* gdb.c++/classes.exp: Add test for static member function.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41
42 #include "opcode/mips.h"
43 #include "elf/mips.h"
44 #include "elf-bfd.h"
45 #include "symcat.h"
46
47 /* The sizes of floating point registers. */
48
49 enum
50 {
51 MIPS_FPU_SINGLE_REGSIZE = 4,
52 MIPS_FPU_DOUBLE_REGSIZE = 8
53 };
54
55 /* All the possible MIPS ABIs. */
56
57 enum mips_abi
58 {
59 MIPS_ABI_UNKNOWN,
60 MIPS_ABI_N32,
61 MIPS_ABI_O32,
62 MIPS_ABI_O64,
63 MIPS_ABI_EABI32,
64 MIPS_ABI_EABI64
65 };
66
67 struct frame_extra_info
68 {
69 mips_extra_func_info_t proc_desc;
70 int num_args;
71 };
72
73 /* Various MIPS ISA options (related to stack analysis) can be
74 overridden dynamically. Establish an enum/array for managing
75 them. */
76
77 static const char size_auto[] = "auto";
78 static const char size_32[] = "32";
79 static const char size_64[] = "64";
80
81 static const char *size_enums[] = {
82 size_auto,
83 size_32,
84 size_64,
85 0
86 };
87
88 /* Some MIPS boards don't support floating point while others only
89 support single-precision floating-point operations. See also
90 FP_REGISTER_DOUBLE. */
91
92 enum mips_fpu_type
93 {
94 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
95 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
96 MIPS_FPU_NONE /* No floating point. */
97 };
98
99 #ifndef MIPS_DEFAULT_FPU_TYPE
100 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
101 #endif
102 static int mips_fpu_type_auto = 1;
103 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
104 #define MIPS_FPU_TYPE mips_fpu_type
105
106 /* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
107 #ifndef FP_REGISTER_DOUBLE
108 #define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
109 #endif
110
111 static int mips_debug = 0;
112
113 /* MIPS specific per-architecture information */
114 struct gdbarch_tdep
115 {
116 /* from the elf header */
117 int elf_flags;
118 /* mips options */
119 enum mips_abi mips_abi;
120 const char *mips_abi_string;
121 enum mips_fpu_type mips_fpu_type;
122 int mips_last_arg_regnum;
123 int mips_last_fp_arg_regnum;
124 int mips_default_saved_regsize;
125 int mips_fp_register_double;
126 int mips_regs_have_home_p;
127 int mips_default_stack_argsize;
128 int gdb_target_is_mips64;
129 int default_mask_address_p;
130 };
131
132 #if GDB_MULTI_ARCH
133 #undef MIPS_EABI
134 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
135 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
136 #endif
137
138 #if GDB_MULTI_ARCH
139 #undef MIPS_LAST_FP_ARG_REGNUM
140 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
141 #endif
142
143 #if GDB_MULTI_ARCH
144 #undef MIPS_LAST_ARG_REGNUM
145 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
146 #endif
147
148 #if GDB_MULTI_ARCH
149 #undef MIPS_FPU_TYPE
150 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
151 #endif
152
153 /* Return the currently configured (or set) saved register size. */
154
155 #if GDB_MULTI_ARCH
156 #undef MIPS_DEFAULT_SAVED_REGSIZE
157 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
158 #elif !defined (MIPS_DEFAULT_SAVED_REGSIZE)
159 #define MIPS_DEFAULT_SAVED_REGSIZE MIPS_REGSIZE
160 #endif
161
162 static const char *mips_saved_regsize_string = size_auto;
163
164 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
165
166 static unsigned int
167 mips_saved_regsize (void)
168 {
169 if (mips_saved_regsize_string == size_auto)
170 return MIPS_DEFAULT_SAVED_REGSIZE;
171 else if (mips_saved_regsize_string == size_64)
172 return 8;
173 else /* if (mips_saved_regsize_string == size_32) */
174 return 4;
175 }
176
177 /* Indicate that the ABI makes use of double-precision registers
178 provided by the FPU (rather than combining pairs of registers to
179 form double-precision values). Do not use "TARGET_IS_MIPS64" to
180 determine if the ABI is using double-precision registers. See also
181 MIPS_FPU_TYPE. */
182 #if GDB_MULTI_ARCH
183 #undef FP_REGISTER_DOUBLE
184 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
185 #endif
186
187 /* Does the caller allocate a ``home'' for each register used in the
188 function call? The N32 ABI and MIPS_EABI do not, the others do. */
189
190 #if GDB_MULTI_ARCH
191 #undef MIPS_REGS_HAVE_HOME_P
192 #define MIPS_REGS_HAVE_HOME_P (gdbarch_tdep (current_gdbarch)->mips_regs_have_home_p)
193 #elif !defined (MIPS_REGS_HAVE_HOME_P)
194 #define MIPS_REGS_HAVE_HOME_P (!MIPS_EABI)
195 #endif
196
197 /* The amount of space reserved on the stack for registers. This is
198 different to MIPS_SAVED_REGSIZE as it determines the alignment of
199 data allocated after the registers have run out. */
200
201 #if GDB_MULTI_ARCH
202 #undef MIPS_DEFAULT_STACK_ARGSIZE
203 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
204 #elif !defined (MIPS_DEFAULT_STACK_ARGSIZE)
205 #define MIPS_DEFAULT_STACK_ARGSIZE (MIPS_DEFAULT_SAVED_REGSIZE)
206 #endif
207
208 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
209
210 static const char *mips_stack_argsize_string = size_auto;
211
212 static unsigned int
213 mips_stack_argsize (void)
214 {
215 if (mips_stack_argsize_string == size_auto)
216 return MIPS_DEFAULT_STACK_ARGSIZE;
217 else if (mips_stack_argsize_string == size_64)
218 return 8;
219 else /* if (mips_stack_argsize_string == size_32) */
220 return 4;
221 }
222
223 #if GDB_MULTI_ARCH
224 #undef GDB_TARGET_IS_MIPS64
225 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
226 #endif
227
228 #if GDB_MULTI_ARCH
229 #undef MIPS_DEFAULT_MASK_ADDRESS_P
230 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
231 #elif !defined (MIPS_DEFAULT_MASK_ADDRESS_P)
232 #define MIPS_DEFAULT_MASK_ADDRESS_P (0)
233 #endif
234
235 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
236
237 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
238
239 static void mips_print_register (int, int);
240
241 static mips_extra_func_info_t
242 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
243
244 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
245
246 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
247
248 int mips_set_processor_type (char *);
249
250 static void mips_show_processor_type_command (char *, int);
251
252 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
253
254 static mips_extra_func_info_t
255 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
256
257 static CORE_ADDR after_prologue (CORE_ADDR pc,
258 mips_extra_func_info_t proc_desc);
259
260 /* This value is the model of MIPS in use. It is derived from the value
261 of the PrID register. */
262
263 char *mips_processor_type;
264
265 char *tmp_mips_processor_type;
266
267 /* The list of available "set mips " and "show mips " commands */
268
269 static struct cmd_list_element *setmipscmdlist = NULL;
270 static struct cmd_list_element *showmipscmdlist = NULL;
271
272 /* A set of original names, to be used when restoring back to generic
273 registers from a specific set. */
274
275 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
276 char **mips_processor_reg_names = mips_generic_reg_names;
277
278 char *
279 mips_register_name (int i)
280 {
281 return mips_processor_reg_names[i];
282 }
283 /* *INDENT-OFF* */
284 /* Names of IDT R3041 registers. */
285
286 char *mips_r3041_reg_names[] = {
287 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
288 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
289 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
290 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
291 "sr", "lo", "hi", "bad", "cause","pc",
292 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
293 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
294 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
295 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
296 "fsr", "fir", "fp", "",
297 "", "", "bus", "ccfg", "", "", "", "",
298 "", "", "port", "cmp", "", "", "epc", "prid",
299 };
300
301 /* Names of IDT R3051 registers. */
302
303 char *mips_r3051_reg_names[] = {
304 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
305 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
306 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
307 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
308 "sr", "lo", "hi", "bad", "cause","pc",
309 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
310 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
311 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
312 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
313 "fsr", "fir", "fp", "",
314 "inx", "rand", "elo", "", "ctxt", "", "", "",
315 "", "", "ehi", "", "", "", "epc", "prid",
316 };
317
318 /* Names of IDT R3081 registers. */
319
320 char *mips_r3081_reg_names[] = {
321 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
322 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
323 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
324 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
325 "sr", "lo", "hi", "bad", "cause","pc",
326 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
327 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
328 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
329 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
330 "fsr", "fir", "fp", "",
331 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
332 "", "", "ehi", "", "", "", "epc", "prid",
333 };
334
335 /* Names of LSI 33k registers. */
336
337 char *mips_lsi33k_reg_names[] = {
338 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
339 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
340 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
341 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
342 "epc", "hi", "lo", "sr", "cause","badvaddr",
343 "dcic", "bpc", "bda", "", "", "", "", "",
344 "", "", "", "", "", "", "", "",
345 "", "", "", "", "", "", "", "",
346 "", "", "", "", "", "", "", "",
347 "", "", "", "",
348 "", "", "", "", "", "", "", "",
349 "", "", "", "", "", "", "", "",
350 };
351
352 struct {
353 char *name;
354 char **regnames;
355 } mips_processor_type_table[] = {
356 { "generic", mips_generic_reg_names },
357 { "r3041", mips_r3041_reg_names },
358 { "r3051", mips_r3051_reg_names },
359 { "r3071", mips_r3081_reg_names },
360 { "r3081", mips_r3081_reg_names },
361 { "lsi33k", mips_lsi33k_reg_names },
362 { NULL, NULL }
363 };
364 /* *INDENT-ON* */
365
366
367
368
369 /* Table to translate MIPS16 register field to actual register number. */
370 static int mips16_to_32_reg[8] =
371 {16, 17, 2, 3, 4, 5, 6, 7};
372
373 /* Heuristic_proc_start may hunt through the text section for a long
374 time across a 2400 baud serial line. Allows the user to limit this
375 search. */
376
377 static unsigned int heuristic_fence_post = 0;
378
379 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
380 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
381 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
382 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
383 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
384 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
385 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
386 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
387 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
388 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
389 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
390 #define _PROC_MAGIC_ 0x0F0F0F0F
391 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
392 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
393
394 struct linked_proc_info
395 {
396 struct mips_extra_func_info info;
397 struct linked_proc_info *next;
398 }
399 *linked_proc_desc_table = NULL;
400
401 void
402 mips_print_extra_frame_info (struct frame_info *fi)
403 {
404 if (fi
405 && fi->extra_info
406 && fi->extra_info->proc_desc
407 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
408 printf_filtered (" frame pointer is at %s+%s\n",
409 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
410 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
411 }
412
413 /* Convert between RAW and VIRTUAL registers. The RAW register size
414 defines the remote-gdb packet. */
415
416 static int mips64_transfers_32bit_regs_p = 0;
417
418 int
419 mips_register_raw_size (int reg_nr)
420 {
421 if (mips64_transfers_32bit_regs_p)
422 return REGISTER_VIRTUAL_SIZE (reg_nr);
423 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
424 && FP_REGISTER_DOUBLE)
425 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
426 registers. */
427 return 8;
428 else
429 return MIPS_REGSIZE;
430 }
431
432 int
433 mips_register_convertible (int reg_nr)
434 {
435 if (mips64_transfers_32bit_regs_p)
436 return 0;
437 else
438 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
439 }
440
441 void
442 mips_register_convert_to_virtual (int n, struct type *virtual_type,
443 char *raw_buf, char *virt_buf)
444 {
445 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
446 memcpy (virt_buf,
447 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
448 TYPE_LENGTH (virtual_type));
449 else
450 memcpy (virt_buf,
451 raw_buf,
452 TYPE_LENGTH (virtual_type));
453 }
454
455 void
456 mips_register_convert_to_raw (struct type *virtual_type, int n,
457 char *virt_buf, char *raw_buf)
458 {
459 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
460 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
461 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
462 virt_buf,
463 TYPE_LENGTH (virtual_type));
464 else
465 memcpy (raw_buf,
466 virt_buf,
467 TYPE_LENGTH (virtual_type));
468 }
469
470 /* Should the upper word of 64-bit addresses be zeroed? */
471 enum cmd_auto_boolean mask_address_var = CMD_AUTO_BOOLEAN_AUTO;
472
473 static int
474 mips_mask_address_p (void)
475 {
476 switch (mask_address_var)
477 {
478 case CMD_AUTO_BOOLEAN_TRUE:
479 return 1;
480 case CMD_AUTO_BOOLEAN_FALSE:
481 return 0;
482 break;
483 case CMD_AUTO_BOOLEAN_AUTO:
484 return MIPS_DEFAULT_MASK_ADDRESS_P;
485 default:
486 internal_error (__FILE__, __LINE__,
487 "mips_mask_address_p: bad switch");
488 return -1;
489 }
490 }
491
492 static void
493 show_mask_address (char *cmd, int from_tty)
494 {
495 switch (mask_address_var)
496 {
497 case CMD_AUTO_BOOLEAN_TRUE:
498 printf_filtered ("The 32 bit mips address mask is enabled\n");
499 break;
500 case CMD_AUTO_BOOLEAN_FALSE:
501 printf_filtered ("The 32 bit mips address mask is disabled\n");
502 break;
503 case CMD_AUTO_BOOLEAN_AUTO:
504 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
505 mips_mask_address_p () ? "enabled" : "disabled");
506 break;
507 default:
508 internal_error (__FILE__, __LINE__,
509 "show_mask_address: bad switch");
510 break;
511 }
512 }
513
514 /* Should call_function allocate stack space for a struct return? */
515 int
516 mips_use_struct_convention (int gcc_p, struct type *type)
517 {
518 if (MIPS_EABI)
519 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
520 else
521 return 1; /* Structures are returned by ref in extra arg0 */
522 }
523
524 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
525
526 static int
527 pc_is_mips16 (bfd_vma memaddr)
528 {
529 struct minimal_symbol *sym;
530
531 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
532 if (IS_MIPS16_ADDR (memaddr))
533 return 1;
534
535 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
536 the high bit of the info field. Use this to decide if the function is
537 MIPS16 or normal MIPS. */
538 sym = lookup_minimal_symbol_by_pc (memaddr);
539 if (sym)
540 return MSYMBOL_IS_SPECIAL (sym);
541 else
542 return 0;
543 }
544
545 /* MIPS believes that the PC has a sign extended value. Perhaphs the
546 all registers should be sign extended for simplicity? */
547
548 static CORE_ADDR
549 mips_read_pc (ptid_t ptid)
550 {
551 return read_signed_register_pid (PC_REGNUM, ptid);
552 }
553
554 /* This returns the PC of the first inst after the prologue. If we can't
555 find the prologue, then return 0. */
556
557 static CORE_ADDR
558 after_prologue (CORE_ADDR pc,
559 mips_extra_func_info_t proc_desc)
560 {
561 struct symtab_and_line sal;
562 CORE_ADDR func_addr, func_end;
563
564 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
565 to read the stack pointer from the current machine state, because
566 the current machine state has nothing to do with the information
567 we need from the proc_desc; and the process may or may not exist
568 right now. */
569 if (!proc_desc)
570 proc_desc = find_proc_desc (pc, NULL, 0);
571
572 if (proc_desc)
573 {
574 /* If function is frameless, then we need to do it the hard way. I
575 strongly suspect that frameless always means prologueless... */
576 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
577 && PROC_FRAME_OFFSET (proc_desc) == 0)
578 return 0;
579 }
580
581 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
582 return 0; /* Unknown */
583
584 sal = find_pc_line (func_addr, 0);
585
586 if (sal.end < func_end)
587 return sal.end;
588
589 /* The line after the prologue is after the end of the function. In this
590 case, tell the caller to find the prologue the hard way. */
591
592 return 0;
593 }
594
595 /* Decode a MIPS32 instruction that saves a register in the stack, and
596 set the appropriate bit in the general register mask or float register mask
597 to indicate which register is saved. This is a helper function
598 for mips_find_saved_regs. */
599
600 static void
601 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
602 unsigned long *float_mask)
603 {
604 int reg;
605
606 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
607 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
608 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
609 {
610 /* It might be possible to use the instruction to
611 find the offset, rather than the code below which
612 is based on things being in a certain order in the
613 frame, but figuring out what the instruction's offset
614 is relative to might be a little tricky. */
615 reg = (inst & 0x001f0000) >> 16;
616 *gen_mask |= (1 << reg);
617 }
618 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
619 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
620 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
621
622 {
623 reg = ((inst & 0x001f0000) >> 16);
624 *float_mask |= (1 << reg);
625 }
626 }
627
628 /* Decode a MIPS16 instruction that saves a register in the stack, and
629 set the appropriate bit in the general register or float register mask
630 to indicate which register is saved. This is a helper function
631 for mips_find_saved_regs. */
632
633 static void
634 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
635 {
636 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
637 {
638 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
639 *gen_mask |= (1 << reg);
640 }
641 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
642 {
643 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
644 *gen_mask |= (1 << reg);
645 }
646 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
647 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
648 *gen_mask |= (1 << RA_REGNUM);
649 }
650
651
652 /* Fetch and return instruction from the specified location. If the PC
653 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
654
655 static t_inst
656 mips_fetch_instruction (CORE_ADDR addr)
657 {
658 char buf[MIPS_INSTLEN];
659 int instlen;
660 int status;
661
662 if (pc_is_mips16 (addr))
663 {
664 instlen = MIPS16_INSTLEN;
665 addr = UNMAKE_MIPS16_ADDR (addr);
666 }
667 else
668 instlen = MIPS_INSTLEN;
669 status = read_memory_nobpt (addr, buf, instlen);
670 if (status)
671 memory_error (status, addr);
672 return extract_unsigned_integer (buf, instlen);
673 }
674
675
676 /* These the fields of 32 bit mips instructions */
677 #define mips32_op(x) (x >> 26)
678 #define itype_op(x) (x >> 26)
679 #define itype_rs(x) ((x >> 21) & 0x1f)
680 #define itype_rt(x) ((x >> 16) & 0x1f)
681 #define itype_immediate(x) (x & 0xffff)
682
683 #define jtype_op(x) (x >> 26)
684 #define jtype_target(x) (x & 0x03ffffff)
685
686 #define rtype_op(x) (x >> 26)
687 #define rtype_rs(x) ((x >> 21) & 0x1f)
688 #define rtype_rt(x) ((x >> 16) & 0x1f)
689 #define rtype_rd(x) ((x >> 11) & 0x1f)
690 #define rtype_shamt(x) ((x >> 6) & 0x1f)
691 #define rtype_funct(x) (x & 0x3f)
692
693 static CORE_ADDR
694 mips32_relative_offset (unsigned long inst)
695 {
696 long x;
697 x = itype_immediate (inst);
698 if (x & 0x8000) /* sign bit set */
699 {
700 x |= 0xffff0000; /* sign extension */
701 }
702 x = x << 2;
703 return x;
704 }
705
706 /* Determine whate to set a single step breakpoint while considering
707 branch prediction */
708 CORE_ADDR
709 mips32_next_pc (CORE_ADDR pc)
710 {
711 unsigned long inst;
712 int op;
713 inst = mips_fetch_instruction (pc);
714 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
715 {
716 if (itype_op (inst) >> 2 == 5)
717 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
718 {
719 op = (itype_op (inst) & 0x03);
720 switch (op)
721 {
722 case 0: /* BEQL */
723 goto equal_branch;
724 case 1: /* BNEL */
725 goto neq_branch;
726 case 2: /* BLEZL */
727 goto less_branch;
728 case 3: /* BGTZ */
729 goto greater_branch;
730 default:
731 pc += 4;
732 }
733 }
734 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
735 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
736 {
737 int tf = itype_rt (inst) & 0x01;
738 int cnum = itype_rt (inst) >> 2;
739 int fcrcs = read_signed_register (FCRCS_REGNUM);
740 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
741
742 if (((cond >> cnum) & 0x01) == tf)
743 pc += mips32_relative_offset (inst) + 4;
744 else
745 pc += 8;
746 }
747 else
748 pc += 4; /* Not a branch, next instruction is easy */
749 }
750 else
751 { /* This gets way messy */
752
753 /* Further subdivide into SPECIAL, REGIMM and other */
754 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
755 {
756 case 0: /* SPECIAL */
757 op = rtype_funct (inst);
758 switch (op)
759 {
760 case 8: /* JR */
761 case 9: /* JALR */
762 /* Set PC to that address */
763 pc = read_signed_register (rtype_rs (inst));
764 break;
765 default:
766 pc += 4;
767 }
768
769 break; /* end SPECIAL */
770 case 1: /* REGIMM */
771 {
772 op = itype_rt (inst); /* branch condition */
773 switch (op)
774 {
775 case 0: /* BLTZ */
776 case 2: /* BLTZL */
777 case 16: /* BLTZAL */
778 case 18: /* BLTZALL */
779 less_branch:
780 if (read_signed_register (itype_rs (inst)) < 0)
781 pc += mips32_relative_offset (inst) + 4;
782 else
783 pc += 8; /* after the delay slot */
784 break;
785 case 1: /* BGEZ */
786 case 3: /* BGEZL */
787 case 17: /* BGEZAL */
788 case 19: /* BGEZALL */
789 greater_equal_branch:
790 if (read_signed_register (itype_rs (inst)) >= 0)
791 pc += mips32_relative_offset (inst) + 4;
792 else
793 pc += 8; /* after the delay slot */
794 break;
795 /* All of the other instructions in the REGIMM category */
796 default:
797 pc += 4;
798 }
799 }
800 break; /* end REGIMM */
801 case 2: /* J */
802 case 3: /* JAL */
803 {
804 unsigned long reg;
805 reg = jtype_target (inst) << 2;
806 /* Upper four bits get never changed... */
807 pc = reg + ((pc + 4) & 0xf0000000);
808 }
809 break;
810 /* FIXME case JALX : */
811 {
812 unsigned long reg;
813 reg = jtype_target (inst) << 2;
814 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
815 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
816 }
817 break; /* The new PC will be alternate mode */
818 case 4: /* BEQ, BEQL */
819 equal_branch:
820 if (read_signed_register (itype_rs (inst)) ==
821 read_signed_register (itype_rt (inst)))
822 pc += mips32_relative_offset (inst) + 4;
823 else
824 pc += 8;
825 break;
826 case 5: /* BNE, BNEL */
827 neq_branch:
828 if (read_signed_register (itype_rs (inst)) !=
829 read_signed_register (itype_rt (inst)))
830 pc += mips32_relative_offset (inst) + 4;
831 else
832 pc += 8;
833 break;
834 case 6: /* BLEZ, BLEZL */
835 less_zero_branch:
836 if (read_signed_register (itype_rs (inst) <= 0))
837 pc += mips32_relative_offset (inst) + 4;
838 else
839 pc += 8;
840 break;
841 case 7:
842 default:
843 greater_branch: /* BGTZ, BGTZL */
844 if (read_signed_register (itype_rs (inst) > 0))
845 pc += mips32_relative_offset (inst) + 4;
846 else
847 pc += 8;
848 break;
849 } /* switch */
850 } /* else */
851 return pc;
852 } /* mips32_next_pc */
853
854 /* Decoding the next place to set a breakpoint is irregular for the
855 mips 16 variant, but fortunately, there fewer instructions. We have to cope
856 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
857 We dont want to set a single step instruction on the extend instruction
858 either.
859 */
860
861 /* Lots of mips16 instruction formats */
862 /* Predicting jumps requires itype,ritype,i8type
863 and their extensions extItype,extritype,extI8type
864 */
865 enum mips16_inst_fmts
866 {
867 itype, /* 0 immediate 5,10 */
868 ritype, /* 1 5,3,8 */
869 rrtype, /* 2 5,3,3,5 */
870 rritype, /* 3 5,3,3,5 */
871 rrrtype, /* 4 5,3,3,3,2 */
872 rriatype, /* 5 5,3,3,1,4 */
873 shifttype, /* 6 5,3,3,3,2 */
874 i8type, /* 7 5,3,8 */
875 i8movtype, /* 8 5,3,3,5 */
876 i8mov32rtype, /* 9 5,3,5,3 */
877 i64type, /* 10 5,3,8 */
878 ri64type, /* 11 5,3,3,5 */
879 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
880 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
881 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
882 extRRItype, /* 15 5,5,5,5,3,3,5 */
883 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
884 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
885 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
886 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
887 extRi64type, /* 20 5,6,5,5,3,3,5 */
888 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
889 };
890 /* I am heaping all the fields of the formats into one structure and
891 then, only the fields which are involved in instruction extension */
892 struct upk_mips16
893 {
894 CORE_ADDR offset;
895 unsigned int regx; /* Function in i8 type */
896 unsigned int regy;
897 };
898
899
900 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
901 for the bits which make up the immediatate extension. */
902
903 static CORE_ADDR
904 extended_offset (unsigned int extension)
905 {
906 CORE_ADDR value;
907 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
908 value = value << 6;
909 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
910 value = value << 5;
911 value |= extension & 0x01f; /* extract 4:0 */
912 return value;
913 }
914
915 /* Only call this function if you know that this is an extendable
916 instruction, It wont malfunction, but why make excess remote memory references?
917 If the immediate operands get sign extended or somthing, do it after
918 the extension is performed.
919 */
920 /* FIXME: Every one of these cases needs to worry about sign extension
921 when the offset is to be used in relative addressing */
922
923
924 static unsigned int
925 fetch_mips_16 (CORE_ADDR pc)
926 {
927 char buf[8];
928 pc &= 0xfffffffe; /* clear the low order bit */
929 target_read_memory (pc, buf, 2);
930 return extract_unsigned_integer (buf, 2);
931 }
932
933 static void
934 unpack_mips16 (CORE_ADDR pc,
935 unsigned int extension,
936 unsigned int inst,
937 enum mips16_inst_fmts insn_format,
938 struct upk_mips16 *upk)
939 {
940 CORE_ADDR offset;
941 int regx;
942 int regy;
943 switch (insn_format)
944 {
945 case itype:
946 {
947 CORE_ADDR value;
948 if (extension)
949 {
950 value = extended_offset (extension);
951 value = value << 11; /* rom for the original value */
952 value |= inst & 0x7ff; /* eleven bits from instruction */
953 }
954 else
955 {
956 value = inst & 0x7ff;
957 /* FIXME : Consider sign extension */
958 }
959 offset = value;
960 regx = -1;
961 regy = -1;
962 }
963 break;
964 case ritype:
965 case i8type:
966 { /* A register identifier and an offset */
967 /* Most of the fields are the same as I type but the
968 immediate value is of a different length */
969 CORE_ADDR value;
970 if (extension)
971 {
972 value = extended_offset (extension);
973 value = value << 8; /* from the original instruction */
974 value |= inst & 0xff; /* eleven bits from instruction */
975 regx = (extension >> 8) & 0x07; /* or i8 funct */
976 if (value & 0x4000) /* test the sign bit , bit 26 */
977 {
978 value &= ~0x3fff; /* remove the sign bit */
979 value = -value;
980 }
981 }
982 else
983 {
984 value = inst & 0xff; /* 8 bits */
985 regx = (inst >> 8) & 0x07; /* or i8 funct */
986 /* FIXME: Do sign extension , this format needs it */
987 if (value & 0x80) /* THIS CONFUSES ME */
988 {
989 value &= 0xef; /* remove the sign bit */
990 value = -value;
991 }
992 }
993 offset = value;
994 regy = -1;
995 break;
996 }
997 case jalxtype:
998 {
999 unsigned long value;
1000 unsigned int nexthalf;
1001 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1002 value = value << 16;
1003 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1004 value |= nexthalf;
1005 offset = value;
1006 regx = -1;
1007 regy = -1;
1008 break;
1009 }
1010 default:
1011 internal_error (__FILE__, __LINE__,
1012 "bad switch");
1013 }
1014 upk->offset = offset;
1015 upk->regx = regx;
1016 upk->regy = regy;
1017 }
1018
1019
1020 static CORE_ADDR
1021 add_offset_16 (CORE_ADDR pc, int offset)
1022 {
1023 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1024
1025 }
1026
1027 static CORE_ADDR
1028 extended_mips16_next_pc (CORE_ADDR pc,
1029 unsigned int extension,
1030 unsigned int insn)
1031 {
1032 int op = (insn >> 11);
1033 switch (op)
1034 {
1035 case 2: /* Branch */
1036 {
1037 CORE_ADDR offset;
1038 struct upk_mips16 upk;
1039 unpack_mips16 (pc, extension, insn, itype, &upk);
1040 offset = upk.offset;
1041 if (offset & 0x800)
1042 {
1043 offset &= 0xeff;
1044 offset = -offset;
1045 }
1046 pc += (offset << 1) + 2;
1047 break;
1048 }
1049 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1050 {
1051 struct upk_mips16 upk;
1052 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1053 pc = add_offset_16 (pc, upk.offset);
1054 if ((insn >> 10) & 0x01) /* Exchange mode */
1055 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1056 else
1057 pc |= 0x01;
1058 break;
1059 }
1060 case 4: /* beqz */
1061 {
1062 struct upk_mips16 upk;
1063 int reg;
1064 unpack_mips16 (pc, extension, insn, ritype, &upk);
1065 reg = read_signed_register (upk.regx);
1066 if (reg == 0)
1067 pc += (upk.offset << 1) + 2;
1068 else
1069 pc += 2;
1070 break;
1071 }
1072 case 5: /* bnez */
1073 {
1074 struct upk_mips16 upk;
1075 int reg;
1076 unpack_mips16 (pc, extension, insn, ritype, &upk);
1077 reg = read_signed_register (upk.regx);
1078 if (reg != 0)
1079 pc += (upk.offset << 1) + 2;
1080 else
1081 pc += 2;
1082 break;
1083 }
1084 case 12: /* I8 Formats btez btnez */
1085 {
1086 struct upk_mips16 upk;
1087 int reg;
1088 unpack_mips16 (pc, extension, insn, i8type, &upk);
1089 /* upk.regx contains the opcode */
1090 reg = read_signed_register (24); /* Test register is 24 */
1091 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1092 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1093 /* pc = add_offset_16(pc,upk.offset) ; */
1094 pc += (upk.offset << 1) + 2;
1095 else
1096 pc += 2;
1097 break;
1098 }
1099 case 29: /* RR Formats JR, JALR, JALR-RA */
1100 {
1101 struct upk_mips16 upk;
1102 /* upk.fmt = rrtype; */
1103 op = insn & 0x1f;
1104 if (op == 0)
1105 {
1106 int reg;
1107 upk.regx = (insn >> 8) & 0x07;
1108 upk.regy = (insn >> 5) & 0x07;
1109 switch (upk.regy)
1110 {
1111 case 0:
1112 reg = upk.regx;
1113 break;
1114 case 1:
1115 reg = 31;
1116 break; /* Function return instruction */
1117 case 2:
1118 reg = upk.regx;
1119 break;
1120 default:
1121 reg = 31;
1122 break; /* BOGUS Guess */
1123 }
1124 pc = read_signed_register (reg);
1125 }
1126 else
1127 pc += 2;
1128 break;
1129 }
1130 case 30:
1131 /* This is an instruction extension. Fetch the real instruction
1132 (which follows the extension) and decode things based on
1133 that. */
1134 {
1135 pc += 2;
1136 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1137 break;
1138 }
1139 default:
1140 {
1141 pc += 2;
1142 break;
1143 }
1144 }
1145 return pc;
1146 }
1147
1148 CORE_ADDR
1149 mips16_next_pc (CORE_ADDR pc)
1150 {
1151 unsigned int insn = fetch_mips_16 (pc);
1152 return extended_mips16_next_pc (pc, 0, insn);
1153 }
1154
1155 /* The mips_next_pc function supports single_step when the remote
1156 target monitor or stub is not developed enough to do a single_step.
1157 It works by decoding the current instruction and predicting where a
1158 branch will go. This isnt hard because all the data is available.
1159 The MIPS32 and MIPS16 variants are quite different */
1160 CORE_ADDR
1161 mips_next_pc (CORE_ADDR pc)
1162 {
1163 if (pc & 0x01)
1164 return mips16_next_pc (pc);
1165 else
1166 return mips32_next_pc (pc);
1167 }
1168
1169 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1170 NULL). */
1171
1172 void
1173 mips_find_saved_regs (struct frame_info *fci)
1174 {
1175 int ireg;
1176 CORE_ADDR reg_position;
1177 /* r0 bit means kernel trap */
1178 int kernel_trap;
1179 /* What registers have been saved? Bitmasks. */
1180 unsigned long gen_mask, float_mask;
1181 mips_extra_func_info_t proc_desc;
1182 t_inst inst;
1183
1184 frame_saved_regs_zalloc (fci);
1185
1186 /* If it is the frame for sigtramp, the saved registers are located
1187 in a sigcontext structure somewhere on the stack.
1188 If the stack layout for sigtramp changes we might have to change these
1189 constants and the companion fixup_sigtramp in mdebugread.c */
1190 #ifndef SIGFRAME_BASE
1191 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1192 above the sigtramp frame. */
1193 #define SIGFRAME_BASE MIPS_REGSIZE
1194 /* FIXME! Are these correct?? */
1195 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1196 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1197 #define SIGFRAME_FPREGSAVE_OFF \
1198 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1199 #endif
1200 #ifndef SIGFRAME_REG_SIZE
1201 /* FIXME! Is this correct?? */
1202 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1203 #endif
1204 if (fci->signal_handler_caller)
1205 {
1206 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1207 {
1208 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1209 + ireg * SIGFRAME_REG_SIZE;
1210 fci->saved_regs[ireg] = reg_position;
1211 }
1212 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1213 {
1214 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1215 + ireg * SIGFRAME_REG_SIZE;
1216 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1217 }
1218 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1219 return;
1220 }
1221
1222 proc_desc = fci->extra_info->proc_desc;
1223 if (proc_desc == NULL)
1224 /* I'm not sure how/whether this can happen. Normally when we can't
1225 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1226 and set the saved_regs right away. */
1227 return;
1228
1229 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1230 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1231 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1232
1233 if ( /* In any frame other than the innermost or a frame interrupted by
1234 a signal, we assume that all registers have been saved.
1235 This assumes that all register saves in a function happen before
1236 the first function call. */
1237 (fci->next == NULL || fci->next->signal_handler_caller)
1238
1239 /* In a dummy frame we know exactly where things are saved. */
1240 && !PROC_DESC_IS_DUMMY (proc_desc)
1241
1242 /* Don't bother unless we are inside a function prologue. Outside the
1243 prologue, we know where everything is. */
1244
1245 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1246
1247 /* Not sure exactly what kernel_trap means, but if it means
1248 the kernel saves the registers without a prologue doing it,
1249 we better not examine the prologue to see whether registers
1250 have been saved yet. */
1251 && !kernel_trap)
1252 {
1253 /* We need to figure out whether the registers that the proc_desc
1254 claims are saved have been saved yet. */
1255
1256 CORE_ADDR addr;
1257
1258 /* Bitmasks; set if we have found a save for the register. */
1259 unsigned long gen_save_found = 0;
1260 unsigned long float_save_found = 0;
1261 int instlen;
1262
1263 /* If the address is odd, assume this is MIPS16 code. */
1264 addr = PROC_LOW_ADDR (proc_desc);
1265 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1266
1267 /* Scan through this function's instructions preceding the current
1268 PC, and look for those that save registers. */
1269 while (addr < fci->pc)
1270 {
1271 inst = mips_fetch_instruction (addr);
1272 if (pc_is_mips16 (addr))
1273 mips16_decode_reg_save (inst, &gen_save_found);
1274 else
1275 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1276 addr += instlen;
1277 }
1278 gen_mask = gen_save_found;
1279 float_mask = float_save_found;
1280 }
1281
1282 /* Fill in the offsets for the registers which gen_mask says
1283 were saved. */
1284 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1285 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1286 if (gen_mask & 0x80000000)
1287 {
1288 fci->saved_regs[ireg] = reg_position;
1289 reg_position -= MIPS_SAVED_REGSIZE;
1290 }
1291
1292 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1293 of that normally used by gcc. Therefore, we have to fetch the first
1294 instruction of the function, and if it's an entry instruction that
1295 saves $s0 or $s1, correct their saved addresses. */
1296 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1297 {
1298 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1299 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1300 {
1301 int reg;
1302 int sreg_count = (inst >> 6) & 3;
1303
1304 /* Check if the ra register was pushed on the stack. */
1305 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1306 if (inst & 0x20)
1307 reg_position -= MIPS_SAVED_REGSIZE;
1308
1309 /* Check if the s0 and s1 registers were pushed on the stack. */
1310 for (reg = 16; reg < sreg_count + 16; reg++)
1311 {
1312 fci->saved_regs[reg] = reg_position;
1313 reg_position -= MIPS_SAVED_REGSIZE;
1314 }
1315 }
1316 }
1317
1318 /* Fill in the offsets for the registers which float_mask says
1319 were saved. */
1320 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1321
1322 /* The freg_offset points to where the first *double* register
1323 is saved. So skip to the high-order word. */
1324 if (!GDB_TARGET_IS_MIPS64)
1325 reg_position += MIPS_SAVED_REGSIZE;
1326
1327 /* Fill in the offsets for the float registers which float_mask says
1328 were saved. */
1329 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1330 if (float_mask & 0x80000000)
1331 {
1332 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1333 reg_position -= MIPS_SAVED_REGSIZE;
1334 }
1335
1336 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1337 }
1338
1339 static CORE_ADDR
1340 read_next_frame_reg (struct frame_info *fi, int regno)
1341 {
1342 for (; fi; fi = fi->next)
1343 {
1344 /* We have to get the saved sp from the sigcontext
1345 if it is a signal handler frame. */
1346 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1347 return fi->frame;
1348 else
1349 {
1350 if (fi->saved_regs == NULL)
1351 mips_find_saved_regs (fi);
1352 if (fi->saved_regs[regno])
1353 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
1354 }
1355 }
1356 return read_signed_register (regno);
1357 }
1358
1359 /* mips_addr_bits_remove - remove useless address bits */
1360
1361 static CORE_ADDR
1362 mips_addr_bits_remove (CORE_ADDR addr)
1363 {
1364 if (GDB_TARGET_IS_MIPS64)
1365 {
1366 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1367 {
1368 /* This hack is a work-around for existing boards using
1369 PMON, the simulator, and any other 64-bit targets that
1370 doesn't have true 64-bit addressing. On these targets,
1371 the upper 32 bits of addresses are ignored by the
1372 hardware. Thus, the PC or SP are likely to have been
1373 sign extended to all 1s by instruction sequences that
1374 load 32-bit addresses. For example, a typical piece of
1375 code that loads an address is this:
1376 lui $r2, <upper 16 bits>
1377 ori $r2, <lower 16 bits>
1378 But the lui sign-extends the value such that the upper 32
1379 bits may be all 1s. The workaround is simply to mask off
1380 these bits. In the future, gcc may be changed to support
1381 true 64-bit addressing, and this masking will have to be
1382 disabled. */
1383 addr &= (CORE_ADDR) 0xffffffff;
1384 }
1385 }
1386 else if (mips_mask_address_p ())
1387 {
1388 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1389 masking off bits, instead, the actual target should be asking
1390 for the address to be converted to a valid pointer. */
1391 /* Even when GDB is configured for some 32-bit targets
1392 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1393 so CORE_ADDR is 64 bits. So we still have to mask off
1394 useless bits from addresses. */
1395 addr &= (CORE_ADDR) 0xffffffff;
1396 }
1397 return addr;
1398 }
1399
1400 /* mips_software_single_step() is called just before we want to resume
1401 the inferior, if we want to single-step it but there is no hardware
1402 or kernel single-step support (MIPS on Linux for example). We find
1403 the target of the coming instruction and breakpoint it.
1404
1405 single_step is also called just after the inferior stops. If we had
1406 set up a simulated single-step, we undo our damage. */
1407
1408 void
1409 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1410 {
1411 static CORE_ADDR next_pc;
1412 typedef char binsn_quantum[BREAKPOINT_MAX];
1413 static binsn_quantum break_mem;
1414 CORE_ADDR pc;
1415
1416 if (insert_breakpoints_p)
1417 {
1418 pc = read_register (PC_REGNUM);
1419 next_pc = mips_next_pc (pc);
1420
1421 target_insert_breakpoint (next_pc, break_mem);
1422 }
1423 else
1424 target_remove_breakpoint (next_pc, break_mem);
1425 }
1426
1427 static void
1428 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1429 {
1430 CORE_ADDR pc, tmp;
1431
1432 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1433 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1434 tmp = mips_skip_stub (pc);
1435 prev->pc = tmp ? tmp : pc;
1436 }
1437
1438
1439 CORE_ADDR
1440 mips_frame_saved_pc (struct frame_info *frame)
1441 {
1442 CORE_ADDR saved_pc;
1443 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1444 /* We have to get the saved pc from the sigcontext
1445 if it is a signal handler frame. */
1446 int pcreg = frame->signal_handler_caller ? PC_REGNUM
1447 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1448
1449 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1450 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1451 else
1452 saved_pc = read_next_frame_reg (frame, pcreg);
1453
1454 return ADDR_BITS_REMOVE (saved_pc);
1455 }
1456
1457 static struct mips_extra_func_info temp_proc_desc;
1458 static CORE_ADDR temp_saved_regs[NUM_REGS];
1459
1460 /* Set a register's saved stack address in temp_saved_regs. If an address
1461 has already been set for this register, do nothing; this way we will
1462 only recognize the first save of a given register in a function prologue.
1463 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1464
1465 static void
1466 set_reg_offset (int regno, CORE_ADDR offset)
1467 {
1468 if (temp_saved_regs[regno] == 0)
1469 temp_saved_regs[regno] = offset;
1470 }
1471
1472
1473 /* Test whether the PC points to the return instruction at the
1474 end of a function. */
1475
1476 static int
1477 mips_about_to_return (CORE_ADDR pc)
1478 {
1479 if (pc_is_mips16 (pc))
1480 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1481 generates a "jr $ra"; other times it generates code to load
1482 the return address from the stack to an accessible register (such
1483 as $a3), then a "jr" using that register. This second case
1484 is almost impossible to distinguish from an indirect jump
1485 used for switch statements, so we don't even try. */
1486 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1487 else
1488 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1489 }
1490
1491
1492 /* This fencepost looks highly suspicious to me. Removing it also
1493 seems suspicious as it could affect remote debugging across serial
1494 lines. */
1495
1496 static CORE_ADDR
1497 heuristic_proc_start (CORE_ADDR pc)
1498 {
1499 CORE_ADDR start_pc;
1500 CORE_ADDR fence;
1501 int instlen;
1502 int seen_adjsp = 0;
1503
1504 pc = ADDR_BITS_REMOVE (pc);
1505 start_pc = pc;
1506 fence = start_pc - heuristic_fence_post;
1507 if (start_pc == 0)
1508 return 0;
1509
1510 if (heuristic_fence_post == UINT_MAX
1511 || fence < VM_MIN_ADDRESS)
1512 fence = VM_MIN_ADDRESS;
1513
1514 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1515
1516 /* search back for previous return */
1517 for (start_pc -= instlen;; start_pc -= instlen)
1518 if (start_pc < fence)
1519 {
1520 /* It's not clear to me why we reach this point when
1521 stop_soon_quietly, but with this test, at least we
1522 don't print out warnings for every child forked (eg, on
1523 decstation). 22apr93 rich@cygnus.com. */
1524 if (!stop_soon_quietly)
1525 {
1526 static int blurb_printed = 0;
1527
1528 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1529 paddr_nz (pc));
1530
1531 if (!blurb_printed)
1532 {
1533 /* This actually happens frequently in embedded
1534 development, when you first connect to a board
1535 and your stack pointer and pc are nowhere in
1536 particular. This message needs to give people
1537 in that situation enough information to
1538 determine that it's no big deal. */
1539 printf_filtered ("\n\
1540 GDB is unable to find the start of the function at 0x%s\n\
1541 and thus can't determine the size of that function's stack frame.\n\
1542 This means that GDB may be unable to access that stack frame, or\n\
1543 the frames below it.\n\
1544 This problem is most likely caused by an invalid program counter or\n\
1545 stack pointer.\n\
1546 However, if you think GDB should simply search farther back\n\
1547 from 0x%s for code which looks like the beginning of a\n\
1548 function, you can increase the range of the search using the `set\n\
1549 heuristic-fence-post' command.\n",
1550 paddr_nz (pc), paddr_nz (pc));
1551 blurb_printed = 1;
1552 }
1553 }
1554
1555 return 0;
1556 }
1557 else if (pc_is_mips16 (start_pc))
1558 {
1559 unsigned short inst;
1560
1561 /* On MIPS16, any one of the following is likely to be the
1562 start of a function:
1563 entry
1564 addiu sp,-n
1565 daddiu sp,-n
1566 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1567 inst = mips_fetch_instruction (start_pc);
1568 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1569 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1570 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1571 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1572 break;
1573 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1574 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1575 seen_adjsp = 1;
1576 else
1577 seen_adjsp = 0;
1578 }
1579 else if (mips_about_to_return (start_pc))
1580 {
1581 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1582 break;
1583 }
1584
1585 return start_pc;
1586 }
1587
1588 /* Fetch the immediate value from a MIPS16 instruction.
1589 If the previous instruction was an EXTEND, use it to extend
1590 the upper bits of the immediate value. This is a helper function
1591 for mips16_heuristic_proc_desc. */
1592
1593 static int
1594 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1595 unsigned short inst, /* current instruction */
1596 int nbits, /* number of bits in imm field */
1597 int scale, /* scale factor to be applied to imm */
1598 int is_signed) /* is the imm field signed? */
1599 {
1600 int offset;
1601
1602 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1603 {
1604 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1605 if (offset & 0x8000) /* check for negative extend */
1606 offset = 0 - (0x10000 - (offset & 0xffff));
1607 return offset | (inst & 0x1f);
1608 }
1609 else
1610 {
1611 int max_imm = 1 << nbits;
1612 int mask = max_imm - 1;
1613 int sign_bit = max_imm >> 1;
1614
1615 offset = inst & mask;
1616 if (is_signed && (offset & sign_bit))
1617 offset = 0 - (max_imm - offset);
1618 return offset * scale;
1619 }
1620 }
1621
1622
1623 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1624 stream from start_pc to limit_pc. */
1625
1626 static void
1627 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1628 struct frame_info *next_frame, CORE_ADDR sp)
1629 {
1630 CORE_ADDR cur_pc;
1631 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1632 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1633 unsigned inst = 0; /* current instruction */
1634 unsigned entry_inst = 0; /* the entry instruction */
1635 int reg, offset;
1636
1637 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1638 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1639
1640 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1641 {
1642 /* Save the previous instruction. If it's an EXTEND, we'll extract
1643 the immediate offset extension from it in mips16_get_imm. */
1644 prev_inst = inst;
1645
1646 /* Fetch and decode the instruction. */
1647 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1648 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1649 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1650 {
1651 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1652 if (offset < 0) /* negative stack adjustment? */
1653 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1654 else
1655 /* Exit loop if a positive stack adjustment is found, which
1656 usually means that the stack cleanup code in the function
1657 epilogue is reached. */
1658 break;
1659 }
1660 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1661 {
1662 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1663 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1664 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1665 set_reg_offset (reg, sp + offset);
1666 }
1667 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1668 {
1669 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1670 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1671 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1672 set_reg_offset (reg, sp + offset);
1673 }
1674 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1675 {
1676 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1677 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1678 set_reg_offset (RA_REGNUM, sp + offset);
1679 }
1680 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1681 {
1682 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1683 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1684 set_reg_offset (RA_REGNUM, sp + offset);
1685 }
1686 else if (inst == 0x673d) /* move $s1, $sp */
1687 {
1688 frame_addr = sp;
1689 PROC_FRAME_REG (&temp_proc_desc) = 17;
1690 }
1691 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1692 {
1693 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1694 frame_addr = sp + offset;
1695 PROC_FRAME_REG (&temp_proc_desc) = 17;
1696 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1697 }
1698 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1699 {
1700 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1701 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1702 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1703 set_reg_offset (reg, frame_addr + offset);
1704 }
1705 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1706 {
1707 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1708 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1709 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1710 set_reg_offset (reg, frame_addr + offset);
1711 }
1712 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1713 entry_inst = inst; /* save for later processing */
1714 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1715 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1716 }
1717
1718 /* The entry instruction is typically the first instruction in a function,
1719 and it stores registers at offsets relative to the value of the old SP
1720 (before the prologue). But the value of the sp parameter to this
1721 function is the new SP (after the prologue has been executed). So we
1722 can't calculate those offsets until we've seen the entire prologue,
1723 and can calculate what the old SP must have been. */
1724 if (entry_inst != 0)
1725 {
1726 int areg_count = (entry_inst >> 8) & 7;
1727 int sreg_count = (entry_inst >> 6) & 3;
1728
1729 /* The entry instruction always subtracts 32 from the SP. */
1730 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1731
1732 /* Now we can calculate what the SP must have been at the
1733 start of the function prologue. */
1734 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1735
1736 /* Check if a0-a3 were saved in the caller's argument save area. */
1737 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1738 {
1739 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1740 set_reg_offset (reg, sp + offset);
1741 offset += MIPS_SAVED_REGSIZE;
1742 }
1743
1744 /* Check if the ra register was pushed on the stack. */
1745 offset = -4;
1746 if (entry_inst & 0x20)
1747 {
1748 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1749 set_reg_offset (RA_REGNUM, sp + offset);
1750 offset -= MIPS_SAVED_REGSIZE;
1751 }
1752
1753 /* Check if the s0 and s1 registers were pushed on the stack. */
1754 for (reg = 16; reg < sreg_count + 16; reg++)
1755 {
1756 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1757 set_reg_offset (reg, sp + offset);
1758 offset -= MIPS_SAVED_REGSIZE;
1759 }
1760 }
1761 }
1762
1763 static void
1764 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1765 struct frame_info *next_frame, CORE_ADDR sp)
1766 {
1767 CORE_ADDR cur_pc;
1768 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1769 restart:
1770 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1771 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
1772 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1773 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
1774 {
1775 unsigned long inst, high_word, low_word;
1776 int reg;
1777
1778 /* Fetch the instruction. */
1779 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1780
1781 /* Save some code by pre-extracting some useful fields. */
1782 high_word = (inst >> 16) & 0xffff;
1783 low_word = inst & 0xffff;
1784 reg = high_word & 0x1f;
1785
1786 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1787 || high_word == 0x23bd /* addi $sp,$sp,-i */
1788 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1789 {
1790 if (low_word & 0x8000) /* negative stack adjustment? */
1791 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
1792 else
1793 /* Exit loop if a positive stack adjustment is found, which
1794 usually means that the stack cleanup code in the function
1795 epilogue is reached. */
1796 break;
1797 }
1798 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1799 {
1800 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1801 set_reg_offset (reg, sp + low_word);
1802 }
1803 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1804 {
1805 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
1806 but the register size used is only 32 bits. Make the address
1807 for the saved register point to the lower 32 bits. */
1808 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1809 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
1810 }
1811 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1812 {
1813 /* Old gcc frame, r30 is virtual frame pointer. */
1814 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
1815 frame_addr = sp + low_word;
1816 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1817 {
1818 unsigned alloca_adjust;
1819 PROC_FRAME_REG (&temp_proc_desc) = 30;
1820 frame_addr = read_next_frame_reg (next_frame, 30);
1821 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1822 if (alloca_adjust > 0)
1823 {
1824 /* FP > SP + frame_size. This may be because
1825 * of an alloca or somethings similar.
1826 * Fix sp to "pre-alloca" value, and try again.
1827 */
1828 sp += alloca_adjust;
1829 goto restart;
1830 }
1831 }
1832 }
1833 /* move $30,$sp. With different versions of gas this will be either
1834 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1835 Accept any one of these. */
1836 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1837 {
1838 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1839 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
1840 {
1841 unsigned alloca_adjust;
1842 PROC_FRAME_REG (&temp_proc_desc) = 30;
1843 frame_addr = read_next_frame_reg (next_frame, 30);
1844 alloca_adjust = (unsigned) (frame_addr - sp);
1845 if (alloca_adjust > 0)
1846 {
1847 /* FP > SP + frame_size. This may be because
1848 * of an alloca or somethings similar.
1849 * Fix sp to "pre-alloca" value, and try again.
1850 */
1851 sp += alloca_adjust;
1852 goto restart;
1853 }
1854 }
1855 }
1856 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1857 {
1858 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1859 set_reg_offset (reg, frame_addr + low_word);
1860 }
1861 }
1862 }
1863
1864 static mips_extra_func_info_t
1865 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1866 struct frame_info *next_frame, int cur_frame)
1867 {
1868 CORE_ADDR sp;
1869
1870 if (cur_frame)
1871 sp = read_next_frame_reg (next_frame, SP_REGNUM);
1872 else
1873 sp = 0;
1874
1875 if (start_pc == 0)
1876 return NULL;
1877 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
1878 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
1879 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1880 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1881 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1882
1883 if (start_pc + 200 < limit_pc)
1884 limit_pc = start_pc + 200;
1885 if (pc_is_mips16 (start_pc))
1886 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1887 else
1888 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1889 return &temp_proc_desc;
1890 }
1891
1892 static mips_extra_func_info_t
1893 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
1894 {
1895 CORE_ADDR startaddr;
1896 mips_extra_func_info_t proc_desc;
1897 struct block *b = block_for_pc (pc);
1898 struct symbol *sym;
1899
1900 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1901 if (addrptr)
1902 *addrptr = startaddr;
1903 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1904 sym = NULL;
1905 else
1906 {
1907 if (startaddr > BLOCK_START (b))
1908 /* This is the "pathological" case referred to in a comment in
1909 print_frame_info. It might be better to move this check into
1910 symbol reading. */
1911 sym = NULL;
1912 else
1913 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1914 }
1915
1916 /* If we never found a PDR for this function in symbol reading, then
1917 examine prologues to find the information. */
1918 if (sym)
1919 {
1920 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1921 if (PROC_FRAME_REG (proc_desc) == -1)
1922 return NULL;
1923 else
1924 return proc_desc;
1925 }
1926 else
1927 return NULL;
1928 }
1929
1930
1931 static mips_extra_func_info_t
1932 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
1933 {
1934 mips_extra_func_info_t proc_desc;
1935 CORE_ADDR startaddr;
1936
1937 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1938
1939 if (proc_desc)
1940 {
1941 /* IF this is the topmost frame AND
1942 * (this proc does not have debugging information OR
1943 * the PC is in the procedure prologue)
1944 * THEN create a "heuristic" proc_desc (by analyzing
1945 * the actual code) to replace the "official" proc_desc.
1946 */
1947 if (next_frame == NULL)
1948 {
1949 struct symtab_and_line val;
1950 struct symbol *proc_symbol =
1951 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
1952
1953 if (proc_symbol)
1954 {
1955 val = find_pc_line (BLOCK_START
1956 (SYMBOL_BLOCK_VALUE (proc_symbol)),
1957 0);
1958 val.pc = val.end ? val.end : pc;
1959 }
1960 if (!proc_symbol || pc < val.pc)
1961 {
1962 mips_extra_func_info_t found_heuristic =
1963 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1964 pc, next_frame, cur_frame);
1965 if (found_heuristic)
1966 proc_desc = found_heuristic;
1967 }
1968 }
1969 }
1970 else
1971 {
1972 /* Is linked_proc_desc_table really necessary? It only seems to be used
1973 by procedure call dummys. However, the procedures being called ought
1974 to have their own proc_descs, and even if they don't,
1975 heuristic_proc_desc knows how to create them! */
1976
1977 register struct linked_proc_info *link;
1978
1979 for (link = linked_proc_desc_table; link; link = link->next)
1980 if (PROC_LOW_ADDR (&link->info) <= pc
1981 && PROC_HIGH_ADDR (&link->info) > pc)
1982 return &link->info;
1983
1984 if (startaddr == 0)
1985 startaddr = heuristic_proc_start (pc);
1986
1987 proc_desc =
1988 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
1989 }
1990 return proc_desc;
1991 }
1992
1993 static CORE_ADDR
1994 get_frame_pointer (struct frame_info *frame,
1995 mips_extra_func_info_t proc_desc)
1996 {
1997 return ADDR_BITS_REMOVE (
1998 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1999 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
2000 }
2001
2002 mips_extra_func_info_t cached_proc_desc;
2003
2004 CORE_ADDR
2005 mips_frame_chain (struct frame_info *frame)
2006 {
2007 mips_extra_func_info_t proc_desc;
2008 CORE_ADDR tmp;
2009 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2010
2011 if (saved_pc == 0 || inside_entry_file (saved_pc))
2012 return 0;
2013
2014 /* Check if the PC is inside a call stub. If it is, fetch the
2015 PC of the caller of that stub. */
2016 if ((tmp = mips_skip_stub (saved_pc)) != 0)
2017 saved_pc = tmp;
2018
2019 /* Look up the procedure descriptor for this PC. */
2020 proc_desc = find_proc_desc (saved_pc, frame, 1);
2021 if (!proc_desc)
2022 return 0;
2023
2024 cached_proc_desc = proc_desc;
2025
2026 /* If no frame pointer and frame size is zero, we must be at end
2027 of stack (or otherwise hosed). If we don't check frame size,
2028 we loop forever if we see a zero size frame. */
2029 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2030 && PROC_FRAME_OFFSET (proc_desc) == 0
2031 /* The previous frame from a sigtramp frame might be frameless
2032 and have frame size zero. */
2033 && !frame->signal_handler_caller)
2034 return 0;
2035 else
2036 return get_frame_pointer (frame, proc_desc);
2037 }
2038
2039 void
2040 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2041 {
2042 int regnum;
2043
2044 /* Use proc_desc calculated in frame_chain */
2045 mips_extra_func_info_t proc_desc =
2046 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
2047
2048 fci->extra_info = (struct frame_extra_info *)
2049 frame_obstack_alloc (sizeof (struct frame_extra_info));
2050
2051 fci->saved_regs = NULL;
2052 fci->extra_info->proc_desc =
2053 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2054 if (proc_desc)
2055 {
2056 /* Fixup frame-pointer - only needed for top frame */
2057 /* This may not be quite right, if proc has a real frame register.
2058 Get the value of the frame relative sp, procedure might have been
2059 interrupted by a signal at it's very start. */
2060 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2061 && !PROC_DESC_IS_DUMMY (proc_desc))
2062 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2063 else
2064 fci->frame = get_frame_pointer (fci->next, proc_desc);
2065
2066 if (proc_desc == &temp_proc_desc)
2067 {
2068 char *name;
2069
2070 /* Do not set the saved registers for a sigtramp frame,
2071 mips_find_saved_registers will do that for us.
2072 We can't use fci->signal_handler_caller, it is not yet set. */
2073 find_pc_partial_function (fci->pc, &name,
2074 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2075 if (!IN_SIGTRAMP (fci->pc, name))
2076 {
2077 frame_saved_regs_zalloc (fci);
2078 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2079 fci->saved_regs[PC_REGNUM]
2080 = fci->saved_regs[RA_REGNUM];
2081 }
2082 }
2083
2084 /* hack: if argument regs are saved, guess these contain args */
2085 /* assume we can't tell how many args for now */
2086 fci->extra_info->num_args = -1;
2087 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2088 {
2089 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2090 {
2091 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2092 break;
2093 }
2094 }
2095 }
2096 }
2097
2098 /* MIPS stack frames are almost impenetrable. When execution stops,
2099 we basically have to look at symbol information for the function
2100 that we stopped in, which tells us *which* register (if any) is
2101 the base of the frame pointer, and what offset from that register
2102 the frame itself is at.
2103
2104 This presents a problem when trying to examine a stack in memory
2105 (that isn't executing at the moment), using the "frame" command. We
2106 don't have a PC, nor do we have any registers except SP.
2107
2108 This routine takes two arguments, SP and PC, and tries to make the
2109 cached frames look as if these two arguments defined a frame on the
2110 cache. This allows the rest of info frame to extract the important
2111 arguments without difficulty. */
2112
2113 struct frame_info *
2114 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2115 {
2116 if (argc != 2)
2117 error ("MIPS frame specifications require two arguments: sp and pc");
2118
2119 return create_new_frame (argv[0], argv[1]);
2120 }
2121
2122 /* According to the current ABI, should the type be passed in a
2123 floating-point register (assuming that there is space)? When there
2124 is no FPU, FP are not even considered as possibile candidates for
2125 FP registers and, consequently this returns false - forces FP
2126 arguments into integer registers. */
2127
2128 static int
2129 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2130 {
2131 return ((typecode == TYPE_CODE_FLT
2132 || (MIPS_EABI
2133 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2134 && TYPE_NFIELDS (arg_type) == 1
2135 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2136 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2137 }
2138
2139 /* On o32, argument passing in GPRs depends on the alignment of the type being
2140 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2141
2142 static int
2143 mips_type_needs_double_align (struct type *type)
2144 {
2145 enum type_code typecode = TYPE_CODE (type);
2146
2147 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2148 return 1;
2149 else if (typecode == TYPE_CODE_STRUCT)
2150 {
2151 if (TYPE_NFIELDS (type) < 1)
2152 return 0;
2153 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2154 }
2155 else if (typecode == TYPE_CODE_UNION)
2156 {
2157 int i, n;
2158
2159 n = TYPE_NFIELDS (type);
2160 for (i = 0; i < n; i++)
2161 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2162 return 1;
2163 return 0;
2164 }
2165 return 0;
2166 }
2167
2168 CORE_ADDR
2169 mips_push_arguments (int nargs,
2170 struct value **args,
2171 CORE_ADDR sp,
2172 int struct_return,
2173 CORE_ADDR struct_addr)
2174 {
2175 int argreg;
2176 int float_argreg;
2177 int argnum;
2178 int len = 0;
2179 int stack_offset = 0;
2180
2181 /* Macros to round N up or down to the next A boundary; A must be
2182 a power of two. */
2183 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2184 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2185
2186 /* First ensure that the stack and structure return address (if any)
2187 are properly aligned. The stack has to be at least 64-bit aligned
2188 even on 32-bit machines, because doubles must be 64-bit aligned.
2189 On at least one MIPS variant, stack frames need to be 128-bit
2190 aligned, so we round to this widest known alignment. */
2191 sp = ROUND_DOWN (sp, 16);
2192 struct_addr = ROUND_DOWN (struct_addr, 16);
2193
2194 /* Now make space on the stack for the args. We allocate more
2195 than necessary for EABI, because the first few arguments are
2196 passed in registers, but that's OK. */
2197 for (argnum = 0; argnum < nargs; argnum++)
2198 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_STACK_ARGSIZE);
2199 sp -= ROUND_UP (len, 16);
2200
2201 if (mips_debug)
2202 fprintf_unfiltered (gdb_stdlog, "mips_push_arguments: sp=0x%lx allocated %d\n",
2203 (long) sp, ROUND_UP (len, 16));
2204
2205 /* Initialize the integer and float register pointers. */
2206 argreg = A0_REGNUM;
2207 float_argreg = FPA0_REGNUM;
2208
2209 /* the struct_return pointer occupies the first parameter-passing reg */
2210 if (struct_return)
2211 {
2212 if (mips_debug)
2213 fprintf_unfiltered (gdb_stdlog,
2214 "mips_push_arguments: struct_return reg=%d 0x%lx\n",
2215 argreg, (long) struct_addr);
2216 write_register (argreg++, struct_addr);
2217 if (MIPS_REGS_HAVE_HOME_P)
2218 stack_offset += MIPS_STACK_ARGSIZE;
2219 }
2220
2221 /* Now load as many as possible of the first arguments into
2222 registers, and push the rest onto the stack. Loop thru args
2223 from first to last. */
2224 for (argnum = 0; argnum < nargs; argnum++)
2225 {
2226 char *val;
2227 char valbuf[MAX_REGISTER_RAW_SIZE];
2228 struct value *arg = args[argnum];
2229 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2230 int len = TYPE_LENGTH (arg_type);
2231 enum type_code typecode = TYPE_CODE (arg_type);
2232
2233 if (mips_debug)
2234 fprintf_unfiltered (gdb_stdlog,
2235 "mips_push_arguments: %d len=%d type=%d",
2236 argnum + 1, len, (int) typecode);
2237
2238 /* The EABI passes structures that do not fit in a register by
2239 reference. In all other cases, pass the structure by value. */
2240 if (MIPS_EABI
2241 && len > MIPS_SAVED_REGSIZE
2242 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2243 {
2244 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2245 typecode = TYPE_CODE_PTR;
2246 len = MIPS_SAVED_REGSIZE;
2247 val = valbuf;
2248 if (mips_debug)
2249 fprintf_unfiltered (gdb_stdlog, " push");
2250 }
2251 else
2252 val = (char *) VALUE_CONTENTS (arg);
2253
2254 /* 32-bit ABIs always start floating point arguments in an
2255 even-numbered floating point register. Round the FP register
2256 up before the check to see if there are any FP registers
2257 left. Non MIPS_EABI targets also pass the FP in the integer
2258 registers so also round up normal registers. */
2259 if (!FP_REGISTER_DOUBLE
2260 && fp_register_arg_p (typecode, arg_type))
2261 {
2262 if ((float_argreg & 1))
2263 float_argreg++;
2264 }
2265
2266 /* Floating point arguments passed in registers have to be
2267 treated specially. On 32-bit architectures, doubles
2268 are passed in register pairs; the even register gets
2269 the low word, and the odd register gets the high word.
2270 On non-EABI processors, the first two floating point arguments are
2271 also copied to general registers, because MIPS16 functions
2272 don't use float registers for arguments. This duplication of
2273 arguments in general registers can't hurt non-MIPS16 functions
2274 because those registers are normally skipped. */
2275 /* MIPS_EABI squeezes a struct that contains a single floating
2276 point value into an FP register instead of pushing it onto the
2277 stack. */
2278 if (fp_register_arg_p (typecode, arg_type)
2279 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2280 {
2281 if (!FP_REGISTER_DOUBLE && len == 8)
2282 {
2283 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
2284 unsigned long regval;
2285
2286 /* Write the low word of the double to the even register(s). */
2287 regval = extract_unsigned_integer (val + low_offset, 4);
2288 if (mips_debug)
2289 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2290 float_argreg, phex (regval, 4));
2291 write_register (float_argreg++, regval);
2292 if (!MIPS_EABI)
2293 {
2294 if (mips_debug)
2295 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2296 argreg, phex (regval, 4));
2297 write_register (argreg++, regval);
2298 }
2299
2300 /* Write the high word of the double to the odd register(s). */
2301 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2302 if (mips_debug)
2303 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2304 float_argreg, phex (regval, 4));
2305 write_register (float_argreg++, regval);
2306 if (!MIPS_EABI)
2307 {
2308 if (mips_debug)
2309 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2310 argreg, phex (regval, 4));
2311 write_register (argreg++, regval);
2312 }
2313
2314 }
2315 else
2316 {
2317 /* This is a floating point value that fits entirely
2318 in a single register. */
2319 /* On 32 bit ABI's the float_argreg is further adjusted
2320 above to ensure that it is even register aligned. */
2321 LONGEST regval = extract_unsigned_integer (val, len);
2322 if (mips_debug)
2323 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2324 float_argreg, phex (regval, len));
2325 write_register (float_argreg++, regval);
2326 if (!MIPS_EABI)
2327 {
2328 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
2329 registers for each argument. The below is (my
2330 guess) to ensure that the corresponding integer
2331 register has reserved the same space. */
2332 if (mips_debug)
2333 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2334 argreg, phex (regval, len));
2335 write_register (argreg, regval);
2336 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
2337 }
2338 }
2339 /* Reserve space for the FP register. */
2340 if (MIPS_REGS_HAVE_HOME_P)
2341 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
2342 }
2343 else
2344 {
2345 /* Copy the argument to general registers or the stack in
2346 register-sized pieces. Large arguments are split between
2347 registers and stack. */
2348 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2349 are treated specially: Irix cc passes them in registers
2350 where gcc sometimes puts them on the stack. For maximum
2351 compatibility, we will put them in both places. */
2352 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2353 (len % MIPS_SAVED_REGSIZE != 0));
2354 /* Structures should be aligned to eight bytes (even arg registers)
2355 on MIPS_ABI_O32 if their first member has double precision. */
2356 if (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_O32
2357 && mips_type_needs_double_align (arg_type))
2358 {
2359 if ((argreg & 1))
2360 argreg++;
2361 }
2362 /* Note: Floating-point values that didn't fit into an FP
2363 register are only written to memory. */
2364 while (len > 0)
2365 {
2366 /* Rememer if the argument was written to the stack. */
2367 int stack_used_p = 0;
2368 int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2369
2370 if (mips_debug)
2371 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2372 partial_len);
2373
2374 /* Write this portion of the argument to the stack. */
2375 if (argreg > MIPS_LAST_ARG_REGNUM
2376 || odd_sized_struct
2377 || fp_register_arg_p (typecode, arg_type))
2378 {
2379 /* Should shorter than int integer values be
2380 promoted to int before being stored? */
2381 int longword_offset = 0;
2382 CORE_ADDR addr;
2383 stack_used_p = 1;
2384 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2385 {
2386 if (MIPS_STACK_ARGSIZE == 8 &&
2387 (typecode == TYPE_CODE_INT ||
2388 typecode == TYPE_CODE_PTR ||
2389 typecode == TYPE_CODE_FLT) && len <= 4)
2390 longword_offset = MIPS_STACK_ARGSIZE - len;
2391 else if ((typecode == TYPE_CODE_STRUCT ||
2392 typecode == TYPE_CODE_UNION) &&
2393 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2394 longword_offset = MIPS_STACK_ARGSIZE - len;
2395 }
2396
2397 if (mips_debug)
2398 {
2399 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%lx",
2400 (long) stack_offset);
2401 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%lx",
2402 (long) longword_offset);
2403 }
2404
2405 addr = sp + stack_offset + longword_offset;
2406
2407 if (mips_debug)
2408 {
2409 int i;
2410 fprintf_unfiltered (gdb_stdlog, " @0x%lx ", (long) addr);
2411 for (i = 0; i < partial_len; i++)
2412 {
2413 fprintf_unfiltered (gdb_stdlog, "%02x", val[i] & 0xff);
2414 }
2415 }
2416 write_memory (addr, val, partial_len);
2417 }
2418
2419 /* Note!!! This is NOT an else clause. Odd sized
2420 structs may go thru BOTH paths. Floating point
2421 arguments will not. */
2422 /* Write this portion of the argument to a general
2423 purpose register. */
2424 if (argreg <= MIPS_LAST_ARG_REGNUM
2425 && !fp_register_arg_p (typecode, arg_type))
2426 {
2427 LONGEST regval = extract_unsigned_integer (val, partial_len);
2428
2429 /* A non-floating-point argument being passed in a
2430 general register. If a struct or union, and if
2431 the remaining length is smaller than the register
2432 size, we have to adjust the register value on
2433 big endian targets.
2434
2435 It does not seem to be necessary to do the
2436 same for integral types.
2437
2438 Also don't do this adjustment on EABI and O64
2439 binaries.
2440
2441 cagney/2001-07-23: gdb/179: Also, GCC, when
2442 outputting LE O32 with sizeof (struct) <
2443 MIPS_SAVED_REGSIZE, generates a left shift as
2444 part of storing the argument in a register a
2445 register (the left shift isn't generated when
2446 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
2447 is quite possible that this is GCC contradicting
2448 the LE/O32 ABI, GDB has not been adjusted to
2449 accommodate this. Either someone needs to
2450 demonstrate that the LE/O32 ABI specifies such a
2451 left shift OR this new ABI gets identified as
2452 such and GDB gets tweaked accordingly. */
2453
2454 if (!MIPS_EABI
2455 && MIPS_SAVED_REGSIZE < 8
2456 && TARGET_BYTE_ORDER == BIG_ENDIAN
2457 && partial_len < MIPS_SAVED_REGSIZE
2458 && (typecode == TYPE_CODE_STRUCT ||
2459 typecode == TYPE_CODE_UNION))
2460 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
2461 TARGET_CHAR_BIT);
2462
2463 if (mips_debug)
2464 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2465 argreg,
2466 phex (regval, MIPS_SAVED_REGSIZE));
2467 write_register (argreg, regval);
2468 argreg++;
2469
2470 /* If this is the old ABI, prevent subsequent floating
2471 point arguments from being passed in floating point
2472 registers. */
2473 if (!MIPS_EABI)
2474 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
2475 }
2476
2477 len -= partial_len;
2478 val += partial_len;
2479
2480 /* Compute the the offset into the stack at which we
2481 will copy the next parameter.
2482
2483 In older ABIs, the caller reserved space for
2484 registers that contained arguments. This was loosely
2485 refered to as their "home". Consequently, space is
2486 always allocated.
2487
2488 In the new EABI (and the NABI32), the stack_offset
2489 only needs to be adjusted when it has been used.. */
2490
2491 if (MIPS_REGS_HAVE_HOME_P || stack_used_p)
2492 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2493 }
2494 }
2495 if (mips_debug)
2496 fprintf_unfiltered (gdb_stdlog, "\n");
2497 }
2498
2499 /* Return adjusted stack pointer. */
2500 return sp;
2501 }
2502
2503 CORE_ADDR
2504 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
2505 {
2506 /* Set the return address register to point to the entry
2507 point of the program, where a breakpoint lies in wait. */
2508 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
2509 return sp;
2510 }
2511
2512 static void
2513 mips_push_register (CORE_ADDR * sp, int regno)
2514 {
2515 char buffer[MAX_REGISTER_RAW_SIZE];
2516 int regsize;
2517 int offset;
2518 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
2519 {
2520 regsize = MIPS_SAVED_REGSIZE;
2521 offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
2522 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
2523 : 0);
2524 }
2525 else
2526 {
2527 regsize = REGISTER_RAW_SIZE (regno);
2528 offset = 0;
2529 }
2530 *sp -= regsize;
2531 read_register_gen (regno, buffer);
2532 write_memory (*sp, buffer + offset, regsize);
2533 }
2534
2535 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
2536 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
2537
2538 void
2539 mips_push_dummy_frame (void)
2540 {
2541 int ireg;
2542 struct linked_proc_info *link = (struct linked_proc_info *)
2543 xmalloc (sizeof (struct linked_proc_info));
2544 mips_extra_func_info_t proc_desc = &link->info;
2545 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
2546 CORE_ADDR old_sp = sp;
2547 link->next = linked_proc_desc_table;
2548 linked_proc_desc_table = link;
2549
2550 /* FIXME! are these correct ? */
2551 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
2552 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
2553 #define FLOAT_REG_SAVE_MASK MASK(0,19)
2554 #define FLOAT_SINGLE_REG_SAVE_MASK \
2555 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
2556 /*
2557 * The registers we must save are all those not preserved across
2558 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
2559 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
2560 * and FP Control/Status registers.
2561 *
2562 *
2563 * Dummy frame layout:
2564 * (high memory)
2565 * Saved PC
2566 * Saved MMHI, MMLO, FPC_CSR
2567 * Saved R31
2568 * Saved R28
2569 * ...
2570 * Saved R1
2571 * Saved D18 (i.e. F19, F18)
2572 * ...
2573 * Saved D0 (i.e. F1, F0)
2574 * Argument build area and stack arguments written via mips_push_arguments
2575 * (low memory)
2576 */
2577
2578 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
2579 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
2580 PROC_FRAME_OFFSET (proc_desc) = 0;
2581 PROC_FRAME_ADJUST (proc_desc) = 0;
2582 mips_push_register (&sp, PC_REGNUM);
2583 mips_push_register (&sp, HI_REGNUM);
2584 mips_push_register (&sp, LO_REGNUM);
2585 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
2586
2587 /* Save general CPU registers */
2588 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
2589 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
2590 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
2591 for (ireg = 32; --ireg >= 0;)
2592 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
2593 mips_push_register (&sp, ireg);
2594
2595 /* Save floating point registers starting with high order word */
2596 PROC_FREG_MASK (proc_desc) =
2597 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
2598 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
2599 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
2600 from FP. */
2601 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
2602 for (ireg = 32; --ireg >= 0;)
2603 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
2604 mips_push_register (&sp, ireg + FP0_REGNUM);
2605
2606 /* Update the frame pointer for the call dummy and the stack pointer.
2607 Set the procedure's starting and ending addresses to point to the
2608 call dummy address at the entry point. */
2609 write_register (PUSH_FP_REGNUM, old_sp);
2610 write_register (SP_REGNUM, sp);
2611 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
2612 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
2613 SET_PROC_DESC_IS_DUMMY (proc_desc);
2614 PROC_PC_REG (proc_desc) = RA_REGNUM;
2615 }
2616
2617 void
2618 mips_pop_frame (void)
2619 {
2620 register int regnum;
2621 struct frame_info *frame = get_current_frame ();
2622 CORE_ADDR new_sp = FRAME_FP (frame);
2623
2624 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
2625
2626 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
2627 if (frame->saved_regs == NULL)
2628 mips_find_saved_regs (frame);
2629 for (regnum = 0; regnum < NUM_REGS; regnum++)
2630 {
2631 if (regnum != SP_REGNUM && regnum != PC_REGNUM
2632 && frame->saved_regs[regnum])
2633 write_register (regnum,
2634 read_memory_integer (frame->saved_regs[regnum],
2635 MIPS_SAVED_REGSIZE));
2636 }
2637 write_register (SP_REGNUM, new_sp);
2638 flush_cached_frames ();
2639
2640 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
2641 {
2642 struct linked_proc_info *pi_ptr, *prev_ptr;
2643
2644 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
2645 pi_ptr != NULL;
2646 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
2647 {
2648 if (&pi_ptr->info == proc_desc)
2649 break;
2650 }
2651
2652 if (pi_ptr == NULL)
2653 error ("Can't locate dummy extra frame info\n");
2654
2655 if (prev_ptr != NULL)
2656 prev_ptr->next = pi_ptr->next;
2657 else
2658 linked_proc_desc_table = pi_ptr->next;
2659
2660 xfree (pi_ptr);
2661
2662 write_register (HI_REGNUM,
2663 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
2664 MIPS_SAVED_REGSIZE));
2665 write_register (LO_REGNUM,
2666 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
2667 MIPS_SAVED_REGSIZE));
2668 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
2669 write_register (FCRCS_REGNUM,
2670 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
2671 MIPS_SAVED_REGSIZE));
2672 }
2673 }
2674
2675 static void
2676 mips_print_register (int regnum, int all)
2677 {
2678 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2679
2680 /* Get the data in raw format. */
2681 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2682 {
2683 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
2684 return;
2685 }
2686
2687 /* If an even floating point register, also print as double. */
2688 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
2689 && !((regnum - FP0_REGNUM) & 1))
2690 if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
2691 {
2692 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
2693
2694 read_relative_register_raw_bytes (regnum, dbuffer);
2695 read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
2696 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
2697
2698 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
2699 val_print (builtin_type_double, dbuffer, 0, 0,
2700 gdb_stdout, 0, 1, 0, Val_pretty_default);
2701 printf_filtered ("); ");
2702 }
2703 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
2704
2705 /* The problem with printing numeric register names (r26, etc.) is that
2706 the user can't use them on input. Probably the best solution is to
2707 fix it so that either the numeric or the funky (a2, etc.) names
2708 are accepted on input. */
2709 if (regnum < MIPS_NUMREGS)
2710 printf_filtered ("(r%d): ", regnum);
2711 else
2712 printf_filtered (": ");
2713
2714 /* If virtual format is floating, print it that way. */
2715 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2716 if (FP_REGISTER_DOUBLE)
2717 { /* show 8-byte floats as float AND double: */
2718 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2719
2720 printf_filtered (" (float) ");
2721 val_print (builtin_type_float, raw_buffer + offset, 0, 0,
2722 gdb_stdout, 0, 1, 0, Val_pretty_default);
2723 printf_filtered (", (double) ");
2724 val_print (builtin_type_double, raw_buffer, 0, 0,
2725 gdb_stdout, 0, 1, 0, Val_pretty_default);
2726 }
2727 else
2728 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
2729 gdb_stdout, 0, 1, 0, Val_pretty_default);
2730 /* Else print as integer in hex. */
2731 else
2732 {
2733 int offset;
2734
2735 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2736 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2737 else
2738 offset = 0;
2739
2740 print_scalar_formatted (raw_buffer + offset,
2741 REGISTER_VIRTUAL_TYPE (regnum),
2742 'x', 0, gdb_stdout);
2743 }
2744 }
2745
2746 /* Replacement for generic do_registers_info.
2747 Print regs in pretty columns. */
2748
2749 static int
2750 do_fp_register_row (int regnum)
2751 { /* do values for FP (float) regs */
2752 char *raw_buffer[2];
2753 char *dbl_buffer;
2754 /* use HI and LO to control the order of combining two flt regs */
2755 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
2756 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
2757 double doub, flt1, flt2; /* doubles extracted from raw hex data */
2758 int inv1, inv2, inv3;
2759
2760 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2761 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
2762 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2763
2764 /* Get the data in raw format. */
2765 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
2766 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2767 if (REGISTER_RAW_SIZE (regnum) == 4)
2768 {
2769 /* 4-byte registers: we can fit two registers per row. */
2770 /* Also print every pair of 4-byte regs as an 8-byte double. */
2771 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
2772 error ("can't read register %d (%s)",
2773 regnum + 1, REGISTER_NAME (regnum + 1));
2774
2775 /* copy the two floats into one double, and unpack both */
2776 memcpy (dbl_buffer, raw_buffer, 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2777 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
2778 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
2779 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2780
2781 printf_filtered (" %-5s", REGISTER_NAME (regnum));
2782 if (inv1)
2783 printf_filtered (": <invalid float>");
2784 else
2785 printf_filtered ("%-17.9g", flt1);
2786
2787 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
2788 if (inv2)
2789 printf_filtered (": <invalid float>");
2790 else
2791 printf_filtered ("%-17.9g", flt2);
2792
2793 printf_filtered (" dbl: ");
2794 if (inv3)
2795 printf_filtered ("<invalid double>");
2796 else
2797 printf_filtered ("%-24.17g", doub);
2798 printf_filtered ("\n");
2799
2800 /* may want to do hex display here (future enhancement) */
2801 regnum += 2;
2802 }
2803 else
2804 { /* eight byte registers: print each one as float AND as double. */
2805 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
2806
2807 memcpy (dbl_buffer, raw_buffer[HI], 2 * REGISTER_RAW_SIZE (FP0_REGNUM));
2808 flt1 = unpack_double (builtin_type_float,
2809 &raw_buffer[HI][offset], &inv1);
2810 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
2811
2812 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
2813 if (inv1)
2814 printf_filtered ("<invalid float>");
2815 else
2816 printf_filtered ("flt: %-17.9g", flt1);
2817
2818 printf_filtered (" dbl: ");
2819 if (inv3)
2820 printf_filtered ("<invalid double>");
2821 else
2822 printf_filtered ("%-24.17g", doub);
2823
2824 printf_filtered ("\n");
2825 /* may want to do hex display here (future enhancement) */
2826 regnum++;
2827 }
2828 return regnum;
2829 }
2830
2831 /* Print a row's worth of GP (int) registers, with name labels above */
2832
2833 static int
2834 do_gp_register_row (int regnum)
2835 {
2836 /* do values for GP (int) regs */
2837 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2838 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
2839 int col, byte;
2840 int start_regnum = regnum;
2841 int numregs = NUM_REGS;
2842
2843
2844 /* For GP registers, we print a separate row of names above the vals */
2845 printf_filtered (" ");
2846 for (col = 0; col < ncols && regnum < numregs; regnum++)
2847 {
2848 if (*REGISTER_NAME (regnum) == '\0')
2849 continue; /* unused register */
2850 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2851 break; /* end the row: reached FP register */
2852 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
2853 REGISTER_NAME (regnum));
2854 col++;
2855 }
2856 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
2857 start_regnum); /* print the R0 to R31 names */
2858
2859 regnum = start_regnum; /* go back to start of row */
2860 /* now print the values in hex, 4 or 8 to the row */
2861 for (col = 0; col < ncols && regnum < numregs; regnum++)
2862 {
2863 if (*REGISTER_NAME (regnum) == '\0')
2864 continue; /* unused register */
2865 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2866 break; /* end row: reached FP register */
2867 /* OK: get the data in raw format. */
2868 if (read_relative_register_raw_bytes (regnum, raw_buffer))
2869 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2870 /* pad small registers */
2871 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
2872 printf_filtered (" ");
2873 /* Now print the register value in hex, endian order. */
2874 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2875 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
2876 byte < REGISTER_RAW_SIZE (regnum);
2877 byte++)
2878 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2879 else
2880 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
2881 byte >= 0;
2882 byte--)
2883 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
2884 printf_filtered (" ");
2885 col++;
2886 }
2887 if (col > 0) /* ie. if we actually printed anything... */
2888 printf_filtered ("\n");
2889
2890 return regnum;
2891 }
2892
2893 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
2894
2895 void
2896 mips_do_registers_info (int regnum, int fpregs)
2897 {
2898 if (regnum != -1) /* do one specified register */
2899 {
2900 if (*(REGISTER_NAME (regnum)) == '\0')
2901 error ("Not a valid register for the current processor type");
2902
2903 mips_print_register (regnum, 0);
2904 printf_filtered ("\n");
2905 }
2906 else
2907 /* do all (or most) registers */
2908 {
2909 regnum = 0;
2910 while (regnum < NUM_REGS)
2911 {
2912 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
2913 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
2914 regnum = do_fp_register_row (regnum); /* FP regs */
2915 else
2916 regnum += MIPS_NUMREGS; /* skip floating point regs */
2917 else
2918 regnum = do_gp_register_row (regnum); /* GP (int) regs */
2919 }
2920 }
2921 }
2922
2923 /* Return number of args passed to a frame. described by FIP.
2924 Can return -1, meaning no way to tell. */
2925
2926 int
2927 mips_frame_num_args (struct frame_info *frame)
2928 {
2929 return -1;
2930 }
2931
2932 /* Is this a branch with a delay slot? */
2933
2934 static int is_delayed (unsigned long);
2935
2936 static int
2937 is_delayed (unsigned long insn)
2938 {
2939 int i;
2940 for (i = 0; i < NUMOPCODES; ++i)
2941 if (mips_opcodes[i].pinfo != INSN_MACRO
2942 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
2943 break;
2944 return (i < NUMOPCODES
2945 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
2946 | INSN_COND_BRANCH_DELAY
2947 | INSN_COND_BRANCH_LIKELY)));
2948 }
2949
2950 int
2951 mips_step_skips_delay (CORE_ADDR pc)
2952 {
2953 char buf[MIPS_INSTLEN];
2954
2955 /* There is no branch delay slot on MIPS16. */
2956 if (pc_is_mips16 (pc))
2957 return 0;
2958
2959 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
2960 /* If error reading memory, guess that it is not a delayed branch. */
2961 return 0;
2962 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
2963 }
2964
2965
2966 /* Skip the PC past function prologue instructions (32-bit version).
2967 This is a helper function for mips_skip_prologue. */
2968
2969 static CORE_ADDR
2970 mips32_skip_prologue (CORE_ADDR pc)
2971 {
2972 t_inst inst;
2973 CORE_ADDR end_pc;
2974 int seen_sp_adjust = 0;
2975 int load_immediate_bytes = 0;
2976
2977 /* Skip the typical prologue instructions. These are the stack adjustment
2978 instruction and the instructions that save registers on the stack
2979 or in the gcc frame. */
2980 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
2981 {
2982 unsigned long high_word;
2983
2984 inst = mips_fetch_instruction (pc);
2985 high_word = (inst >> 16) & 0xffff;
2986
2987 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
2988 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
2989 seen_sp_adjust = 1;
2990 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
2991 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
2992 seen_sp_adjust = 1;
2993 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
2994 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
2995 && (inst & 0x001F0000)) /* reg != $zero */
2996 continue;
2997
2998 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
2999 continue;
3000 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
3001 /* sx reg,n($s8) */
3002 continue; /* reg != $zero */
3003
3004 /* move $s8,$sp. With different versions of gas this will be either
3005 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
3006 Accept any one of these. */
3007 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3008 continue;
3009
3010 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
3011 continue;
3012 else if (high_word == 0x3c1c) /* lui $gp,n */
3013 continue;
3014 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
3015 continue;
3016 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3017 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
3018 continue;
3019 /* The following instructions load $at or $t0 with an immediate
3020 value in preparation for a stack adjustment via
3021 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
3022 a local variable, so we accept them only before a stack adjustment
3023 instruction was seen. */
3024 else if (!seen_sp_adjust)
3025 {
3026 if (high_word == 0x3c01 || /* lui $at,n */
3027 high_word == 0x3c08) /* lui $t0,n */
3028 {
3029 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
3030 continue;
3031 }
3032 else if (high_word == 0x3421 || /* ori $at,$at,n */
3033 high_word == 0x3508 || /* ori $t0,$t0,n */
3034 high_word == 0x3401 || /* ori $at,$zero,n */
3035 high_word == 0x3408) /* ori $t0,$zero,n */
3036 {
3037 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
3038 continue;
3039 }
3040 else
3041 break;
3042 }
3043 else
3044 break;
3045 }
3046
3047 /* In a frameless function, we might have incorrectly
3048 skipped some load immediate instructions. Undo the skipping
3049 if the load immediate was not followed by a stack adjustment. */
3050 if (load_immediate_bytes && !seen_sp_adjust)
3051 pc -= load_immediate_bytes;
3052 return pc;
3053 }
3054
3055 /* Skip the PC past function prologue instructions (16-bit version).
3056 This is a helper function for mips_skip_prologue. */
3057
3058 static CORE_ADDR
3059 mips16_skip_prologue (CORE_ADDR pc)
3060 {
3061 CORE_ADDR end_pc;
3062 int extend_bytes = 0;
3063 int prev_extend_bytes;
3064
3065 /* Table of instructions likely to be found in a function prologue. */
3066 static struct
3067 {
3068 unsigned short inst;
3069 unsigned short mask;
3070 }
3071 table[] =
3072 {
3073 {
3074 0x6300, 0xff00
3075 }
3076 , /* addiu $sp,offset */
3077 {
3078 0xfb00, 0xff00
3079 }
3080 , /* daddiu $sp,offset */
3081 {
3082 0xd000, 0xf800
3083 }
3084 , /* sw reg,n($sp) */
3085 {
3086 0xf900, 0xff00
3087 }
3088 , /* sd reg,n($sp) */
3089 {
3090 0x6200, 0xff00
3091 }
3092 , /* sw $ra,n($sp) */
3093 {
3094 0xfa00, 0xff00
3095 }
3096 , /* sd $ra,n($sp) */
3097 {
3098 0x673d, 0xffff
3099 }
3100 , /* move $s1,sp */
3101 {
3102 0xd980, 0xff80
3103 }
3104 , /* sw $a0-$a3,n($s1) */
3105 {
3106 0x6704, 0xff1c
3107 }
3108 , /* move reg,$a0-$a3 */
3109 {
3110 0xe809, 0xf81f
3111 }
3112 , /* entry pseudo-op */
3113 {
3114 0x0100, 0xff00
3115 }
3116 , /* addiu $s1,$sp,n */
3117 {
3118 0, 0
3119 } /* end of table marker */
3120 };
3121
3122 /* Skip the typical prologue instructions. These are the stack adjustment
3123 instruction and the instructions that save registers on the stack
3124 or in the gcc frame. */
3125 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
3126 {
3127 unsigned short inst;
3128 int i;
3129
3130 inst = mips_fetch_instruction (pc);
3131
3132 /* Normally we ignore an extend instruction. However, if it is
3133 not followed by a valid prologue instruction, we must adjust
3134 the pc back over the extend so that it won't be considered
3135 part of the prologue. */
3136 if ((inst & 0xf800) == 0xf000) /* extend */
3137 {
3138 extend_bytes = MIPS16_INSTLEN;
3139 continue;
3140 }
3141 prev_extend_bytes = extend_bytes;
3142 extend_bytes = 0;
3143
3144 /* Check for other valid prologue instructions besides extend. */
3145 for (i = 0; table[i].mask != 0; i++)
3146 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
3147 break;
3148 if (table[i].mask != 0) /* it was in table? */
3149 continue; /* ignore it */
3150 else
3151 /* non-prologue */
3152 {
3153 /* Return the current pc, adjusted backwards by 2 if
3154 the previous instruction was an extend. */
3155 return pc - prev_extend_bytes;
3156 }
3157 }
3158 return pc;
3159 }
3160
3161 /* To skip prologues, I use this predicate. Returns either PC itself
3162 if the code at PC does not look like a function prologue; otherwise
3163 returns an address that (if we're lucky) follows the prologue. If
3164 LENIENT, then we must skip everything which is involved in setting
3165 up the frame (it's OK to skip more, just so long as we don't skip
3166 anything which might clobber the registers which are being saved.
3167 We must skip more in the case where part of the prologue is in the
3168 delay slot of a non-prologue instruction). */
3169
3170 CORE_ADDR
3171 mips_skip_prologue (CORE_ADDR pc)
3172 {
3173 /* See if we can determine the end of the prologue via the symbol table.
3174 If so, then return either PC, or the PC after the prologue, whichever
3175 is greater. */
3176
3177 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
3178
3179 if (post_prologue_pc != 0)
3180 return max (pc, post_prologue_pc);
3181
3182 /* Can't determine prologue from the symbol table, need to examine
3183 instructions. */
3184
3185 if (pc_is_mips16 (pc))
3186 return mips16_skip_prologue (pc);
3187 else
3188 return mips32_skip_prologue (pc);
3189 }
3190
3191 /* Determine how a return value is stored within the MIPS register
3192 file, given the return type `valtype'. */
3193
3194 struct return_value_word
3195 {
3196 int len;
3197 int reg;
3198 int reg_offset;
3199 int buf_offset;
3200 };
3201
3202 static void
3203 return_value_location (struct type *valtype,
3204 struct return_value_word *hi,
3205 struct return_value_word *lo)
3206 {
3207 int len = TYPE_LENGTH (valtype);
3208
3209 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
3210 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
3211 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
3212 {
3213 if (!FP_REGISTER_DOUBLE && len == 8)
3214 {
3215 /* We need to break a 64bit float in two 32 bit halves and
3216 spread them across a floating-point register pair. */
3217 lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
3218 hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
3219 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3220 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
3221 ? 4 : 0);
3222 hi->reg_offset = lo->reg_offset;
3223 lo->reg = FP0_REGNUM + 0;
3224 hi->reg = FP0_REGNUM + 1;
3225 lo->len = 4;
3226 hi->len = 4;
3227 }
3228 else
3229 {
3230 /* The floating point value fits in a single floating-point
3231 register. */
3232 lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
3233 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
3234 && len == 4)
3235 ? 4 : 0);
3236 lo->reg = FP0_REGNUM;
3237 lo->len = len;
3238 lo->buf_offset = 0;
3239 hi->len = 0;
3240 hi->reg_offset = 0;
3241 hi->buf_offset = 0;
3242 hi->reg = 0;
3243 }
3244 }
3245 else
3246 {
3247 /* Locate a result possibly spread across two registers. */
3248 int regnum = 2;
3249 lo->reg = regnum + 0;
3250 hi->reg = regnum + 1;
3251 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3252 && len < MIPS_SAVED_REGSIZE)
3253 {
3254 /* "un-left-justify" the value in the low register */
3255 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
3256 lo->len = len;
3257 hi->reg_offset = 0;
3258 hi->len = 0;
3259 }
3260 else if (TARGET_BYTE_ORDER == BIG_ENDIAN
3261 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
3262 && len < MIPS_SAVED_REGSIZE * 2
3263 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
3264 TYPE_CODE (valtype) == TYPE_CODE_UNION))
3265 {
3266 /* "un-left-justify" the value spread across two registers. */
3267 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
3268 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
3269 hi->reg_offset = 0;
3270 hi->len = len - lo->len;
3271 }
3272 else
3273 {
3274 /* Only perform a partial copy of the second register. */
3275 lo->reg_offset = 0;
3276 hi->reg_offset = 0;
3277 if (len > MIPS_SAVED_REGSIZE)
3278 {
3279 lo->len = MIPS_SAVED_REGSIZE;
3280 hi->len = len - MIPS_SAVED_REGSIZE;
3281 }
3282 else
3283 {
3284 lo->len = len;
3285 hi->len = 0;
3286 }
3287 }
3288 if (TARGET_BYTE_ORDER == BIG_ENDIAN
3289 && REGISTER_RAW_SIZE (regnum) == 8
3290 && MIPS_SAVED_REGSIZE == 4)
3291 {
3292 /* Account for the fact that only the least-signficant part
3293 of the register is being used */
3294 lo->reg_offset += 4;
3295 hi->reg_offset += 4;
3296 }
3297 lo->buf_offset = 0;
3298 hi->buf_offset = lo->len;
3299 }
3300 }
3301
3302 /* Given a return value in `regbuf' with a type `valtype', extract and
3303 copy its value into `valbuf'. */
3304
3305 void
3306 mips_extract_return_value (struct type *valtype,
3307 char regbuf[REGISTER_BYTES],
3308 char *valbuf)
3309 {
3310 struct return_value_word lo;
3311 struct return_value_word hi;
3312 return_value_location (valtype, &hi, &lo);
3313
3314 memcpy (valbuf + lo.buf_offset,
3315 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
3316 lo.len);
3317
3318 if (hi.len > 0)
3319 memcpy (valbuf + hi.buf_offset,
3320 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
3321 hi.len);
3322 }
3323
3324 /* Given a return value in `valbuf' with a type `valtype', write it's
3325 value into the appropriate register. */
3326
3327 void
3328 mips_store_return_value (struct type *valtype, char *valbuf)
3329 {
3330 char raw_buffer[MAX_REGISTER_RAW_SIZE];
3331 struct return_value_word lo;
3332 struct return_value_word hi;
3333 return_value_location (valtype, &hi, &lo);
3334
3335 memset (raw_buffer, 0, sizeof (raw_buffer));
3336 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
3337 write_register_bytes (REGISTER_BYTE (lo.reg),
3338 raw_buffer,
3339 REGISTER_RAW_SIZE (lo.reg));
3340
3341 if (hi.len > 0)
3342 {
3343 memset (raw_buffer, 0, sizeof (raw_buffer));
3344 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
3345 write_register_bytes (REGISTER_BYTE (hi.reg),
3346 raw_buffer,
3347 REGISTER_RAW_SIZE (hi.reg));
3348 }
3349 }
3350
3351 /* Exported procedure: Is PC in the signal trampoline code */
3352
3353 int
3354 in_sigtramp (CORE_ADDR pc, char *ignore)
3355 {
3356 if (sigtramp_address == 0)
3357 fixup_sigtramp ();
3358 return (pc >= sigtramp_address && pc < sigtramp_end);
3359 }
3360
3361 /* Root of all "set mips "/"show mips " commands. This will eventually be
3362 used for all MIPS-specific commands. */
3363
3364 static void
3365 show_mips_command (char *args, int from_tty)
3366 {
3367 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
3368 }
3369
3370 static void
3371 set_mips_command (char *args, int from_tty)
3372 {
3373 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
3374 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
3375 }
3376
3377 /* Commands to show/set the MIPS FPU type. */
3378
3379 static void
3380 show_mipsfpu_command (char *args, int from_tty)
3381 {
3382 char *fpu;
3383 switch (MIPS_FPU_TYPE)
3384 {
3385 case MIPS_FPU_SINGLE:
3386 fpu = "single-precision";
3387 break;
3388 case MIPS_FPU_DOUBLE:
3389 fpu = "double-precision";
3390 break;
3391 case MIPS_FPU_NONE:
3392 fpu = "absent (none)";
3393 break;
3394 default:
3395 internal_error (__FILE__, __LINE__, "bad switch");
3396 }
3397 if (mips_fpu_type_auto)
3398 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
3399 fpu);
3400 else
3401 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
3402 fpu);
3403 }
3404
3405
3406 static void
3407 set_mipsfpu_command (char *args, int from_tty)
3408 {
3409 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
3410 show_mipsfpu_command (args, from_tty);
3411 }
3412
3413 static void
3414 set_mipsfpu_single_command (char *args, int from_tty)
3415 {
3416 mips_fpu_type = MIPS_FPU_SINGLE;
3417 mips_fpu_type_auto = 0;
3418 if (GDB_MULTI_ARCH)
3419 {
3420 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
3421 }
3422 }
3423
3424 static void
3425 set_mipsfpu_double_command (char *args, int from_tty)
3426 {
3427 mips_fpu_type = MIPS_FPU_DOUBLE;
3428 mips_fpu_type_auto = 0;
3429 if (GDB_MULTI_ARCH)
3430 {
3431 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
3432 }
3433 }
3434
3435 static void
3436 set_mipsfpu_none_command (char *args, int from_tty)
3437 {
3438 mips_fpu_type = MIPS_FPU_NONE;
3439 mips_fpu_type_auto = 0;
3440 if (GDB_MULTI_ARCH)
3441 {
3442 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
3443 }
3444 }
3445
3446 static void
3447 set_mipsfpu_auto_command (char *args, int from_tty)
3448 {
3449 mips_fpu_type_auto = 1;
3450 }
3451
3452 /* Command to set the processor type. */
3453
3454 void
3455 mips_set_processor_type_command (char *args, int from_tty)
3456 {
3457 int i;
3458
3459 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
3460 {
3461 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
3462 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3463 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
3464
3465 /* Restore the value. */
3466 tmp_mips_processor_type = xstrdup (mips_processor_type);
3467
3468 return;
3469 }
3470
3471 if (!mips_set_processor_type (tmp_mips_processor_type))
3472 {
3473 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
3474 /* Restore its value. */
3475 tmp_mips_processor_type = xstrdup (mips_processor_type);
3476 }
3477 }
3478
3479 static void
3480 mips_show_processor_type_command (char *args, int from_tty)
3481 {
3482 }
3483
3484 /* Modify the actual processor type. */
3485
3486 int
3487 mips_set_processor_type (char *str)
3488 {
3489 int i;
3490
3491 if (str == NULL)
3492 return 0;
3493
3494 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
3495 {
3496 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
3497 {
3498 mips_processor_type = str;
3499 mips_processor_reg_names = mips_processor_type_table[i].regnames;
3500 return 1;
3501 /* FIXME tweak fpu flag too */
3502 }
3503 }
3504
3505 return 0;
3506 }
3507
3508 /* Attempt to identify the particular processor model by reading the
3509 processor id. */
3510
3511 char *
3512 mips_read_processor_type (void)
3513 {
3514 CORE_ADDR prid;
3515
3516 prid = read_register (PRID_REGNUM);
3517
3518 if ((prid & ~0xf) == 0x700)
3519 return savestring ("r3041", strlen ("r3041"));
3520
3521 return NULL;
3522 }
3523
3524 /* Just like reinit_frame_cache, but with the right arguments to be
3525 callable as an sfunc. */
3526
3527 static void
3528 reinit_frame_cache_sfunc (char *args, int from_tty,
3529 struct cmd_list_element *c)
3530 {
3531 reinit_frame_cache ();
3532 }
3533
3534 int
3535 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
3536 {
3537 mips_extra_func_info_t proc_desc;
3538
3539 /* Search for the function containing this address. Set the low bit
3540 of the address when searching, in case we were given an even address
3541 that is the start of a 16-bit function. If we didn't do this,
3542 the search would fail because the symbol table says the function
3543 starts at an odd address, i.e. 1 byte past the given address. */
3544 memaddr = ADDR_BITS_REMOVE (memaddr);
3545 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
3546
3547 /* Make an attempt to determine if this is a 16-bit function. If
3548 the procedure descriptor exists and the address therein is odd,
3549 it's definitely a 16-bit function. Otherwise, we have to just
3550 guess that if the address passed in is odd, it's 16-bits. */
3551 if (proc_desc)
3552 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
3553 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
3554 else
3555 info->mach = pc_is_mips16 (memaddr) ?
3556 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
3557
3558 /* Round down the instruction address to the appropriate boundary. */
3559 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
3560
3561 /* Call the appropriate disassembler based on the target endian-ness. */
3562 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3563 return print_insn_big_mips (memaddr, info);
3564 else
3565 return print_insn_little_mips (memaddr, info);
3566 }
3567
3568 /* Old-style breakpoint macros.
3569 The IDT board uses an unusual breakpoint value, and sometimes gets
3570 confused when it sees the usual MIPS breakpoint instruction. */
3571
3572 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
3573 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
3574 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
3575 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
3576 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
3577 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
3578 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
3579 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
3580
3581 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
3582 counter value to determine whether a 16- or 32-bit breakpoint should be
3583 used. It returns a pointer to a string of bytes that encode a breakpoint
3584 instruction, stores the length of the string to *lenptr, and adjusts pc
3585 (if necessary) to point to the actual memory location where the
3586 breakpoint should be inserted. */
3587
3588 unsigned char *
3589 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
3590 {
3591 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
3592 {
3593 if (pc_is_mips16 (*pcptr))
3594 {
3595 static unsigned char mips16_big_breakpoint[] =
3596 MIPS16_BIG_BREAKPOINT;
3597 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3598 *lenptr = sizeof (mips16_big_breakpoint);
3599 return mips16_big_breakpoint;
3600 }
3601 else
3602 {
3603 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
3604 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
3605 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
3606
3607 *lenptr = sizeof (big_breakpoint);
3608
3609 if (strcmp (target_shortname, "mips") == 0)
3610 return idt_big_breakpoint;
3611 else if (strcmp (target_shortname, "ddb") == 0
3612 || strcmp (target_shortname, "pmon") == 0
3613 || strcmp (target_shortname, "lsi") == 0)
3614 return pmon_big_breakpoint;
3615 else
3616 return big_breakpoint;
3617 }
3618 }
3619 else
3620 {
3621 if (pc_is_mips16 (*pcptr))
3622 {
3623 static unsigned char mips16_little_breakpoint[] =
3624 MIPS16_LITTLE_BREAKPOINT;
3625 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
3626 *lenptr = sizeof (mips16_little_breakpoint);
3627 return mips16_little_breakpoint;
3628 }
3629 else
3630 {
3631 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
3632 static unsigned char pmon_little_breakpoint[] =
3633 PMON_LITTLE_BREAKPOINT;
3634 static unsigned char idt_little_breakpoint[] =
3635 IDT_LITTLE_BREAKPOINT;
3636
3637 *lenptr = sizeof (little_breakpoint);
3638
3639 if (strcmp (target_shortname, "mips") == 0)
3640 return idt_little_breakpoint;
3641 else if (strcmp (target_shortname, "ddb") == 0
3642 || strcmp (target_shortname, "pmon") == 0
3643 || strcmp (target_shortname, "lsi") == 0)
3644 return pmon_little_breakpoint;
3645 else
3646 return little_breakpoint;
3647 }
3648 }
3649 }
3650
3651 /* If PC is in a mips16 call or return stub, return the address of the target
3652 PC, which is either the callee or the caller. There are several
3653 cases which must be handled:
3654
3655 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3656 target PC is in $31 ($ra).
3657 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3658 and the target PC is in $2.
3659 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3660 before the jal instruction, this is effectively a call stub
3661 and the the target PC is in $2. Otherwise this is effectively
3662 a return stub and the target PC is in $18.
3663
3664 See the source code for the stubs in gcc/config/mips/mips16.S for
3665 gory details.
3666
3667 This function implements the SKIP_TRAMPOLINE_CODE macro.
3668 */
3669
3670 CORE_ADDR
3671 mips_skip_stub (CORE_ADDR pc)
3672 {
3673 char *name;
3674 CORE_ADDR start_addr;
3675
3676 /* Find the starting address and name of the function containing the PC. */
3677 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
3678 return 0;
3679
3680 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
3681 target PC is in $31 ($ra). */
3682 if (strcmp (name, "__mips16_ret_sf") == 0
3683 || strcmp (name, "__mips16_ret_df") == 0)
3684 return read_signed_register (RA_REGNUM);
3685
3686 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3687 {
3688 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
3689 and the target PC is in $2. */
3690 if (name[19] >= '0' && name[19] <= '9')
3691 return read_signed_register (2);
3692
3693 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3694 before the jal instruction, this is effectively a call stub
3695 and the the target PC is in $2. Otherwise this is effectively
3696 a return stub and the target PC is in $18. */
3697 else if (name[19] == 's' || name[19] == 'd')
3698 {
3699 if (pc == start_addr)
3700 {
3701 /* Check if the target of the stub is a compiler-generated
3702 stub. Such a stub for a function bar might have a name
3703 like __fn_stub_bar, and might look like this:
3704 mfc1 $4,$f13
3705 mfc1 $5,$f12
3706 mfc1 $6,$f15
3707 mfc1 $7,$f14
3708 la $1,bar (becomes a lui/addiu pair)
3709 jr $1
3710 So scan down to the lui/addi and extract the target
3711 address from those two instructions. */
3712
3713 CORE_ADDR target_pc = read_signed_register (2);
3714 t_inst inst;
3715 int i;
3716
3717 /* See if the name of the target function is __fn_stub_*. */
3718 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
3719 return target_pc;
3720 if (strncmp (name, "__fn_stub_", 10) != 0
3721 && strcmp (name, "etext") != 0
3722 && strcmp (name, "_etext") != 0)
3723 return target_pc;
3724
3725 /* Scan through this _fn_stub_ code for the lui/addiu pair.
3726 The limit on the search is arbitrarily set to 20
3727 instructions. FIXME. */
3728 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
3729 {
3730 inst = mips_fetch_instruction (target_pc);
3731 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
3732 pc = (inst << 16) & 0xffff0000; /* high word */
3733 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
3734 return pc | (inst & 0xffff); /* low word */
3735 }
3736
3737 /* Couldn't find the lui/addui pair, so return stub address. */
3738 return target_pc;
3739 }
3740 else
3741 /* This is the 'return' part of a call stub. The return
3742 address is in $r18. */
3743 return read_signed_register (18);
3744 }
3745 }
3746 return 0; /* not a stub */
3747 }
3748
3749
3750 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
3751 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
3752
3753 int
3754 mips_in_call_stub (CORE_ADDR pc, char *name)
3755 {
3756 CORE_ADDR start_addr;
3757
3758 /* Find the starting address of the function containing the PC. If the
3759 caller didn't give us a name, look it up at the same time. */
3760 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
3761 return 0;
3762
3763 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
3764 {
3765 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
3766 if (name[19] >= '0' && name[19] <= '9')
3767 return 1;
3768 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
3769 before the jal instruction, this is effectively a call stub. */
3770 else if (name[19] == 's' || name[19] == 'd')
3771 return pc == start_addr;
3772 }
3773
3774 return 0; /* not a stub */
3775 }
3776
3777
3778 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
3779 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
3780
3781 int
3782 mips_in_return_stub (CORE_ADDR pc, char *name)
3783 {
3784 CORE_ADDR start_addr;
3785
3786 /* Find the starting address of the function containing the PC. */
3787 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
3788 return 0;
3789
3790 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
3791 if (strcmp (name, "__mips16_ret_sf") == 0
3792 || strcmp (name, "__mips16_ret_df") == 0)
3793 return 1;
3794
3795 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
3796 i.e. after the jal instruction, this is effectively a return stub. */
3797 if (strncmp (name, "__mips16_call_stub_", 19) == 0
3798 && (name[19] == 's' || name[19] == 'd')
3799 && pc != start_addr)
3800 return 1;
3801
3802 return 0; /* not a stub */
3803 }
3804
3805
3806 /* Return non-zero if the PC is in a library helper function that should
3807 be ignored. This implements the IGNORE_HELPER_CALL macro. */
3808
3809 int
3810 mips_ignore_helper (CORE_ADDR pc)
3811 {
3812 char *name;
3813
3814 /* Find the starting address and name of the function containing the PC. */
3815 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
3816 return 0;
3817
3818 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
3819 that we want to ignore. */
3820 return (strcmp (name, "__mips16_ret_sf") == 0
3821 || strcmp (name, "__mips16_ret_df") == 0);
3822 }
3823
3824
3825 /* Return a location where we can set a breakpoint that will be hit
3826 when an inferior function call returns. This is normally the
3827 program's entry point. Executables that don't have an entry
3828 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
3829 whose address is the location where the breakpoint should be placed. */
3830
3831 CORE_ADDR
3832 mips_call_dummy_address (void)
3833 {
3834 struct minimal_symbol *sym;
3835
3836 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
3837 if (sym)
3838 return SYMBOL_VALUE_ADDRESS (sym);
3839 else
3840 return entry_point_address ();
3841 }
3842
3843
3844 /* If the current gcc for this target does not produce correct debugging
3845 information for float parameters, both prototyped and unprototyped, then
3846 define this macro. This forces gdb to always assume that floats are
3847 passed as doubles and then converted in the callee.
3848
3849 For the mips chip, it appears that the debug info marks the parameters as
3850 floats regardless of whether the function is prototyped, but the actual
3851 values are passed as doubles for the non-prototyped case and floats for
3852 the prototyped case. Thus we choose to make the non-prototyped case work
3853 for C and break the prototyped case, since the non-prototyped case is
3854 probably much more common. (FIXME). */
3855
3856 static int
3857 mips_coerce_float_to_double (struct type *formal, struct type *actual)
3858 {
3859 return current_language->la_language == language_c;
3860 }
3861
3862 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
3863 the register stored on the stack (32) is different to its real raw
3864 size (64). The below ensures that registers are fetched from the
3865 stack using their ABI size and then stored into the RAW_BUFFER
3866 using their raw size.
3867
3868 The alternative to adding this function would be to add an ABI
3869 macro - REGISTER_STACK_SIZE(). */
3870
3871 static void
3872 mips_get_saved_register (char *raw_buffer,
3873 int *optimized,
3874 CORE_ADDR *addrp,
3875 struct frame_info *frame,
3876 int regnum,
3877 enum lval_type *lval)
3878 {
3879 CORE_ADDR addr;
3880
3881 if (!target_has_registers)
3882 error ("No registers.");
3883
3884 /* Normal systems don't optimize out things with register numbers. */
3885 if (optimized != NULL)
3886 *optimized = 0;
3887 addr = find_saved_register (frame, regnum);
3888 if (addr != 0)
3889 {
3890 if (lval != NULL)
3891 *lval = lval_memory;
3892 if (regnum == SP_REGNUM)
3893 {
3894 if (raw_buffer != NULL)
3895 {
3896 /* Put it back in target format. */
3897 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
3898 (LONGEST) addr);
3899 }
3900 if (addrp != NULL)
3901 *addrp = 0;
3902 return;
3903 }
3904 if (raw_buffer != NULL)
3905 {
3906 LONGEST val;
3907 if (regnum < 32)
3908 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
3909 saved. */
3910 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
3911 else
3912 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
3913 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
3914 }
3915 }
3916 else
3917 {
3918 if (lval != NULL)
3919 *lval = lval_register;
3920 addr = REGISTER_BYTE (regnum);
3921 if (raw_buffer != NULL)
3922 read_register_gen (regnum, raw_buffer);
3923 }
3924 if (addrp != NULL)
3925 *addrp = addr;
3926 }
3927
3928 /* Immediately after a function call, return the saved pc.
3929 Can't always go through the frames for this because on some machines
3930 the new frame is not set up until the new function executes
3931 some instructions. */
3932
3933 static CORE_ADDR
3934 mips_saved_pc_after_call (struct frame_info *frame)
3935 {
3936 return read_signed_register (RA_REGNUM);
3937 }
3938
3939
3940 /* Convert a dbx stab register number (from `r' declaration) to a gdb
3941 REGNUM */
3942
3943 static int
3944 mips_stab_reg_to_regnum (int num)
3945 {
3946 if (num < 32)
3947 return num;
3948 else
3949 return num + FP0_REGNUM - 38;
3950 }
3951
3952 /* Convert a ecoff register number to a gdb REGNUM */
3953
3954 static int
3955 mips_ecoff_reg_to_regnum (int num)
3956 {
3957 if (num < 32)
3958 return num;
3959 else
3960 return num + FP0_REGNUM - 32;
3961 }
3962
3963 /* Convert an integer into an address. By first converting the value
3964 into a pointer and then extracting it signed, the address is
3965 guarenteed to be correctly sign extended. */
3966
3967 static CORE_ADDR
3968 mips_integer_to_address (struct type *type, void *buf)
3969 {
3970 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
3971 LONGEST val = unpack_long (type, buf);
3972 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
3973 return extract_signed_integer (tmp,
3974 TYPE_LENGTH (builtin_type_void_data_ptr));
3975 }
3976
3977 static struct gdbarch *
3978 mips_gdbarch_init (struct gdbarch_info info,
3979 struct gdbarch_list *arches)
3980 {
3981 static LONGEST mips_call_dummy_words[] =
3982 {0};
3983 struct gdbarch *gdbarch;
3984 struct gdbarch_tdep *tdep;
3985 int elf_flags;
3986 enum mips_abi mips_abi;
3987
3988 /* Reset the disassembly info, in case it was set to something
3989 non-default. */
3990 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
3991 tm_print_insn_info.arch = bfd_arch_unknown;
3992 tm_print_insn_info.mach = 0;
3993
3994 /* Extract the elf_flags if available */
3995 if (info.abfd != NULL
3996 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3997 elf_flags = elf_elfheader (info.abfd)->e_flags;
3998 else
3999 elf_flags = 0;
4000
4001 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4002 switch ((elf_flags & EF_MIPS_ABI))
4003 {
4004 case E_MIPS_ABI_O32:
4005 mips_abi = MIPS_ABI_O32;
4006 break;
4007 case E_MIPS_ABI_O64:
4008 mips_abi = MIPS_ABI_O64;
4009 break;
4010 case E_MIPS_ABI_EABI32:
4011 mips_abi = MIPS_ABI_EABI32;
4012 break;
4013 case E_MIPS_ABI_EABI64:
4014 mips_abi = MIPS_ABI_EABI64;
4015 break;
4016 default:
4017 if ((elf_flags & EF_MIPS_ABI2))
4018 mips_abi = MIPS_ABI_N32;
4019 else
4020 mips_abi = MIPS_ABI_UNKNOWN;
4021 break;
4022 }
4023
4024 /* Try the architecture for any hint of the corect ABI */
4025 if (mips_abi == MIPS_ABI_UNKNOWN
4026 && info.bfd_arch_info != NULL
4027 && info.bfd_arch_info->arch == bfd_arch_mips)
4028 {
4029 switch (info.bfd_arch_info->mach)
4030 {
4031 case bfd_mach_mips3900:
4032 mips_abi = MIPS_ABI_EABI32;
4033 break;
4034 case bfd_mach_mips4100:
4035 case bfd_mach_mips5000:
4036 mips_abi = MIPS_ABI_EABI64;
4037 break;
4038 case bfd_mach_mips8000:
4039 case bfd_mach_mips10000:
4040 mips_abi = MIPS_ABI_N32;
4041 break;
4042 }
4043 }
4044 #ifdef MIPS_DEFAULT_ABI
4045 if (mips_abi == MIPS_ABI_UNKNOWN)
4046 mips_abi = MIPS_DEFAULT_ABI;
4047 #endif
4048
4049 if (gdbarch_debug)
4050 {
4051 fprintf_unfiltered (gdb_stdlog,
4052 "mips_gdbarch_init: elf_flags = 0x%08x\n",
4053 elf_flags);
4054 fprintf_unfiltered (gdb_stdlog,
4055 "mips_gdbarch_init: mips_abi = %d\n",
4056 mips_abi);
4057 }
4058
4059 /* try to find a pre-existing architecture */
4060 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4061 arches != NULL;
4062 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4063 {
4064 /* MIPS needs to be pedantic about which ABI the object is
4065 using. */
4066 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4067 continue;
4068 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4069 continue;
4070 return arches->gdbarch;
4071 }
4072
4073 /* Need a new architecture. Fill in a target specific vector. */
4074 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4075 gdbarch = gdbarch_alloc (&info, tdep);
4076 tdep->elf_flags = elf_flags;
4077
4078 /* Initially set everything according to the ABI. */
4079 set_gdbarch_short_bit (gdbarch, 16);
4080 set_gdbarch_int_bit (gdbarch, 32);
4081 set_gdbarch_float_bit (gdbarch, 32);
4082 set_gdbarch_double_bit (gdbarch, 64);
4083 set_gdbarch_long_double_bit (gdbarch, 64);
4084 tdep->mips_abi = mips_abi;
4085
4086 switch (mips_abi)
4087 {
4088 case MIPS_ABI_O32:
4089 tdep->mips_abi_string = "o32";
4090 tdep->mips_default_saved_regsize = 4;
4091 tdep->mips_default_stack_argsize = 4;
4092 tdep->mips_fp_register_double = 0;
4093 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4094 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
4095 tdep->mips_regs_have_home_p = 1;
4096 tdep->gdb_target_is_mips64 = 0;
4097 tdep->default_mask_address_p = 0;
4098 set_gdbarch_long_bit (gdbarch, 32);
4099 set_gdbarch_ptr_bit (gdbarch, 32);
4100 set_gdbarch_long_long_bit (gdbarch, 64);
4101 break;
4102 case MIPS_ABI_O64:
4103 tdep->mips_abi_string = "o64";
4104 tdep->mips_default_saved_regsize = 8;
4105 tdep->mips_default_stack_argsize = 8;
4106 tdep->mips_fp_register_double = 1;
4107 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
4108 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
4109 tdep->mips_regs_have_home_p = 1;
4110 tdep->gdb_target_is_mips64 = 1;
4111 tdep->default_mask_address_p = 0;
4112 set_gdbarch_long_bit (gdbarch, 32);
4113 set_gdbarch_ptr_bit (gdbarch, 32);
4114 set_gdbarch_long_long_bit (gdbarch, 64);
4115 break;
4116 case MIPS_ABI_EABI32:
4117 tdep->mips_abi_string = "eabi32";
4118 tdep->mips_default_saved_regsize = 4;
4119 tdep->mips_default_stack_argsize = 4;
4120 tdep->mips_fp_register_double = 0;
4121 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4122 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4123 tdep->mips_regs_have_home_p = 0;
4124 tdep->gdb_target_is_mips64 = 0;
4125 tdep->default_mask_address_p = 0;
4126 set_gdbarch_long_bit (gdbarch, 32);
4127 set_gdbarch_ptr_bit (gdbarch, 32);
4128 set_gdbarch_long_long_bit (gdbarch, 64);
4129 break;
4130 case MIPS_ABI_EABI64:
4131 tdep->mips_abi_string = "eabi64";
4132 tdep->mips_default_saved_regsize = 8;
4133 tdep->mips_default_stack_argsize = 8;
4134 tdep->mips_fp_register_double = 1;
4135 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4136 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4137 tdep->mips_regs_have_home_p = 0;
4138 tdep->gdb_target_is_mips64 = 1;
4139 tdep->default_mask_address_p = 0;
4140 set_gdbarch_long_bit (gdbarch, 64);
4141 set_gdbarch_ptr_bit (gdbarch, 64);
4142 set_gdbarch_long_long_bit (gdbarch, 64);
4143 break;
4144 case MIPS_ABI_N32:
4145 tdep->mips_abi_string = "n32";
4146 tdep->mips_default_saved_regsize = 4;
4147 tdep->mips_default_stack_argsize = 8;
4148 tdep->mips_fp_register_double = 1;
4149 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4150 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4151 tdep->mips_regs_have_home_p = 0;
4152 tdep->gdb_target_is_mips64 = 0;
4153 tdep->default_mask_address_p = 0;
4154 set_gdbarch_long_bit (gdbarch, 32);
4155 set_gdbarch_ptr_bit (gdbarch, 32);
4156 set_gdbarch_long_long_bit (gdbarch, 64);
4157
4158 /* Set up the disassembler info, so that we get the right
4159 register names from libopcodes. */
4160 tm_print_insn_info.flavour = bfd_target_elf_flavour;
4161 tm_print_insn_info.arch = bfd_arch_mips;
4162 if (info.bfd_arch_info != NULL
4163 && info.bfd_arch_info->arch == bfd_arch_mips
4164 && info.bfd_arch_info->mach)
4165 tm_print_insn_info.mach = info.bfd_arch_info->mach;
4166 else
4167 tm_print_insn_info.mach = bfd_mach_mips8000;
4168 break;
4169 default:
4170 tdep->mips_abi_string = "default";
4171 tdep->mips_default_saved_regsize = MIPS_REGSIZE;
4172 tdep->mips_default_stack_argsize = MIPS_REGSIZE;
4173 tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
4174 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
4175 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
4176 tdep->mips_regs_have_home_p = 1;
4177 tdep->gdb_target_is_mips64 = 0;
4178 tdep->default_mask_address_p = 0;
4179 set_gdbarch_long_bit (gdbarch, 32);
4180 set_gdbarch_ptr_bit (gdbarch, 32);
4181 set_gdbarch_long_long_bit (gdbarch, 64);
4182 break;
4183 }
4184
4185 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4186 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4187 comment:
4188
4189 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4190 flag in object files because to do so would make it impossible to
4191 link with libraries compiled without "-gp32". This is
4192 unnecessarily restrictive.
4193
4194 We could solve this problem by adding "-gp32" multilibs to gcc,
4195 but to set this flag before gcc is built with such multilibs will
4196 break too many systems.''
4197
4198 But even more unhelpfully, the default linker output target for
4199 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4200 for 64-bit programs - you need to change the ABI to change this,
4201 and not all gcc targets support that currently. Therefore using
4202 this flag to detect 32-bit mode would do the wrong thing given
4203 the current gcc - it would make GDB treat these 64-bit programs
4204 as 32-bit programs by default. */
4205
4206 /* enable/disable the MIPS FPU */
4207 if (!mips_fpu_type_auto)
4208 tdep->mips_fpu_type = mips_fpu_type;
4209 else if (info.bfd_arch_info != NULL
4210 && info.bfd_arch_info->arch == bfd_arch_mips)
4211 switch (info.bfd_arch_info->mach)
4212 {
4213 case bfd_mach_mips3900:
4214 case bfd_mach_mips4100:
4215 case bfd_mach_mips4111:
4216 tdep->mips_fpu_type = MIPS_FPU_NONE;
4217 break;
4218 case bfd_mach_mips4650:
4219 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
4220 break;
4221 default:
4222 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4223 break;
4224 }
4225 else
4226 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
4227
4228 /* MIPS version of register names. NOTE: At present the MIPS
4229 register name management is part way between the old -
4230 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
4231 Further work on it is required. */
4232 set_gdbarch_register_name (gdbarch, mips_register_name);
4233 set_gdbarch_read_pc (gdbarch, mips_read_pc);
4234 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
4235 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
4236 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
4237 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
4238 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
4239
4240 /* Add/remove bits from an address. The MIPS needs be careful to
4241 ensure that all 32 bit addresses are sign extended to 64 bits. */
4242 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
4243
4244 /* There's a mess in stack frame creation. See comments in
4245 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
4246 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
4247 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
4248
4249 /* Map debug register numbers onto internal register numbers. */
4250 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4251 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
4252
4253 /* Initialize a frame */
4254 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
4255
4256 /* MIPS version of CALL_DUMMY */
4257
4258 set_gdbarch_call_dummy_p (gdbarch, 1);
4259 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4260 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
4261 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
4262 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
4263 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4264 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4265 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4266 set_gdbarch_call_dummy_length (gdbarch, 0);
4267 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
4268 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
4269 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
4270 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
4271 set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
4272 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4273 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
4274
4275 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
4276 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
4277
4278 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4279 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
4280 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4281 set_gdbarch_ieee_float (gdbarch, 1);
4282
4283 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
4284 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
4285
4286 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
4287 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
4288 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
4289 return gdbarch;
4290 }
4291
4292 static void
4293 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4294 {
4295 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4296 if (tdep != NULL)
4297 {
4298 int ef_mips_arch;
4299 int ef_mips_32bitmode;
4300 /* determine the ISA */
4301 switch (tdep->elf_flags & EF_MIPS_ARCH)
4302 {
4303 case E_MIPS_ARCH_1:
4304 ef_mips_arch = 1;
4305 break;
4306 case E_MIPS_ARCH_2:
4307 ef_mips_arch = 2;
4308 break;
4309 case E_MIPS_ARCH_3:
4310 ef_mips_arch = 3;
4311 break;
4312 case E_MIPS_ARCH_4:
4313 ef_mips_arch = 4;
4314 break;
4315 default:
4316 ef_mips_arch = 0;
4317 break;
4318 }
4319 /* determine the size of a pointer */
4320 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
4321 fprintf_unfiltered (file,
4322 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
4323 tdep->elf_flags);
4324 fprintf_unfiltered (file,
4325 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
4326 ef_mips_32bitmode);
4327 fprintf_unfiltered (file,
4328 "mips_dump_tdep: ef_mips_arch = %d\n",
4329 ef_mips_arch);
4330 fprintf_unfiltered (file,
4331 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
4332 tdep->mips_abi,
4333 tdep->mips_abi_string);
4334 fprintf_unfiltered (file,
4335 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
4336 mips_mask_address_p (),
4337 tdep->default_mask_address_p);
4338 }
4339 fprintf_unfiltered (file,
4340 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4341 FP_REGISTER_DOUBLE);
4342 fprintf_unfiltered (file,
4343 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
4344 MIPS_DEFAULT_FPU_TYPE,
4345 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
4346 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4347 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4348 : "???"));
4349 fprintf_unfiltered (file,
4350 "mips_dump_tdep: MIPS_EABI = %d\n",
4351 MIPS_EABI);
4352 fprintf_unfiltered (file,
4353 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
4354 MIPS_LAST_FP_ARG_REGNUM,
4355 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
4356 fprintf_unfiltered (file,
4357 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
4358 MIPS_FPU_TYPE,
4359 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
4360 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
4361 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
4362 : "???"));
4363 fprintf_unfiltered (file,
4364 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
4365 MIPS_DEFAULT_SAVED_REGSIZE);
4366 fprintf_unfiltered (file,
4367 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
4368 FP_REGISTER_DOUBLE);
4369 fprintf_unfiltered (file,
4370 "mips_dump_tdep: MIPS_REGS_HAVE_HOME_P = %d\n",
4371 MIPS_REGS_HAVE_HOME_P);
4372 fprintf_unfiltered (file,
4373 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
4374 MIPS_DEFAULT_STACK_ARGSIZE);
4375 fprintf_unfiltered (file,
4376 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
4377 MIPS_STACK_ARGSIZE);
4378 fprintf_unfiltered (file,
4379 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
4380 MIPS_REGSIZE);
4381 fprintf_unfiltered (file,
4382 "mips_dump_tdep: A0_REGNUM = %d\n",
4383 A0_REGNUM);
4384 fprintf_unfiltered (file,
4385 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
4386 XSTRING (ADDR_BITS_REMOVE(ADDR)));
4387 fprintf_unfiltered (file,
4388 "mips_dump_tdep: ATTACH_DETACH # %s\n",
4389 XSTRING (ATTACH_DETACH));
4390 fprintf_unfiltered (file,
4391 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
4392 BADVADDR_REGNUM);
4393 fprintf_unfiltered (file,
4394 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
4395 fprintf_unfiltered (file,
4396 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
4397 CAUSE_REGNUM);
4398 fprintf_unfiltered (file,
4399 "mips_dump_tdep: CPLUS_MARKER = %c\n",
4400 CPLUS_MARKER);
4401 fprintf_unfiltered (file,
4402 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
4403 DEFAULT_MIPS_TYPE);
4404 fprintf_unfiltered (file,
4405 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
4406 XSTRING (DO_REGISTERS_INFO));
4407 fprintf_unfiltered (file,
4408 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
4409 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
4410 fprintf_unfiltered (file,
4411 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
4412 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
4413 fprintf_unfiltered (file,
4414 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
4415 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
4416 fprintf_unfiltered (file,
4417 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
4418 FCRCS_REGNUM);
4419 fprintf_unfiltered (file,
4420 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
4421 FCRIR_REGNUM);
4422 fprintf_unfiltered (file,
4423 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
4424 FIRST_EMBED_REGNUM);
4425 fprintf_unfiltered (file,
4426 "mips_dump_tdep: FPA0_REGNUM = %d\n",
4427 FPA0_REGNUM);
4428 fprintf_unfiltered (file,
4429 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
4430 GDB_TARGET_IS_MIPS64);
4431 fprintf_unfiltered (file,
4432 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
4433 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
4434 fprintf_unfiltered (file,
4435 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
4436 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
4437 fprintf_unfiltered (file,
4438 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
4439 GEN_REG_SAVE_MASK);
4440 fprintf_unfiltered (file,
4441 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
4442 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
4443 fprintf_unfiltered (file,
4444 "mips_dump_tdep: HI_REGNUM = %d\n",
4445 HI_REGNUM);
4446 fprintf_unfiltered (file,
4447 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
4448 fprintf_unfiltered (file,
4449 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
4450 fprintf_unfiltered (file,
4451 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
4452 XSTRING (IGNORE_HELPER_CALL (PC)));
4453 fprintf_unfiltered (file,
4454 "mips_dump_tdep: IN_SIGTRAMP # %s\n",
4455 XSTRING (IN_SIGTRAMP (PC, NAME)));
4456 fprintf_unfiltered (file,
4457 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
4458 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
4459 fprintf_unfiltered (file,
4460 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
4461 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
4462 fprintf_unfiltered (file,
4463 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
4464 fprintf_unfiltered (file,
4465 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
4466 LAST_EMBED_REGNUM);
4467 fprintf_unfiltered (file,
4468 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
4469 fprintf_unfiltered (file,
4470 "mips_dump_tdep: LO_REGNUM = %d\n",
4471 LO_REGNUM);
4472 #ifdef MACHINE_CPROC_FP_OFFSET
4473 fprintf_unfiltered (file,
4474 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
4475 MACHINE_CPROC_FP_OFFSET);
4476 #endif
4477 #ifdef MACHINE_CPROC_PC_OFFSET
4478 fprintf_unfiltered (file,
4479 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
4480 MACHINE_CPROC_PC_OFFSET);
4481 #endif
4482 #ifdef MACHINE_CPROC_SP_OFFSET
4483 fprintf_unfiltered (file,
4484 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
4485 MACHINE_CPROC_SP_OFFSET);
4486 #endif
4487 fprintf_unfiltered (file,
4488 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
4489 fprintf_unfiltered (file,
4490 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
4491 fprintf_unfiltered (file,
4492 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
4493 MIPS16_INSTLEN);
4494 fprintf_unfiltered (file,
4495 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
4496 fprintf_unfiltered (file,
4497 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
4498 fprintf_unfiltered (file,
4499 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
4500 fprintf_unfiltered (file,
4501 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
4502 MIPS_INSTLEN);
4503 fprintf_unfiltered (file,
4504 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
4505 MIPS_LAST_ARG_REGNUM,
4506 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
4507 fprintf_unfiltered (file,
4508 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
4509 MIPS_NUMREGS);
4510 fprintf_unfiltered (file,
4511 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
4512 fprintf_unfiltered (file,
4513 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
4514 MIPS_SAVED_REGSIZE);
4515 fprintf_unfiltered (file,
4516 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
4517 fprintf_unfiltered (file,
4518 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
4519 XSTRING (MSYMBOL_SIZE (MSYM)));
4520 fprintf_unfiltered (file,
4521 "mips_dump_tdep: OP_LDFPR = used?\n");
4522 fprintf_unfiltered (file,
4523 "mips_dump_tdep: OP_LDGPR = used?\n");
4524 fprintf_unfiltered (file,
4525 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
4526 fprintf_unfiltered (file,
4527 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
4528 fprintf_unfiltered (file,
4529 "mips_dump_tdep: PRID_REGNUM = %d\n",
4530 PRID_REGNUM);
4531 fprintf_unfiltered (file,
4532 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
4533 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
4534 fprintf_unfiltered (file,
4535 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
4536 fprintf_unfiltered (file,
4537 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
4538 fprintf_unfiltered (file,
4539 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
4540 fprintf_unfiltered (file,
4541 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
4542 fprintf_unfiltered (file,
4543 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
4544 fprintf_unfiltered (file,
4545 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
4546 fprintf_unfiltered (file,
4547 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
4548 fprintf_unfiltered (file,
4549 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
4550 fprintf_unfiltered (file,
4551 "mips_dump_tdep: PROC_PC_REG = function?\n");
4552 fprintf_unfiltered (file,
4553 "mips_dump_tdep: PROC_REG_MASK = function?\n");
4554 fprintf_unfiltered (file,
4555 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
4556 fprintf_unfiltered (file,
4557 "mips_dump_tdep: PROC_SYMBOL = function?\n");
4558 fprintf_unfiltered (file,
4559 "mips_dump_tdep: PS_REGNUM = %d\n",
4560 PS_REGNUM);
4561 fprintf_unfiltered (file,
4562 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
4563 PUSH_FP_REGNUM);
4564 fprintf_unfiltered (file,
4565 "mips_dump_tdep: RA_REGNUM = %d\n",
4566 RA_REGNUM);
4567 fprintf_unfiltered (file,
4568 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
4569 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4570 fprintf_unfiltered (file,
4571 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
4572 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
4573 fprintf_unfiltered (file,
4574 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
4575 fprintf_unfiltered (file,
4576 "mips_dump_tdep: ROUND_DOWN = function?\n");
4577 fprintf_unfiltered (file,
4578 "mips_dump_tdep: ROUND_UP = function?\n");
4579 #ifdef SAVED_BYTES
4580 fprintf_unfiltered (file,
4581 "mips_dump_tdep: SAVED_BYTES = %d\n",
4582 SAVED_BYTES);
4583 #endif
4584 #ifdef SAVED_FP
4585 fprintf_unfiltered (file,
4586 "mips_dump_tdep: SAVED_FP = %d\n",
4587 SAVED_FP);
4588 #endif
4589 #ifdef SAVED_PC
4590 fprintf_unfiltered (file,
4591 "mips_dump_tdep: SAVED_PC = %d\n",
4592 SAVED_PC);
4593 #endif
4594 fprintf_unfiltered (file,
4595 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
4596 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
4597 fprintf_unfiltered (file,
4598 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
4599 fprintf_unfiltered (file,
4600 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
4601 SIGFRAME_BASE);
4602 fprintf_unfiltered (file,
4603 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
4604 SIGFRAME_FPREGSAVE_OFF);
4605 fprintf_unfiltered (file,
4606 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
4607 SIGFRAME_PC_OFF);
4608 fprintf_unfiltered (file,
4609 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
4610 SIGFRAME_REGSAVE_OFF);
4611 fprintf_unfiltered (file,
4612 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
4613 SIGFRAME_REG_SIZE);
4614 fprintf_unfiltered (file,
4615 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
4616 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
4617 fprintf_unfiltered (file,
4618 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
4619 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
4620 fprintf_unfiltered (file,
4621 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
4622 SOFTWARE_SINGLE_STEP_P ());
4623 fprintf_unfiltered (file,
4624 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
4625 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
4626 #ifdef STACK_END_ADDR
4627 fprintf_unfiltered (file,
4628 "mips_dump_tdep: STACK_END_ADDR = %d\n",
4629 STACK_END_ADDR);
4630 #endif
4631 fprintf_unfiltered (file,
4632 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
4633 XSTRING (STEP_SKIPS_DELAY (PC)));
4634 fprintf_unfiltered (file,
4635 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
4636 STEP_SKIPS_DELAY_P);
4637 fprintf_unfiltered (file,
4638 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
4639 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
4640 fprintf_unfiltered (file,
4641 "mips_dump_tdep: T9_REGNUM = %d\n",
4642 T9_REGNUM);
4643 fprintf_unfiltered (file,
4644 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
4645 fprintf_unfiltered (file,
4646 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
4647 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
4648 fprintf_unfiltered (file,
4649 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
4650 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
4651 fprintf_unfiltered (file,
4652 "mips_dump_tdep: TARGET_MIPS = used?\n");
4653 fprintf_unfiltered (file,
4654 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
4655 XSTRING (TM_PRINT_INSN_MACH));
4656 #ifdef TRACE_CLEAR
4657 fprintf_unfiltered (file,
4658 "mips_dump_tdep: TRACE_CLEAR # %s\n",
4659 XSTRING (TRACE_CLEAR (THREAD, STATE)));
4660 #endif
4661 #ifdef TRACE_FLAVOR
4662 fprintf_unfiltered (file,
4663 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
4664 TRACE_FLAVOR);
4665 #endif
4666 #ifdef TRACE_FLAVOR_SIZE
4667 fprintf_unfiltered (file,
4668 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
4669 TRACE_FLAVOR_SIZE);
4670 #endif
4671 #ifdef TRACE_SET
4672 fprintf_unfiltered (file,
4673 "mips_dump_tdep: TRACE_SET # %s\n",
4674 XSTRING (TRACE_SET (X,STATE)));
4675 #endif
4676 fprintf_unfiltered (file,
4677 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
4678 #ifdef UNUSED_REGNUM
4679 fprintf_unfiltered (file,
4680 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
4681 UNUSED_REGNUM);
4682 #endif
4683 fprintf_unfiltered (file,
4684 "mips_dump_tdep: V0_REGNUM = %d\n",
4685 V0_REGNUM);
4686 fprintf_unfiltered (file,
4687 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
4688 (long) VM_MIN_ADDRESS);
4689 #ifdef VX_NUM_REGS
4690 fprintf_unfiltered (file,
4691 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
4692 VX_NUM_REGS);
4693 #endif
4694 fprintf_unfiltered (file,
4695 "mips_dump_tdep: ZERO_REGNUM = %d\n",
4696 ZERO_REGNUM);
4697 fprintf_unfiltered (file,
4698 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
4699 _PROC_MAGIC_);
4700 }
4701
4702 void
4703 _initialize_mips_tdep (void)
4704 {
4705 static struct cmd_list_element *mipsfpulist = NULL;
4706 struct cmd_list_element *c;
4707
4708 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
4709 if (!tm_print_insn) /* Someone may have already set it */
4710 tm_print_insn = gdb_print_insn_mips;
4711
4712 /* Add root prefix command for all "set mips"/"show mips" commands */
4713 add_prefix_cmd ("mips", no_class, set_mips_command,
4714 "Various MIPS specific commands.",
4715 &setmipscmdlist, "set mips ", 0, &setlist);
4716
4717 add_prefix_cmd ("mips", no_class, show_mips_command,
4718 "Various MIPS specific commands.",
4719 &showmipscmdlist, "show mips ", 0, &showlist);
4720
4721 /* Allow the user to override the saved register size. */
4722 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
4723 class_obscure,
4724 size_enums,
4725 &mips_saved_regsize_string, "\
4726 Set size of general purpose registers saved on the stack.\n\
4727 This option can be set to one of:\n\
4728 32 - Force GDB to treat saved GP registers as 32-bit\n\
4729 64 - Force GDB to treat saved GP registers as 64-bit\n\
4730 auto - Allow GDB to use the target's default setting or autodetect the\n\
4731 saved GP register size from information contained in the executable.\n\
4732 (default: auto)",
4733 &setmipscmdlist),
4734 &showmipscmdlist);
4735
4736 /* Allow the user to override the argument stack size. */
4737 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
4738 class_obscure,
4739 size_enums,
4740 &mips_stack_argsize_string, "\
4741 Set the amount of stack space reserved for each argument.\n\
4742 This option can be set to one of:\n\
4743 32 - Force GDB to allocate 32-bit chunks per argument\n\
4744 64 - Force GDB to allocate 64-bit chunks per argument\n\
4745 auto - Allow GDB to determine the correct setting from the current\n\
4746 target and executable (default)",
4747 &setmipscmdlist),
4748 &showmipscmdlist);
4749
4750 /* Let the user turn off floating point and set the fence post for
4751 heuristic_proc_start. */
4752
4753 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
4754 "Set use of MIPS floating-point coprocessor.",
4755 &mipsfpulist, "set mipsfpu ", 0, &setlist);
4756 add_cmd ("single", class_support, set_mipsfpu_single_command,
4757 "Select single-precision MIPS floating-point coprocessor.",
4758 &mipsfpulist);
4759 add_cmd ("double", class_support, set_mipsfpu_double_command,
4760 "Select double-precision MIPS floating-point coprocessor.",
4761 &mipsfpulist);
4762 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
4763 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
4764 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
4765 add_cmd ("none", class_support, set_mipsfpu_none_command,
4766 "Select no MIPS floating-point coprocessor.",
4767 &mipsfpulist);
4768 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
4769 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
4770 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
4771 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
4772 "Select MIPS floating-point coprocessor automatically.",
4773 &mipsfpulist);
4774 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
4775 "Show current use of MIPS floating-point coprocessor target.",
4776 &showlist);
4777
4778 #if !GDB_MULTI_ARCH
4779 c = add_set_cmd ("processor", class_support, var_string_noescape,
4780 (char *) &tmp_mips_processor_type,
4781 "Set the type of MIPS processor in use.\n\
4782 Set this to be able to access processor-type-specific registers.\n\
4783 ",
4784 &setlist);
4785 c->function.cfunc = mips_set_processor_type_command;
4786 c = add_show_from_set (c, &showlist);
4787 c->function.cfunc = mips_show_processor_type_command;
4788
4789 tmp_mips_processor_type = xstrdup (DEFAULT_MIPS_TYPE);
4790 mips_set_processor_type_command (xstrdup (DEFAULT_MIPS_TYPE), 0);
4791 #endif
4792
4793 /* We really would like to have both "0" and "unlimited" work, but
4794 command.c doesn't deal with that. So make it a var_zinteger
4795 because the user can always use "999999" or some such for unlimited. */
4796 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
4797 (char *) &heuristic_fence_post,
4798 "\
4799 Set the distance searched for the start of a function.\n\
4800 If you are debugging a stripped executable, GDB needs to search through the\n\
4801 program for the start of a function. This command sets the distance of the\n\
4802 search. The only need to set it is when debugging a stripped executable.",
4803 &setlist);
4804 /* We need to throw away the frame cache when we set this, since it
4805 might change our ability to get backtraces. */
4806 c->function.sfunc = reinit_frame_cache_sfunc;
4807 add_show_from_set (c, &showlist);
4808
4809 /* Allow the user to control whether the upper bits of 64-bit
4810 addresses should be zeroed. */
4811 c = add_set_auto_boolean_cmd ("mask-address", no_class, &mask_address_var,
4812 "Set zeroing of upper 32 bits of 64-bit addresses.\n\
4813 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to allow GDB to determine\n\
4814 the correct value.\n",
4815 &setmipscmdlist);
4816 add_cmd ("mask-address", no_class, show_mask_address,
4817 "Show current mask-address value", &showmipscmdlist);
4818
4819 /* Allow the user to control the size of 32 bit registers within the
4820 raw remote packet. */
4821 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
4822 class_obscure,
4823 var_boolean,
4824 (char *)&mips64_transfers_32bit_regs_p, "\
4825 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
4826 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
4827 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
4828 64 bits for others. Use \"off\" to disable compatibility mode",
4829 &setlist),
4830 &showlist);
4831
4832 /* Debug this files internals. */
4833 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
4834 &mips_debug, "Set mips debugging.\n\
4835 When non-zero, mips specific debugging is enabled.", &setdebuglist),
4836 &showdebuglist);
4837 }
4838
This page took 0.133025 seconds and 4 git commands to generate.