49c38dcf6ed7ec62cd2830147af440f5eae5c9df
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "value.h"
33 #include "gdbcmd.h"
34 #include "language.h"
35 #include "gdbcore.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "gdbtypes.h"
39 #include "target.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "osabi.h"
43 #include "mips-tdep.h"
44 #include "block.h"
45 #include "reggroups.h"
46 #include "opcode/mips.h"
47 #include "elf/mips.h"
48 #include "elf-bfd.h"
49 #include "symcat.h"
50 #include "sim-regno.h"
51 #include "dis-asm.h"
52
53 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
54 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
55
56 /* A useful bit in the CP0 status register (PS_REGNUM). */
57 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
58 #define ST0_FR (1 << 26)
59
60 /* The sizes of floating point registers. */
61
62 enum
63 {
64 MIPS_FPU_SINGLE_REGSIZE = 4,
65 MIPS_FPU_DOUBLE_REGSIZE = 8
66 };
67
68
69 static const char *mips_abi_string;
70
71 static const char *mips_abi_strings[] = {
72 "auto",
73 "n32",
74 "o32",
75 "n64",
76 "o64",
77 "eabi32",
78 "eabi64",
79 NULL
80 };
81
82 struct frame_extra_info
83 {
84 mips_extra_func_info_t proc_desc;
85 int num_args;
86 };
87
88 /* Various MIPS ISA options (related to stack analysis) can be
89 overridden dynamically. Establish an enum/array for managing
90 them. */
91
92 static const char size_auto[] = "auto";
93 static const char size_32[] = "32";
94 static const char size_64[] = "64";
95
96 static const char *size_enums[] = {
97 size_auto,
98 size_32,
99 size_64,
100 0
101 };
102
103 /* Some MIPS boards don't support floating point while others only
104 support single-precision floating-point operations. See also
105 FP_REGISTER_DOUBLE. */
106
107 enum mips_fpu_type
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
113
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116 #endif
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
119
120 static int mips_debug = 0;
121
122 /* MIPS specific per-architecture information */
123 struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int mips_default_saved_regsize;
135 int mips_fp_register_double;
136 int mips_default_stack_argsize;
137 int gdb_target_is_mips64;
138 int default_mask_address_p;
139 };
140
141 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
142 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
143
144 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
145
146 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
147
148 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
149
150 /* Return the currently configured (or set) saved register size. */
151
152 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
153
154 static const char *mips_saved_regsize_string = size_auto;
155
156 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
157
158 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
159 functions to test, set, or clear bit 0 of addresses. */
160
161 static CORE_ADDR
162 is_mips16_addr (CORE_ADDR addr)
163 {
164 return ((addr) & 1);
165 }
166
167 static CORE_ADDR
168 make_mips16_addr (CORE_ADDR addr)
169 {
170 return ((addr) | 1);
171 }
172
173 static CORE_ADDR
174 unmake_mips16_addr (CORE_ADDR addr)
175 {
176 return ((addr) & ~1);
177 }
178
179 /* Return the contents of register REGNUM as a signed integer. */
180
181 static LONGEST
182 read_signed_register (int regnum)
183 {
184 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
185 deprecated_read_register_gen (regnum, buf);
186 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
187 }
188
189 static LONGEST
190 read_signed_register_pid (int regnum, ptid_t ptid)
191 {
192 ptid_t save_ptid;
193 LONGEST retval;
194
195 if (ptid_equal (ptid, inferior_ptid))
196 return read_signed_register (regnum);
197
198 save_ptid = inferior_ptid;
199
200 inferior_ptid = ptid;
201
202 retval = read_signed_register (regnum);
203
204 inferior_ptid = save_ptid;
205
206 return retval;
207 }
208
209 /* Return the MIPS ABI associated with GDBARCH. */
210 enum mips_abi
211 mips_abi (struct gdbarch *gdbarch)
212 {
213 return gdbarch_tdep (gdbarch)->mips_abi;
214 }
215
216 static unsigned int
217 mips_saved_regsize (void)
218 {
219 if (mips_saved_regsize_string == size_auto)
220 return MIPS_DEFAULT_SAVED_REGSIZE;
221 else if (mips_saved_regsize_string == size_64)
222 return 8;
223 else /* if (mips_saved_regsize_string == size_32) */
224 return 4;
225 }
226
227 /* Functions for setting and testing a bit in a minimal symbol that
228 marks it as 16-bit function. The MSB of the minimal symbol's
229 "info" field is used for this purpose. This field is already
230 being used to store the symbol size, so the assumption is
231 that the symbol size cannot exceed 2^31.
232
233 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
234 i.e. refers to a 16-bit function, and sets a "special" bit in a
235 minimal symbol to mark it as a 16-bit function
236
237 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
238 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
239 the "info" field with the "special" bit masked out */
240
241 static void
242 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
243 {
244 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
245 {
246 MSYMBOL_INFO (msym) = (char *)
247 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
248 SYMBOL_VALUE_ADDRESS (msym) |= 1;
249 }
250 }
251
252 static int
253 msymbol_is_special (struct minimal_symbol *msym)
254 {
255 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
256 }
257
258 static long
259 msymbol_size (struct minimal_symbol *msym)
260 {
261 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
262 }
263
264 /* XFER a value from the big/little/left end of the register.
265 Depending on the size of the value it might occupy the entire
266 register or just part of it. Make an allowance for this, aligning
267 things accordingly. */
268
269 static void
270 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
271 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
272 int buf_offset)
273 {
274 bfd_byte reg[MAX_REGISTER_SIZE];
275 int reg_offset = 0;
276 gdb_assert (reg_num >= NUM_REGS);
277 /* Need to transfer the left or right part of the register, based on
278 the targets byte order. */
279 switch (endian)
280 {
281 case BFD_ENDIAN_BIG:
282 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
283 break;
284 case BFD_ENDIAN_LITTLE:
285 reg_offset = 0;
286 break;
287 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
288 reg_offset = 0;
289 break;
290 default:
291 internal_error (__FILE__, __LINE__, "bad switch");
292 }
293 if (mips_debug)
294 fprintf_unfiltered (gdb_stderr,
295 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
296 reg_num, reg_offset, buf_offset, length);
297 if (mips_debug && out != NULL)
298 {
299 int i;
300 fprintf_unfiltered (gdb_stdlog, "out ");
301 for (i = 0; i < length; i++)
302 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
303 }
304 if (in != NULL)
305 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
306 if (out != NULL)
307 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
308 if (mips_debug && in != NULL)
309 {
310 int i;
311 fprintf_unfiltered (gdb_stdlog, "in ");
312 for (i = 0; i < length; i++)
313 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
314 }
315 if (mips_debug)
316 fprintf_unfiltered (gdb_stdlog, "\n");
317 }
318
319 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
320 compatiblity mode. A return value of 1 means that we have
321 physical 64-bit registers, but should treat them as 32-bit registers. */
322
323 static int
324 mips2_fp_compat (void)
325 {
326 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
327 meaningful. */
328 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
329 return 0;
330
331 #if 0
332 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
333 in all the places we deal with FP registers. PR gdb/413. */
334 /* Otherwise check the FR bit in the status register - it controls
335 the FP compatiblity mode. If it is clear we are in compatibility
336 mode. */
337 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
338 return 1;
339 #endif
340
341 return 0;
342 }
343
344 /* Indicate that the ABI makes use of double-precision registers
345 provided by the FPU (rather than combining pairs of registers to
346 form double-precision values). Do not use "TARGET_IS_MIPS64" to
347 determine if the ABI is using double-precision registers. See also
348 MIPS_FPU_TYPE. */
349 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
350
351 /* The amount of space reserved on the stack for registers. This is
352 different to MIPS_SAVED_REGSIZE as it determines the alignment of
353 data allocated after the registers have run out. */
354
355 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
356
357 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
358
359 static const char *mips_stack_argsize_string = size_auto;
360
361 static unsigned int
362 mips_stack_argsize (void)
363 {
364 if (mips_stack_argsize_string == size_auto)
365 return MIPS_DEFAULT_STACK_ARGSIZE;
366 else if (mips_stack_argsize_string == size_64)
367 return 8;
368 else /* if (mips_stack_argsize_string == size_32) */
369 return 4;
370 }
371
372 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
373
374 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
375
376 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
377
378 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
379 struct frame_info *, int);
380
381 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
382
383 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
384
385 static int mips_set_processor_type (char *);
386
387 static void mips_show_processor_type_command (char *, int);
388
389 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
390
391 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
392 struct frame_info *next_frame,
393 int cur_frame);
394
395 static CORE_ADDR after_prologue (CORE_ADDR pc,
396 mips_extra_func_info_t proc_desc);
397
398 static struct type *mips_float_register_type (void);
399 static struct type *mips_double_register_type (void);
400
401 /* This value is the model of MIPS in use. It is derived from the value
402 of the PrID register. */
403
404 char *mips_processor_type;
405
406 char *tmp_mips_processor_type;
407
408 /* The list of available "set mips " and "show mips " commands */
409
410 static struct cmd_list_element *setmipscmdlist = NULL;
411 static struct cmd_list_element *showmipscmdlist = NULL;
412
413 /* A set of original names, to be used when restoring back to generic
414 registers from a specific set. */
415 static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
416
417 /* Integer registers 0 thru 31 are handled explicitly by
418 mips_register_name(). Processor specific registers 32 and above
419 are listed in the sets of register names assigned to
420 mips_processor_reg_names. */
421 static char **mips_processor_reg_names = mips_generic_reg_names;
422
423 /* Return the name of the register corresponding to REGNO. */
424 static const char *
425 mips_register_name (int regno)
426 {
427 /* GPR names for all ABIs other than n32/n64. */
428 static char *mips_gpr_names[] = {
429 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
430 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
431 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
432 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
433 };
434
435 /* GPR names for n32 and n64 ABIs. */
436 static char *mips_n32_n64_gpr_names[] = {
437 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
438 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
439 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
440 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
441 };
442
443 enum mips_abi abi = mips_abi (current_gdbarch);
444
445 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
446 don't make the raw register names visible. */
447 int rawnum = regno % NUM_REGS;
448 if (regno < NUM_REGS)
449 return "";
450
451 /* The MIPS integer registers are always mapped from 0 to 31. The
452 names of the registers (which reflects the conventions regarding
453 register use) vary depending on the ABI. */
454 if (0 <= rawnum && rawnum < 32)
455 {
456 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
457 return mips_n32_n64_gpr_names[rawnum];
458 else
459 return mips_gpr_names[rawnum];
460 }
461 else if (32 <= rawnum && rawnum < NUM_REGS)
462 return mips_processor_reg_names[rawnum - 32];
463 else
464 internal_error (__FILE__, __LINE__,
465 "mips_register_name: bad register number %d", rawnum);
466 }
467
468 /* *INDENT-OFF* */
469 /* Names of IDT R3041 registers. */
470
471 char *mips_r3041_reg_names[] = {
472 "sr", "lo", "hi", "bad", "cause","pc",
473 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
474 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
475 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
476 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
477 "fsr", "fir", "",/*"fp"*/ "",
478 "", "", "bus", "ccfg", "", "", "", "",
479 "", "", "port", "cmp", "", "", "epc", "prid",
480 };
481
482 /* Names of IDT R3051 registers. */
483
484 char *mips_r3051_reg_names[] = {
485 "sr", "lo", "hi", "bad", "cause","pc",
486 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
487 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
488 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
489 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
490 "fsr", "fir", ""/*"fp"*/, "",
491 "inx", "rand", "elo", "", "ctxt", "", "", "",
492 "", "", "ehi", "", "", "", "epc", "prid",
493 };
494
495 /* Names of IDT R3081 registers. */
496
497 char *mips_r3081_reg_names[] = {
498 "sr", "lo", "hi", "bad", "cause","pc",
499 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
500 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
501 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
502 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
503 "fsr", "fir", ""/*"fp"*/, "",
504 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
505 "", "", "ehi", "", "", "", "epc", "prid",
506 };
507
508 /* Names of LSI 33k registers. */
509
510 char *mips_lsi33k_reg_names[] = {
511 "epc", "hi", "lo", "sr", "cause","badvaddr",
512 "dcic", "bpc", "bda", "", "", "", "", "",
513 "", "", "", "", "", "", "", "",
514 "", "", "", "", "", "", "", "",
515 "", "", "", "", "", "", "", "",
516 "", "", "", "",
517 "", "", "", "", "", "", "", "",
518 "", "", "", "", "", "", "", "",
519 };
520
521 struct {
522 char *name;
523 char **regnames;
524 } mips_processor_type_table[] = {
525 { "generic", mips_generic_reg_names },
526 { "r3041", mips_r3041_reg_names },
527 { "r3051", mips_r3051_reg_names },
528 { "r3071", mips_r3081_reg_names },
529 { "r3081", mips_r3081_reg_names },
530 { "lsi33k", mips_lsi33k_reg_names },
531 { NULL, NULL }
532 };
533 /* *INDENT-ON* */
534
535 /* Return the groups that a MIPS register can be categorised into. */
536
537 static int
538 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
539 struct reggroup *reggroup)
540 {
541 int vector_p;
542 int float_p;
543 int raw_p;
544 int rawnum = regnum % NUM_REGS;
545 int pseudo = regnum / NUM_REGS;
546 if (reggroup == all_reggroup)
547 return pseudo;
548 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
549 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
550 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
551 (gdbarch), as not all architectures are multi-arch. */
552 raw_p = rawnum < NUM_REGS;
553 if (REGISTER_NAME (regnum) == NULL
554 || REGISTER_NAME (regnum)[0] == '\0')
555 return 0;
556 if (reggroup == float_reggroup)
557 return float_p && pseudo;
558 if (reggroup == vector_reggroup)
559 return vector_p && pseudo;
560 if (reggroup == general_reggroup)
561 return (!vector_p && !float_p) && pseudo;
562 /* Save the pseudo registers. Need to make certain that any code
563 extracting register values from a saved register cache also uses
564 pseudo registers. */
565 if (reggroup == save_reggroup)
566 return raw_p && pseudo;
567 /* Restore the same pseudo register. */
568 if (reggroup == restore_reggroup)
569 return raw_p && pseudo;
570 return 0;
571 }
572
573 /* Map the symbol table registers which live in the range [1 *
574 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
575 registers. */
576
577 static void
578 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
579 int cookednum, void *buf)
580 {
581 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
582 return regcache_raw_read (regcache, cookednum % NUM_REGS, buf);
583 }
584
585 static void
586 mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
587 int cookednum, const void *buf)
588 {
589 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
590 return regcache_raw_write (regcache, cookednum % NUM_REGS, buf);
591 }
592
593 /* Table to translate MIPS16 register field to actual register number. */
594 static int mips16_to_32_reg[8] =
595 {16, 17, 2, 3, 4, 5, 6, 7};
596
597 /* Heuristic_proc_start may hunt through the text section for a long
598 time across a 2400 baud serial line. Allows the user to limit this
599 search. */
600
601 static unsigned int heuristic_fence_post = 0;
602
603 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
604 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
605 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
606 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
607 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
608 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
609 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
610 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
611 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
612 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
613 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
614 this will corrupt pdr.iline. Fortunately we don't use it. */
615 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
616 #define _PROC_MAGIC_ 0x0F0F0F0F
617 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
618 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
619
620 struct linked_proc_info
621 {
622 struct mips_extra_func_info info;
623 struct linked_proc_info *next;
624 }
625 *linked_proc_desc_table = NULL;
626
627 void
628 mips_print_extra_frame_info (struct frame_info *fi)
629 {
630 if (fi
631 && get_frame_extra_info (fi)
632 && get_frame_extra_info (fi)->proc_desc
633 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
634 printf_filtered (" frame pointer is at %s+%s\n",
635 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
636 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
637 }
638
639 /* Number of bytes of storage in the actual machine representation for
640 register N. NOTE: This indirectly defines the register size
641 transfered by the GDB protocol. */
642
643 static int mips64_transfers_32bit_regs_p = 0;
644
645 static int
646 mips_register_raw_size (int regnum)
647 {
648 gdb_assert (regnum >= 0);
649 if (regnum < NUM_REGS)
650 {
651 /* For compatibility with old code, implemnt the broken register raw
652 size map for the raw registers.
653
654 NOTE: cagney/2003-06-15: This is so bogus. The register's
655 raw size is changing according to the ABI
656 (FP_REGISTER_DOUBLE). Also, GDB's protocol is defined by a
657 combination of REGISTER_RAW_SIZE and REGISTER_BYTE. */
658 if (mips64_transfers_32bit_regs_p)
659 return REGISTER_VIRTUAL_SIZE (regnum);
660 else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32
661 && FP_REGISTER_DOUBLE)
662 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
663 registers. */
664 return 8;
665 else
666 return MIPS_REGSIZE;
667 }
668 else if (regnum < 2 * NUM_REGS)
669 {
670 /* For the moment map [NUM_REGS .. 2*NUM_REGS) onto the same raw
671 registers, but always return the virtual size. */
672 int rawnum = regnum % NUM_REGS;
673 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, rawnum));
674 }
675 else
676 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
677 }
678
679 /* Register offset in a buffer for each register.
680
681 FIXME: cagney/2003-06-15: This is so bogus. Instead REGISTER_TYPE
682 should strictly return the layout of the buffer. Unfortunatly
683 remote.c and the MIPS have come to rely on a custom layout that
684 doesn't 1:1 map onto the register type. */
685
686 static int
687 mips_register_byte (int regnum)
688 {
689 gdb_assert (regnum >= 0);
690 if (regnum < NUM_REGS)
691 /* Pick up the relevant per-tm file register byte method. */
692 return MIPS_REGISTER_BYTE (regnum);
693 else if (regnum < 2 * NUM_REGS)
694 {
695 int reg;
696 int byte;
697 /* Start with the end of the raw register buffer - assum that
698 MIPS_REGISTER_BYTE (NUM_REGS) returns that end. */
699 byte = MIPS_REGISTER_BYTE (NUM_REGS);
700 /* Add space for all the proceeding registers based on their
701 real size. */
702 for (reg = NUM_REGS; reg < regnum; reg++)
703 byte += TYPE_LENGTH (gdbarch_register_type (current_gdbarch,
704 (reg % NUM_REGS)));
705 return byte;
706 }
707 else
708 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
709 }
710
711 /* Convert between RAW and VIRTUAL registers. The RAW register size
712 defines the remote-gdb packet. */
713
714 static int
715 mips_register_convertible (int reg_nr)
716 {
717 if (mips64_transfers_32bit_regs_p)
718 return 0;
719 else
720 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
721 }
722
723 static void
724 mips_register_convert_to_virtual (int n, struct type *virtual_type,
725 char *raw_buf, char *virt_buf)
726 {
727 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
728 memcpy (virt_buf,
729 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
730 TYPE_LENGTH (virtual_type));
731 else
732 memcpy (virt_buf,
733 raw_buf,
734 TYPE_LENGTH (virtual_type));
735 }
736
737 static void
738 mips_register_convert_to_raw (struct type *virtual_type, int n,
739 const char *virt_buf, char *raw_buf)
740 {
741 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
742 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
743 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
744 virt_buf,
745 TYPE_LENGTH (virtual_type));
746 else
747 memcpy (raw_buf,
748 virt_buf,
749 TYPE_LENGTH (virtual_type));
750 }
751
752 static int
753 mips_convert_register_p (int regnum, struct type *type)
754 {
755 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
756 && REGISTER_RAW_SIZE (regnum) == 4
757 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
758 && TYPE_CODE(type) == TYPE_CODE_FLT
759 && TYPE_LENGTH(type) == 8);
760 }
761
762 static void
763 mips_register_to_value (struct frame_info *frame, int regnum,
764 struct type *type, void *to)
765 {
766 frame_read_register (frame, regnum + 0, (char *) to + 4);
767 frame_read_register (frame, regnum + 1, (char *) to + 0);
768 }
769
770 static void
771 mips_value_to_register (struct frame_info *frame, int regnum,
772 struct type *type, const void *from)
773 {
774 put_frame_register (frame, regnum + 0, (const char *) from + 4);
775 put_frame_register (frame, regnum + 1, (const char *) from + 0);
776 }
777
778 /* Return the GDB type object for the "standard" data type of data in
779 register REG. */
780
781 static struct type *
782 mips_register_type (struct gdbarch *gdbarch, int regnum)
783 {
784 /* For moment, map [NUM_REGS .. 2*NUM_REGS) onto the same raw
785 registers. Even return the same type. */
786 int rawnum = regnum % NUM_REGS;
787 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
788 #ifdef MIPS_REGISTER_TYPE
789 return MIPS_REGISTER_TYPE (rawnum);
790 #else
791 if (FP0_REGNUM <= rawnum && rawnum < FP0_REGNUM + 32)
792 {
793 /* Floating point registers... */
794 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
795 return builtin_type_ieee_double_big;
796 else
797 return builtin_type_ieee_double_little;
798 }
799 else if (rawnum == PS_REGNUM /* CR */)
800 return builtin_type_uint32;
801 else if (FCRCS_REGNUM <= rawnum && rawnum <= LAST_EMBED_REGNUM)
802 return builtin_type_uint32;
803 else
804 {
805 /* Everything else...
806 Return type appropriate for width of register. */
807 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
808 return builtin_type_uint64;
809 else
810 return builtin_type_uint32;
811 }
812 #endif
813 }
814
815 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
816
817 static CORE_ADDR
818 mips_read_sp (void)
819 {
820 return read_signed_register (SP_REGNUM);
821 }
822
823 /* Should the upper word of 64-bit addresses be zeroed? */
824 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
825
826 static int
827 mips_mask_address_p (void)
828 {
829 switch (mask_address_var)
830 {
831 case AUTO_BOOLEAN_TRUE:
832 return 1;
833 case AUTO_BOOLEAN_FALSE:
834 return 0;
835 break;
836 case AUTO_BOOLEAN_AUTO:
837 return MIPS_DEFAULT_MASK_ADDRESS_P;
838 default:
839 internal_error (__FILE__, __LINE__,
840 "mips_mask_address_p: bad switch");
841 return -1;
842 }
843 }
844
845 static void
846 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
847 {
848 switch (mask_address_var)
849 {
850 case AUTO_BOOLEAN_TRUE:
851 printf_filtered ("The 32 bit mips address mask is enabled\n");
852 break;
853 case AUTO_BOOLEAN_FALSE:
854 printf_filtered ("The 32 bit mips address mask is disabled\n");
855 break;
856 case AUTO_BOOLEAN_AUTO:
857 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
858 mips_mask_address_p () ? "enabled" : "disabled");
859 break;
860 default:
861 internal_error (__FILE__, __LINE__,
862 "show_mask_address: bad switch");
863 break;
864 }
865 }
866
867 /* Should call_function allocate stack space for a struct return? */
868
869 static int
870 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
871 {
872 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
873 }
874
875 static int
876 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
877 {
878 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
879 }
880
881 /* Should call_function pass struct by reference?
882 For each architecture, structs are passed either by
883 value or by reference, depending on their size. */
884
885 static int
886 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
887 {
888 enum type_code typecode = TYPE_CODE (check_typedef (type));
889 int len = TYPE_LENGTH (check_typedef (type));
890
891 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
892 return (len > MIPS_SAVED_REGSIZE);
893
894 return 0;
895 }
896
897 static int
898 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
899 {
900 return 0; /* Assumption: N32/N64 never passes struct by ref. */
901 }
902
903 static int
904 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
905 {
906 return 0; /* Assumption: O32/O64 never passes struct by ref. */
907 }
908
909 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
910
911 static int
912 pc_is_mips16 (bfd_vma memaddr)
913 {
914 struct minimal_symbol *sym;
915
916 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
917 if (is_mips16_addr (memaddr))
918 return 1;
919
920 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
921 the high bit of the info field. Use this to decide if the function is
922 MIPS16 or normal MIPS. */
923 sym = lookup_minimal_symbol_by_pc (memaddr);
924 if (sym)
925 return msymbol_is_special (sym);
926 else
927 return 0;
928 }
929
930 /* MIPS believes that the PC has a sign extended value. Perhaphs the
931 all registers should be sign extended for simplicity? */
932
933 static CORE_ADDR
934 mips_read_pc (ptid_t ptid)
935 {
936 return read_signed_register_pid (PC_REGNUM, ptid);
937 }
938
939 /* This returns the PC of the first inst after the prologue. If we can't
940 find the prologue, then return 0. */
941
942 static CORE_ADDR
943 after_prologue (CORE_ADDR pc,
944 mips_extra_func_info_t proc_desc)
945 {
946 struct symtab_and_line sal;
947 CORE_ADDR func_addr, func_end;
948
949 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
950 to read the stack pointer from the current machine state, because
951 the current machine state has nothing to do with the information
952 we need from the proc_desc; and the process may or may not exist
953 right now. */
954 if (!proc_desc)
955 proc_desc = find_proc_desc (pc, NULL, 0);
956
957 if (proc_desc)
958 {
959 /* If function is frameless, then we need to do it the hard way. I
960 strongly suspect that frameless always means prologueless... */
961 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
962 && PROC_FRAME_OFFSET (proc_desc) == 0)
963 return 0;
964 }
965
966 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
967 return 0; /* Unknown */
968
969 sal = find_pc_line (func_addr, 0);
970
971 if (sal.end < func_end)
972 return sal.end;
973
974 /* The line after the prologue is after the end of the function. In this
975 case, tell the caller to find the prologue the hard way. */
976
977 return 0;
978 }
979
980 /* Decode a MIPS32 instruction that saves a register in the stack, and
981 set the appropriate bit in the general register mask or float register mask
982 to indicate which register is saved. This is a helper function
983 for mips_find_saved_regs. */
984
985 static void
986 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
987 unsigned long *float_mask)
988 {
989 int reg;
990
991 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
992 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
993 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
994 {
995 /* It might be possible to use the instruction to
996 find the offset, rather than the code below which
997 is based on things being in a certain order in the
998 frame, but figuring out what the instruction's offset
999 is relative to might be a little tricky. */
1000 reg = (inst & 0x001f0000) >> 16;
1001 *gen_mask |= (1 << reg);
1002 }
1003 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
1004 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
1005 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
1006
1007 {
1008 reg = ((inst & 0x001f0000) >> 16);
1009 *float_mask |= (1 << reg);
1010 }
1011 }
1012
1013 /* Decode a MIPS16 instruction that saves a register in the stack, and
1014 set the appropriate bit in the general register or float register mask
1015 to indicate which register is saved. This is a helper function
1016 for mips_find_saved_regs. */
1017
1018 static void
1019 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
1020 {
1021 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1022 {
1023 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1024 *gen_mask |= (1 << reg);
1025 }
1026 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1027 {
1028 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1029 *gen_mask |= (1 << reg);
1030 }
1031 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
1032 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1033 *gen_mask |= (1 << RA_REGNUM);
1034 }
1035
1036
1037 /* Fetch and return instruction from the specified location. If the PC
1038 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
1039
1040 static t_inst
1041 mips_fetch_instruction (CORE_ADDR addr)
1042 {
1043 char buf[MIPS_INSTLEN];
1044 int instlen;
1045 int status;
1046
1047 if (pc_is_mips16 (addr))
1048 {
1049 instlen = MIPS16_INSTLEN;
1050 addr = unmake_mips16_addr (addr);
1051 }
1052 else
1053 instlen = MIPS_INSTLEN;
1054 status = read_memory_nobpt (addr, buf, instlen);
1055 if (status)
1056 memory_error (status, addr);
1057 return extract_unsigned_integer (buf, instlen);
1058 }
1059
1060
1061 /* These the fields of 32 bit mips instructions */
1062 #define mips32_op(x) (x >> 26)
1063 #define itype_op(x) (x >> 26)
1064 #define itype_rs(x) ((x >> 21) & 0x1f)
1065 #define itype_rt(x) ((x >> 16) & 0x1f)
1066 #define itype_immediate(x) (x & 0xffff)
1067
1068 #define jtype_op(x) (x >> 26)
1069 #define jtype_target(x) (x & 0x03ffffff)
1070
1071 #define rtype_op(x) (x >> 26)
1072 #define rtype_rs(x) ((x >> 21) & 0x1f)
1073 #define rtype_rt(x) ((x >> 16) & 0x1f)
1074 #define rtype_rd(x) ((x >> 11) & 0x1f)
1075 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1076 #define rtype_funct(x) (x & 0x3f)
1077
1078 static CORE_ADDR
1079 mips32_relative_offset (unsigned long inst)
1080 {
1081 long x;
1082 x = itype_immediate (inst);
1083 if (x & 0x8000) /* sign bit set */
1084 {
1085 x |= 0xffff0000; /* sign extension */
1086 }
1087 x = x << 2;
1088 return x;
1089 }
1090
1091 /* Determine whate to set a single step breakpoint while considering
1092 branch prediction */
1093 static CORE_ADDR
1094 mips32_next_pc (CORE_ADDR pc)
1095 {
1096 unsigned long inst;
1097 int op;
1098 inst = mips_fetch_instruction (pc);
1099 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1100 {
1101 if (itype_op (inst) >> 2 == 5)
1102 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1103 {
1104 op = (itype_op (inst) & 0x03);
1105 switch (op)
1106 {
1107 case 0: /* BEQL */
1108 goto equal_branch;
1109 case 1: /* BNEL */
1110 goto neq_branch;
1111 case 2: /* BLEZL */
1112 goto less_branch;
1113 case 3: /* BGTZ */
1114 goto greater_branch;
1115 default:
1116 pc += 4;
1117 }
1118 }
1119 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1120 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1121 {
1122 int tf = itype_rt (inst) & 0x01;
1123 int cnum = itype_rt (inst) >> 2;
1124 int fcrcs = read_signed_register (FCRCS_REGNUM);
1125 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1126
1127 if (((cond >> cnum) & 0x01) == tf)
1128 pc += mips32_relative_offset (inst) + 4;
1129 else
1130 pc += 8;
1131 }
1132 else
1133 pc += 4; /* Not a branch, next instruction is easy */
1134 }
1135 else
1136 { /* This gets way messy */
1137
1138 /* Further subdivide into SPECIAL, REGIMM and other */
1139 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1140 {
1141 case 0: /* SPECIAL */
1142 op = rtype_funct (inst);
1143 switch (op)
1144 {
1145 case 8: /* JR */
1146 case 9: /* JALR */
1147 /* Set PC to that address */
1148 pc = read_signed_register (rtype_rs (inst));
1149 break;
1150 default:
1151 pc += 4;
1152 }
1153
1154 break; /* end SPECIAL */
1155 case 1: /* REGIMM */
1156 {
1157 op = itype_rt (inst); /* branch condition */
1158 switch (op)
1159 {
1160 case 0: /* BLTZ */
1161 case 2: /* BLTZL */
1162 case 16: /* BLTZAL */
1163 case 18: /* BLTZALL */
1164 less_branch:
1165 if (read_signed_register (itype_rs (inst)) < 0)
1166 pc += mips32_relative_offset (inst) + 4;
1167 else
1168 pc += 8; /* after the delay slot */
1169 break;
1170 case 1: /* BGEZ */
1171 case 3: /* BGEZL */
1172 case 17: /* BGEZAL */
1173 case 19: /* BGEZALL */
1174 greater_equal_branch:
1175 if (read_signed_register (itype_rs (inst)) >= 0)
1176 pc += mips32_relative_offset (inst) + 4;
1177 else
1178 pc += 8; /* after the delay slot */
1179 break;
1180 /* All of the other instructions in the REGIMM category */
1181 default:
1182 pc += 4;
1183 }
1184 }
1185 break; /* end REGIMM */
1186 case 2: /* J */
1187 case 3: /* JAL */
1188 {
1189 unsigned long reg;
1190 reg = jtype_target (inst) << 2;
1191 /* Upper four bits get never changed... */
1192 pc = reg + ((pc + 4) & 0xf0000000);
1193 }
1194 break;
1195 /* FIXME case JALX : */
1196 {
1197 unsigned long reg;
1198 reg = jtype_target (inst) << 2;
1199 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1200 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1201 }
1202 break; /* The new PC will be alternate mode */
1203 case 4: /* BEQ, BEQL */
1204 equal_branch:
1205 if (read_signed_register (itype_rs (inst)) ==
1206 read_signed_register (itype_rt (inst)))
1207 pc += mips32_relative_offset (inst) + 4;
1208 else
1209 pc += 8;
1210 break;
1211 case 5: /* BNE, BNEL */
1212 neq_branch:
1213 if (read_signed_register (itype_rs (inst)) !=
1214 read_signed_register (itype_rt (inst)))
1215 pc += mips32_relative_offset (inst) + 4;
1216 else
1217 pc += 8;
1218 break;
1219 case 6: /* BLEZ, BLEZL */
1220 less_zero_branch:
1221 if (read_signed_register (itype_rs (inst) <= 0))
1222 pc += mips32_relative_offset (inst) + 4;
1223 else
1224 pc += 8;
1225 break;
1226 case 7:
1227 default:
1228 greater_branch: /* BGTZ, BGTZL */
1229 if (read_signed_register (itype_rs (inst) > 0))
1230 pc += mips32_relative_offset (inst) + 4;
1231 else
1232 pc += 8;
1233 break;
1234 } /* switch */
1235 } /* else */
1236 return pc;
1237 } /* mips32_next_pc */
1238
1239 /* Decoding the next place to set a breakpoint is irregular for the
1240 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1241 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1242 We dont want to set a single step instruction on the extend instruction
1243 either.
1244 */
1245
1246 /* Lots of mips16 instruction formats */
1247 /* Predicting jumps requires itype,ritype,i8type
1248 and their extensions extItype,extritype,extI8type
1249 */
1250 enum mips16_inst_fmts
1251 {
1252 itype, /* 0 immediate 5,10 */
1253 ritype, /* 1 5,3,8 */
1254 rrtype, /* 2 5,3,3,5 */
1255 rritype, /* 3 5,3,3,5 */
1256 rrrtype, /* 4 5,3,3,3,2 */
1257 rriatype, /* 5 5,3,3,1,4 */
1258 shifttype, /* 6 5,3,3,3,2 */
1259 i8type, /* 7 5,3,8 */
1260 i8movtype, /* 8 5,3,3,5 */
1261 i8mov32rtype, /* 9 5,3,5,3 */
1262 i64type, /* 10 5,3,8 */
1263 ri64type, /* 11 5,3,3,5 */
1264 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1265 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1266 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1267 extRRItype, /* 15 5,5,5,5,3,3,5 */
1268 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1269 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1270 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1271 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1272 extRi64type, /* 20 5,6,5,5,3,3,5 */
1273 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1274 };
1275 /* I am heaping all the fields of the formats into one structure and
1276 then, only the fields which are involved in instruction extension */
1277 struct upk_mips16
1278 {
1279 CORE_ADDR offset;
1280 unsigned int regx; /* Function in i8 type */
1281 unsigned int regy;
1282 };
1283
1284
1285 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1286 for the bits which make up the immediatate extension. */
1287
1288 static CORE_ADDR
1289 extended_offset (unsigned int extension)
1290 {
1291 CORE_ADDR value;
1292 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1293 value = value << 6;
1294 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1295 value = value << 5;
1296 value |= extension & 0x01f; /* extract 4:0 */
1297 return value;
1298 }
1299
1300 /* Only call this function if you know that this is an extendable
1301 instruction, It wont malfunction, but why make excess remote memory references?
1302 If the immediate operands get sign extended or somthing, do it after
1303 the extension is performed.
1304 */
1305 /* FIXME: Every one of these cases needs to worry about sign extension
1306 when the offset is to be used in relative addressing */
1307
1308
1309 static unsigned int
1310 fetch_mips_16 (CORE_ADDR pc)
1311 {
1312 char buf[8];
1313 pc &= 0xfffffffe; /* clear the low order bit */
1314 target_read_memory (pc, buf, 2);
1315 return extract_unsigned_integer (buf, 2);
1316 }
1317
1318 static void
1319 unpack_mips16 (CORE_ADDR pc,
1320 unsigned int extension,
1321 unsigned int inst,
1322 enum mips16_inst_fmts insn_format,
1323 struct upk_mips16 *upk)
1324 {
1325 CORE_ADDR offset;
1326 int regx;
1327 int regy;
1328 switch (insn_format)
1329 {
1330 case itype:
1331 {
1332 CORE_ADDR value;
1333 if (extension)
1334 {
1335 value = extended_offset (extension);
1336 value = value << 11; /* rom for the original value */
1337 value |= inst & 0x7ff; /* eleven bits from instruction */
1338 }
1339 else
1340 {
1341 value = inst & 0x7ff;
1342 /* FIXME : Consider sign extension */
1343 }
1344 offset = value;
1345 regx = -1;
1346 regy = -1;
1347 }
1348 break;
1349 case ritype:
1350 case i8type:
1351 { /* A register identifier and an offset */
1352 /* Most of the fields are the same as I type but the
1353 immediate value is of a different length */
1354 CORE_ADDR value;
1355 if (extension)
1356 {
1357 value = extended_offset (extension);
1358 value = value << 8; /* from the original instruction */
1359 value |= inst & 0xff; /* eleven bits from instruction */
1360 regx = (extension >> 8) & 0x07; /* or i8 funct */
1361 if (value & 0x4000) /* test the sign bit , bit 26 */
1362 {
1363 value &= ~0x3fff; /* remove the sign bit */
1364 value = -value;
1365 }
1366 }
1367 else
1368 {
1369 value = inst & 0xff; /* 8 bits */
1370 regx = (inst >> 8) & 0x07; /* or i8 funct */
1371 /* FIXME: Do sign extension , this format needs it */
1372 if (value & 0x80) /* THIS CONFUSES ME */
1373 {
1374 value &= 0xef; /* remove the sign bit */
1375 value = -value;
1376 }
1377 }
1378 offset = value;
1379 regy = -1;
1380 break;
1381 }
1382 case jalxtype:
1383 {
1384 unsigned long value;
1385 unsigned int nexthalf;
1386 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1387 value = value << 16;
1388 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1389 value |= nexthalf;
1390 offset = value;
1391 regx = -1;
1392 regy = -1;
1393 break;
1394 }
1395 default:
1396 internal_error (__FILE__, __LINE__,
1397 "bad switch");
1398 }
1399 upk->offset = offset;
1400 upk->regx = regx;
1401 upk->regy = regy;
1402 }
1403
1404
1405 static CORE_ADDR
1406 add_offset_16 (CORE_ADDR pc, int offset)
1407 {
1408 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1409 }
1410
1411 static CORE_ADDR
1412 extended_mips16_next_pc (CORE_ADDR pc,
1413 unsigned int extension,
1414 unsigned int insn)
1415 {
1416 int op = (insn >> 11);
1417 switch (op)
1418 {
1419 case 2: /* Branch */
1420 {
1421 CORE_ADDR offset;
1422 struct upk_mips16 upk;
1423 unpack_mips16 (pc, extension, insn, itype, &upk);
1424 offset = upk.offset;
1425 if (offset & 0x800)
1426 {
1427 offset &= 0xeff;
1428 offset = -offset;
1429 }
1430 pc += (offset << 1) + 2;
1431 break;
1432 }
1433 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1434 {
1435 struct upk_mips16 upk;
1436 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1437 pc = add_offset_16 (pc, upk.offset);
1438 if ((insn >> 10) & 0x01) /* Exchange mode */
1439 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1440 else
1441 pc |= 0x01;
1442 break;
1443 }
1444 case 4: /* beqz */
1445 {
1446 struct upk_mips16 upk;
1447 int reg;
1448 unpack_mips16 (pc, extension, insn, ritype, &upk);
1449 reg = read_signed_register (upk.regx);
1450 if (reg == 0)
1451 pc += (upk.offset << 1) + 2;
1452 else
1453 pc += 2;
1454 break;
1455 }
1456 case 5: /* bnez */
1457 {
1458 struct upk_mips16 upk;
1459 int reg;
1460 unpack_mips16 (pc, extension, insn, ritype, &upk);
1461 reg = read_signed_register (upk.regx);
1462 if (reg != 0)
1463 pc += (upk.offset << 1) + 2;
1464 else
1465 pc += 2;
1466 break;
1467 }
1468 case 12: /* I8 Formats btez btnez */
1469 {
1470 struct upk_mips16 upk;
1471 int reg;
1472 unpack_mips16 (pc, extension, insn, i8type, &upk);
1473 /* upk.regx contains the opcode */
1474 reg = read_signed_register (24); /* Test register is 24 */
1475 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1476 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1477 /* pc = add_offset_16(pc,upk.offset) ; */
1478 pc += (upk.offset << 1) + 2;
1479 else
1480 pc += 2;
1481 break;
1482 }
1483 case 29: /* RR Formats JR, JALR, JALR-RA */
1484 {
1485 struct upk_mips16 upk;
1486 /* upk.fmt = rrtype; */
1487 op = insn & 0x1f;
1488 if (op == 0)
1489 {
1490 int reg;
1491 upk.regx = (insn >> 8) & 0x07;
1492 upk.regy = (insn >> 5) & 0x07;
1493 switch (upk.regy)
1494 {
1495 case 0:
1496 reg = upk.regx;
1497 break;
1498 case 1:
1499 reg = 31;
1500 break; /* Function return instruction */
1501 case 2:
1502 reg = upk.regx;
1503 break;
1504 default:
1505 reg = 31;
1506 break; /* BOGUS Guess */
1507 }
1508 pc = read_signed_register (reg);
1509 }
1510 else
1511 pc += 2;
1512 break;
1513 }
1514 case 30:
1515 /* This is an instruction extension. Fetch the real instruction
1516 (which follows the extension) and decode things based on
1517 that. */
1518 {
1519 pc += 2;
1520 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1521 break;
1522 }
1523 default:
1524 {
1525 pc += 2;
1526 break;
1527 }
1528 }
1529 return pc;
1530 }
1531
1532 static CORE_ADDR
1533 mips16_next_pc (CORE_ADDR pc)
1534 {
1535 unsigned int insn = fetch_mips_16 (pc);
1536 return extended_mips16_next_pc (pc, 0, insn);
1537 }
1538
1539 /* The mips_next_pc function supports single_step when the remote
1540 target monitor or stub is not developed enough to do a single_step.
1541 It works by decoding the current instruction and predicting where a
1542 branch will go. This isnt hard because all the data is available.
1543 The MIPS32 and MIPS16 variants are quite different */
1544 CORE_ADDR
1545 mips_next_pc (CORE_ADDR pc)
1546 {
1547 if (pc & 0x01)
1548 return mips16_next_pc (pc);
1549 else
1550 return mips32_next_pc (pc);
1551 }
1552
1553 /* Set up the 'saved_regs' array. This is a data structure containing
1554 the addresses on the stack where each register has been saved, for
1555 each stack frame. Registers that have not been saved will have
1556 zero here. The stack pointer register is special: rather than the
1557 address where the stack register has been saved,
1558 saved_regs[SP_REGNUM] will have the actual value of the previous
1559 frame's stack register. */
1560
1561 static void
1562 mips_find_saved_regs (struct frame_info *fci)
1563 {
1564 int ireg;
1565 /* r0 bit means kernel trap */
1566 int kernel_trap;
1567 /* What registers have been saved? Bitmasks. */
1568 unsigned long gen_mask, float_mask;
1569 mips_extra_func_info_t proc_desc;
1570 t_inst inst;
1571 CORE_ADDR *saved_regs;
1572
1573 if (get_frame_saved_regs (fci) != NULL)
1574 return;
1575 saved_regs = frame_saved_regs_zalloc (fci);
1576
1577 /* If it is the frame for sigtramp, the saved registers are located
1578 in a sigcontext structure somewhere on the stack. If the stack
1579 layout for sigtramp changes we might have to change these
1580 constants and the companion fixup_sigtramp in mdebugread.c */
1581 #ifndef SIGFRAME_BASE
1582 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1583 above the sigtramp frame. */
1584 #define SIGFRAME_BASE MIPS_REGSIZE
1585 /* FIXME! Are these correct?? */
1586 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1587 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1588 #define SIGFRAME_FPREGSAVE_OFF \
1589 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1590 #endif
1591 #ifndef SIGFRAME_REG_SIZE
1592 /* FIXME! Is this correct?? */
1593 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1594 #endif
1595 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1596 {
1597 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1598 {
1599 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1600 + ireg * SIGFRAME_REG_SIZE);
1601 set_reg_offset (saved_regs, ireg, reg_position);
1602 }
1603 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1604 {
1605 CORE_ADDR reg_position = (get_frame_base (fci)
1606 + SIGFRAME_FPREGSAVE_OFF
1607 + ireg * SIGFRAME_REG_SIZE);
1608 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1609 }
1610
1611 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1612 /* SP_REGNUM, contains the value and not the address. */
1613 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1614 return;
1615 }
1616
1617 proc_desc = get_frame_extra_info (fci)->proc_desc;
1618 if (proc_desc == NULL)
1619 /* I'm not sure how/whether this can happen. Normally when we
1620 can't find a proc_desc, we "synthesize" one using
1621 heuristic_proc_desc and set the saved_regs right away. */
1622 return;
1623
1624 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1625 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1626 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1627
1628 if (/* In any frame other than the innermost or a frame interrupted
1629 by a signal, we assume that all registers have been saved.
1630 This assumes that all register saves in a function happen
1631 before the first function call. */
1632 (get_next_frame (fci) == NULL
1633 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1634
1635 /* In a dummy frame we know exactly where things are saved. */
1636 && !PROC_DESC_IS_DUMMY (proc_desc)
1637
1638 /* Don't bother unless we are inside a function prologue.
1639 Outside the prologue, we know where everything is. */
1640
1641 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1642
1643 /* Not sure exactly what kernel_trap means, but if it means the
1644 kernel saves the registers without a prologue doing it, we
1645 better not examine the prologue to see whether registers
1646 have been saved yet. */
1647 && !kernel_trap)
1648 {
1649 /* We need to figure out whether the registers that the
1650 proc_desc claims are saved have been saved yet. */
1651
1652 CORE_ADDR addr;
1653
1654 /* Bitmasks; set if we have found a save for the register. */
1655 unsigned long gen_save_found = 0;
1656 unsigned long float_save_found = 0;
1657 int instlen;
1658
1659 /* If the address is odd, assume this is MIPS16 code. */
1660 addr = PROC_LOW_ADDR (proc_desc);
1661 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1662
1663 /* Scan through this function's instructions preceding the
1664 current PC, and look for those that save registers. */
1665 while (addr < get_frame_pc (fci))
1666 {
1667 inst = mips_fetch_instruction (addr);
1668 if (pc_is_mips16 (addr))
1669 mips16_decode_reg_save (inst, &gen_save_found);
1670 else
1671 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1672 addr += instlen;
1673 }
1674 gen_mask = gen_save_found;
1675 float_mask = float_save_found;
1676 }
1677
1678 /* Fill in the offsets for the registers which gen_mask says were
1679 saved. */
1680 {
1681 CORE_ADDR reg_position = (get_frame_base (fci)
1682 + PROC_REG_OFFSET (proc_desc));
1683 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1684 if (gen_mask & 0x80000000)
1685 {
1686 set_reg_offset (saved_regs, ireg, reg_position);
1687 reg_position -= MIPS_SAVED_REGSIZE;
1688 }
1689 }
1690
1691 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1692 order of that normally used by gcc. Therefore, we have to fetch
1693 the first instruction of the function, and if it's an entry
1694 instruction that saves $s0 or $s1, correct their saved addresses. */
1695 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1696 {
1697 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1698 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1699 /* entry */
1700 {
1701 int reg;
1702 int sreg_count = (inst >> 6) & 3;
1703
1704 /* Check if the ra register was pushed on the stack. */
1705 CORE_ADDR reg_position = (get_frame_base (fci)
1706 + PROC_REG_OFFSET (proc_desc));
1707 if (inst & 0x20)
1708 reg_position -= MIPS_SAVED_REGSIZE;
1709
1710 /* Check if the s0 and s1 registers were pushed on the
1711 stack. */
1712 for (reg = 16; reg < sreg_count + 16; reg++)
1713 {
1714 set_reg_offset (saved_regs, reg, reg_position);
1715 reg_position -= MIPS_SAVED_REGSIZE;
1716 }
1717 }
1718 }
1719
1720 /* Fill in the offsets for the registers which float_mask says were
1721 saved. */
1722 {
1723 CORE_ADDR reg_position = (get_frame_base (fci)
1724 + PROC_FREG_OFFSET (proc_desc));
1725
1726 /* Fill in the offsets for the float registers which float_mask
1727 says were saved. */
1728 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1729 if (float_mask & 0x80000000)
1730 {
1731 if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1732 {
1733 /* On a big endian 32 bit ABI, floating point registers
1734 are paired to form doubles such that the most
1735 significant part is in $f[N+1] and the least
1736 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1737 registers are also spilled as a pair and stored as a
1738 double.
1739
1740 When little-endian the least significant part is
1741 stored first leading to the memory order $f[N] and
1742 then $f[N+1].
1743
1744 Unfortunatly, when big-endian the most significant
1745 part of the double is stored first, and the least
1746 significant is stored second. This leads to the
1747 registers being ordered in memory as firt $f[N+1] and
1748 then $f[N].
1749
1750 For the big-endian case make certain that the
1751 addresses point at the correct (swapped) locations
1752 $f[N] and $f[N+1] pair (keep in mind that
1753 reg_position is decremented each time through the
1754 loop). */
1755 if ((ireg & 1))
1756 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1757 reg_position - MIPS_SAVED_REGSIZE);
1758 else
1759 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1760 reg_position + MIPS_SAVED_REGSIZE);
1761 }
1762 else
1763 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1764 reg_position -= MIPS_SAVED_REGSIZE;
1765 }
1766
1767 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1768 }
1769
1770 /* SP_REGNUM, contains the value and not the address. */
1771 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1772 }
1773
1774 static CORE_ADDR
1775 read_next_frame_reg (struct frame_info *fi, int regno)
1776 {
1777 /* Always a pseudo. */
1778 gdb_assert (regno >= NUM_REGS);
1779 if (fi == NULL)
1780 {
1781 LONGEST val;
1782 regcache_cooked_read_signed (current_regcache, regno, &val);
1783 return val;
1784 }
1785 else if ((regno % NUM_REGS) == SP_REGNUM)
1786 /* The SP_REGNUM is special, its value is stored in saved_regs.
1787 In fact, it is so special that it can even only be fetched
1788 using a raw register number! Once this code as been converted
1789 to frame-unwind the problem goes away. */
1790 return frame_unwind_register_signed (fi, regno % NUM_REGS);
1791 else
1792 return frame_unwind_register_signed (fi, regno);
1793
1794 }
1795
1796 /* mips_addr_bits_remove - remove useless address bits */
1797
1798 static CORE_ADDR
1799 mips_addr_bits_remove (CORE_ADDR addr)
1800 {
1801 if (GDB_TARGET_IS_MIPS64)
1802 {
1803 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1804 {
1805 /* This hack is a work-around for existing boards using
1806 PMON, the simulator, and any other 64-bit targets that
1807 doesn't have true 64-bit addressing. On these targets,
1808 the upper 32 bits of addresses are ignored by the
1809 hardware. Thus, the PC or SP are likely to have been
1810 sign extended to all 1s by instruction sequences that
1811 load 32-bit addresses. For example, a typical piece of
1812 code that loads an address is this:
1813 lui $r2, <upper 16 bits>
1814 ori $r2, <lower 16 bits>
1815 But the lui sign-extends the value such that the upper 32
1816 bits may be all 1s. The workaround is simply to mask off
1817 these bits. In the future, gcc may be changed to support
1818 true 64-bit addressing, and this masking will have to be
1819 disabled. */
1820 addr &= (CORE_ADDR) 0xffffffff;
1821 }
1822 }
1823 else if (mips_mask_address_p ())
1824 {
1825 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1826 masking off bits, instead, the actual target should be asking
1827 for the address to be converted to a valid pointer. */
1828 /* Even when GDB is configured for some 32-bit targets
1829 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1830 so CORE_ADDR is 64 bits. So we still have to mask off
1831 useless bits from addresses. */
1832 addr &= (CORE_ADDR) 0xffffffff;
1833 }
1834 return addr;
1835 }
1836
1837 /* mips_software_single_step() is called just before we want to resume
1838 the inferior, if we want to single-step it but there is no hardware
1839 or kernel single-step support (MIPS on GNU/Linux for example). We find
1840 the target of the coming instruction and breakpoint it.
1841
1842 single_step is also called just after the inferior stops. If we had
1843 set up a simulated single-step, we undo our damage. */
1844
1845 void
1846 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1847 {
1848 static CORE_ADDR next_pc;
1849 typedef char binsn_quantum[BREAKPOINT_MAX];
1850 static binsn_quantum break_mem;
1851 CORE_ADDR pc;
1852
1853 if (insert_breakpoints_p)
1854 {
1855 pc = read_register (PC_REGNUM);
1856 next_pc = mips_next_pc (pc);
1857
1858 target_insert_breakpoint (next_pc, break_mem);
1859 }
1860 else
1861 target_remove_breakpoint (next_pc, break_mem);
1862 }
1863
1864 static CORE_ADDR
1865 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1866 {
1867 CORE_ADDR pc, tmp;
1868
1869 pc = ((fromleaf)
1870 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
1871 : get_next_frame (prev)
1872 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1873 : read_pc ());
1874 tmp = SKIP_TRAMPOLINE_CODE (pc);
1875 return tmp ? tmp : pc;
1876 }
1877
1878
1879 static CORE_ADDR
1880 mips_frame_saved_pc (struct frame_info *frame)
1881 {
1882 CORE_ADDR saved_pc;
1883
1884 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1885 {
1886 LONGEST tmp;
1887 /* Always unwind the cooked PC register value. */
1888 frame_unwind_signed_register (frame, NUM_REGS + PC_REGNUM, &tmp);
1889 saved_pc = tmp;
1890 }
1891 else
1892 {
1893 mips_extra_func_info_t proc_desc
1894 = get_frame_extra_info (frame)->proc_desc;
1895 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1896 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1897 else
1898 {
1899 /* We have to get the saved pc from the sigcontext if it is
1900 a signal handler frame. */
1901 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1902 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1903 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1904 }
1905 }
1906 return ADDR_BITS_REMOVE (saved_pc);
1907 }
1908
1909 static struct mips_extra_func_info temp_proc_desc;
1910
1911 /* This hack will go away once the get_prev_frame() code has been
1912 modified to set the frame's type first. That is BEFORE init extra
1913 frame info et.al. is called. This is because it will become
1914 possible to skip the init extra info call for sigtramp and dummy
1915 frames. */
1916 static CORE_ADDR *temp_saved_regs;
1917
1918 /* Set a register's saved stack address in temp_saved_regs. If an
1919 address has already been set for this register, do nothing; this
1920 way we will only recognize the first save of a given register in a
1921 function prologue.
1922
1923 For simplicity, save the address in both [0 .. NUM_REGS) and
1924 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1925 is used as it is only second range (the ABI instead of ISA
1926 registers) that comes into play when finding saved registers in a
1927 frame. */
1928
1929 static void
1930 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1931 {
1932 if (saved_regs[regno] == 0)
1933 {
1934 saved_regs[regno + 0 * NUM_REGS] = offset;
1935 saved_regs[regno + 1 * NUM_REGS] = offset;
1936 }
1937 }
1938
1939
1940 /* Test whether the PC points to the return instruction at the
1941 end of a function. */
1942
1943 static int
1944 mips_about_to_return (CORE_ADDR pc)
1945 {
1946 if (pc_is_mips16 (pc))
1947 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1948 generates a "jr $ra"; other times it generates code to load
1949 the return address from the stack to an accessible register (such
1950 as $a3), then a "jr" using that register. This second case
1951 is almost impossible to distinguish from an indirect jump
1952 used for switch statements, so we don't even try. */
1953 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1954 else
1955 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1956 }
1957
1958
1959 /* This fencepost looks highly suspicious to me. Removing it also
1960 seems suspicious as it could affect remote debugging across serial
1961 lines. */
1962
1963 static CORE_ADDR
1964 heuristic_proc_start (CORE_ADDR pc)
1965 {
1966 CORE_ADDR start_pc;
1967 CORE_ADDR fence;
1968 int instlen;
1969 int seen_adjsp = 0;
1970
1971 pc = ADDR_BITS_REMOVE (pc);
1972 start_pc = pc;
1973 fence = start_pc - heuristic_fence_post;
1974 if (start_pc == 0)
1975 return 0;
1976
1977 if (heuristic_fence_post == UINT_MAX
1978 || fence < VM_MIN_ADDRESS)
1979 fence = VM_MIN_ADDRESS;
1980
1981 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1982
1983 /* search back for previous return */
1984 for (start_pc -= instlen;; start_pc -= instlen)
1985 if (start_pc < fence)
1986 {
1987 /* It's not clear to me why we reach this point when
1988 stop_soon, but with this test, at least we
1989 don't print out warnings for every child forked (eg, on
1990 decstation). 22apr93 rich@cygnus.com. */
1991 if (stop_soon == NO_STOP_QUIETLY)
1992 {
1993 static int blurb_printed = 0;
1994
1995 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1996 paddr_nz (pc));
1997
1998 if (!blurb_printed)
1999 {
2000 /* This actually happens frequently in embedded
2001 development, when you first connect to a board
2002 and your stack pointer and pc are nowhere in
2003 particular. This message needs to give people
2004 in that situation enough information to
2005 determine that it's no big deal. */
2006 printf_filtered ("\n\
2007 GDB is unable to find the start of the function at 0x%s\n\
2008 and thus can't determine the size of that function's stack frame.\n\
2009 This means that GDB may be unable to access that stack frame, or\n\
2010 the frames below it.\n\
2011 This problem is most likely caused by an invalid program counter or\n\
2012 stack pointer.\n\
2013 However, if you think GDB should simply search farther back\n\
2014 from 0x%s for code which looks like the beginning of a\n\
2015 function, you can increase the range of the search using the `set\n\
2016 heuristic-fence-post' command.\n",
2017 paddr_nz (pc), paddr_nz (pc));
2018 blurb_printed = 1;
2019 }
2020 }
2021
2022 return 0;
2023 }
2024 else if (pc_is_mips16 (start_pc))
2025 {
2026 unsigned short inst;
2027
2028 /* On MIPS16, any one of the following is likely to be the
2029 start of a function:
2030 entry
2031 addiu sp,-n
2032 daddiu sp,-n
2033 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2034 inst = mips_fetch_instruction (start_pc);
2035 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2036 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2037 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2038 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2039 break;
2040 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2041 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2042 seen_adjsp = 1;
2043 else
2044 seen_adjsp = 0;
2045 }
2046 else if (mips_about_to_return (start_pc))
2047 {
2048 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
2049 break;
2050 }
2051
2052 return start_pc;
2053 }
2054
2055 /* Fetch the immediate value from a MIPS16 instruction.
2056 If the previous instruction was an EXTEND, use it to extend
2057 the upper bits of the immediate value. This is a helper function
2058 for mips16_heuristic_proc_desc. */
2059
2060 static int
2061 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2062 unsigned short inst, /* current instruction */
2063 int nbits, /* number of bits in imm field */
2064 int scale, /* scale factor to be applied to imm */
2065 int is_signed) /* is the imm field signed? */
2066 {
2067 int offset;
2068
2069 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2070 {
2071 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2072 if (offset & 0x8000) /* check for negative extend */
2073 offset = 0 - (0x10000 - (offset & 0xffff));
2074 return offset | (inst & 0x1f);
2075 }
2076 else
2077 {
2078 int max_imm = 1 << nbits;
2079 int mask = max_imm - 1;
2080 int sign_bit = max_imm >> 1;
2081
2082 offset = inst & mask;
2083 if (is_signed && (offset & sign_bit))
2084 offset = 0 - (max_imm - offset);
2085 return offset * scale;
2086 }
2087 }
2088
2089
2090 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
2091 stream from start_pc to limit_pc. */
2092
2093 static void
2094 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2095 struct frame_info *next_frame, CORE_ADDR sp)
2096 {
2097 CORE_ADDR cur_pc;
2098 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
2099 unsigned short prev_inst = 0; /* saved copy of previous instruction */
2100 unsigned inst = 0; /* current instruction */
2101 unsigned entry_inst = 0; /* the entry instruction */
2102 int reg, offset;
2103
2104 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
2105 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2106
2107 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2108 {
2109 /* Save the previous instruction. If it's an EXTEND, we'll extract
2110 the immediate offset extension from it in mips16_get_imm. */
2111 prev_inst = inst;
2112
2113 /* Fetch and decode the instruction. */
2114 inst = (unsigned short) mips_fetch_instruction (cur_pc);
2115 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2116 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2117 {
2118 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2119 if (offset < 0) /* negative stack adjustment? */
2120 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
2121 else
2122 /* Exit loop if a positive stack adjustment is found, which
2123 usually means that the stack cleanup code in the function
2124 epilogue is reached. */
2125 break;
2126 }
2127 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2128 {
2129 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2130 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
2131 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2132 set_reg_offset (temp_saved_regs, reg, sp + offset);
2133 }
2134 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2135 {
2136 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2137 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2138 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2139 set_reg_offset (temp_saved_regs, reg, sp + offset);
2140 }
2141 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2142 {
2143 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2144 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2145 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2146 }
2147 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2148 {
2149 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2150 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2151 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2152 }
2153 else if (inst == 0x673d) /* move $s1, $sp */
2154 {
2155 frame_addr = sp;
2156 PROC_FRAME_REG (&temp_proc_desc) = 17;
2157 }
2158 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2159 {
2160 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2161 frame_addr = sp + offset;
2162 PROC_FRAME_REG (&temp_proc_desc) = 17;
2163 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2164 }
2165 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2166 {
2167 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2168 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2169 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2170 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2171 }
2172 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2173 {
2174 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2175 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2176 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2177 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2178 }
2179 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2180 entry_inst = inst; /* save for later processing */
2181 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2182 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
2183 }
2184
2185 /* The entry instruction is typically the first instruction in a function,
2186 and it stores registers at offsets relative to the value of the old SP
2187 (before the prologue). But the value of the sp parameter to this
2188 function is the new SP (after the prologue has been executed). So we
2189 can't calculate those offsets until we've seen the entire prologue,
2190 and can calculate what the old SP must have been. */
2191 if (entry_inst != 0)
2192 {
2193 int areg_count = (entry_inst >> 8) & 7;
2194 int sreg_count = (entry_inst >> 6) & 3;
2195
2196 /* The entry instruction always subtracts 32 from the SP. */
2197 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2198
2199 /* Now we can calculate what the SP must have been at the
2200 start of the function prologue. */
2201 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2202
2203 /* Check if a0-a3 were saved in the caller's argument save area. */
2204 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2205 {
2206 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2207 set_reg_offset (temp_saved_regs, reg, sp + offset);
2208 offset += MIPS_SAVED_REGSIZE;
2209 }
2210
2211 /* Check if the ra register was pushed on the stack. */
2212 offset = -4;
2213 if (entry_inst & 0x20)
2214 {
2215 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2216 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2217 offset -= MIPS_SAVED_REGSIZE;
2218 }
2219
2220 /* Check if the s0 and s1 registers were pushed on the stack. */
2221 for (reg = 16; reg < sreg_count + 16; reg++)
2222 {
2223 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2224 set_reg_offset (temp_saved_regs, reg, sp + offset);
2225 offset -= MIPS_SAVED_REGSIZE;
2226 }
2227 }
2228 }
2229
2230 static void
2231 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2232 struct frame_info *next_frame, CORE_ADDR sp)
2233 {
2234 CORE_ADDR cur_pc;
2235 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2236 restart:
2237 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2238 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2239 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2240 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2241 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2242 {
2243 unsigned long inst, high_word, low_word;
2244 int reg;
2245
2246 /* Fetch the instruction. */
2247 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2248
2249 /* Save some code by pre-extracting some useful fields. */
2250 high_word = (inst >> 16) & 0xffff;
2251 low_word = inst & 0xffff;
2252 reg = high_word & 0x1f;
2253
2254 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2255 || high_word == 0x23bd /* addi $sp,$sp,-i */
2256 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2257 {
2258 if (low_word & 0x8000) /* negative stack adjustment? */
2259 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2260 else
2261 /* Exit loop if a positive stack adjustment is found, which
2262 usually means that the stack cleanup code in the function
2263 epilogue is reached. */
2264 break;
2265 }
2266 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2267 {
2268 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2269 set_reg_offset (temp_saved_regs, reg, sp + low_word);
2270 }
2271 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2272 {
2273 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2274 but the register size used is only 32 bits. Make the address
2275 for the saved register point to the lower 32 bits. */
2276 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2277 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
2278 }
2279 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2280 {
2281 /* Old gcc frame, r30 is virtual frame pointer. */
2282 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2283 frame_addr = sp + low_word;
2284 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2285 {
2286 unsigned alloca_adjust;
2287 PROC_FRAME_REG (&temp_proc_desc) = 30;
2288 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2289 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2290 if (alloca_adjust > 0)
2291 {
2292 /* FP > SP + frame_size. This may be because
2293 * of an alloca or somethings similar.
2294 * Fix sp to "pre-alloca" value, and try again.
2295 */
2296 sp += alloca_adjust;
2297 goto restart;
2298 }
2299 }
2300 }
2301 /* move $30,$sp. With different versions of gas this will be either
2302 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2303 Accept any one of these. */
2304 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2305 {
2306 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2307 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2308 {
2309 unsigned alloca_adjust;
2310 PROC_FRAME_REG (&temp_proc_desc) = 30;
2311 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2312 alloca_adjust = (unsigned) (frame_addr - sp);
2313 if (alloca_adjust > 0)
2314 {
2315 /* FP > SP + frame_size. This may be because
2316 * of an alloca or somethings similar.
2317 * Fix sp to "pre-alloca" value, and try again.
2318 */
2319 sp += alloca_adjust;
2320 goto restart;
2321 }
2322 }
2323 }
2324 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2325 {
2326 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2327 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2328 }
2329 }
2330 }
2331
2332 static mips_extra_func_info_t
2333 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2334 struct frame_info *next_frame, int cur_frame)
2335 {
2336 CORE_ADDR sp;
2337
2338 if (cur_frame)
2339 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
2340 else
2341 sp = 0;
2342
2343 if (start_pc == 0)
2344 return NULL;
2345 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2346 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2347 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2348 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2349 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2350 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2351
2352 if (start_pc + 200 < limit_pc)
2353 limit_pc = start_pc + 200;
2354 if (pc_is_mips16 (start_pc))
2355 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2356 else
2357 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2358 return &temp_proc_desc;
2359 }
2360
2361 struct mips_objfile_private
2362 {
2363 bfd_size_type size;
2364 char *contents;
2365 };
2366
2367 /* Global used to communicate between non_heuristic_proc_desc and
2368 compare_pdr_entries within qsort (). */
2369 static bfd *the_bfd;
2370
2371 static int
2372 compare_pdr_entries (const void *a, const void *b)
2373 {
2374 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2375 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2376
2377 if (lhs < rhs)
2378 return -1;
2379 else if (lhs == rhs)
2380 return 0;
2381 else
2382 return 1;
2383 }
2384
2385 static mips_extra_func_info_t
2386 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2387 {
2388 CORE_ADDR startaddr;
2389 mips_extra_func_info_t proc_desc;
2390 struct block *b = block_for_pc (pc);
2391 struct symbol *sym;
2392 struct obj_section *sec;
2393 struct mips_objfile_private *priv;
2394
2395 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2396 return NULL;
2397
2398 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2399 if (addrptr)
2400 *addrptr = startaddr;
2401
2402 priv = NULL;
2403
2404 sec = find_pc_section (pc);
2405 if (sec != NULL)
2406 {
2407 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2408
2409 /* Search the ".pdr" section generated by GAS. This includes most of
2410 the information normally found in ECOFF PDRs. */
2411
2412 the_bfd = sec->objfile->obfd;
2413 if (priv == NULL
2414 && (the_bfd->format == bfd_object
2415 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2416 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2417 {
2418 /* Right now GAS only outputs the address as a four-byte sequence.
2419 This means that we should not bother with this method on 64-bit
2420 targets (until that is fixed). */
2421
2422 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2423 sizeof (struct mips_objfile_private));
2424 priv->size = 0;
2425 sec->objfile->obj_private = priv;
2426 }
2427 else if (priv == NULL)
2428 {
2429 asection *bfdsec;
2430
2431 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2432 sizeof (struct mips_objfile_private));
2433
2434 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2435 if (bfdsec != NULL)
2436 {
2437 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2438 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2439 priv->size);
2440 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2441 priv->contents, 0, priv->size);
2442
2443 /* In general, the .pdr section is sorted. However, in the
2444 presence of multiple code sections (and other corner cases)
2445 it can become unsorted. Sort it so that we can use a faster
2446 binary search. */
2447 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2448 }
2449 else
2450 priv->size = 0;
2451
2452 sec->objfile->obj_private = priv;
2453 }
2454 the_bfd = NULL;
2455
2456 if (priv->size != 0)
2457 {
2458 int low, mid, high;
2459 char *ptr;
2460
2461 low = 0;
2462 high = priv->size / 32;
2463
2464 do
2465 {
2466 CORE_ADDR pdr_pc;
2467
2468 mid = (low + high) / 2;
2469
2470 ptr = priv->contents + mid * 32;
2471 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2472 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2473 SECT_OFF_TEXT (sec->objfile));
2474 if (pdr_pc == startaddr)
2475 break;
2476 if (pdr_pc > startaddr)
2477 high = mid;
2478 else
2479 low = mid + 1;
2480 }
2481 while (low != high);
2482
2483 if (low != high)
2484 {
2485 struct symbol *sym = find_pc_function (pc);
2486
2487 /* Fill in what we need of the proc_desc. */
2488 proc_desc = (mips_extra_func_info_t)
2489 obstack_alloc (&sec->objfile->psymbol_obstack,
2490 sizeof (struct mips_extra_func_info));
2491 PROC_LOW_ADDR (proc_desc) = startaddr;
2492
2493 /* Only used for dummy frames. */
2494 PROC_HIGH_ADDR (proc_desc) = 0;
2495
2496 PROC_FRAME_OFFSET (proc_desc)
2497 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2498 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2499 ptr + 24);
2500 PROC_FRAME_ADJUST (proc_desc) = 0;
2501 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2502 ptr + 4);
2503 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2504 ptr + 12);
2505 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2506 ptr + 8);
2507 PROC_FREG_OFFSET (proc_desc)
2508 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2509 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2510 ptr + 28);
2511 proc_desc->pdr.isym = (long) sym;
2512
2513 return proc_desc;
2514 }
2515 }
2516 }
2517
2518 if (b == NULL)
2519 return NULL;
2520
2521 if (startaddr > BLOCK_START (b))
2522 {
2523 /* This is the "pathological" case referred to in a comment in
2524 print_frame_info. It might be better to move this check into
2525 symbol reading. */
2526 return NULL;
2527 }
2528
2529 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2530
2531 /* If we never found a PDR for this function in symbol reading, then
2532 examine prologues to find the information. */
2533 if (sym)
2534 {
2535 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2536 if (PROC_FRAME_REG (proc_desc) == -1)
2537 return NULL;
2538 else
2539 return proc_desc;
2540 }
2541 else
2542 return NULL;
2543 }
2544
2545
2546 static mips_extra_func_info_t
2547 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2548 {
2549 mips_extra_func_info_t proc_desc;
2550 CORE_ADDR startaddr = 0;
2551
2552 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2553
2554 if (proc_desc)
2555 {
2556 /* IF this is the topmost frame AND
2557 * (this proc does not have debugging information OR
2558 * the PC is in the procedure prologue)
2559 * THEN create a "heuristic" proc_desc (by analyzing
2560 * the actual code) to replace the "official" proc_desc.
2561 */
2562 if (next_frame == NULL)
2563 {
2564 struct symtab_and_line val;
2565 struct symbol *proc_symbol =
2566 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2567
2568 if (proc_symbol)
2569 {
2570 val = find_pc_line (BLOCK_START
2571 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2572 0);
2573 val.pc = val.end ? val.end : pc;
2574 }
2575 if (!proc_symbol || pc < val.pc)
2576 {
2577 mips_extra_func_info_t found_heuristic =
2578 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2579 pc, next_frame, cur_frame);
2580 if (found_heuristic)
2581 proc_desc = found_heuristic;
2582 }
2583 }
2584 }
2585 else
2586 {
2587 /* Is linked_proc_desc_table really necessary? It only seems to be used
2588 by procedure call dummys. However, the procedures being called ought
2589 to have their own proc_descs, and even if they don't,
2590 heuristic_proc_desc knows how to create them! */
2591
2592 register struct linked_proc_info *link;
2593
2594 for (link = linked_proc_desc_table; link; link = link->next)
2595 if (PROC_LOW_ADDR (&link->info) <= pc
2596 && PROC_HIGH_ADDR (&link->info) > pc)
2597 return &link->info;
2598
2599 if (startaddr == 0)
2600 startaddr = heuristic_proc_start (pc);
2601
2602 proc_desc =
2603 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2604 }
2605 return proc_desc;
2606 }
2607
2608 static CORE_ADDR
2609 get_frame_pointer (struct frame_info *frame,
2610 mips_extra_func_info_t proc_desc)
2611 {
2612 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
2613 + PROC_FRAME_OFFSET (proc_desc)
2614 - PROC_FRAME_ADJUST (proc_desc));
2615 }
2616
2617 static mips_extra_func_info_t cached_proc_desc;
2618
2619 static CORE_ADDR
2620 mips_frame_chain (struct frame_info *frame)
2621 {
2622 mips_extra_func_info_t proc_desc;
2623 CORE_ADDR tmp;
2624 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2625
2626 if (saved_pc == 0 || deprecated_inside_entry_file (saved_pc))
2627 return 0;
2628
2629 /* Check if the PC is inside a call stub. If it is, fetch the
2630 PC of the caller of that stub. */
2631 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2632 saved_pc = tmp;
2633
2634 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2635 {
2636 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2637 is well, frame->frame the bottom of the current frame will
2638 contain that value. */
2639 return get_frame_base (frame);
2640 }
2641
2642 /* Look up the procedure descriptor for this PC. */
2643 proc_desc = find_proc_desc (saved_pc, frame, 1);
2644 if (!proc_desc)
2645 return 0;
2646
2647 cached_proc_desc = proc_desc;
2648
2649 /* If no frame pointer and frame size is zero, we must be at end
2650 of stack (or otherwise hosed). If we don't check frame size,
2651 we loop forever if we see a zero size frame. */
2652 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2653 && PROC_FRAME_OFFSET (proc_desc) == 0
2654 /* The previous frame from a sigtramp frame might be frameless
2655 and have frame size zero. */
2656 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2657 /* For a generic dummy frame, let get_frame_pointer() unwind a
2658 register value saved as part of the dummy frame call. */
2659 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2660 return 0;
2661 else
2662 return get_frame_pointer (frame, proc_desc);
2663 }
2664
2665 static void
2666 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2667 {
2668 int regnum;
2669 mips_extra_func_info_t proc_desc;
2670
2671 if (get_frame_type (fci) == DUMMY_FRAME)
2672 return;
2673
2674 /* Use proc_desc calculated in frame_chain. When there is no
2675 next frame, i.e, get_next_frame (fci) == NULL, we call
2676 find_proc_desc () to calculate it, passing an explicit
2677 NULL as the frame parameter. */
2678 proc_desc =
2679 get_next_frame (fci)
2680 ? cached_proc_desc
2681 : find_proc_desc (get_frame_pc (fci),
2682 NULL /* i.e, get_next_frame (fci) */,
2683 1);
2684
2685 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2686
2687 deprecated_set_frame_saved_regs_hack (fci, NULL);
2688 get_frame_extra_info (fci)->proc_desc =
2689 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2690 if (proc_desc)
2691 {
2692 /* Fixup frame-pointer - only needed for top frame */
2693 /* This may not be quite right, if proc has a real frame register.
2694 Get the value of the frame relative sp, procedure might have been
2695 interrupted by a signal at it's very start. */
2696 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2697 && !PROC_DESC_IS_DUMMY (proc_desc))
2698 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
2699 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2700 /* Do not ``fix'' fci->frame. It will have the value of the
2701 generic dummy frame's top-of-stack (since the draft
2702 fci->frame is obtained by returning the unwound stack
2703 pointer) and that is what we want. That way the fci->frame
2704 value will match the top-of-stack value that was saved as
2705 part of the dummy frames data. */
2706 /* Do nothing. */;
2707 else
2708 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2709
2710 if (proc_desc == &temp_proc_desc)
2711 {
2712 char *name;
2713
2714 /* Do not set the saved registers for a sigtramp frame,
2715 mips_find_saved_registers will do that for us. We can't
2716 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2717 yet set. */
2718 /* FIXME: cagney/2002-11-18: This problem will go away once
2719 frame.c:get_prev_frame() is modified to set the frame's
2720 type before calling functions like this. */
2721 find_pc_partial_function (get_frame_pc (fci), &name,
2722 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2723 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2724 {
2725 frame_saved_regs_zalloc (fci);
2726 /* Set value of previous frame's stack pointer.
2727 Remember that saved_regs[SP_REGNUM] is special in
2728 that it contains the value of the stack pointer
2729 register. The other saved_regs values are addresses
2730 (in the inferior) at which a given register's value
2731 may be found. */
2732 set_reg_offset (temp_saved_regs, SP_REGNUM,
2733 get_frame_base (fci));
2734 set_reg_offset (temp_saved_regs, PC_REGNUM,
2735 temp_saved_regs[RA_REGNUM]);
2736 memcpy (get_frame_saved_regs (fci), temp_saved_regs,
2737 SIZEOF_FRAME_SAVED_REGS);
2738 }
2739 }
2740
2741 /* hack: if argument regs are saved, guess these contain args */
2742 /* assume we can't tell how many args for now */
2743 get_frame_extra_info (fci)->num_args = -1;
2744 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2745 {
2746 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2747 {
2748 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2749 break;
2750 }
2751 }
2752 }
2753 }
2754
2755 /* MIPS stack frames are almost impenetrable. When execution stops,
2756 we basically have to look at symbol information for the function
2757 that we stopped in, which tells us *which* register (if any) is
2758 the base of the frame pointer, and what offset from that register
2759 the frame itself is at.
2760
2761 This presents a problem when trying to examine a stack in memory
2762 (that isn't executing at the moment), using the "frame" command. We
2763 don't have a PC, nor do we have any registers except SP.
2764
2765 This routine takes two arguments, SP and PC, and tries to make the
2766 cached frames look as if these two arguments defined a frame on the
2767 cache. This allows the rest of info frame to extract the important
2768 arguments without difficulty. */
2769
2770 struct frame_info *
2771 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2772 {
2773 if (argc != 2)
2774 error ("MIPS frame specifications require two arguments: sp and pc");
2775
2776 return create_new_frame (argv[0], argv[1]);
2777 }
2778
2779 /* According to the current ABI, should the type be passed in a
2780 floating-point register (assuming that there is space)? When there
2781 is no FPU, FP are not even considered as possibile candidates for
2782 FP registers and, consequently this returns false - forces FP
2783 arguments into integer registers. */
2784
2785 static int
2786 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2787 {
2788 return ((typecode == TYPE_CODE_FLT
2789 || (MIPS_EABI
2790 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2791 && TYPE_NFIELDS (arg_type) == 1
2792 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2793 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2794 }
2795
2796 /* On o32, argument passing in GPRs depends on the alignment of the type being
2797 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2798
2799 static int
2800 mips_type_needs_double_align (struct type *type)
2801 {
2802 enum type_code typecode = TYPE_CODE (type);
2803
2804 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2805 return 1;
2806 else if (typecode == TYPE_CODE_STRUCT)
2807 {
2808 if (TYPE_NFIELDS (type) < 1)
2809 return 0;
2810 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2811 }
2812 else if (typecode == TYPE_CODE_UNION)
2813 {
2814 int i, n;
2815
2816 n = TYPE_NFIELDS (type);
2817 for (i = 0; i < n; i++)
2818 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2819 return 1;
2820 return 0;
2821 }
2822 return 0;
2823 }
2824
2825 /* Macros to round N up or down to the next A boundary;
2826 A must be a power of two. */
2827
2828 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2829 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2830
2831 /* Adjust the address downward (direction of stack growth) so that it
2832 is correctly aligned for a new stack frame. */
2833 static CORE_ADDR
2834 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2835 {
2836 return ROUND_DOWN (addr, 16);
2837 }
2838
2839 static CORE_ADDR
2840 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2841 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2842 struct value **args, CORE_ADDR sp, int struct_return,
2843 CORE_ADDR struct_addr)
2844 {
2845 int argreg;
2846 int float_argreg;
2847 int argnum;
2848 int len = 0;
2849 int stack_offset = 0;
2850
2851 /* For shared libraries, "t9" needs to point at the function
2852 address. */
2853 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2854
2855 /* Set the return address register to point to the entry point of
2856 the program, where a breakpoint lies in wait. */
2857 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2858
2859 /* First ensure that the stack and structure return address (if any)
2860 are properly aligned. The stack has to be at least 64-bit
2861 aligned even on 32-bit machines, because doubles must be 64-bit
2862 aligned. For n32 and n64, stack frames need to be 128-bit
2863 aligned, so we round to this widest known alignment. */
2864
2865 sp = ROUND_DOWN (sp, 16);
2866 struct_addr = ROUND_DOWN (struct_addr, 16);
2867
2868 /* Now make space on the stack for the args. We allocate more
2869 than necessary for EABI, because the first few arguments are
2870 passed in registers, but that's OK. */
2871 for (argnum = 0; argnum < nargs; argnum++)
2872 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2873 MIPS_STACK_ARGSIZE);
2874 sp -= ROUND_UP (len, 16);
2875
2876 if (mips_debug)
2877 fprintf_unfiltered (gdb_stdlog,
2878 "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n",
2879 paddr_nz (sp), ROUND_UP (len, 16));
2880
2881 /* Initialize the integer and float register pointers. */
2882 argreg = A0_REGNUM;
2883 float_argreg = FPA0_REGNUM;
2884
2885 /* The struct_return pointer occupies the first parameter-passing reg. */
2886 if (struct_return)
2887 {
2888 if (mips_debug)
2889 fprintf_unfiltered (gdb_stdlog,
2890 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2891 argreg, paddr_nz (struct_addr));
2892 write_register (argreg++, struct_addr);
2893 }
2894
2895 /* Now load as many as possible of the first arguments into
2896 registers, and push the rest onto the stack. Loop thru args
2897 from first to last. */
2898 for (argnum = 0; argnum < nargs; argnum++)
2899 {
2900 char *val;
2901 char valbuf[MAX_REGISTER_SIZE];
2902 struct value *arg = args[argnum];
2903 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2904 int len = TYPE_LENGTH (arg_type);
2905 enum type_code typecode = TYPE_CODE (arg_type);
2906
2907 if (mips_debug)
2908 fprintf_unfiltered (gdb_stdlog,
2909 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2910 argnum + 1, len, (int) typecode);
2911
2912 /* The EABI passes structures that do not fit in a register by
2913 reference. */
2914 if (len > MIPS_SAVED_REGSIZE
2915 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2916 {
2917 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2918 typecode = TYPE_CODE_PTR;
2919 len = MIPS_SAVED_REGSIZE;
2920 val = valbuf;
2921 if (mips_debug)
2922 fprintf_unfiltered (gdb_stdlog, " push");
2923 }
2924 else
2925 val = (char *) VALUE_CONTENTS (arg);
2926
2927 /* 32-bit ABIs always start floating point arguments in an
2928 even-numbered floating point register. Round the FP register
2929 up before the check to see if there are any FP registers
2930 left. Non MIPS_EABI targets also pass the FP in the integer
2931 registers so also round up normal registers. */
2932 if (!FP_REGISTER_DOUBLE
2933 && fp_register_arg_p (typecode, arg_type))
2934 {
2935 if ((float_argreg & 1))
2936 float_argreg++;
2937 }
2938
2939 /* Floating point arguments passed in registers have to be
2940 treated specially. On 32-bit architectures, doubles
2941 are passed in register pairs; the even register gets
2942 the low word, and the odd register gets the high word.
2943 On non-EABI processors, the first two floating point arguments are
2944 also copied to general registers, because MIPS16 functions
2945 don't use float registers for arguments. This duplication of
2946 arguments in general registers can't hurt non-MIPS16 functions
2947 because those registers are normally skipped. */
2948 /* MIPS_EABI squeezes a struct that contains a single floating
2949 point value into an FP register instead of pushing it onto the
2950 stack. */
2951 if (fp_register_arg_p (typecode, arg_type)
2952 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2953 {
2954 if (!FP_REGISTER_DOUBLE && len == 8)
2955 {
2956 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2957 unsigned long regval;
2958
2959 /* Write the low word of the double to the even register(s). */
2960 regval = extract_unsigned_integer (val + low_offset, 4);
2961 if (mips_debug)
2962 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2963 float_argreg, phex (regval, 4));
2964 write_register (float_argreg++, regval);
2965
2966 /* Write the high word of the double to the odd register(s). */
2967 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2968 if (mips_debug)
2969 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2970 float_argreg, phex (regval, 4));
2971 write_register (float_argreg++, regval);
2972 }
2973 else
2974 {
2975 /* This is a floating point value that fits entirely
2976 in a single register. */
2977 /* On 32 bit ABI's the float_argreg is further adjusted
2978 above to ensure that it is even register aligned. */
2979 LONGEST regval = extract_unsigned_integer (val, len);
2980 if (mips_debug)
2981 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2982 float_argreg, phex (regval, len));
2983 write_register (float_argreg++, regval);
2984 }
2985 }
2986 else
2987 {
2988 /* Copy the argument to general registers or the stack in
2989 register-sized pieces. Large arguments are split between
2990 registers and stack. */
2991 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2992 are treated specially: Irix cc passes them in registers
2993 where gcc sometimes puts them on the stack. For maximum
2994 compatibility, we will put them in both places. */
2995 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2996 (len % MIPS_SAVED_REGSIZE != 0));
2997
2998 /* Note: Floating-point values that didn't fit into an FP
2999 register are only written to memory. */
3000 while (len > 0)
3001 {
3002 /* Remember if the argument was written to the stack. */
3003 int stack_used_p = 0;
3004 int partial_len =
3005 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3006
3007 if (mips_debug)
3008 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3009 partial_len);
3010
3011 /* Write this portion of the argument to the stack. */
3012 if (argreg > MIPS_LAST_ARG_REGNUM
3013 || odd_sized_struct
3014 || fp_register_arg_p (typecode, arg_type))
3015 {
3016 /* Should shorter than int integer values be
3017 promoted to int before being stored? */
3018 int longword_offset = 0;
3019 CORE_ADDR addr;
3020 stack_used_p = 1;
3021 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3022 {
3023 if (MIPS_STACK_ARGSIZE == 8 &&
3024 (typecode == TYPE_CODE_INT ||
3025 typecode == TYPE_CODE_PTR ||
3026 typecode == TYPE_CODE_FLT) && len <= 4)
3027 longword_offset = MIPS_STACK_ARGSIZE - len;
3028 else if ((typecode == TYPE_CODE_STRUCT ||
3029 typecode == TYPE_CODE_UNION) &&
3030 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
3031 longword_offset = MIPS_STACK_ARGSIZE - len;
3032 }
3033
3034 if (mips_debug)
3035 {
3036 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3037 paddr_nz (stack_offset));
3038 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3039 paddr_nz (longword_offset));
3040 }
3041
3042 addr = sp + stack_offset + longword_offset;
3043
3044 if (mips_debug)
3045 {
3046 int i;
3047 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3048 paddr_nz (addr));
3049 for (i = 0; i < partial_len; i++)
3050 {
3051 fprintf_unfiltered (gdb_stdlog, "%02x",
3052 val[i] & 0xff);
3053 }
3054 }
3055 write_memory (addr, val, partial_len);
3056 }
3057
3058 /* Note!!! This is NOT an else clause. Odd sized
3059 structs may go thru BOTH paths. Floating point
3060 arguments will not. */
3061 /* Write this portion of the argument to a general
3062 purpose register. */
3063 if (argreg <= MIPS_LAST_ARG_REGNUM
3064 && !fp_register_arg_p (typecode, arg_type))
3065 {
3066 LONGEST regval = extract_unsigned_integer (val, partial_len);
3067
3068 if (mips_debug)
3069 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3070 argreg,
3071 phex (regval, MIPS_SAVED_REGSIZE));
3072 write_register (argreg, regval);
3073 argreg++;
3074 }
3075
3076 len -= partial_len;
3077 val += partial_len;
3078
3079 /* Compute the the offset into the stack at which we
3080 will copy the next parameter.
3081
3082 In the new EABI (and the NABI32), the stack_offset
3083 only needs to be adjusted when it has been used. */
3084
3085 if (stack_used_p)
3086 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3087 }
3088 }
3089 if (mips_debug)
3090 fprintf_unfiltered (gdb_stdlog, "\n");
3091 }
3092
3093 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3094
3095 /* Return adjusted stack pointer. */
3096 return sp;
3097 }
3098
3099 /* N32/N64 version of push_dummy_call. */
3100
3101 static CORE_ADDR
3102 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3103 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3104 struct value **args, CORE_ADDR sp, int struct_return,
3105 CORE_ADDR struct_addr)
3106 {
3107 int argreg;
3108 int float_argreg;
3109 int argnum;
3110 int len = 0;
3111 int stack_offset = 0;
3112
3113 /* For shared libraries, "t9" needs to point at the function
3114 address. */
3115 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3116
3117 /* Set the return address register to point to the entry point of
3118 the program, where a breakpoint lies in wait. */
3119 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3120
3121 /* First ensure that the stack and structure return address (if any)
3122 are properly aligned. The stack has to be at least 64-bit
3123 aligned even on 32-bit machines, because doubles must be 64-bit
3124 aligned. For n32 and n64, stack frames need to be 128-bit
3125 aligned, so we round to this widest known alignment. */
3126
3127 sp = ROUND_DOWN (sp, 16);
3128 struct_addr = ROUND_DOWN (struct_addr, 16);
3129
3130 /* Now make space on the stack for the args. */
3131 for (argnum = 0; argnum < nargs; argnum++)
3132 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3133 MIPS_STACK_ARGSIZE);
3134 sp -= ROUND_UP (len, 16);
3135
3136 if (mips_debug)
3137 fprintf_unfiltered (gdb_stdlog,
3138 "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n",
3139 paddr_nz (sp), ROUND_UP (len, 16));
3140
3141 /* Initialize the integer and float register pointers. */
3142 argreg = A0_REGNUM;
3143 float_argreg = FPA0_REGNUM;
3144
3145 /* The struct_return pointer occupies the first parameter-passing reg. */
3146 if (struct_return)
3147 {
3148 if (mips_debug)
3149 fprintf_unfiltered (gdb_stdlog,
3150 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3151 argreg, paddr_nz (struct_addr));
3152 write_register (argreg++, struct_addr);
3153 }
3154
3155 /* Now load as many as possible of the first arguments into
3156 registers, and push the rest onto the stack. Loop thru args
3157 from first to last. */
3158 for (argnum = 0; argnum < nargs; argnum++)
3159 {
3160 char *val;
3161 char valbuf[MAX_REGISTER_SIZE];
3162 struct value *arg = args[argnum];
3163 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3164 int len = TYPE_LENGTH (arg_type);
3165 enum type_code typecode = TYPE_CODE (arg_type);
3166
3167 if (mips_debug)
3168 fprintf_unfiltered (gdb_stdlog,
3169 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3170 argnum + 1, len, (int) typecode);
3171
3172 val = (char *) VALUE_CONTENTS (arg);
3173
3174 if (fp_register_arg_p (typecode, arg_type)
3175 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3176 {
3177 /* This is a floating point value that fits entirely
3178 in a single register. */
3179 /* On 32 bit ABI's the float_argreg is further adjusted
3180 above to ensure that it is even register aligned. */
3181 LONGEST regval = extract_unsigned_integer (val, len);
3182 if (mips_debug)
3183 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3184 float_argreg, phex (regval, len));
3185 write_register (float_argreg++, regval);
3186
3187 if (mips_debug)
3188 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3189 argreg, phex (regval, len));
3190 write_register (argreg, regval);
3191 argreg += 1;
3192 }
3193 else
3194 {
3195 /* Copy the argument to general registers or the stack in
3196 register-sized pieces. Large arguments are split between
3197 registers and stack. */
3198 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3199 are treated specially: Irix cc passes them in registers
3200 where gcc sometimes puts them on the stack. For maximum
3201 compatibility, we will put them in both places. */
3202 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3203 (len % MIPS_SAVED_REGSIZE != 0));
3204 /* Note: Floating-point values that didn't fit into an FP
3205 register are only written to memory. */
3206 while (len > 0)
3207 {
3208 /* Rememer if the argument was written to the stack. */
3209 int stack_used_p = 0;
3210 int partial_len = len < MIPS_SAVED_REGSIZE ?
3211 len : MIPS_SAVED_REGSIZE;
3212
3213 if (mips_debug)
3214 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3215 partial_len);
3216
3217 /* Write this portion of the argument to the stack. */
3218 if (argreg > MIPS_LAST_ARG_REGNUM
3219 || odd_sized_struct
3220 || fp_register_arg_p (typecode, arg_type))
3221 {
3222 /* Should shorter than int integer values be
3223 promoted to int before being stored? */
3224 int longword_offset = 0;
3225 CORE_ADDR addr;
3226 stack_used_p = 1;
3227 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3228 {
3229 if (MIPS_STACK_ARGSIZE == 8 &&
3230 (typecode == TYPE_CODE_INT ||
3231 typecode == TYPE_CODE_PTR ||
3232 typecode == TYPE_CODE_FLT) && len <= 4)
3233 longword_offset = MIPS_STACK_ARGSIZE - len;
3234 }
3235
3236 if (mips_debug)
3237 {
3238 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3239 paddr_nz (stack_offset));
3240 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3241 paddr_nz (longword_offset));
3242 }
3243
3244 addr = sp + stack_offset + longword_offset;
3245
3246 if (mips_debug)
3247 {
3248 int i;
3249 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3250 paddr_nz (addr));
3251 for (i = 0; i < partial_len; i++)
3252 {
3253 fprintf_unfiltered (gdb_stdlog, "%02x",
3254 val[i] & 0xff);
3255 }
3256 }
3257 write_memory (addr, val, partial_len);
3258 }
3259
3260 /* Note!!! This is NOT an else clause. Odd sized
3261 structs may go thru BOTH paths. Floating point
3262 arguments will not. */
3263 /* Write this portion of the argument to a general
3264 purpose register. */
3265 if (argreg <= MIPS_LAST_ARG_REGNUM
3266 && !fp_register_arg_p (typecode, arg_type))
3267 {
3268 LONGEST regval = extract_unsigned_integer (val, partial_len);
3269
3270 /* A non-floating-point argument being passed in a
3271 general register. If a struct or union, and if
3272 the remaining length is smaller than the register
3273 size, we have to adjust the register value on
3274 big endian targets.
3275
3276 It does not seem to be necessary to do the
3277 same for integral types.
3278
3279 cagney/2001-07-23: gdb/179: Also, GCC, when
3280 outputting LE O32 with sizeof (struct) <
3281 MIPS_SAVED_REGSIZE, generates a left shift as
3282 part of storing the argument in a register a
3283 register (the left shift isn't generated when
3284 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3285 is quite possible that this is GCC contradicting
3286 the LE/O32 ABI, GDB has not been adjusted to
3287 accommodate this. Either someone needs to
3288 demonstrate that the LE/O32 ABI specifies such a
3289 left shift OR this new ABI gets identified as
3290 such and GDB gets tweaked accordingly. */
3291
3292 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3293 && partial_len < MIPS_SAVED_REGSIZE
3294 && (typecode == TYPE_CODE_STRUCT ||
3295 typecode == TYPE_CODE_UNION))
3296 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3297 TARGET_CHAR_BIT);
3298
3299 if (mips_debug)
3300 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3301 argreg,
3302 phex (regval, MIPS_SAVED_REGSIZE));
3303 write_register (argreg, regval);
3304 argreg++;
3305 }
3306
3307 len -= partial_len;
3308 val += partial_len;
3309
3310 /* Compute the the offset into the stack at which we
3311 will copy the next parameter.
3312
3313 In N32 (N64?), the stack_offset only needs to be
3314 adjusted when it has been used. */
3315
3316 if (stack_used_p)
3317 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3318 }
3319 }
3320 if (mips_debug)
3321 fprintf_unfiltered (gdb_stdlog, "\n");
3322 }
3323
3324 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3325
3326 /* Return adjusted stack pointer. */
3327 return sp;
3328 }
3329
3330 /* O32 version of push_dummy_call. */
3331
3332 static CORE_ADDR
3333 mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3334 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3335 struct value **args, CORE_ADDR sp, int struct_return,
3336 CORE_ADDR struct_addr)
3337 {
3338 int argreg;
3339 int float_argreg;
3340 int argnum;
3341 int len = 0;
3342 int stack_offset = 0;
3343
3344 /* For shared libraries, "t9" needs to point at the function
3345 address. */
3346 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3347
3348 /* Set the return address register to point to the entry point of
3349 the program, where a breakpoint lies in wait. */
3350 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3351
3352 /* First ensure that the stack and structure return address (if any)
3353 are properly aligned. The stack has to be at least 64-bit
3354 aligned even on 32-bit machines, because doubles must be 64-bit
3355 aligned. For n32 and n64, stack frames need to be 128-bit
3356 aligned, so we round to this widest known alignment. */
3357
3358 sp = ROUND_DOWN (sp, 16);
3359 struct_addr = ROUND_DOWN (struct_addr, 16);
3360
3361 /* Now make space on the stack for the args. */
3362 for (argnum = 0; argnum < nargs; argnum++)
3363 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3364 MIPS_STACK_ARGSIZE);
3365 sp -= ROUND_UP (len, 16);
3366
3367 if (mips_debug)
3368 fprintf_unfiltered (gdb_stdlog,
3369 "mips_o32_push_dummy_call: sp=0x%s allocated %d\n",
3370 paddr_nz (sp), ROUND_UP (len, 16));
3371
3372 /* Initialize the integer and float register pointers. */
3373 argreg = A0_REGNUM;
3374 float_argreg = FPA0_REGNUM;
3375
3376 /* The struct_return pointer occupies the first parameter-passing reg. */
3377 if (struct_return)
3378 {
3379 if (mips_debug)
3380 fprintf_unfiltered (gdb_stdlog,
3381 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3382 argreg, paddr_nz (struct_addr));
3383 write_register (argreg++, struct_addr);
3384 stack_offset += MIPS_STACK_ARGSIZE;
3385 }
3386
3387 /* Now load as many as possible of the first arguments into
3388 registers, and push the rest onto the stack. Loop thru args
3389 from first to last. */
3390 for (argnum = 0; argnum < nargs; argnum++)
3391 {
3392 char *val;
3393 char valbuf[MAX_REGISTER_SIZE];
3394 struct value *arg = args[argnum];
3395 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3396 int len = TYPE_LENGTH (arg_type);
3397 enum type_code typecode = TYPE_CODE (arg_type);
3398
3399 if (mips_debug)
3400 fprintf_unfiltered (gdb_stdlog,
3401 "mips_o32_push_dummy_call: %d len=%d type=%d",
3402 argnum + 1, len, (int) typecode);
3403
3404 val = (char *) VALUE_CONTENTS (arg);
3405
3406 /* 32-bit ABIs always start floating point arguments in an
3407 even-numbered floating point register. Round the FP register
3408 up before the check to see if there are any FP registers
3409 left. O32/O64 targets also pass the FP in the integer
3410 registers so also round up normal registers. */
3411 if (!FP_REGISTER_DOUBLE
3412 && fp_register_arg_p (typecode, arg_type))
3413 {
3414 if ((float_argreg & 1))
3415 float_argreg++;
3416 }
3417
3418 /* Floating point arguments passed in registers have to be
3419 treated specially. On 32-bit architectures, doubles
3420 are passed in register pairs; the even register gets
3421 the low word, and the odd register gets the high word.
3422 On O32/O64, the first two floating point arguments are
3423 also copied to general registers, because MIPS16 functions
3424 don't use float registers for arguments. This duplication of
3425 arguments in general registers can't hurt non-MIPS16 functions
3426 because those registers are normally skipped. */
3427
3428 if (fp_register_arg_p (typecode, arg_type)
3429 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3430 {
3431 if (!FP_REGISTER_DOUBLE && len == 8)
3432 {
3433 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3434 unsigned long regval;
3435
3436 /* Write the low word of the double to the even register(s). */
3437 regval = extract_unsigned_integer (val + low_offset, 4);
3438 if (mips_debug)
3439 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3440 float_argreg, phex (regval, 4));
3441 write_register (float_argreg++, regval);
3442 if (mips_debug)
3443 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3444 argreg, phex (regval, 4));
3445 write_register (argreg++, regval);
3446
3447 /* Write the high word of the double to the odd register(s). */
3448 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3449 if (mips_debug)
3450 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3451 float_argreg, phex (regval, 4));
3452 write_register (float_argreg++, regval);
3453
3454 if (mips_debug)
3455 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3456 argreg, phex (regval, 4));
3457 write_register (argreg++, regval);
3458 }
3459 else
3460 {
3461 /* This is a floating point value that fits entirely
3462 in a single register. */
3463 /* On 32 bit ABI's the float_argreg is further adjusted
3464 above to ensure that it is even register aligned. */
3465 LONGEST regval = extract_unsigned_integer (val, len);
3466 if (mips_debug)
3467 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3468 float_argreg, phex (regval, len));
3469 write_register (float_argreg++, regval);
3470 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3471 registers for each argument. The below is (my
3472 guess) to ensure that the corresponding integer
3473 register has reserved the same space. */
3474 if (mips_debug)
3475 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3476 argreg, phex (regval, len));
3477 write_register (argreg, regval);
3478 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3479 }
3480 /* Reserve space for the FP register. */
3481 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3482 }
3483 else
3484 {
3485 /* Copy the argument to general registers or the stack in
3486 register-sized pieces. Large arguments are split between
3487 registers and stack. */
3488 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3489 are treated specially: Irix cc passes them in registers
3490 where gcc sometimes puts them on the stack. For maximum
3491 compatibility, we will put them in both places. */
3492 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3493 (len % MIPS_SAVED_REGSIZE != 0));
3494 /* Structures should be aligned to eight bytes (even arg registers)
3495 on MIPS_ABI_O32, if their first member has double precision. */
3496 if (MIPS_SAVED_REGSIZE < 8
3497 && mips_type_needs_double_align (arg_type))
3498 {
3499 if ((argreg & 1))
3500 argreg++;
3501 }
3502 /* Note: Floating-point values that didn't fit into an FP
3503 register are only written to memory. */
3504 while (len > 0)
3505 {
3506 /* Remember if the argument was written to the stack. */
3507 int stack_used_p = 0;
3508 int partial_len =
3509 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3510
3511 if (mips_debug)
3512 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3513 partial_len);
3514
3515 /* Write this portion of the argument to the stack. */
3516 if (argreg > MIPS_LAST_ARG_REGNUM
3517 || odd_sized_struct
3518 || fp_register_arg_p (typecode, arg_type))
3519 {
3520 /* Should shorter than int integer values be
3521 promoted to int before being stored? */
3522 int longword_offset = 0;
3523 CORE_ADDR addr;
3524 stack_used_p = 1;
3525 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3526 {
3527 if (MIPS_STACK_ARGSIZE == 8 &&
3528 (typecode == TYPE_CODE_INT ||
3529 typecode == TYPE_CODE_PTR ||
3530 typecode == TYPE_CODE_FLT) && len <= 4)
3531 longword_offset = MIPS_STACK_ARGSIZE - len;
3532 }
3533
3534 if (mips_debug)
3535 {
3536 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3537 paddr_nz (stack_offset));
3538 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3539 paddr_nz (longword_offset));
3540 }
3541
3542 addr = sp + stack_offset + longword_offset;
3543
3544 if (mips_debug)
3545 {
3546 int i;
3547 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3548 paddr_nz (addr));
3549 for (i = 0; i < partial_len; i++)
3550 {
3551 fprintf_unfiltered (gdb_stdlog, "%02x",
3552 val[i] & 0xff);
3553 }
3554 }
3555 write_memory (addr, val, partial_len);
3556 }
3557
3558 /* Note!!! This is NOT an else clause. Odd sized
3559 structs may go thru BOTH paths. Floating point
3560 arguments will not. */
3561 /* Write this portion of the argument to a general
3562 purpose register. */
3563 if (argreg <= MIPS_LAST_ARG_REGNUM
3564 && !fp_register_arg_p (typecode, arg_type))
3565 {
3566 LONGEST regval = extract_signed_integer (val, partial_len);
3567 /* Value may need to be sign extended, because
3568 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3569
3570 /* A non-floating-point argument being passed in a
3571 general register. If a struct or union, and if
3572 the remaining length is smaller than the register
3573 size, we have to adjust the register value on
3574 big endian targets.
3575
3576 It does not seem to be necessary to do the
3577 same for integral types.
3578
3579 Also don't do this adjustment on O64 binaries.
3580
3581 cagney/2001-07-23: gdb/179: Also, GCC, when
3582 outputting LE O32 with sizeof (struct) <
3583 MIPS_SAVED_REGSIZE, generates a left shift as
3584 part of storing the argument in a register a
3585 register (the left shift isn't generated when
3586 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3587 is quite possible that this is GCC contradicting
3588 the LE/O32 ABI, GDB has not been adjusted to
3589 accommodate this. Either someone needs to
3590 demonstrate that the LE/O32 ABI specifies such a
3591 left shift OR this new ABI gets identified as
3592 such and GDB gets tweaked accordingly. */
3593
3594 if (MIPS_SAVED_REGSIZE < 8
3595 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3596 && partial_len < MIPS_SAVED_REGSIZE
3597 && (typecode == TYPE_CODE_STRUCT ||
3598 typecode == TYPE_CODE_UNION))
3599 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3600 TARGET_CHAR_BIT);
3601
3602 if (mips_debug)
3603 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3604 argreg,
3605 phex (regval, MIPS_SAVED_REGSIZE));
3606 write_register (argreg, regval);
3607 argreg++;
3608
3609 /* Prevent subsequent floating point arguments from
3610 being passed in floating point registers. */
3611 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3612 }
3613
3614 len -= partial_len;
3615 val += partial_len;
3616
3617 /* Compute the the offset into the stack at which we
3618 will copy the next parameter.
3619
3620 In older ABIs, the caller reserved space for
3621 registers that contained arguments. This was loosely
3622 refered to as their "home". Consequently, space is
3623 always allocated. */
3624
3625 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3626 }
3627 }
3628 if (mips_debug)
3629 fprintf_unfiltered (gdb_stdlog, "\n");
3630 }
3631
3632 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3633
3634 /* Return adjusted stack pointer. */
3635 return sp;
3636 }
3637
3638 /* O64 version of push_dummy_call. */
3639
3640 static CORE_ADDR
3641 mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3642 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3643 struct value **args, CORE_ADDR sp, int struct_return,
3644 CORE_ADDR struct_addr)
3645 {
3646 int argreg;
3647 int float_argreg;
3648 int argnum;
3649 int len = 0;
3650 int stack_offset = 0;
3651
3652 /* For shared libraries, "t9" needs to point at the function
3653 address. */
3654 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3655
3656 /* Set the return address register to point to the entry point of
3657 the program, where a breakpoint lies in wait. */
3658 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3659
3660 /* First ensure that the stack and structure return address (if any)
3661 are properly aligned. The stack has to be at least 64-bit
3662 aligned even on 32-bit machines, because doubles must be 64-bit
3663 aligned. For n32 and n64, stack frames need to be 128-bit
3664 aligned, so we round to this widest known alignment. */
3665
3666 sp = ROUND_DOWN (sp, 16);
3667 struct_addr = ROUND_DOWN (struct_addr, 16);
3668
3669 /* Now make space on the stack for the args. */
3670 for (argnum = 0; argnum < nargs; argnum++)
3671 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3672 MIPS_STACK_ARGSIZE);
3673 sp -= ROUND_UP (len, 16);
3674
3675 if (mips_debug)
3676 fprintf_unfiltered (gdb_stdlog,
3677 "mips_o64_push_dummy_call: sp=0x%s allocated %d\n",
3678 paddr_nz (sp), ROUND_UP (len, 16));
3679
3680 /* Initialize the integer and float register pointers. */
3681 argreg = A0_REGNUM;
3682 float_argreg = FPA0_REGNUM;
3683
3684 /* The struct_return pointer occupies the first parameter-passing reg. */
3685 if (struct_return)
3686 {
3687 if (mips_debug)
3688 fprintf_unfiltered (gdb_stdlog,
3689 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3690 argreg, paddr_nz (struct_addr));
3691 write_register (argreg++, struct_addr);
3692 stack_offset += MIPS_STACK_ARGSIZE;
3693 }
3694
3695 /* Now load as many as possible of the first arguments into
3696 registers, and push the rest onto the stack. Loop thru args
3697 from first to last. */
3698 for (argnum = 0; argnum < nargs; argnum++)
3699 {
3700 char *val;
3701 char valbuf[MAX_REGISTER_SIZE];
3702 struct value *arg = args[argnum];
3703 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3704 int len = TYPE_LENGTH (arg_type);
3705 enum type_code typecode = TYPE_CODE (arg_type);
3706
3707 if (mips_debug)
3708 fprintf_unfiltered (gdb_stdlog,
3709 "mips_o64_push_dummy_call: %d len=%d type=%d",
3710 argnum + 1, len, (int) typecode);
3711
3712 val = (char *) VALUE_CONTENTS (arg);
3713
3714 /* 32-bit ABIs always start floating point arguments in an
3715 even-numbered floating point register. Round the FP register
3716 up before the check to see if there are any FP registers
3717 left. O32/O64 targets also pass the FP in the integer
3718 registers so also round up normal registers. */
3719 if (!FP_REGISTER_DOUBLE
3720 && fp_register_arg_p (typecode, arg_type))
3721 {
3722 if ((float_argreg & 1))
3723 float_argreg++;
3724 }
3725
3726 /* Floating point arguments passed in registers have to be
3727 treated specially. On 32-bit architectures, doubles
3728 are passed in register pairs; the even register gets
3729 the low word, and the odd register gets the high word.
3730 On O32/O64, the first two floating point arguments are
3731 also copied to general registers, because MIPS16 functions
3732 don't use float registers for arguments. This duplication of
3733 arguments in general registers can't hurt non-MIPS16 functions
3734 because those registers are normally skipped. */
3735
3736 if (fp_register_arg_p (typecode, arg_type)
3737 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3738 {
3739 if (!FP_REGISTER_DOUBLE && len == 8)
3740 {
3741 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3742 unsigned long regval;
3743
3744 /* Write the low word of the double to the even register(s). */
3745 regval = extract_unsigned_integer (val + low_offset, 4);
3746 if (mips_debug)
3747 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3748 float_argreg, phex (regval, 4));
3749 write_register (float_argreg++, regval);
3750 if (mips_debug)
3751 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3752 argreg, phex (regval, 4));
3753 write_register (argreg++, regval);
3754
3755 /* Write the high word of the double to the odd register(s). */
3756 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3757 if (mips_debug)
3758 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3759 float_argreg, phex (regval, 4));
3760 write_register (float_argreg++, regval);
3761
3762 if (mips_debug)
3763 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3764 argreg, phex (regval, 4));
3765 write_register (argreg++, regval);
3766 }
3767 else
3768 {
3769 /* This is a floating point value that fits entirely
3770 in a single register. */
3771 /* On 32 bit ABI's the float_argreg is further adjusted
3772 above to ensure that it is even register aligned. */
3773 LONGEST regval = extract_unsigned_integer (val, len);
3774 if (mips_debug)
3775 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3776 float_argreg, phex (regval, len));
3777 write_register (float_argreg++, regval);
3778 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3779 registers for each argument. The below is (my
3780 guess) to ensure that the corresponding integer
3781 register has reserved the same space. */
3782 if (mips_debug)
3783 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3784 argreg, phex (regval, len));
3785 write_register (argreg, regval);
3786 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3787 }
3788 /* Reserve space for the FP register. */
3789 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3790 }
3791 else
3792 {
3793 /* Copy the argument to general registers or the stack in
3794 register-sized pieces. Large arguments are split between
3795 registers and stack. */
3796 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3797 are treated specially: Irix cc passes them in registers
3798 where gcc sometimes puts them on the stack. For maximum
3799 compatibility, we will put them in both places. */
3800 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3801 (len % MIPS_SAVED_REGSIZE != 0));
3802 /* Structures should be aligned to eight bytes (even arg registers)
3803 on MIPS_ABI_O32, if their first member has double precision. */
3804 if (MIPS_SAVED_REGSIZE < 8
3805 && mips_type_needs_double_align (arg_type))
3806 {
3807 if ((argreg & 1))
3808 argreg++;
3809 }
3810 /* Note: Floating-point values that didn't fit into an FP
3811 register are only written to memory. */
3812 while (len > 0)
3813 {
3814 /* Remember if the argument was written to the stack. */
3815 int stack_used_p = 0;
3816 int partial_len =
3817 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3818
3819 if (mips_debug)
3820 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3821 partial_len);
3822
3823 /* Write this portion of the argument to the stack. */
3824 if (argreg > MIPS_LAST_ARG_REGNUM
3825 || odd_sized_struct
3826 || fp_register_arg_p (typecode, arg_type))
3827 {
3828 /* Should shorter than int integer values be
3829 promoted to int before being stored? */
3830 int longword_offset = 0;
3831 CORE_ADDR addr;
3832 stack_used_p = 1;
3833 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3834 {
3835 if (MIPS_STACK_ARGSIZE == 8 &&
3836 (typecode == TYPE_CODE_INT ||
3837 typecode == TYPE_CODE_PTR ||
3838 typecode == TYPE_CODE_FLT) && len <= 4)
3839 longword_offset = MIPS_STACK_ARGSIZE - len;
3840 }
3841
3842 if (mips_debug)
3843 {
3844 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3845 paddr_nz (stack_offset));
3846 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3847 paddr_nz (longword_offset));
3848 }
3849
3850 addr = sp + stack_offset + longword_offset;
3851
3852 if (mips_debug)
3853 {
3854 int i;
3855 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3856 paddr_nz (addr));
3857 for (i = 0; i < partial_len; i++)
3858 {
3859 fprintf_unfiltered (gdb_stdlog, "%02x",
3860 val[i] & 0xff);
3861 }
3862 }
3863 write_memory (addr, val, partial_len);
3864 }
3865
3866 /* Note!!! This is NOT an else clause. Odd sized
3867 structs may go thru BOTH paths. Floating point
3868 arguments will not. */
3869 /* Write this portion of the argument to a general
3870 purpose register. */
3871 if (argreg <= MIPS_LAST_ARG_REGNUM
3872 && !fp_register_arg_p (typecode, arg_type))
3873 {
3874 LONGEST regval = extract_signed_integer (val, partial_len);
3875 /* Value may need to be sign extended, because
3876 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3877
3878 /* A non-floating-point argument being passed in a
3879 general register. If a struct or union, and if
3880 the remaining length is smaller than the register
3881 size, we have to adjust the register value on
3882 big endian targets.
3883
3884 It does not seem to be necessary to do the
3885 same for integral types.
3886
3887 Also don't do this adjustment on O64 binaries.
3888
3889 cagney/2001-07-23: gdb/179: Also, GCC, when
3890 outputting LE O32 with sizeof (struct) <
3891 MIPS_SAVED_REGSIZE, generates a left shift as
3892 part of storing the argument in a register a
3893 register (the left shift isn't generated when
3894 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3895 is quite possible that this is GCC contradicting
3896 the LE/O32 ABI, GDB has not been adjusted to
3897 accommodate this. Either someone needs to
3898 demonstrate that the LE/O32 ABI specifies such a
3899 left shift OR this new ABI gets identified as
3900 such and GDB gets tweaked accordingly. */
3901
3902 if (MIPS_SAVED_REGSIZE < 8
3903 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3904 && partial_len < MIPS_SAVED_REGSIZE
3905 && (typecode == TYPE_CODE_STRUCT ||
3906 typecode == TYPE_CODE_UNION))
3907 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3908 TARGET_CHAR_BIT);
3909
3910 if (mips_debug)
3911 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3912 argreg,
3913 phex (regval, MIPS_SAVED_REGSIZE));
3914 write_register (argreg, regval);
3915 argreg++;
3916
3917 /* Prevent subsequent floating point arguments from
3918 being passed in floating point registers. */
3919 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3920 }
3921
3922 len -= partial_len;
3923 val += partial_len;
3924
3925 /* Compute the the offset into the stack at which we
3926 will copy the next parameter.
3927
3928 In older ABIs, the caller reserved space for
3929 registers that contained arguments. This was loosely
3930 refered to as their "home". Consequently, space is
3931 always allocated. */
3932
3933 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3934 }
3935 }
3936 if (mips_debug)
3937 fprintf_unfiltered (gdb_stdlog, "\n");
3938 }
3939
3940 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3941
3942 /* Return adjusted stack pointer. */
3943 return sp;
3944 }
3945
3946 static void
3947 mips_pop_frame (void)
3948 {
3949 register int regnum;
3950 struct frame_info *frame = get_current_frame ();
3951 CORE_ADDR new_sp = get_frame_base (frame);
3952 mips_extra_func_info_t proc_desc;
3953
3954 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3955 {
3956 generic_pop_dummy_frame ();
3957 flush_cached_frames ();
3958 return;
3959 }
3960
3961 proc_desc = get_frame_extra_info (frame)->proc_desc;
3962 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3963 mips_find_saved_regs (frame);
3964 for (regnum = 0; regnum < NUM_REGS; regnum++)
3965 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3966 && get_frame_saved_regs (frame)[regnum])
3967 {
3968 /* Floating point registers must not be sign extended,
3969 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3970
3971 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3972 write_register (regnum,
3973 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
3974 MIPS_SAVED_REGSIZE));
3975 else
3976 write_register (regnum,
3977 read_memory_integer (get_frame_saved_regs (frame)[regnum],
3978 MIPS_SAVED_REGSIZE));
3979 }
3980
3981 write_register (SP_REGNUM, new_sp);
3982 flush_cached_frames ();
3983
3984 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3985 {
3986 struct linked_proc_info *pi_ptr, *prev_ptr;
3987
3988 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3989 pi_ptr != NULL;
3990 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3991 {
3992 if (&pi_ptr->info == proc_desc)
3993 break;
3994 }
3995
3996 if (pi_ptr == NULL)
3997 error ("Can't locate dummy extra frame info\n");
3998
3999 if (prev_ptr != NULL)
4000 prev_ptr->next = pi_ptr->next;
4001 else
4002 linked_proc_desc_table = pi_ptr->next;
4003
4004 xfree (pi_ptr);
4005
4006 write_register (HI_REGNUM,
4007 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
4008 MIPS_SAVED_REGSIZE));
4009 write_register (LO_REGNUM,
4010 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
4011 MIPS_SAVED_REGSIZE));
4012 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
4013 write_register (FCRCS_REGNUM,
4014 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
4015 MIPS_SAVED_REGSIZE));
4016 }
4017 }
4018
4019 /* Floating point register management.
4020
4021 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4022 64bit operations, these early MIPS cpus treat fp register pairs
4023 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4024 registers and offer a compatibility mode that emulates the MIPS2 fp
4025 model. When operating in MIPS2 fp compat mode, later cpu's split
4026 double precision floats into two 32-bit chunks and store them in
4027 consecutive fp regs. To display 64-bit floats stored in this
4028 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4029 Throw in user-configurable endianness and you have a real mess.
4030
4031 The way this works is:
4032 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4033 double-precision value will be split across two logical registers.
4034 The lower-numbered logical register will hold the low-order bits,
4035 regardless of the processor's endianness.
4036 - If we are on a 64-bit processor, and we are looking for a
4037 single-precision value, it will be in the low ordered bits
4038 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4039 save slot in memory.
4040 - If we are in 64-bit mode, everything is straightforward.
4041
4042 Note that this code only deals with "live" registers at the top of the
4043 stack. We will attempt to deal with saved registers later, when
4044 the raw/cooked register interface is in place. (We need a general
4045 interface that can deal with dynamic saved register sizes -- fp
4046 regs could be 32 bits wide in one frame and 64 on the frame above
4047 and below). */
4048
4049 static struct type *
4050 mips_float_register_type (void)
4051 {
4052 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4053 return builtin_type_ieee_single_big;
4054 else
4055 return builtin_type_ieee_single_little;
4056 }
4057
4058 static struct type *
4059 mips_double_register_type (void)
4060 {
4061 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4062 return builtin_type_ieee_double_big;
4063 else
4064 return builtin_type_ieee_double_little;
4065 }
4066
4067 /* Copy a 32-bit single-precision value from the current frame
4068 into rare_buffer. */
4069
4070 static void
4071 mips_read_fp_register_single (struct frame_info *frame, int regno,
4072 char *rare_buffer)
4073 {
4074 int raw_size = REGISTER_RAW_SIZE (regno);
4075 char *raw_buffer = alloca (raw_size);
4076
4077 if (!frame_register_read (frame, regno, raw_buffer))
4078 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4079 if (raw_size == 8)
4080 {
4081 /* We have a 64-bit value for this register. Find the low-order
4082 32 bits. */
4083 int offset;
4084
4085 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4086 offset = 4;
4087 else
4088 offset = 0;
4089
4090 memcpy (rare_buffer, raw_buffer + offset, 4);
4091 }
4092 else
4093 {
4094 memcpy (rare_buffer, raw_buffer, 4);
4095 }
4096 }
4097
4098 /* Copy a 64-bit double-precision value from the current frame into
4099 rare_buffer. This may include getting half of it from the next
4100 register. */
4101
4102 static void
4103 mips_read_fp_register_double (struct frame_info *frame, int regno,
4104 char *rare_buffer)
4105 {
4106 int raw_size = REGISTER_RAW_SIZE (regno);
4107
4108 if (raw_size == 8 && !mips2_fp_compat ())
4109 {
4110 /* We have a 64-bit value for this register, and we should use
4111 all 64 bits. */
4112 if (!frame_register_read (frame, regno, rare_buffer))
4113 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4114 }
4115 else
4116 {
4117 if ((regno - FP0_REGNUM) & 1)
4118 internal_error (__FILE__, __LINE__,
4119 "mips_read_fp_register_double: bad access to "
4120 "odd-numbered FP register");
4121
4122 /* mips_read_fp_register_single will find the correct 32 bits from
4123 each register. */
4124 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4125 {
4126 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4127 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4128 }
4129 else
4130 {
4131 mips_read_fp_register_single (frame, regno, rare_buffer);
4132 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4133 }
4134 }
4135 }
4136
4137 static void
4138 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4139 int regnum)
4140 { /* do values for FP (float) regs */
4141 char *raw_buffer;
4142 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4143 int inv1, inv2, namelen;
4144
4145 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4146
4147 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4148 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4149 "");
4150
4151 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4152 {
4153 /* 4-byte registers: Print hex and floating. Also print even
4154 numbered registers as doubles. */
4155 mips_read_fp_register_single (frame, regnum, raw_buffer);
4156 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4157
4158 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
4159
4160 fprintf_filtered (file, " flt: ");
4161 if (inv1)
4162 fprintf_filtered (file, " <invalid float> ");
4163 else
4164 fprintf_filtered (file, "%-17.9g", flt1);
4165
4166 if (regnum % 2 == 0)
4167 {
4168 mips_read_fp_register_double (frame, regnum, raw_buffer);
4169 doub = unpack_double (mips_double_register_type (), raw_buffer,
4170 &inv2);
4171
4172 fprintf_filtered (file, " dbl: ");
4173 if (inv2)
4174 fprintf_filtered (file, "<invalid double>");
4175 else
4176 fprintf_filtered (file, "%-24.17g", doub);
4177 }
4178 }
4179 else
4180 {
4181 /* Eight byte registers: print each one as hex, float and double. */
4182 mips_read_fp_register_single (frame, regnum, raw_buffer);
4183 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4184
4185 mips_read_fp_register_double (frame, regnum, raw_buffer);
4186 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4187
4188
4189 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
4190
4191 fprintf_filtered (file, " flt: ");
4192 if (inv1)
4193 fprintf_filtered (file, "<invalid float>");
4194 else
4195 fprintf_filtered (file, "%-17.9g", flt1);
4196
4197 fprintf_filtered (file, " dbl: ");
4198 if (inv2)
4199 fprintf_filtered (file, "<invalid double>");
4200 else
4201 fprintf_filtered (file, "%-24.17g", doub);
4202 }
4203 }
4204
4205 static void
4206 mips_print_register (struct ui_file *file, struct frame_info *frame,
4207 int regnum, int all)
4208 {
4209 struct gdbarch *gdbarch = get_frame_arch (frame);
4210 char raw_buffer[MAX_REGISTER_SIZE];
4211 int offset;
4212
4213 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4214 {
4215 mips_print_fp_register (file, frame, regnum);
4216 return;
4217 }
4218
4219 /* Get the data in raw format. */
4220 if (!frame_register_read (frame, regnum, raw_buffer))
4221 {
4222 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4223 return;
4224 }
4225
4226 fputs_filtered (REGISTER_NAME (regnum), file);
4227
4228 /* The problem with printing numeric register names (r26, etc.) is that
4229 the user can't use them on input. Probably the best solution is to
4230 fix it so that either the numeric or the funky (a2, etc.) names
4231 are accepted on input. */
4232 if (regnum < MIPS_NUMREGS)
4233 fprintf_filtered (file, "(r%d): ", regnum);
4234 else
4235 fprintf_filtered (file, ": ");
4236
4237 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4238 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4239 else
4240 offset = 0;
4241
4242 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
4243 'x', 0, file);
4244 }
4245
4246 /* Replacement for generic do_registers_info.
4247 Print regs in pretty columns. */
4248
4249 static int
4250 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4251 int regnum)
4252 {
4253 fprintf_filtered (file, " ");
4254 mips_print_fp_register (file, frame, regnum);
4255 fprintf_filtered (file, "\n");
4256 return regnum + 1;
4257 }
4258
4259
4260 /* Print a row's worth of GP (int) registers, with name labels above */
4261
4262 static int
4263 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4264 int start_regnum)
4265 {
4266 struct gdbarch *gdbarch = get_frame_arch (frame);
4267 /* do values for GP (int) regs */
4268 char raw_buffer[MAX_REGISTER_SIZE];
4269 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4270 int col, byte;
4271 int regnum;
4272
4273 /* For GP registers, we print a separate row of names above the vals */
4274 fprintf_filtered (file, " ");
4275 for (col = 0, regnum = start_regnum;
4276 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4277 regnum++)
4278 {
4279 if (*REGISTER_NAME (regnum) == '\0')
4280 continue; /* unused register */
4281 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4282 break; /* end the row: reached FP register */
4283 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4284 REGISTER_NAME (regnum));
4285 col++;
4286 }
4287 /* print the R0 to R31 names */
4288 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4289 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4290 else
4291 fprintf_filtered (file, "\n ");
4292
4293 /* now print the values in hex, 4 or 8 to the row */
4294 for (col = 0, regnum = start_regnum;
4295 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4296 regnum++)
4297 {
4298 if (*REGISTER_NAME (regnum) == '\0')
4299 continue; /* unused register */
4300 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4301 break; /* end row: reached FP register */
4302 /* OK: get the data in raw format. */
4303 if (!frame_register_read (frame, regnum, raw_buffer))
4304 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4305 /* pad small registers */
4306 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4307 printf_filtered (" ");
4308 /* Now print the register value in hex, endian order. */
4309 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4310 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4311 byte < REGISTER_RAW_SIZE (regnum);
4312 byte++)
4313 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4314 else
4315 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4316 byte >= 0;
4317 byte--)
4318 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4319 fprintf_filtered (file, " ");
4320 col++;
4321 }
4322 if (col > 0) /* ie. if we actually printed anything... */
4323 fprintf_filtered (file, "\n");
4324
4325 return regnum;
4326 }
4327
4328 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4329
4330 static void
4331 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4332 struct frame_info *frame, int regnum, int all)
4333 {
4334 if (regnum != -1) /* do one specified register */
4335 {
4336 gdb_assert (regnum >= NUM_REGS);
4337 if (*(REGISTER_NAME (regnum)) == '\0')
4338 error ("Not a valid register for the current processor type");
4339
4340 mips_print_register (file, frame, regnum, 0);
4341 fprintf_filtered (file, "\n");
4342 }
4343 else
4344 /* do all (or most) registers */
4345 {
4346 regnum = NUM_REGS;
4347 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4348 {
4349 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4350 {
4351 if (all) /* true for "INFO ALL-REGISTERS" command */
4352 regnum = print_fp_register_row (file, frame, regnum);
4353 else
4354 regnum += MIPS_NUMREGS; /* skip floating point regs */
4355 }
4356 else
4357 regnum = print_gp_register_row (file, frame, regnum);
4358 }
4359 }
4360 }
4361
4362 /* Is this a branch with a delay slot? */
4363
4364 static int is_delayed (unsigned long);
4365
4366 static int
4367 is_delayed (unsigned long insn)
4368 {
4369 int i;
4370 for (i = 0; i < NUMOPCODES; ++i)
4371 if (mips_opcodes[i].pinfo != INSN_MACRO
4372 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4373 break;
4374 return (i < NUMOPCODES
4375 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4376 | INSN_COND_BRANCH_DELAY
4377 | INSN_COND_BRANCH_LIKELY)));
4378 }
4379
4380 int
4381 mips_step_skips_delay (CORE_ADDR pc)
4382 {
4383 char buf[MIPS_INSTLEN];
4384
4385 /* There is no branch delay slot on MIPS16. */
4386 if (pc_is_mips16 (pc))
4387 return 0;
4388
4389 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4390 /* If error reading memory, guess that it is not a delayed branch. */
4391 return 0;
4392 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4393 }
4394
4395
4396 /* Skip the PC past function prologue instructions (32-bit version).
4397 This is a helper function for mips_skip_prologue. */
4398
4399 static CORE_ADDR
4400 mips32_skip_prologue (CORE_ADDR pc)
4401 {
4402 t_inst inst;
4403 CORE_ADDR end_pc;
4404 int seen_sp_adjust = 0;
4405 int load_immediate_bytes = 0;
4406
4407 /* Skip the typical prologue instructions. These are the stack adjustment
4408 instruction and the instructions that save registers on the stack
4409 or in the gcc frame. */
4410 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4411 {
4412 unsigned long high_word;
4413
4414 inst = mips_fetch_instruction (pc);
4415 high_word = (inst >> 16) & 0xffff;
4416
4417 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4418 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4419 seen_sp_adjust = 1;
4420 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4421 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4422 seen_sp_adjust = 1;
4423 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4424 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4425 && (inst & 0x001F0000)) /* reg != $zero */
4426 continue;
4427
4428 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4429 continue;
4430 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4431 /* sx reg,n($s8) */
4432 continue; /* reg != $zero */
4433
4434 /* move $s8,$sp. With different versions of gas this will be either
4435 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4436 Accept any one of these. */
4437 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4438 continue;
4439
4440 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4441 continue;
4442 else if (high_word == 0x3c1c) /* lui $gp,n */
4443 continue;
4444 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4445 continue;
4446 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4447 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4448 continue;
4449 /* The following instructions load $at or $t0 with an immediate
4450 value in preparation for a stack adjustment via
4451 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4452 a local variable, so we accept them only before a stack adjustment
4453 instruction was seen. */
4454 else if (!seen_sp_adjust)
4455 {
4456 if (high_word == 0x3c01 || /* lui $at,n */
4457 high_word == 0x3c08) /* lui $t0,n */
4458 {
4459 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4460 continue;
4461 }
4462 else if (high_word == 0x3421 || /* ori $at,$at,n */
4463 high_word == 0x3508 || /* ori $t0,$t0,n */
4464 high_word == 0x3401 || /* ori $at,$zero,n */
4465 high_word == 0x3408) /* ori $t0,$zero,n */
4466 {
4467 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4468 continue;
4469 }
4470 else
4471 break;
4472 }
4473 else
4474 break;
4475 }
4476
4477 /* In a frameless function, we might have incorrectly
4478 skipped some load immediate instructions. Undo the skipping
4479 if the load immediate was not followed by a stack adjustment. */
4480 if (load_immediate_bytes && !seen_sp_adjust)
4481 pc -= load_immediate_bytes;
4482 return pc;
4483 }
4484
4485 /* Skip the PC past function prologue instructions (16-bit version).
4486 This is a helper function for mips_skip_prologue. */
4487
4488 static CORE_ADDR
4489 mips16_skip_prologue (CORE_ADDR pc)
4490 {
4491 CORE_ADDR end_pc;
4492 int extend_bytes = 0;
4493 int prev_extend_bytes;
4494
4495 /* Table of instructions likely to be found in a function prologue. */
4496 static struct
4497 {
4498 unsigned short inst;
4499 unsigned short mask;
4500 }
4501 table[] =
4502 {
4503 {
4504 0x6300, 0xff00
4505 }
4506 , /* addiu $sp,offset */
4507 {
4508 0xfb00, 0xff00
4509 }
4510 , /* daddiu $sp,offset */
4511 {
4512 0xd000, 0xf800
4513 }
4514 , /* sw reg,n($sp) */
4515 {
4516 0xf900, 0xff00
4517 }
4518 , /* sd reg,n($sp) */
4519 {
4520 0x6200, 0xff00
4521 }
4522 , /* sw $ra,n($sp) */
4523 {
4524 0xfa00, 0xff00
4525 }
4526 , /* sd $ra,n($sp) */
4527 {
4528 0x673d, 0xffff
4529 }
4530 , /* move $s1,sp */
4531 {
4532 0xd980, 0xff80
4533 }
4534 , /* sw $a0-$a3,n($s1) */
4535 {
4536 0x6704, 0xff1c
4537 }
4538 , /* move reg,$a0-$a3 */
4539 {
4540 0xe809, 0xf81f
4541 }
4542 , /* entry pseudo-op */
4543 {
4544 0x0100, 0xff00
4545 }
4546 , /* addiu $s1,$sp,n */
4547 {
4548 0, 0
4549 } /* end of table marker */
4550 };
4551
4552 /* Skip the typical prologue instructions. These are the stack adjustment
4553 instruction and the instructions that save registers on the stack
4554 or in the gcc frame. */
4555 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4556 {
4557 unsigned short inst;
4558 int i;
4559
4560 inst = mips_fetch_instruction (pc);
4561
4562 /* Normally we ignore an extend instruction. However, if it is
4563 not followed by a valid prologue instruction, we must adjust
4564 the pc back over the extend so that it won't be considered
4565 part of the prologue. */
4566 if ((inst & 0xf800) == 0xf000) /* extend */
4567 {
4568 extend_bytes = MIPS16_INSTLEN;
4569 continue;
4570 }
4571 prev_extend_bytes = extend_bytes;
4572 extend_bytes = 0;
4573
4574 /* Check for other valid prologue instructions besides extend. */
4575 for (i = 0; table[i].mask != 0; i++)
4576 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4577 break;
4578 if (table[i].mask != 0) /* it was in table? */
4579 continue; /* ignore it */
4580 else
4581 /* non-prologue */
4582 {
4583 /* Return the current pc, adjusted backwards by 2 if
4584 the previous instruction was an extend. */
4585 return pc - prev_extend_bytes;
4586 }
4587 }
4588 return pc;
4589 }
4590
4591 /* To skip prologues, I use this predicate. Returns either PC itself
4592 if the code at PC does not look like a function prologue; otherwise
4593 returns an address that (if we're lucky) follows the prologue. If
4594 LENIENT, then we must skip everything which is involved in setting
4595 up the frame (it's OK to skip more, just so long as we don't skip
4596 anything which might clobber the registers which are being saved.
4597 We must skip more in the case where part of the prologue is in the
4598 delay slot of a non-prologue instruction). */
4599
4600 static CORE_ADDR
4601 mips_skip_prologue (CORE_ADDR pc)
4602 {
4603 /* See if we can determine the end of the prologue via the symbol table.
4604 If so, then return either PC, or the PC after the prologue, whichever
4605 is greater. */
4606
4607 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4608
4609 if (post_prologue_pc != 0)
4610 return max (pc, post_prologue_pc);
4611
4612 /* Can't determine prologue from the symbol table, need to examine
4613 instructions. */
4614
4615 if (pc_is_mips16 (pc))
4616 return mips16_skip_prologue (pc);
4617 else
4618 return mips32_skip_prologue (pc);
4619 }
4620
4621 /* Determine how a return value is stored within the MIPS register
4622 file, given the return type `valtype'. */
4623
4624 struct return_value_word
4625 {
4626 int len;
4627 int reg;
4628 int reg_offset;
4629 int buf_offset;
4630 };
4631
4632 static void
4633 return_value_location (struct type *valtype,
4634 struct return_value_word *hi,
4635 struct return_value_word *lo)
4636 {
4637 int len = TYPE_LENGTH (valtype);
4638
4639 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4640 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4641 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4642 {
4643 if (!FP_REGISTER_DOUBLE && len == 8)
4644 {
4645 /* We need to break a 64bit float in two 32 bit halves and
4646 spread them across a floating-point register pair. */
4647 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4648 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4649 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4650 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4651 ? 4 : 0);
4652 hi->reg_offset = lo->reg_offset;
4653 lo->reg = FP0_REGNUM + 0;
4654 hi->reg = FP0_REGNUM + 1;
4655 lo->len = 4;
4656 hi->len = 4;
4657 }
4658 else
4659 {
4660 /* The floating point value fits in a single floating-point
4661 register. */
4662 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4663 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4664 && len == 4)
4665 ? 4 : 0);
4666 lo->reg = FP0_REGNUM;
4667 lo->len = len;
4668 lo->buf_offset = 0;
4669 hi->len = 0;
4670 hi->reg_offset = 0;
4671 hi->buf_offset = 0;
4672 hi->reg = 0;
4673 }
4674 }
4675 else
4676 {
4677 /* Locate a result possibly spread across two registers. */
4678 int regnum = 2;
4679 lo->reg = regnum + 0;
4680 hi->reg = regnum + 1;
4681 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4682 && len < MIPS_SAVED_REGSIZE)
4683 {
4684 /* "un-left-justify" the value in the low register */
4685 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4686 lo->len = len;
4687 hi->reg_offset = 0;
4688 hi->len = 0;
4689 }
4690 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4691 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4692 && len < MIPS_SAVED_REGSIZE * 2
4693 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4694 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4695 {
4696 /* "un-left-justify" the value spread across two registers. */
4697 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4698 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4699 hi->reg_offset = 0;
4700 hi->len = len - lo->len;
4701 }
4702 else
4703 {
4704 /* Only perform a partial copy of the second register. */
4705 lo->reg_offset = 0;
4706 hi->reg_offset = 0;
4707 if (len > MIPS_SAVED_REGSIZE)
4708 {
4709 lo->len = MIPS_SAVED_REGSIZE;
4710 hi->len = len - MIPS_SAVED_REGSIZE;
4711 }
4712 else
4713 {
4714 lo->len = len;
4715 hi->len = 0;
4716 }
4717 }
4718 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4719 && REGISTER_RAW_SIZE (regnum) == 8
4720 && MIPS_SAVED_REGSIZE == 4)
4721 {
4722 /* Account for the fact that only the least-signficant part
4723 of the register is being used */
4724 lo->reg_offset += 4;
4725 hi->reg_offset += 4;
4726 }
4727 lo->buf_offset = 0;
4728 hi->buf_offset = lo->len;
4729 }
4730 }
4731
4732 /* Given a return value in `regbuf' with a type `valtype', extract and
4733 copy its value into `valbuf'. */
4734
4735 static void
4736 mips_eabi_extract_return_value (struct type *valtype,
4737 char regbuf[],
4738 char *valbuf)
4739 {
4740 struct return_value_word lo;
4741 struct return_value_word hi;
4742 return_value_location (valtype, &hi, &lo);
4743
4744 memcpy (valbuf + lo.buf_offset,
4745 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4746 lo.len);
4747
4748 if (hi.len > 0)
4749 memcpy (valbuf + hi.buf_offset,
4750 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4751 hi.len);
4752 }
4753
4754 static void
4755 mips_o64_extract_return_value (struct type *valtype,
4756 char regbuf[],
4757 char *valbuf)
4758 {
4759 struct return_value_word lo;
4760 struct return_value_word hi;
4761 return_value_location (valtype, &hi, &lo);
4762
4763 memcpy (valbuf + lo.buf_offset,
4764 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4765 lo.len);
4766
4767 if (hi.len > 0)
4768 memcpy (valbuf + hi.buf_offset,
4769 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4770 hi.len);
4771 }
4772
4773 /* Given a return value in `valbuf' with a type `valtype', write it's
4774 value into the appropriate register. */
4775
4776 static void
4777 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4778 {
4779 char raw_buffer[MAX_REGISTER_SIZE];
4780 struct return_value_word lo;
4781 struct return_value_word hi;
4782 return_value_location (valtype, &hi, &lo);
4783
4784 memset (raw_buffer, 0, sizeof (raw_buffer));
4785 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4786 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4787 REGISTER_RAW_SIZE (lo.reg));
4788
4789 if (hi.len > 0)
4790 {
4791 memset (raw_buffer, 0, sizeof (raw_buffer));
4792 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4793 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4794 REGISTER_RAW_SIZE (hi.reg));
4795 }
4796 }
4797
4798 static void
4799 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4800 {
4801 char raw_buffer[MAX_REGISTER_SIZE];
4802 struct return_value_word lo;
4803 struct return_value_word hi;
4804 return_value_location (valtype, &hi, &lo);
4805
4806 memset (raw_buffer, 0, sizeof (raw_buffer));
4807 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4808 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4809 REGISTER_RAW_SIZE (lo.reg));
4810
4811 if (hi.len > 0)
4812 {
4813 memset (raw_buffer, 0, sizeof (raw_buffer));
4814 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4815 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4816 REGISTER_RAW_SIZE (hi.reg));
4817 }
4818 }
4819
4820 /* O32 ABI stuff. */
4821
4822 static void
4823 mips_o32_xfer_return_value (struct type *type,
4824 struct regcache *regcache,
4825 bfd_byte *in, const bfd_byte *out)
4826 {
4827 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4828 if (TYPE_CODE (type) == TYPE_CODE_FLT
4829 && TYPE_LENGTH (type) == 4
4830 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4831 {
4832 /* A single-precision floating-point value. It fits in the
4833 least significant part of FP0. */
4834 if (mips_debug)
4835 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4836 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
4837 TARGET_BYTE_ORDER, in, out, 0);
4838 }
4839 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4840 && TYPE_LENGTH (type) == 8
4841 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4842 {
4843 /* A double-precision floating-point value. The most
4844 significant part goes in FP1, and the least significant in
4845 FP0. */
4846 if (mips_debug)
4847 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4848 switch (TARGET_BYTE_ORDER)
4849 {
4850 case BFD_ENDIAN_LITTLE:
4851 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
4852 TARGET_BYTE_ORDER, in, out, 0);
4853 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
4854 TARGET_BYTE_ORDER, in, out, 4);
4855 break;
4856 case BFD_ENDIAN_BIG:
4857 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
4858 TARGET_BYTE_ORDER, in, out, 0);
4859 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
4860 TARGET_BYTE_ORDER, in, out, 4);
4861 break;
4862 default:
4863 internal_error (__FILE__, __LINE__, "bad switch");
4864 }
4865 }
4866 #if 0
4867 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4868 && TYPE_NFIELDS (type) <= 2
4869 && TYPE_NFIELDS (type) >= 1
4870 && ((TYPE_NFIELDS (type) == 1
4871 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4872 == TYPE_CODE_FLT))
4873 || (TYPE_NFIELDS (type) == 2
4874 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4875 == TYPE_CODE_FLT)
4876 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4877 == TYPE_CODE_FLT)))
4878 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4879 {
4880 /* A struct that contains one or two floats. Each value is part
4881 in the least significant part of their floating point
4882 register.. */
4883 bfd_byte reg[MAX_REGISTER_SIZE];
4884 int regnum;
4885 int field;
4886 for (field = 0, regnum = FP0_REGNUM;
4887 field < TYPE_NFIELDS (type);
4888 field++, regnum += 2)
4889 {
4890 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4891 / TARGET_CHAR_BIT);
4892 if (mips_debug)
4893 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4894 mips_xfer_register (regcache, NUM_REGS + regnum,
4895 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4896 TARGET_BYTE_ORDER, in, out, offset);
4897 }
4898 }
4899 #endif
4900 #if 0
4901 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4902 || TYPE_CODE (type) == TYPE_CODE_UNION)
4903 {
4904 /* A structure or union. Extract the left justified value,
4905 regardless of the byte order. I.e. DO NOT USE
4906 mips_xfer_lower. */
4907 int offset;
4908 int regnum;
4909 for (offset = 0, regnum = V0_REGNUM;
4910 offset < TYPE_LENGTH (type);
4911 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4912 {
4913 int xfer = REGISTER_RAW_SIZE (regnum);
4914 if (offset + xfer > TYPE_LENGTH (type))
4915 xfer = TYPE_LENGTH (type) - offset;
4916 if (mips_debug)
4917 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4918 offset, xfer, regnum);
4919 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4920 BFD_ENDIAN_UNKNOWN, in, out, offset);
4921 }
4922 }
4923 #endif
4924 else
4925 {
4926 /* A scalar extract each part but least-significant-byte
4927 justified. o32 thinks registers are 4 byte, regardless of
4928 the ISA. mips_stack_argsize controls this. */
4929 int offset;
4930 int regnum;
4931 for (offset = 0, regnum = V0_REGNUM;
4932 offset < TYPE_LENGTH (type);
4933 offset += mips_stack_argsize (), regnum++)
4934 {
4935 int xfer = mips_stack_argsize ();
4936 int pos = 0;
4937 if (offset + xfer > TYPE_LENGTH (type))
4938 xfer = TYPE_LENGTH (type) - offset;
4939 if (mips_debug)
4940 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4941 offset, xfer, regnum);
4942 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4943 TARGET_BYTE_ORDER, in, out, offset);
4944 }
4945 }
4946 }
4947
4948 static void
4949 mips_o32_extract_return_value (struct type *type,
4950 struct regcache *regcache,
4951 void *valbuf)
4952 {
4953 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4954 }
4955
4956 static void
4957 mips_o32_store_return_value (struct type *type, char *valbuf)
4958 {
4959 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4960 }
4961
4962 /* N32/N44 ABI stuff. */
4963
4964 static void
4965 mips_n32n64_xfer_return_value (struct type *type,
4966 struct regcache *regcache,
4967 bfd_byte *in, const bfd_byte *out)
4968 {
4969 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4970 if (TYPE_CODE (type) == TYPE_CODE_FLT
4971 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4972 {
4973 /* A floating-point value belongs in the least significant part
4974 of FP0. */
4975 if (mips_debug)
4976 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4977 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
4978 TARGET_BYTE_ORDER, in, out, 0);
4979 }
4980 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4981 && TYPE_NFIELDS (type) <= 2
4982 && TYPE_NFIELDS (type) >= 1
4983 && ((TYPE_NFIELDS (type) == 1
4984 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4985 == TYPE_CODE_FLT))
4986 || (TYPE_NFIELDS (type) == 2
4987 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4988 == TYPE_CODE_FLT)
4989 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4990 == TYPE_CODE_FLT)))
4991 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4992 {
4993 /* A struct that contains one or two floats. Each value is part
4994 in the least significant part of their floating point
4995 register.. */
4996 bfd_byte reg[MAX_REGISTER_SIZE];
4997 int regnum;
4998 int field;
4999 for (field = 0, regnum = FP0_REGNUM;
5000 field < TYPE_NFIELDS (type);
5001 field++, regnum += 2)
5002 {
5003 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5004 / TARGET_CHAR_BIT);
5005 if (mips_debug)
5006 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
5007 mips_xfer_register (regcache, NUM_REGS + regnum,
5008 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5009 TARGET_BYTE_ORDER, in, out, offset);
5010 }
5011 }
5012 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5013 || TYPE_CODE (type) == TYPE_CODE_UNION)
5014 {
5015 /* A structure or union. Extract the left justified value,
5016 regardless of the byte order. I.e. DO NOT USE
5017 mips_xfer_lower. */
5018 int offset;
5019 int regnum;
5020 for (offset = 0, regnum = V0_REGNUM;
5021 offset < TYPE_LENGTH (type);
5022 offset += REGISTER_RAW_SIZE (regnum), regnum++)
5023 {
5024 int xfer = REGISTER_RAW_SIZE (regnum);
5025 if (offset + xfer > TYPE_LENGTH (type))
5026 xfer = TYPE_LENGTH (type) - offset;
5027 if (mips_debug)
5028 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5029 offset, xfer, regnum);
5030 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5031 BFD_ENDIAN_UNKNOWN, in, out, offset);
5032 }
5033 }
5034 else
5035 {
5036 /* A scalar extract each part but least-significant-byte
5037 justified. */
5038 int offset;
5039 int regnum;
5040 for (offset = 0, regnum = V0_REGNUM;
5041 offset < TYPE_LENGTH (type);
5042 offset += REGISTER_RAW_SIZE (regnum), regnum++)
5043 {
5044 int xfer = REGISTER_RAW_SIZE (regnum);
5045 int pos = 0;
5046 if (offset + xfer > TYPE_LENGTH (type))
5047 xfer = TYPE_LENGTH (type) - offset;
5048 if (mips_debug)
5049 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5050 offset, xfer, regnum);
5051 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5052 TARGET_BYTE_ORDER, in, out, offset);
5053 }
5054 }
5055 }
5056
5057 static void
5058 mips_n32n64_extract_return_value (struct type *type,
5059 struct regcache *regcache,
5060 void *valbuf)
5061 {
5062 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
5063 }
5064
5065 static void
5066 mips_n32n64_store_return_value (struct type *type, char *valbuf)
5067 {
5068 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
5069 }
5070
5071 static CORE_ADDR
5072 mips_extract_struct_value_address (struct regcache *regcache)
5073 {
5074 /* FIXME: This will only work at random. The caller passes the
5075 struct_return address in V0, but it is not preserved. It may
5076 still be there, or this may be a random value. */
5077 LONGEST val;
5078
5079 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
5080 return val;
5081 }
5082
5083 /* Exported procedure: Is PC in the signal trampoline code */
5084
5085 static int
5086 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
5087 {
5088 if (sigtramp_address == 0)
5089 fixup_sigtramp ();
5090 return (pc >= sigtramp_address && pc < sigtramp_end);
5091 }
5092
5093 /* Root of all "set mips "/"show mips " commands. This will eventually be
5094 used for all MIPS-specific commands. */
5095
5096 static void
5097 show_mips_command (char *args, int from_tty)
5098 {
5099 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5100 }
5101
5102 static void
5103 set_mips_command (char *args, int from_tty)
5104 {
5105 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5106 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5107 }
5108
5109 /* Commands to show/set the MIPS FPU type. */
5110
5111 static void
5112 show_mipsfpu_command (char *args, int from_tty)
5113 {
5114 char *fpu;
5115 switch (MIPS_FPU_TYPE)
5116 {
5117 case MIPS_FPU_SINGLE:
5118 fpu = "single-precision";
5119 break;
5120 case MIPS_FPU_DOUBLE:
5121 fpu = "double-precision";
5122 break;
5123 case MIPS_FPU_NONE:
5124 fpu = "absent (none)";
5125 break;
5126 default:
5127 internal_error (__FILE__, __LINE__, "bad switch");
5128 }
5129 if (mips_fpu_type_auto)
5130 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5131 fpu);
5132 else
5133 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5134 fpu);
5135 }
5136
5137
5138 static void
5139 set_mipsfpu_command (char *args, int from_tty)
5140 {
5141 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5142 show_mipsfpu_command (args, from_tty);
5143 }
5144
5145 static void
5146 set_mipsfpu_single_command (char *args, int from_tty)
5147 {
5148 mips_fpu_type = MIPS_FPU_SINGLE;
5149 mips_fpu_type_auto = 0;
5150 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5151 }
5152
5153 static void
5154 set_mipsfpu_double_command (char *args, int from_tty)
5155 {
5156 mips_fpu_type = MIPS_FPU_DOUBLE;
5157 mips_fpu_type_auto = 0;
5158 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5159 }
5160
5161 static void
5162 set_mipsfpu_none_command (char *args, int from_tty)
5163 {
5164 mips_fpu_type = MIPS_FPU_NONE;
5165 mips_fpu_type_auto = 0;
5166 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5167 }
5168
5169 static void
5170 set_mipsfpu_auto_command (char *args, int from_tty)
5171 {
5172 mips_fpu_type_auto = 1;
5173 }
5174
5175 /* Command to set the processor type. */
5176
5177 void
5178 mips_set_processor_type_command (char *args, int from_tty)
5179 {
5180 int i;
5181
5182 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5183 {
5184 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5185 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5186 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5187
5188 /* Restore the value. */
5189 tmp_mips_processor_type = xstrdup (mips_processor_type);
5190
5191 return;
5192 }
5193
5194 if (!mips_set_processor_type (tmp_mips_processor_type))
5195 {
5196 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5197 /* Restore its value. */
5198 tmp_mips_processor_type = xstrdup (mips_processor_type);
5199 }
5200 }
5201
5202 static void
5203 mips_show_processor_type_command (char *args, int from_tty)
5204 {
5205 }
5206
5207 /* Modify the actual processor type. */
5208
5209 static int
5210 mips_set_processor_type (char *str)
5211 {
5212 int i;
5213
5214 if (str == NULL)
5215 return 0;
5216
5217 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5218 {
5219 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5220 {
5221 mips_processor_type = str;
5222 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5223 return 1;
5224 /* FIXME tweak fpu flag too */
5225 }
5226 }
5227
5228 return 0;
5229 }
5230
5231 /* Attempt to identify the particular processor model by reading the
5232 processor id. */
5233
5234 char *
5235 mips_read_processor_type (void)
5236 {
5237 CORE_ADDR prid;
5238
5239 prid = read_register (PRID_REGNUM);
5240
5241 if ((prid & ~0xf) == 0x700)
5242 return savestring ("r3041", strlen ("r3041"));
5243
5244 return NULL;
5245 }
5246
5247 /* Just like reinit_frame_cache, but with the right arguments to be
5248 callable as an sfunc. */
5249
5250 static void
5251 reinit_frame_cache_sfunc (char *args, int from_tty,
5252 struct cmd_list_element *c)
5253 {
5254 reinit_frame_cache ();
5255 }
5256
5257 static int
5258 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
5259 {
5260 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5261 mips_extra_func_info_t proc_desc;
5262
5263 /* Search for the function containing this address. Set the low bit
5264 of the address when searching, in case we were given an even address
5265 that is the start of a 16-bit function. If we didn't do this,
5266 the search would fail because the symbol table says the function
5267 starts at an odd address, i.e. 1 byte past the given address. */
5268 memaddr = ADDR_BITS_REMOVE (memaddr);
5269 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
5270
5271 /* Make an attempt to determine if this is a 16-bit function. If
5272 the procedure descriptor exists and the address therein is odd,
5273 it's definitely a 16-bit function. Otherwise, we have to just
5274 guess that if the address passed in is odd, it's 16-bits. */
5275 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5276 disassembler needs to be able to locally determine the ISA, and
5277 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5278 work. */
5279 if (proc_desc)
5280 {
5281 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5282 info->mach = bfd_mach_mips16;
5283 }
5284 else
5285 {
5286 if (pc_is_mips16 (memaddr))
5287 info->mach = bfd_mach_mips16;
5288 }
5289
5290 /* Round down the instruction address to the appropriate boundary. */
5291 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5292
5293 /* Set the disassembler options. */
5294 if (tdep->mips_abi == MIPS_ABI_N32
5295 || tdep->mips_abi == MIPS_ABI_N64)
5296 {
5297 /* Set up the disassembler info, so that we get the right
5298 register names from libopcodes. */
5299 if (tdep->mips_abi == MIPS_ABI_N32)
5300 info->disassembler_options = "gpr-names=n32";
5301 else
5302 info->disassembler_options = "gpr-names=64";
5303 info->flavour = bfd_target_elf_flavour;
5304 }
5305 else
5306 /* This string is not recognized explicitly by the disassembler,
5307 but it tells the disassembler to not try to guess the ABI from
5308 the bfd elf headers, such that, if the user overrides the ABI
5309 of a program linked as NewABI, the disassembly will follow the
5310 register naming conventions specified by the user. */
5311 info->disassembler_options = "gpr-names=32";
5312
5313 /* Call the appropriate disassembler based on the target endian-ness. */
5314 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5315 return print_insn_big_mips (memaddr, info);
5316 else
5317 return print_insn_little_mips (memaddr, info);
5318 }
5319
5320 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5321 counter value to determine whether a 16- or 32-bit breakpoint should be
5322 used. It returns a pointer to a string of bytes that encode a breakpoint
5323 instruction, stores the length of the string to *lenptr, and adjusts pc
5324 (if necessary) to point to the actual memory location where the
5325 breakpoint should be inserted. */
5326
5327 static const unsigned char *
5328 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5329 {
5330 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5331 {
5332 if (pc_is_mips16 (*pcptr))
5333 {
5334 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
5335 *pcptr = unmake_mips16_addr (*pcptr);
5336 *lenptr = sizeof (mips16_big_breakpoint);
5337 return mips16_big_breakpoint;
5338 }
5339 else
5340 {
5341 /* The IDT board uses an unusual breakpoint value, and
5342 sometimes gets confused when it sees the usual MIPS
5343 breakpoint instruction. */
5344 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5345 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5346 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
5347
5348 *lenptr = sizeof (big_breakpoint);
5349
5350 if (strcmp (target_shortname, "mips") == 0)
5351 return idt_big_breakpoint;
5352 else if (strcmp (target_shortname, "ddb") == 0
5353 || strcmp (target_shortname, "pmon") == 0
5354 || strcmp (target_shortname, "lsi") == 0)
5355 return pmon_big_breakpoint;
5356 else
5357 return big_breakpoint;
5358 }
5359 }
5360 else
5361 {
5362 if (pc_is_mips16 (*pcptr))
5363 {
5364 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
5365 *pcptr = unmake_mips16_addr (*pcptr);
5366 *lenptr = sizeof (mips16_little_breakpoint);
5367 return mips16_little_breakpoint;
5368 }
5369 else
5370 {
5371 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5372 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5373 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
5374
5375 *lenptr = sizeof (little_breakpoint);
5376
5377 if (strcmp (target_shortname, "mips") == 0)
5378 return idt_little_breakpoint;
5379 else if (strcmp (target_shortname, "ddb") == 0
5380 || strcmp (target_shortname, "pmon") == 0
5381 || strcmp (target_shortname, "lsi") == 0)
5382 return pmon_little_breakpoint;
5383 else
5384 return little_breakpoint;
5385 }
5386 }
5387 }
5388
5389 /* If PC is in a mips16 call or return stub, return the address of the target
5390 PC, which is either the callee or the caller. There are several
5391 cases which must be handled:
5392
5393 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5394 target PC is in $31 ($ra).
5395 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5396 and the target PC is in $2.
5397 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5398 before the jal instruction, this is effectively a call stub
5399 and the the target PC is in $2. Otherwise this is effectively
5400 a return stub and the target PC is in $18.
5401
5402 See the source code for the stubs in gcc/config/mips/mips16.S for
5403 gory details.
5404
5405 This function implements the SKIP_TRAMPOLINE_CODE macro.
5406 */
5407
5408 static CORE_ADDR
5409 mips_skip_stub (CORE_ADDR pc)
5410 {
5411 char *name;
5412 CORE_ADDR start_addr;
5413
5414 /* Find the starting address and name of the function containing the PC. */
5415 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5416 return 0;
5417
5418 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5419 target PC is in $31 ($ra). */
5420 if (strcmp (name, "__mips16_ret_sf") == 0
5421 || strcmp (name, "__mips16_ret_df") == 0)
5422 return read_signed_register (RA_REGNUM);
5423
5424 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5425 {
5426 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5427 and the target PC is in $2. */
5428 if (name[19] >= '0' && name[19] <= '9')
5429 return read_signed_register (2);
5430
5431 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5432 before the jal instruction, this is effectively a call stub
5433 and the the target PC is in $2. Otherwise this is effectively
5434 a return stub and the target PC is in $18. */
5435 else if (name[19] == 's' || name[19] == 'd')
5436 {
5437 if (pc == start_addr)
5438 {
5439 /* Check if the target of the stub is a compiler-generated
5440 stub. Such a stub for a function bar might have a name
5441 like __fn_stub_bar, and might look like this:
5442 mfc1 $4,$f13
5443 mfc1 $5,$f12
5444 mfc1 $6,$f15
5445 mfc1 $7,$f14
5446 la $1,bar (becomes a lui/addiu pair)
5447 jr $1
5448 So scan down to the lui/addi and extract the target
5449 address from those two instructions. */
5450
5451 CORE_ADDR target_pc = read_signed_register (2);
5452 t_inst inst;
5453 int i;
5454
5455 /* See if the name of the target function is __fn_stub_*. */
5456 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5457 return target_pc;
5458 if (strncmp (name, "__fn_stub_", 10) != 0
5459 && strcmp (name, "etext") != 0
5460 && strcmp (name, "_etext") != 0)
5461 return target_pc;
5462
5463 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5464 The limit on the search is arbitrarily set to 20
5465 instructions. FIXME. */
5466 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5467 {
5468 inst = mips_fetch_instruction (target_pc);
5469 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5470 pc = (inst << 16) & 0xffff0000; /* high word */
5471 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5472 return pc | (inst & 0xffff); /* low word */
5473 }
5474
5475 /* Couldn't find the lui/addui pair, so return stub address. */
5476 return target_pc;
5477 }
5478 else
5479 /* This is the 'return' part of a call stub. The return
5480 address is in $r18. */
5481 return read_signed_register (18);
5482 }
5483 }
5484 return 0; /* not a stub */
5485 }
5486
5487
5488 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5489 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5490
5491 static int
5492 mips_in_call_stub (CORE_ADDR pc, char *name)
5493 {
5494 CORE_ADDR start_addr;
5495
5496 /* Find the starting address of the function containing the PC. If the
5497 caller didn't give us a name, look it up at the same time. */
5498 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5499 return 0;
5500
5501 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5502 {
5503 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5504 if (name[19] >= '0' && name[19] <= '9')
5505 return 1;
5506 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5507 before the jal instruction, this is effectively a call stub. */
5508 else if (name[19] == 's' || name[19] == 'd')
5509 return pc == start_addr;
5510 }
5511
5512 return 0; /* not a stub */
5513 }
5514
5515
5516 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5517 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5518
5519 static int
5520 mips_in_return_stub (CORE_ADDR pc, char *name)
5521 {
5522 CORE_ADDR start_addr;
5523
5524 /* Find the starting address of the function containing the PC. */
5525 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5526 return 0;
5527
5528 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5529 if (strcmp (name, "__mips16_ret_sf") == 0
5530 || strcmp (name, "__mips16_ret_df") == 0)
5531 return 1;
5532
5533 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5534 i.e. after the jal instruction, this is effectively a return stub. */
5535 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5536 && (name[19] == 's' || name[19] == 'd')
5537 && pc != start_addr)
5538 return 1;
5539
5540 return 0; /* not a stub */
5541 }
5542
5543
5544 /* Return non-zero if the PC is in a library helper function that should
5545 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5546
5547 int
5548 mips_ignore_helper (CORE_ADDR pc)
5549 {
5550 char *name;
5551
5552 /* Find the starting address and name of the function containing the PC. */
5553 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5554 return 0;
5555
5556 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5557 that we want to ignore. */
5558 return (strcmp (name, "__mips16_ret_sf") == 0
5559 || strcmp (name, "__mips16_ret_df") == 0);
5560 }
5561
5562
5563 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5564 the register stored on the stack (32) is different to its real raw
5565 size (64). The below ensures that registers are fetched from the
5566 stack using their ABI size and then stored into the RAW_BUFFER
5567 using their raw size.
5568
5569 The alternative to adding this function would be to add an ABI
5570 macro - REGISTER_STACK_SIZE(). */
5571
5572 static void
5573 mips_get_saved_register (char *raw_buffer,
5574 int *optimizedp,
5575 CORE_ADDR *addrp,
5576 struct frame_info *frame,
5577 int regnum,
5578 enum lval_type *lvalp)
5579 {
5580 CORE_ADDR addrx;
5581 enum lval_type lvalx;
5582 int optimizedx;
5583 int realnumx;
5584
5585 /* Always a pseudo. */
5586 gdb_assert (regnum >= NUM_REGS);
5587
5588 /* Make certain that all needed parameters are present. */
5589 if (addrp == NULL)
5590 addrp = &addrx;
5591 if (lvalp == NULL)
5592 lvalp = &lvalx;
5593 if (optimizedp == NULL)
5594 optimizedp = &optimizedx;
5595
5596 if ((regnum % NUM_REGS) == SP_REGNUM)
5597 /* The SP_REGNUM is special, its value is stored in saved_regs.
5598 In fact, it is so special that it can even only be fetched
5599 using a raw register number! Once this code as been converted
5600 to frame-unwind the problem goes away. */
5601 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5602 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5603 &realnumx, raw_buffer);
5604 else
5605 /* Get it from the next frame. */
5606 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5607 regnum, optimizedp, lvalp, addrp,
5608 &realnumx, raw_buffer);
5609 }
5610
5611 /* Immediately after a function call, return the saved pc.
5612 Can't always go through the frames for this because on some machines
5613 the new frame is not set up until the new function executes
5614 some instructions. */
5615
5616 static CORE_ADDR
5617 mips_saved_pc_after_call (struct frame_info *frame)
5618 {
5619 return read_signed_register (RA_REGNUM);
5620 }
5621
5622
5623 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5624 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5625
5626 static int
5627 mips_stab_reg_to_regnum (int num)
5628 {
5629 int regnum;
5630 if (num >= 0 && num < 32)
5631 regnum = num;
5632 else if (num >= 38 && num < 70)
5633 regnum = num + FP0_REGNUM - 38;
5634 else if (num == 70)
5635 regnum = HI_REGNUM;
5636 else if (num == 71)
5637 regnum = LO_REGNUM;
5638 else
5639 /* This will hopefully (eventually) provoke a warning. Should
5640 we be calling complaint() here? */
5641 return NUM_REGS + NUM_PSEUDO_REGS;
5642 return NUM_REGS + regnum;
5643 }
5644
5645
5646 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5647 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5648
5649 static int
5650 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5651 {
5652 int regnum;
5653 if (num >= 0 && num < 32)
5654 regnum = num;
5655 else if (num >= 32 && num < 64)
5656 regnum = num + FP0_REGNUM - 32;
5657 else if (num == 64)
5658 regnum = HI_REGNUM;
5659 else if (num == 65)
5660 regnum = LO_REGNUM;
5661 else
5662 /* This will hopefully (eventually) provoke a warning. Should we
5663 be calling complaint() here? */
5664 return NUM_REGS + NUM_PSEUDO_REGS;
5665 return NUM_REGS + regnum;
5666 }
5667
5668 static int
5669 mips_register_sim_regno (int regnum)
5670 {
5671 /* Only makes sense to supply raw registers. */
5672 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5673 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5674 decide if it is valid. Should instead define a standard sim/gdb
5675 register numbering scheme. */
5676 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5677 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5678 return regnum;
5679 else
5680 return LEGACY_SIM_REGNO_IGNORE;
5681 }
5682
5683
5684 /* Convert an integer into an address. By first converting the value
5685 into a pointer and then extracting it signed, the address is
5686 guarenteed to be correctly sign extended. */
5687
5688 static CORE_ADDR
5689 mips_integer_to_address (struct type *type, void *buf)
5690 {
5691 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5692 LONGEST val = unpack_long (type, buf);
5693 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5694 return extract_signed_integer (tmp,
5695 TYPE_LENGTH (builtin_type_void_data_ptr));
5696 }
5697
5698 static void
5699 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5700 {
5701 enum mips_abi *abip = (enum mips_abi *) obj;
5702 const char *name = bfd_get_section_name (abfd, sect);
5703
5704 if (*abip != MIPS_ABI_UNKNOWN)
5705 return;
5706
5707 if (strncmp (name, ".mdebug.", 8) != 0)
5708 return;
5709
5710 if (strcmp (name, ".mdebug.abi32") == 0)
5711 *abip = MIPS_ABI_O32;
5712 else if (strcmp (name, ".mdebug.abiN32") == 0)
5713 *abip = MIPS_ABI_N32;
5714 else if (strcmp (name, ".mdebug.abi64") == 0)
5715 *abip = MIPS_ABI_N64;
5716 else if (strcmp (name, ".mdebug.abiO64") == 0)
5717 *abip = MIPS_ABI_O64;
5718 else if (strcmp (name, ".mdebug.eabi32") == 0)
5719 *abip = MIPS_ABI_EABI32;
5720 else if (strcmp (name, ".mdebug.eabi64") == 0)
5721 *abip = MIPS_ABI_EABI64;
5722 else
5723 warning ("unsupported ABI %s.", name + 8);
5724 }
5725
5726 static enum mips_abi
5727 global_mips_abi (void)
5728 {
5729 int i;
5730
5731 for (i = 0; mips_abi_strings[i] != NULL; i++)
5732 if (mips_abi_strings[i] == mips_abi_string)
5733 return (enum mips_abi) i;
5734
5735 internal_error (__FILE__, __LINE__,
5736 "unknown ABI string");
5737 }
5738
5739 static struct gdbarch *
5740 mips_gdbarch_init (struct gdbarch_info info,
5741 struct gdbarch_list *arches)
5742 {
5743 struct gdbarch *gdbarch;
5744 struct gdbarch_tdep *tdep;
5745 int elf_flags;
5746 enum mips_abi mips_abi, found_abi, wanted_abi;
5747 int num_regs;
5748
5749 elf_flags = 0;
5750
5751 if (info.abfd)
5752 {
5753 /* First of all, extract the elf_flags, if available. */
5754 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5755 elf_flags = elf_elfheader (info.abfd)->e_flags;
5756 }
5757
5758 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5759 switch ((elf_flags & EF_MIPS_ABI))
5760 {
5761 case E_MIPS_ABI_O32:
5762 mips_abi = MIPS_ABI_O32;
5763 break;
5764 case E_MIPS_ABI_O64:
5765 mips_abi = MIPS_ABI_O64;
5766 break;
5767 case E_MIPS_ABI_EABI32:
5768 mips_abi = MIPS_ABI_EABI32;
5769 break;
5770 case E_MIPS_ABI_EABI64:
5771 mips_abi = MIPS_ABI_EABI64;
5772 break;
5773 default:
5774 if ((elf_flags & EF_MIPS_ABI2))
5775 mips_abi = MIPS_ABI_N32;
5776 else
5777 mips_abi = MIPS_ABI_UNKNOWN;
5778 break;
5779 }
5780
5781 /* GCC creates a pseudo-section whose name describes the ABI. */
5782 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5783 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5784
5785 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5786 Use the ABI from the last architecture if there is one. */
5787 if (info.abfd == NULL && arches != NULL)
5788 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5789
5790 /* Try the architecture for any hint of the correct ABI. */
5791 if (mips_abi == MIPS_ABI_UNKNOWN
5792 && info.bfd_arch_info != NULL
5793 && info.bfd_arch_info->arch == bfd_arch_mips)
5794 {
5795 switch (info.bfd_arch_info->mach)
5796 {
5797 case bfd_mach_mips3900:
5798 mips_abi = MIPS_ABI_EABI32;
5799 break;
5800 case bfd_mach_mips4100:
5801 case bfd_mach_mips5000:
5802 mips_abi = MIPS_ABI_EABI64;
5803 break;
5804 case bfd_mach_mips8000:
5805 case bfd_mach_mips10000:
5806 /* On Irix, ELF64 executables use the N64 ABI. The
5807 pseudo-sections which describe the ABI aren't present
5808 on IRIX. (Even for executables created by gcc.) */
5809 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5810 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5811 mips_abi = MIPS_ABI_N64;
5812 else
5813 mips_abi = MIPS_ABI_N32;
5814 break;
5815 }
5816 }
5817
5818 if (mips_abi == MIPS_ABI_UNKNOWN)
5819 mips_abi = MIPS_ABI_O32;
5820
5821 /* Now that we have found what the ABI for this binary would be,
5822 check whether the user is overriding it. */
5823 found_abi = mips_abi;
5824 wanted_abi = global_mips_abi ();
5825 if (wanted_abi != MIPS_ABI_UNKNOWN)
5826 mips_abi = wanted_abi;
5827
5828 if (gdbarch_debug)
5829 {
5830 fprintf_unfiltered (gdb_stdlog,
5831 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5832 elf_flags);
5833 fprintf_unfiltered (gdb_stdlog,
5834 "mips_gdbarch_init: mips_abi = %d\n",
5835 mips_abi);
5836 fprintf_unfiltered (gdb_stdlog,
5837 "mips_gdbarch_init: found_mips_abi = %d\n",
5838 found_abi);
5839 }
5840
5841 /* try to find a pre-existing architecture */
5842 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5843 arches != NULL;
5844 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5845 {
5846 /* MIPS needs to be pedantic about which ABI the object is
5847 using. */
5848 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5849 continue;
5850 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5851 continue;
5852 return arches->gdbarch;
5853 }
5854
5855 /* Need a new architecture. Fill in a target specific vector. */
5856 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5857 gdbarch = gdbarch_alloc (&info, tdep);
5858 tdep->elf_flags = elf_flags;
5859
5860 /* Initially set everything according to the default ABI/ISA. */
5861 set_gdbarch_short_bit (gdbarch, 16);
5862 set_gdbarch_int_bit (gdbarch, 32);
5863 set_gdbarch_float_bit (gdbarch, 32);
5864 set_gdbarch_double_bit (gdbarch, 64);
5865 set_gdbarch_long_double_bit (gdbarch, 64);
5866 set_gdbarch_deprecated_register_raw_size (gdbarch, mips_register_raw_size);
5867 set_gdbarch_deprecated_register_byte (gdbarch, mips_register_byte);
5868 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5869 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5870 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5871 tdep->found_abi = found_abi;
5872 tdep->mips_abi = mips_abi;
5873
5874 set_gdbarch_elf_make_msymbol_special (gdbarch,
5875 mips_elf_make_msymbol_special);
5876
5877
5878 if (info.osabi == GDB_OSABI_IRIX)
5879 num_regs = 71;
5880 else
5881 num_regs = 90;
5882 set_gdbarch_num_regs (gdbarch, num_regs);
5883 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5884
5885 switch (mips_abi)
5886 {
5887 case MIPS_ABI_O32:
5888 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5889 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5890 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5891 tdep->mips_default_saved_regsize = 4;
5892 tdep->mips_default_stack_argsize = 4;
5893 tdep->mips_fp_register_double = 0;
5894 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5895 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5896 tdep->gdb_target_is_mips64 = 0;
5897 tdep->default_mask_address_p = 0;
5898 set_gdbarch_long_bit (gdbarch, 32);
5899 set_gdbarch_ptr_bit (gdbarch, 32);
5900 set_gdbarch_long_long_bit (gdbarch, 64);
5901 set_gdbarch_deprecated_reg_struct_has_addr
5902 (gdbarch, mips_o32_reg_struct_has_addr);
5903 set_gdbarch_use_struct_convention (gdbarch,
5904 always_use_struct_convention);
5905 break;
5906 case MIPS_ABI_O64:
5907 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5908 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5909 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5910 tdep->mips_default_saved_regsize = 8;
5911 tdep->mips_default_stack_argsize = 8;
5912 tdep->mips_fp_register_double = 1;
5913 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5914 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5915 tdep->gdb_target_is_mips64 = 1;
5916 tdep->default_mask_address_p = 0;
5917 set_gdbarch_long_bit (gdbarch, 32);
5918 set_gdbarch_ptr_bit (gdbarch, 32);
5919 set_gdbarch_long_long_bit (gdbarch, 64);
5920 set_gdbarch_deprecated_reg_struct_has_addr
5921 (gdbarch, mips_o32_reg_struct_has_addr);
5922 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
5923 break;
5924 case MIPS_ABI_EABI32:
5925 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5926 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5927 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5928 tdep->mips_default_saved_regsize = 4;
5929 tdep->mips_default_stack_argsize = 4;
5930 tdep->mips_fp_register_double = 0;
5931 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5932 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5933 tdep->gdb_target_is_mips64 = 0;
5934 tdep->default_mask_address_p = 0;
5935 set_gdbarch_long_bit (gdbarch, 32);
5936 set_gdbarch_ptr_bit (gdbarch, 32);
5937 set_gdbarch_long_long_bit (gdbarch, 64);
5938 set_gdbarch_deprecated_reg_struct_has_addr
5939 (gdbarch, mips_eabi_reg_struct_has_addr);
5940 set_gdbarch_use_struct_convention (gdbarch,
5941 mips_eabi_use_struct_convention);
5942 break;
5943 case MIPS_ABI_EABI64:
5944 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5945 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5946 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5947 tdep->mips_default_saved_regsize = 8;
5948 tdep->mips_default_stack_argsize = 8;
5949 tdep->mips_fp_register_double = 1;
5950 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5951 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5952 tdep->gdb_target_is_mips64 = 1;
5953 tdep->default_mask_address_p = 0;
5954 set_gdbarch_long_bit (gdbarch, 64);
5955 set_gdbarch_ptr_bit (gdbarch, 64);
5956 set_gdbarch_long_long_bit (gdbarch, 64);
5957 set_gdbarch_deprecated_reg_struct_has_addr
5958 (gdbarch, mips_eabi_reg_struct_has_addr);
5959 set_gdbarch_use_struct_convention (gdbarch,
5960 mips_eabi_use_struct_convention);
5961 break;
5962 case MIPS_ABI_N32:
5963 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5964 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5965 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5966 tdep->mips_default_saved_regsize = 8;
5967 tdep->mips_default_stack_argsize = 8;
5968 tdep->mips_fp_register_double = 1;
5969 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5970 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5971 tdep->gdb_target_is_mips64 = 1;
5972 tdep->default_mask_address_p = 0;
5973 set_gdbarch_long_bit (gdbarch, 32);
5974 set_gdbarch_ptr_bit (gdbarch, 32);
5975 set_gdbarch_long_long_bit (gdbarch, 64);
5976 set_gdbarch_use_struct_convention (gdbarch,
5977 mips_n32n64_use_struct_convention);
5978 set_gdbarch_deprecated_reg_struct_has_addr
5979 (gdbarch, mips_n32n64_reg_struct_has_addr);
5980 break;
5981 case MIPS_ABI_N64:
5982 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5983 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5984 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5985 tdep->mips_default_saved_regsize = 8;
5986 tdep->mips_default_stack_argsize = 8;
5987 tdep->mips_fp_register_double = 1;
5988 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5989 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5990 tdep->gdb_target_is_mips64 = 1;
5991 tdep->default_mask_address_p = 0;
5992 set_gdbarch_long_bit (gdbarch, 64);
5993 set_gdbarch_ptr_bit (gdbarch, 64);
5994 set_gdbarch_long_long_bit (gdbarch, 64);
5995 set_gdbarch_use_struct_convention (gdbarch,
5996 mips_n32n64_use_struct_convention);
5997 set_gdbarch_deprecated_reg_struct_has_addr
5998 (gdbarch, mips_n32n64_reg_struct_has_addr);
5999 break;
6000 default:
6001 internal_error (__FILE__, __LINE__,
6002 "unknown ABI in switch");
6003 }
6004
6005 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
6006 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
6007 comment:
6008
6009 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
6010 flag in object files because to do so would make it impossible to
6011 link with libraries compiled without "-gp32". This is
6012 unnecessarily restrictive.
6013
6014 We could solve this problem by adding "-gp32" multilibs to gcc,
6015 but to set this flag before gcc is built with such multilibs will
6016 break too many systems.''
6017
6018 But even more unhelpfully, the default linker output target for
6019 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
6020 for 64-bit programs - you need to change the ABI to change this,
6021 and not all gcc targets support that currently. Therefore using
6022 this flag to detect 32-bit mode would do the wrong thing given
6023 the current gcc - it would make GDB treat these 64-bit programs
6024 as 32-bit programs by default. */
6025
6026 /* enable/disable the MIPS FPU */
6027 if (!mips_fpu_type_auto)
6028 tdep->mips_fpu_type = mips_fpu_type;
6029 else if (info.bfd_arch_info != NULL
6030 && info.bfd_arch_info->arch == bfd_arch_mips)
6031 switch (info.bfd_arch_info->mach)
6032 {
6033 case bfd_mach_mips3900:
6034 case bfd_mach_mips4100:
6035 case bfd_mach_mips4111:
6036 tdep->mips_fpu_type = MIPS_FPU_NONE;
6037 break;
6038 case bfd_mach_mips4650:
6039 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
6040 break;
6041 default:
6042 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6043 break;
6044 }
6045 else
6046 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6047
6048 /* MIPS version of register names. NOTE: At present the MIPS
6049 register name management is part way between the old -
6050 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
6051 Further work on it is required. */
6052 /* NOTE: many targets (esp. embedded) do not go thru the
6053 gdbarch_register_name vector at all, instead bypassing it
6054 by defining REGISTER_NAMES. */
6055 set_gdbarch_register_name (gdbarch, mips_register_name);
6056 set_gdbarch_read_pc (gdbarch, mips_read_pc);
6057 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
6058 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
6059 set_gdbarch_read_sp (gdbarch, mips_read_sp);
6060
6061 /* Add/remove bits from an address. The MIPS needs be careful to
6062 ensure that all 32 bit addresses are sign extended to 64 bits. */
6063 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6064
6065 /* There's a mess in stack frame creation. See comments in
6066 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
6067 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
6068 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
6069
6070 /* Map debug register numbers onto internal register numbers. */
6071 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6072 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6073 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6074 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6075 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
6076
6077 /* Initialize a frame */
6078 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
6079 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
6080
6081 /* MIPS version of CALL_DUMMY */
6082
6083 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6084 replaced by a command, and all targets will default to on stack
6085 (regardless of the stack's execute status). */
6086 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
6087 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
6088 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6089 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6090 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
6091 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
6092 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
6093
6094 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
6095 set_gdbarch_frameless_function_invocation (gdbarch,
6096 generic_frameless_function_invocation_not);
6097 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6098 set_gdbarch_frame_args_skip (gdbarch, 0);
6099
6100 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
6101
6102 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6103 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6104 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6105
6106 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6107 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6108
6109 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6110 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6111 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6112
6113 set_gdbarch_function_start_offset (gdbarch, 0);
6114
6115 set_gdbarch_register_type (gdbarch, mips_register_type);
6116
6117 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
6118 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6119
6120 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6121
6122 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6123 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6124 need to all be folded into the target vector. Since they are
6125 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6126 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6127 is sitting on? */
6128 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6129
6130 /* Hook in OS ABI-specific overrides, if they have been registered. */
6131 gdbarch_init_osabi (info, gdbarch);
6132
6133 set_gdbarch_extract_struct_value_address (gdbarch,
6134 mips_extract_struct_value_address);
6135
6136 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6137
6138 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6139 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6140
6141 return gdbarch;
6142 }
6143
6144 static void
6145 mips_abi_update (char *ignore_args, int from_tty,
6146 struct cmd_list_element *c)
6147 {
6148 struct gdbarch_info info;
6149
6150 /* Force the architecture to update, and (if it's a MIPS architecture)
6151 mips_gdbarch_init will take care of the rest. */
6152 gdbarch_info_init (&info);
6153 gdbarch_update_p (info);
6154 }
6155
6156 /* Print out which MIPS ABI is in use. */
6157
6158 static void
6159 show_mips_abi (char *ignore_args, int from_tty)
6160 {
6161 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6162 printf_filtered (
6163 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6164 else
6165 {
6166 enum mips_abi global_abi = global_mips_abi ();
6167 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6168 const char *actual_abi_str = mips_abi_strings[actual_abi];
6169
6170 if (global_abi == MIPS_ABI_UNKNOWN)
6171 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6172 actual_abi_str);
6173 else if (global_abi == actual_abi)
6174 printf_filtered (
6175 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6176 actual_abi_str);
6177 else
6178 {
6179 /* Probably shouldn't happen... */
6180 printf_filtered (
6181 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6182 actual_abi_str,
6183 mips_abi_strings[global_abi]);
6184 }
6185 }
6186 }
6187
6188 static void
6189 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6190 {
6191 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6192 if (tdep != NULL)
6193 {
6194 int ef_mips_arch;
6195 int ef_mips_32bitmode;
6196 /* determine the ISA */
6197 switch (tdep->elf_flags & EF_MIPS_ARCH)
6198 {
6199 case E_MIPS_ARCH_1:
6200 ef_mips_arch = 1;
6201 break;
6202 case E_MIPS_ARCH_2:
6203 ef_mips_arch = 2;
6204 break;
6205 case E_MIPS_ARCH_3:
6206 ef_mips_arch = 3;
6207 break;
6208 case E_MIPS_ARCH_4:
6209 ef_mips_arch = 4;
6210 break;
6211 default:
6212 ef_mips_arch = 0;
6213 break;
6214 }
6215 /* determine the size of a pointer */
6216 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6217 fprintf_unfiltered (file,
6218 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6219 tdep->elf_flags);
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6222 ef_mips_32bitmode);
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: ef_mips_arch = %d\n",
6225 ef_mips_arch);
6226 fprintf_unfiltered (file,
6227 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6228 tdep->mips_abi,
6229 mips_abi_strings[tdep->mips_abi]);
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6232 mips_mask_address_p (),
6233 tdep->default_mask_address_p);
6234 }
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6237 FP_REGISTER_DOUBLE);
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6240 MIPS_DEFAULT_FPU_TYPE,
6241 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6242 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6243 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6244 : "???"));
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: MIPS_EABI = %d\n",
6247 MIPS_EABI);
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6250 MIPS_LAST_FP_ARG_REGNUM,
6251 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6254 MIPS_FPU_TYPE,
6255 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6256 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6257 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6258 : "???"));
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6261 MIPS_DEFAULT_SAVED_REGSIZE);
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6264 FP_REGISTER_DOUBLE);
6265 fprintf_unfiltered (file,
6266 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6267 MIPS_DEFAULT_STACK_ARGSIZE);
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6270 MIPS_STACK_ARGSIZE);
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6273 MIPS_REGSIZE);
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: A0_REGNUM = %d\n",
6276 A0_REGNUM);
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6279 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6282 XSTRING (ATTACH_DETACH));
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6285 BADVADDR_REGNUM);
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6288 CAUSE_REGNUM);
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6291 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6294 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6297 FCRCS_REGNUM);
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6300 FCRIR_REGNUM);
6301 fprintf_unfiltered (file,
6302 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6303 FIRST_EMBED_REGNUM);
6304 fprintf_unfiltered (file,
6305 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6306 FPA0_REGNUM);
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6309 GDB_TARGET_IS_MIPS64);
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: HI_REGNUM = %d\n",
6312 HI_REGNUM);
6313 fprintf_unfiltered (file,
6314 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6315 XSTRING (IGNORE_HELPER_CALL (PC)));
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6318 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6321 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6324 LAST_EMBED_REGNUM);
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: LO_REGNUM = %d\n",
6327 LO_REGNUM);
6328 #ifdef MACHINE_CPROC_FP_OFFSET
6329 fprintf_unfiltered (file,
6330 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6331 MACHINE_CPROC_FP_OFFSET);
6332 #endif
6333 #ifdef MACHINE_CPROC_PC_OFFSET
6334 fprintf_unfiltered (file,
6335 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6336 MACHINE_CPROC_PC_OFFSET);
6337 #endif
6338 #ifdef MACHINE_CPROC_SP_OFFSET
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6341 MACHINE_CPROC_SP_OFFSET);
6342 #endif
6343 fprintf_unfiltered (file,
6344 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6345 MIPS16_INSTLEN);
6346 fprintf_unfiltered (file,
6347 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6348 fprintf_unfiltered (file,
6349 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6350 fprintf_unfiltered (file,
6351 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6352 MIPS_INSTLEN);
6353 fprintf_unfiltered (file,
6354 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6355 MIPS_LAST_ARG_REGNUM,
6356 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6359 MIPS_NUMREGS);
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6364 MIPS_SAVED_REGSIZE);
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: OP_LDFPR = used?\n");
6367 fprintf_unfiltered (file,
6368 "mips_dump_tdep: OP_LDGPR = used?\n");
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: PRID_REGNUM = %d\n",
6371 PRID_REGNUM);
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6374 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6377 fprintf_unfiltered (file,
6378 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6379 fprintf_unfiltered (file,
6380 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6381 fprintf_unfiltered (file,
6382 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6383 fprintf_unfiltered (file,
6384 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6385 fprintf_unfiltered (file,
6386 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6389 fprintf_unfiltered (file,
6390 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6391 fprintf_unfiltered (file,
6392 "mips_dump_tdep: PROC_PC_REG = function?\n");
6393 fprintf_unfiltered (file,
6394 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6395 fprintf_unfiltered (file,
6396 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6399 fprintf_unfiltered (file,
6400 "mips_dump_tdep: PS_REGNUM = %d\n",
6401 PS_REGNUM);
6402 fprintf_unfiltered (file,
6403 "mips_dump_tdep: RA_REGNUM = %d\n",
6404 RA_REGNUM);
6405 fprintf_unfiltered (file,
6406 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6407 fprintf_unfiltered (file,
6408 "mips_dump_tdep: ROUND_DOWN = function?\n");
6409 fprintf_unfiltered (file,
6410 "mips_dump_tdep: ROUND_UP = function?\n");
6411 #ifdef SAVED_BYTES
6412 fprintf_unfiltered (file,
6413 "mips_dump_tdep: SAVED_BYTES = %d\n",
6414 SAVED_BYTES);
6415 #endif
6416 #ifdef SAVED_FP
6417 fprintf_unfiltered (file,
6418 "mips_dump_tdep: SAVED_FP = %d\n",
6419 SAVED_FP);
6420 #endif
6421 #ifdef SAVED_PC
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: SAVED_PC = %d\n",
6424 SAVED_PC);
6425 #endif
6426 fprintf_unfiltered (file,
6427 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6428 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6429 fprintf_unfiltered (file,
6430 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6431 fprintf_unfiltered (file,
6432 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6433 SIGFRAME_BASE);
6434 fprintf_unfiltered (file,
6435 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6436 SIGFRAME_FPREGSAVE_OFF);
6437 fprintf_unfiltered (file,
6438 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6439 SIGFRAME_PC_OFF);
6440 fprintf_unfiltered (file,
6441 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6442 SIGFRAME_REGSAVE_OFF);
6443 fprintf_unfiltered (file,
6444 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6445 SIGFRAME_REG_SIZE);
6446 fprintf_unfiltered (file,
6447 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6448 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6449 fprintf_unfiltered (file,
6450 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6451 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6452 fprintf_unfiltered (file,
6453 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6454 SOFTWARE_SINGLE_STEP_P ());
6455 fprintf_unfiltered (file,
6456 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6457 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6458 #ifdef STACK_END_ADDR
6459 fprintf_unfiltered (file,
6460 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6461 STACK_END_ADDR);
6462 #endif
6463 fprintf_unfiltered (file,
6464 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6465 XSTRING (STEP_SKIPS_DELAY (PC)));
6466 fprintf_unfiltered (file,
6467 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6468 STEP_SKIPS_DELAY_P);
6469 fprintf_unfiltered (file,
6470 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6471 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6472 fprintf_unfiltered (file,
6473 "mips_dump_tdep: T9_REGNUM = %d\n",
6474 T9_REGNUM);
6475 fprintf_unfiltered (file,
6476 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6477 fprintf_unfiltered (file,
6478 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6479 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6480 fprintf_unfiltered (file,
6481 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6482 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6483 #ifdef TRACE_CLEAR
6484 fprintf_unfiltered (file,
6485 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6486 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6487 #endif
6488 #ifdef TRACE_FLAVOR
6489 fprintf_unfiltered (file,
6490 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6491 TRACE_FLAVOR);
6492 #endif
6493 #ifdef TRACE_FLAVOR_SIZE
6494 fprintf_unfiltered (file,
6495 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6496 TRACE_FLAVOR_SIZE);
6497 #endif
6498 #ifdef TRACE_SET
6499 fprintf_unfiltered (file,
6500 "mips_dump_tdep: TRACE_SET # %s\n",
6501 XSTRING (TRACE_SET (X,STATE)));
6502 #endif
6503 #ifdef UNUSED_REGNUM
6504 fprintf_unfiltered (file,
6505 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6506 UNUSED_REGNUM);
6507 #endif
6508 fprintf_unfiltered (file,
6509 "mips_dump_tdep: V0_REGNUM = %d\n",
6510 V0_REGNUM);
6511 fprintf_unfiltered (file,
6512 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6513 (long) VM_MIN_ADDRESS);
6514 #ifdef VX_NUM_REGS
6515 fprintf_unfiltered (file,
6516 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6517 VX_NUM_REGS);
6518 #endif
6519 fprintf_unfiltered (file,
6520 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6521 ZERO_REGNUM);
6522 fprintf_unfiltered (file,
6523 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6524 _PROC_MAGIC_);
6525 }
6526
6527 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6528
6529 void
6530 _initialize_mips_tdep (void)
6531 {
6532 static struct cmd_list_element *mipsfpulist = NULL;
6533 struct cmd_list_element *c;
6534
6535 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6536 if (MIPS_ABI_LAST + 1
6537 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6538 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6539
6540 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6541
6542 /* Add root prefix command for all "set mips"/"show mips" commands */
6543 add_prefix_cmd ("mips", no_class, set_mips_command,
6544 "Various MIPS specific commands.",
6545 &setmipscmdlist, "set mips ", 0, &setlist);
6546
6547 add_prefix_cmd ("mips", no_class, show_mips_command,
6548 "Various MIPS specific commands.",
6549 &showmipscmdlist, "show mips ", 0, &showlist);
6550
6551 /* Allow the user to override the saved register size. */
6552 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6553 class_obscure,
6554 size_enums,
6555 &mips_saved_regsize_string, "\
6556 Set size of general purpose registers saved on the stack.\n\
6557 This option can be set to one of:\n\
6558 32 - Force GDB to treat saved GP registers as 32-bit\n\
6559 64 - Force GDB to treat saved GP registers as 64-bit\n\
6560 auto - Allow GDB to use the target's default setting or autodetect the\n\
6561 saved GP register size from information contained in the executable.\n\
6562 (default: auto)",
6563 &setmipscmdlist),
6564 &showmipscmdlist);
6565
6566 /* Allow the user to override the argument stack size. */
6567 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6568 class_obscure,
6569 size_enums,
6570 &mips_stack_argsize_string, "\
6571 Set the amount of stack space reserved for each argument.\n\
6572 This option can be set to one of:\n\
6573 32 - Force GDB to allocate 32-bit chunks per argument\n\
6574 64 - Force GDB to allocate 64-bit chunks per argument\n\
6575 auto - Allow GDB to determine the correct setting from the current\n\
6576 target and executable (default)",
6577 &setmipscmdlist),
6578 &showmipscmdlist);
6579
6580 /* Allow the user to override the ABI. */
6581 c = add_set_enum_cmd
6582 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6583 "Set the ABI used by this program.\n"
6584 "This option can be set to one of:\n"
6585 " auto - the default ABI associated with the current binary\n"
6586 " o32\n"
6587 " o64\n"
6588 " n32\n"
6589 " n64\n"
6590 " eabi32\n"
6591 " eabi64",
6592 &setmipscmdlist);
6593 set_cmd_sfunc (c, mips_abi_update);
6594 add_cmd ("abi", class_obscure, show_mips_abi,
6595 "Show ABI in use by MIPS target", &showmipscmdlist);
6596
6597 /* Let the user turn off floating point and set the fence post for
6598 heuristic_proc_start. */
6599
6600 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6601 "Set use of MIPS floating-point coprocessor.",
6602 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6603 add_cmd ("single", class_support, set_mipsfpu_single_command,
6604 "Select single-precision MIPS floating-point coprocessor.",
6605 &mipsfpulist);
6606 add_cmd ("double", class_support, set_mipsfpu_double_command,
6607 "Select double-precision MIPS floating-point coprocessor.",
6608 &mipsfpulist);
6609 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6610 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6611 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6612 add_cmd ("none", class_support, set_mipsfpu_none_command,
6613 "Select no MIPS floating-point coprocessor.",
6614 &mipsfpulist);
6615 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6616 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6617 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6618 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6619 "Select MIPS floating-point coprocessor automatically.",
6620 &mipsfpulist);
6621 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6622 "Show current use of MIPS floating-point coprocessor target.",
6623 &showlist);
6624
6625 /* We really would like to have both "0" and "unlimited" work, but
6626 command.c doesn't deal with that. So make it a var_zinteger
6627 because the user can always use "999999" or some such for unlimited. */
6628 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6629 (char *) &heuristic_fence_post,
6630 "\
6631 Set the distance searched for the start of a function.\n\
6632 If you are debugging a stripped executable, GDB needs to search through the\n\
6633 program for the start of a function. This command sets the distance of the\n\
6634 search. The only need to set it is when debugging a stripped executable.",
6635 &setlist);
6636 /* We need to throw away the frame cache when we set this, since it
6637 might change our ability to get backtraces. */
6638 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6639 add_show_from_set (c, &showlist);
6640
6641 /* Allow the user to control whether the upper bits of 64-bit
6642 addresses should be zeroed. */
6643 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6644 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6645 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6646 allow GDB to determine the correct value.\n", "\
6647 Show zeroing of upper 32 bits of 64-bit addresses.",
6648 NULL, show_mask_address,
6649 &setmipscmdlist, &showmipscmdlist);
6650
6651 /* Allow the user to control the size of 32 bit registers within the
6652 raw remote packet. */
6653 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6654 class_obscure,
6655 var_boolean,
6656 (char *)&mips64_transfers_32bit_regs_p, "\
6657 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6658 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6659 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6660 64 bits for others. Use \"off\" to disable compatibility mode",
6661 &setlist),
6662 &showlist);
6663
6664 /* Debug this files internals. */
6665 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6666 &mips_debug, "Set mips debugging.\n\
6667 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6668 &showdebuglist);
6669 }
This page took 0.16432 seconds and 3 git commands to generate.