_num) - length;
358 break;
359 case BFD_ENDIAN_LITTLE:
360 reg_offset = 0;
361 break;
362 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
363 reg_offset = 0;
364 break;
365 default:
366 internal_error (__FILE__, __LINE__, _("bad switch"));
367 }
368 if (mips_debug)
369 fprintf_unfiltered (gdb_stderr,
370 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
371 reg_num, reg_offset, buf_offset, length);
372 if (mips_debug && out != NULL)
373 {
374 int i;
375 fprintf_unfiltered (gdb_stdlog, "out ");
376 for (i = 0; i < length; i++)
377 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
378 }
379 if (in != NULL)
380 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
381 in + buf_offset);
382 if (out != NULL)
383 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
384 out + buf_offset);
385 if (mips_debug && in != NULL)
386 {
387 int i;
388 fprintf_unfiltered (gdb_stdlog, "in ");
389 for (i = 0; i < length; i++)
390 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
391 }
392 if (mips_debug)
393 fprintf_unfiltered (gdb_stdlog, "\n");
394 }
395
396 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
397 compatiblity mode. A return value of 1 means that we have
398 physical 64-bit registers, but should treat them as 32-bit registers. */
399
400 static int
401 mips2_fp_compat (struct frame_info *frame)
402 {
403 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
404 meaningful. */
405 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
406 4)
407 return 0;
408
409 #if 0
410 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
411 in all the places we deal with FP registers. PR gdb/413. */
412 /* Otherwise check the FR bit in the status register - it controls
413 the FP compatiblity mode. If it is clear we are in compatibility
414 mode. */
415 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
416 return 1;
417 #endif
418
419 return 0;
420 }
421
422 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
423
424 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
425
426 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
427
428 static struct type *mips_float_register_type (void);
429 static struct type *mips_double_register_type (void);
430
431 /* The list of available "set mips " and "show mips " commands */
432
433 static struct cmd_list_element *setmipscmdlist = NULL;
434 static struct cmd_list_element *showmipscmdlist = NULL;
435
436 /* Integer registers 0 thru 31 are handled explicitly by
437 mips_register_name(). Processor specific registers 32 and above
438 are listed in the following tables. */
439
440 enum
441 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
442
443 /* Generic MIPS. */
444
445 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "" /*"fp" */ , "",
452 "", "", "", "", "", "", "", "",
453 "", "", "", "", "", "", "", "",
454 };
455
456 /* Names of IDT R3041 registers. */
457
458 static const char *mips_r3041_reg_names[] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
461 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
462 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
463 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
464 "fsr", "fir", "", /*"fp" */ "",
465 "", "", "bus", "ccfg", "", "", "", "",
466 "", "", "port", "cmp", "", "", "epc", "prid",
467 };
468
469 /* Names of tx39 registers. */
470
471 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
472 "sr", "lo", "hi", "bad", "cause", "pc",
473 "", "", "", "", "", "", "", "",
474 "", "", "", "", "", "", "", "",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "", "", "", "", "",
477 "", "", "", "",
478 "", "", "", "", "", "", "", "",
479 "", "", "config", "cache", "debug", "depc", "epc", ""
480 };
481
482 /* Names of IRIX registers. */
483 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
484 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
485 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
486 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
487 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
488 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
489 };
490
491
492 /* Return the name of the register corresponding to REGNO. */
493 static const char *
494 mips_register_name (int regno)
495 {
496 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
497 /* GPR names for all ABIs other than n32/n64. */
498 static char *mips_gpr_names[] = {
499 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
500 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
501 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
502 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
503 };
504
505 /* GPR names for n32 and n64 ABIs. */
506 static char *mips_n32_n64_gpr_names[] = {
507 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
508 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
509 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
510 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
511 };
512
513 enum mips_abi abi = mips_abi (current_gdbarch);
514
515 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
516 but then don't make the raw register names visible. */
517 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
518 if (regno < gdbarch_num_regs (current_gdbarch))
519 return "";
520
521 /* The MIPS integer registers are always mapped from 0 to 31. The
522 names of the registers (which reflects the conventions regarding
523 register use) vary depending on the ABI. */
524 if (0 <= rawnum && rawnum < 32)
525 {
526 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
527 return mips_n32_n64_gpr_names[rawnum];
528 else
529 return mips_gpr_names[rawnum];
530 }
531 else if (tdesc_has_registers (gdbarch_target_desc (current_gdbarch)))
532 return tdesc_register_name (rawnum);
533 else if (32 <= rawnum && rawnum < gdbarch_num_regs (current_gdbarch))
534 {
535 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
536 return tdep->mips_processor_reg_names[rawnum - 32];
537 }
538 else
539 internal_error (__FILE__, __LINE__,
540 _("mips_register_name: bad register number %d"), rawnum);
541 }
542
543 /* Return the groups that a MIPS register can be categorised into. */
544
545 static int
546 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
547 struct reggroup *reggroup)
548 {
549 int vector_p;
550 int float_p;
551 int raw_p;
552 int rawnum = regnum % gdbarch_num_regs (current_gdbarch);
553 int pseudo = regnum / gdbarch_num_regs (current_gdbarch);
554 if (reggroup == all_reggroup)
555 return pseudo;
556 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
557 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
558 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
559 (gdbarch), as not all architectures are multi-arch. */
560 raw_p = rawnum < gdbarch_num_regs (current_gdbarch);
561 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
562 || gdbarch_register_name (current_gdbarch, regnum)[0] == '\0')
563 return 0;
564 if (reggroup == float_reggroup)
565 return float_p && pseudo;
566 if (reggroup == vector_reggroup)
567 return vector_p && pseudo;
568 if (reggroup == general_reggroup)
569 return (!vector_p && !float_p) && pseudo;
570 /* Save the pseudo registers. Need to make certain that any code
571 extracting register values from a saved register cache also uses
572 pseudo registers. */
573 if (reggroup == save_reggroup)
574 return raw_p && pseudo;
575 /* Restore the same pseudo register. */
576 if (reggroup == restore_reggroup)
577 return raw_p && pseudo;
578 return 0;
579 }
580
581 /* Return the groups that a MIPS register can be categorised into.
582 This version is only used if we have a target description which
583 describes real registers (and their groups). */
584
585 static int
586 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
587 struct reggroup *reggroup)
588 {
589 int rawnum = regnum % gdbarch_num_regs (gdbarch);
590 int pseudo = regnum / gdbarch_num_regs (gdbarch);
591 int ret;
592
593 /* Only save, restore, and display the pseudo registers. Need to
594 make certain that any code extracting register values from a
595 saved register cache also uses pseudo registers.
596
597 Note: saving and restoring the pseudo registers is slightly
598 strange; if we have 64 bits, we should save and restore all
599 64 bits. But this is hard and has little benefit. */
600 if (!pseudo)
601 return 0;
602
603 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
604 if (ret != -1)
605 return ret;
606
607 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
608 }
609
610 /* Map the symbol table registers which live in the range [1 *
611 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
612 registers. Take care of alignment and size problems. */
613
614 static void
615 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
616 int cookednum, gdb_byte *buf)
617 {
618 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
619 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
620 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
621 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
622 regcache_raw_read (regcache, rawnum, buf);
623 else if (register_size (gdbarch, rawnum) >
624 register_size (gdbarch, cookednum))
625 {
626 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
627 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
628 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
629 else
630 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
631 }
632 else
633 internal_error (__FILE__, __LINE__, _("bad register size"));
634 }
635
636 static void
637 mips_pseudo_register_write (struct gdbarch *gdbarch,
638 struct regcache *regcache, int cookednum,
639 const gdb_byte *buf)
640 {
641 int rawnum = cookednum % gdbarch_num_regs (current_gdbarch);
642 gdb_assert (cookednum >= gdbarch_num_regs (current_gdbarch)
643 && cookednum < 2 * gdbarch_num_regs (current_gdbarch));
644 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
645 regcache_raw_write (regcache, rawnum, buf);
646 else if (register_size (gdbarch, rawnum) >
647 register_size (gdbarch, cookednum))
648 {
649 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
650 || gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
651 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
652 else
653 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
654 }
655 else
656 internal_error (__FILE__, __LINE__, _("bad register size"));
657 }
658
659 /* Table to translate MIPS16 register field to actual register number. */
660 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
661
662 /* Heuristic_proc_start may hunt through the text section for a long
663 time across a 2400 baud serial line. Allows the user to limit this
664 search. */
665
666 static unsigned int heuristic_fence_post = 0;
667
668 /* Number of bytes of storage in the actual machine representation for
669 register N. NOTE: This defines the pseudo register type so need to
670 rebuild the architecture vector. */
671
672 static int mips64_transfers_32bit_regs_p = 0;
673
674 static void
675 set_mips64_transfers_32bit_regs (char *args, int from_tty,
676 struct cmd_list_element *c)
677 {
678 struct gdbarch_info info;
679 gdbarch_info_init (&info);
680 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
681 instead of relying on globals. Doing that would let generic code
682 handle the search for this specific architecture. */
683 if (!gdbarch_update_p (info))
684 {
685 mips64_transfers_32bit_regs_p = 0;
686 error (_("32-bit compatibility mode not supported"));
687 }
688 }
689
690 /* Convert to/from a register and the corresponding memory value. */
691
692 static int
693 mips_convert_register_p (int regnum, struct type *type)
694 {
695 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
696 && register_size (current_gdbarch, regnum) == 4
697 && (regnum % gdbarch_num_regs (current_gdbarch))
698 >= mips_regnum (current_gdbarch)->fp0
699 && (regnum % gdbarch_num_regs (current_gdbarch))
700 < mips_regnum (current_gdbarch)->fp0 + 32
701 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
702 }
703
704 static void
705 mips_register_to_value (struct frame_info *frame, int regnum,
706 struct type *type, gdb_byte *to)
707 {
708 get_frame_register (frame, regnum + 0, to + 4);
709 get_frame_register (frame, regnum + 1, to + 0);
710 }
711
712 static void
713 mips_value_to_register (struct frame_info *frame, int regnum,
714 struct type *type, const gdb_byte *from)
715 {
716 put_frame_register (frame, regnum + 0, from + 4);
717 put_frame_register (frame, regnum + 1, from + 0);
718 }
719
720 /* Return the GDB type object for the "standard" data type of data in
721 register REG. */
722
723 static struct type *
724 mips_register_type (struct gdbarch *gdbarch, int regnum)
725 {
726 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (current_gdbarch));
727 if ((regnum % gdbarch_num_regs (current_gdbarch))
728 >= mips_regnum (current_gdbarch)->fp0
729 && (regnum % gdbarch_num_regs (current_gdbarch))
730 < mips_regnum (current_gdbarch)->fp0 + 32)
731 {
732 /* The floating-point registers raw, or cooked, always match
733 mips_isa_regsize(), and also map 1:1, byte for byte. */
734 if (mips_isa_regsize (gdbarch) == 4)
735 return builtin_type_ieee_single;
736 else
737 return builtin_type_ieee_double;
738 }
739 else if (regnum < gdbarch_num_regs (current_gdbarch))
740 {
741 /* The raw or ISA registers. These are all sized according to
742 the ISA regsize. */
743 if (mips_isa_regsize (gdbarch) == 4)
744 return builtin_type_int32;
745 else
746 return builtin_type_int64;
747 }
748 else
749 {
750 /* The cooked or ABI registers. These are sized according to
751 the ABI (with a few complications). */
752 if (regnum >= (gdbarch_num_regs (current_gdbarch)
753 + mips_regnum (current_gdbarch)->fp_control_status)
754 && regnum <= gdbarch_num_regs (current_gdbarch)
755 + MIPS_LAST_EMBED_REGNUM)
756 /* The pseudo/cooked view of the embedded registers is always
757 32-bit. The raw view is handled below. */
758 return builtin_type_int32;
759 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
760 /* The target, while possibly using a 64-bit register buffer,
761 is only transfering 32-bits of each integer register.
762 Reflect this in the cooked/pseudo (ABI) register value. */
763 return builtin_type_int32;
764 else if (mips_abi_regsize (gdbarch) == 4)
765 /* The ABI is restricted to 32-bit registers (the ISA could be
766 32- or 64-bit). */
767 return builtin_type_int32;
768 else
769 /* 64-bit ABI. */
770 return builtin_type_int64;
771 }
772 }
773
774 /* Return the GDB type for the pseudo register REGNUM, which is the
775 ABI-level view. This function is only called if there is a target
776 description which includes registers, so we know precisely the
777 types of hardware registers. */
778
779 static struct type *
780 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
781 {
782 const int num_regs = gdbarch_num_regs (gdbarch);
783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
784 int rawnum = regnum % num_regs;
785 struct type *rawtype;
786
787 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
788
789 /* Absent registers are still absent. */
790 rawtype = gdbarch_register_type (gdbarch, rawnum);
791 if (TYPE_LENGTH (rawtype) == 0)
792 return rawtype;
793
794 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
795 /* Present the floating point registers however the hardware did;
796 do not try to convert between FPU layouts. */
797 return rawtype;
798
799 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
800 {
801 /* The pseudo/cooked view of embedded registers is always
802 32-bit, even if the target transfers 64-bit values for them.
803 New targets relying on XML descriptions should only transfer
804 the necessary 32 bits, but older versions of GDB expected 64,
805 so allow the target to provide 64 bits without interfering
806 with the displayed type. */
807 return builtin_type_int32;
808 }
809
810 /* Use pointer types for registers if we can. For n32 we can not,
811 since we do not have a 64-bit pointer type. */
812 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
813 {
814 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
815 return builtin_type_void_data_ptr;
816 else if (rawnum == MIPS_EMBED_PC_REGNUM)
817 return builtin_type_void_func_ptr;
818 }
819
820 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
821 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
822 return builtin_type_int32;
823
824 /* For all other registers, pass through the hardware type. */
825 return rawtype;
826 }
827
828 /* Should the upper word of 64-bit addresses be zeroed? */
829 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
830
831 static int
832 mips_mask_address_p (struct gdbarch_tdep *tdep)
833 {
834 switch (mask_address_var)
835 {
836 case AUTO_BOOLEAN_TRUE:
837 return 1;
838 case AUTO_BOOLEAN_FALSE:
839 return 0;
840 break;
841 case AUTO_BOOLEAN_AUTO:
842 return tdep->default_mask_address_p;
843 default:
844 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
845 return -1;
846 }
847 }
848
849 static void
850 show_mask_address (struct ui_file *file, int from_tty,
851 struct cmd_list_element *c, const char *value)
852 {
853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
854
855 deprecated_show_value_hack (file, from_tty, c, value);
856 switch (mask_address_var)
857 {
858 case AUTO_BOOLEAN_TRUE:
859 printf_filtered ("The 32 bit mips address mask is enabled\n");
860 break;
861 case AUTO_BOOLEAN_FALSE:
862 printf_filtered ("The 32 bit mips address mask is disabled\n");
863 break;
864 case AUTO_BOOLEAN_AUTO:
865 printf_filtered
866 ("The 32 bit address mask is set automatically. Currently %s\n",
867 mips_mask_address_p (tdep) ? "enabled" : "disabled");
868 break;
869 default:
870 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
871 break;
872 }
873 }
874
875 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
876
877 int
878 mips_pc_is_mips16 (CORE_ADDR memaddr)
879 {
880 struct minimal_symbol *sym;
881
882 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
883 if (is_mips16_addr (memaddr))
884 return 1;
885
886 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
887 the high bit of the info field. Use this to decide if the function is
888 MIPS16 or normal MIPS. */
889 sym = lookup_minimal_symbol_by_pc (memaddr);
890 if (sym)
891 return msymbol_is_special (sym);
892 else
893 return 0;
894 }
895
896 /* MIPS believes that the PC has a sign extended value. Perhaps the
897 all registers should be sign extended for simplicity? */
898
899 static CORE_ADDR
900 mips_read_pc (struct regcache *regcache)
901 {
902 ULONGEST pc;
903 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
904 regcache_cooked_read_signed (regcache, regnum, &pc);
905 return pc;
906 }
907
908 static CORE_ADDR
909 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
910 {
911 return frame_unwind_register_signed (next_frame,
912 gdbarch_num_regs (current_gdbarch)
913 + mips_regnum (gdbarch)->pc);
914 }
915
916 static CORE_ADDR
917 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
918 {
919 return frame_unwind_register_signed (next_frame,
920 gdbarch_num_regs (current_gdbarch)
921 + MIPS_SP_REGNUM);
922 }
923
924 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
925 dummy frame. The frame ID's base needs to match the TOS value
926 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
927 breakpoint. */
928
929 static struct frame_id
930 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
931 {
932 return frame_id_build
933 (frame_unwind_register_signed (next_frame,
934 gdbarch_num_regs (current_gdbarch)
935 + MIPS_SP_REGNUM),
936 frame_pc_unwind (next_frame));
937 }
938
939 static void
940 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
941 {
942 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
943 regcache_cooked_write_unsigned (regcache, regnum, pc);
944 }
945
946 /* Fetch and return instruction from the specified location. If the PC
947 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
948
949 static ULONGEST
950 mips_fetch_instruction (CORE_ADDR addr)
951 {
952 gdb_byte buf[MIPS_INSN32_SIZE];
953 int instlen;
954 int status;
955
956 if (mips_pc_is_mips16 (addr))
957 {
958 instlen = MIPS_INSN16_SIZE;
959 addr = unmake_mips16_addr (addr);
960 }
961 else
962 instlen = MIPS_INSN32_SIZE;
963 status = read_memory_nobpt (addr, buf, instlen);
964 if (status)
965 memory_error (status, addr);
966 return extract_unsigned_integer (buf, instlen);
967 }
968
969 /* These the fields of 32 bit mips instructions */
970 #define mips32_op(x) (x >> 26)
971 #define itype_op(x) (x >> 26)
972 #define itype_rs(x) ((x >> 21) & 0x1f)
973 #define itype_rt(x) ((x >> 16) & 0x1f)
974 #define itype_immediate(x) (x & 0xffff)
975
976 #define jtype_op(x) (x >> 26)
977 #define jtype_target(x) (x & 0x03ffffff)
978
979 #define rtype_op(x) (x >> 26)
980 #define rtype_rs(x) ((x >> 21) & 0x1f)
981 #define rtype_rt(x) ((x >> 16) & 0x1f)
982 #define rtype_rd(x) ((x >> 11) & 0x1f)
983 #define rtype_shamt(x) ((x >> 6) & 0x1f)
984 #define rtype_funct(x) (x & 0x3f)
985
986 static LONGEST
987 mips32_relative_offset (ULONGEST inst)
988 {
989 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
990 }
991
992 /* Determine where to set a single step breakpoint while considering
993 branch prediction. */
994 static CORE_ADDR
995 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
996 {
997 unsigned long inst;
998 int op;
999 inst = mips_fetch_instruction (pc);
1000 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1001 {
1002 if (itype_op (inst) >> 2 == 5)
1003 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1004 {
1005 op = (itype_op (inst) & 0x03);
1006 switch (op)
1007 {
1008 case 0: /* BEQL */
1009 goto equal_branch;
1010 case 1: /* BNEL */
1011 goto neq_branch;
1012 case 2: /* BLEZL */
1013 goto less_branch;
1014 case 3: /* BGTZ */
1015 goto greater_branch;
1016 default:
1017 pc += 4;
1018 }
1019 }
1020 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1021 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1022 {
1023 int tf = itype_rt (inst) & 0x01;
1024 int cnum = itype_rt (inst) >> 2;
1025 int fcrcs =
1026 get_frame_register_signed (frame, mips_regnum (current_gdbarch)->
1027 fp_control_status);
1028 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1029
1030 if (((cond >> cnum) & 0x01) == tf)
1031 pc += mips32_relative_offset (inst) + 4;
1032 else
1033 pc += 8;
1034 }
1035 else
1036 pc += 4; /* Not a branch, next instruction is easy */
1037 }
1038 else
1039 { /* This gets way messy */
1040
1041 /* Further subdivide into SPECIAL, REGIMM and other */
1042 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1043 {
1044 case 0: /* SPECIAL */
1045 op = rtype_funct (inst);
1046 switch (op)
1047 {
1048 case 8: /* JR */
1049 case 9: /* JALR */
1050 /* Set PC to that address */
1051 pc = get_frame_register_signed (frame, rtype_rs (inst));
1052 break;
1053 default:
1054 pc += 4;
1055 }
1056
1057 break; /* end SPECIAL */
1058 case 1: /* REGIMM */
1059 {
1060 op = itype_rt (inst); /* branch condition */
1061 switch (op)
1062 {
1063 case 0: /* BLTZ */
1064 case 2: /* BLTZL */
1065 case 16: /* BLTZAL */
1066 case 18: /* BLTZALL */
1067 less_branch:
1068 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1069 pc += mips32_relative_offset (inst) + 4;
1070 else
1071 pc += 8; /* after the delay slot */
1072 break;
1073 case 1: /* BGEZ */
1074 case 3: /* BGEZL */
1075 case 17: /* BGEZAL */
1076 case 19: /* BGEZALL */
1077 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1078 pc += mips32_relative_offset (inst) + 4;
1079 else
1080 pc += 8; /* after the delay slot */
1081 break;
1082 /* All of the other instructions in the REGIMM category */
1083 default:
1084 pc += 4;
1085 }
1086 }
1087 break; /* end REGIMM */
1088 case 2: /* J */
1089 case 3: /* JAL */
1090 {
1091 unsigned long reg;
1092 reg = jtype_target (inst) << 2;
1093 /* Upper four bits get never changed... */
1094 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1095 }
1096 break;
1097 /* FIXME case JALX : */
1098 {
1099 unsigned long reg;
1100 reg = jtype_target (inst) << 2;
1101 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1102 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1103 }
1104 break; /* The new PC will be alternate mode */
1105 case 4: /* BEQ, BEQL */
1106 equal_branch:
1107 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1108 get_frame_register_signed (frame, itype_rt (inst)))
1109 pc += mips32_relative_offset (inst) + 4;
1110 else
1111 pc += 8;
1112 break;
1113 case 5: /* BNE, BNEL */
1114 neq_branch:
1115 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1116 get_frame_register_signed (frame, itype_rt (inst)))
1117 pc += mips32_relative_offset (inst) + 4;
1118 else
1119 pc += 8;
1120 break;
1121 case 6: /* BLEZ, BLEZL */
1122 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1123 pc += mips32_relative_offset (inst) + 4;
1124 else
1125 pc += 8;
1126 break;
1127 case 7:
1128 default:
1129 greater_branch: /* BGTZ, BGTZL */
1130 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1131 pc += mips32_relative_offset (inst) + 4;
1132 else
1133 pc += 8;
1134 break;
1135 } /* switch */
1136 } /* else */
1137 return pc;
1138 } /* mips32_next_pc */
1139
1140 /* Decoding the next place to set a breakpoint is irregular for the
1141 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1142 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1143 We dont want to set a single step instruction on the extend instruction
1144 either.
1145 */
1146
1147 /* Lots of mips16 instruction formats */
1148 /* Predicting jumps requires itype,ritype,i8type
1149 and their extensions extItype,extritype,extI8type
1150 */
1151 enum mips16_inst_fmts
1152 {
1153 itype, /* 0 immediate 5,10 */
1154 ritype, /* 1 5,3,8 */
1155 rrtype, /* 2 5,3,3,5 */
1156 rritype, /* 3 5,3,3,5 */
1157 rrrtype, /* 4 5,3,3,3,2 */
1158 rriatype, /* 5 5,3,3,1,4 */
1159 shifttype, /* 6 5,3,3,3,2 */
1160 i8type, /* 7 5,3,8 */
1161 i8movtype, /* 8 5,3,3,5 */
1162 i8mov32rtype, /* 9 5,3,5,3 */
1163 i64type, /* 10 5,3,8 */
1164 ri64type, /* 11 5,3,3,5 */
1165 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1166 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1167 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1168 extRRItype, /* 15 5,5,5,5,3,3,5 */
1169 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1170 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1171 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1172 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1173 extRi64type, /* 20 5,6,5,5,3,3,5 */
1174 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1175 };
1176 /* I am heaping all the fields of the formats into one structure and
1177 then, only the fields which are involved in instruction extension */
1178 struct upk_mips16
1179 {
1180 CORE_ADDR offset;
1181 unsigned int regx; /* Function in i8 type */
1182 unsigned int regy;
1183 };
1184
1185
1186 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1187 for the bits which make up the immediatate extension. */
1188
1189 static CORE_ADDR
1190 extended_offset (unsigned int extension)
1191 {
1192 CORE_ADDR value;
1193 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1194 value = value << 6;
1195 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1196 value = value << 5;
1197 value |= extension & 0x01f; /* extract 4:0 */
1198 return value;
1199 }
1200
1201 /* Only call this function if you know that this is an extendable
1202 instruction. It won't malfunction, but why make excess remote memory
1203 references? If the immediate operands get sign extended or something,
1204 do it after the extension is performed. */
1205 /* FIXME: Every one of these cases needs to worry about sign extension
1206 when the offset is to be used in relative addressing. */
1207
1208 static unsigned int
1209 fetch_mips_16 (CORE_ADDR pc)
1210 {
1211 gdb_byte buf[8];
1212 pc &= 0xfffffffe; /* clear the low order bit */
1213 target_read_memory (pc, buf, 2);
1214 return extract_unsigned_integer (buf, 2);
1215 }
1216
1217 static void
1218 unpack_mips16 (CORE_ADDR pc,
1219 unsigned int extension,
1220 unsigned int inst,
1221 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1222 {
1223 CORE_ADDR offset;
1224 int regx;
1225 int regy;
1226 switch (insn_format)
1227 {
1228 case itype:
1229 {
1230 CORE_ADDR value;
1231 if (extension)
1232 {
1233 value = extended_offset (extension);
1234 value = value << 11; /* rom for the original value */
1235 value |= inst & 0x7ff; /* eleven bits from instruction */
1236 }
1237 else
1238 {
1239 value = inst & 0x7ff;
1240 /* FIXME : Consider sign extension */
1241 }
1242 offset = value;
1243 regx = -1;
1244 regy = -1;
1245 }
1246 break;
1247 case ritype:
1248 case i8type:
1249 { /* A register identifier and an offset */
1250 /* Most of the fields are the same as I type but the
1251 immediate value is of a different length */
1252 CORE_ADDR value;
1253 if (extension)
1254 {
1255 value = extended_offset (extension);
1256 value = value << 8; /* from the original instruction */
1257 value |= inst & 0xff; /* eleven bits from instruction */
1258 regx = (extension >> 8) & 0x07; /* or i8 funct */
1259 if (value & 0x4000) /* test the sign bit , bit 26 */
1260 {
1261 value &= ~0x3fff; /* remove the sign bit */
1262 value = -value;
1263 }
1264 }
1265 else
1266 {
1267 value = inst & 0xff; /* 8 bits */
1268 regx = (inst >> 8) & 0x07; /* or i8 funct */
1269 /* FIXME: Do sign extension , this format needs it */
1270 if (value & 0x80) /* THIS CONFUSES ME */
1271 {
1272 value &= 0xef; /* remove the sign bit */
1273 value = -value;
1274 }
1275 }
1276 offset = value;
1277 regy = -1;
1278 break;
1279 }
1280 case jalxtype:
1281 {
1282 unsigned long value;
1283 unsigned int nexthalf;
1284 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1285 value = value << 16;
1286 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1287 value |= nexthalf;
1288 offset = value;
1289 regx = -1;
1290 regy = -1;
1291 break;
1292 }
1293 default:
1294 internal_error (__FILE__, __LINE__, _("bad switch"));
1295 }
1296 upk->offset = offset;
1297 upk->regx = regx;
1298 upk->regy = regy;
1299 }
1300
1301
1302 static CORE_ADDR
1303 add_offset_16 (CORE_ADDR pc, int offset)
1304 {
1305 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1306 }
1307
1308 static CORE_ADDR
1309 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1310 unsigned int extension, unsigned int insn)
1311 {
1312 int op = (insn >> 11);
1313 switch (op)
1314 {
1315 case 2: /* Branch */
1316 {
1317 CORE_ADDR offset;
1318 struct upk_mips16 upk;
1319 unpack_mips16 (pc, extension, insn, itype, &upk);
1320 offset = upk.offset;
1321 if (offset & 0x800)
1322 {
1323 offset &= 0xeff;
1324 offset = -offset;
1325 }
1326 pc += (offset << 1) + 2;
1327 break;
1328 }
1329 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1330 {
1331 struct upk_mips16 upk;
1332 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1333 pc = add_offset_16 (pc, upk.offset);
1334 if ((insn >> 10) & 0x01) /* Exchange mode */
1335 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1336 else
1337 pc |= 0x01;
1338 break;
1339 }
1340 case 4: /* beqz */
1341 {
1342 struct upk_mips16 upk;
1343 int reg;
1344 unpack_mips16 (pc, extension, insn, ritype, &upk);
1345 reg = get_frame_register_signed (frame, upk.regx);
1346 if (reg == 0)
1347 pc += (upk.offset << 1) + 2;
1348 else
1349 pc += 2;
1350 break;
1351 }
1352 case 5: /* bnez */
1353 {
1354 struct upk_mips16 upk;
1355 int reg;
1356 unpack_mips16 (pc, extension, insn, ritype, &upk);
1357 reg = get_frame_register_signed (frame, upk.regx);
1358 if (reg != 0)
1359 pc += (upk.offset << 1) + 2;
1360 else
1361 pc += 2;
1362 break;
1363 }
1364 case 12: /* I8 Formats btez btnez */
1365 {
1366 struct upk_mips16 upk;
1367 int reg;
1368 unpack_mips16 (pc, extension, insn, i8type, &upk);
1369 /* upk.regx contains the opcode */
1370 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1371 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1372 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1373 /* pc = add_offset_16(pc,upk.offset) ; */
1374 pc += (upk.offset << 1) + 2;
1375 else
1376 pc += 2;
1377 break;
1378 }
1379 case 29: /* RR Formats JR, JALR, JALR-RA */
1380 {
1381 struct upk_mips16 upk;
1382 /* upk.fmt = rrtype; */
1383 op = insn & 0x1f;
1384 if (op == 0)
1385 {
1386 int reg;
1387 upk.regx = (insn >> 8) & 0x07;
1388 upk.regy = (insn >> 5) & 0x07;
1389 switch (upk.regy)
1390 {
1391 case 0:
1392 reg = upk.regx;
1393 break;
1394 case 1:
1395 reg = 31;
1396 break; /* Function return instruction */
1397 case 2:
1398 reg = upk.regx;
1399 break;
1400 default:
1401 reg = 31;
1402 break; /* BOGUS Guess */
1403 }
1404 pc = get_frame_register_signed (frame, reg);
1405 }
1406 else
1407 pc += 2;
1408 break;
1409 }
1410 case 30:
1411 /* This is an instruction extension. Fetch the real instruction
1412 (which follows the extension) and decode things based on
1413 that. */
1414 {
1415 pc += 2;
1416 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
1417 break;
1418 }
1419 default:
1420 {
1421 pc += 2;
1422 break;
1423 }
1424 }
1425 return pc;
1426 }
1427
1428 static CORE_ADDR
1429 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1430 {
1431 unsigned int insn = fetch_mips_16 (pc);
1432 return extended_mips16_next_pc (frame, pc, 0, insn);
1433 }
1434
1435 /* The mips_next_pc function supports single_step when the remote
1436 target monitor or stub is not developed enough to do a single_step.
1437 It works by decoding the current instruction and predicting where a
1438 branch will go. This isnt hard because all the data is available.
1439 The MIPS32 and MIPS16 variants are quite different. */
1440 static CORE_ADDR
1441 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1442 {
1443 if (is_mips16_addr (pc))
1444 return mips16_next_pc (frame, pc);
1445 else
1446 return mips32_next_pc (frame, pc);
1447 }
1448
1449 struct mips_frame_cache
1450 {
1451 CORE_ADDR base;
1452 struct trad_frame_saved_reg *saved_regs;
1453 };
1454
1455 /* Set a register's saved stack address in temp_saved_regs. If an
1456 address has already been set for this register, do nothing; this
1457 way we will only recognize the first save of a given register in a
1458 function prologue.
1459
1460 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1461 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1462 Strictly speaking, only the second range is used as it is only second
1463 range (the ABI instead of ISA registers) that comes into play when finding
1464 saved registers in a frame. */
1465
1466 static void
1467 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1468 CORE_ADDR offset)
1469 {
1470 if (this_cache != NULL
1471 && this_cache->saved_regs[regnum].addr == -1)
1472 {
1473 this_cache->saved_regs[regnum
1474 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1475 = offset;
1476 this_cache->saved_regs[regnum
1477 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1478 = offset;
1479 }
1480 }
1481
1482
1483 /* Fetch the immediate value from a MIPS16 instruction.
1484 If the previous instruction was an EXTEND, use it to extend
1485 the upper bits of the immediate value. This is a helper function
1486 for mips16_scan_prologue. */
1487
1488 static int
1489 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1490 unsigned short inst, /* current instruction */
1491 int nbits, /* number of bits in imm field */
1492 int scale, /* scale factor to be applied to imm */
1493 int is_signed) /* is the imm field signed? */
1494 {
1495 int offset;
1496
1497 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1498 {
1499 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1500 if (offset & 0x8000) /* check for negative extend */
1501 offset = 0 - (0x10000 - (offset & 0xffff));
1502 return offset | (inst & 0x1f);
1503 }
1504 else
1505 {
1506 int max_imm = 1 << nbits;
1507 int mask = max_imm - 1;
1508 int sign_bit = max_imm >> 1;
1509
1510 offset = inst & mask;
1511 if (is_signed && (offset & sign_bit))
1512 offset = 0 - (max_imm - offset);
1513 return offset * scale;
1514 }
1515 }
1516
1517
1518 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1519 the associated FRAME_CACHE if not null.
1520 Return the address of the first instruction past the prologue. */
1521
1522 static CORE_ADDR
1523 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1524 struct frame_info *next_frame,
1525 struct mips_frame_cache *this_cache)
1526 {
1527 CORE_ADDR cur_pc;
1528 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1529 CORE_ADDR sp;
1530 long frame_offset = 0; /* Size of stack frame. */
1531 long frame_adjust = 0; /* Offset of FP from SP. */
1532 int frame_reg = MIPS_SP_REGNUM;
1533 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1534 unsigned inst = 0; /* current instruction */
1535 unsigned entry_inst = 0; /* the entry instruction */
1536 int reg, offset;
1537
1538 int extend_bytes = 0;
1539 int prev_extend_bytes;
1540 CORE_ADDR end_prologue_addr = 0;
1541
1542 /* Can be called when there's no process, and hence when there's no
1543 NEXT_FRAME. */
1544 if (next_frame != NULL)
1545 sp = frame_unwind_register_signed (next_frame,
1546 gdbarch_num_regs (current_gdbarch)
1547 + MIPS_SP_REGNUM);
1548 else
1549 sp = 0;
1550
1551 if (limit_pc > start_pc + 200)
1552 limit_pc = start_pc + 200;
1553
1554 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1555 {
1556 /* Save the previous instruction. If it's an EXTEND, we'll extract
1557 the immediate offset extension from it in mips16_get_imm. */
1558 prev_inst = inst;
1559
1560 /* Fetch and decode the instruction. */
1561 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1562
1563 /* Normally we ignore extend instructions. However, if it is
1564 not followed by a valid prologue instruction, then this
1565 instruction is not part of the prologue either. We must
1566 remember in this case to adjust the end_prologue_addr back
1567 over the extend. */
1568 if ((inst & 0xf800) == 0xf000) /* extend */
1569 {
1570 extend_bytes = MIPS_INSN16_SIZE;
1571 continue;
1572 }
1573
1574 prev_extend_bytes = extend_bytes;
1575 extend_bytes = 0;
1576
1577 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1578 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1579 {
1580 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1581 if (offset < 0) /* negative stack adjustment? */
1582 frame_offset -= offset;
1583 else
1584 /* Exit loop if a positive stack adjustment is found, which
1585 usually means that the stack cleanup code in the function
1586 epilogue is reached. */
1587 break;
1588 }
1589 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1590 {
1591 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1592 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1593 set_reg_offset (this_cache, reg, sp + offset);
1594 }
1595 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1596 {
1597 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1598 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1599 set_reg_offset (this_cache, reg, sp + offset);
1600 }
1601 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1602 {
1603 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1604 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1605 }
1606 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1607 {
1608 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1609 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1610 }
1611 else if (inst == 0x673d) /* move $s1, $sp */
1612 {
1613 frame_addr = sp;
1614 frame_reg = 17;
1615 }
1616 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1617 {
1618 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1619 frame_addr = sp + offset;
1620 frame_reg = 17;
1621 frame_adjust = offset;
1622 }
1623 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1624 {
1625 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1626 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1627 set_reg_offset (this_cache, reg, frame_addr + offset);
1628 }
1629 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1630 {
1631 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1632 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1633 set_reg_offset (this_cache, reg, frame_addr + offset);
1634 }
1635 else if ((inst & 0xf81f) == 0xe809
1636 && (inst & 0x700) != 0x700) /* entry */
1637 entry_inst = inst; /* save for later processing */
1638 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1639 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1640 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1641 {
1642 /* This instruction is part of the prologue, but we don't
1643 need to do anything special to handle it. */
1644 }
1645 else
1646 {
1647 /* This instruction is not an instruction typically found
1648 in a prologue, so we must have reached the end of the
1649 prologue. */
1650 if (end_prologue_addr == 0)
1651 end_prologue_addr = cur_pc - prev_extend_bytes;
1652 }
1653 }
1654
1655 /* The entry instruction is typically the first instruction in a function,
1656 and it stores registers at offsets relative to the value of the old SP
1657 (before the prologue). But the value of the sp parameter to this
1658 function is the new SP (after the prologue has been executed). So we
1659 can't calculate those offsets until we've seen the entire prologue,
1660 and can calculate what the old SP must have been. */
1661 if (entry_inst != 0)
1662 {
1663 int areg_count = (entry_inst >> 8) & 7;
1664 int sreg_count = (entry_inst >> 6) & 3;
1665
1666 /* The entry instruction always subtracts 32 from the SP. */
1667 frame_offset += 32;
1668
1669 /* Now we can calculate what the SP must have been at the
1670 start of the function prologue. */
1671 sp += frame_offset;
1672
1673 /* Check if a0-a3 were saved in the caller's argument save area. */
1674 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1675 {
1676 set_reg_offset (this_cache, reg, sp + offset);
1677 offset += mips_abi_regsize (current_gdbarch);
1678 }
1679
1680 /* Check if the ra register was pushed on the stack. */
1681 offset = -4;
1682 if (entry_inst & 0x20)
1683 {
1684 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1685 offset -= mips_abi_regsize (current_gdbarch);
1686 }
1687
1688 /* Check if the s0 and s1 registers were pushed on the stack. */
1689 for (reg = 16; reg < sreg_count + 16; reg++)
1690 {
1691 set_reg_offset (this_cache, reg, sp + offset);
1692 offset -= mips_abi_regsize (current_gdbarch);
1693 }
1694 }
1695
1696 if (this_cache != NULL)
1697 {
1698 this_cache->base =
1699 (frame_unwind_register_signed (next_frame,
1700 gdbarch_num_regs (current_gdbarch)
1701 + frame_reg)
1702 + frame_offset - frame_adjust);
1703 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1704 be able to get rid of the assignment below, evetually. But it's
1705 still needed for now. */
1706 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1707 + mips_regnum (current_gdbarch)->pc]
1708 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
1709 + MIPS_RA_REGNUM];
1710 }
1711
1712 /* If we didn't reach the end of the prologue when scanning the function
1713 instructions, then set end_prologue_addr to the address of the
1714 instruction immediately after the last one we scanned. */
1715 if (end_prologue_addr == 0)
1716 end_prologue_addr = cur_pc;
1717
1718 return end_prologue_addr;
1719 }
1720
1721 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1722 Procedures that use the 32-bit instruction set are handled by the
1723 mips_insn32 unwinder. */
1724
1725 static struct mips_frame_cache *
1726 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1727 {
1728 struct mips_frame_cache *cache;
1729
1730 if ((*this_cache) != NULL)
1731 return (*this_cache);
1732 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1733 (*this_cache) = cache;
1734 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1735
1736 /* Analyze the function prologue. */
1737 {
1738 const CORE_ADDR pc =
1739 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1740 CORE_ADDR start_addr;
1741
1742 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1743 if (start_addr == 0)
1744 start_addr = heuristic_proc_start (pc);
1745 /* We can't analyze the prologue if we couldn't find the begining
1746 of the function. */
1747 if (start_addr == 0)
1748 return cache;
1749
1750 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1751 }
1752
1753 /* gdbarch_sp_regnum contains the value and not the address. */
1754 trad_frame_set_value (cache->saved_regs, gdbarch_num_regs (current_gdbarch)
1755 + MIPS_SP_REGNUM, cache->base);
1756
1757 return (*this_cache);
1758 }
1759
1760 static void
1761 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1762 struct frame_id *this_id)
1763 {
1764 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1765 this_cache);
1766 (*this_id) = frame_id_build (info->base,
1767 frame_func_unwind (next_frame, NORMAL_FRAME));
1768 }
1769
1770 static void
1771 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1772 void **this_cache,
1773 int regnum, int *optimizedp,
1774 enum lval_type *lvalp, CORE_ADDR *addrp,
1775 int *realnump, gdb_byte *valuep)
1776 {
1777 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1778 this_cache);
1779 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1780 optimizedp, lvalp, addrp, realnump, valuep);
1781 }
1782
1783 static const struct frame_unwind mips_insn16_frame_unwind =
1784 {
1785 NORMAL_FRAME,
1786 mips_insn16_frame_this_id,
1787 mips_insn16_frame_prev_register
1788 };
1789
1790 static const struct frame_unwind *
1791 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1792 {
1793 CORE_ADDR pc = frame_pc_unwind (next_frame);
1794 if (mips_pc_is_mips16 (pc))
1795 return &mips_insn16_frame_unwind;
1796 return NULL;
1797 }
1798
1799 static CORE_ADDR
1800 mips_insn16_frame_base_address (struct frame_info *next_frame,
1801 void **this_cache)
1802 {
1803 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1804 this_cache);
1805 return info->base;
1806 }
1807
1808 static const struct frame_base mips_insn16_frame_base =
1809 {
1810 &mips_insn16_frame_unwind,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address,
1813 mips_insn16_frame_base_address
1814 };
1815
1816 static const struct frame_base *
1817 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1818 {
1819 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1820 return &mips_insn16_frame_base;
1821 else
1822 return NULL;
1823 }
1824
1825 /* Mark all the registers as unset in the saved_regs array
1826 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1827
1828 void
1829 reset_saved_regs (struct mips_frame_cache *this_cache)
1830 {
1831 if (this_cache == NULL || this_cache->saved_regs == NULL)
1832 return;
1833
1834 {
1835 const int num_regs = gdbarch_num_regs (current_gdbarch);
1836 int i;
1837
1838 for (i = 0; i < num_regs; i++)
1839 {
1840 this_cache->saved_regs[i].addr = -1;
1841 }
1842 }
1843 }
1844
1845 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1846 the associated FRAME_CACHE if not null.
1847 Return the address of the first instruction past the prologue. */
1848
1849 static CORE_ADDR
1850 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1851 struct frame_info *next_frame,
1852 struct mips_frame_cache *this_cache)
1853 {
1854 CORE_ADDR cur_pc;
1855 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1856 CORE_ADDR sp;
1857 long frame_offset;
1858 int frame_reg = MIPS_SP_REGNUM;
1859
1860 CORE_ADDR end_prologue_addr = 0;
1861 int seen_sp_adjust = 0;
1862 int load_immediate_bytes = 0;
1863
1864 /* Can be called when there's no process, and hence when there's no
1865 NEXT_FRAME. */
1866 if (next_frame != NULL)
1867 sp = frame_unwind_register_signed (next_frame,
1868 gdbarch_num_regs (current_gdbarch)
1869 + MIPS_SP_REGNUM);
1870 else
1871 sp = 0;
1872
1873 if (limit_pc > start_pc + 200)
1874 limit_pc = start_pc + 200;
1875
1876 restart:
1877
1878 frame_offset = 0;
1879 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1880 {
1881 unsigned long inst, high_word, low_word;
1882 int reg;
1883
1884 /* Fetch the instruction. */
1885 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1886
1887 /* Save some code by pre-extracting some useful fields. */
1888 high_word = (inst >> 16) & 0xffff;
1889 low_word = inst & 0xffff;
1890 reg = high_word & 0x1f;
1891
1892 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1893 || high_word == 0x23bd /* addi $sp,$sp,-i */
1894 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1895 {
1896 if (low_word & 0x8000) /* negative stack adjustment? */
1897 frame_offset += 0x10000 - low_word;
1898 else
1899 /* Exit loop if a positive stack adjustment is found, which
1900 usually means that the stack cleanup code in the function
1901 epilogue is reached. */
1902 break;
1903 seen_sp_adjust = 1;
1904 }
1905 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1906 {
1907 set_reg_offset (this_cache, reg, sp + low_word);
1908 }
1909 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1910 {
1911 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1912 set_reg_offset (this_cache, reg, sp + low_word);
1913 }
1914 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1915 {
1916 /* Old gcc frame, r30 is virtual frame pointer. */
1917 if ((long) low_word != frame_offset)
1918 frame_addr = sp + low_word;
1919 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
1920 {
1921 unsigned alloca_adjust;
1922
1923 frame_reg = 30;
1924 frame_addr = frame_unwind_register_signed
1925 (next_frame,
1926 gdbarch_num_regs (current_gdbarch) + 30);
1927
1928 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1929 if (alloca_adjust > 0)
1930 {
1931 /* FP > SP + frame_size. This may be because of
1932 an alloca or somethings similar. Fix sp to
1933 "pre-alloca" value, and try again. */
1934 sp += alloca_adjust;
1935 /* Need to reset the status of all registers. Otherwise,
1936 we will hit a guard that prevents the new address
1937 for each register to be recomputed during the second
1938 pass. */
1939 reset_saved_regs (this_cache);
1940 goto restart;
1941 }
1942 }
1943 }
1944 /* move $30,$sp. With different versions of gas this will be either
1945 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1946 Accept any one of these. */
1947 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1948 {
1949 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1950 if (next_frame && frame_reg == MIPS_SP_REGNUM)
1951 {
1952 unsigned alloca_adjust;
1953
1954 frame_reg = 30;
1955 frame_addr = frame_unwind_register_signed
1956 (next_frame,
1957 gdbarch_num_regs (current_gdbarch) + 30);
1958
1959 alloca_adjust = (unsigned) (frame_addr - sp);
1960 if (alloca_adjust > 0)
1961 {
1962 /* FP > SP + frame_size. This may be because of
1963 an alloca or somethings similar. Fix sp to
1964 "pre-alloca" value, and try again. */
1965 sp = frame_addr;
1966 /* Need to reset the status of all registers. Otherwise,
1967 we will hit a guard that prevents the new address
1968 for each register to be recomputed during the second
1969 pass. */
1970 reset_saved_regs (this_cache);
1971 goto restart;
1972 }
1973 }
1974 }
1975 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1976 {
1977 set_reg_offset (this_cache, reg, frame_addr + low_word);
1978 }
1979 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1980 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1981 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1982 || high_word == 0x3c1c /* lui $gp,n */
1983 || high_word == 0x279c /* addiu $gp,$gp,n */
1984 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1985 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1986 )
1987 {
1988 /* These instructions are part of the prologue, but we don't
1989 need to do anything special to handle them. */
1990 }
1991 /* The instructions below load $at or $t0 with an immediate
1992 value in preparation for a stack adjustment via
1993 subu $sp,$sp,[$at,$t0]. These instructions could also
1994 initialize a local variable, so we accept them only before
1995 a stack adjustment instruction was seen. */
1996 else if (!seen_sp_adjust
1997 && (high_word == 0x3c01 /* lui $at,n */
1998 || high_word == 0x3c08 /* lui $t0,n */
1999 || high_word == 0x3421 /* ori $at,$at,n */
2000 || high_word == 0x3508 /* ori $t0,$t0,n */
2001 || high_word == 0x3401 /* ori $at,$zero,n */
2002 || high_word == 0x3408 /* ori $t0,$zero,n */
2003 ))
2004 {
2005 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
2006 }
2007 else
2008 {
2009 /* This instruction is not an instruction typically found
2010 in a prologue, so we must have reached the end of the
2011 prologue. */
2012 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2013 loop now? Why would we need to continue scanning the function
2014 instructions? */
2015 if (end_prologue_addr == 0)
2016 end_prologue_addr = cur_pc;
2017 }
2018 }
2019
2020 if (this_cache != NULL)
2021 {
2022 this_cache->base =
2023 (frame_unwind_register_signed (next_frame,
2024 gdbarch_num_regs (current_gdbarch)
2025 + frame_reg)
2026 + frame_offset);
2027 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2028 this assignment below, eventually. But it's still needed
2029 for now. */
2030 this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2031 + mips_regnum (current_gdbarch)->pc]
2032 = this_cache->saved_regs[gdbarch_num_regs (current_gdbarch)
2033 + MIPS_RA_REGNUM];
2034 }
2035
2036 /* If we didn't reach the end of the prologue when scanning the function
2037 instructions, then set end_prologue_addr to the address of the
2038 instruction immediately after the last one we scanned. */
2039 /* brobecker/2004-10-10: I don't think this would ever happen, but
2040 we may as well be careful and do our best if we have a null
2041 end_prologue_addr. */
2042 if (end_prologue_addr == 0)
2043 end_prologue_addr = cur_pc;
2044
2045 /* In a frameless function, we might have incorrectly
2046 skipped some load immediate instructions. Undo the skipping
2047 if the load immediate was not followed by a stack adjustment. */
2048 if (load_immediate_bytes && !seen_sp_adjust)
2049 end_prologue_addr -= load_immediate_bytes;
2050
2051 return end_prologue_addr;
2052 }
2053
2054 /* Heuristic unwinder for procedures using 32-bit instructions (covers
2055 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2056 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2057 unwinder. */
2058
2059 static struct mips_frame_cache *
2060 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
2061 {
2062 struct mips_frame_cache *cache;
2063
2064 if ((*this_cache) != NULL)
2065 return (*this_cache);
2066
2067 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2068 (*this_cache) = cache;
2069 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2070
2071 /* Analyze the function prologue. */
2072 {
2073 const CORE_ADDR pc =
2074 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2075 CORE_ADDR start_addr;
2076
2077 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2078 if (start_addr == 0)
2079 start_addr = heuristic_proc_start (pc);
2080 /* We can't analyze the prologue if we couldn't find the begining
2081 of the function. */
2082 if (start_addr == 0)
2083 return cache;
2084
2085 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2086 }
2087
2088 /* gdbarch_sp_regnum contains the value and not the address. */
2089 trad_frame_set_value (cache->saved_regs,
2090 gdbarch_num_regs (current_gdbarch) + MIPS_SP_REGNUM,
2091 cache->base);
2092
2093 return (*this_cache);
2094 }
2095
2096 static void
2097 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2098 struct frame_id *this_id)
2099 {
2100 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2101 this_cache);
2102 (*this_id) = frame_id_build (info->base,
2103 frame_func_unwind (next_frame, NORMAL_FRAME));
2104 }
2105
2106 static void
2107 mips_insn32_frame_prev_register (struct frame_info *next_frame,
2108 void **this_cache,
2109 int regnum, int *optimizedp,
2110 enum lval_type *lvalp, CORE_ADDR *addrp,
2111 int *realnump, gdb_byte *valuep)
2112 {
2113 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2114 this_cache);
2115 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2116 optimizedp, lvalp, addrp, realnump, valuep);
2117 }
2118
2119 static const struct frame_unwind mips_insn32_frame_unwind =
2120 {
2121 NORMAL_FRAME,
2122 mips_insn32_frame_this_id,
2123 mips_insn32_frame_prev_register
2124 };
2125
2126 static const struct frame_unwind *
2127 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2128 {
2129 CORE_ADDR pc = frame_pc_unwind (next_frame);
2130 if (! mips_pc_is_mips16 (pc))
2131 return &mips_insn32_frame_unwind;
2132 return NULL;
2133 }
2134
2135 static CORE_ADDR
2136 mips_insn32_frame_base_address (struct frame_info *next_frame,
2137 void **this_cache)
2138 {
2139 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2140 this_cache);
2141 return info->base;
2142 }
2143
2144 static const struct frame_base mips_insn32_frame_base =
2145 {
2146 &mips_insn32_frame_unwind,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address,
2149 mips_insn32_frame_base_address
2150 };
2151
2152 static const struct frame_base *
2153 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2154 {
2155 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2156 return &mips_insn32_frame_base;
2157 else
2158 return NULL;
2159 }
2160
2161 static struct trad_frame_cache *
2162 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2163 {
2164 CORE_ADDR pc;
2165 CORE_ADDR start_addr;
2166 CORE_ADDR stack_addr;
2167 struct trad_frame_cache *this_trad_cache;
2168
2169 if ((*this_cache) != NULL)
2170 return (*this_cache);
2171 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2172 (*this_cache) = this_trad_cache;
2173
2174 /* The return address is in the link register. */
2175 trad_frame_set_reg_realreg (this_trad_cache,
2176 gdbarch_pc_regnum (current_gdbarch),
2177 (gdbarch_num_regs (current_gdbarch)
2178 + MIPS_RA_REGNUM));
2179
2180 /* Frame ID, since it's a frameless / stackless function, no stack
2181 space is allocated and SP on entry is the current SP. */
2182 pc = frame_pc_unwind (next_frame);
2183 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2184 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2185 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2186
2187 /* Assume that the frame's base is the same as the
2188 stack-pointer. */
2189 trad_frame_set_this_base (this_trad_cache, stack_addr);
2190
2191 return this_trad_cache;
2192 }
2193
2194 static void
2195 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2196 struct frame_id *this_id)
2197 {
2198 struct trad_frame_cache *this_trad_cache
2199 = mips_stub_frame_cache (next_frame, this_cache);
2200 trad_frame_get_id (this_trad_cache, this_id);
2201 }
2202
2203 static void
2204 mips_stub_frame_prev_register (struct frame_info *next_frame,
2205 void **this_cache,
2206 int regnum, int *optimizedp,
2207 enum lval_type *lvalp, CORE_ADDR *addrp,
2208 int *realnump, gdb_byte *valuep)
2209 {
2210 struct trad_frame_cache *this_trad_cache
2211 = mips_stub_frame_cache (next_frame, this_cache);
2212 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2213 lvalp, addrp, realnump, valuep);
2214 }
2215
2216 static const struct frame_unwind mips_stub_frame_unwind =
2217 {
2218 NORMAL_FRAME,
2219 mips_stub_frame_this_id,
2220 mips_stub_frame_prev_register
2221 };
2222
2223 static const struct frame_unwind *
2224 mips_stub_frame_sniffer (struct frame_info *next_frame)
2225 {
2226 gdb_byte dummy[4];
2227 struct obj_section *s;
2228 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2229
2230 /* Use the stub unwinder for unreadable code. */
2231 if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
2232 return &mips_stub_frame_unwind;
2233
2234 if (in_plt_section (pc, NULL))
2235 return &mips_stub_frame_unwind;
2236
2237 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2238 s = find_pc_section (pc);
2239
2240 if (s != NULL
2241 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2242 ".MIPS.stubs") == 0)
2243 return &mips_stub_frame_unwind;
2244
2245 return NULL;
2246 }
2247
2248 static CORE_ADDR
2249 mips_stub_frame_base_address (struct frame_info *next_frame,
2250 void **this_cache)
2251 {
2252 struct trad_frame_cache *this_trad_cache
2253 = mips_stub_frame_cache (next_frame, this_cache);
2254 return trad_frame_get_this_base (this_trad_cache);
2255 }
2256
2257 static const struct frame_base mips_stub_frame_base =
2258 {
2259 &mips_stub_frame_unwind,
2260 mips_stub_frame_base_address,
2261 mips_stub_frame_base_address,
2262 mips_stub_frame_base_address
2263 };
2264
2265 static const struct frame_base *
2266 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2267 {
2268 if (mips_stub_frame_sniffer (next_frame) != NULL)
2269 return &mips_stub_frame_base;
2270 else
2271 return NULL;
2272 }
2273
2274 /* mips_addr_bits_remove - remove useless address bits */
2275
2276 static CORE_ADDR
2277 mips_addr_bits_remove (CORE_ADDR addr)
2278 {
2279 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2280 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2281 /* This hack is a work-around for existing boards using PMON, the
2282 simulator, and any other 64-bit targets that doesn't have true
2283 64-bit addressing. On these targets, the upper 32 bits of
2284 addresses are ignored by the hardware. Thus, the PC or SP are
2285 likely to have been sign extended to all 1s by instruction
2286 sequences that load 32-bit addresses. For example, a typical
2287 piece of code that loads an address is this:
2288
2289 lui $r2, <upper 16 bits>
2290 ori $r2, <lower 16 bits>
2291
2292 But the lui sign-extends the value such that the upper 32 bits
2293 may be all 1s. The workaround is simply to mask off these
2294 bits. In the future, gcc may be changed to support true 64-bit
2295 addressing, and this masking will have to be disabled. */
2296 return addr &= 0xffffffffUL;
2297 else
2298 return addr;
2299 }
2300
2301 /* mips_software_single_step() is called just before we want to resume
2302 the inferior, if we want to single-step it but there is no hardware
2303 or kernel single-step support (MIPS on GNU/Linux for example). We find
2304 the target of the coming instruction and breakpoint it. */
2305
2306 int
2307 mips_software_single_step (struct frame_info *frame)
2308 {
2309 CORE_ADDR pc, next_pc;
2310
2311 pc = get_frame_pc (frame);
2312 next_pc = mips_next_pc (frame, pc);
2313
2314 insert_single_step_breakpoint (next_pc);
2315 return 1;
2316 }
2317
2318 /* Test whether the PC points to the return instruction at the
2319 end of a function. */
2320
2321 static int
2322 mips_about_to_return (CORE_ADDR pc)
2323 {
2324 if (mips_pc_is_mips16 (pc))
2325 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2326 generates a "jr $ra"; other times it generates code to load
2327 the return address from the stack to an accessible register (such
2328 as $a3), then a "jr" using that register. This second case
2329 is almost impossible to distinguish from an indirect jump
2330 used for switch statements, so we don't even try. */
2331 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2332 else
2333 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2334 }
2335
2336
2337 /* This fencepost looks highly suspicious to me. Removing it also
2338 seems suspicious as it could affect remote debugging across serial
2339 lines. */
2340
2341 static CORE_ADDR
2342 heuristic_proc_start (CORE_ADDR pc)
2343 {
2344 CORE_ADDR start_pc;
2345 CORE_ADDR fence;
2346 int instlen;
2347 int seen_adjsp = 0;
2348
2349 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
2350 start_pc = pc;
2351 fence = start_pc - heuristic_fence_post;
2352 if (start_pc == 0)
2353 return 0;
2354
2355 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2356 fence = VM_MIN_ADDRESS;
2357
2358 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2359
2360 /* search back for previous return */
2361 for (start_pc -= instlen;; start_pc -= instlen)
2362 if (start_pc < fence)
2363 {
2364 /* It's not clear to me why we reach this point when
2365 stop_soon, but with this test, at least we
2366 don't print out warnings for every child forked (eg, on
2367 decstation). 22apr93 rich@cygnus.com. */
2368 if (stop_soon == NO_STOP_QUIETLY)
2369 {
2370 static int blurb_printed = 0;
2371
2372 warning (_("GDB can't find the start of the function at 0x%s."),
2373 paddr_nz (pc));
2374
2375 if (!blurb_printed)
2376 {
2377 /* This actually happens frequently in embedded
2378 development, when you first connect to a board
2379 and your stack pointer and pc are nowhere in
2380 particular. This message needs to give people
2381 in that situation enough information to
2382 determine that it's no big deal. */
2383 printf_filtered ("\n\
2384 GDB is unable to find the start of the function at 0x%s\n\
2385 and thus can't determine the size of that function's stack frame.\n\
2386 This means that GDB may be unable to access that stack frame, or\n\
2387 the frames below it.\n\
2388 This problem is most likely caused by an invalid program counter or\n\
2389 stack pointer.\n\
2390 However, if you think GDB should simply search farther back\n\
2391 from 0x%s for code which looks like the beginning of a\n\
2392 function, you can increase the range of the search using the `set\n\
2393 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2394 blurb_printed = 1;
2395 }
2396 }
2397
2398 return 0;
2399 }
2400 else if (mips_pc_is_mips16 (start_pc))
2401 {
2402 unsigned short inst;
2403
2404 /* On MIPS16, any one of the following is likely to be the
2405 start of a function:
2406 extend save
2407 save
2408 entry
2409 addiu sp,-n
2410 daddiu sp,-n
2411 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2412 inst = mips_fetch_instruction (start_pc);
2413 if ((inst & 0xff80) == 0x6480) /* save */
2414 {
2415 if (start_pc - instlen >= fence)
2416 {
2417 inst = mips_fetch_instruction (start_pc - instlen);
2418 if ((inst & 0xf800) == 0xf000) /* extend */
2419 start_pc -= instlen;
2420 }
2421 break;
2422 }
2423 else if (((inst & 0xf81f) == 0xe809
2424 && (inst & 0x700) != 0x700) /* entry */
2425 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2426 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2427 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2428 break;
2429 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2430 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2431 seen_adjsp = 1;
2432 else
2433 seen_adjsp = 0;
2434 }
2435 else if (mips_about_to_return (start_pc))
2436 {
2437 /* Skip return and its delay slot. */
2438 start_pc += 2 * MIPS_INSN32_SIZE;
2439 break;
2440 }
2441
2442 return start_pc;
2443 }
2444
2445 struct mips_objfile_private
2446 {
2447 bfd_size_type size;
2448 char *contents;
2449 };
2450
2451 /* According to the current ABI, should the type be passed in a
2452 floating-point register (assuming that there is space)? When there
2453 is no FPU, FP are not even considered as possible candidates for
2454 FP registers and, consequently this returns false - forces FP
2455 arguments into integer registers. */
2456
2457 static int
2458 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2459 {
2460 return ((typecode == TYPE_CODE_FLT
2461 || (MIPS_EABI
2462 && (typecode == TYPE_CODE_STRUCT
2463 || typecode == TYPE_CODE_UNION)
2464 && TYPE_NFIELDS (arg_type) == 1
2465 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2466 == TYPE_CODE_FLT))
2467 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2468 }
2469
2470 /* On o32, argument passing in GPRs depends on the alignment of the type being
2471 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2472
2473 static int
2474 mips_type_needs_double_align (struct type *type)
2475 {
2476 enum type_code typecode = TYPE_CODE (type);
2477
2478 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2479 return 1;
2480 else if (typecode == TYPE_CODE_STRUCT)
2481 {
2482 if (TYPE_NFIELDS (type) < 1)
2483 return 0;
2484 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2485 }
2486 else if (typecode == TYPE_CODE_UNION)
2487 {
2488 int i, n;
2489
2490 n = TYPE_NFIELDS (type);
2491 for (i = 0; i < n; i++)
2492 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2493 return 1;
2494 return 0;
2495 }
2496 return 0;
2497 }
2498
2499 /* Adjust the address downward (direction of stack growth) so that it
2500 is correctly aligned for a new stack frame. */
2501 static CORE_ADDR
2502 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2503 {
2504 return align_down (addr, 16);
2505 }
2506
2507 static CORE_ADDR
2508 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2509 struct regcache *regcache, CORE_ADDR bp_addr,
2510 int nargs, struct value **args, CORE_ADDR sp,
2511 int struct_return, CORE_ADDR struct_addr)
2512 {
2513 int argreg;
2514 int float_argreg;
2515 int argnum;
2516 int len = 0;
2517 int stack_offset = 0;
2518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2519 CORE_ADDR func_addr = find_function_addr (function, NULL);
2520 int regsize = mips_abi_regsize (gdbarch);
2521
2522 /* For shared libraries, "t9" needs to point at the function
2523 address. */
2524 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2525
2526 /* Set the return address register to point to the entry point of
2527 the program, where a breakpoint lies in wait. */
2528 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2529
2530 /* First ensure that the stack and structure return address (if any)
2531 are properly aligned. The stack has to be at least 64-bit
2532 aligned even on 32-bit machines, because doubles must be 64-bit
2533 aligned. For n32 and n64, stack frames need to be 128-bit
2534 aligned, so we round to this widest known alignment. */
2535
2536 sp = align_down (sp, 16);
2537 struct_addr = align_down (struct_addr, 16);
2538
2539 /* Now make space on the stack for the args. We allocate more
2540 than necessary for EABI, because the first few arguments are
2541 passed in registers, but that's OK. */
2542 for (argnum = 0; argnum < nargs; argnum++)
2543 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2544 sp -= align_up (len, 16);
2545
2546 if (mips_debug)
2547 fprintf_unfiltered (gdb_stdlog,
2548 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2549 paddr_nz (sp), (long) align_up (len, 16));
2550
2551 /* Initialize the integer and float register pointers. */
2552 argreg = MIPS_A0_REGNUM;
2553 float_argreg = mips_fpa0_regnum (current_gdbarch);
2554
2555 /* The struct_return pointer occupies the first parameter-passing reg. */
2556 if (struct_return)
2557 {
2558 if (mips_debug)
2559 fprintf_unfiltered (gdb_stdlog,
2560 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2561 argreg, paddr_nz (struct_addr));
2562 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2563 }
2564
2565 /* Now load as many as possible of the first arguments into
2566 registers, and push the rest onto the stack. Loop thru args
2567 from first to last. */
2568 for (argnum = 0; argnum < nargs; argnum++)
2569 {
2570 const gdb_byte *val;
2571 gdb_byte valbuf[MAX_REGISTER_SIZE];
2572 struct value *arg = args[argnum];
2573 struct type *arg_type = check_typedef (value_type (arg));
2574 int len = TYPE_LENGTH (arg_type);
2575 enum type_code typecode = TYPE_CODE (arg_type);
2576
2577 if (mips_debug)
2578 fprintf_unfiltered (gdb_stdlog,
2579 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2580 argnum + 1, len, (int) typecode);
2581
2582 /* The EABI passes structures that do not fit in a register by
2583 reference. */
2584 if (len > regsize
2585 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2586 {
2587 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
2588 typecode = TYPE_CODE_PTR;
2589 len = regsize;
2590 val = valbuf;
2591 if (mips_debug)
2592 fprintf_unfiltered (gdb_stdlog, " push");
2593 }
2594 else
2595 val = value_contents (arg);
2596
2597 /* 32-bit ABIs always start floating point arguments in an
2598 even-numbered floating point register. Round the FP register
2599 up before the check to see if there are any FP registers
2600 left. Non MIPS_EABI targets also pass the FP in the integer
2601 registers so also round up normal registers. */
2602 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
2603 {
2604 if ((float_argreg & 1))
2605 float_argreg++;
2606 }
2607
2608 /* Floating point arguments passed in registers have to be
2609 treated specially. On 32-bit architectures, doubles
2610 are passed in register pairs; the even register gets
2611 the low word, and the odd register gets the high word.
2612 On non-EABI processors, the first two floating point arguments are
2613 also copied to general registers, because MIPS16 functions
2614 don't use float registers for arguments. This duplication of
2615 arguments in general registers can't hurt non-MIPS16 functions
2616 because those registers are normally skipped. */
2617 /* MIPS_EABI squeezes a struct that contains a single floating
2618 point value into an FP register instead of pushing it onto the
2619 stack. */
2620 if (fp_register_arg_p (typecode, arg_type)
2621 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2622 {
2623 /* EABI32 will pass doubles in consecutive registers, even on
2624 64-bit cores. At one time, we used to check the size of
2625 `float_argreg' to determine whether or not to pass doubles
2626 in consecutive registers, but this is not sufficient for
2627 making the ABI determination. */
2628 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
2629 {
2630 int low_offset = gdbarch_byte_order (current_gdbarch)
2631 == BFD_ENDIAN_BIG ? 4 : 0;
2632 unsigned long regval;
2633
2634 /* Write the low word of the double to the even register(s). */
2635 regval = extract_unsigned_integer (val + low_offset, 4);
2636 if (mips_debug)
2637 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2638 float_argreg, phex (regval, 4));
2639 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2640
2641 /* Write the high word of the double to the odd register(s). */
2642 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2643 if (mips_debug)
2644 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2645 float_argreg, phex (regval, 4));
2646 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2647 }
2648 else
2649 {
2650 /* This is a floating point value that fits entirely
2651 in a single register. */
2652 /* On 32 bit ABI's the float_argreg is further adjusted
2653 above to ensure that it is even register aligned. */
2654 LONGEST regval = extract_unsigned_integer (val, len);
2655 if (mips_debug)
2656 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2657 float_argreg, phex (regval, len));
2658 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2659 }
2660 }
2661 else
2662 {
2663 /* Copy the argument to general registers or the stack in
2664 register-sized pieces. Large arguments are split between
2665 registers and stack. */
2666 /* Note: structs whose size is not a multiple of regsize
2667 are treated specially: Irix cc passes
2668 them in registers where gcc sometimes puts them on the
2669 stack. For maximum compatibility, we will put them in
2670 both places. */
2671 int odd_sized_struct = (len > regsize && len % regsize != 0);
2672
2673 /* Note: Floating-point values that didn't fit into an FP
2674 register are only written to memory. */
2675 while (len > 0)
2676 {
2677 /* Remember if the argument was written to the stack. */
2678 int stack_used_p = 0;
2679 int partial_len = (len < regsize ? len : regsize);
2680
2681 if (mips_debug)
2682 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2683 partial_len);
2684
2685 /* Write this portion of the argument to the stack. */
2686 if (argreg > MIPS_LAST_ARG_REGNUM
2687 || odd_sized_struct
2688 || fp_register_arg_p (typecode, arg_type))
2689 {
2690 /* Should shorter than int integer values be
2691 promoted to int before being stored? */
2692 int longword_offset = 0;
2693 CORE_ADDR addr;
2694 stack_used_p = 1;
2695 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2696 {
2697 if (regsize == 8
2698 && (typecode == TYPE_CODE_INT
2699 || typecode == TYPE_CODE_PTR
2700 || typecode == TYPE_CODE_FLT) && len <= 4)
2701 longword_offset = regsize - len;
2702 else if ((typecode == TYPE_CODE_STRUCT
2703 || typecode == TYPE_CODE_UNION)
2704 && TYPE_LENGTH (arg_type) < regsize)
2705 longword_offset = regsize - len;
2706 }
2707
2708 if (mips_debug)
2709 {
2710 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2711 paddr_nz (stack_offset));
2712 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2713 paddr_nz (longword_offset));
2714 }
2715
2716 addr = sp + stack_offset + longword_offset;
2717
2718 if (mips_debug)
2719 {
2720 int i;
2721 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2722 paddr_nz (addr));
2723 for (i = 0; i < partial_len; i++)
2724 {
2725 fprintf_unfiltered (gdb_stdlog, "%02x",
2726 val[i] & 0xff);
2727 }
2728 }
2729 write_memory (addr, val, partial_len);
2730 }
2731
2732 /* Note!!! This is NOT an else clause. Odd sized
2733 structs may go thru BOTH paths. Floating point
2734 arguments will not. */
2735 /* Write this portion of the argument to a general
2736 purpose register. */
2737 if (argreg <= MIPS_LAST_ARG_REGNUM
2738 && !fp_register_arg_p (typecode, arg_type))
2739 {
2740 LONGEST regval =
2741 extract_unsigned_integer (val, partial_len);
2742
2743 if (mips_debug)
2744 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2745 argreg,
2746 phex (regval, regsize));
2747 regcache_cooked_write_unsigned (regcache, argreg, regval);
2748 argreg++;
2749 }
2750
2751 len -= partial_len;
2752 val += partial_len;
2753
2754 /* Compute the the offset into the stack at which we
2755 will copy the next parameter.
2756
2757 In the new EABI (and the NABI32), the stack_offset
2758 only needs to be adjusted when it has been used. */
2759
2760 if (stack_used_p)
2761 stack_offset += align_up (partial_len, regsize);
2762 }
2763 }
2764 if (mips_debug)
2765 fprintf_unfiltered (gdb_stdlog, "\n");
2766 }
2767
2768 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2769
2770 /* Return adjusted stack pointer. */
2771 return sp;
2772 }
2773
2774 /* Determine the return value convention being used. */
2775
2776 static enum return_value_convention
2777 mips_eabi_return_value (struct gdbarch *gdbarch,
2778 struct type *type, struct regcache *regcache,
2779 gdb_byte *readbuf, const gdb_byte *writebuf)
2780 {
2781 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2782 return RETURN_VALUE_STRUCT_CONVENTION;
2783 if (readbuf)
2784 memset (readbuf, 0, TYPE_LENGTH (type));
2785 return RETURN_VALUE_REGISTER_CONVENTION;
2786 }
2787
2788
2789 /* N32/N64 ABI stuff. */
2790
2791 /* Search for a naturally aligned double at OFFSET inside a struct
2792 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2793 registers. */
2794
2795 static int
2796 mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2797 {
2798 int i;
2799
2800 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2801 return 0;
2802
2803 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2804 return 0;
2805
2806 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2807 return 0;
2808
2809 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2810 {
2811 int pos;
2812 struct type *field_type;
2813
2814 /* We're only looking at normal fields. */
2815 if (TYPE_FIELD_STATIC (arg_type, i)
2816 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2817 continue;
2818
2819 /* If we have gone past the offset, there is no double to pass. */
2820 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2821 if (pos > offset)
2822 return 0;
2823
2824 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2825
2826 /* If this field is entirely before the requested offset, go
2827 on to the next one. */
2828 if (pos + TYPE_LENGTH (field_type) <= offset)
2829 continue;
2830
2831 /* If this is our special aligned double, we can stop. */
2832 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2833 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2834 return 1;
2835
2836 /* This field starts at or before the requested offset, and
2837 overlaps it. If it is a structure, recurse inwards. */
2838 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2839 }
2840
2841 return 0;
2842 }
2843
2844 static CORE_ADDR
2845 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2846 struct regcache *regcache, CORE_ADDR bp_addr,
2847 int nargs, struct value **args, CORE_ADDR sp,
2848 int struct_return, CORE_ADDR struct_addr)
2849 {
2850 int argreg;
2851 int float_argreg;
2852 int argnum;
2853 int len = 0;
2854 int stack_offset = 0;
2855 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2856 CORE_ADDR func_addr = find_function_addr (function, NULL);
2857
2858 /* For shared libraries, "t9" needs to point at the function
2859 address. */
2860 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2861
2862 /* Set the return address register to point to the entry point of
2863 the program, where a breakpoint lies in wait. */
2864 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2865
2866 /* First ensure that the stack and structure return address (if any)
2867 are properly aligned. The stack has to be at least 64-bit
2868 aligned even on 32-bit machines, because doubles must be 64-bit
2869 aligned. For n32 and n64, stack frames need to be 128-bit
2870 aligned, so we round to this widest known alignment. */
2871
2872 sp = align_down (sp, 16);
2873 struct_addr = align_down (struct_addr, 16);
2874
2875 /* Now make space on the stack for the args. */
2876 for (argnum = 0; argnum < nargs; argnum++)
2877 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
2878 sp -= align_up (len, 16);
2879
2880 if (mips_debug)
2881 fprintf_unfiltered (gdb_stdlog,
2882 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2883 paddr_nz (sp), (long) align_up (len, 16));
2884
2885 /* Initialize the integer and float register pointers. */
2886 argreg = MIPS_A0_REGNUM;
2887 float_argreg = mips_fpa0_regnum (current_gdbarch);
2888
2889 /* The struct_return pointer occupies the first parameter-passing reg. */
2890 if (struct_return)
2891 {
2892 if (mips_debug)
2893 fprintf_unfiltered (gdb_stdlog,
2894 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2895 argreg, paddr_nz (struct_addr));
2896 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2897 }
2898
2899 /* Now load as many as possible of the first arguments into
2900 registers, and push the rest onto the stack. Loop thru args
2901 from first to last. */
2902 for (argnum = 0; argnum < nargs; argnum++)
2903 {
2904 const gdb_byte *val;
2905 struct value *arg = args[argnum];
2906 struct type *arg_type = check_typedef (value_type (arg));
2907 int len = TYPE_LENGTH (arg_type);
2908 enum type_code typecode = TYPE_CODE (arg_type);
2909
2910 if (mips_debug)
2911 fprintf_unfiltered (gdb_stdlog,
2912 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2913 argnum + 1, len, (int) typecode);
2914
2915 val = value_contents (arg);
2916
2917 if (fp_register_arg_p (typecode, arg_type)
2918 && argreg <= MIPS_LAST_ARG_REGNUM)
2919 {
2920 /* This is a floating point value that fits entirely
2921 in a single register. */
2922 LONGEST regval = extract_unsigned_integer (val, len);
2923 if (mips_debug)
2924 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2925 float_argreg, phex (regval, len));
2926 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
2927
2928 if (mips_debug)
2929 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2930 argreg, phex (regval, len));
2931 regcache_cooked_write_unsigned (regcache, argreg, regval);
2932 float_argreg++;
2933 argreg++;
2934 }
2935 else
2936 {
2937 /* Copy the argument to general registers or the stack in
2938 register-sized pieces. Large arguments are split between
2939 registers and stack. */
2940 /* For N32/N64, structs, unions, or other composite types are
2941 treated as a sequence of doublewords, and are passed in integer
2942 or floating point registers as though they were simple scalar
2943 parameters to the extent that they fit, with any excess on the
2944 stack packed according to the normal memory layout of the
2945 object.
2946 The caller does not reserve space for the register arguments;
2947 the callee is responsible for reserving it if required. */
2948 /* Note: Floating-point values that didn't fit into an FP
2949 register are only written to memory. */
2950 while (len > 0)
2951 {
2952 /* Remember if the argument was written to the stack. */
2953 int stack_used_p = 0;
2954 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
2955
2956 if (mips_debug)
2957 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2958 partial_len);
2959
2960 if (fp_register_arg_p (typecode, arg_type))
2961 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
2962
2963 /* Write this portion of the argument to the stack. */
2964 if (argreg > MIPS_LAST_ARG_REGNUM)
2965 {
2966 /* Should shorter than int integer values be
2967 promoted to int before being stored? */
2968 int longword_offset = 0;
2969 CORE_ADDR addr;
2970 stack_used_p = 1;
2971 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2972 {
2973 if ((typecode == TYPE_CODE_INT
2974 || typecode == TYPE_CODE_PTR
2975 || typecode == TYPE_CODE_FLT)
2976 && len <= 4)
2977 longword_offset = MIPS64_REGSIZE - len;
2978 }
2979
2980 if (mips_debug)
2981 {
2982 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2983 paddr_nz (stack_offset));
2984 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2985 paddr_nz (longword_offset));
2986 }
2987
2988 addr = sp + stack_offset + longword_offset;
2989
2990 if (mips_debug)
2991 {
2992 int i;
2993 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2994 paddr_nz (addr));
2995 for (i = 0; i < partial_len; i++)
2996 {
2997 fprintf_unfiltered (gdb_stdlog, "%02x",
2998 val[i] & 0xff);
2999 }
3000 }
3001 write_memory (addr, val, partial_len);
3002 }
3003
3004 /* Note!!! This is NOT an else clause. Odd sized
3005 structs may go thru BOTH paths. */
3006 /* Write this portion of the argument to a general
3007 purpose register. */
3008 if (argreg <= MIPS_LAST_ARG_REGNUM)
3009 {
3010 LONGEST regval =
3011 extract_unsigned_integer (val, partial_len);
3012
3013 /* A non-floating-point argument being passed in a
3014 general register. If a struct or union, and if
3015 the remaining length is smaller than the register
3016 size, we have to adjust the register value on
3017 big endian targets.
3018
3019 It does not seem to be necessary to do the
3020 same for integral types. */
3021
3022 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3023 && partial_len < MIPS64_REGSIZE
3024 && (typecode == TYPE_CODE_STRUCT
3025 || typecode == TYPE_CODE_UNION))
3026 regval <<= ((MIPS64_REGSIZE - partial_len)
3027 * TARGET_CHAR_BIT);
3028
3029 if (mips_debug)
3030 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3031 argreg,
3032 phex (regval, MIPS64_REGSIZE));
3033 regcache_cooked_write_unsigned (regcache, argreg, regval);
3034
3035 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3036 TYPE_LENGTH (arg_type) - len))
3037 {
3038 if (mips_debug)
3039 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3040 float_argreg,
3041 phex (regval, MIPS64_REGSIZE));
3042 regcache_cooked_write_unsigned (regcache, float_argreg,
3043 regval);
3044 }
3045
3046 float_argreg++;
3047 argreg++;
3048 }
3049
3050 len -= partial_len;
3051 val += partial_len;
3052
3053 /* Compute the the offset into the stack at which we
3054 will copy the next parameter.
3055
3056 In N32 (N64?), the stack_offset only needs to be
3057 adjusted when it has been used. */
3058
3059 if (stack_used_p)
3060 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3061 }
3062 }
3063 if (mips_debug)
3064 fprintf_unfiltered (gdb_stdlog, "\n");
3065 }
3066
3067 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3068
3069 /* Return adjusted stack pointer. */
3070 return sp;
3071 }
3072
3073 static enum return_value_convention
3074 mips_n32n64_return_value (struct gdbarch *gdbarch,
3075 struct type *type, struct regcache *regcache,
3076 gdb_byte *readbuf, const gdb_byte *writebuf)
3077 {
3078 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3079 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3080 || TYPE_CODE (type) == TYPE_CODE_UNION
3081 || TYPE_CODE (type) == TYPE_CODE_ARRAY
3082 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3083 return RETURN_VALUE_STRUCT_CONVENTION;
3084 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3085 && TYPE_LENGTH (type) == 16
3086 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3087 {
3088 /* A 128-bit floating-point value fills both $f0 and $f2. The
3089 two registers are used in the same as memory order, so the
3090 eight bytes with the lower memory address are in $f0. */
3091 if (mips_debug)
3092 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3093 mips_xfer_register (regcache,
3094 gdbarch_num_regs (current_gdbarch)
3095 + mips_regnum (current_gdbarch)->fp0,
3096 8, gdbarch_byte_order (current_gdbarch),
3097 readbuf, writebuf, 0);
3098 mips_xfer_register (regcache,
3099 gdbarch_num_regs (current_gdbarch)
3100 + mips_regnum (current_gdbarch)->fp0 + 2,
3101 8, gdbarch_byte_order (current_gdbarch),
3102 readbuf ? readbuf + 8 : readbuf,
3103 writebuf ? writebuf + 8 : writebuf, 0);
3104 return RETURN_VALUE_REGISTER_CONVENTION;
3105 }
3106 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3107 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3108 {
3109 /* A floating-point value belongs in the least significant part
3110 of FP0. */
3111 if (mips_debug)
3112 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3113 mips_xfer_register (regcache,
3114 gdbarch_num_regs (current_gdbarch)
3115 + mips_regnum (current_gdbarch)->fp0,
3116 TYPE_LENGTH (type),
3117 gdbarch_byte_order (current_gdbarch),
3118 readbuf, writebuf, 0);
3119 return RETURN_VALUE_REGISTER_CONVENTION;
3120 }
3121 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3122 && TYPE_NFIELDS (type) <= 2
3123 && TYPE_NFIELDS (type) >= 1
3124 && ((TYPE_NFIELDS (type) == 1
3125 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3126 == TYPE_CODE_FLT))
3127 || (TYPE_NFIELDS (type) == 2
3128 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3129 == TYPE_CODE_FLT)
3130 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3131 == TYPE_CODE_FLT)))
3132 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3133 {
3134 /* A struct that contains one or two floats. Each value is part
3135 in the least significant part of their floating point
3136 register.. */
3137 int regnum;
3138 int field;
3139 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3140 field < TYPE_NFIELDS (type); field++, regnum += 2)
3141 {
3142 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3143 / TARGET_CHAR_BIT);
3144 if (mips_debug)
3145 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3146 offset);
3147 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3148 + regnum,
3149 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3150 gdbarch_byte_order (current_gdbarch),
3151 readbuf, writebuf, offset);
3152 }
3153 return RETURN_VALUE_REGISTER_CONVENTION;
3154 }
3155 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3156 || TYPE_CODE (type) == TYPE_CODE_UNION)
3157 {
3158 /* A structure or union. Extract the left justified value,
3159 regardless of the byte order. I.e. DO NOT USE
3160 mips_xfer_lower. */
3161 int offset;
3162 int regnum;
3163 for (offset = 0, regnum = MIPS_V0_REGNUM;
3164 offset < TYPE_LENGTH (type);
3165 offset += register_size (current_gdbarch, regnum), regnum++)
3166 {
3167 int xfer = register_size (current_gdbarch, regnum);
3168 if (offset + xfer > TYPE_LENGTH (type))
3169 xfer = TYPE_LENGTH (type) - offset;
3170 if (mips_debug)
3171 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3172 offset, xfer, regnum);
3173 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3174 + regnum, xfer,
3175 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3176 }
3177 return RETURN_VALUE_REGISTER_CONVENTION;
3178 }
3179 else
3180 {
3181 /* A scalar extract each part but least-significant-byte
3182 justified. */
3183 int offset;
3184 int regnum;
3185 for (offset = 0, regnum = MIPS_V0_REGNUM;
3186 offset < TYPE_LENGTH (type);
3187 offset += register_size (current_gdbarch, regnum), regnum++)
3188 {
3189 int xfer = register_size (current_gdbarch, regnum);
3190 if (offset + xfer > TYPE_LENGTH (type))
3191 xfer = TYPE_LENGTH (type) - offset;
3192 if (mips_debug)
3193 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3194 offset, xfer, regnum);
3195 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3196 + regnum, xfer,
3197 gdbarch_byte_order (current_gdbarch),
3198 readbuf, writebuf, offset);
3199 }
3200 return RETURN_VALUE_REGISTER_CONVENTION;
3201 }
3202 }
3203
3204 /* O32 ABI stuff. */
3205
3206 static CORE_ADDR
3207 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3208 struct regcache *regcache, CORE_ADDR bp_addr,
3209 int nargs, struct value **args, CORE_ADDR sp,
3210 int struct_return, CORE_ADDR struct_addr)
3211 {
3212 int argreg;
3213 int float_argreg;
3214 int argnum;
3215 int len = 0;
3216 int stack_offset = 0;
3217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3218 CORE_ADDR func_addr = find_function_addr (function, NULL);
3219
3220 /* For shared libraries, "t9" needs to point at the function
3221 address. */
3222 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3223
3224 /* Set the return address register to point to the entry point of
3225 the program, where a breakpoint lies in wait. */
3226 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3227
3228 /* First ensure that the stack and structure return address (if any)
3229 are properly aligned. The stack has to be at least 64-bit
3230 aligned even on 32-bit machines, because doubles must be 64-bit
3231 aligned. For n32 and n64, stack frames need to be 128-bit
3232 aligned, so we round to this widest known alignment. */
3233
3234 sp = align_down (sp, 16);
3235 struct_addr = align_down (struct_addr, 16);
3236
3237 /* Now make space on the stack for the args. */
3238 for (argnum = 0; argnum < nargs; argnum++)
3239 {
3240 struct type *arg_type = check_typedef (value_type (args[argnum]));
3241 int arglen = TYPE_LENGTH (arg_type);
3242
3243 /* Align to double-word if necessary. */
3244 if (mips_type_needs_double_align (arg_type))
3245 len = align_up (len, MIPS32_REGSIZE * 2);
3246 /* Allocate space on the stack. */
3247 len += align_up (arglen, MIPS32_REGSIZE);
3248 }
3249 sp -= align_up (len, 16);
3250
3251 if (mips_debug)
3252 fprintf_unfiltered (gdb_stdlog,
3253 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3254 paddr_nz (sp), (long) align_up (len, 16));
3255
3256 /* Initialize the integer and float register pointers. */
3257 argreg = MIPS_A0_REGNUM;
3258 float_argreg = mips_fpa0_regnum (current_gdbarch);
3259
3260 /* The struct_return pointer occupies the first parameter-passing reg. */
3261 if (struct_return)
3262 {
3263 if (mips_debug)
3264 fprintf_unfiltered (gdb_stdlog,
3265 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3266 argreg, paddr_nz (struct_addr));
3267 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3268 stack_offset += MIPS32_REGSIZE;
3269 }
3270
3271 /* Now load as many as possible of the first arguments into
3272 registers, and push the rest onto the stack. Loop thru args
3273 from first to last. */
3274 for (argnum = 0; argnum < nargs; argnum++)
3275 {
3276 const gdb_byte *val;
3277 struct value *arg = args[argnum];
3278 struct type *arg_type = check_typedef (value_type (arg));
3279 int len = TYPE_LENGTH (arg_type);
3280 enum type_code typecode = TYPE_CODE (arg_type);
3281
3282 if (mips_debug)
3283 fprintf_unfiltered (gdb_stdlog,
3284 "mips_o32_push_dummy_call: %d len=%d type=%d",
3285 argnum + 1, len, (int) typecode);
3286
3287 val = value_contents (arg);
3288
3289 /* 32-bit ABIs always start floating point arguments in an
3290 even-numbered floating point register. Round the FP register
3291 up before the check to see if there are any FP registers
3292 left. O32/O64 targets also pass the FP in the integer
3293 registers so also round up normal registers. */
3294 if (fp_register_arg_p (typecode, arg_type))
3295 {
3296 if ((float_argreg & 1))
3297 float_argreg++;
3298 }
3299
3300 /* Floating point arguments passed in registers have to be
3301 treated specially. On 32-bit architectures, doubles
3302 are passed in register pairs; the even register gets
3303 the low word, and the odd register gets the high word.
3304 On O32/O64, the first two floating point arguments are
3305 also copied to general registers, because MIPS16 functions
3306 don't use float registers for arguments. This duplication of
3307 arguments in general registers can't hurt non-MIPS16 functions
3308 because those registers are normally skipped. */
3309
3310 if (fp_register_arg_p (typecode, arg_type)
3311 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3312 {
3313 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3314 {
3315 int low_offset = gdbarch_byte_order (current_gdbarch)
3316 == BFD_ENDIAN_BIG ? 4 : 0;
3317 unsigned long regval;
3318
3319 /* Write the low word of the double to the even register(s). */
3320 regval = extract_unsigned_integer (val + low_offset, 4);
3321 if (mips_debug)
3322 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3323 float_argreg, phex (regval, 4));
3324 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3325 if (mips_debug)
3326 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3327 argreg, phex (regval, 4));
3328 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3329
3330 /* Write the high word of the double to the odd register(s). */
3331 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3332 if (mips_debug)
3333 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3334 float_argreg, phex (regval, 4));
3335 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3336
3337 if (mips_debug)
3338 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3339 argreg, phex (regval, 4));
3340 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3341 }
3342 else
3343 {
3344 /* This is a floating point value that fits entirely
3345 in a single register. */
3346 /* On 32 bit ABI's the float_argreg is further adjusted
3347 above to ensure that it is even register aligned. */
3348 LONGEST regval = extract_unsigned_integer (val, len);
3349 if (mips_debug)
3350 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3351 float_argreg, phex (regval, len));
3352 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3353 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3354 registers for each argument. The below is (my
3355 guess) to ensure that the corresponding integer
3356 register has reserved the same space. */
3357 if (mips_debug)
3358 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3359 argreg, phex (regval, len));
3360 regcache_cooked_write_unsigned (regcache, argreg, regval);
3361 argreg += 2;
3362 }
3363 /* Reserve space for the FP register. */
3364 stack_offset += align_up (len, MIPS32_REGSIZE);
3365 }
3366 else
3367 {
3368 /* Copy the argument to general registers or the stack in
3369 register-sized pieces. Large arguments are split between
3370 registers and stack. */
3371 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3372 are treated specially: Irix cc passes
3373 them in registers where gcc sometimes puts them on the
3374 stack. For maximum compatibility, we will put them in
3375 both places. */
3376 int odd_sized_struct = (len > MIPS32_REGSIZE
3377 && len % MIPS32_REGSIZE != 0);
3378 /* Structures should be aligned to eight bytes (even arg registers)
3379 on MIPS_ABI_O32, if their first member has double precision. */
3380 if (mips_type_needs_double_align (arg_type))
3381 {
3382 if ((argreg & 1))
3383 {
3384 argreg++;
3385 stack_offset += MIPS32_REGSIZE;
3386 }
3387 }
3388 while (len > 0)
3389 {
3390 /* Remember if the argument was written to the stack. */
3391 int stack_used_p = 0;
3392 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3393
3394 if (mips_debug)
3395 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3396 partial_len);
3397
3398 /* Write this portion of the argument to the stack. */
3399 if (argreg > MIPS_LAST_ARG_REGNUM
3400 || odd_sized_struct)
3401 {
3402 /* Should shorter than int integer values be
3403 promoted to int before being stored? */
3404 int longword_offset = 0;
3405 CORE_ADDR addr;
3406 stack_used_p = 1;
3407
3408 if (mips_debug)
3409 {
3410 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3411 paddr_nz (stack_offset));
3412 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3413 paddr_nz (longword_offset));
3414 }
3415
3416 addr = sp + stack_offset + longword_offset;
3417
3418 if (mips_debug)
3419 {
3420 int i;
3421 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3422 paddr_nz (addr));
3423 for (i = 0; i < partial_len; i++)
3424 {
3425 fprintf_unfiltered (gdb_stdlog, "%02x",
3426 val[i] & 0xff);
3427 }
3428 }
3429 write_memory (addr, val, partial_len);
3430 }
3431
3432 /* Note!!! This is NOT an else clause. Odd sized
3433 structs may go thru BOTH paths. */
3434 /* Write this portion of the argument to a general
3435 purpose register. */
3436 if (argreg <= MIPS_LAST_ARG_REGNUM)
3437 {
3438 LONGEST regval = extract_signed_integer (val, partial_len);
3439 /* Value may need to be sign extended, because
3440 mips_isa_regsize() != mips_abi_regsize(). */
3441
3442 /* A non-floating-point argument being passed in a
3443 general register. If a struct or union, and if
3444 the remaining length is smaller than the register
3445 size, we have to adjust the register value on
3446 big endian targets.
3447
3448 It does not seem to be necessary to do the
3449 same for integral types.
3450
3451 Also don't do this adjustment on O64 binaries.
3452
3453 cagney/2001-07-23: gdb/179: Also, GCC, when
3454 outputting LE O32 with sizeof (struct) <
3455 mips_abi_regsize(), generates a left shift
3456 as part of storing the argument in a register
3457 (the left shift isn't generated when
3458 sizeof (struct) >= mips_abi_regsize()). Since
3459 it is quite possible that this is GCC
3460 contradicting the LE/O32 ABI, GDB has not been
3461 adjusted to accommodate this. Either someone
3462 needs to demonstrate that the LE/O32 ABI
3463 specifies such a left shift OR this new ABI gets
3464 identified as such and GDB gets tweaked
3465 accordingly. */
3466
3467 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3468 && partial_len < MIPS32_REGSIZE
3469 && (typecode == TYPE_CODE_STRUCT
3470 || typecode == TYPE_CODE_UNION))
3471 regval <<= ((MIPS32_REGSIZE - partial_len)
3472 * TARGET_CHAR_BIT);
3473
3474 if (mips_debug)
3475 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3476 argreg,
3477 phex (regval, MIPS32_REGSIZE));
3478 regcache_cooked_write_unsigned (regcache, argreg, regval);
3479 argreg++;
3480
3481 /* Prevent subsequent floating point arguments from
3482 being passed in floating point registers. */
3483 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3484 }
3485
3486 len -= partial_len;
3487 val += partial_len;
3488
3489 /* Compute the the offset into the stack at which we
3490 will copy the next parameter.
3491
3492 In older ABIs, the caller reserved space for
3493 registers that contained arguments. This was loosely
3494 refered to as their "home". Consequently, space is
3495 always allocated. */
3496
3497 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
3498 }
3499 }
3500 if (mips_debug)
3501 fprintf_unfiltered (gdb_stdlog, "\n");
3502 }
3503
3504 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3505
3506 /* Return adjusted stack pointer. */
3507 return sp;
3508 }
3509
3510 static enum return_value_convention
3511 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3512 struct regcache *regcache,
3513 gdb_byte *readbuf, const gdb_byte *writebuf)
3514 {
3515 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3516
3517 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3518 || TYPE_CODE (type) == TYPE_CODE_UNION
3519 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3520 return RETURN_VALUE_STRUCT_CONVENTION;
3521 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3522 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3523 {
3524 /* A single-precision floating-point value. It fits in the
3525 least significant part of FP0. */
3526 if (mips_debug)
3527 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3528 mips_xfer_register (regcache,
3529 gdbarch_num_regs (current_gdbarch)
3530 + mips_regnum (current_gdbarch)->fp0,
3531 TYPE_LENGTH (type),
3532 gdbarch_byte_order (current_gdbarch),
3533 readbuf, writebuf, 0);
3534 return RETURN_VALUE_REGISTER_CONVENTION;
3535 }
3536 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3537 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3538 {
3539 /* A double-precision floating-point value. The most
3540 significant part goes in FP1, and the least significant in
3541 FP0. */
3542 if (mips_debug)
3543 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3544 switch (gdbarch_byte_order (current_gdbarch))
3545 {
3546 case BFD_ENDIAN_LITTLE:
3547 mips_xfer_register (regcache,
3548 gdbarch_num_regs (current_gdbarch)
3549 + mips_regnum (current_gdbarch)->fp0 +
3550 0, 4, gdbarch_byte_order (current_gdbarch),
3551 readbuf, writebuf, 0);
3552 mips_xfer_register (regcache,
3553 gdbarch_num_regs (current_gdbarch)
3554 + mips_regnum (current_gdbarch)->fp0 + 1,
3555 4, gdbarch_byte_order (current_gdbarch),
3556 readbuf, writebuf, 4);
3557 break;
3558 case BFD_ENDIAN_BIG:
3559 mips_xfer_register (regcache,
3560 gdbarch_num_regs (current_gdbarch)
3561 + mips_regnum (current_gdbarch)->fp0 + 1,
3562 4, gdbarch_byte_order (current_gdbarch),
3563 readbuf, writebuf, 0);
3564 mips_xfer_register (regcache,
3565 gdbarch_num_regs (current_gdbarch)
3566 + mips_regnum (current_gdbarch)->fp0 + 0,
3567 4, gdbarch_byte_order (current_gdbarch),
3568 readbuf, writebuf, 4);
3569 break;
3570 default:
3571 internal_error (__FILE__, __LINE__, _("bad switch"));
3572 }
3573 return RETURN_VALUE_REGISTER_CONVENTION;
3574 }
3575 #if 0
3576 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3577 && TYPE_NFIELDS (type) <= 2
3578 && TYPE_NFIELDS (type) >= 1
3579 && ((TYPE_NFIELDS (type) == 1
3580 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3581 == TYPE_CODE_FLT))
3582 || (TYPE_NFIELDS (type) == 2
3583 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3584 == TYPE_CODE_FLT)
3585 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3586 == TYPE_CODE_FLT)))
3587 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3588 {
3589 /* A struct that contains one or two floats. Each value is part
3590 in the least significant part of their floating point
3591 register.. */
3592 gdb_byte reg[MAX_REGISTER_SIZE];
3593 int regnum;
3594 int field;
3595 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3596 field < TYPE_NFIELDS (type); field++, regnum += 2)
3597 {
3598 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3599 / TARGET_CHAR_BIT);
3600 if (mips_debug)
3601 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3602 offset);
3603 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3604 + regnum,
3605 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3606 gdbarch_byte_order (current_gdbarch),
3607 readbuf, writebuf, offset);
3608 }
3609 return RETURN_VALUE_REGISTER_CONVENTION;
3610 }
3611 #endif
3612 #if 0
3613 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3614 || TYPE_CODE (type) == TYPE_CODE_UNION)
3615 {
3616 /* A structure or union. Extract the left justified value,
3617 regardless of the byte order. I.e. DO NOT USE
3618 mips_xfer_lower. */
3619 int offset;
3620 int regnum;
3621 for (offset = 0, regnum = MIPS_V0_REGNUM;
3622 offset < TYPE_LENGTH (type);
3623 offset += register_size (current_gdbarch, regnum), regnum++)
3624 {
3625 int xfer = register_size (current_gdbarch, regnum);
3626 if (offset + xfer > TYPE_LENGTH (type))
3627 xfer = TYPE_LENGTH (type) - offset;
3628 if (mips_debug)
3629 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3630 offset, xfer, regnum);
3631 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3632 + regnum, xfer,
3633 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3634 }
3635 return RETURN_VALUE_REGISTER_CONVENTION;
3636 }
3637 #endif
3638 else
3639 {
3640 /* A scalar extract each part but least-significant-byte
3641 justified. o32 thinks registers are 4 byte, regardless of
3642 the ISA. */
3643 int offset;
3644 int regnum;
3645 for (offset = 0, regnum = MIPS_V0_REGNUM;
3646 offset < TYPE_LENGTH (type);
3647 offset += MIPS32_REGSIZE, regnum++)
3648 {
3649 int xfer = MIPS32_REGSIZE;
3650 if (offset + xfer > TYPE_LENGTH (type))
3651 xfer = TYPE_LENGTH (type) - offset;
3652 if (mips_debug)
3653 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3654 offset, xfer, regnum);
3655 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3656 + regnum, xfer,
3657 gdbarch_byte_order (current_gdbarch),
3658 readbuf, writebuf, offset);
3659 }
3660 return RETURN_VALUE_REGISTER_CONVENTION;
3661 }
3662 }
3663
3664 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3665 ABI. */
3666
3667 static CORE_ADDR
3668 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3669 struct regcache *regcache, CORE_ADDR bp_addr,
3670 int nargs,
3671 struct value **args, CORE_ADDR sp,
3672 int struct_return, CORE_ADDR struct_addr)
3673 {
3674 int argreg;
3675 int float_argreg;
3676 int argnum;
3677 int len = 0;
3678 int stack_offset = 0;
3679 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3680 CORE_ADDR func_addr = find_function_addr (function, NULL);
3681
3682 /* For shared libraries, "t9" needs to point at the function
3683 address. */
3684 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3685
3686 /* Set the return address register to point to the entry point of
3687 the program, where a breakpoint lies in wait. */
3688 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3689
3690 /* First ensure that the stack and structure return address (if any)
3691 are properly aligned. The stack has to be at least 64-bit
3692 aligned even on 32-bit machines, because doubles must be 64-bit
3693 aligned. For n32 and n64, stack frames need to be 128-bit
3694 aligned, so we round to this widest known alignment. */
3695
3696 sp = align_down (sp, 16);
3697 struct_addr = align_down (struct_addr, 16);
3698
3699 /* Now make space on the stack for the args. */
3700 for (argnum = 0; argnum < nargs; argnum++)
3701 {
3702 struct type *arg_type = check_typedef (value_type (args[argnum]));
3703 int arglen = TYPE_LENGTH (arg_type);
3704
3705 /* Allocate space on the stack. */
3706 len += align_up (arglen, MIPS64_REGSIZE);
3707 }
3708 sp -= align_up (len, 16);
3709
3710 if (mips_debug)
3711 fprintf_unfiltered (gdb_stdlog,
3712 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3713 paddr_nz (sp), (long) align_up (len, 16));
3714
3715 /* Initialize the integer and float register pointers. */
3716 argreg = MIPS_A0_REGNUM;
3717 float_argreg = mips_fpa0_regnum (current_gdbarch);
3718
3719 /* The struct_return pointer occupies the first parameter-passing reg. */
3720 if (struct_return)
3721 {
3722 if (mips_debug)
3723 fprintf_unfiltered (gdb_stdlog,
3724 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3725 argreg, paddr_nz (struct_addr));
3726 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3727 stack_offset += MIPS64_REGSIZE;
3728 }
3729
3730 /* Now load as many as possible of the first arguments into
3731 registers, and push the rest onto the stack. Loop thru args
3732 from first to last. */
3733 for (argnum = 0; argnum < nargs; argnum++)
3734 {
3735 const gdb_byte *val;
3736 struct value *arg = args[argnum];
3737 struct type *arg_type = check_typedef (value_type (arg));
3738 int len = TYPE_LENGTH (arg_type);
3739 enum type_code typecode = TYPE_CODE (arg_type);
3740
3741 if (mips_debug)
3742 fprintf_unfiltered (gdb_stdlog,
3743 "mips_o64_push_dummy_call: %d len=%d type=%d",
3744 argnum + 1, len, (int) typecode);
3745
3746 val = value_contents (arg);
3747
3748 /* Floating point arguments passed in registers have to be
3749 treated specially. On 32-bit architectures, doubles
3750 are passed in register pairs; the even register gets
3751 the low word, and the odd register gets the high word.
3752 On O32/O64, the first two floating point arguments are
3753 also copied to general registers, because MIPS16 functions
3754 don't use float registers for arguments. This duplication of
3755 arguments in general registers can't hurt non-MIPS16 functions
3756 because those registers are normally skipped. */
3757
3758 if (fp_register_arg_p (typecode, arg_type)
3759 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3760 {
3761 LONGEST regval = extract_unsigned_integer (val, len);
3762 if (mips_debug)
3763 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3764 float_argreg, phex (regval, len));
3765 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3766 if (mips_debug)
3767 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3768 argreg, phex (regval, len));
3769 regcache_cooked_write_unsigned (regcache, argreg, regval);
3770 argreg++;
3771 /* Reserve space for the FP register. */
3772 stack_offset += align_up (len, MIPS64_REGSIZE);
3773 }
3774 else
3775 {
3776 /* Copy the argument to general registers or the stack in
3777 register-sized pieces. Large arguments are split between
3778 registers and stack. */
3779 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
3780 are treated specially: Irix cc passes them in registers
3781 where gcc sometimes puts them on the stack. For maximum
3782 compatibility, we will put them in both places. */
3783 int odd_sized_struct = (len > MIPS64_REGSIZE
3784 && len % MIPS64_REGSIZE != 0);
3785 while (len > 0)
3786 {
3787 /* Remember if the argument was written to the stack. */
3788 int stack_used_p = 0;
3789 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3790
3791 if (mips_debug)
3792 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3793 partial_len);
3794
3795 /* Write this portion of the argument to the stack. */
3796 if (argreg > MIPS_LAST_ARG_REGNUM
3797 || odd_sized_struct)
3798 {
3799 /* Should shorter than int integer values be
3800 promoted to int before being stored? */
3801 int longword_offset = 0;
3802 CORE_ADDR addr;
3803 stack_used_p = 1;
3804 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
3805 {
3806 if ((typecode == TYPE_CODE_INT
3807 || typecode == TYPE_CODE_PTR
3808 || typecode == TYPE_CODE_FLT)
3809 && len <= 4)
3810 longword_offset = MIPS64_REGSIZE - len;
3811 }
3812
3813 if (mips_debug)
3814 {
3815 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3816 paddr_nz (stack_offset));
3817 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3818 paddr_nz (longword_offset));
3819 }
3820
3821 addr = sp + stack_offset + longword_offset;
3822
3823 if (mips_debug)
3824 {
3825 int i;
3826 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3827 paddr_nz (addr));
3828 for (i = 0; i < partial_len; i++)
3829 {
3830 fprintf_unfiltered (gdb_stdlog, "%02x",
3831 val[i] & 0xff);
3832 }
3833 }
3834 write_memory (addr, val, partial_len);
3835 }
3836
3837 /* Note!!! This is NOT an else clause. Odd sized
3838 structs may go thru BOTH paths. */
3839 /* Write this portion of the argument to a general
3840 purpose register. */
3841 if (argreg <= MIPS_LAST_ARG_REGNUM)
3842 {
3843 LONGEST regval = extract_signed_integer (val, partial_len);
3844 /* Value may need to be sign extended, because
3845 mips_isa_regsize() != mips_abi_regsize(). */
3846
3847 /* A non-floating-point argument being passed in a
3848 general register. If a struct or union, and if
3849 the remaining length is smaller than the register
3850 size, we have to adjust the register value on
3851 big endian targets.
3852
3853 It does not seem to be necessary to do the
3854 same for integral types. */
3855
3856 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
3857 && partial_len < MIPS64_REGSIZE
3858 && (typecode == TYPE_CODE_STRUCT
3859 || typecode == TYPE_CODE_UNION))
3860 regval <<= ((MIPS64_REGSIZE - partial_len)
3861 * TARGET_CHAR_BIT);
3862
3863 if (mips_debug)
3864 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3865 argreg,
3866 phex (regval, MIPS64_REGSIZE));
3867 regcache_cooked_write_unsigned (regcache, argreg, regval);
3868 argreg++;
3869
3870 /* Prevent subsequent floating point arguments from
3871 being passed in floating point registers. */
3872 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3873 }
3874
3875 len -= partial_len;
3876 val += partial_len;
3877
3878 /* Compute the the offset into the stack at which we
3879 will copy the next parameter.
3880
3881 In older ABIs, the caller reserved space for
3882 registers that contained arguments. This was loosely
3883 refered to as their "home". Consequently, space is
3884 always allocated. */
3885
3886 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3887 }
3888 }
3889 if (mips_debug)
3890 fprintf_unfiltered (gdb_stdlog, "\n");
3891 }
3892
3893 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3894
3895 /* Return adjusted stack pointer. */
3896 return sp;
3897 }
3898
3899 static enum return_value_convention
3900 mips_o64_return_value (struct gdbarch *gdbarch,
3901 struct type *type, struct regcache *regcache,
3902 gdb_byte *readbuf, const gdb_byte *writebuf)
3903 {
3904 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3905
3906 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3907 || TYPE_CODE (type) == TYPE_CODE_UNION
3908 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3909 return RETURN_VALUE_STRUCT_CONVENTION;
3910 else if (fp_register_arg_p (TYPE_CODE (type), type))
3911 {
3912 /* A floating-point value. It fits in the least significant
3913 part of FP0. */
3914 if (mips_debug)
3915 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3916 mips_xfer_register (regcache,
3917 gdbarch_num_regs (current_gdbarch)
3918 + mips_regnum (current_gdbarch)->fp0,
3919 TYPE_LENGTH (type),
3920 gdbarch_byte_order (current_gdbarch),
3921 readbuf, writebuf, 0);
3922 return RETURN_VALUE_REGISTER_CONVENTION;
3923 }
3924 else
3925 {
3926 /* A scalar extract each part but least-significant-byte
3927 justified. */
3928 int offset;
3929 int regnum;
3930 for (offset = 0, regnum = MIPS_V0_REGNUM;
3931 offset < TYPE_LENGTH (type);
3932 offset += MIPS64_REGSIZE, regnum++)
3933 {
3934 int xfer = MIPS64_REGSIZE;
3935 if (offset + xfer > TYPE_LENGTH (type))
3936 xfer = TYPE_LENGTH (type) - offset;
3937 if (mips_debug)
3938 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3939 offset, xfer, regnum);
3940 mips_xfer_register (regcache, gdbarch_num_regs (current_gdbarch)
3941 + regnum, xfer,
3942 gdbarch_byte_order (current_gdbarch),
3943 readbuf, writebuf, offset);
3944 }
3945 return RETURN_VALUE_REGISTER_CONVENTION;
3946 }
3947 }
3948
3949 /* Floating point register management.
3950
3951 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3952 64bit operations, these early MIPS cpus treat fp register pairs
3953 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3954 registers and offer a compatibility mode that emulates the MIPS2 fp
3955 model. When operating in MIPS2 fp compat mode, later cpu's split
3956 double precision floats into two 32-bit chunks and store them in
3957 consecutive fp regs. To display 64-bit floats stored in this
3958 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3959 Throw in user-configurable endianness and you have a real mess.
3960
3961 The way this works is:
3962 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3963 double-precision value will be split across two logical registers.
3964 The lower-numbered logical register will hold the low-order bits,
3965 regardless of the processor's endianness.
3966 - If we are on a 64-bit processor, and we are looking for a
3967 single-precision value, it will be in the low ordered bits
3968 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3969 save slot in memory.
3970 - If we are in 64-bit mode, everything is straightforward.
3971
3972 Note that this code only deals with "live" registers at the top of the
3973 stack. We will attempt to deal with saved registers later, when
3974 the raw/cooked register interface is in place. (We need a general
3975 interface that can deal with dynamic saved register sizes -- fp
3976 regs could be 32 bits wide in one frame and 64 on the frame above
3977 and below). */
3978
3979 static struct type *
3980 mips_float_register_type (void)
3981 {
3982 return builtin_type_ieee_single;
3983 }
3984
3985 static struct type *
3986 mips_double_register_type (void)
3987 {
3988 return builtin_type_ieee_double;
3989 }
3990
3991 /* Copy a 32-bit single-precision value from the current frame
3992 into rare_buffer. */
3993
3994 static void
3995 mips_read_fp_register_single (struct frame_info *frame, int regno,
3996 gdb_byte *rare_buffer)
3997 {
3998 int raw_size = register_size (current_gdbarch, regno);
3999 gdb_byte *raw_buffer = alloca (raw_size);
4000
4001 if (!frame_register_read (frame, regno, raw_buffer))
4002 error (_("can't read register %d (%s)"),
4003 regno, gdbarch_register_name (current_gdbarch, regno));
4004 if (raw_size == 8)
4005 {
4006 /* We have a 64-bit value for this register. Find the low-order
4007 32 bits. */
4008 int offset;
4009
4010 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4011 offset = 4;
4012 else
4013 offset = 0;
4014
4015 memcpy (rare_buffer, raw_buffer + offset, 4);
4016 }
4017 else
4018 {
4019 memcpy (rare_buffer, raw_buffer, 4);
4020 }
4021 }
4022
4023 /* Copy a 64-bit double-precision value from the current frame into
4024 rare_buffer. This may include getting half of it from the next
4025 register. */
4026
4027 static void
4028 mips_read_fp_register_double (struct frame_info *frame, int regno,
4029 gdb_byte *rare_buffer)
4030 {
4031 int raw_size = register_size (current_gdbarch, regno);
4032
4033 if (raw_size == 8 && !mips2_fp_compat (frame))
4034 {
4035 /* We have a 64-bit value for this register, and we should use
4036 all 64 bits. */
4037 if (!frame_register_read (frame, regno, rare_buffer))
4038 error (_("can't read register %d (%s)"),
4039 regno, gdbarch_register_name (current_gdbarch, regno));
4040 }
4041 else
4042 {
4043 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
4044 internal_error (__FILE__, __LINE__,
4045 _("mips_read_fp_register_double: bad access to "
4046 "odd-numbered FP register"));
4047
4048 /* mips_read_fp_register_single will find the correct 32 bits from
4049 each register. */
4050 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4051 {
4052 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4053 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4054 }
4055 else
4056 {
4057 mips_read_fp_register_single (frame, regno, rare_buffer);
4058 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4059 }
4060 }
4061 }
4062
4063 static void
4064 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4065 int regnum)
4066 { /* do values for FP (float) regs */
4067 gdb_byte *raw_buffer;
4068 double doub, flt1; /* doubles extracted from raw hex data */
4069 int inv1, inv2;
4070
4071 raw_buffer = alloca (2 * register_size (current_gdbarch,
4072 mips_regnum (current_gdbarch)->fp0));
4073
4074 fprintf_filtered (file, "%s:",
4075 gdbarch_register_name (current_gdbarch, regnum));
4076 fprintf_filtered (file, "%*s",
4077 4 - (int) strlen (gdbarch_register_name
4078 (current_gdbarch, regnum)),
4079 "");
4080
4081 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4082 {
4083 /* 4-byte registers: Print hex and floating. Also print even
4084 numbered registers as doubles. */
4085 mips_read_fp_register_single (frame, regnum, raw_buffer);
4086 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4087
4088 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4089 file);
4090
4091 fprintf_filtered (file, " flt: ");
4092 if (inv1)
4093 fprintf_filtered (file, " <invalid float> ");
4094 else
4095 fprintf_filtered (file, "%-17.9g", flt1);
4096
4097 if (regnum % 2 == 0)
4098 {
4099 mips_read_fp_register_double (frame, regnum, raw_buffer);
4100 doub = unpack_double (mips_double_register_type (), raw_buffer,
4101 &inv2);
4102
4103 fprintf_filtered (file, " dbl: ");
4104 if (inv2)
4105 fprintf_filtered (file, "<invalid double>");
4106 else
4107 fprintf_filtered (file, "%-24.17g", doub);
4108 }
4109 }
4110 else
4111 {
4112 /* Eight byte registers: print each one as hex, float and double. */
4113 mips_read_fp_register_single (frame, regnum, raw_buffer);
4114 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4115
4116 mips_read_fp_register_double (frame, regnum, raw_buffer);
4117 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4118
4119
4120 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4121 file);
4122
4123 fprintf_filtered (file, " flt: ");
4124 if (inv1)
4125 fprintf_filtered (file, "<invalid float>");
4126 else
4127 fprintf_filtered (file, "%-17.9g", flt1);
4128
4129 fprintf_filtered (file, " dbl: ");
4130 if (inv2)
4131 fprintf_filtered (file, "<invalid double>");
4132 else
4133 fprintf_filtered (file, "%-24.17g", doub);
4134 }
4135 }
4136
4137 static void
4138 mips_print_register (struct ui_file *file, struct frame_info *frame,
4139 int regnum)
4140 {
4141 struct gdbarch *gdbarch = get_frame_arch (frame);
4142 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4143 int offset;
4144
4145 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4146 {
4147 mips_print_fp_register (file, frame, regnum);
4148 return;
4149 }
4150
4151 /* Get the data in raw format. */
4152 if (!frame_register_read (frame, regnum, raw_buffer))
4153 {
4154 fprintf_filtered (file, "%s: [Invalid]",
4155 gdbarch_register_name (current_gdbarch, regnum));
4156 return;
4157 }
4158
4159 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
4160
4161 /* The problem with printing numeric register names (r26, etc.) is that
4162 the user can't use them on input. Probably the best solution is to
4163 fix it so that either the numeric or the funky (a2, etc.) names
4164 are accepted on input. */
4165 if (regnum < MIPS_NUMREGS)
4166 fprintf_filtered (file, "(r%d): ", regnum);
4167 else
4168 fprintf_filtered (file, ": ");
4169
4170 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4171 offset =
4172 register_size (current_gdbarch,
4173 regnum) - register_size (current_gdbarch, regnum);
4174 else
4175 offset = 0;
4176
4177 print_scalar_formatted (raw_buffer + offset,
4178 register_type (gdbarch, regnum), 'x', 0,
4179 file);
4180 }
4181
4182 /* Replacement for generic do_registers_info.
4183 Print regs in pretty columns. */
4184
4185 static int
4186 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4187 int regnum)
4188 {
4189 fprintf_filtered (file, " ");
4190 mips_print_fp_register (file, frame, regnum);
4191 fprintf_filtered (file, "\n");
4192 return regnum + 1;
4193 }
4194
4195
4196 /* Print a row's worth of GP (int) registers, with name labels above */
4197
4198 static int
4199 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4200 int start_regnum)
4201 {
4202 struct gdbarch *gdbarch = get_frame_arch (frame);
4203 /* do values for GP (int) regs */
4204 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4205 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4206 int col, byte;
4207 int regnum;
4208
4209 /* For GP registers, we print a separate row of names above the vals */
4210 for (col = 0, regnum = start_regnum;
4211 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4212 + gdbarch_num_pseudo_regs (current_gdbarch);
4213 regnum++)
4214 {
4215 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
4216 continue; /* unused register */
4217 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4218 TYPE_CODE_FLT)
4219 break; /* end the row: reached FP register */
4220 /* Large registers are handled separately. */
4221 if (register_size (current_gdbarch, regnum)
4222 > mips_abi_regsize (current_gdbarch))
4223 {
4224 if (col > 0)
4225 break; /* End the row before this register. */
4226
4227 /* Print this register on a row by itself. */
4228 mips_print_register (file, frame, regnum);
4229 fprintf_filtered (file, "\n");
4230 return regnum + 1;
4231 }
4232 if (col == 0)
4233 fprintf_filtered (file, " ");
4234 fprintf_filtered (file,
4235 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4236 gdbarch_register_name (current_gdbarch, regnum));
4237 col++;
4238 }
4239
4240 if (col == 0)
4241 return regnum;
4242
4243 /* print the R0 to R31 names */
4244 if ((start_regnum % gdbarch_num_regs (current_gdbarch)) < MIPS_NUMREGS)
4245 fprintf_filtered (file, "\n R%-4d",
4246 start_regnum % gdbarch_num_regs (current_gdbarch));
4247 else
4248 fprintf_filtered (file, "\n ");
4249
4250 /* now print the values in hex, 4 or 8 to the row */
4251 for (col = 0, regnum = start_regnum;
4252 col < ncols && regnum < gdbarch_num_regs (current_gdbarch)
4253 + gdbarch_num_pseudo_regs (current_gdbarch);
4254 regnum++)
4255 {
4256 if (*gdbarch_register_name (current_gdbarch, regnum) == '\0')
4257 continue; /* unused register */
4258 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4259 TYPE_CODE_FLT)
4260 break; /* end row: reached FP register */
4261 if (register_size (current_gdbarch, regnum)
4262 > mips_abi_regsize (current_gdbarch))
4263 break; /* End row: large register. */
4264
4265 /* OK: get the data in raw format. */
4266 if (!frame_register_read (frame, regnum, raw_buffer))
4267 error (_("can't read register %d (%s)"),
4268 regnum, gdbarch_register_name (current_gdbarch, regnum));
4269 /* pad small registers */
4270 for (byte = 0;
4271 byte < (mips_abi_regsize (current_gdbarch)
4272 - register_size (current_gdbarch, regnum)); byte++)
4273 printf_filtered (" ");
4274 /* Now print the register value in hex, endian order. */
4275 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4276 for (byte =
4277 register_size (current_gdbarch,
4278 regnum) - register_size (current_gdbarch, regnum);
4279 byte < register_size (current_gdbarch, regnum); byte++)
4280 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4281 else
4282 for (byte = register_size (current_gdbarch, regnum) - 1;
4283 byte >= 0; byte--)
4284 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4285 fprintf_filtered (file, " ");
4286 col++;
4287 }
4288 if (col > 0) /* ie. if we actually printed anything... */
4289 fprintf_filtered (file, "\n");
4290
4291 return regnum;
4292 }
4293
4294 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4295
4296 static void
4297 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4298 struct frame_info *frame, int regnum, int all)
4299 {
4300 if (regnum != -1) /* do one specified register */
4301 {
4302 gdb_assert (regnum >= gdbarch_num_regs (current_gdbarch));
4303 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
4304 error (_("Not a valid register for the current processor type"));
4305
4306 mips_print_register (file, frame, regnum);
4307 fprintf_filtered (file, "\n");
4308 }
4309 else
4310 /* do all (or most) registers */
4311 {
4312 regnum = gdbarch_num_regs (current_gdbarch);
4313 while (regnum < gdbarch_num_regs (current_gdbarch)
4314 + gdbarch_num_pseudo_regs (current_gdbarch))
4315 {
4316 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4317 TYPE_CODE_FLT)
4318 {
4319 if (all) /* true for "INFO ALL-REGISTERS" command */
4320 regnum = print_fp_register_row (file, frame, regnum);
4321 else
4322 regnum += MIPS_NUMREGS; /* skip floating point regs */
4323 }
4324 else
4325 regnum = print_gp_register_row (file, frame, regnum);
4326 }
4327 }
4328 }
4329
4330 /* Is this a branch with a delay slot? */
4331
4332 static int
4333 is_delayed (unsigned long insn)
4334 {
4335 int i;
4336 for (i = 0; i < NUMOPCODES; ++i)
4337 if (mips_opcodes[i].pinfo != INSN_MACRO
4338 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4339 break;
4340 return (i < NUMOPCODES
4341 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4342 | INSN_COND_BRANCH_DELAY
4343 | INSN_COND_BRANCH_LIKELY)));
4344 }
4345
4346 int
4347 mips_single_step_through_delay (struct gdbarch *gdbarch,
4348 struct frame_info *frame)
4349 {
4350 CORE_ADDR pc = get_frame_pc (frame);
4351 gdb_byte buf[MIPS_INSN32_SIZE];
4352
4353 /* There is no branch delay slot on MIPS16. */
4354 if (mips_pc_is_mips16 (pc))
4355 return 0;
4356
4357 if (!breakpoint_here_p (pc + 4))
4358 return 0;
4359
4360 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4361 /* If error reading memory, guess that it is not a delayed
4362 branch. */
4363 return 0;
4364 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4365 }
4366
4367 /* To skip prologues, I use this predicate. Returns either PC itself
4368 if the code at PC does not look like a function prologue; otherwise
4369 returns an address that (if we're lucky) follows the prologue. If
4370 LENIENT, then we must skip everything which is involved in setting
4371 up the frame (it's OK to skip more, just so long as we don't skip
4372 anything which might clobber the registers which are being saved.
4373 We must skip more in the case where part of the prologue is in the
4374 delay slot of a non-prologue instruction). */
4375
4376 static CORE_ADDR
4377 mips_skip_prologue (CORE_ADDR pc)
4378 {
4379 CORE_ADDR limit_pc;
4380 CORE_ADDR func_addr;
4381
4382 /* See if we can determine the end of the prologue via the symbol table.
4383 If so, then return either PC, or the PC after the prologue, whichever
4384 is greater. */
4385 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4386 {
4387 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4388 if (post_prologue_pc != 0)
4389 return max (pc, post_prologue_pc);
4390 }
4391
4392 /* Can't determine prologue from the symbol table, need to examine
4393 instructions. */
4394
4395 /* Find an upper limit on the function prologue using the debug
4396 information. If the debug information could not be used to provide
4397 that bound, then use an arbitrary large number as the upper bound. */
4398 limit_pc = skip_prologue_using_sal (pc);
4399 if (limit_pc == 0)
4400 limit_pc = pc + 100; /* Magic. */
4401
4402 if (mips_pc_is_mips16 (pc))
4403 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4404 else
4405 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4406 }
4407
4408 /* Check whether the PC is in a function epilogue (32-bit version).
4409 This is a helper function for mips_in_function_epilogue_p. */
4410 static int
4411 mips32_in_function_epilogue_p (CORE_ADDR pc)
4412 {
4413 CORE_ADDR func_addr = 0, func_end = 0;
4414
4415 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4416 {
4417 /* The MIPS epilogue is max. 12 bytes long. */
4418 CORE_ADDR addr = func_end - 12;
4419
4420 if (addr < func_addr + 4)
4421 addr = func_addr + 4;
4422 if (pc < addr)
4423 return 0;
4424
4425 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4426 {
4427 unsigned long high_word;
4428 unsigned long inst;
4429
4430 inst = mips_fetch_instruction (pc);
4431 high_word = (inst >> 16) & 0xffff;
4432
4433 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4434 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4435 && inst != 0x03e00008 /* jr $ra */
4436 && inst != 0x00000000) /* nop */
4437 return 0;
4438 }
4439
4440 return 1;
4441 }
4442
4443 return 0;
4444 }
4445
4446 /* Check whether the PC is in a function epilogue (16-bit version).
4447 This is a helper function for mips_in_function_epilogue_p. */
4448 static int
4449 mips16_in_function_epilogue_p (CORE_ADDR pc)
4450 {
4451 CORE_ADDR func_addr = 0, func_end = 0;
4452
4453 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4454 {
4455 /* The MIPS epilogue is max. 12 bytes long. */
4456 CORE_ADDR addr = func_end - 12;
4457
4458 if (addr < func_addr + 4)
4459 addr = func_addr + 4;
4460 if (pc < addr)
4461 return 0;
4462
4463 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4464 {
4465 unsigned short inst;
4466
4467 inst = mips_fetch_instruction (pc);
4468
4469 if ((inst & 0xf800) == 0xf000) /* extend */
4470 continue;
4471
4472 if (inst != 0x6300 /* addiu $sp,offset */
4473 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4474 && inst != 0xe820 /* jr $ra */
4475 && inst != 0xe8a0 /* jrc $ra */
4476 && inst != 0x6500) /* nop */
4477 return 0;
4478 }
4479
4480 return 1;
4481 }
4482
4483 return 0;
4484 }
4485
4486 /* The epilogue is defined here as the area at the end of a function,
4487 after an instruction which destroys the function's stack frame. */
4488 static int
4489 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4490 {
4491 if (mips_pc_is_mips16 (pc))
4492 return mips16_in_function_epilogue_p (pc);
4493 else
4494 return mips32_in_function_epilogue_p (pc);
4495 }
4496
4497 /* Root of all "set mips "/"show mips " commands. This will eventually be
4498 used for all MIPS-specific commands. */
4499
4500 static void
4501 show_mips_command (char *args, int from_tty)
4502 {
4503 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4504 }
4505
4506 static void
4507 set_mips_command (char *args, int from_tty)
4508 {
4509 printf_unfiltered
4510 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4511 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4512 }
4513
4514 /* Commands to show/set the MIPS FPU type. */
4515
4516 static void
4517 show_mipsfpu_command (char *args, int from_tty)
4518 {
4519 char *fpu;
4520 switch (MIPS_FPU_TYPE)
4521 {
4522 case MIPS_FPU_SINGLE:
4523 fpu = "single-precision";
4524 break;
4525 case MIPS_FPU_DOUBLE:
4526 fpu = "double-precision";
4527 break;
4528 case MIPS_FPU_NONE:
4529 fpu = "absent (none)";
4530 break;
4531 default:
4532 internal_error (__FILE__, __LINE__, _("bad switch"));
4533 }
4534 if (mips_fpu_type_auto)
4535 printf_unfiltered
4536 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4537 fpu);
4538 else
4539 printf_unfiltered
4540 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4541 }
4542
4543
4544 static void
4545 set_mipsfpu_command (char *args, int from_tty)
4546 {
4547 printf_unfiltered
4548 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4549 show_mipsfpu_command (args, from_tty);
4550 }
4551
4552 static void
4553 set_mipsfpu_single_command (char *args, int from_tty)
4554 {
4555 struct gdbarch_info info;
4556 gdbarch_info_init (&info);
4557 mips_fpu_type = MIPS_FPU_SINGLE;
4558 mips_fpu_type_auto = 0;
4559 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4560 instead of relying on globals. Doing that would let generic code
4561 handle the search for this specific architecture. */
4562 if (!gdbarch_update_p (info))
4563 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4564 }
4565
4566 static void
4567 set_mipsfpu_double_command (char *args, int from_tty)
4568 {
4569 struct gdbarch_info info;
4570 gdbarch_info_init (&info);
4571 mips_fpu_type = MIPS_FPU_DOUBLE;
4572 mips_fpu_type_auto = 0;
4573 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4574 instead of relying on globals. Doing that would let generic code
4575 handle the search for this specific architecture. */
4576 if (!gdbarch_update_p (info))
4577 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4578 }
4579
4580 static void
4581 set_mipsfpu_none_command (char *args, int from_tty)
4582 {
4583 struct gdbarch_info info;
4584 gdbarch_info_init (&info);
4585 mips_fpu_type = MIPS_FPU_NONE;
4586 mips_fpu_type_auto = 0;
4587 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4588 instead of relying on globals. Doing that would let generic code
4589 handle the search for this specific architecture. */
4590 if (!gdbarch_update_p (info))
4591 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4592 }
4593
4594 static void
4595 set_mipsfpu_auto_command (char *args, int from_tty)
4596 {
4597 mips_fpu_type_auto = 1;
4598 }
4599
4600 /* Attempt to identify the particular processor model by reading the
4601 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4602 the relevant processor still exists (it dates back to '94) and
4603 secondly this is not the way to do this. The processor type should
4604 be set by forcing an architecture change. */
4605
4606 void
4607 deprecated_mips_set_processor_regs_hack (void)
4608 {
4609 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4610 ULONGEST prid;
4611
4612 regcache_cooked_read_unsigned (get_current_regcache (),
4613 MIPS_PRID_REGNUM, &prid);
4614 if ((prid & ~0xf) == 0x700)
4615 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4616 }
4617
4618 /* Just like reinit_frame_cache, but with the right arguments to be
4619 callable as an sfunc. */
4620
4621 static void
4622 reinit_frame_cache_sfunc (char *args, int from_tty,
4623 struct cmd_list_element *c)
4624 {
4625 reinit_frame_cache ();
4626 }
4627
4628 static int
4629 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4630 {
4631 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4632
4633 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4634 disassembler needs to be able to locally determine the ISA, and
4635 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4636 work. */
4637 if (mips_pc_is_mips16 (memaddr))
4638 info->mach = bfd_mach_mips16;
4639
4640 /* Round down the instruction address to the appropriate boundary. */
4641 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4642
4643 /* Set the disassembler options. */
4644 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4645 {
4646 /* Set up the disassembler info, so that we get the right
4647 register names from libopcodes. */
4648 if (tdep->mips_abi == MIPS_ABI_N32)
4649 info->disassembler_options = "gpr-names=n32";
4650 else
4651 info->disassembler_options = "gpr-names=64";
4652 info->flavour = bfd_target_elf_flavour;
4653 }
4654 else
4655 /* This string is not recognized explicitly by the disassembler,
4656 but it tells the disassembler to not try to guess the ABI from
4657 the bfd elf headers, such that, if the user overrides the ABI
4658 of a program linked as NewABI, the disassembly will follow the
4659 register naming conventions specified by the user. */
4660 info->disassembler_options = "gpr-names=32";
4661
4662 /* Call the appropriate disassembler based on the target endian-ness. */
4663 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4664 return print_insn_big_mips (memaddr, info);
4665 else
4666 return print_insn_little_mips (memaddr, info);
4667 }
4668
4669 /* This function implements gdbarch_breakpoint_from_pc. It uses the program
4670 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4671 It returns a pointer to a string of bytes that encode a breakpoint
4672 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4673 necessary) to point to the actual memory location where the breakpoint
4674 should be inserted. */
4675
4676 static const gdb_byte *
4677 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4678 {
4679 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4680 {
4681 if (mips_pc_is_mips16 (*pcptr))
4682 {
4683 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4684 *pcptr = unmake_mips16_addr (*pcptr);
4685 *lenptr = sizeof (mips16_big_breakpoint);
4686 return mips16_big_breakpoint;
4687 }
4688 else
4689 {
4690 /* The IDT board uses an unusual breakpoint value, and
4691 sometimes gets confused when it sees the usual MIPS
4692 breakpoint instruction. */
4693 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4694 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4695 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4696
4697 *lenptr = sizeof (big_breakpoint);
4698
4699 if (strcmp (target_shortname, "mips") == 0)
4700 return idt_big_breakpoint;
4701 else if (strcmp (target_shortname, "ddb") == 0
4702 || strcmp (target_shortname, "pmon") == 0
4703 || strcmp (target_shortname, "lsi") == 0)
4704 return pmon_big_breakpoint;
4705 else
4706 return big_breakpoint;
4707 }
4708 }
4709 else
4710 {
4711 if (mips_pc_is_mips16 (*pcptr))
4712 {
4713 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4714 *pcptr = unmake_mips16_addr (*pcptr);
4715 *lenptr = sizeof (mips16_little_breakpoint);
4716 return mips16_little_breakpoint;
4717 }
4718 else
4719 {
4720 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4721 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4722 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4723
4724 *lenptr = sizeof (little_breakpoint);
4725
4726 if (strcmp (target_shortname, "mips") == 0)
4727 return idt_little_breakpoint;
4728 else if (strcmp (target_shortname, "ddb") == 0
4729 || strcmp (target_shortname, "pmon") == 0
4730 || strcmp (target_shortname, "lsi") == 0)
4731 return pmon_little_breakpoint;
4732 else
4733 return little_breakpoint;
4734 }
4735 }
4736 }
4737
4738 /* If PC is in a mips16 call or return stub, return the address of the target
4739 PC, which is either the callee or the caller. There are several
4740 cases which must be handled:
4741
4742 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4743 target PC is in $31 ($ra).
4744 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4745 and the target PC is in $2.
4746 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4747 before the jal instruction, this is effectively a call stub
4748 and the the target PC is in $2. Otherwise this is effectively
4749 a return stub and the target PC is in $18.
4750
4751 See the source code for the stubs in gcc/config/mips/mips16.S for
4752 gory details. */
4753
4754 static CORE_ADDR
4755 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
4756 {
4757 char *name;
4758 CORE_ADDR start_addr;
4759
4760 /* Find the starting address and name of the function containing the PC. */
4761 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4762 return 0;
4763
4764 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4765 target PC is in $31 ($ra). */
4766 if (strcmp (name, "__mips16_ret_sf") == 0
4767 || strcmp (name, "__mips16_ret_df") == 0)
4768 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
4769
4770 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4771 {
4772 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4773 and the target PC is in $2. */
4774 if (name[19] >= '0' && name[19] <= '9')
4775 return get_frame_register_signed (frame, 2);
4776
4777 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4778 before the jal instruction, this is effectively a call stub
4779 and the the target PC is in $2. Otherwise this is effectively
4780 a return stub and the target PC is in $18. */
4781 else if (name[19] == 's' || name[19] == 'd')
4782 {
4783 if (pc == start_addr)
4784 {
4785 /* Check if the target of the stub is a compiler-generated
4786 stub. Such a stub for a function bar might have a name
4787 like __fn_stub_bar, and might look like this:
4788 mfc1 $4,$f13
4789 mfc1 $5,$f12
4790 mfc1 $6,$f15
4791 mfc1 $7,$f14
4792 la $1,bar (becomes a lui/addiu pair)
4793 jr $1
4794 So scan down to the lui/addi and extract the target
4795 address from those two instructions. */
4796
4797 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
4798 ULONGEST inst;
4799 int i;
4800
4801 /* See if the name of the target function is __fn_stub_*. */
4802 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4803 0)
4804 return target_pc;
4805 if (strncmp (name, "__fn_stub_", 10) != 0
4806 && strcmp (name, "etext") != 0
4807 && strcmp (name, "_etext") != 0)
4808 return target_pc;
4809
4810 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4811 The limit on the search is arbitrarily set to 20
4812 instructions. FIXME. */
4813 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4814 {
4815 inst = mips_fetch_instruction (target_pc);
4816 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4817 pc = (inst << 16) & 0xffff0000; /* high word */
4818 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4819 return pc | (inst & 0xffff); /* low word */
4820 }
4821
4822 /* Couldn't find the lui/addui pair, so return stub address. */
4823 return target_pc;
4824 }
4825 else
4826 /* This is the 'return' part of a call stub. The return
4827 address is in $r18. */
4828 return get_frame_register_signed (frame, 18);
4829 }
4830 }
4831 return 0; /* not a stub */
4832 }
4833
4834 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4835 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4836
4837 static int
4838 mips_stab_reg_to_regnum (int num)
4839 {
4840 int regnum;
4841 if (num >= 0 && num < 32)
4842 regnum = num;
4843 else if (num >= 38 && num < 70)
4844 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4845 else if (num == 70)
4846 regnum = mips_regnum (current_gdbarch)->hi;
4847 else if (num == 71)
4848 regnum = mips_regnum (current_gdbarch)->lo;
4849 else
4850 /* This will hopefully (eventually) provoke a warning. Should
4851 we be calling complaint() here? */
4852 return gdbarch_num_regs (current_gdbarch)
4853 + gdbarch_num_pseudo_regs (current_gdbarch);
4854 return gdbarch_num_regs (current_gdbarch) + regnum;
4855 }
4856
4857
4858 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4859 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4860
4861 static int
4862 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4863 {
4864 int regnum;
4865 if (num >= 0 && num < 32)
4866 regnum = num;
4867 else if (num >= 32 && num < 64)
4868 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4869 else if (num == 64)
4870 regnum = mips_regnum (current_gdbarch)->hi;
4871 else if (num == 65)
4872 regnum = mips_regnum (current_gdbarch)->lo;
4873 else
4874 /* This will hopefully (eventually) provoke a warning. Should we
4875 be calling complaint() here? */
4876 return gdbarch_num_regs (current_gdbarch)
4877 + gdbarch_num_pseudo_regs (current_gdbarch);
4878 return gdbarch_num_regs (current_gdbarch) + regnum;
4879 }
4880
4881 static int
4882 mips_register_sim_regno (int regnum)
4883 {
4884 /* Only makes sense to supply raw registers. */
4885 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
4886 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4887 decide if it is valid. Should instead define a standard sim/gdb
4888 register numbering scheme. */
4889 if (gdbarch_register_name (current_gdbarch,
4890 gdbarch_num_regs
4891 (current_gdbarch) + regnum) != NULL
4892 && gdbarch_register_name (current_gdbarch,
4893 gdbarch_num_regs
4894 (current_gdbarch) + regnum)[0] != '\0')
4895 return regnum;
4896 else
4897 return LEGACY_SIM_REGNO_IGNORE;
4898 }
4899
4900
4901 /* Convert an integer into an address. Extracting the value signed
4902 guarantees a correctly sign extended address. */
4903
4904 static CORE_ADDR
4905 mips_integer_to_address (struct gdbarch *gdbarch,
4906 struct type *type, const gdb_byte *buf)
4907 {
4908 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
4909 }
4910
4911 static void
4912 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4913 {
4914 enum mips_abi *abip = (enum mips_abi *) obj;
4915 const char *name = bfd_get_section_name (abfd, sect);
4916
4917 if (*abip != MIPS_ABI_UNKNOWN)
4918 return;
4919
4920 if (strncmp (name, ".mdebug.", 8) != 0)
4921 return;
4922
4923 if (strcmp (name, ".mdebug.abi32") == 0)
4924 *abip = MIPS_ABI_O32;
4925 else if (strcmp (name, ".mdebug.abiN32") == 0)
4926 *abip = MIPS_ABI_N32;
4927 else if (strcmp (name, ".mdebug.abi64") == 0)
4928 *abip = MIPS_ABI_N64;
4929 else if (strcmp (name, ".mdebug.abiO64") == 0)
4930 *abip = MIPS_ABI_O64;
4931 else if (strcmp (name, ".mdebug.eabi32") == 0)
4932 *abip = MIPS_ABI_EABI32;
4933 else if (strcmp (name, ".mdebug.eabi64") == 0)
4934 *abip = MIPS_ABI_EABI64;
4935 else
4936 warning (_("unsupported ABI %s."), name + 8);
4937 }
4938
4939 static void
4940 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4941 {
4942 int *lbp = (int *) obj;
4943 const char *name = bfd_get_section_name (abfd, sect);
4944
4945 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4946 *lbp = 32;
4947 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4948 *lbp = 64;
4949 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4950 warning (_("unrecognized .gcc_compiled_longXX"));
4951 }
4952
4953 static enum mips_abi
4954 global_mips_abi (void)
4955 {
4956 int i;
4957
4958 for (i = 0; mips_abi_strings[i] != NULL; i++)
4959 if (mips_abi_strings[i] == mips_abi_string)
4960 return (enum mips_abi) i;
4961
4962 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4963 }
4964
4965 static void
4966 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4967 {
4968 /* If the size matches the set of 32-bit or 64-bit integer registers,
4969 assume that's what we've got. */
4970 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
4971 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
4972
4973 /* If the size matches the full set of registers GDB traditionally
4974 knows about, including floating point, for either 32-bit or
4975 64-bit, assume that's what we've got. */
4976 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
4977 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
4978
4979 /* Otherwise we don't have a useful guess. */
4980 }
4981
4982 static struct value *
4983 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
4984 {
4985 const int *reg_p = baton;
4986 return value_of_register (*reg_p, frame);
4987 }
4988
4989 static struct gdbarch *
4990 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4991 {
4992 struct gdbarch *gdbarch;
4993 struct gdbarch_tdep *tdep;
4994 int elf_flags;
4995 enum mips_abi mips_abi, found_abi, wanted_abi;
4996 int i, num_regs;
4997 enum mips_fpu_type fpu_type;
4998 struct tdesc_arch_data *tdesc_data = NULL;
4999 int elf_fpu_type = 0;
5000
5001 /* Check any target description for validity. */
5002 if (tdesc_has_registers (info.target_desc))
5003 {
5004 static const char *const mips_gprs[] = {
5005 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5006 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5007 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5008 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5009 };
5010 static const char *const mips_fprs[] = {
5011 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5012 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5013 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5014 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5015 };
5016
5017 const struct tdesc_feature *feature;
5018 int valid_p;
5019
5020 feature = tdesc_find_feature (info.target_desc,
5021 "org.gnu.gdb.mips.cpu");
5022 if (feature == NULL)
5023 return NULL;
5024
5025 tdesc_data = tdesc_data_alloc ();
5026
5027 valid_p = 1;
5028 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5029 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5030 mips_gprs[i]);
5031
5032
5033 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5034 MIPS_EMBED_LO_REGNUM, "lo");
5035 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5036 MIPS_EMBED_HI_REGNUM, "hi");
5037 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5038 MIPS_EMBED_PC_REGNUM, "pc");
5039
5040 if (!valid_p)
5041 {
5042 tdesc_data_cleanup (tdesc_data);
5043 return NULL;
5044 }
5045
5046 feature = tdesc_find_feature (info.target_desc,
5047 "org.gnu.gdb.mips.cp0");
5048 if (feature == NULL)
5049 {
5050 tdesc_data_cleanup (tdesc_data);
5051 return NULL;
5052 }
5053
5054 valid_p = 1;
5055 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5056 MIPS_EMBED_BADVADDR_REGNUM,
5057 "badvaddr");
5058 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5059 MIPS_PS_REGNUM, "status");
5060 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5061 MIPS_EMBED_CAUSE_REGNUM, "cause");
5062
5063 if (!valid_p)
5064 {
5065 tdesc_data_cleanup (tdesc_data);
5066 return NULL;
5067 }
5068
5069 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5070 backend is not prepared for that, though. */
5071 feature = tdesc_find_feature (info.target_desc,
5072 "org.gnu.gdb.mips.fpu");
5073 if (feature == NULL)
5074 {
5075 tdesc_data_cleanup (tdesc_data);
5076 return NULL;
5077 }
5078
5079 valid_p = 1;
5080 for (i = 0; i < 32; i++)
5081 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5082 i + MIPS_EMBED_FP0_REGNUM,
5083 mips_fprs[i]);
5084
5085 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5086 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5087 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5088 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5089
5090 if (!valid_p)
5091 {
5092 tdesc_data_cleanup (tdesc_data);
5093 return NULL;
5094 }
5095
5096 /* It would be nice to detect an attempt to use a 64-bit ABI
5097 when only 32-bit registers are provided. */
5098 }
5099
5100 /* First of all, extract the elf_flags, if available. */
5101 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5102 elf_flags = elf_elfheader (info.abfd)->e_flags;
5103 else if (arches != NULL)
5104 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5105 else
5106 elf_flags = 0;
5107 if (gdbarch_debug)
5108 fprintf_unfiltered (gdb_stdlog,
5109 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5110
5111 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5112 switch ((elf_flags & EF_MIPS_ABI))
5113 {
5114 case E_MIPS_ABI_O32:
5115 found_abi = MIPS_ABI_O32;
5116 break;
5117 case E_MIPS_ABI_O64:
5118 found_abi = MIPS_ABI_O64;
5119 break;
5120 case E_MIPS_ABI_EABI32:
5121 found_abi = MIPS_ABI_EABI32;
5122 break;
5123 case E_MIPS_ABI_EABI64:
5124 found_abi = MIPS_ABI_EABI64;
5125 break;
5126 default:
5127 if ((elf_flags & EF_MIPS_ABI2))
5128 found_abi = MIPS_ABI_N32;
5129 else
5130 found_abi = MIPS_ABI_UNKNOWN;
5131 break;
5132 }
5133
5134 /* GCC creates a pseudo-section whose name describes the ABI. */
5135 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5136 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5137
5138 /* If we have no useful BFD information, use the ABI from the last
5139 MIPS architecture (if there is one). */
5140 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5141 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5142
5143 /* Try the architecture for any hint of the correct ABI. */
5144 if (found_abi == MIPS_ABI_UNKNOWN
5145 && info.bfd_arch_info != NULL
5146 && info.bfd_arch_info->arch == bfd_arch_mips)
5147 {
5148 switch (info.bfd_arch_info->mach)
5149 {
5150 case bfd_mach_mips3900:
5151 found_abi = MIPS_ABI_EABI32;
5152 break;
5153 case bfd_mach_mips4100:
5154 case bfd_mach_mips5000:
5155 found_abi = MIPS_ABI_EABI64;
5156 break;
5157 case bfd_mach_mips8000:
5158 case bfd_mach_mips10000:
5159 /* On Irix, ELF64 executables use the N64 ABI. The
5160 pseudo-sections which describe the ABI aren't present
5161 on IRIX. (Even for executables created by gcc.) */
5162 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5163 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5164 found_abi = MIPS_ABI_N64;
5165 else
5166 found_abi = MIPS_ABI_N32;
5167 break;
5168 }
5169 }
5170
5171 /* Default 64-bit objects to N64 instead of O32. */
5172 if (found_abi == MIPS_ABI_UNKNOWN
5173 && info.abfd != NULL
5174 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5175 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5176 found_abi = MIPS_ABI_N64;
5177
5178 if (gdbarch_debug)
5179 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5180 found_abi);
5181
5182 /* What has the user specified from the command line? */
5183 wanted_abi = global_mips_abi ();
5184 if (gdbarch_debug)
5185 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5186 wanted_abi);
5187
5188 /* Now that we have found what the ABI for this binary would be,
5189 check whether the user is overriding it. */
5190 if (wanted_abi != MIPS_ABI_UNKNOWN)
5191 mips_abi = wanted_abi;
5192 else if (found_abi != MIPS_ABI_UNKNOWN)
5193 mips_abi = found_abi;
5194 else
5195 mips_abi = MIPS_ABI_O32;
5196 if (gdbarch_debug)
5197 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5198 mips_abi);
5199
5200 /* Also used when doing an architecture lookup. */
5201 if (gdbarch_debug)
5202 fprintf_unfiltered (gdb_stdlog,
5203 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5204 mips64_transfers_32bit_regs_p);
5205
5206 /* Determine the MIPS FPU type. */
5207 #ifdef HAVE_ELF
5208 if (info.abfd
5209 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5210 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5211 Tag_GNU_MIPS_ABI_FP);
5212 #endif /* HAVE_ELF */
5213
5214 if (!mips_fpu_type_auto)
5215 fpu_type = mips_fpu_type;
5216 else if (elf_fpu_type != 0)
5217 {
5218 switch (elf_fpu_type)
5219 {
5220 case 1:
5221 fpu_type = MIPS_FPU_DOUBLE;
5222 break;
5223 case 2:
5224 fpu_type = MIPS_FPU_SINGLE;
5225 break;
5226 case 3:
5227 default:
5228 /* Soft float or unknown. */
5229 fpu_type = MIPS_FPU_NONE;
5230 break;
5231 }
5232 }
5233 else if (info.bfd_arch_info != NULL
5234 && info.bfd_arch_info->arch == bfd_arch_mips)
5235 switch (info.bfd_arch_info->mach)
5236 {
5237 case bfd_mach_mips3900:
5238 case bfd_mach_mips4100:
5239 case bfd_mach_mips4111:
5240 case bfd_mach_mips4120:
5241 fpu_type = MIPS_FPU_NONE;
5242 break;
5243 case bfd_mach_mips4650:
5244 fpu_type = MIPS_FPU_SINGLE;
5245 break;
5246 default:
5247 fpu_type = MIPS_FPU_DOUBLE;
5248 break;
5249 }
5250 else if (arches != NULL)
5251 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5252 else
5253 fpu_type = MIPS_FPU_DOUBLE;
5254 if (gdbarch_debug)
5255 fprintf_unfiltered (gdb_stdlog,
5256 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5257
5258 /* Check for blatant incompatibilities. */
5259
5260 /* If we have only 32-bit registers, then we can't debug a 64-bit
5261 ABI. */
5262 if (info.target_desc
5263 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5264 && mips_abi != MIPS_ABI_EABI32
5265 && mips_abi != MIPS_ABI_O32)
5266 {
5267 if (tdesc_data != NULL)
5268 tdesc_data_cleanup (tdesc_data);
5269 return NULL;
5270 }
5271
5272 /* try to find a pre-existing architecture */
5273 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5274 arches != NULL;
5275 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5276 {
5277 /* MIPS needs to be pedantic about which ABI the object is
5278 using. */
5279 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5280 continue;
5281 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5282 continue;
5283 /* Need to be pedantic about which register virtual size is
5284 used. */
5285 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5286 != mips64_transfers_32bit_regs_p)
5287 continue;
5288 /* Be pedantic about which FPU is selected. */
5289 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5290 continue;
5291
5292 if (tdesc_data != NULL)
5293 tdesc_data_cleanup (tdesc_data);
5294 return arches->gdbarch;
5295 }
5296
5297 /* Need a new architecture. Fill in a target specific vector. */
5298 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5299 gdbarch = gdbarch_alloc (&info, tdep);
5300 tdep->elf_flags = elf_flags;
5301 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5302 tdep->found_abi = found_abi;
5303 tdep->mips_abi = mips_abi;
5304 tdep->mips_fpu_type = fpu_type;
5305 tdep->register_size_valid_p = 0;
5306 tdep->register_size = 0;
5307
5308 if (info.target_desc)
5309 {
5310 /* Some useful properties can be inferred from the target. */
5311 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5312 {
5313 tdep->register_size_valid_p = 1;
5314 tdep->register_size = 4;
5315 }
5316 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5317 {
5318 tdep->register_size_valid_p = 1;
5319 tdep->register_size = 8;
5320 }
5321 }
5322
5323 /* Initially set everything according to the default ABI/ISA. */
5324 set_gdbarch_short_bit (gdbarch, 16);
5325 set_gdbarch_int_bit (gdbarch, 32);
5326 set_gdbarch_float_bit (gdbarch, 32);
5327 set_gdbarch_double_bit (gdbarch, 64);
5328 set_gdbarch_long_double_bit (gdbarch, 64);
5329 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5330 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5331 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5332
5333 set_gdbarch_elf_make_msymbol_special (gdbarch,
5334 mips_elf_make_msymbol_special);
5335
5336 /* Fill in the OS dependant register numbers and names. */
5337 {
5338 const char **reg_names;
5339 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5340 struct mips_regnum);
5341 if (tdesc_has_registers (info.target_desc))
5342 {
5343 regnum->lo = MIPS_EMBED_LO_REGNUM;
5344 regnum->hi = MIPS_EMBED_HI_REGNUM;
5345 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5346 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5347 regnum->pc = MIPS_EMBED_PC_REGNUM;
5348 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5349 regnum->fp_control_status = 70;
5350 regnum->fp_implementation_revision = 71;
5351 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5352 reg_names = NULL;
5353 }
5354 else if (info.osabi == GDB_OSABI_IRIX)
5355 {
5356 regnum->fp0 = 32;
5357 regnum->pc = 64;
5358 regnum->cause = 65;
5359 regnum->badvaddr = 66;
5360 regnum->hi = 67;
5361 regnum->lo = 68;
5362 regnum->fp_control_status = 69;
5363 regnum->fp_implementation_revision = 70;
5364 num_regs = 71;
5365 reg_names = mips_irix_reg_names;
5366 }
5367 else
5368 {
5369 regnum->lo = MIPS_EMBED_LO_REGNUM;
5370 regnum->hi = MIPS_EMBED_HI_REGNUM;
5371 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5372 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5373 regnum->pc = MIPS_EMBED_PC_REGNUM;
5374 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5375 regnum->fp_control_status = 70;
5376 regnum->fp_implementation_revision = 71;
5377 num_regs = 90;
5378 if (info.bfd_arch_info != NULL
5379 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5380 reg_names = mips_tx39_reg_names;
5381 else
5382 reg_names = mips_generic_reg_names;
5383 }
5384 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
5385 replaced by read_pc? */
5386 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5387 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5388 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5389 set_gdbarch_num_regs (gdbarch, num_regs);
5390 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5391 set_gdbarch_register_name (gdbarch, mips_register_name);
5392 tdep->mips_processor_reg_names = reg_names;
5393 tdep->regnum = regnum;
5394 }
5395
5396 switch (mips_abi)
5397 {
5398 case MIPS_ABI_O32:
5399 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5400 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5401 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5402 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5403 tdep->default_mask_address_p = 0;
5404 set_gdbarch_long_bit (gdbarch, 32);
5405 set_gdbarch_ptr_bit (gdbarch, 32);
5406 set_gdbarch_long_long_bit (gdbarch, 64);
5407 break;
5408 case MIPS_ABI_O64:
5409 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5410 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5411 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5412 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5413 tdep->default_mask_address_p = 0;
5414 set_gdbarch_long_bit (gdbarch, 32);
5415 set_gdbarch_ptr_bit (gdbarch, 32);
5416 set_gdbarch_long_long_bit (gdbarch, 64);
5417 break;
5418 case MIPS_ABI_EABI32:
5419 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5420 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5421 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5422 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5423 tdep->default_mask_address_p = 0;
5424 set_gdbarch_long_bit (gdbarch, 32);
5425 set_gdbarch_ptr_bit (gdbarch, 32);
5426 set_gdbarch_long_long_bit (gdbarch, 64);
5427 break;
5428 case MIPS_ABI_EABI64:
5429 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5430 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5431 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5432 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5433 tdep->default_mask_address_p = 0;
5434 set_gdbarch_long_bit (gdbarch, 64);
5435 set_gdbarch_ptr_bit (gdbarch, 64);
5436 set_gdbarch_long_long_bit (gdbarch, 64);
5437 break;
5438 case MIPS_ABI_N32:
5439 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5440 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5441 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5442 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5443 tdep->default_mask_address_p = 0;
5444 set_gdbarch_long_bit (gdbarch, 32);
5445 set_gdbarch_ptr_bit (gdbarch, 32);
5446 set_gdbarch_long_long_bit (gdbarch, 64);
5447 set_gdbarch_long_double_bit (gdbarch, 128);
5448 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5449 break;
5450 case MIPS_ABI_N64:
5451 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5452 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5453 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5454 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5455 tdep->default_mask_address_p = 0;
5456 set_gdbarch_long_bit (gdbarch, 64);
5457 set_gdbarch_ptr_bit (gdbarch, 64);
5458 set_gdbarch_long_long_bit (gdbarch, 64);
5459 set_gdbarch_long_double_bit (gdbarch, 128);
5460 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5461 break;
5462 default:
5463 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5464 }
5465
5466 /* GCC creates a pseudo-section whose name specifies the size of
5467 longs, since -mlong32 or -mlong64 may be used independent of
5468 other options. How those options affect pointer sizes is ABI and
5469 architecture dependent, so use them to override the default sizes
5470 set by the ABI. This table shows the relationship between ABI,
5471 -mlongXX, and size of pointers:
5472
5473 ABI -mlongXX ptr bits
5474 --- -------- --------
5475 o32 32 32
5476 o32 64 32
5477 n32 32 32
5478 n32 64 64
5479 o64 32 32
5480 o64 64 64
5481 n64 32 32
5482 n64 64 64
5483 eabi32 32 32
5484 eabi32 64 32
5485 eabi64 32 32
5486 eabi64 64 64
5487
5488 Note that for o32 and eabi32, pointers are always 32 bits
5489 regardless of any -mlongXX option. For all others, pointers and
5490 longs are the same, as set by -mlongXX or set by defaults.
5491 */
5492
5493 if (info.abfd != NULL)
5494 {
5495 int long_bit = 0;
5496
5497 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5498 if (long_bit)
5499 {
5500 set_gdbarch_long_bit (gdbarch, long_bit);
5501 switch (mips_abi)
5502 {
5503 case MIPS_ABI_O32:
5504 case MIPS_ABI_EABI32:
5505 break;
5506 case MIPS_ABI_N32:
5507 case MIPS_ABI_O64:
5508 case MIPS_ABI_N64:
5509 case MIPS_ABI_EABI64:
5510 set_gdbarch_ptr_bit (gdbarch, long_bit);
5511 break;
5512 default:
5513 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5514 }
5515 }
5516 }
5517
5518 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5519 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5520 comment:
5521
5522 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5523 flag in object files because to do so would make it impossible to
5524 link with libraries compiled without "-gp32". This is
5525 unnecessarily restrictive.
5526
5527 We could solve this problem by adding "-gp32" multilibs to gcc,
5528 but to set this flag before gcc is built with such multilibs will
5529 break too many systems.''
5530
5531 But even more unhelpfully, the default linker output target for
5532 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5533 for 64-bit programs - you need to change the ABI to change this,
5534 and not all gcc targets support that currently. Therefore using
5535 this flag to detect 32-bit mode would do the wrong thing given
5536 the current gcc - it would make GDB treat these 64-bit programs
5537 as 32-bit programs by default. */
5538
5539 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5540 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5541
5542 /* Add/remove bits from an address. The MIPS needs be careful to
5543 ensure that all 32 bit addresses are sign extended to 64 bits. */
5544 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5545
5546 /* Unwind the frame. */
5547 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5548 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
5549 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5550
5551 /* Map debug register numbers onto internal register numbers. */
5552 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5553 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5554 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5555 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5556 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5557 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5558 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5559 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5560
5561 /* MIPS version of CALL_DUMMY */
5562
5563 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5564 replaced by a command, and all targets will default to on stack
5565 (regardless of the stack's execute status). */
5566 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5567 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5568
5569 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5570 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5571 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5572
5573 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5574 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5575
5576 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5577
5578 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5579
5580 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5581 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5582 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5583
5584 set_gdbarch_register_type (gdbarch, mips_register_type);
5585
5586 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5587
5588 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5589
5590 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5591 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5592 need to all be folded into the target vector. Since they are
5593 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5594 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5595 is sitting on? */
5596 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5597
5598 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5599
5600 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5601
5602 /* Virtual tables. */
5603 set_gdbarch_vbit_in_delta (gdbarch, 1);
5604
5605 mips_register_g_packet_guesses (gdbarch);
5606
5607 /* Hook in OS ABI-specific overrides, if they have been registered. */
5608 info.tdep_info = (void *) tdesc_data;
5609 gdbarch_init_osabi (info, gdbarch);
5610
5611 /* Unwind the frame. */
5612 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
5613 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5614 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5615 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5616 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
5617 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5618 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5619 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5620
5621 if (tdesc_data)
5622 {
5623 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5624 tdesc_use_registers (gdbarch, tdesc_data);
5625
5626 /* Override the normal target description methods to handle our
5627 dual real and pseudo registers. */
5628 set_gdbarch_register_name (gdbarch, mips_register_name);
5629 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5630
5631 num_regs = gdbarch_num_regs (gdbarch);
5632 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5633 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5634 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5635 }
5636
5637 /* Add ABI-specific aliases for the registers. */
5638 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5639 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5640 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5641 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5642 else
5643 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5644 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5645 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5646
5647 /* Add some other standard aliases. */
5648 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5649 user_reg_add (gdbarch, mips_register_aliases[i].name,
5650 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5651
5652 return gdbarch;
5653 }
5654
5655 static void
5656 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5657 {
5658 struct gdbarch_info info;
5659
5660 /* Force the architecture to update, and (if it's a MIPS architecture)
5661 mips_gdbarch_init will take care of the rest. */
5662 gdbarch_info_init (&info);
5663 gdbarch_update_p (info);
5664 }
5665
5666 /* Print out which MIPS ABI is in use. */
5667
5668 static void
5669 show_mips_abi (struct ui_file *file,
5670 int from_tty,
5671 struct cmd_list_element *ignored_cmd,
5672 const char *ignored_value)
5673 {
5674 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5675 fprintf_filtered
5676 (file,
5677 "The MIPS ABI is unknown because the current architecture "
5678 "is not MIPS.\n");
5679 else
5680 {
5681 enum mips_abi global_abi = global_mips_abi ();
5682 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5683 const char *actual_abi_str = mips_abi_strings[actual_abi];
5684
5685 if (global_abi == MIPS_ABI_UNKNOWN)
5686 fprintf_filtered
5687 (file,
5688 "The MIPS ABI is set automatically (currently \"%s\").\n",
5689 actual_abi_str);
5690 else if (global_abi == actual_abi)
5691 fprintf_filtered
5692 (file,
5693 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5694 actual_abi_str);
5695 else
5696 {
5697 /* Probably shouldn't happen... */
5698 fprintf_filtered
5699 (file,
5700 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5701 actual_abi_str, mips_abi_strings[global_abi]);
5702 }
5703 }
5704 }
5705
5706 static void
5707 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5708 {
5709 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5710 if (tdep != NULL)
5711 {
5712 int ef_mips_arch;
5713 int ef_mips_32bitmode;
5714 /* Determine the ISA. */
5715 switch (tdep->elf_flags & EF_MIPS_ARCH)
5716 {
5717 case E_MIPS_ARCH_1:
5718 ef_mips_arch = 1;
5719 break;
5720 case E_MIPS_ARCH_2:
5721 ef_mips_arch = 2;
5722 break;
5723 case E_MIPS_ARCH_3:
5724 ef_mips_arch = 3;
5725 break;
5726 case E_MIPS_ARCH_4:
5727 ef_mips_arch = 4;
5728 break;
5729 default:
5730 ef_mips_arch = 0;
5731 break;
5732 }
5733 /* Determine the size of a pointer. */
5734 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5735 fprintf_unfiltered (file,
5736 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5737 tdep->elf_flags);
5738 fprintf_unfiltered (file,
5739 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5740 ef_mips_32bitmode);
5741 fprintf_unfiltered (file,
5742 "mips_dump_tdep: ef_mips_arch = %d\n",
5743 ef_mips_arch);
5744 fprintf_unfiltered (file,
5745 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5746 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5747 fprintf_unfiltered (file,
5748 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5749 mips_mask_address_p (tdep),
5750 tdep->default_mask_address_p);
5751 }
5752 fprintf_unfiltered (file,
5753 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5754 MIPS_DEFAULT_FPU_TYPE,
5755 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5756 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5757 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5758 : "???"));
5759 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5760 fprintf_unfiltered (file,
5761 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5762 MIPS_FPU_TYPE,
5763 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5764 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5765 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5766 : "???"));
5767 }
5768
5769 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5770
5771 void
5772 _initialize_mips_tdep (void)
5773 {
5774 static struct cmd_list_element *mipsfpulist = NULL;
5775 struct cmd_list_element *c;
5776
5777 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5778 if (MIPS_ABI_LAST + 1
5779 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5780 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5781
5782 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5783
5784 mips_pdr_data = register_objfile_data ();
5785
5786 /* Create feature sets with the appropriate properties. The values
5787 are not important. */
5788 mips_tdesc_gp32 = allocate_target_description ();
5789 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
5790
5791 mips_tdesc_gp64 = allocate_target_description ();
5792 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
5793
5794 /* Add root prefix command for all "set mips"/"show mips" commands */
5795 add_prefix_cmd ("mips", no_class, set_mips_command,
5796 _("Various MIPS specific commands."),
5797 &setmipscmdlist, "set mips ", 0, &setlist);
5798
5799 add_prefix_cmd ("mips", no_class, show_mips_command,
5800 _("Various MIPS specific commands."),
5801 &showmipscmdlist, "show mips ", 0, &showlist);
5802
5803 /* Allow the user to override the ABI. */
5804 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5805 &mips_abi_string, _("\
5806 Set the MIPS ABI used by this program."), _("\
5807 Show the MIPS ABI used by this program."), _("\
5808 This option can be set to one of:\n\
5809 auto - the default ABI associated with the current binary\n\
5810 o32\n\
5811 o64\n\
5812 n32\n\
5813 n64\n\
5814 eabi32\n\
5815 eabi64"),
5816 mips_abi_update,
5817 show_mips_abi,
5818 &setmipscmdlist, &showmipscmdlist);
5819
5820 /* Let the user turn off floating point and set the fence post for
5821 heuristic_proc_start. */
5822
5823 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5824 _("Set use of MIPS floating-point coprocessor."),
5825 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5826 add_cmd ("single", class_support, set_mipsfpu_single_command,
5827 _("Select single-precision MIPS floating-point coprocessor."),
5828 &mipsfpulist);
5829 add_cmd ("double", class_support, set_mipsfpu_double_command,
5830 _("Select double-precision MIPS floating-point coprocessor."),
5831 &mipsfpulist);
5832 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5833 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5834 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5835 add_cmd ("none", class_support, set_mipsfpu_none_command,
5836 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5837 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5838 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5839 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5840 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5841 _("Select MIPS floating-point coprocessor automatically."),
5842 &mipsfpulist);
5843 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5844 _("Show current use of MIPS floating-point coprocessor target."),
5845 &showlist);
5846
5847 /* We really would like to have both "0" and "unlimited" work, but
5848 command.c doesn't deal with that. So make it a var_zinteger
5849 because the user can always use "999999" or some such for unlimited. */
5850 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5851 &heuristic_fence_post, _("\
5852 Set the distance searched for the start of a function."), _("\
5853 Show the distance searched for the start of a function."), _("\
5854 If you are debugging a stripped executable, GDB needs to search through the\n\
5855 program for the start of a function. This command sets the distance of the\n\
5856 search. The only need to set it is when debugging a stripped executable."),
5857 reinit_frame_cache_sfunc,
5858 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5859 &setlist, &showlist);
5860
5861 /* Allow the user to control whether the upper bits of 64-bit
5862 addresses should be zeroed. */
5863 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5864 &mask_address_var, _("\
5865 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5866 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5867 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5868 allow GDB to determine the correct value."),
5869 NULL, show_mask_address,
5870 &setmipscmdlist, &showmipscmdlist);
5871
5872 /* Allow the user to control the size of 32 bit registers within the
5873 raw remote packet. */
5874 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5875 &mips64_transfers_32bit_regs_p, _("\
5876 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5877 _("\
5878 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5879 _("\
5880 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5881 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5882 64 bits for others. Use \"off\" to disable compatibility mode"),
5883 set_mips64_transfers_32bit_regs,
5884 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5885 &setlist, &showlist);
5886
5887 /* Debug this files internals. */
5888 add_setshow_zinteger_cmd ("mips", class_maintenance,
5889 &mips_debug, _("\
5890 Set mips debugging."), _("\
5891 Show mips debugging."), _("\
5892 When non-zero, mips specific debugging is enabled."),
5893 NULL,
5894 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5895 &setdebuglist, &showdebuglist);
5896 }
This page took 0.152944 seconds and 4 git commands to generate.