2002-12-20 David Carlton <carlton@math.stanford.edu>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43
44 #include "opcode/mips.h"
45 #include "elf/mips.h"
46 #include "elf-bfd.h"
47 #include "symcat.h"
48
49 /* A useful bit in the CP0 status register (PS_REGNUM). */
50 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
51 #define ST0_FR (1 << 26)
52
53 /* The sizes of floating point registers. */
54
55 enum
56 {
57 MIPS_FPU_SINGLE_REGSIZE = 4,
58 MIPS_FPU_DOUBLE_REGSIZE = 8
59 };
60
61
62 static const char *mips_abi_string;
63
64 static const char *mips_abi_strings[] = {
65 "auto",
66 "n32",
67 "o32",
68 "n64",
69 "o64",
70 "eabi32",
71 "eabi64",
72 NULL
73 };
74
75 struct frame_extra_info
76 {
77 mips_extra_func_info_t proc_desc;
78 int num_args;
79 };
80
81 /* Various MIPS ISA options (related to stack analysis) can be
82 overridden dynamically. Establish an enum/array for managing
83 them. */
84
85 static const char size_auto[] = "auto";
86 static const char size_32[] = "32";
87 static const char size_64[] = "64";
88
89 static const char *size_enums[] = {
90 size_auto,
91 size_32,
92 size_64,
93 0
94 };
95
96 /* Some MIPS boards don't support floating point while others only
97 support single-precision floating-point operations. See also
98 FP_REGISTER_DOUBLE. */
99
100 enum mips_fpu_type
101 {
102 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
103 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
104 MIPS_FPU_NONE /* No floating point. */
105 };
106
107 #ifndef MIPS_DEFAULT_FPU_TYPE
108 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
109 #endif
110 static int mips_fpu_type_auto = 1;
111 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
112
113 static int mips_debug = 0;
114
115 /* MIPS specific per-architecture information */
116 struct gdbarch_tdep
117 {
118 /* from the elf header */
119 int elf_flags;
120
121 /* mips options */
122 enum mips_abi mips_abi;
123 enum mips_abi found_abi;
124 enum mips_fpu_type mips_fpu_type;
125 int mips_last_arg_regnum;
126 int mips_last_fp_arg_regnum;
127 int mips_default_saved_regsize;
128 int mips_fp_register_double;
129 int mips_default_stack_argsize;
130 int gdb_target_is_mips64;
131 int default_mask_address_p;
132
133 enum gdb_osabi osabi;
134 };
135
136 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
137 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
138
139 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
140
141 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
142
143 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
144
145 /* Return the currently configured (or set) saved register size. */
146
147 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
148
149 static const char *mips_saved_regsize_string = size_auto;
150
151 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
152
153 /* Return the MIPS ABI associated with GDBARCH. */
154 enum mips_abi
155 mips_abi (struct gdbarch *gdbarch)
156 {
157 return gdbarch_tdep (gdbarch)->mips_abi;
158 }
159
160 static unsigned int
161 mips_saved_regsize (void)
162 {
163 if (mips_saved_regsize_string == size_auto)
164 return MIPS_DEFAULT_SAVED_REGSIZE;
165 else if (mips_saved_regsize_string == size_64)
166 return 8;
167 else /* if (mips_saved_regsize_string == size_32) */
168 return 4;
169 }
170
171 /* Functions for setting and testing a bit in a minimal symbol that
172 marks it as 16-bit function. The MSB of the minimal symbol's
173 "info" field is used for this purpose. This field is already
174 being used to store the symbol size, so the assumption is
175 that the symbol size cannot exceed 2^31.
176
177 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
178 i.e. refers to a 16-bit function, and sets a "special" bit in a
179 minimal symbol to mark it as a 16-bit function
180
181 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
182 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
183 the "info" field with the "special" bit masked out */
184
185 static void
186 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
187 {
188 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
189 {
190 MSYMBOL_INFO (msym) = (char *)
191 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
192 SYMBOL_VALUE_ADDRESS (msym) |= 1;
193 }
194 }
195
196 static int
197 msymbol_is_special (struct minimal_symbol *msym)
198 {
199 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
200 }
201
202 static long
203 msymbol_size (struct minimal_symbol *msym)
204 {
205 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
206 }
207
208 /* XFER a value from the big/little/left end of the register.
209 Depending on the size of the value it might occupy the entire
210 register or just part of it. Make an allowance for this, aligning
211 things accordingly. */
212
213 static void
214 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
215 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
216 int buf_offset)
217 {
218 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
219 int reg_offset = 0;
220 /* Need to transfer the left or right part of the register, based on
221 the targets byte order. */
222 switch (endian)
223 {
224 case BFD_ENDIAN_BIG:
225 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
226 break;
227 case BFD_ENDIAN_LITTLE:
228 reg_offset = 0;
229 break;
230 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
231 reg_offset = 0;
232 break;
233 default:
234 internal_error (__FILE__, __LINE__, "bad switch");
235 }
236 if (mips_debug)
237 fprintf_unfiltered (gdb_stderr,
238 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
239 reg_num, reg_offset, buf_offset, length);
240 if (mips_debug && out != NULL)
241 {
242 int i;
243 fprintf_unfiltered (gdb_stdlog, "out ");
244 for (i = 0; i < length; i++)
245 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
246 }
247 if (in != NULL)
248 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
249 if (out != NULL)
250 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
251 if (mips_debug && in != NULL)
252 {
253 int i;
254 fprintf_unfiltered (gdb_stdlog, "in ");
255 for (i = 0; i < length; i++)
256 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
257 }
258 if (mips_debug)
259 fprintf_unfiltered (gdb_stdlog, "\n");
260 }
261
262 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
263 compatiblity mode. A return value of 1 means that we have
264 physical 64-bit registers, but should treat them as 32-bit registers. */
265
266 static int
267 mips2_fp_compat (void)
268 {
269 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
270 meaningful. */
271 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
272 return 0;
273
274 #if 0
275 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
276 in all the places we deal with FP registers. PR gdb/413. */
277 /* Otherwise check the FR bit in the status register - it controls
278 the FP compatiblity mode. If it is clear we are in compatibility
279 mode. */
280 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
281 return 1;
282 #endif
283
284 return 0;
285 }
286
287 /* Indicate that the ABI makes use of double-precision registers
288 provided by the FPU (rather than combining pairs of registers to
289 form double-precision values). Do not use "TARGET_IS_MIPS64" to
290 determine if the ABI is using double-precision registers. See also
291 MIPS_FPU_TYPE. */
292 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
293
294 /* The amount of space reserved on the stack for registers. This is
295 different to MIPS_SAVED_REGSIZE as it determines the alignment of
296 data allocated after the registers have run out. */
297
298 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
299
300 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
301
302 static const char *mips_stack_argsize_string = size_auto;
303
304 static unsigned int
305 mips_stack_argsize (void)
306 {
307 if (mips_stack_argsize_string == size_auto)
308 return MIPS_DEFAULT_STACK_ARGSIZE;
309 else if (mips_stack_argsize_string == size_64)
310 return 8;
311 else /* if (mips_stack_argsize_string == size_32) */
312 return 4;
313 }
314
315 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
316
317 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
318
319 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
320
321 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
322
323 static void mips_print_register (int, int);
324
325 static mips_extra_func_info_t
326 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
327
328 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
329
330 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
331
332 static int mips_set_processor_type (char *);
333
334 static void mips_show_processor_type_command (char *, int);
335
336 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
337
338 static mips_extra_func_info_t
339 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
340
341 static CORE_ADDR after_prologue (CORE_ADDR pc,
342 mips_extra_func_info_t proc_desc);
343
344 static void mips_read_fp_register_single (int regno, char *rare_buffer);
345 static void mips_read_fp_register_double (int regno, char *rare_buffer);
346
347 static struct type *mips_float_register_type (void);
348 static struct type *mips_double_register_type (void);
349
350 /* This value is the model of MIPS in use. It is derived from the value
351 of the PrID register. */
352
353 char *mips_processor_type;
354
355 char *tmp_mips_processor_type;
356
357 /* The list of available "set mips " and "show mips " commands */
358
359 static struct cmd_list_element *setmipscmdlist = NULL;
360 static struct cmd_list_element *showmipscmdlist = NULL;
361
362 /* A set of original names, to be used when restoring back to generic
363 registers from a specific set. */
364
365 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
366 char **mips_processor_reg_names = mips_generic_reg_names;
367
368 static const char *
369 mips_register_name (int i)
370 {
371 return mips_processor_reg_names[i];
372 }
373 /* *INDENT-OFF* */
374 /* Names of IDT R3041 registers. */
375
376 char *mips_r3041_reg_names[] = {
377 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
378 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
379 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
380 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
381 "sr", "lo", "hi", "bad", "cause","pc",
382 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
383 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
384 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
385 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
386 "fsr", "fir", "",/*"fp"*/ "",
387 "", "", "bus", "ccfg", "", "", "", "",
388 "", "", "port", "cmp", "", "", "epc", "prid",
389 };
390
391 /* Names of IDT R3051 registers. */
392
393 char *mips_r3051_reg_names[] = {
394 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
395 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
396 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
397 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
398 "sr", "lo", "hi", "bad", "cause","pc",
399 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
400 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
401 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
402 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
403 "fsr", "fir", ""/*"fp"*/, "",
404 "inx", "rand", "elo", "", "ctxt", "", "", "",
405 "", "", "ehi", "", "", "", "epc", "prid",
406 };
407
408 /* Names of IDT R3081 registers. */
409
410 char *mips_r3081_reg_names[] = {
411 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
412 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
413 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
414 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
415 "sr", "lo", "hi", "bad", "cause","pc",
416 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
417 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
418 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
419 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
420 "fsr", "fir", ""/*"fp"*/, "",
421 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
422 "", "", "ehi", "", "", "", "epc", "prid",
423 };
424
425 /* Names of LSI 33k registers. */
426
427 char *mips_lsi33k_reg_names[] = {
428 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
429 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
430 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
431 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
432 "epc", "hi", "lo", "sr", "cause","badvaddr",
433 "dcic", "bpc", "bda", "", "", "", "", "",
434 "", "", "", "", "", "", "", "",
435 "", "", "", "", "", "", "", "",
436 "", "", "", "", "", "", "", "",
437 "", "", "", "",
438 "", "", "", "", "", "", "", "",
439 "", "", "", "", "", "", "", "",
440 };
441
442 struct {
443 char *name;
444 char **regnames;
445 } mips_processor_type_table[] = {
446 { "generic", mips_generic_reg_names },
447 { "r3041", mips_r3041_reg_names },
448 { "r3051", mips_r3051_reg_names },
449 { "r3071", mips_r3081_reg_names },
450 { "r3081", mips_r3081_reg_names },
451 { "lsi33k", mips_lsi33k_reg_names },
452 { NULL, NULL }
453 };
454 /* *INDENT-ON* */
455
456
457
458
459 /* Table to translate MIPS16 register field to actual register number. */
460 static int mips16_to_32_reg[8] =
461 {16, 17, 2, 3, 4, 5, 6, 7};
462
463 /* Heuristic_proc_start may hunt through the text section for a long
464 time across a 2400 baud serial line. Allows the user to limit this
465 search. */
466
467 static unsigned int heuristic_fence_post = 0;
468
469 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
470 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
471 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
472 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
473 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
474 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
475 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
476 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
477 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
478 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
479 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
480 this will corrupt pdr.iline. Fortunately we don't use it. */
481 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
482 #define _PROC_MAGIC_ 0x0F0F0F0F
483 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
484 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
485
486 struct linked_proc_info
487 {
488 struct mips_extra_func_info info;
489 struct linked_proc_info *next;
490 }
491 *linked_proc_desc_table = NULL;
492
493 void
494 mips_print_extra_frame_info (struct frame_info *fi)
495 {
496 if (fi
497 && fi->extra_info
498 && fi->extra_info->proc_desc
499 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
500 printf_filtered (" frame pointer is at %s+%s\n",
501 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
502 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
503 }
504
505 /* Number of bytes of storage in the actual machine representation for
506 register N. NOTE: This indirectly defines the register size
507 transfered by the GDB protocol. */
508
509 static int mips64_transfers_32bit_regs_p = 0;
510
511 static int
512 mips_register_raw_size (int reg_nr)
513 {
514 if (mips64_transfers_32bit_regs_p)
515 return REGISTER_VIRTUAL_SIZE (reg_nr);
516 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
517 && FP_REGISTER_DOUBLE)
518 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
519 registers. */
520 return 8;
521 else
522 return MIPS_REGSIZE;
523 }
524
525 /* Convert between RAW and VIRTUAL registers. The RAW register size
526 defines the remote-gdb packet. */
527
528 static int
529 mips_register_convertible (int reg_nr)
530 {
531 if (mips64_transfers_32bit_regs_p)
532 return 0;
533 else
534 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
535 }
536
537 static void
538 mips_register_convert_to_virtual (int n, struct type *virtual_type,
539 char *raw_buf, char *virt_buf)
540 {
541 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
542 memcpy (virt_buf,
543 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
544 TYPE_LENGTH (virtual_type));
545 else
546 memcpy (virt_buf,
547 raw_buf,
548 TYPE_LENGTH (virtual_type));
549 }
550
551 static void
552 mips_register_convert_to_raw (struct type *virtual_type, int n,
553 char *virt_buf, char *raw_buf)
554 {
555 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
556 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
557 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
558 virt_buf,
559 TYPE_LENGTH (virtual_type));
560 else
561 memcpy (raw_buf,
562 virt_buf,
563 TYPE_LENGTH (virtual_type));
564 }
565
566 void
567 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
568 {
569 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
570 && REGISTER_RAW_SIZE (regnum) == 4
571 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
572 && TYPE_CODE(type) == TYPE_CODE_FLT
573 && TYPE_LENGTH(type) == 8)
574 {
575 char temp[4];
576 memcpy (temp, ((char *)(buffer))+4, 4);
577 memcpy (((char *)(buffer))+4, (buffer), 4);
578 memcpy (((char *)(buffer)), temp, 4);
579 }
580 }
581
582 void
583 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
584 {
585 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
586 && REGISTER_RAW_SIZE (regnum) == 4
587 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
588 && TYPE_CODE(type) == TYPE_CODE_FLT
589 && TYPE_LENGTH(type) == 8)
590 {
591 char temp[4];
592 memcpy (temp, ((char *)(buffer))+4, 4);
593 memcpy (((char *)(buffer))+4, (buffer), 4);
594 memcpy (((char *)(buffer)), temp, 4);
595 }
596 }
597
598 /* Return the GDB type object for the "standard" data type
599 of data in register REG.
600
601 Note: kevinb/2002-08-01: The definition below should faithfully
602 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
603 definitions found in config/mips/tm-*.h. I'm concerned about
604 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
605 though. In some cases FP_REGNUM is in this range, and I doubt
606 that this code is correct for the 64-bit case. */
607
608 static struct type *
609 mips_register_virtual_type (int reg)
610 {
611 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
612 {
613 /* Floating point registers... */
614 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
615 return builtin_type_ieee_double_big;
616 else
617 return builtin_type_ieee_double_little;
618 }
619 else if (reg == PS_REGNUM /* CR */)
620 return builtin_type_uint32;
621 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
622 return builtin_type_uint32;
623 else
624 {
625 /* Everything else...
626 Return type appropriate for width of register. */
627 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
628 return builtin_type_uint64;
629 else
630 return builtin_type_uint32;
631 }
632 }
633
634 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
635
636 static CORE_ADDR
637 mips_read_sp (void)
638 {
639 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
640 }
641
642 /* Should the upper word of 64-bit addresses be zeroed? */
643 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
644
645 static int
646 mips_mask_address_p (void)
647 {
648 switch (mask_address_var)
649 {
650 case AUTO_BOOLEAN_TRUE:
651 return 1;
652 case AUTO_BOOLEAN_FALSE:
653 return 0;
654 break;
655 case AUTO_BOOLEAN_AUTO:
656 return MIPS_DEFAULT_MASK_ADDRESS_P;
657 default:
658 internal_error (__FILE__, __LINE__,
659 "mips_mask_address_p: bad switch");
660 return -1;
661 }
662 }
663
664 static void
665 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
666 {
667 switch (mask_address_var)
668 {
669 case AUTO_BOOLEAN_TRUE:
670 printf_filtered ("The 32 bit mips address mask is enabled\n");
671 break;
672 case AUTO_BOOLEAN_FALSE:
673 printf_filtered ("The 32 bit mips address mask is disabled\n");
674 break;
675 case AUTO_BOOLEAN_AUTO:
676 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
677 mips_mask_address_p () ? "enabled" : "disabled");
678 break;
679 default:
680 internal_error (__FILE__, __LINE__,
681 "show_mask_address: bad switch");
682 break;
683 }
684 }
685
686 /* Should call_function allocate stack space for a struct return? */
687
688 static int
689 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
690 {
691 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
692 }
693
694 static int
695 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
696 {
697 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
698 }
699
700 static int
701 mips_o32_use_struct_convention (int gcc_p, struct type *type)
702 {
703 return 1; /* Structures are returned by ref in extra arg0. */
704 }
705
706 /* Should call_function pass struct by reference?
707 For each architecture, structs are passed either by
708 value or by reference, depending on their size. */
709
710 static int
711 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
712 {
713 enum type_code typecode = TYPE_CODE (check_typedef (type));
714 int len = TYPE_LENGTH (check_typedef (type));
715
716 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
717 return (len > MIPS_SAVED_REGSIZE);
718
719 return 0;
720 }
721
722 static int
723 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
724 {
725 return 0; /* Assumption: N32/N64 never passes struct by ref. */
726 }
727
728 static int
729 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
730 {
731 return 0; /* Assumption: O32/O64 never passes struct by ref. */
732 }
733
734 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
735
736 static int
737 pc_is_mips16 (bfd_vma memaddr)
738 {
739 struct minimal_symbol *sym;
740
741 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
742 if (IS_MIPS16_ADDR (memaddr))
743 return 1;
744
745 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
746 the high bit of the info field. Use this to decide if the function is
747 MIPS16 or normal MIPS. */
748 sym = lookup_minimal_symbol_by_pc (memaddr);
749 if (sym)
750 return msymbol_is_special (sym);
751 else
752 return 0;
753 }
754
755 /* MIPS believes that the PC has a sign extended value. Perhaphs the
756 all registers should be sign extended for simplicity? */
757
758 static CORE_ADDR
759 mips_read_pc (ptid_t ptid)
760 {
761 return read_signed_register_pid (PC_REGNUM, ptid);
762 }
763
764 /* This returns the PC of the first inst after the prologue. If we can't
765 find the prologue, then return 0. */
766
767 static CORE_ADDR
768 after_prologue (CORE_ADDR pc,
769 mips_extra_func_info_t proc_desc)
770 {
771 struct symtab_and_line sal;
772 CORE_ADDR func_addr, func_end;
773
774 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
775 to read the stack pointer from the current machine state, because
776 the current machine state has nothing to do with the information
777 we need from the proc_desc; and the process may or may not exist
778 right now. */
779 if (!proc_desc)
780 proc_desc = find_proc_desc (pc, NULL, 0);
781
782 if (proc_desc)
783 {
784 /* If function is frameless, then we need to do it the hard way. I
785 strongly suspect that frameless always means prologueless... */
786 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
787 && PROC_FRAME_OFFSET (proc_desc) == 0)
788 return 0;
789 }
790
791 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
792 return 0; /* Unknown */
793
794 sal = find_pc_line (func_addr, 0);
795
796 if (sal.end < func_end)
797 return sal.end;
798
799 /* The line after the prologue is after the end of the function. In this
800 case, tell the caller to find the prologue the hard way. */
801
802 return 0;
803 }
804
805 /* Decode a MIPS32 instruction that saves a register in the stack, and
806 set the appropriate bit in the general register mask or float register mask
807 to indicate which register is saved. This is a helper function
808 for mips_find_saved_regs. */
809
810 static void
811 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
812 unsigned long *float_mask)
813 {
814 int reg;
815
816 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
817 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
818 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
819 {
820 /* It might be possible to use the instruction to
821 find the offset, rather than the code below which
822 is based on things being in a certain order in the
823 frame, but figuring out what the instruction's offset
824 is relative to might be a little tricky. */
825 reg = (inst & 0x001f0000) >> 16;
826 *gen_mask |= (1 << reg);
827 }
828 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
829 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
830 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
831
832 {
833 reg = ((inst & 0x001f0000) >> 16);
834 *float_mask |= (1 << reg);
835 }
836 }
837
838 /* Decode a MIPS16 instruction that saves a register in the stack, and
839 set the appropriate bit in the general register or float register mask
840 to indicate which register is saved. This is a helper function
841 for mips_find_saved_regs. */
842
843 static void
844 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
845 {
846 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
847 {
848 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
849 *gen_mask |= (1 << reg);
850 }
851 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
852 {
853 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
854 *gen_mask |= (1 << reg);
855 }
856 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
857 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
858 *gen_mask |= (1 << RA_REGNUM);
859 }
860
861
862 /* Fetch and return instruction from the specified location. If the PC
863 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
864
865 static t_inst
866 mips_fetch_instruction (CORE_ADDR addr)
867 {
868 char buf[MIPS_INSTLEN];
869 int instlen;
870 int status;
871
872 if (pc_is_mips16 (addr))
873 {
874 instlen = MIPS16_INSTLEN;
875 addr = UNMAKE_MIPS16_ADDR (addr);
876 }
877 else
878 instlen = MIPS_INSTLEN;
879 status = read_memory_nobpt (addr, buf, instlen);
880 if (status)
881 memory_error (status, addr);
882 return extract_unsigned_integer (buf, instlen);
883 }
884
885
886 /* These the fields of 32 bit mips instructions */
887 #define mips32_op(x) (x >> 26)
888 #define itype_op(x) (x >> 26)
889 #define itype_rs(x) ((x >> 21) & 0x1f)
890 #define itype_rt(x) ((x >> 16) & 0x1f)
891 #define itype_immediate(x) (x & 0xffff)
892
893 #define jtype_op(x) (x >> 26)
894 #define jtype_target(x) (x & 0x03ffffff)
895
896 #define rtype_op(x) (x >> 26)
897 #define rtype_rs(x) ((x >> 21) & 0x1f)
898 #define rtype_rt(x) ((x >> 16) & 0x1f)
899 #define rtype_rd(x) ((x >> 11) & 0x1f)
900 #define rtype_shamt(x) ((x >> 6) & 0x1f)
901 #define rtype_funct(x) (x & 0x3f)
902
903 static CORE_ADDR
904 mips32_relative_offset (unsigned long inst)
905 {
906 long x;
907 x = itype_immediate (inst);
908 if (x & 0x8000) /* sign bit set */
909 {
910 x |= 0xffff0000; /* sign extension */
911 }
912 x = x << 2;
913 return x;
914 }
915
916 /* Determine whate to set a single step breakpoint while considering
917 branch prediction */
918 static CORE_ADDR
919 mips32_next_pc (CORE_ADDR pc)
920 {
921 unsigned long inst;
922 int op;
923 inst = mips_fetch_instruction (pc);
924 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
925 {
926 if (itype_op (inst) >> 2 == 5)
927 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
928 {
929 op = (itype_op (inst) & 0x03);
930 switch (op)
931 {
932 case 0: /* BEQL */
933 goto equal_branch;
934 case 1: /* BNEL */
935 goto neq_branch;
936 case 2: /* BLEZL */
937 goto less_branch;
938 case 3: /* BGTZ */
939 goto greater_branch;
940 default:
941 pc += 4;
942 }
943 }
944 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
945 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
946 {
947 int tf = itype_rt (inst) & 0x01;
948 int cnum = itype_rt (inst) >> 2;
949 int fcrcs = read_signed_register (FCRCS_REGNUM);
950 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
951
952 if (((cond >> cnum) & 0x01) == tf)
953 pc += mips32_relative_offset (inst) + 4;
954 else
955 pc += 8;
956 }
957 else
958 pc += 4; /* Not a branch, next instruction is easy */
959 }
960 else
961 { /* This gets way messy */
962
963 /* Further subdivide into SPECIAL, REGIMM and other */
964 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
965 {
966 case 0: /* SPECIAL */
967 op = rtype_funct (inst);
968 switch (op)
969 {
970 case 8: /* JR */
971 case 9: /* JALR */
972 /* Set PC to that address */
973 pc = read_signed_register (rtype_rs (inst));
974 break;
975 default:
976 pc += 4;
977 }
978
979 break; /* end SPECIAL */
980 case 1: /* REGIMM */
981 {
982 op = itype_rt (inst); /* branch condition */
983 switch (op)
984 {
985 case 0: /* BLTZ */
986 case 2: /* BLTZL */
987 case 16: /* BLTZAL */
988 case 18: /* BLTZALL */
989 less_branch:
990 if (read_signed_register (itype_rs (inst)) < 0)
991 pc += mips32_relative_offset (inst) + 4;
992 else
993 pc += 8; /* after the delay slot */
994 break;
995 case 1: /* BGEZ */
996 case 3: /* BGEZL */
997 case 17: /* BGEZAL */
998 case 19: /* BGEZALL */
999 greater_equal_branch:
1000 if (read_signed_register (itype_rs (inst)) >= 0)
1001 pc += mips32_relative_offset (inst) + 4;
1002 else
1003 pc += 8; /* after the delay slot */
1004 break;
1005 /* All of the other instructions in the REGIMM category */
1006 default:
1007 pc += 4;
1008 }
1009 }
1010 break; /* end REGIMM */
1011 case 2: /* J */
1012 case 3: /* JAL */
1013 {
1014 unsigned long reg;
1015 reg = jtype_target (inst) << 2;
1016 /* Upper four bits get never changed... */
1017 pc = reg + ((pc + 4) & 0xf0000000);
1018 }
1019 break;
1020 /* FIXME case JALX : */
1021 {
1022 unsigned long reg;
1023 reg = jtype_target (inst) << 2;
1024 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1025 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1026 }
1027 break; /* The new PC will be alternate mode */
1028 case 4: /* BEQ, BEQL */
1029 equal_branch:
1030 if (read_signed_register (itype_rs (inst)) ==
1031 read_signed_register (itype_rt (inst)))
1032 pc += mips32_relative_offset (inst) + 4;
1033 else
1034 pc += 8;
1035 break;
1036 case 5: /* BNE, BNEL */
1037 neq_branch:
1038 if (read_signed_register (itype_rs (inst)) !=
1039 read_signed_register (itype_rt (inst)))
1040 pc += mips32_relative_offset (inst) + 4;
1041 else
1042 pc += 8;
1043 break;
1044 case 6: /* BLEZ, BLEZL */
1045 less_zero_branch:
1046 if (read_signed_register (itype_rs (inst) <= 0))
1047 pc += mips32_relative_offset (inst) + 4;
1048 else
1049 pc += 8;
1050 break;
1051 case 7:
1052 default:
1053 greater_branch: /* BGTZ, BGTZL */
1054 if (read_signed_register (itype_rs (inst) > 0))
1055 pc += mips32_relative_offset (inst) + 4;
1056 else
1057 pc += 8;
1058 break;
1059 } /* switch */
1060 } /* else */
1061 return pc;
1062 } /* mips32_next_pc */
1063
1064 /* Decoding the next place to set a breakpoint is irregular for the
1065 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1066 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1067 We dont want to set a single step instruction on the extend instruction
1068 either.
1069 */
1070
1071 /* Lots of mips16 instruction formats */
1072 /* Predicting jumps requires itype,ritype,i8type
1073 and their extensions extItype,extritype,extI8type
1074 */
1075 enum mips16_inst_fmts
1076 {
1077 itype, /* 0 immediate 5,10 */
1078 ritype, /* 1 5,3,8 */
1079 rrtype, /* 2 5,3,3,5 */
1080 rritype, /* 3 5,3,3,5 */
1081 rrrtype, /* 4 5,3,3,3,2 */
1082 rriatype, /* 5 5,3,3,1,4 */
1083 shifttype, /* 6 5,3,3,3,2 */
1084 i8type, /* 7 5,3,8 */
1085 i8movtype, /* 8 5,3,3,5 */
1086 i8mov32rtype, /* 9 5,3,5,3 */
1087 i64type, /* 10 5,3,8 */
1088 ri64type, /* 11 5,3,3,5 */
1089 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1090 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1091 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1092 extRRItype, /* 15 5,5,5,5,3,3,5 */
1093 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1094 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1095 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1096 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1097 extRi64type, /* 20 5,6,5,5,3,3,5 */
1098 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1099 };
1100 /* I am heaping all the fields of the formats into one structure and
1101 then, only the fields which are involved in instruction extension */
1102 struct upk_mips16
1103 {
1104 CORE_ADDR offset;
1105 unsigned int regx; /* Function in i8 type */
1106 unsigned int regy;
1107 };
1108
1109
1110 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1111 for the bits which make up the immediatate extension. */
1112
1113 static CORE_ADDR
1114 extended_offset (unsigned int extension)
1115 {
1116 CORE_ADDR value;
1117 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1118 value = value << 6;
1119 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1120 value = value << 5;
1121 value |= extension & 0x01f; /* extract 4:0 */
1122 return value;
1123 }
1124
1125 /* Only call this function if you know that this is an extendable
1126 instruction, It wont malfunction, but why make excess remote memory references?
1127 If the immediate operands get sign extended or somthing, do it after
1128 the extension is performed.
1129 */
1130 /* FIXME: Every one of these cases needs to worry about sign extension
1131 when the offset is to be used in relative addressing */
1132
1133
1134 static unsigned int
1135 fetch_mips_16 (CORE_ADDR pc)
1136 {
1137 char buf[8];
1138 pc &= 0xfffffffe; /* clear the low order bit */
1139 target_read_memory (pc, buf, 2);
1140 return extract_unsigned_integer (buf, 2);
1141 }
1142
1143 static void
1144 unpack_mips16 (CORE_ADDR pc,
1145 unsigned int extension,
1146 unsigned int inst,
1147 enum mips16_inst_fmts insn_format,
1148 struct upk_mips16 *upk)
1149 {
1150 CORE_ADDR offset;
1151 int regx;
1152 int regy;
1153 switch (insn_format)
1154 {
1155 case itype:
1156 {
1157 CORE_ADDR value;
1158 if (extension)
1159 {
1160 value = extended_offset (extension);
1161 value = value << 11; /* rom for the original value */
1162 value |= inst & 0x7ff; /* eleven bits from instruction */
1163 }
1164 else
1165 {
1166 value = inst & 0x7ff;
1167 /* FIXME : Consider sign extension */
1168 }
1169 offset = value;
1170 regx = -1;
1171 regy = -1;
1172 }
1173 break;
1174 case ritype:
1175 case i8type:
1176 { /* A register identifier and an offset */
1177 /* Most of the fields are the same as I type but the
1178 immediate value is of a different length */
1179 CORE_ADDR value;
1180 if (extension)
1181 {
1182 value = extended_offset (extension);
1183 value = value << 8; /* from the original instruction */
1184 value |= inst & 0xff; /* eleven bits from instruction */
1185 regx = (extension >> 8) & 0x07; /* or i8 funct */
1186 if (value & 0x4000) /* test the sign bit , bit 26 */
1187 {
1188 value &= ~0x3fff; /* remove the sign bit */
1189 value = -value;
1190 }
1191 }
1192 else
1193 {
1194 value = inst & 0xff; /* 8 bits */
1195 regx = (inst >> 8) & 0x07; /* or i8 funct */
1196 /* FIXME: Do sign extension , this format needs it */
1197 if (value & 0x80) /* THIS CONFUSES ME */
1198 {
1199 value &= 0xef; /* remove the sign bit */
1200 value = -value;
1201 }
1202 }
1203 offset = value;
1204 regy = -1;
1205 break;
1206 }
1207 case jalxtype:
1208 {
1209 unsigned long value;
1210 unsigned int nexthalf;
1211 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1212 value = value << 16;
1213 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1214 value |= nexthalf;
1215 offset = value;
1216 regx = -1;
1217 regy = -1;
1218 break;
1219 }
1220 default:
1221 internal_error (__FILE__, __LINE__,
1222 "bad switch");
1223 }
1224 upk->offset = offset;
1225 upk->regx = regx;
1226 upk->regy = regy;
1227 }
1228
1229
1230 static CORE_ADDR
1231 add_offset_16 (CORE_ADDR pc, int offset)
1232 {
1233 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1234 }
1235
1236 static CORE_ADDR
1237 extended_mips16_next_pc (CORE_ADDR pc,
1238 unsigned int extension,
1239 unsigned int insn)
1240 {
1241 int op = (insn >> 11);
1242 switch (op)
1243 {
1244 case 2: /* Branch */
1245 {
1246 CORE_ADDR offset;
1247 struct upk_mips16 upk;
1248 unpack_mips16 (pc, extension, insn, itype, &upk);
1249 offset = upk.offset;
1250 if (offset & 0x800)
1251 {
1252 offset &= 0xeff;
1253 offset = -offset;
1254 }
1255 pc += (offset << 1) + 2;
1256 break;
1257 }
1258 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1259 {
1260 struct upk_mips16 upk;
1261 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1262 pc = add_offset_16 (pc, upk.offset);
1263 if ((insn >> 10) & 0x01) /* Exchange mode */
1264 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1265 else
1266 pc |= 0x01;
1267 break;
1268 }
1269 case 4: /* beqz */
1270 {
1271 struct upk_mips16 upk;
1272 int reg;
1273 unpack_mips16 (pc, extension, insn, ritype, &upk);
1274 reg = read_signed_register (upk.regx);
1275 if (reg == 0)
1276 pc += (upk.offset << 1) + 2;
1277 else
1278 pc += 2;
1279 break;
1280 }
1281 case 5: /* bnez */
1282 {
1283 struct upk_mips16 upk;
1284 int reg;
1285 unpack_mips16 (pc, extension, insn, ritype, &upk);
1286 reg = read_signed_register (upk.regx);
1287 if (reg != 0)
1288 pc += (upk.offset << 1) + 2;
1289 else
1290 pc += 2;
1291 break;
1292 }
1293 case 12: /* I8 Formats btez btnez */
1294 {
1295 struct upk_mips16 upk;
1296 int reg;
1297 unpack_mips16 (pc, extension, insn, i8type, &upk);
1298 /* upk.regx contains the opcode */
1299 reg = read_signed_register (24); /* Test register is 24 */
1300 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1301 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1302 /* pc = add_offset_16(pc,upk.offset) ; */
1303 pc += (upk.offset << 1) + 2;
1304 else
1305 pc += 2;
1306 break;
1307 }
1308 case 29: /* RR Formats JR, JALR, JALR-RA */
1309 {
1310 struct upk_mips16 upk;
1311 /* upk.fmt = rrtype; */
1312 op = insn & 0x1f;
1313 if (op == 0)
1314 {
1315 int reg;
1316 upk.regx = (insn >> 8) & 0x07;
1317 upk.regy = (insn >> 5) & 0x07;
1318 switch (upk.regy)
1319 {
1320 case 0:
1321 reg = upk.regx;
1322 break;
1323 case 1:
1324 reg = 31;
1325 break; /* Function return instruction */
1326 case 2:
1327 reg = upk.regx;
1328 break;
1329 default:
1330 reg = 31;
1331 break; /* BOGUS Guess */
1332 }
1333 pc = read_signed_register (reg);
1334 }
1335 else
1336 pc += 2;
1337 break;
1338 }
1339 case 30:
1340 /* This is an instruction extension. Fetch the real instruction
1341 (which follows the extension) and decode things based on
1342 that. */
1343 {
1344 pc += 2;
1345 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1346 break;
1347 }
1348 default:
1349 {
1350 pc += 2;
1351 break;
1352 }
1353 }
1354 return pc;
1355 }
1356
1357 static CORE_ADDR
1358 mips16_next_pc (CORE_ADDR pc)
1359 {
1360 unsigned int insn = fetch_mips_16 (pc);
1361 return extended_mips16_next_pc (pc, 0, insn);
1362 }
1363
1364 /* The mips_next_pc function supports single_step when the remote
1365 target monitor or stub is not developed enough to do a single_step.
1366 It works by decoding the current instruction and predicting where a
1367 branch will go. This isnt hard because all the data is available.
1368 The MIPS32 and MIPS16 variants are quite different */
1369 CORE_ADDR
1370 mips_next_pc (CORE_ADDR pc)
1371 {
1372 if (pc & 0x01)
1373 return mips16_next_pc (pc);
1374 else
1375 return mips32_next_pc (pc);
1376 }
1377
1378 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1379 NULL).
1380
1381 Note: kevinb/2002-08-09: The only caller of this function is (and
1382 should remain) mips_frame_init_saved_regs(). In fact,
1383 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1384 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1385 functions should really be combined and now that there is only one
1386 caller, it should be straightforward. (Watch out for multiple returns
1387 though.) */
1388
1389 static void
1390 mips_find_saved_regs (struct frame_info *fci)
1391 {
1392 int ireg;
1393 CORE_ADDR reg_position;
1394 /* r0 bit means kernel trap */
1395 int kernel_trap;
1396 /* What registers have been saved? Bitmasks. */
1397 unsigned long gen_mask, float_mask;
1398 mips_extra_func_info_t proc_desc;
1399 t_inst inst;
1400
1401 frame_saved_regs_zalloc (fci);
1402
1403 /* If it is the frame for sigtramp, the saved registers are located
1404 in a sigcontext structure somewhere on the stack.
1405 If the stack layout for sigtramp changes we might have to change these
1406 constants and the companion fixup_sigtramp in mdebugread.c */
1407 #ifndef SIGFRAME_BASE
1408 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1409 above the sigtramp frame. */
1410 #define SIGFRAME_BASE MIPS_REGSIZE
1411 /* FIXME! Are these correct?? */
1412 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1413 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1414 #define SIGFRAME_FPREGSAVE_OFF \
1415 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1416 #endif
1417 #ifndef SIGFRAME_REG_SIZE
1418 /* FIXME! Is this correct?? */
1419 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1420 #endif
1421 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1422 {
1423 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1424 {
1425 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1426 + ireg * SIGFRAME_REG_SIZE;
1427 fci->saved_regs[ireg] = reg_position;
1428 }
1429 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1430 {
1431 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1432 + ireg * SIGFRAME_REG_SIZE;
1433 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1434 }
1435 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1436 return;
1437 }
1438
1439 proc_desc = fci->extra_info->proc_desc;
1440 if (proc_desc == NULL)
1441 /* I'm not sure how/whether this can happen. Normally when we can't
1442 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1443 and set the saved_regs right away. */
1444 return;
1445
1446 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1447 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1448 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1449
1450 if ( /* In any frame other than the innermost or a frame interrupted by
1451 a signal, we assume that all registers have been saved.
1452 This assumes that all register saves in a function happen before
1453 the first function call. */
1454 (fci->next == NULL || (get_frame_type (fci->next) == SIGTRAMP_FRAME))
1455
1456 /* In a dummy frame we know exactly where things are saved. */
1457 && !PROC_DESC_IS_DUMMY (proc_desc)
1458
1459 /* Don't bother unless we are inside a function prologue. Outside the
1460 prologue, we know where everything is. */
1461
1462 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1463
1464 /* Not sure exactly what kernel_trap means, but if it means
1465 the kernel saves the registers without a prologue doing it,
1466 we better not examine the prologue to see whether registers
1467 have been saved yet. */
1468 && !kernel_trap)
1469 {
1470 /* We need to figure out whether the registers that the proc_desc
1471 claims are saved have been saved yet. */
1472
1473 CORE_ADDR addr;
1474
1475 /* Bitmasks; set if we have found a save for the register. */
1476 unsigned long gen_save_found = 0;
1477 unsigned long float_save_found = 0;
1478 int instlen;
1479
1480 /* If the address is odd, assume this is MIPS16 code. */
1481 addr = PROC_LOW_ADDR (proc_desc);
1482 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1483
1484 /* Scan through this function's instructions preceding the current
1485 PC, and look for those that save registers. */
1486 while (addr < fci->pc)
1487 {
1488 inst = mips_fetch_instruction (addr);
1489 if (pc_is_mips16 (addr))
1490 mips16_decode_reg_save (inst, &gen_save_found);
1491 else
1492 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1493 addr += instlen;
1494 }
1495 gen_mask = gen_save_found;
1496 float_mask = float_save_found;
1497 }
1498
1499 /* Fill in the offsets for the registers which gen_mask says
1500 were saved. */
1501 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1502 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1503 if (gen_mask & 0x80000000)
1504 {
1505 fci->saved_regs[ireg] = reg_position;
1506 reg_position -= MIPS_SAVED_REGSIZE;
1507 }
1508
1509 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1510 of that normally used by gcc. Therefore, we have to fetch the first
1511 instruction of the function, and if it's an entry instruction that
1512 saves $s0 or $s1, correct their saved addresses. */
1513 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1514 {
1515 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1516 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1517 {
1518 int reg;
1519 int sreg_count = (inst >> 6) & 3;
1520
1521 /* Check if the ra register was pushed on the stack. */
1522 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1523 if (inst & 0x20)
1524 reg_position -= MIPS_SAVED_REGSIZE;
1525
1526 /* Check if the s0 and s1 registers were pushed on the stack. */
1527 for (reg = 16; reg < sreg_count + 16; reg++)
1528 {
1529 fci->saved_regs[reg] = reg_position;
1530 reg_position -= MIPS_SAVED_REGSIZE;
1531 }
1532 }
1533 }
1534
1535 /* Fill in the offsets for the registers which float_mask says
1536 were saved. */
1537 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1538
1539 /* Apparently, the freg_offset gives the offset to the first 64 bit
1540 saved.
1541
1542 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1543 designates the first saved 64 bit register.
1544
1545 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1546 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1547 FREG_OFFSET, designates the address of the lower register of the
1548 register pair. Adjust the offset so that it designates the upper
1549 register of the pair -- i.e., the address of the first saved 32
1550 bit register. */
1551
1552 if (MIPS_SAVED_REGSIZE == 4)
1553 reg_position += MIPS_SAVED_REGSIZE;
1554
1555 /* Fill in the offsets for the float registers which float_mask says
1556 were saved. */
1557 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1558 if (float_mask & 0x80000000)
1559 {
1560 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1561 reg_position -= MIPS_SAVED_REGSIZE;
1562 }
1563
1564 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1565 }
1566
1567 /* Set up the 'saved_regs' array. This is a data structure containing
1568 the addresses on the stack where each register has been saved, for
1569 each stack frame. Registers that have not been saved will have
1570 zero here. The stack pointer register is special: rather than the
1571 address where the stack register has been saved, saved_regs[SP_REGNUM]
1572 will have the actual value of the previous frame's stack register. */
1573
1574 static void
1575 mips_frame_init_saved_regs (struct frame_info *frame)
1576 {
1577 if (frame->saved_regs == NULL)
1578 {
1579 mips_find_saved_regs (frame);
1580 }
1581 frame->saved_regs[SP_REGNUM] = frame->frame;
1582 }
1583
1584 static CORE_ADDR
1585 read_next_frame_reg (struct frame_info *fi, int regno)
1586 {
1587 int optimized;
1588 CORE_ADDR addr;
1589 int realnum;
1590 enum lval_type lval;
1591 void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1592 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1593 raw_buffer);
1594 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1595 should have a pseudo register range that correspons to the ABI's,
1596 rather than the ISA's, view of registers. These registers would
1597 then implicitly describe their size and hence could be used
1598 without the below munging. */
1599 if (lval == lval_memory)
1600 {
1601 if (regno < 32)
1602 {
1603 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1604 saved. */
1605 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1606 }
1607 }
1608
1609 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
1610 }
1611
1612 /* mips_addr_bits_remove - remove useless address bits */
1613
1614 static CORE_ADDR
1615 mips_addr_bits_remove (CORE_ADDR addr)
1616 {
1617 if (GDB_TARGET_IS_MIPS64)
1618 {
1619 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1620 {
1621 /* This hack is a work-around for existing boards using
1622 PMON, the simulator, and any other 64-bit targets that
1623 doesn't have true 64-bit addressing. On these targets,
1624 the upper 32 bits of addresses are ignored by the
1625 hardware. Thus, the PC or SP are likely to have been
1626 sign extended to all 1s by instruction sequences that
1627 load 32-bit addresses. For example, a typical piece of
1628 code that loads an address is this:
1629 lui $r2, <upper 16 bits>
1630 ori $r2, <lower 16 bits>
1631 But the lui sign-extends the value such that the upper 32
1632 bits may be all 1s. The workaround is simply to mask off
1633 these bits. In the future, gcc may be changed to support
1634 true 64-bit addressing, and this masking will have to be
1635 disabled. */
1636 addr &= (CORE_ADDR) 0xffffffff;
1637 }
1638 }
1639 else if (mips_mask_address_p ())
1640 {
1641 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1642 masking off bits, instead, the actual target should be asking
1643 for the address to be converted to a valid pointer. */
1644 /* Even when GDB is configured for some 32-bit targets
1645 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1646 so CORE_ADDR is 64 bits. So we still have to mask off
1647 useless bits from addresses. */
1648 addr &= (CORE_ADDR) 0xffffffff;
1649 }
1650 return addr;
1651 }
1652
1653 /* mips_software_single_step() is called just before we want to resume
1654 the inferior, if we want to single-step it but there is no hardware
1655 or kernel single-step support (MIPS on GNU/Linux for example). We find
1656 the target of the coming instruction and breakpoint it.
1657
1658 single_step is also called just after the inferior stops. If we had
1659 set up a simulated single-step, we undo our damage. */
1660
1661 void
1662 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1663 {
1664 static CORE_ADDR next_pc;
1665 typedef char binsn_quantum[BREAKPOINT_MAX];
1666 static binsn_quantum break_mem;
1667 CORE_ADDR pc;
1668
1669 if (insert_breakpoints_p)
1670 {
1671 pc = read_register (PC_REGNUM);
1672 next_pc = mips_next_pc (pc);
1673
1674 target_insert_breakpoint (next_pc, break_mem);
1675 }
1676 else
1677 target_remove_breakpoint (next_pc, break_mem);
1678 }
1679
1680 static CORE_ADDR
1681 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1682 {
1683 CORE_ADDR pc, tmp;
1684
1685 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1686 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1687 tmp = SKIP_TRAMPOLINE_CODE (pc);
1688 return tmp ? tmp : pc;
1689 }
1690
1691
1692 static CORE_ADDR
1693 mips_frame_saved_pc (struct frame_info *frame)
1694 {
1695 CORE_ADDR saved_pc;
1696 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1697 /* We have to get the saved pc from the sigcontext
1698 if it is a signal handler frame. */
1699 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
1700 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1701
1702 if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, 0, 0))
1703 {
1704 LONGEST tmp;
1705 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1706 saved_pc = tmp;
1707 }
1708 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1709 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1710 else
1711 saved_pc = read_next_frame_reg (frame, pcreg);
1712
1713 return ADDR_BITS_REMOVE (saved_pc);
1714 }
1715
1716 static struct mips_extra_func_info temp_proc_desc;
1717
1718 /* This hack will go away once the get_prev_frame() code has been
1719 modified to set the frame's type first. That is BEFORE init extra
1720 frame info et.al. is called. This is because it will become
1721 possible to skip the init extra info call for sigtramp and dummy
1722 frames. */
1723 static CORE_ADDR *temp_saved_regs;
1724
1725 /* Set a register's saved stack address in temp_saved_regs. If an address
1726 has already been set for this register, do nothing; this way we will
1727 only recognize the first save of a given register in a function prologue.
1728 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1729
1730 static void
1731 set_reg_offset (int regno, CORE_ADDR offset)
1732 {
1733 if (temp_saved_regs[regno] == 0)
1734 temp_saved_regs[regno] = offset;
1735 }
1736
1737
1738 /* Test whether the PC points to the return instruction at the
1739 end of a function. */
1740
1741 static int
1742 mips_about_to_return (CORE_ADDR pc)
1743 {
1744 if (pc_is_mips16 (pc))
1745 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1746 generates a "jr $ra"; other times it generates code to load
1747 the return address from the stack to an accessible register (such
1748 as $a3), then a "jr" using that register. This second case
1749 is almost impossible to distinguish from an indirect jump
1750 used for switch statements, so we don't even try. */
1751 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1752 else
1753 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1754 }
1755
1756
1757 /* This fencepost looks highly suspicious to me. Removing it also
1758 seems suspicious as it could affect remote debugging across serial
1759 lines. */
1760
1761 static CORE_ADDR
1762 heuristic_proc_start (CORE_ADDR pc)
1763 {
1764 CORE_ADDR start_pc;
1765 CORE_ADDR fence;
1766 int instlen;
1767 int seen_adjsp = 0;
1768
1769 pc = ADDR_BITS_REMOVE (pc);
1770 start_pc = pc;
1771 fence = start_pc - heuristic_fence_post;
1772 if (start_pc == 0)
1773 return 0;
1774
1775 if (heuristic_fence_post == UINT_MAX
1776 || fence < VM_MIN_ADDRESS)
1777 fence = VM_MIN_ADDRESS;
1778
1779 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1780
1781 /* search back for previous return */
1782 for (start_pc -= instlen;; start_pc -= instlen)
1783 if (start_pc < fence)
1784 {
1785 /* It's not clear to me why we reach this point when
1786 stop_soon_quietly, but with this test, at least we
1787 don't print out warnings for every child forked (eg, on
1788 decstation). 22apr93 rich@cygnus.com. */
1789 if (!stop_soon_quietly)
1790 {
1791 static int blurb_printed = 0;
1792
1793 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1794 paddr_nz (pc));
1795
1796 if (!blurb_printed)
1797 {
1798 /* This actually happens frequently in embedded
1799 development, when you first connect to a board
1800 and your stack pointer and pc are nowhere in
1801 particular. This message needs to give people
1802 in that situation enough information to
1803 determine that it's no big deal. */
1804 printf_filtered ("\n\
1805 GDB is unable to find the start of the function at 0x%s\n\
1806 and thus can't determine the size of that function's stack frame.\n\
1807 This means that GDB may be unable to access that stack frame, or\n\
1808 the frames below it.\n\
1809 This problem is most likely caused by an invalid program counter or\n\
1810 stack pointer.\n\
1811 However, if you think GDB should simply search farther back\n\
1812 from 0x%s for code which looks like the beginning of a\n\
1813 function, you can increase the range of the search using the `set\n\
1814 heuristic-fence-post' command.\n",
1815 paddr_nz (pc), paddr_nz (pc));
1816 blurb_printed = 1;
1817 }
1818 }
1819
1820 return 0;
1821 }
1822 else if (pc_is_mips16 (start_pc))
1823 {
1824 unsigned short inst;
1825
1826 /* On MIPS16, any one of the following is likely to be the
1827 start of a function:
1828 entry
1829 addiu sp,-n
1830 daddiu sp,-n
1831 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1832 inst = mips_fetch_instruction (start_pc);
1833 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1834 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1835 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1836 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1837 break;
1838 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1839 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1840 seen_adjsp = 1;
1841 else
1842 seen_adjsp = 0;
1843 }
1844 else if (mips_about_to_return (start_pc))
1845 {
1846 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1847 break;
1848 }
1849
1850 return start_pc;
1851 }
1852
1853 /* Fetch the immediate value from a MIPS16 instruction.
1854 If the previous instruction was an EXTEND, use it to extend
1855 the upper bits of the immediate value. This is a helper function
1856 for mips16_heuristic_proc_desc. */
1857
1858 static int
1859 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1860 unsigned short inst, /* current instruction */
1861 int nbits, /* number of bits in imm field */
1862 int scale, /* scale factor to be applied to imm */
1863 int is_signed) /* is the imm field signed? */
1864 {
1865 int offset;
1866
1867 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1868 {
1869 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1870 if (offset & 0x8000) /* check for negative extend */
1871 offset = 0 - (0x10000 - (offset & 0xffff));
1872 return offset | (inst & 0x1f);
1873 }
1874 else
1875 {
1876 int max_imm = 1 << nbits;
1877 int mask = max_imm - 1;
1878 int sign_bit = max_imm >> 1;
1879
1880 offset = inst & mask;
1881 if (is_signed && (offset & sign_bit))
1882 offset = 0 - (max_imm - offset);
1883 return offset * scale;
1884 }
1885 }
1886
1887
1888 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1889 stream from start_pc to limit_pc. */
1890
1891 static void
1892 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1893 struct frame_info *next_frame, CORE_ADDR sp)
1894 {
1895 CORE_ADDR cur_pc;
1896 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1897 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1898 unsigned inst = 0; /* current instruction */
1899 unsigned entry_inst = 0; /* the entry instruction */
1900 int reg, offset;
1901
1902 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1903 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1904
1905 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1906 {
1907 /* Save the previous instruction. If it's an EXTEND, we'll extract
1908 the immediate offset extension from it in mips16_get_imm. */
1909 prev_inst = inst;
1910
1911 /* Fetch and decode the instruction. */
1912 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1913 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1914 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1915 {
1916 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1917 if (offset < 0) /* negative stack adjustment? */
1918 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1919 else
1920 /* Exit loop if a positive stack adjustment is found, which
1921 usually means that the stack cleanup code in the function
1922 epilogue is reached. */
1923 break;
1924 }
1925 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1926 {
1927 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1928 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1929 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1930 set_reg_offset (reg, sp + offset);
1931 }
1932 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1933 {
1934 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1935 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1936 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1937 set_reg_offset (reg, sp + offset);
1938 }
1939 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1940 {
1941 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1942 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1943 set_reg_offset (RA_REGNUM, sp + offset);
1944 }
1945 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1946 {
1947 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1948 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1949 set_reg_offset (RA_REGNUM, sp + offset);
1950 }
1951 else if (inst == 0x673d) /* move $s1, $sp */
1952 {
1953 frame_addr = sp;
1954 PROC_FRAME_REG (&temp_proc_desc) = 17;
1955 }
1956 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1957 {
1958 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1959 frame_addr = sp + offset;
1960 PROC_FRAME_REG (&temp_proc_desc) = 17;
1961 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1962 }
1963 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1964 {
1965 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1966 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1967 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1968 set_reg_offset (reg, frame_addr + offset);
1969 }
1970 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1971 {
1972 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1973 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1974 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1975 set_reg_offset (reg, frame_addr + offset);
1976 }
1977 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1978 entry_inst = inst; /* save for later processing */
1979 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1980 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1981 }
1982
1983 /* The entry instruction is typically the first instruction in a function,
1984 and it stores registers at offsets relative to the value of the old SP
1985 (before the prologue). But the value of the sp parameter to this
1986 function is the new SP (after the prologue has been executed). So we
1987 can't calculate those offsets until we've seen the entire prologue,
1988 and can calculate what the old SP must have been. */
1989 if (entry_inst != 0)
1990 {
1991 int areg_count = (entry_inst >> 8) & 7;
1992 int sreg_count = (entry_inst >> 6) & 3;
1993
1994 /* The entry instruction always subtracts 32 from the SP. */
1995 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1996
1997 /* Now we can calculate what the SP must have been at the
1998 start of the function prologue. */
1999 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2000
2001 /* Check if a0-a3 were saved in the caller's argument save area. */
2002 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2003 {
2004 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2005 set_reg_offset (reg, sp + offset);
2006 offset += MIPS_SAVED_REGSIZE;
2007 }
2008
2009 /* Check if the ra register was pushed on the stack. */
2010 offset = -4;
2011 if (entry_inst & 0x20)
2012 {
2013 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2014 set_reg_offset (RA_REGNUM, sp + offset);
2015 offset -= MIPS_SAVED_REGSIZE;
2016 }
2017
2018 /* Check if the s0 and s1 registers were pushed on the stack. */
2019 for (reg = 16; reg < sreg_count + 16; reg++)
2020 {
2021 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2022 set_reg_offset (reg, sp + offset);
2023 offset -= MIPS_SAVED_REGSIZE;
2024 }
2025 }
2026 }
2027
2028 static void
2029 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2030 struct frame_info *next_frame, CORE_ADDR sp)
2031 {
2032 CORE_ADDR cur_pc;
2033 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2034 restart:
2035 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2036 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2037 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2038 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2039 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2040 {
2041 unsigned long inst, high_word, low_word;
2042 int reg;
2043
2044 /* Fetch the instruction. */
2045 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2046
2047 /* Save some code by pre-extracting some useful fields. */
2048 high_word = (inst >> 16) & 0xffff;
2049 low_word = inst & 0xffff;
2050 reg = high_word & 0x1f;
2051
2052 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2053 || high_word == 0x23bd /* addi $sp,$sp,-i */
2054 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2055 {
2056 if (low_word & 0x8000) /* negative stack adjustment? */
2057 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2058 else
2059 /* Exit loop if a positive stack adjustment is found, which
2060 usually means that the stack cleanup code in the function
2061 epilogue is reached. */
2062 break;
2063 }
2064 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2065 {
2066 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2067 set_reg_offset (reg, sp + low_word);
2068 }
2069 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2070 {
2071 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2072 but the register size used is only 32 bits. Make the address
2073 for the saved register point to the lower 32 bits. */
2074 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2075 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2076 }
2077 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2078 {
2079 /* Old gcc frame, r30 is virtual frame pointer. */
2080 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2081 frame_addr = sp + low_word;
2082 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2083 {
2084 unsigned alloca_adjust;
2085 PROC_FRAME_REG (&temp_proc_desc) = 30;
2086 frame_addr = read_next_frame_reg (next_frame, 30);
2087 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2088 if (alloca_adjust > 0)
2089 {
2090 /* FP > SP + frame_size. This may be because
2091 * of an alloca or somethings similar.
2092 * Fix sp to "pre-alloca" value, and try again.
2093 */
2094 sp += alloca_adjust;
2095 goto restart;
2096 }
2097 }
2098 }
2099 /* move $30,$sp. With different versions of gas this will be either
2100 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2101 Accept any one of these. */
2102 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2103 {
2104 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2105 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2106 {
2107 unsigned alloca_adjust;
2108 PROC_FRAME_REG (&temp_proc_desc) = 30;
2109 frame_addr = read_next_frame_reg (next_frame, 30);
2110 alloca_adjust = (unsigned) (frame_addr - sp);
2111 if (alloca_adjust > 0)
2112 {
2113 /* FP > SP + frame_size. This may be because
2114 * of an alloca or somethings similar.
2115 * Fix sp to "pre-alloca" value, and try again.
2116 */
2117 sp += alloca_adjust;
2118 goto restart;
2119 }
2120 }
2121 }
2122 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2123 {
2124 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2125 set_reg_offset (reg, frame_addr + low_word);
2126 }
2127 }
2128 }
2129
2130 static mips_extra_func_info_t
2131 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2132 struct frame_info *next_frame, int cur_frame)
2133 {
2134 CORE_ADDR sp;
2135
2136 if (cur_frame)
2137 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2138 else
2139 sp = 0;
2140
2141 if (start_pc == 0)
2142 return NULL;
2143 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2144 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2145 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2146 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2147 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2148 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2149
2150 if (start_pc + 200 < limit_pc)
2151 limit_pc = start_pc + 200;
2152 if (pc_is_mips16 (start_pc))
2153 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2154 else
2155 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2156 return &temp_proc_desc;
2157 }
2158
2159 struct mips_objfile_private
2160 {
2161 bfd_size_type size;
2162 char *contents;
2163 };
2164
2165 /* Global used to communicate between non_heuristic_proc_desc and
2166 compare_pdr_entries within qsort (). */
2167 static bfd *the_bfd;
2168
2169 static int
2170 compare_pdr_entries (const void *a, const void *b)
2171 {
2172 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2173 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2174
2175 if (lhs < rhs)
2176 return -1;
2177 else if (lhs == rhs)
2178 return 0;
2179 else
2180 return 1;
2181 }
2182
2183 static mips_extra_func_info_t
2184 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2185 {
2186 CORE_ADDR startaddr;
2187 mips_extra_func_info_t proc_desc;
2188 struct block *b = block_for_pc (pc);
2189 struct symbol *sym;
2190 struct obj_section *sec;
2191 struct mips_objfile_private *priv;
2192
2193 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2194 return NULL;
2195
2196 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2197 if (addrptr)
2198 *addrptr = startaddr;
2199
2200 priv = NULL;
2201
2202 sec = find_pc_section (pc);
2203 if (sec != NULL)
2204 {
2205 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2206
2207 /* Search the ".pdr" section generated by GAS. This includes most of
2208 the information normally found in ECOFF PDRs. */
2209
2210 the_bfd = sec->objfile->obfd;
2211 if (priv == NULL
2212 && (the_bfd->format == bfd_object
2213 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2214 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2215 {
2216 /* Right now GAS only outputs the address as a four-byte sequence.
2217 This means that we should not bother with this method on 64-bit
2218 targets (until that is fixed). */
2219
2220 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2221 sizeof (struct mips_objfile_private));
2222 priv->size = 0;
2223 sec->objfile->obj_private = priv;
2224 }
2225 else if (priv == NULL)
2226 {
2227 asection *bfdsec;
2228
2229 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2230 sizeof (struct mips_objfile_private));
2231
2232 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2233 if (bfdsec != NULL)
2234 {
2235 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2236 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2237 priv->size);
2238 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2239 priv->contents, 0, priv->size);
2240
2241 /* In general, the .pdr section is sorted. However, in the
2242 presence of multiple code sections (and other corner cases)
2243 it can become unsorted. Sort it so that we can use a faster
2244 binary search. */
2245 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2246 }
2247 else
2248 priv->size = 0;
2249
2250 sec->objfile->obj_private = priv;
2251 }
2252 the_bfd = NULL;
2253
2254 if (priv->size != 0)
2255 {
2256 int low, mid, high;
2257 char *ptr;
2258
2259 low = 0;
2260 high = priv->size / 32;
2261
2262 do
2263 {
2264 CORE_ADDR pdr_pc;
2265
2266 mid = (low + high) / 2;
2267
2268 ptr = priv->contents + mid * 32;
2269 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2270 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2271 SECT_OFF_TEXT (sec->objfile));
2272 if (pdr_pc == startaddr)
2273 break;
2274 if (pdr_pc > startaddr)
2275 high = mid;
2276 else
2277 low = mid + 1;
2278 }
2279 while (low != high);
2280
2281 if (low != high)
2282 {
2283 struct symbol *sym = find_pc_function (pc);
2284
2285 /* Fill in what we need of the proc_desc. */
2286 proc_desc = (mips_extra_func_info_t)
2287 obstack_alloc (&sec->objfile->psymbol_obstack,
2288 sizeof (struct mips_extra_func_info));
2289 PROC_LOW_ADDR (proc_desc) = startaddr;
2290
2291 /* Only used for dummy frames. */
2292 PROC_HIGH_ADDR (proc_desc) = 0;
2293
2294 PROC_FRAME_OFFSET (proc_desc)
2295 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2296 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2297 ptr + 24);
2298 PROC_FRAME_ADJUST (proc_desc) = 0;
2299 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2300 ptr + 4);
2301 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2302 ptr + 12);
2303 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2304 ptr + 8);
2305 PROC_FREG_OFFSET (proc_desc)
2306 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2307 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2308 ptr + 28);
2309 proc_desc->pdr.isym = (long) sym;
2310
2311 return proc_desc;
2312 }
2313 }
2314 }
2315
2316 if (b == NULL)
2317 return NULL;
2318
2319 if (startaddr > BLOCK_START (b))
2320 {
2321 /* This is the "pathological" case referred to in a comment in
2322 print_frame_info. It might be better to move this check into
2323 symbol reading. */
2324 return NULL;
2325 }
2326
2327 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2328
2329 /* If we never found a PDR for this function in symbol reading, then
2330 examine prologues to find the information. */
2331 if (sym)
2332 {
2333 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2334 if (PROC_FRAME_REG (proc_desc) == -1)
2335 return NULL;
2336 else
2337 return proc_desc;
2338 }
2339 else
2340 return NULL;
2341 }
2342
2343
2344 static mips_extra_func_info_t
2345 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2346 {
2347 mips_extra_func_info_t proc_desc;
2348 CORE_ADDR startaddr = 0;
2349
2350 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2351
2352 if (proc_desc)
2353 {
2354 /* IF this is the topmost frame AND
2355 * (this proc does not have debugging information OR
2356 * the PC is in the procedure prologue)
2357 * THEN create a "heuristic" proc_desc (by analyzing
2358 * the actual code) to replace the "official" proc_desc.
2359 */
2360 if (next_frame == NULL)
2361 {
2362 struct symtab_and_line val;
2363 struct symbol *proc_symbol =
2364 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2365
2366 if (proc_symbol)
2367 {
2368 val = find_pc_line (BLOCK_START
2369 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2370 0);
2371 val.pc = val.end ? val.end : pc;
2372 }
2373 if (!proc_symbol || pc < val.pc)
2374 {
2375 mips_extra_func_info_t found_heuristic =
2376 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2377 pc, next_frame, cur_frame);
2378 if (found_heuristic)
2379 proc_desc = found_heuristic;
2380 }
2381 }
2382 }
2383 else
2384 {
2385 /* Is linked_proc_desc_table really necessary? It only seems to be used
2386 by procedure call dummys. However, the procedures being called ought
2387 to have their own proc_descs, and even if they don't,
2388 heuristic_proc_desc knows how to create them! */
2389
2390 register struct linked_proc_info *link;
2391
2392 for (link = linked_proc_desc_table; link; link = link->next)
2393 if (PROC_LOW_ADDR (&link->info) <= pc
2394 && PROC_HIGH_ADDR (&link->info) > pc)
2395 return &link->info;
2396
2397 if (startaddr == 0)
2398 startaddr = heuristic_proc_start (pc);
2399
2400 proc_desc =
2401 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2402 }
2403 return proc_desc;
2404 }
2405
2406 static CORE_ADDR
2407 get_frame_pointer (struct frame_info *frame,
2408 mips_extra_func_info_t proc_desc)
2409 {
2410 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2411 PROC_FRAME_REG (proc_desc)) +
2412 PROC_FRAME_OFFSET (proc_desc) -
2413 PROC_FRAME_ADJUST (proc_desc));
2414 }
2415
2416 static mips_extra_func_info_t cached_proc_desc;
2417
2418 static CORE_ADDR
2419 mips_frame_chain (struct frame_info *frame)
2420 {
2421 mips_extra_func_info_t proc_desc;
2422 CORE_ADDR tmp;
2423 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2424
2425 if (saved_pc == 0 || inside_entry_file (saved_pc))
2426 return 0;
2427
2428 /* Check if the PC is inside a call stub. If it is, fetch the
2429 PC of the caller of that stub. */
2430 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2431 saved_pc = tmp;
2432
2433 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2434 {
2435 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2436 is well, frame->frame the bottom of the current frame will
2437 contain that value. */
2438 return frame->frame;
2439 }
2440
2441 /* Look up the procedure descriptor for this PC. */
2442 proc_desc = find_proc_desc (saved_pc, frame, 1);
2443 if (!proc_desc)
2444 return 0;
2445
2446 cached_proc_desc = proc_desc;
2447
2448 /* If no frame pointer and frame size is zero, we must be at end
2449 of stack (or otherwise hosed). If we don't check frame size,
2450 we loop forever if we see a zero size frame. */
2451 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2452 && PROC_FRAME_OFFSET (proc_desc) == 0
2453 /* The previous frame from a sigtramp frame might be frameless
2454 and have frame size zero. */
2455 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2456 /* For a generic dummy frame, let get_frame_pointer() unwind a
2457 register value saved as part of the dummy frame call. */
2458 && !(DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, 0, 0)))
2459 return 0;
2460 else
2461 return get_frame_pointer (frame, proc_desc);
2462 }
2463
2464 static void
2465 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2466 {
2467 int regnum;
2468
2469 /* Use proc_desc calculated in frame_chain */
2470 mips_extra_func_info_t proc_desc =
2471 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
2472
2473 fci->extra_info = (struct frame_extra_info *)
2474 frame_obstack_alloc (sizeof (struct frame_extra_info));
2475
2476 fci->saved_regs = NULL;
2477 fci->extra_info->proc_desc =
2478 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2479 if (proc_desc)
2480 {
2481 /* Fixup frame-pointer - only needed for top frame */
2482 /* This may not be quite right, if proc has a real frame register.
2483 Get the value of the frame relative sp, procedure might have been
2484 interrupted by a signal at it's very start. */
2485 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2486 && !PROC_DESC_IS_DUMMY (proc_desc))
2487 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2488 else if (DEPRECATED_PC_IN_CALL_DUMMY (fci->pc, 0, 0))
2489 /* Do not ``fix'' fci->frame. It will have the value of the
2490 generic dummy frame's top-of-stack (since the draft
2491 fci->frame is obtained by returning the unwound stack
2492 pointer) and that is what we want. That way the fci->frame
2493 value will match the top-of-stack value that was saved as
2494 part of the dummy frames data. */
2495 /* Do nothing. */;
2496 else
2497 fci->frame = get_frame_pointer (fci->next, proc_desc);
2498
2499 if (proc_desc == &temp_proc_desc)
2500 {
2501 char *name;
2502
2503 /* Do not set the saved registers for a sigtramp frame,
2504 mips_find_saved_registers will do that for us. We can't
2505 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2506 yet set. */
2507 /* FIXME: cagney/2002-11-18: This problem will go away once
2508 frame.c:get_prev_frame() is modified to set the frame's
2509 type before calling functions like this. */
2510 find_pc_partial_function (fci->pc, &name,
2511 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2512 if (!PC_IN_SIGTRAMP (fci->pc, name))
2513 {
2514 frame_saved_regs_zalloc (fci);
2515 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2516 fci->saved_regs[PC_REGNUM]
2517 = fci->saved_regs[RA_REGNUM];
2518 /* Set value of previous frame's stack pointer. Remember that
2519 saved_regs[SP_REGNUM] is special in that it contains the
2520 value of the stack pointer register. The other saved_regs
2521 values are addresses (in the inferior) at which a given
2522 register's value may be found. */
2523 fci->saved_regs[SP_REGNUM] = fci->frame;
2524 }
2525 }
2526
2527 /* hack: if argument regs are saved, guess these contain args */
2528 /* assume we can't tell how many args for now */
2529 fci->extra_info->num_args = -1;
2530 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2531 {
2532 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2533 {
2534 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2535 break;
2536 }
2537 }
2538 }
2539 }
2540
2541 /* MIPS stack frames are almost impenetrable. When execution stops,
2542 we basically have to look at symbol information for the function
2543 that we stopped in, which tells us *which* register (if any) is
2544 the base of the frame pointer, and what offset from that register
2545 the frame itself is at.
2546
2547 This presents a problem when trying to examine a stack in memory
2548 (that isn't executing at the moment), using the "frame" command. We
2549 don't have a PC, nor do we have any registers except SP.
2550
2551 This routine takes two arguments, SP and PC, and tries to make the
2552 cached frames look as if these two arguments defined a frame on the
2553 cache. This allows the rest of info frame to extract the important
2554 arguments without difficulty. */
2555
2556 struct frame_info *
2557 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2558 {
2559 if (argc != 2)
2560 error ("MIPS frame specifications require two arguments: sp and pc");
2561
2562 return create_new_frame (argv[0], argv[1]);
2563 }
2564
2565 /* According to the current ABI, should the type be passed in a
2566 floating-point register (assuming that there is space)? When there
2567 is no FPU, FP are not even considered as possibile candidates for
2568 FP registers and, consequently this returns false - forces FP
2569 arguments into integer registers. */
2570
2571 static int
2572 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2573 {
2574 return ((typecode == TYPE_CODE_FLT
2575 || (MIPS_EABI
2576 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2577 && TYPE_NFIELDS (arg_type) == 1
2578 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2579 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2580 }
2581
2582 /* On o32, argument passing in GPRs depends on the alignment of the type being
2583 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2584
2585 static int
2586 mips_type_needs_double_align (struct type *type)
2587 {
2588 enum type_code typecode = TYPE_CODE (type);
2589
2590 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2591 return 1;
2592 else if (typecode == TYPE_CODE_STRUCT)
2593 {
2594 if (TYPE_NFIELDS (type) < 1)
2595 return 0;
2596 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2597 }
2598 else if (typecode == TYPE_CODE_UNION)
2599 {
2600 int i, n;
2601
2602 n = TYPE_NFIELDS (type);
2603 for (i = 0; i < n; i++)
2604 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2605 return 1;
2606 return 0;
2607 }
2608 return 0;
2609 }
2610
2611 /* Macros to round N up or down to the next A boundary;
2612 A must be a power of two. */
2613
2614 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2615 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2616
2617 /* Adjust the address downward (direction of stack growth) so that it
2618 is correctly aligned for a new stack frame. */
2619 static CORE_ADDR
2620 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2621 {
2622 return ROUND_DOWN (addr, 16);
2623 }
2624
2625 static CORE_ADDR
2626 mips_eabi_push_arguments (int nargs,
2627 struct value **args,
2628 CORE_ADDR sp,
2629 int struct_return,
2630 CORE_ADDR struct_addr)
2631 {
2632 int argreg;
2633 int float_argreg;
2634 int argnum;
2635 int len = 0;
2636 int stack_offset = 0;
2637
2638 /* First ensure that the stack and structure return address (if any)
2639 are properly aligned. The stack has to be at least 64-bit
2640 aligned even on 32-bit machines, because doubles must be 64-bit
2641 aligned. For n32 and n64, stack frames need to be 128-bit
2642 aligned, so we round to this widest known alignment. */
2643
2644 sp = ROUND_DOWN (sp, 16);
2645 struct_addr = ROUND_DOWN (struct_addr, 16);
2646
2647 /* Now make space on the stack for the args. We allocate more
2648 than necessary for EABI, because the first few arguments are
2649 passed in registers, but that's OK. */
2650 for (argnum = 0; argnum < nargs; argnum++)
2651 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2652 MIPS_STACK_ARGSIZE);
2653 sp -= ROUND_UP (len, 16);
2654
2655 if (mips_debug)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
2658 paddr_nz (sp), ROUND_UP (len, 16));
2659
2660 /* Initialize the integer and float register pointers. */
2661 argreg = A0_REGNUM;
2662 float_argreg = FPA0_REGNUM;
2663
2664 /* The struct_return pointer occupies the first parameter-passing reg. */
2665 if (struct_return)
2666 {
2667 if (mips_debug)
2668 fprintf_unfiltered (gdb_stdlog,
2669 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
2670 argreg, paddr_nz (struct_addr));
2671 write_register (argreg++, struct_addr);
2672 }
2673
2674 /* Now load as many as possible of the first arguments into
2675 registers, and push the rest onto the stack. Loop thru args
2676 from first to last. */
2677 for (argnum = 0; argnum < nargs; argnum++)
2678 {
2679 char *val;
2680 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2681 struct value *arg = args[argnum];
2682 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2683 int len = TYPE_LENGTH (arg_type);
2684 enum type_code typecode = TYPE_CODE (arg_type);
2685
2686 if (mips_debug)
2687 fprintf_unfiltered (gdb_stdlog,
2688 "mips_eabi_push_arguments: %d len=%d type=%d",
2689 argnum + 1, len, (int) typecode);
2690
2691 /* The EABI passes structures that do not fit in a register by
2692 reference. */
2693 if (len > MIPS_SAVED_REGSIZE
2694 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2695 {
2696 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2697 typecode = TYPE_CODE_PTR;
2698 len = MIPS_SAVED_REGSIZE;
2699 val = valbuf;
2700 if (mips_debug)
2701 fprintf_unfiltered (gdb_stdlog, " push");
2702 }
2703 else
2704 val = (char *) VALUE_CONTENTS (arg);
2705
2706 /* 32-bit ABIs always start floating point arguments in an
2707 even-numbered floating point register. Round the FP register
2708 up before the check to see if there are any FP registers
2709 left. Non MIPS_EABI targets also pass the FP in the integer
2710 registers so also round up normal registers. */
2711 if (!FP_REGISTER_DOUBLE
2712 && fp_register_arg_p (typecode, arg_type))
2713 {
2714 if ((float_argreg & 1))
2715 float_argreg++;
2716 }
2717
2718 /* Floating point arguments passed in registers have to be
2719 treated specially. On 32-bit architectures, doubles
2720 are passed in register pairs; the even register gets
2721 the low word, and the odd register gets the high word.
2722 On non-EABI processors, the first two floating point arguments are
2723 also copied to general registers, because MIPS16 functions
2724 don't use float registers for arguments. This duplication of
2725 arguments in general registers can't hurt non-MIPS16 functions
2726 because those registers are normally skipped. */
2727 /* MIPS_EABI squeezes a struct that contains a single floating
2728 point value into an FP register instead of pushing it onto the
2729 stack. */
2730 if (fp_register_arg_p (typecode, arg_type)
2731 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2732 {
2733 if (!FP_REGISTER_DOUBLE && len == 8)
2734 {
2735 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2736 unsigned long regval;
2737
2738 /* Write the low word of the double to the even register(s). */
2739 regval = extract_unsigned_integer (val + low_offset, 4);
2740 if (mips_debug)
2741 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2742 float_argreg, phex (regval, 4));
2743 write_register (float_argreg++, regval);
2744
2745 /* Write the high word of the double to the odd register(s). */
2746 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2747 if (mips_debug)
2748 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2749 float_argreg, phex (regval, 4));
2750 write_register (float_argreg++, regval);
2751 }
2752 else
2753 {
2754 /* This is a floating point value that fits entirely
2755 in a single register. */
2756 /* On 32 bit ABI's the float_argreg is further adjusted
2757 above to ensure that it is even register aligned. */
2758 LONGEST regval = extract_unsigned_integer (val, len);
2759 if (mips_debug)
2760 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2761 float_argreg, phex (regval, len));
2762 write_register (float_argreg++, regval);
2763 }
2764 }
2765 else
2766 {
2767 /* Copy the argument to general registers or the stack in
2768 register-sized pieces. Large arguments are split between
2769 registers and stack. */
2770 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2771 are treated specially: Irix cc passes them in registers
2772 where gcc sometimes puts them on the stack. For maximum
2773 compatibility, we will put them in both places. */
2774 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2775 (len % MIPS_SAVED_REGSIZE != 0));
2776
2777 /* Note: Floating-point values that didn't fit into an FP
2778 register are only written to memory. */
2779 while (len > 0)
2780 {
2781 /* Remember if the argument was written to the stack. */
2782 int stack_used_p = 0;
2783 int partial_len =
2784 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2785
2786 if (mips_debug)
2787 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2788 partial_len);
2789
2790 /* Write this portion of the argument to the stack. */
2791 if (argreg > MIPS_LAST_ARG_REGNUM
2792 || odd_sized_struct
2793 || fp_register_arg_p (typecode, arg_type))
2794 {
2795 /* Should shorter than int integer values be
2796 promoted to int before being stored? */
2797 int longword_offset = 0;
2798 CORE_ADDR addr;
2799 stack_used_p = 1;
2800 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2801 {
2802 if (MIPS_STACK_ARGSIZE == 8 &&
2803 (typecode == TYPE_CODE_INT ||
2804 typecode == TYPE_CODE_PTR ||
2805 typecode == TYPE_CODE_FLT) && len <= 4)
2806 longword_offset = MIPS_STACK_ARGSIZE - len;
2807 else if ((typecode == TYPE_CODE_STRUCT ||
2808 typecode == TYPE_CODE_UNION) &&
2809 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2810 longword_offset = MIPS_STACK_ARGSIZE - len;
2811 }
2812
2813 if (mips_debug)
2814 {
2815 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2816 paddr_nz (stack_offset));
2817 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2818 paddr_nz (longword_offset));
2819 }
2820
2821 addr = sp + stack_offset + longword_offset;
2822
2823 if (mips_debug)
2824 {
2825 int i;
2826 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2827 paddr_nz (addr));
2828 for (i = 0; i < partial_len; i++)
2829 {
2830 fprintf_unfiltered (gdb_stdlog, "%02x",
2831 val[i] & 0xff);
2832 }
2833 }
2834 write_memory (addr, val, partial_len);
2835 }
2836
2837 /* Note!!! This is NOT an else clause. Odd sized
2838 structs may go thru BOTH paths. Floating point
2839 arguments will not. */
2840 /* Write this portion of the argument to a general
2841 purpose register. */
2842 if (argreg <= MIPS_LAST_ARG_REGNUM
2843 && !fp_register_arg_p (typecode, arg_type))
2844 {
2845 LONGEST regval = extract_unsigned_integer (val, partial_len);
2846
2847 if (mips_debug)
2848 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2849 argreg,
2850 phex (regval, MIPS_SAVED_REGSIZE));
2851 write_register (argreg, regval);
2852 argreg++;
2853 }
2854
2855 len -= partial_len;
2856 val += partial_len;
2857
2858 /* Compute the the offset into the stack at which we
2859 will copy the next parameter.
2860
2861 In the new EABI (and the NABI32), the stack_offset
2862 only needs to be adjusted when it has been used. */
2863
2864 if (stack_used_p)
2865 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2866 }
2867 }
2868 if (mips_debug)
2869 fprintf_unfiltered (gdb_stdlog, "\n");
2870 }
2871
2872 /* Return adjusted stack pointer. */
2873 return sp;
2874 }
2875
2876 /* N32/N64 version of push_arguments. */
2877
2878 static CORE_ADDR
2879 mips_n32n64_push_arguments (int nargs,
2880 struct value **args,
2881 CORE_ADDR sp,
2882 int struct_return,
2883 CORE_ADDR struct_addr)
2884 {
2885 int argreg;
2886 int float_argreg;
2887 int argnum;
2888 int len = 0;
2889 int stack_offset = 0;
2890
2891 /* First ensure that the stack and structure return address (if any)
2892 are properly aligned. The stack has to be at least 64-bit
2893 aligned even on 32-bit machines, because doubles must be 64-bit
2894 aligned. For n32 and n64, stack frames need to be 128-bit
2895 aligned, so we round to this widest known alignment. */
2896
2897 sp = ROUND_DOWN (sp, 16);
2898 struct_addr = ROUND_DOWN (struct_addr, 16);
2899
2900 /* Now make space on the stack for the args. */
2901 for (argnum = 0; argnum < nargs; argnum++)
2902 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2903 MIPS_STACK_ARGSIZE);
2904 sp -= ROUND_UP (len, 16);
2905
2906 if (mips_debug)
2907 fprintf_unfiltered (gdb_stdlog,
2908 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2909 paddr_nz (sp), ROUND_UP (len, 16));
2910
2911 /* Initialize the integer and float register pointers. */
2912 argreg = A0_REGNUM;
2913 float_argreg = FPA0_REGNUM;
2914
2915 /* The struct_return pointer occupies the first parameter-passing reg. */
2916 if (struct_return)
2917 {
2918 if (mips_debug)
2919 fprintf_unfiltered (gdb_stdlog,
2920 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2921 argreg, paddr_nz (struct_addr));
2922 write_register (argreg++, struct_addr);
2923 }
2924
2925 /* Now load as many as possible of the first arguments into
2926 registers, and push the rest onto the stack. Loop thru args
2927 from first to last. */
2928 for (argnum = 0; argnum < nargs; argnum++)
2929 {
2930 char *val;
2931 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2932 struct value *arg = args[argnum];
2933 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2934 int len = TYPE_LENGTH (arg_type);
2935 enum type_code typecode = TYPE_CODE (arg_type);
2936
2937 if (mips_debug)
2938 fprintf_unfiltered (gdb_stdlog,
2939 "mips_n32n64_push_arguments: %d len=%d type=%d",
2940 argnum + 1, len, (int) typecode);
2941
2942 val = (char *) VALUE_CONTENTS (arg);
2943
2944 if (fp_register_arg_p (typecode, arg_type)
2945 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2946 {
2947 /* This is a floating point value that fits entirely
2948 in a single register. */
2949 /* On 32 bit ABI's the float_argreg is further adjusted
2950 above to ensure that it is even register aligned. */
2951 LONGEST regval = extract_unsigned_integer (val, len);
2952 if (mips_debug)
2953 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2954 float_argreg, phex (regval, len));
2955 write_register (float_argreg++, regval);
2956
2957 if (mips_debug)
2958 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2959 argreg, phex (regval, len));
2960 write_register (argreg, regval);
2961 argreg += 1;
2962 }
2963 else
2964 {
2965 /* Copy the argument to general registers or the stack in
2966 register-sized pieces. Large arguments are split between
2967 registers and stack. */
2968 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2969 are treated specially: Irix cc passes them in registers
2970 where gcc sometimes puts them on the stack. For maximum
2971 compatibility, we will put them in both places. */
2972 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2973 (len % MIPS_SAVED_REGSIZE != 0));
2974 /* Note: Floating-point values that didn't fit into an FP
2975 register are only written to memory. */
2976 while (len > 0)
2977 {
2978 /* Rememer if the argument was written to the stack. */
2979 int stack_used_p = 0;
2980 int partial_len = len < MIPS_SAVED_REGSIZE ?
2981 len : MIPS_SAVED_REGSIZE;
2982
2983 if (mips_debug)
2984 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2985 partial_len);
2986
2987 /* Write this portion of the argument to the stack. */
2988 if (argreg > MIPS_LAST_ARG_REGNUM
2989 || odd_sized_struct
2990 || fp_register_arg_p (typecode, arg_type))
2991 {
2992 /* Should shorter than int integer values be
2993 promoted to int before being stored? */
2994 int longword_offset = 0;
2995 CORE_ADDR addr;
2996 stack_used_p = 1;
2997 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2998 {
2999 if (MIPS_STACK_ARGSIZE == 8 &&
3000 (typecode == TYPE_CODE_INT ||
3001 typecode == TYPE_CODE_PTR ||
3002 typecode == TYPE_CODE_FLT) && len <= 4)
3003 longword_offset = MIPS_STACK_ARGSIZE - len;
3004 }
3005
3006 if (mips_debug)
3007 {
3008 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3009 paddr_nz (stack_offset));
3010 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3011 paddr_nz (longword_offset));
3012 }
3013
3014 addr = sp + stack_offset + longword_offset;
3015
3016 if (mips_debug)
3017 {
3018 int i;
3019 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3020 paddr_nz (addr));
3021 for (i = 0; i < partial_len; i++)
3022 {
3023 fprintf_unfiltered (gdb_stdlog, "%02x",
3024 val[i] & 0xff);
3025 }
3026 }
3027 write_memory (addr, val, partial_len);
3028 }
3029
3030 /* Note!!! This is NOT an else clause. Odd sized
3031 structs may go thru BOTH paths. Floating point
3032 arguments will not. */
3033 /* Write this portion of the argument to a general
3034 purpose register. */
3035 if (argreg <= MIPS_LAST_ARG_REGNUM
3036 && !fp_register_arg_p (typecode, arg_type))
3037 {
3038 LONGEST regval = extract_unsigned_integer (val, partial_len);
3039
3040 /* A non-floating-point argument being passed in a
3041 general register. If a struct or union, and if
3042 the remaining length is smaller than the register
3043 size, we have to adjust the register value on
3044 big endian targets.
3045
3046 It does not seem to be necessary to do the
3047 same for integral types.
3048
3049 cagney/2001-07-23: gdb/179: Also, GCC, when
3050 outputting LE O32 with sizeof (struct) <
3051 MIPS_SAVED_REGSIZE, generates a left shift as
3052 part of storing the argument in a register a
3053 register (the left shift isn't generated when
3054 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3055 is quite possible that this is GCC contradicting
3056 the LE/O32 ABI, GDB has not been adjusted to
3057 accommodate this. Either someone needs to
3058 demonstrate that the LE/O32 ABI specifies such a
3059 left shift OR this new ABI gets identified as
3060 such and GDB gets tweaked accordingly. */
3061
3062 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3063 && partial_len < MIPS_SAVED_REGSIZE
3064 && (typecode == TYPE_CODE_STRUCT ||
3065 typecode == TYPE_CODE_UNION))
3066 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3067 TARGET_CHAR_BIT);
3068
3069 if (mips_debug)
3070 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3071 argreg,
3072 phex (regval, MIPS_SAVED_REGSIZE));
3073 write_register (argreg, regval);
3074 argreg++;
3075 }
3076
3077 len -= partial_len;
3078 val += partial_len;
3079
3080 /* Compute the the offset into the stack at which we
3081 will copy the next parameter.
3082
3083 In N32 (N64?), the stack_offset only needs to be
3084 adjusted when it has been used. */
3085
3086 if (stack_used_p)
3087 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3088 }
3089 }
3090 if (mips_debug)
3091 fprintf_unfiltered (gdb_stdlog, "\n");
3092 }
3093
3094 /* Return adjusted stack pointer. */
3095 return sp;
3096 }
3097
3098 /* O32 version of push_arguments. */
3099
3100 static CORE_ADDR
3101 mips_o32_push_arguments (int nargs,
3102 struct value **args,
3103 CORE_ADDR sp,
3104 int struct_return,
3105 CORE_ADDR struct_addr)
3106 {
3107 int argreg;
3108 int float_argreg;
3109 int argnum;
3110 int len = 0;
3111 int stack_offset = 0;
3112
3113 /* First ensure that the stack and structure return address (if any)
3114 are properly aligned. The stack has to be at least 64-bit
3115 aligned even on 32-bit machines, because doubles must be 64-bit
3116 aligned. For n32 and n64, stack frames need to be 128-bit
3117 aligned, so we round to this widest known alignment. */
3118
3119 sp = ROUND_DOWN (sp, 16);
3120 struct_addr = ROUND_DOWN (struct_addr, 16);
3121
3122 /* Now make space on the stack for the args. */
3123 for (argnum = 0; argnum < nargs; argnum++)
3124 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3125 MIPS_STACK_ARGSIZE);
3126 sp -= ROUND_UP (len, 16);
3127
3128 if (mips_debug)
3129 fprintf_unfiltered (gdb_stdlog,
3130 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
3131 paddr_nz (sp), ROUND_UP (len, 16));
3132
3133 /* Initialize the integer and float register pointers. */
3134 argreg = A0_REGNUM;
3135 float_argreg = FPA0_REGNUM;
3136
3137 /* The struct_return pointer occupies the first parameter-passing reg. */
3138 if (struct_return)
3139 {
3140 if (mips_debug)
3141 fprintf_unfiltered (gdb_stdlog,
3142 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
3143 argreg, paddr_nz (struct_addr));
3144 write_register (argreg++, struct_addr);
3145 stack_offset += MIPS_STACK_ARGSIZE;
3146 }
3147
3148 /* Now load as many as possible of the first arguments into
3149 registers, and push the rest onto the stack. Loop thru args
3150 from first to last. */
3151 for (argnum = 0; argnum < nargs; argnum++)
3152 {
3153 char *val;
3154 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3155 struct value *arg = args[argnum];
3156 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3157 int len = TYPE_LENGTH (arg_type);
3158 enum type_code typecode = TYPE_CODE (arg_type);
3159
3160 if (mips_debug)
3161 fprintf_unfiltered (gdb_stdlog,
3162 "mips_o32_push_arguments: %d len=%d type=%d",
3163 argnum + 1, len, (int) typecode);
3164
3165 val = (char *) VALUE_CONTENTS (arg);
3166
3167 /* 32-bit ABIs always start floating point arguments in an
3168 even-numbered floating point register. Round the FP register
3169 up before the check to see if there are any FP registers
3170 left. O32/O64 targets also pass the FP in the integer
3171 registers so also round up normal registers. */
3172 if (!FP_REGISTER_DOUBLE
3173 && fp_register_arg_p (typecode, arg_type))
3174 {
3175 if ((float_argreg & 1))
3176 float_argreg++;
3177 }
3178
3179 /* Floating point arguments passed in registers have to be
3180 treated specially. On 32-bit architectures, doubles
3181 are passed in register pairs; the even register gets
3182 the low word, and the odd register gets the high word.
3183 On O32/O64, the first two floating point arguments are
3184 also copied to general registers, because MIPS16 functions
3185 don't use float registers for arguments. This duplication of
3186 arguments in general registers can't hurt non-MIPS16 functions
3187 because those registers are normally skipped. */
3188
3189 if (fp_register_arg_p (typecode, arg_type)
3190 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3191 {
3192 if (!FP_REGISTER_DOUBLE && len == 8)
3193 {
3194 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3195 unsigned long regval;
3196
3197 /* Write the low word of the double to the even register(s). */
3198 regval = extract_unsigned_integer (val + low_offset, 4);
3199 if (mips_debug)
3200 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3201 float_argreg, phex (regval, 4));
3202 write_register (float_argreg++, regval);
3203 if (mips_debug)
3204 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3205 argreg, phex (regval, 4));
3206 write_register (argreg++, regval);
3207
3208 /* Write the high word of the double to the odd register(s). */
3209 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3210 if (mips_debug)
3211 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3212 float_argreg, phex (regval, 4));
3213 write_register (float_argreg++, regval);
3214
3215 if (mips_debug)
3216 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3217 argreg, phex (regval, 4));
3218 write_register (argreg++, regval);
3219 }
3220 else
3221 {
3222 /* This is a floating point value that fits entirely
3223 in a single register. */
3224 /* On 32 bit ABI's the float_argreg is further adjusted
3225 above to ensure that it is even register aligned. */
3226 LONGEST regval = extract_unsigned_integer (val, len);
3227 if (mips_debug)
3228 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3229 float_argreg, phex (regval, len));
3230 write_register (float_argreg++, regval);
3231 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3232 registers for each argument. The below is (my
3233 guess) to ensure that the corresponding integer
3234 register has reserved the same space. */
3235 if (mips_debug)
3236 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3237 argreg, phex (regval, len));
3238 write_register (argreg, regval);
3239 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3240 }
3241 /* Reserve space for the FP register. */
3242 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3243 }
3244 else
3245 {
3246 /* Copy the argument to general registers or the stack in
3247 register-sized pieces. Large arguments are split between
3248 registers and stack. */
3249 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3250 are treated specially: Irix cc passes them in registers
3251 where gcc sometimes puts them on the stack. For maximum
3252 compatibility, we will put them in both places. */
3253 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3254 (len % MIPS_SAVED_REGSIZE != 0));
3255 /* Structures should be aligned to eight bytes (even arg registers)
3256 on MIPS_ABI_O32, if their first member has double precision. */
3257 if (MIPS_SAVED_REGSIZE < 8
3258 && mips_type_needs_double_align (arg_type))
3259 {
3260 if ((argreg & 1))
3261 argreg++;
3262 }
3263 /* Note: Floating-point values that didn't fit into an FP
3264 register are only written to memory. */
3265 while (len > 0)
3266 {
3267 /* Remember if the argument was written to the stack. */
3268 int stack_used_p = 0;
3269 int partial_len =
3270 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3271
3272 if (mips_debug)
3273 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3274 partial_len);
3275
3276 /* Write this portion of the argument to the stack. */
3277 if (argreg > MIPS_LAST_ARG_REGNUM
3278 || odd_sized_struct
3279 || fp_register_arg_p (typecode, arg_type))
3280 {
3281 /* Should shorter than int integer values be
3282 promoted to int before being stored? */
3283 int longword_offset = 0;
3284 CORE_ADDR addr;
3285 stack_used_p = 1;
3286 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3287 {
3288 if (MIPS_STACK_ARGSIZE == 8 &&
3289 (typecode == TYPE_CODE_INT ||
3290 typecode == TYPE_CODE_PTR ||
3291 typecode == TYPE_CODE_FLT) && len <= 4)
3292 longword_offset = MIPS_STACK_ARGSIZE - len;
3293 }
3294
3295 if (mips_debug)
3296 {
3297 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3298 paddr_nz (stack_offset));
3299 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3300 paddr_nz (longword_offset));
3301 }
3302
3303 addr = sp + stack_offset + longword_offset;
3304
3305 if (mips_debug)
3306 {
3307 int i;
3308 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3309 paddr_nz (addr));
3310 for (i = 0; i < partial_len; i++)
3311 {
3312 fprintf_unfiltered (gdb_stdlog, "%02x",
3313 val[i] & 0xff);
3314 }
3315 }
3316 write_memory (addr, val, partial_len);
3317 }
3318
3319 /* Note!!! This is NOT an else clause. Odd sized
3320 structs may go thru BOTH paths. Floating point
3321 arguments will not. */
3322 /* Write this portion of the argument to a general
3323 purpose register. */
3324 if (argreg <= MIPS_LAST_ARG_REGNUM
3325 && !fp_register_arg_p (typecode, arg_type))
3326 {
3327 LONGEST regval = extract_signed_integer (val, partial_len);
3328 /* Value may need to be sign extended, because
3329 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3330
3331 /* A non-floating-point argument being passed in a
3332 general register. If a struct or union, and if
3333 the remaining length is smaller than the register
3334 size, we have to adjust the register value on
3335 big endian targets.
3336
3337 It does not seem to be necessary to do the
3338 same for integral types.
3339
3340 Also don't do this adjustment on O64 binaries.
3341
3342 cagney/2001-07-23: gdb/179: Also, GCC, when
3343 outputting LE O32 with sizeof (struct) <
3344 MIPS_SAVED_REGSIZE, generates a left shift as
3345 part of storing the argument in a register a
3346 register (the left shift isn't generated when
3347 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3348 is quite possible that this is GCC contradicting
3349 the LE/O32 ABI, GDB has not been adjusted to
3350 accommodate this. Either someone needs to
3351 demonstrate that the LE/O32 ABI specifies such a
3352 left shift OR this new ABI gets identified as
3353 such and GDB gets tweaked accordingly. */
3354
3355 if (MIPS_SAVED_REGSIZE < 8
3356 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3357 && partial_len < MIPS_SAVED_REGSIZE
3358 && (typecode == TYPE_CODE_STRUCT ||
3359 typecode == TYPE_CODE_UNION))
3360 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3361 TARGET_CHAR_BIT);
3362
3363 if (mips_debug)
3364 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3365 argreg,
3366 phex (regval, MIPS_SAVED_REGSIZE));
3367 write_register (argreg, regval);
3368 argreg++;
3369
3370 /* Prevent subsequent floating point arguments from
3371 being passed in floating point registers. */
3372 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3373 }
3374
3375 len -= partial_len;
3376 val += partial_len;
3377
3378 /* Compute the the offset into the stack at which we
3379 will copy the next parameter.
3380
3381 In older ABIs, the caller reserved space for
3382 registers that contained arguments. This was loosely
3383 refered to as their "home". Consequently, space is
3384 always allocated. */
3385
3386 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3387 }
3388 }
3389 if (mips_debug)
3390 fprintf_unfiltered (gdb_stdlog, "\n");
3391 }
3392
3393 /* Return adjusted stack pointer. */
3394 return sp;
3395 }
3396
3397 /* O64 version of push_arguments. */
3398
3399 static CORE_ADDR
3400 mips_o64_push_arguments (int nargs,
3401 struct value **args,
3402 CORE_ADDR sp,
3403 int struct_return,
3404 CORE_ADDR struct_addr)
3405 {
3406 int argreg;
3407 int float_argreg;
3408 int argnum;
3409 int len = 0;
3410 int stack_offset = 0;
3411
3412 /* First ensure that the stack and structure return address (if any)
3413 are properly aligned. The stack has to be at least 64-bit
3414 aligned even on 32-bit machines, because doubles must be 64-bit
3415 aligned. For n32 and n64, stack frames need to be 128-bit
3416 aligned, so we round to this widest known alignment. */
3417
3418 sp = ROUND_DOWN (sp, 16);
3419 struct_addr = ROUND_DOWN (struct_addr, 16);
3420
3421 /* Now make space on the stack for the args. */
3422 for (argnum = 0; argnum < nargs; argnum++)
3423 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3424 MIPS_STACK_ARGSIZE);
3425 sp -= ROUND_UP (len, 16);
3426
3427 if (mips_debug)
3428 fprintf_unfiltered (gdb_stdlog,
3429 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3430 paddr_nz (sp), ROUND_UP (len, 16));
3431
3432 /* Initialize the integer and float register pointers. */
3433 argreg = A0_REGNUM;
3434 float_argreg = FPA0_REGNUM;
3435
3436 /* The struct_return pointer occupies the first parameter-passing reg. */
3437 if (struct_return)
3438 {
3439 if (mips_debug)
3440 fprintf_unfiltered (gdb_stdlog,
3441 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3442 argreg, paddr_nz (struct_addr));
3443 write_register (argreg++, struct_addr);
3444 stack_offset += MIPS_STACK_ARGSIZE;
3445 }
3446
3447 /* Now load as many as possible of the first arguments into
3448 registers, and push the rest onto the stack. Loop thru args
3449 from first to last. */
3450 for (argnum = 0; argnum < nargs; argnum++)
3451 {
3452 char *val;
3453 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3454 struct value *arg = args[argnum];
3455 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3456 int len = TYPE_LENGTH (arg_type);
3457 enum type_code typecode = TYPE_CODE (arg_type);
3458
3459 if (mips_debug)
3460 fprintf_unfiltered (gdb_stdlog,
3461 "mips_o64_push_arguments: %d len=%d type=%d",
3462 argnum + 1, len, (int) typecode);
3463
3464 val = (char *) VALUE_CONTENTS (arg);
3465
3466 /* 32-bit ABIs always start floating point arguments in an
3467 even-numbered floating point register. Round the FP register
3468 up before the check to see if there are any FP registers
3469 left. O32/O64 targets also pass the FP in the integer
3470 registers so also round up normal registers. */
3471 if (!FP_REGISTER_DOUBLE
3472 && fp_register_arg_p (typecode, arg_type))
3473 {
3474 if ((float_argreg & 1))
3475 float_argreg++;
3476 }
3477
3478 /* Floating point arguments passed in registers have to be
3479 treated specially. On 32-bit architectures, doubles
3480 are passed in register pairs; the even register gets
3481 the low word, and the odd register gets the high word.
3482 On O32/O64, the first two floating point arguments are
3483 also copied to general registers, because MIPS16 functions
3484 don't use float registers for arguments. This duplication of
3485 arguments in general registers can't hurt non-MIPS16 functions
3486 because those registers are normally skipped. */
3487
3488 if (fp_register_arg_p (typecode, arg_type)
3489 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3490 {
3491 if (!FP_REGISTER_DOUBLE && len == 8)
3492 {
3493 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3494 unsigned long regval;
3495
3496 /* Write the low word of the double to the even register(s). */
3497 regval = extract_unsigned_integer (val + low_offset, 4);
3498 if (mips_debug)
3499 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3500 float_argreg, phex (regval, 4));
3501 write_register (float_argreg++, regval);
3502 if (mips_debug)
3503 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3504 argreg, phex (regval, 4));
3505 write_register (argreg++, regval);
3506
3507 /* Write the high word of the double to the odd register(s). */
3508 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3509 if (mips_debug)
3510 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3511 float_argreg, phex (regval, 4));
3512 write_register (float_argreg++, regval);
3513
3514 if (mips_debug)
3515 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3516 argreg, phex (regval, 4));
3517 write_register (argreg++, regval);
3518 }
3519 else
3520 {
3521 /* This is a floating point value that fits entirely
3522 in a single register. */
3523 /* On 32 bit ABI's the float_argreg is further adjusted
3524 above to ensure that it is even register aligned. */
3525 LONGEST regval = extract_unsigned_integer (val, len);
3526 if (mips_debug)
3527 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3528 float_argreg, phex (regval, len));
3529 write_register (float_argreg++, regval);
3530 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3531 registers for each argument. The below is (my
3532 guess) to ensure that the corresponding integer
3533 register has reserved the same space. */
3534 if (mips_debug)
3535 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3536 argreg, phex (regval, len));
3537 write_register (argreg, regval);
3538 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3539 }
3540 /* Reserve space for the FP register. */
3541 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3542 }
3543 else
3544 {
3545 /* Copy the argument to general registers or the stack in
3546 register-sized pieces. Large arguments are split between
3547 registers and stack. */
3548 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3549 are treated specially: Irix cc passes them in registers
3550 where gcc sometimes puts them on the stack. For maximum
3551 compatibility, we will put them in both places. */
3552 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3553 (len % MIPS_SAVED_REGSIZE != 0));
3554 /* Structures should be aligned to eight bytes (even arg registers)
3555 on MIPS_ABI_O32, if their first member has double precision. */
3556 if (MIPS_SAVED_REGSIZE < 8
3557 && mips_type_needs_double_align (arg_type))
3558 {
3559 if ((argreg & 1))
3560 argreg++;
3561 }
3562 /* Note: Floating-point values that didn't fit into an FP
3563 register are only written to memory. */
3564 while (len > 0)
3565 {
3566 /* Remember if the argument was written to the stack. */
3567 int stack_used_p = 0;
3568 int partial_len =
3569 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3570
3571 if (mips_debug)
3572 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3573 partial_len);
3574
3575 /* Write this portion of the argument to the stack. */
3576 if (argreg > MIPS_LAST_ARG_REGNUM
3577 || odd_sized_struct
3578 || fp_register_arg_p (typecode, arg_type))
3579 {
3580 /* Should shorter than int integer values be
3581 promoted to int before being stored? */
3582 int longword_offset = 0;
3583 CORE_ADDR addr;
3584 stack_used_p = 1;
3585 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3586 {
3587 if (MIPS_STACK_ARGSIZE == 8 &&
3588 (typecode == TYPE_CODE_INT ||
3589 typecode == TYPE_CODE_PTR ||
3590 typecode == TYPE_CODE_FLT) && len <= 4)
3591 longword_offset = MIPS_STACK_ARGSIZE - len;
3592 }
3593
3594 if (mips_debug)
3595 {
3596 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3597 paddr_nz (stack_offset));
3598 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3599 paddr_nz (longword_offset));
3600 }
3601
3602 addr = sp + stack_offset + longword_offset;
3603
3604 if (mips_debug)
3605 {
3606 int i;
3607 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3608 paddr_nz (addr));
3609 for (i = 0; i < partial_len; i++)
3610 {
3611 fprintf_unfiltered (gdb_stdlog, "%02x",
3612 val[i] & 0xff);
3613 }
3614 }
3615 write_memory (addr, val, partial_len);
3616 }
3617
3618 /* Note!!! This is NOT an else clause. Odd sized
3619 structs may go thru BOTH paths. Floating point
3620 arguments will not. */
3621 /* Write this portion of the argument to a general
3622 purpose register. */
3623 if (argreg <= MIPS_LAST_ARG_REGNUM
3624 && !fp_register_arg_p (typecode, arg_type))
3625 {
3626 LONGEST regval = extract_signed_integer (val, partial_len);
3627 /* Value may need to be sign extended, because
3628 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3629
3630 /* A non-floating-point argument being passed in a
3631 general register. If a struct or union, and if
3632 the remaining length is smaller than the register
3633 size, we have to adjust the register value on
3634 big endian targets.
3635
3636 It does not seem to be necessary to do the
3637 same for integral types.
3638
3639 Also don't do this adjustment on O64 binaries.
3640
3641 cagney/2001-07-23: gdb/179: Also, GCC, when
3642 outputting LE O32 with sizeof (struct) <
3643 MIPS_SAVED_REGSIZE, generates a left shift as
3644 part of storing the argument in a register a
3645 register (the left shift isn't generated when
3646 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3647 is quite possible that this is GCC contradicting
3648 the LE/O32 ABI, GDB has not been adjusted to
3649 accommodate this. Either someone needs to
3650 demonstrate that the LE/O32 ABI specifies such a
3651 left shift OR this new ABI gets identified as
3652 such and GDB gets tweaked accordingly. */
3653
3654 if (MIPS_SAVED_REGSIZE < 8
3655 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3656 && partial_len < MIPS_SAVED_REGSIZE
3657 && (typecode == TYPE_CODE_STRUCT ||
3658 typecode == TYPE_CODE_UNION))
3659 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3660 TARGET_CHAR_BIT);
3661
3662 if (mips_debug)
3663 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3664 argreg,
3665 phex (regval, MIPS_SAVED_REGSIZE));
3666 write_register (argreg, regval);
3667 argreg++;
3668
3669 /* Prevent subsequent floating point arguments from
3670 being passed in floating point registers. */
3671 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3672 }
3673
3674 len -= partial_len;
3675 val += partial_len;
3676
3677 /* Compute the the offset into the stack at which we
3678 will copy the next parameter.
3679
3680 In older ABIs, the caller reserved space for
3681 registers that contained arguments. This was loosely
3682 refered to as their "home". Consequently, space is
3683 always allocated. */
3684
3685 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3686 }
3687 }
3688 if (mips_debug)
3689 fprintf_unfiltered (gdb_stdlog, "\n");
3690 }
3691
3692 /* Return adjusted stack pointer. */
3693 return sp;
3694 }
3695
3696 static CORE_ADDR
3697 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
3698 {
3699 /* Set the return address register to point to the entry
3700 point of the program, where a breakpoint lies in wait. */
3701 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
3702 return sp;
3703 }
3704
3705 static void
3706 mips_push_register (CORE_ADDR * sp, int regno)
3707 {
3708 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
3709 int regsize;
3710 int offset;
3711 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3712 {
3713 regsize = MIPS_SAVED_REGSIZE;
3714 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3715 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3716 : 0);
3717 }
3718 else
3719 {
3720 regsize = REGISTER_RAW_SIZE (regno);
3721 offset = 0;
3722 }
3723 *sp -= regsize;
3724 deprecated_read_register_gen (regno, buffer);
3725 write_memory (*sp, buffer + offset, regsize);
3726 }
3727
3728 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3729 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3730
3731 static void
3732 mips_push_dummy_frame (void)
3733 {
3734 int ireg;
3735 struct linked_proc_info *link = (struct linked_proc_info *)
3736 xmalloc (sizeof (struct linked_proc_info));
3737 mips_extra_func_info_t proc_desc = &link->info;
3738 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
3739 CORE_ADDR old_sp = sp;
3740 link->next = linked_proc_desc_table;
3741 linked_proc_desc_table = link;
3742
3743 /* FIXME! are these correct ? */
3744 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
3745 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3746 #define FLOAT_REG_SAVE_MASK MASK(0,19)
3747 #define FLOAT_SINGLE_REG_SAVE_MASK \
3748 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3749 /*
3750 * The registers we must save are all those not preserved across
3751 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3752 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3753 * and FP Control/Status registers.
3754 *
3755 *
3756 * Dummy frame layout:
3757 * (high memory)
3758 * Saved PC
3759 * Saved MMHI, MMLO, FPC_CSR
3760 * Saved R31
3761 * Saved R28
3762 * ...
3763 * Saved R1
3764 * Saved D18 (i.e. F19, F18)
3765 * ...
3766 * Saved D0 (i.e. F1, F0)
3767 * Argument build area and stack arguments written via mips_push_arguments
3768 * (low memory)
3769 */
3770
3771 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
3772 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3773 PROC_FRAME_OFFSET (proc_desc) = 0;
3774 PROC_FRAME_ADJUST (proc_desc) = 0;
3775 mips_push_register (&sp, PC_REGNUM);
3776 mips_push_register (&sp, HI_REGNUM);
3777 mips_push_register (&sp, LO_REGNUM);
3778 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3779
3780 /* Save general CPU registers */
3781 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
3782 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
3783 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3784 for (ireg = 32; --ireg >= 0;)
3785 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
3786 mips_push_register (&sp, ireg);
3787
3788 /* Save floating point registers starting with high order word */
3789 PROC_FREG_MASK (proc_desc) =
3790 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3791 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3792 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3793 from FP. */
3794 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3795 for (ireg = 32; --ireg >= 0;)
3796 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
3797 mips_push_register (&sp, ireg + FP0_REGNUM);
3798
3799 /* Update the frame pointer for the call dummy and the stack pointer.
3800 Set the procedure's starting and ending addresses to point to the
3801 call dummy address at the entry point. */
3802 write_register (PUSH_FP_REGNUM, old_sp);
3803 write_register (SP_REGNUM, sp);
3804 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3805 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3806 SET_PROC_DESC_IS_DUMMY (proc_desc);
3807 PROC_PC_REG (proc_desc) = RA_REGNUM;
3808 }
3809
3810 static void
3811 mips_pop_frame (void)
3812 {
3813 register int regnum;
3814 struct frame_info *frame = get_current_frame ();
3815 CORE_ADDR new_sp = get_frame_base (frame);
3816 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
3817
3818 if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, 0, 0))
3819 {
3820 generic_pop_dummy_frame ();
3821 flush_cached_frames ();
3822 return;
3823 }
3824
3825 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
3826 if (frame->saved_regs == NULL)
3827 FRAME_INIT_SAVED_REGS (frame);
3828 for (regnum = 0; regnum < NUM_REGS; regnum++)
3829 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3830 && frame->saved_regs[regnum])
3831 {
3832 /* Floating point registers must not be sign extended,
3833 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3834
3835 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3836 write_register (regnum,
3837 read_memory_unsigned_integer (frame->saved_regs[regnum],
3838 MIPS_SAVED_REGSIZE));
3839 else
3840 write_register (regnum,
3841 read_memory_integer (frame->saved_regs[regnum],
3842 MIPS_SAVED_REGSIZE));
3843 }
3844
3845 write_register (SP_REGNUM, new_sp);
3846 flush_cached_frames ();
3847
3848 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3849 {
3850 struct linked_proc_info *pi_ptr, *prev_ptr;
3851
3852 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3853 pi_ptr != NULL;
3854 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3855 {
3856 if (&pi_ptr->info == proc_desc)
3857 break;
3858 }
3859
3860 if (pi_ptr == NULL)
3861 error ("Can't locate dummy extra frame info\n");
3862
3863 if (prev_ptr != NULL)
3864 prev_ptr->next = pi_ptr->next;
3865 else
3866 linked_proc_desc_table = pi_ptr->next;
3867
3868 xfree (pi_ptr);
3869
3870 write_register (HI_REGNUM,
3871 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3872 MIPS_SAVED_REGSIZE));
3873 write_register (LO_REGNUM,
3874 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3875 MIPS_SAVED_REGSIZE));
3876 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3877 write_register (FCRCS_REGNUM,
3878 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3879 MIPS_SAVED_REGSIZE));
3880 }
3881 }
3882
3883 static void
3884 mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3885 struct value **args, struct type *type, int gcc_p)
3886 {
3887 write_register(T9_REGNUM, fun);
3888 }
3889
3890 /* Floating point register management.
3891
3892 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3893 64bit operations, these early MIPS cpus treat fp register pairs
3894 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3895 registers and offer a compatibility mode that emulates the MIPS2 fp
3896 model. When operating in MIPS2 fp compat mode, later cpu's split
3897 double precision floats into two 32-bit chunks and store them in
3898 consecutive fp regs. To display 64-bit floats stored in this
3899 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3900 Throw in user-configurable endianness and you have a real mess.
3901
3902 The way this works is:
3903 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3904 double-precision value will be split across two logical registers.
3905 The lower-numbered logical register will hold the low-order bits,
3906 regardless of the processor's endianness.
3907 - If we are on a 64-bit processor, and we are looking for a
3908 single-precision value, it will be in the low ordered bits
3909 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3910 save slot in memory.
3911 - If we are in 64-bit mode, everything is straightforward.
3912
3913 Note that this code only deals with "live" registers at the top of the
3914 stack. We will attempt to deal with saved registers later, when
3915 the raw/cooked register interface is in place. (We need a general
3916 interface that can deal with dynamic saved register sizes -- fp
3917 regs could be 32 bits wide in one frame and 64 on the frame above
3918 and below). */
3919
3920 static struct type *
3921 mips_float_register_type (void)
3922 {
3923 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3924 return builtin_type_ieee_single_big;
3925 else
3926 return builtin_type_ieee_single_little;
3927 }
3928
3929 static struct type *
3930 mips_double_register_type (void)
3931 {
3932 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3933 return builtin_type_ieee_double_big;
3934 else
3935 return builtin_type_ieee_double_little;
3936 }
3937
3938 /* Copy a 32-bit single-precision value from the current frame
3939 into rare_buffer. */
3940
3941 static void
3942 mips_read_fp_register_single (int regno, char *rare_buffer)
3943 {
3944 int raw_size = REGISTER_RAW_SIZE (regno);
3945 char *raw_buffer = alloca (raw_size);
3946
3947 if (!frame_register_read (deprecated_selected_frame, regno, raw_buffer))
3948 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3949 if (raw_size == 8)
3950 {
3951 /* We have a 64-bit value for this register. Find the low-order
3952 32 bits. */
3953 int offset;
3954
3955 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3956 offset = 4;
3957 else
3958 offset = 0;
3959
3960 memcpy (rare_buffer, raw_buffer + offset, 4);
3961 }
3962 else
3963 {
3964 memcpy (rare_buffer, raw_buffer, 4);
3965 }
3966 }
3967
3968 /* Copy a 64-bit double-precision value from the current frame into
3969 rare_buffer. This may include getting half of it from the next
3970 register. */
3971
3972 static void
3973 mips_read_fp_register_double (int regno, char *rare_buffer)
3974 {
3975 int raw_size = REGISTER_RAW_SIZE (regno);
3976
3977 if (raw_size == 8 && !mips2_fp_compat ())
3978 {
3979 /* We have a 64-bit value for this register, and we should use
3980 all 64 bits. */
3981 if (!frame_register_read (deprecated_selected_frame, regno, rare_buffer))
3982 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3983 }
3984 else
3985 {
3986 if ((regno - FP0_REGNUM) & 1)
3987 internal_error (__FILE__, __LINE__,
3988 "mips_read_fp_register_double: bad access to "
3989 "odd-numbered FP register");
3990
3991 /* mips_read_fp_register_single will find the correct 32 bits from
3992 each register. */
3993 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3994 {
3995 mips_read_fp_register_single (regno, rare_buffer + 4);
3996 mips_read_fp_register_single (regno + 1, rare_buffer);
3997 }
3998 else
3999 {
4000 mips_read_fp_register_single (regno, rare_buffer);
4001 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
4002 }
4003 }
4004 }
4005
4006 static void
4007 mips_print_register (int regnum, int all)
4008 {
4009 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4010
4011 /* Get the data in raw format. */
4012 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4013 {
4014 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
4015 return;
4016 }
4017
4018 /* If we have a actual 32-bit floating point register (or we are in
4019 32-bit compatibility mode), and the register is even-numbered,
4020 also print it as a double (spanning two registers). */
4021 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
4022 && (REGISTER_RAW_SIZE (regnum) == 4
4023 || mips2_fp_compat ())
4024 && !((regnum - FP0_REGNUM) & 1))
4025 {
4026 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
4027
4028 mips_read_fp_register_double (regnum, dbuffer);
4029
4030 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
4031 val_print (mips_double_register_type (), dbuffer, 0, 0,
4032 gdb_stdout, 0, 1, 0, Val_pretty_default);
4033 printf_filtered ("); ");
4034 }
4035 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
4036
4037 /* The problem with printing numeric register names (r26, etc.) is that
4038 the user can't use them on input. Probably the best solution is to
4039 fix it so that either the numeric or the funky (a2, etc.) names
4040 are accepted on input. */
4041 if (regnum < MIPS_NUMREGS)
4042 printf_filtered ("(r%d): ", regnum);
4043 else
4044 printf_filtered (": ");
4045
4046 /* If virtual format is floating, print it that way. */
4047 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4048 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
4049 {
4050 /* We have a meaningful 64-bit value in this register. Show
4051 it as a 32-bit float and a 64-bit double. */
4052 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
4053
4054 printf_filtered (" (float) ");
4055 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
4056 gdb_stdout, 0, 1, 0, Val_pretty_default);
4057 printf_filtered (", (double) ");
4058 val_print (mips_double_register_type (), raw_buffer, 0, 0,
4059 gdb_stdout, 0, 1, 0, Val_pretty_default);
4060 }
4061 else
4062 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4063 gdb_stdout, 0, 1, 0, Val_pretty_default);
4064 /* Else print as integer in hex. */
4065 else
4066 {
4067 int offset;
4068
4069 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4070 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4071 else
4072 offset = 0;
4073
4074 print_scalar_formatted (raw_buffer + offset,
4075 REGISTER_VIRTUAL_TYPE (regnum),
4076 'x', 0, gdb_stdout);
4077 }
4078 }
4079
4080 /* Replacement for generic do_registers_info.
4081 Print regs in pretty columns. */
4082
4083 static int
4084 do_fp_register_row (int regnum)
4085 { /* do values for FP (float) regs */
4086 char *raw_buffer;
4087 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4088 int inv1, inv2, inv3;
4089
4090 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4091
4092 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4093 {
4094 /* 4-byte registers: we can fit two registers per row. */
4095 /* Also print every pair of 4-byte regs as an 8-byte double. */
4096 mips_read_fp_register_single (regnum, raw_buffer);
4097 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4098
4099 mips_read_fp_register_single (regnum + 1, raw_buffer);
4100 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
4101
4102 mips_read_fp_register_double (regnum, raw_buffer);
4103 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4104
4105 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4106 if (inv1)
4107 printf_filtered (": <invalid float>");
4108 else
4109 printf_filtered ("%-17.9g", flt1);
4110
4111 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4112 if (inv2)
4113 printf_filtered (": <invalid float>");
4114 else
4115 printf_filtered ("%-17.9g", flt2);
4116
4117 printf_filtered (" dbl: ");
4118 if (inv3)
4119 printf_filtered ("<invalid double>");
4120 else
4121 printf_filtered ("%-24.17g", doub);
4122 printf_filtered ("\n");
4123
4124 /* may want to do hex display here (future enhancement) */
4125 regnum += 2;
4126 }
4127 else
4128 {
4129 /* Eight byte registers: print each one as float AND as double. */
4130 mips_read_fp_register_single (regnum, raw_buffer);
4131 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
4132
4133 mips_read_fp_register_double (regnum, raw_buffer);
4134 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4135
4136 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4137 if (inv1)
4138 printf_filtered ("<invalid float>");
4139 else
4140 printf_filtered ("flt: %-17.9g", flt1);
4141
4142 printf_filtered (" dbl: ");
4143 if (inv3)
4144 printf_filtered ("<invalid double>");
4145 else
4146 printf_filtered ("%-24.17g", doub);
4147
4148 printf_filtered ("\n");
4149 /* may want to do hex display here (future enhancement) */
4150 regnum++;
4151 }
4152 return regnum;
4153 }
4154
4155 /* Print a row's worth of GP (int) registers, with name labels above */
4156
4157 static int
4158 do_gp_register_row (int regnum)
4159 {
4160 /* do values for GP (int) regs */
4161 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4162 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4163 int col, byte;
4164 int start_regnum = regnum;
4165 int numregs = NUM_REGS;
4166
4167
4168 /* For GP registers, we print a separate row of names above the vals */
4169 printf_filtered (" ");
4170 for (col = 0; col < ncols && regnum < numregs; regnum++)
4171 {
4172 if (*REGISTER_NAME (regnum) == '\0')
4173 continue; /* unused register */
4174 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4175 break; /* end the row: reached FP register */
4176 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4177 REGISTER_NAME (regnum));
4178 col++;
4179 }
4180 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4181 start_regnum); /* print the R0 to R31 names */
4182
4183 regnum = start_regnum; /* go back to start of row */
4184 /* now print the values in hex, 4 or 8 to the row */
4185 for (col = 0; col < ncols && regnum < numregs; regnum++)
4186 {
4187 if (*REGISTER_NAME (regnum) == '\0')
4188 continue; /* unused register */
4189 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4190 break; /* end row: reached FP register */
4191 /* OK: get the data in raw format. */
4192 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4193 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4194 /* pad small registers */
4195 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4196 printf_filtered (" ");
4197 /* Now print the register value in hex, endian order. */
4198 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4199 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4200 byte < REGISTER_RAW_SIZE (regnum);
4201 byte++)
4202 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4203 else
4204 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4205 byte >= 0;
4206 byte--)
4207 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4208 printf_filtered (" ");
4209 col++;
4210 }
4211 if (col > 0) /* ie. if we actually printed anything... */
4212 printf_filtered ("\n");
4213
4214 return regnum;
4215 }
4216
4217 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4218
4219 static void
4220 mips_do_registers_info (int regnum, int fpregs)
4221 {
4222 if (regnum != -1) /* do one specified register */
4223 {
4224 if (*(REGISTER_NAME (regnum)) == '\0')
4225 error ("Not a valid register for the current processor type");
4226
4227 mips_print_register (regnum, 0);
4228 printf_filtered ("\n");
4229 }
4230 else
4231 /* do all (or most) registers */
4232 {
4233 regnum = 0;
4234 while (regnum < NUM_REGS)
4235 {
4236 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4237 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
4238 regnum = do_fp_register_row (regnum); /* FP regs */
4239 else
4240 regnum += MIPS_NUMREGS; /* skip floating point regs */
4241 else
4242 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4243 }
4244 }
4245 }
4246
4247 /* Is this a branch with a delay slot? */
4248
4249 static int is_delayed (unsigned long);
4250
4251 static int
4252 is_delayed (unsigned long insn)
4253 {
4254 int i;
4255 for (i = 0; i < NUMOPCODES; ++i)
4256 if (mips_opcodes[i].pinfo != INSN_MACRO
4257 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4258 break;
4259 return (i < NUMOPCODES
4260 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4261 | INSN_COND_BRANCH_DELAY
4262 | INSN_COND_BRANCH_LIKELY)));
4263 }
4264
4265 int
4266 mips_step_skips_delay (CORE_ADDR pc)
4267 {
4268 char buf[MIPS_INSTLEN];
4269
4270 /* There is no branch delay slot on MIPS16. */
4271 if (pc_is_mips16 (pc))
4272 return 0;
4273
4274 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4275 /* If error reading memory, guess that it is not a delayed branch. */
4276 return 0;
4277 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4278 }
4279
4280
4281 /* Skip the PC past function prologue instructions (32-bit version).
4282 This is a helper function for mips_skip_prologue. */
4283
4284 static CORE_ADDR
4285 mips32_skip_prologue (CORE_ADDR pc)
4286 {
4287 t_inst inst;
4288 CORE_ADDR end_pc;
4289 int seen_sp_adjust = 0;
4290 int load_immediate_bytes = 0;
4291
4292 /* Skip the typical prologue instructions. These are the stack adjustment
4293 instruction and the instructions that save registers on the stack
4294 or in the gcc frame. */
4295 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4296 {
4297 unsigned long high_word;
4298
4299 inst = mips_fetch_instruction (pc);
4300 high_word = (inst >> 16) & 0xffff;
4301
4302 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4303 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4304 seen_sp_adjust = 1;
4305 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4306 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4307 seen_sp_adjust = 1;
4308 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4309 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4310 && (inst & 0x001F0000)) /* reg != $zero */
4311 continue;
4312
4313 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4314 continue;
4315 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4316 /* sx reg,n($s8) */
4317 continue; /* reg != $zero */
4318
4319 /* move $s8,$sp. With different versions of gas this will be either
4320 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4321 Accept any one of these. */
4322 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4323 continue;
4324
4325 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4326 continue;
4327 else if (high_word == 0x3c1c) /* lui $gp,n */
4328 continue;
4329 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4330 continue;
4331 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4332 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4333 continue;
4334 /* The following instructions load $at or $t0 with an immediate
4335 value in preparation for a stack adjustment via
4336 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4337 a local variable, so we accept them only before a stack adjustment
4338 instruction was seen. */
4339 else if (!seen_sp_adjust)
4340 {
4341 if (high_word == 0x3c01 || /* lui $at,n */
4342 high_word == 0x3c08) /* lui $t0,n */
4343 {
4344 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4345 continue;
4346 }
4347 else if (high_word == 0x3421 || /* ori $at,$at,n */
4348 high_word == 0x3508 || /* ori $t0,$t0,n */
4349 high_word == 0x3401 || /* ori $at,$zero,n */
4350 high_word == 0x3408) /* ori $t0,$zero,n */
4351 {
4352 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4353 continue;
4354 }
4355 else
4356 break;
4357 }
4358 else
4359 break;
4360 }
4361
4362 /* In a frameless function, we might have incorrectly
4363 skipped some load immediate instructions. Undo the skipping
4364 if the load immediate was not followed by a stack adjustment. */
4365 if (load_immediate_bytes && !seen_sp_adjust)
4366 pc -= load_immediate_bytes;
4367 return pc;
4368 }
4369
4370 /* Skip the PC past function prologue instructions (16-bit version).
4371 This is a helper function for mips_skip_prologue. */
4372
4373 static CORE_ADDR
4374 mips16_skip_prologue (CORE_ADDR pc)
4375 {
4376 CORE_ADDR end_pc;
4377 int extend_bytes = 0;
4378 int prev_extend_bytes;
4379
4380 /* Table of instructions likely to be found in a function prologue. */
4381 static struct
4382 {
4383 unsigned short inst;
4384 unsigned short mask;
4385 }
4386 table[] =
4387 {
4388 {
4389 0x6300, 0xff00
4390 }
4391 , /* addiu $sp,offset */
4392 {
4393 0xfb00, 0xff00
4394 }
4395 , /* daddiu $sp,offset */
4396 {
4397 0xd000, 0xf800
4398 }
4399 , /* sw reg,n($sp) */
4400 {
4401 0xf900, 0xff00
4402 }
4403 , /* sd reg,n($sp) */
4404 {
4405 0x6200, 0xff00
4406 }
4407 , /* sw $ra,n($sp) */
4408 {
4409 0xfa00, 0xff00
4410 }
4411 , /* sd $ra,n($sp) */
4412 {
4413 0x673d, 0xffff
4414 }
4415 , /* move $s1,sp */
4416 {
4417 0xd980, 0xff80
4418 }
4419 , /* sw $a0-$a3,n($s1) */
4420 {
4421 0x6704, 0xff1c
4422 }
4423 , /* move reg,$a0-$a3 */
4424 {
4425 0xe809, 0xf81f
4426 }
4427 , /* entry pseudo-op */
4428 {
4429 0x0100, 0xff00
4430 }
4431 , /* addiu $s1,$sp,n */
4432 {
4433 0, 0
4434 } /* end of table marker */
4435 };
4436
4437 /* Skip the typical prologue instructions. These are the stack adjustment
4438 instruction and the instructions that save registers on the stack
4439 or in the gcc frame. */
4440 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4441 {
4442 unsigned short inst;
4443 int i;
4444
4445 inst = mips_fetch_instruction (pc);
4446
4447 /* Normally we ignore an extend instruction. However, if it is
4448 not followed by a valid prologue instruction, we must adjust
4449 the pc back over the extend so that it won't be considered
4450 part of the prologue. */
4451 if ((inst & 0xf800) == 0xf000) /* extend */
4452 {
4453 extend_bytes = MIPS16_INSTLEN;
4454 continue;
4455 }
4456 prev_extend_bytes = extend_bytes;
4457 extend_bytes = 0;
4458
4459 /* Check for other valid prologue instructions besides extend. */
4460 for (i = 0; table[i].mask != 0; i++)
4461 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4462 break;
4463 if (table[i].mask != 0) /* it was in table? */
4464 continue; /* ignore it */
4465 else
4466 /* non-prologue */
4467 {
4468 /* Return the current pc, adjusted backwards by 2 if
4469 the previous instruction was an extend. */
4470 return pc - prev_extend_bytes;
4471 }
4472 }
4473 return pc;
4474 }
4475
4476 /* To skip prologues, I use this predicate. Returns either PC itself
4477 if the code at PC does not look like a function prologue; otherwise
4478 returns an address that (if we're lucky) follows the prologue. If
4479 LENIENT, then we must skip everything which is involved in setting
4480 up the frame (it's OK to skip more, just so long as we don't skip
4481 anything which might clobber the registers which are being saved.
4482 We must skip more in the case where part of the prologue is in the
4483 delay slot of a non-prologue instruction). */
4484
4485 static CORE_ADDR
4486 mips_skip_prologue (CORE_ADDR pc)
4487 {
4488 /* See if we can determine the end of the prologue via the symbol table.
4489 If so, then return either PC, or the PC after the prologue, whichever
4490 is greater. */
4491
4492 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4493
4494 if (post_prologue_pc != 0)
4495 return max (pc, post_prologue_pc);
4496
4497 /* Can't determine prologue from the symbol table, need to examine
4498 instructions. */
4499
4500 if (pc_is_mips16 (pc))
4501 return mips16_skip_prologue (pc);
4502 else
4503 return mips32_skip_prologue (pc);
4504 }
4505
4506 /* Determine how a return value is stored within the MIPS register
4507 file, given the return type `valtype'. */
4508
4509 struct return_value_word
4510 {
4511 int len;
4512 int reg;
4513 int reg_offset;
4514 int buf_offset;
4515 };
4516
4517 static void
4518 return_value_location (struct type *valtype,
4519 struct return_value_word *hi,
4520 struct return_value_word *lo)
4521 {
4522 int len = TYPE_LENGTH (valtype);
4523
4524 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4525 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4526 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4527 {
4528 if (!FP_REGISTER_DOUBLE && len == 8)
4529 {
4530 /* We need to break a 64bit float in two 32 bit halves and
4531 spread them across a floating-point register pair. */
4532 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4533 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4534 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4535 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4536 ? 4 : 0);
4537 hi->reg_offset = lo->reg_offset;
4538 lo->reg = FP0_REGNUM + 0;
4539 hi->reg = FP0_REGNUM + 1;
4540 lo->len = 4;
4541 hi->len = 4;
4542 }
4543 else
4544 {
4545 /* The floating point value fits in a single floating-point
4546 register. */
4547 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4548 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4549 && len == 4)
4550 ? 4 : 0);
4551 lo->reg = FP0_REGNUM;
4552 lo->len = len;
4553 lo->buf_offset = 0;
4554 hi->len = 0;
4555 hi->reg_offset = 0;
4556 hi->buf_offset = 0;
4557 hi->reg = 0;
4558 }
4559 }
4560 else
4561 {
4562 /* Locate a result possibly spread across two registers. */
4563 int regnum = 2;
4564 lo->reg = regnum + 0;
4565 hi->reg = regnum + 1;
4566 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4567 && len < MIPS_SAVED_REGSIZE)
4568 {
4569 /* "un-left-justify" the value in the low register */
4570 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4571 lo->len = len;
4572 hi->reg_offset = 0;
4573 hi->len = 0;
4574 }
4575 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4576 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4577 && len < MIPS_SAVED_REGSIZE * 2
4578 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4579 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4580 {
4581 /* "un-left-justify" the value spread across two registers. */
4582 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4583 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4584 hi->reg_offset = 0;
4585 hi->len = len - lo->len;
4586 }
4587 else
4588 {
4589 /* Only perform a partial copy of the second register. */
4590 lo->reg_offset = 0;
4591 hi->reg_offset = 0;
4592 if (len > MIPS_SAVED_REGSIZE)
4593 {
4594 lo->len = MIPS_SAVED_REGSIZE;
4595 hi->len = len - MIPS_SAVED_REGSIZE;
4596 }
4597 else
4598 {
4599 lo->len = len;
4600 hi->len = 0;
4601 }
4602 }
4603 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4604 && REGISTER_RAW_SIZE (regnum) == 8
4605 && MIPS_SAVED_REGSIZE == 4)
4606 {
4607 /* Account for the fact that only the least-signficant part
4608 of the register is being used */
4609 lo->reg_offset += 4;
4610 hi->reg_offset += 4;
4611 }
4612 lo->buf_offset = 0;
4613 hi->buf_offset = lo->len;
4614 }
4615 }
4616
4617 /* Given a return value in `regbuf' with a type `valtype', extract and
4618 copy its value into `valbuf'. */
4619
4620 static void
4621 mips_eabi_extract_return_value (struct type *valtype,
4622 char regbuf[REGISTER_BYTES],
4623 char *valbuf)
4624 {
4625 struct return_value_word lo;
4626 struct return_value_word hi;
4627 return_value_location (valtype, &hi, &lo);
4628
4629 memcpy (valbuf + lo.buf_offset,
4630 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4631 lo.len);
4632
4633 if (hi.len > 0)
4634 memcpy (valbuf + hi.buf_offset,
4635 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4636 hi.len);
4637 }
4638
4639 static void
4640 mips_o64_extract_return_value (struct type *valtype,
4641 char regbuf[REGISTER_BYTES],
4642 char *valbuf)
4643 {
4644 struct return_value_word lo;
4645 struct return_value_word hi;
4646 return_value_location (valtype, &hi, &lo);
4647
4648 memcpy (valbuf + lo.buf_offset,
4649 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4650 lo.len);
4651
4652 if (hi.len > 0)
4653 memcpy (valbuf + hi.buf_offset,
4654 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4655 hi.len);
4656 }
4657
4658 /* Given a return value in `valbuf' with a type `valtype', write it's
4659 value into the appropriate register. */
4660
4661 static void
4662 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4663 {
4664 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4665 struct return_value_word lo;
4666 struct return_value_word hi;
4667 return_value_location (valtype, &hi, &lo);
4668
4669 memset (raw_buffer, 0, sizeof (raw_buffer));
4670 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4671 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4672 REGISTER_RAW_SIZE (lo.reg));
4673
4674 if (hi.len > 0)
4675 {
4676 memset (raw_buffer, 0, sizeof (raw_buffer));
4677 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4678 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4679 REGISTER_RAW_SIZE (hi.reg));
4680 }
4681 }
4682
4683 static void
4684 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4685 {
4686 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4687 struct return_value_word lo;
4688 struct return_value_word hi;
4689 return_value_location (valtype, &hi, &lo);
4690
4691 memset (raw_buffer, 0, sizeof (raw_buffer));
4692 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4693 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4694 REGISTER_RAW_SIZE (lo.reg));
4695
4696 if (hi.len > 0)
4697 {
4698 memset (raw_buffer, 0, sizeof (raw_buffer));
4699 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4700 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4701 REGISTER_RAW_SIZE (hi.reg));
4702 }
4703 }
4704
4705 /* O32 ABI stuff. */
4706
4707 static void
4708 mips_o32_xfer_return_value (struct type *type,
4709 struct regcache *regcache,
4710 bfd_byte *in, const bfd_byte *out)
4711 {
4712 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4713 if (TYPE_CODE (type) == TYPE_CODE_FLT
4714 && TYPE_LENGTH (type) == 4
4715 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4716 {
4717 /* A single-precision floating-point value. It fits in the
4718 least significant part of FP0. */
4719 if (mips_debug)
4720 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4721 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4722 TARGET_BYTE_ORDER, in, out, 0);
4723 }
4724 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4725 && TYPE_LENGTH (type) == 8
4726 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4727 {
4728 /* A double-precision floating-point value. It fits in the
4729 least significant part of FP0/FP1 but with byte ordering
4730 based on the target (???). */
4731 if (mips_debug)
4732 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4733 switch (TARGET_BYTE_ORDER)
4734 {
4735 case BFD_ENDIAN_LITTLE:
4736 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4737 TARGET_BYTE_ORDER, in, out, 0);
4738 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4739 TARGET_BYTE_ORDER, in, out, 4);
4740 break;
4741 case BFD_ENDIAN_BIG:
4742 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4743 TARGET_BYTE_ORDER, in, out, 0);
4744 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4745 TARGET_BYTE_ORDER, in, out, 4);
4746 break;
4747 default:
4748 internal_error (__FILE__, __LINE__, "bad switch");
4749 }
4750 }
4751 #if 0
4752 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4753 && TYPE_NFIELDS (type) <= 2
4754 && TYPE_NFIELDS (type) >= 1
4755 && ((TYPE_NFIELDS (type) == 1
4756 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4757 == TYPE_CODE_FLT))
4758 || (TYPE_NFIELDS (type) == 2
4759 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4760 == TYPE_CODE_FLT)
4761 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4762 == TYPE_CODE_FLT)))
4763 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4764 {
4765 /* A struct that contains one or two floats. Each value is part
4766 in the least significant part of their floating point
4767 register.. */
4768 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4769 int regnum;
4770 int field;
4771 for (field = 0, regnum = FP0_REGNUM;
4772 field < TYPE_NFIELDS (type);
4773 field++, regnum += 2)
4774 {
4775 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4776 / TARGET_CHAR_BIT);
4777 if (mips_debug)
4778 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4779 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4780 TARGET_BYTE_ORDER, in, out, offset);
4781 }
4782 }
4783 #endif
4784 #if 0
4785 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4786 || TYPE_CODE (type) == TYPE_CODE_UNION)
4787 {
4788 /* A structure or union. Extract the left justified value,
4789 regardless of the byte order. I.e. DO NOT USE
4790 mips_xfer_lower. */
4791 int offset;
4792 int regnum;
4793 for (offset = 0, regnum = V0_REGNUM;
4794 offset < TYPE_LENGTH (type);
4795 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4796 {
4797 int xfer = REGISTER_RAW_SIZE (regnum);
4798 if (offset + xfer > TYPE_LENGTH (type))
4799 xfer = TYPE_LENGTH (type) - offset;
4800 if (mips_debug)
4801 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4802 offset, xfer, regnum);
4803 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4804 in, out, offset);
4805 }
4806 }
4807 #endif
4808 else
4809 {
4810 /* A scalar extract each part but least-significant-byte
4811 justified. o32 thinks registers are 4 byte, regardless of
4812 the ISA. mips_stack_argsize controls this. */
4813 int offset;
4814 int regnum;
4815 for (offset = 0, regnum = V0_REGNUM;
4816 offset < TYPE_LENGTH (type);
4817 offset += mips_stack_argsize (), regnum++)
4818 {
4819 int xfer = mips_stack_argsize ();
4820 int pos = 0;
4821 if (offset + xfer > TYPE_LENGTH (type))
4822 xfer = TYPE_LENGTH (type) - offset;
4823 if (mips_debug)
4824 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4825 offset, xfer, regnum);
4826 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4827 in, out, offset);
4828 }
4829 }
4830 }
4831
4832 static void
4833 mips_o32_extract_return_value (struct type *type,
4834 struct regcache *regcache,
4835 void *valbuf)
4836 {
4837 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4838 }
4839
4840 static void
4841 mips_o32_store_return_value (struct type *type, char *valbuf)
4842 {
4843 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4844 }
4845
4846 /* N32/N44 ABI stuff. */
4847
4848 static void
4849 mips_n32n64_xfer_return_value (struct type *type,
4850 struct regcache *regcache,
4851 bfd_byte *in, const bfd_byte *out)
4852 {
4853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4854 if (TYPE_CODE (type) == TYPE_CODE_FLT
4855 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4856 {
4857 /* A floating-point value belongs in the least significant part
4858 of FP0. */
4859 if (mips_debug)
4860 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4861 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4862 TARGET_BYTE_ORDER, in, out, 0);
4863 }
4864 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4865 && TYPE_NFIELDS (type) <= 2
4866 && TYPE_NFIELDS (type) >= 1
4867 && ((TYPE_NFIELDS (type) == 1
4868 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4869 == TYPE_CODE_FLT))
4870 || (TYPE_NFIELDS (type) == 2
4871 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4872 == TYPE_CODE_FLT)
4873 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4874 == TYPE_CODE_FLT)))
4875 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4876 {
4877 /* A struct that contains one or two floats. Each value is part
4878 in the least significant part of their floating point
4879 register.. */
4880 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4881 int regnum;
4882 int field;
4883 for (field = 0, regnum = FP0_REGNUM;
4884 field < TYPE_NFIELDS (type);
4885 field++, regnum += 2)
4886 {
4887 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4888 / TARGET_CHAR_BIT);
4889 if (mips_debug)
4890 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4891 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4892 TARGET_BYTE_ORDER, in, out, offset);
4893 }
4894 }
4895 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4896 || TYPE_CODE (type) == TYPE_CODE_UNION)
4897 {
4898 /* A structure or union. Extract the left justified value,
4899 regardless of the byte order. I.e. DO NOT USE
4900 mips_xfer_lower. */
4901 int offset;
4902 int regnum;
4903 for (offset = 0, regnum = V0_REGNUM;
4904 offset < TYPE_LENGTH (type);
4905 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4906 {
4907 int xfer = REGISTER_RAW_SIZE (regnum);
4908 if (offset + xfer > TYPE_LENGTH (type))
4909 xfer = TYPE_LENGTH (type) - offset;
4910 if (mips_debug)
4911 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4912 offset, xfer, regnum);
4913 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4914 in, out, offset);
4915 }
4916 }
4917 else
4918 {
4919 /* A scalar extract each part but least-significant-byte
4920 justified. */
4921 int offset;
4922 int regnum;
4923 for (offset = 0, regnum = V0_REGNUM;
4924 offset < TYPE_LENGTH (type);
4925 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4926 {
4927 int xfer = REGISTER_RAW_SIZE (regnum);
4928 int pos = 0;
4929 if (offset + xfer > TYPE_LENGTH (type))
4930 xfer = TYPE_LENGTH (type) - offset;
4931 if (mips_debug)
4932 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4933 offset, xfer, regnum);
4934 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4935 in, out, offset);
4936 }
4937 }
4938 }
4939
4940 static void
4941 mips_n32n64_extract_return_value (struct type *type,
4942 struct regcache *regcache,
4943 void *valbuf)
4944 {
4945 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4946 }
4947
4948 static void
4949 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4950 {
4951 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4952 }
4953
4954 static void
4955 mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4956 {
4957 /* Nothing to do -- push_arguments does all the work. */
4958 }
4959
4960 static CORE_ADDR
4961 mips_extract_struct_value_address (struct regcache *regcache)
4962 {
4963 /* FIXME: This will only work at random. The caller passes the
4964 struct_return address in V0, but it is not preserved. It may
4965 still be there, or this may be a random value. */
4966 LONGEST val;
4967
4968 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
4969 return val;
4970 }
4971
4972 /* Exported procedure: Is PC in the signal trampoline code */
4973
4974 static int
4975 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4976 {
4977 if (sigtramp_address == 0)
4978 fixup_sigtramp ();
4979 return (pc >= sigtramp_address && pc < sigtramp_end);
4980 }
4981
4982 /* Root of all "set mips "/"show mips " commands. This will eventually be
4983 used for all MIPS-specific commands. */
4984
4985 static void
4986 show_mips_command (char *args, int from_tty)
4987 {
4988 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4989 }
4990
4991 static void
4992 set_mips_command (char *args, int from_tty)
4993 {
4994 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4995 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4996 }
4997
4998 /* Commands to show/set the MIPS FPU type. */
4999
5000 static void
5001 show_mipsfpu_command (char *args, int from_tty)
5002 {
5003 char *fpu;
5004 switch (MIPS_FPU_TYPE)
5005 {
5006 case MIPS_FPU_SINGLE:
5007 fpu = "single-precision";
5008 break;
5009 case MIPS_FPU_DOUBLE:
5010 fpu = "double-precision";
5011 break;
5012 case MIPS_FPU_NONE:
5013 fpu = "absent (none)";
5014 break;
5015 default:
5016 internal_error (__FILE__, __LINE__, "bad switch");
5017 }
5018 if (mips_fpu_type_auto)
5019 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5020 fpu);
5021 else
5022 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5023 fpu);
5024 }
5025
5026
5027 static void
5028 set_mipsfpu_command (char *args, int from_tty)
5029 {
5030 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5031 show_mipsfpu_command (args, from_tty);
5032 }
5033
5034 static void
5035 set_mipsfpu_single_command (char *args, int from_tty)
5036 {
5037 mips_fpu_type = MIPS_FPU_SINGLE;
5038 mips_fpu_type_auto = 0;
5039 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5040 }
5041
5042 static void
5043 set_mipsfpu_double_command (char *args, int from_tty)
5044 {
5045 mips_fpu_type = MIPS_FPU_DOUBLE;
5046 mips_fpu_type_auto = 0;
5047 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5048 }
5049
5050 static void
5051 set_mipsfpu_none_command (char *args, int from_tty)
5052 {
5053 mips_fpu_type = MIPS_FPU_NONE;
5054 mips_fpu_type_auto = 0;
5055 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5056 }
5057
5058 static void
5059 set_mipsfpu_auto_command (char *args, int from_tty)
5060 {
5061 mips_fpu_type_auto = 1;
5062 }
5063
5064 /* Command to set the processor type. */
5065
5066 void
5067 mips_set_processor_type_command (char *args, int from_tty)
5068 {
5069 int i;
5070
5071 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5072 {
5073 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5074 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5075 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5076
5077 /* Restore the value. */
5078 tmp_mips_processor_type = xstrdup (mips_processor_type);
5079
5080 return;
5081 }
5082
5083 if (!mips_set_processor_type (tmp_mips_processor_type))
5084 {
5085 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5086 /* Restore its value. */
5087 tmp_mips_processor_type = xstrdup (mips_processor_type);
5088 }
5089 }
5090
5091 static void
5092 mips_show_processor_type_command (char *args, int from_tty)
5093 {
5094 }
5095
5096 /* Modify the actual processor type. */
5097
5098 static int
5099 mips_set_processor_type (char *str)
5100 {
5101 int i;
5102
5103 if (str == NULL)
5104 return 0;
5105
5106 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5107 {
5108 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5109 {
5110 mips_processor_type = str;
5111 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5112 return 1;
5113 /* FIXME tweak fpu flag too */
5114 }
5115 }
5116
5117 return 0;
5118 }
5119
5120 /* Attempt to identify the particular processor model by reading the
5121 processor id. */
5122
5123 char *
5124 mips_read_processor_type (void)
5125 {
5126 CORE_ADDR prid;
5127
5128 prid = read_register (PRID_REGNUM);
5129
5130 if ((prid & ~0xf) == 0x700)
5131 return savestring ("r3041", strlen ("r3041"));
5132
5133 return NULL;
5134 }
5135
5136 /* Just like reinit_frame_cache, but with the right arguments to be
5137 callable as an sfunc. */
5138
5139 static void
5140 reinit_frame_cache_sfunc (char *args, int from_tty,
5141 struct cmd_list_element *c)
5142 {
5143 reinit_frame_cache ();
5144 }
5145
5146 int
5147 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5148 {
5149 mips_extra_func_info_t proc_desc;
5150
5151 /* Search for the function containing this address. Set the low bit
5152 of the address when searching, in case we were given an even address
5153 that is the start of a 16-bit function. If we didn't do this,
5154 the search would fail because the symbol table says the function
5155 starts at an odd address, i.e. 1 byte past the given address. */
5156 memaddr = ADDR_BITS_REMOVE (memaddr);
5157 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5158
5159 /* Make an attempt to determine if this is a 16-bit function. If
5160 the procedure descriptor exists and the address therein is odd,
5161 it's definitely a 16-bit function. Otherwise, we have to just
5162 guess that if the address passed in is odd, it's 16-bits. */
5163 if (proc_desc)
5164 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5165 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5166 else
5167 info->mach = pc_is_mips16 (memaddr) ?
5168 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5169
5170 /* Round down the instruction address to the appropriate boundary. */
5171 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5172
5173 /* Call the appropriate disassembler based on the target endian-ness. */
5174 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5175 return print_insn_big_mips (memaddr, info);
5176 else
5177 return print_insn_little_mips (memaddr, info);
5178 }
5179
5180 /* Old-style breakpoint macros.
5181 The IDT board uses an unusual breakpoint value, and sometimes gets
5182 confused when it sees the usual MIPS breakpoint instruction. */
5183
5184 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5185 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5186 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5187 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5188 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5189 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5190 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5191 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5192
5193 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5194 counter value to determine whether a 16- or 32-bit breakpoint should be
5195 used. It returns a pointer to a string of bytes that encode a breakpoint
5196 instruction, stores the length of the string to *lenptr, and adjusts pc
5197 (if necessary) to point to the actual memory location where the
5198 breakpoint should be inserted. */
5199
5200 static const unsigned char *
5201 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5202 {
5203 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5204 {
5205 if (pc_is_mips16 (*pcptr))
5206 {
5207 static unsigned char mips16_big_breakpoint[] =
5208 MIPS16_BIG_BREAKPOINT;
5209 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5210 *lenptr = sizeof (mips16_big_breakpoint);
5211 return mips16_big_breakpoint;
5212 }
5213 else
5214 {
5215 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5216 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5217 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
5218
5219 *lenptr = sizeof (big_breakpoint);
5220
5221 if (strcmp (target_shortname, "mips") == 0)
5222 return idt_big_breakpoint;
5223 else if (strcmp (target_shortname, "ddb") == 0
5224 || strcmp (target_shortname, "pmon") == 0
5225 || strcmp (target_shortname, "lsi") == 0)
5226 return pmon_big_breakpoint;
5227 else
5228 return big_breakpoint;
5229 }
5230 }
5231 else
5232 {
5233 if (pc_is_mips16 (*pcptr))
5234 {
5235 static unsigned char mips16_little_breakpoint[] =
5236 MIPS16_LITTLE_BREAKPOINT;
5237 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5238 *lenptr = sizeof (mips16_little_breakpoint);
5239 return mips16_little_breakpoint;
5240 }
5241 else
5242 {
5243 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5244 static unsigned char pmon_little_breakpoint[] =
5245 PMON_LITTLE_BREAKPOINT;
5246 static unsigned char idt_little_breakpoint[] =
5247 IDT_LITTLE_BREAKPOINT;
5248
5249 *lenptr = sizeof (little_breakpoint);
5250
5251 if (strcmp (target_shortname, "mips") == 0)
5252 return idt_little_breakpoint;
5253 else if (strcmp (target_shortname, "ddb") == 0
5254 || strcmp (target_shortname, "pmon") == 0
5255 || strcmp (target_shortname, "lsi") == 0)
5256 return pmon_little_breakpoint;
5257 else
5258 return little_breakpoint;
5259 }
5260 }
5261 }
5262
5263 /* If PC is in a mips16 call or return stub, return the address of the target
5264 PC, which is either the callee or the caller. There are several
5265 cases which must be handled:
5266
5267 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5268 target PC is in $31 ($ra).
5269 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5270 and the target PC is in $2.
5271 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5272 before the jal instruction, this is effectively a call stub
5273 and the the target PC is in $2. Otherwise this is effectively
5274 a return stub and the target PC is in $18.
5275
5276 See the source code for the stubs in gcc/config/mips/mips16.S for
5277 gory details.
5278
5279 This function implements the SKIP_TRAMPOLINE_CODE macro.
5280 */
5281
5282 static CORE_ADDR
5283 mips_skip_stub (CORE_ADDR pc)
5284 {
5285 char *name;
5286 CORE_ADDR start_addr;
5287
5288 /* Find the starting address and name of the function containing the PC. */
5289 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5290 return 0;
5291
5292 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5293 target PC is in $31 ($ra). */
5294 if (strcmp (name, "__mips16_ret_sf") == 0
5295 || strcmp (name, "__mips16_ret_df") == 0)
5296 return read_signed_register (RA_REGNUM);
5297
5298 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5299 {
5300 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5301 and the target PC is in $2. */
5302 if (name[19] >= '0' && name[19] <= '9')
5303 return read_signed_register (2);
5304
5305 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5306 before the jal instruction, this is effectively a call stub
5307 and the the target PC is in $2. Otherwise this is effectively
5308 a return stub and the target PC is in $18. */
5309 else if (name[19] == 's' || name[19] == 'd')
5310 {
5311 if (pc == start_addr)
5312 {
5313 /* Check if the target of the stub is a compiler-generated
5314 stub. Such a stub for a function bar might have a name
5315 like __fn_stub_bar, and might look like this:
5316 mfc1 $4,$f13
5317 mfc1 $5,$f12
5318 mfc1 $6,$f15
5319 mfc1 $7,$f14
5320 la $1,bar (becomes a lui/addiu pair)
5321 jr $1
5322 So scan down to the lui/addi and extract the target
5323 address from those two instructions. */
5324
5325 CORE_ADDR target_pc = read_signed_register (2);
5326 t_inst inst;
5327 int i;
5328
5329 /* See if the name of the target function is __fn_stub_*. */
5330 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5331 return target_pc;
5332 if (strncmp (name, "__fn_stub_", 10) != 0
5333 && strcmp (name, "etext") != 0
5334 && strcmp (name, "_etext") != 0)
5335 return target_pc;
5336
5337 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5338 The limit on the search is arbitrarily set to 20
5339 instructions. FIXME. */
5340 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5341 {
5342 inst = mips_fetch_instruction (target_pc);
5343 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5344 pc = (inst << 16) & 0xffff0000; /* high word */
5345 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5346 return pc | (inst & 0xffff); /* low word */
5347 }
5348
5349 /* Couldn't find the lui/addui pair, so return stub address. */
5350 return target_pc;
5351 }
5352 else
5353 /* This is the 'return' part of a call stub. The return
5354 address is in $r18. */
5355 return read_signed_register (18);
5356 }
5357 }
5358 return 0; /* not a stub */
5359 }
5360
5361
5362 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5363 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5364
5365 static int
5366 mips_in_call_stub (CORE_ADDR pc, char *name)
5367 {
5368 CORE_ADDR start_addr;
5369
5370 /* Find the starting address of the function containing the PC. If the
5371 caller didn't give us a name, look it up at the same time. */
5372 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5373 return 0;
5374
5375 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5376 {
5377 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5378 if (name[19] >= '0' && name[19] <= '9')
5379 return 1;
5380 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5381 before the jal instruction, this is effectively a call stub. */
5382 else if (name[19] == 's' || name[19] == 'd')
5383 return pc == start_addr;
5384 }
5385
5386 return 0; /* not a stub */
5387 }
5388
5389
5390 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5391 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5392
5393 static int
5394 mips_in_return_stub (CORE_ADDR pc, char *name)
5395 {
5396 CORE_ADDR start_addr;
5397
5398 /* Find the starting address of the function containing the PC. */
5399 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5400 return 0;
5401
5402 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5403 if (strcmp (name, "__mips16_ret_sf") == 0
5404 || strcmp (name, "__mips16_ret_df") == 0)
5405 return 1;
5406
5407 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5408 i.e. after the jal instruction, this is effectively a return stub. */
5409 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5410 && (name[19] == 's' || name[19] == 'd')
5411 && pc != start_addr)
5412 return 1;
5413
5414 return 0; /* not a stub */
5415 }
5416
5417
5418 /* Return non-zero if the PC is in a library helper function that should
5419 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5420
5421 int
5422 mips_ignore_helper (CORE_ADDR pc)
5423 {
5424 char *name;
5425
5426 /* Find the starting address and name of the function containing the PC. */
5427 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5428 return 0;
5429
5430 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5431 that we want to ignore. */
5432 return (strcmp (name, "__mips16_ret_sf") == 0
5433 || strcmp (name, "__mips16_ret_df") == 0);
5434 }
5435
5436
5437 /* Return a location where we can set a breakpoint that will be hit
5438 when an inferior function call returns. This is normally the
5439 program's entry point. Executables that don't have an entry
5440 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5441 whose address is the location where the breakpoint should be placed. */
5442
5443 static CORE_ADDR
5444 mips_call_dummy_address (void)
5445 {
5446 struct minimal_symbol *sym;
5447
5448 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5449 if (sym)
5450 return SYMBOL_VALUE_ADDRESS (sym);
5451 else
5452 return entry_point_address ();
5453 }
5454
5455
5456 /* If the current gcc for this target does not produce correct debugging
5457 information for float parameters, both prototyped and unprototyped, then
5458 define this macro. This forces gdb to always assume that floats are
5459 passed as doubles and then converted in the callee.
5460
5461 For the mips chip, it appears that the debug info marks the parameters as
5462 floats regardless of whether the function is prototyped, but the actual
5463 values are passed as doubles for the non-prototyped case and floats for
5464 the prototyped case. Thus we choose to make the non-prototyped case work
5465 for C and break the prototyped case, since the non-prototyped case is
5466 probably much more common. (FIXME). */
5467
5468 static int
5469 mips_coerce_float_to_double (struct type *formal, struct type *actual)
5470 {
5471 return current_language->la_language == language_c;
5472 }
5473
5474 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5475 the register stored on the stack (32) is different to its real raw
5476 size (64). The below ensures that registers are fetched from the
5477 stack using their ABI size and then stored into the RAW_BUFFER
5478 using their raw size.
5479
5480 The alternative to adding this function would be to add an ABI
5481 macro - REGISTER_STACK_SIZE(). */
5482
5483 static void
5484 mips_get_saved_register (char *raw_buffer,
5485 int *optimizedp,
5486 CORE_ADDR *addrp,
5487 struct frame_info *frame,
5488 int regnum,
5489 enum lval_type *lvalp)
5490 {
5491 CORE_ADDR addrx;
5492 enum lval_type lvalx;
5493 int optimizedx;
5494 int realnum;
5495
5496 if (!target_has_registers)
5497 error ("No registers.");
5498
5499 /* Make certain that all needed parameters are present. */
5500 if (addrp == NULL)
5501 addrp = &addrx;
5502 if (lvalp == NULL)
5503 lvalp = &lvalx;
5504 if (optimizedp == NULL)
5505 optimizedp = &optimizedx;
5506 frame_register_unwind (get_next_frame (frame), regnum, optimizedp, lvalp,
5507 addrp, &realnum, raw_buffer);
5508 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5509 have a pseudo register range that correspons to the ABI's, rather
5510 than the ISA's, view of registers. These registers would then
5511 implicitly describe their size and hence could be used without
5512 the below munging. */
5513 if ((*lvalp) == lval_memory)
5514 {
5515 if (raw_buffer != NULL)
5516 {
5517 if (regnum < 32)
5518 {
5519 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5520 saved. */
5521 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5522 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5523 }
5524 }
5525 }
5526 }
5527
5528 /* Immediately after a function call, return the saved pc.
5529 Can't always go through the frames for this because on some machines
5530 the new frame is not set up until the new function executes
5531 some instructions. */
5532
5533 static CORE_ADDR
5534 mips_saved_pc_after_call (struct frame_info *frame)
5535 {
5536 return read_signed_register (RA_REGNUM);
5537 }
5538
5539
5540 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5541 REGNUM */
5542
5543 static int
5544 mips_stab_reg_to_regnum (int num)
5545 {
5546 if (num < 32)
5547 return num;
5548 else
5549 return num + FP0_REGNUM - 38;
5550 }
5551
5552 /* Convert a ecoff register number to a gdb REGNUM */
5553
5554 static int
5555 mips_ecoff_reg_to_regnum (int num)
5556 {
5557 if (num < 32)
5558 return num;
5559 else
5560 return num + FP0_REGNUM - 32;
5561 }
5562
5563 /* Convert an integer into an address. By first converting the value
5564 into a pointer and then extracting it signed, the address is
5565 guarenteed to be correctly sign extended. */
5566
5567 static CORE_ADDR
5568 mips_integer_to_address (struct type *type, void *buf)
5569 {
5570 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5571 LONGEST val = unpack_long (type, buf);
5572 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5573 return extract_signed_integer (tmp,
5574 TYPE_LENGTH (builtin_type_void_data_ptr));
5575 }
5576
5577 static void
5578 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5579 {
5580 enum mips_abi *abip = (enum mips_abi *) obj;
5581 const char *name = bfd_get_section_name (abfd, sect);
5582
5583 if (*abip != MIPS_ABI_UNKNOWN)
5584 return;
5585
5586 if (strncmp (name, ".mdebug.", 8) != 0)
5587 return;
5588
5589 if (strcmp (name, ".mdebug.abi32") == 0)
5590 *abip = MIPS_ABI_O32;
5591 else if (strcmp (name, ".mdebug.abiN32") == 0)
5592 *abip = MIPS_ABI_N32;
5593 else if (strcmp (name, ".mdebug.abi64") == 0)
5594 *abip = MIPS_ABI_N64;
5595 else if (strcmp (name, ".mdebug.abiO64") == 0)
5596 *abip = MIPS_ABI_O64;
5597 else if (strcmp (name, ".mdebug.eabi32") == 0)
5598 *abip = MIPS_ABI_EABI32;
5599 else if (strcmp (name, ".mdebug.eabi64") == 0)
5600 *abip = MIPS_ABI_EABI64;
5601 else
5602 warning ("unsupported ABI %s.", name + 8);
5603 }
5604
5605 static enum mips_abi
5606 global_mips_abi (void)
5607 {
5608 int i;
5609
5610 for (i = 0; mips_abi_strings[i] != NULL; i++)
5611 if (mips_abi_strings[i] == mips_abi_string)
5612 return (enum mips_abi) i;
5613
5614 internal_error (__FILE__, __LINE__,
5615 "unknown ABI string");
5616 }
5617
5618 static struct gdbarch *
5619 mips_gdbarch_init (struct gdbarch_info info,
5620 struct gdbarch_list *arches)
5621 {
5622 static LONGEST mips_call_dummy_words[] =
5623 {0};
5624 struct gdbarch *gdbarch;
5625 struct gdbarch_tdep *tdep;
5626 int elf_flags;
5627 enum mips_abi mips_abi, found_abi, wanted_abi;
5628 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
5629
5630 /* Reset the disassembly info, in case it was set to something
5631 non-default. */
5632 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5633 tm_print_insn_info.arch = bfd_arch_unknown;
5634 tm_print_insn_info.mach = 0;
5635
5636 elf_flags = 0;
5637
5638 if (info.abfd)
5639 {
5640 /* First of all, extract the elf_flags, if available. */
5641 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5642 elf_flags = elf_elfheader (info.abfd)->e_flags;
5643
5644 /* Try to determine the OS ABI of the object we are loading. If
5645 we end up with `unknown', just leave it that way. */
5646 osabi = gdbarch_lookup_osabi (info.abfd);
5647 }
5648
5649 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5650 switch ((elf_flags & EF_MIPS_ABI))
5651 {
5652 case E_MIPS_ABI_O32:
5653 mips_abi = MIPS_ABI_O32;
5654 break;
5655 case E_MIPS_ABI_O64:
5656 mips_abi = MIPS_ABI_O64;
5657 break;
5658 case E_MIPS_ABI_EABI32:
5659 mips_abi = MIPS_ABI_EABI32;
5660 break;
5661 case E_MIPS_ABI_EABI64:
5662 mips_abi = MIPS_ABI_EABI64;
5663 break;
5664 default:
5665 if ((elf_flags & EF_MIPS_ABI2))
5666 mips_abi = MIPS_ABI_N32;
5667 else
5668 mips_abi = MIPS_ABI_UNKNOWN;
5669 break;
5670 }
5671
5672 /* GCC creates a pseudo-section whose name describes the ABI. */
5673 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5674 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5675
5676 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5677 Use the ABI from the last architecture if there is one. */
5678 if (info.abfd == NULL && arches != NULL)
5679 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5680
5681 /* Try the architecture for any hint of the correct ABI. */
5682 if (mips_abi == MIPS_ABI_UNKNOWN
5683 && info.bfd_arch_info != NULL
5684 && info.bfd_arch_info->arch == bfd_arch_mips)
5685 {
5686 switch (info.bfd_arch_info->mach)
5687 {
5688 case bfd_mach_mips3900:
5689 mips_abi = MIPS_ABI_EABI32;
5690 break;
5691 case bfd_mach_mips4100:
5692 case bfd_mach_mips5000:
5693 mips_abi = MIPS_ABI_EABI64;
5694 break;
5695 case bfd_mach_mips8000:
5696 case bfd_mach_mips10000:
5697 /* On Irix, ELF64 executables use the N64 ABI. The
5698 pseudo-sections which describe the ABI aren't present
5699 on IRIX. (Even for executables created by gcc.) */
5700 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5701 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5702 mips_abi = MIPS_ABI_N64;
5703 else
5704 mips_abi = MIPS_ABI_N32;
5705 break;
5706 }
5707 }
5708
5709 if (mips_abi == MIPS_ABI_UNKNOWN)
5710 mips_abi = MIPS_ABI_O32;
5711
5712 /* Now that we have found what the ABI for this binary would be,
5713 check whether the user is overriding it. */
5714 found_abi = mips_abi;
5715 wanted_abi = global_mips_abi ();
5716 if (wanted_abi != MIPS_ABI_UNKNOWN)
5717 mips_abi = wanted_abi;
5718
5719 if (gdbarch_debug)
5720 {
5721 fprintf_unfiltered (gdb_stdlog,
5722 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5723 elf_flags);
5724 fprintf_unfiltered (gdb_stdlog,
5725 "mips_gdbarch_init: mips_abi = %d\n",
5726 mips_abi);
5727 fprintf_unfiltered (gdb_stdlog,
5728 "mips_gdbarch_init: found_mips_abi = %d\n",
5729 found_abi);
5730 }
5731
5732 /* try to find a pre-existing architecture */
5733 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5734 arches != NULL;
5735 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5736 {
5737 /* MIPS needs to be pedantic about which ABI the object is
5738 using. */
5739 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5740 continue;
5741 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5742 continue;
5743 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5744 return arches->gdbarch;
5745 }
5746
5747 /* Need a new architecture. Fill in a target specific vector. */
5748 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5749 gdbarch = gdbarch_alloc (&info, tdep);
5750 tdep->elf_flags = elf_flags;
5751 tdep->osabi = osabi;
5752
5753 /* Initially set everything according to the default ABI/ISA. */
5754 set_gdbarch_short_bit (gdbarch, 16);
5755 set_gdbarch_int_bit (gdbarch, 32);
5756 set_gdbarch_float_bit (gdbarch, 32);
5757 set_gdbarch_double_bit (gdbarch, 64);
5758 set_gdbarch_long_double_bit (gdbarch, 64);
5759 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5760 set_gdbarch_max_register_raw_size (gdbarch, 8);
5761 set_gdbarch_max_register_virtual_size (gdbarch, 8);
5762 tdep->found_abi = found_abi;
5763 tdep->mips_abi = mips_abi;
5764
5765 set_gdbarch_elf_make_msymbol_special (gdbarch,
5766 mips_elf_make_msymbol_special);
5767
5768 if (osabi == GDB_OSABI_IRIX)
5769 set_gdbarch_num_regs (gdbarch, 71);
5770 else
5771 set_gdbarch_num_regs (gdbarch, 90);
5772
5773 switch (mips_abi)
5774 {
5775 case MIPS_ABI_O32:
5776 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
5777 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5778 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5779 tdep->mips_default_saved_regsize = 4;
5780 tdep->mips_default_stack_argsize = 4;
5781 tdep->mips_fp_register_double = 0;
5782 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5783 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5784 tdep->gdb_target_is_mips64 = 0;
5785 tdep->default_mask_address_p = 0;
5786 set_gdbarch_long_bit (gdbarch, 32);
5787 set_gdbarch_ptr_bit (gdbarch, 32);
5788 set_gdbarch_long_long_bit (gdbarch, 64);
5789 set_gdbarch_reg_struct_has_addr (gdbarch,
5790 mips_o32_reg_struct_has_addr);
5791 set_gdbarch_use_struct_convention (gdbarch,
5792 mips_o32_use_struct_convention);
5793 break;
5794 case MIPS_ABI_O64:
5795 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
5796 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5797 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5798 tdep->mips_default_saved_regsize = 8;
5799 tdep->mips_default_stack_argsize = 8;
5800 tdep->mips_fp_register_double = 1;
5801 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5802 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5803 tdep->gdb_target_is_mips64 = 1;
5804 tdep->default_mask_address_p = 0;
5805 set_gdbarch_long_bit (gdbarch, 32);
5806 set_gdbarch_ptr_bit (gdbarch, 32);
5807 set_gdbarch_long_long_bit (gdbarch, 64);
5808 set_gdbarch_reg_struct_has_addr (gdbarch,
5809 mips_o32_reg_struct_has_addr);
5810 set_gdbarch_use_struct_convention (gdbarch,
5811 mips_o32_use_struct_convention);
5812 break;
5813 case MIPS_ABI_EABI32:
5814 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5815 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5816 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5817 tdep->mips_default_saved_regsize = 4;
5818 tdep->mips_default_stack_argsize = 4;
5819 tdep->mips_fp_register_double = 0;
5820 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5821 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5822 tdep->gdb_target_is_mips64 = 0;
5823 tdep->default_mask_address_p = 0;
5824 set_gdbarch_long_bit (gdbarch, 32);
5825 set_gdbarch_ptr_bit (gdbarch, 32);
5826 set_gdbarch_long_long_bit (gdbarch, 64);
5827 set_gdbarch_reg_struct_has_addr (gdbarch,
5828 mips_eabi_reg_struct_has_addr);
5829 set_gdbarch_use_struct_convention (gdbarch,
5830 mips_eabi_use_struct_convention);
5831 break;
5832 case MIPS_ABI_EABI64:
5833 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5834 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5835 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5836 tdep->mips_default_saved_regsize = 8;
5837 tdep->mips_default_stack_argsize = 8;
5838 tdep->mips_fp_register_double = 1;
5839 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5840 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5841 tdep->gdb_target_is_mips64 = 1;
5842 tdep->default_mask_address_p = 0;
5843 set_gdbarch_long_bit (gdbarch, 64);
5844 set_gdbarch_ptr_bit (gdbarch, 64);
5845 set_gdbarch_long_long_bit (gdbarch, 64);
5846 set_gdbarch_reg_struct_has_addr (gdbarch,
5847 mips_eabi_reg_struct_has_addr);
5848 set_gdbarch_use_struct_convention (gdbarch,
5849 mips_eabi_use_struct_convention);
5850 break;
5851 case MIPS_ABI_N32:
5852 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5853 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5854 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5855 tdep->mips_default_saved_regsize = 8;
5856 tdep->mips_default_stack_argsize = 8;
5857 tdep->mips_fp_register_double = 1;
5858 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5859 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5860 tdep->gdb_target_is_mips64 = 1;
5861 tdep->default_mask_address_p = 0;
5862 set_gdbarch_long_bit (gdbarch, 32);
5863 set_gdbarch_ptr_bit (gdbarch, 32);
5864 set_gdbarch_long_long_bit (gdbarch, 64);
5865
5866 /* Set up the disassembler info, so that we get the right
5867 register names from libopcodes. */
5868 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5869 tm_print_insn_info.arch = bfd_arch_mips;
5870 if (info.bfd_arch_info != NULL
5871 && info.bfd_arch_info->arch == bfd_arch_mips
5872 && info.bfd_arch_info->mach)
5873 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5874 else
5875 tm_print_insn_info.mach = bfd_mach_mips8000;
5876
5877 set_gdbarch_use_struct_convention (gdbarch,
5878 mips_n32n64_use_struct_convention);
5879 set_gdbarch_reg_struct_has_addr (gdbarch,
5880 mips_n32n64_reg_struct_has_addr);
5881 break;
5882 case MIPS_ABI_N64:
5883 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5884 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5885 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5886 tdep->mips_default_saved_regsize = 8;
5887 tdep->mips_default_stack_argsize = 8;
5888 tdep->mips_fp_register_double = 1;
5889 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5890 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5891 tdep->gdb_target_is_mips64 = 1;
5892 tdep->default_mask_address_p = 0;
5893 set_gdbarch_long_bit (gdbarch, 64);
5894 set_gdbarch_ptr_bit (gdbarch, 64);
5895 set_gdbarch_long_long_bit (gdbarch, 64);
5896
5897 /* Set up the disassembler info, so that we get the right
5898 register names from libopcodes. */
5899 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5900 tm_print_insn_info.arch = bfd_arch_mips;
5901 if (info.bfd_arch_info != NULL
5902 && info.bfd_arch_info->arch == bfd_arch_mips
5903 && info.bfd_arch_info->mach)
5904 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5905 else
5906 tm_print_insn_info.mach = bfd_mach_mips8000;
5907
5908 set_gdbarch_use_struct_convention (gdbarch,
5909 mips_n32n64_use_struct_convention);
5910 set_gdbarch_reg_struct_has_addr (gdbarch,
5911 mips_n32n64_reg_struct_has_addr);
5912 break;
5913 default:
5914 internal_error (__FILE__, __LINE__,
5915 "unknown ABI in switch");
5916 }
5917
5918 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5919 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5920 comment:
5921
5922 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5923 flag in object files because to do so would make it impossible to
5924 link with libraries compiled without "-gp32". This is
5925 unnecessarily restrictive.
5926
5927 We could solve this problem by adding "-gp32" multilibs to gcc,
5928 but to set this flag before gcc is built with such multilibs will
5929 break too many systems.''
5930
5931 But even more unhelpfully, the default linker output target for
5932 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5933 for 64-bit programs - you need to change the ABI to change this,
5934 and not all gcc targets support that currently. Therefore using
5935 this flag to detect 32-bit mode would do the wrong thing given
5936 the current gcc - it would make GDB treat these 64-bit programs
5937 as 32-bit programs by default. */
5938
5939 /* enable/disable the MIPS FPU */
5940 if (!mips_fpu_type_auto)
5941 tdep->mips_fpu_type = mips_fpu_type;
5942 else if (info.bfd_arch_info != NULL
5943 && info.bfd_arch_info->arch == bfd_arch_mips)
5944 switch (info.bfd_arch_info->mach)
5945 {
5946 case bfd_mach_mips3900:
5947 case bfd_mach_mips4100:
5948 case bfd_mach_mips4111:
5949 tdep->mips_fpu_type = MIPS_FPU_NONE;
5950 break;
5951 case bfd_mach_mips4650:
5952 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5953 break;
5954 default:
5955 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5956 break;
5957 }
5958 else
5959 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5960
5961 /* MIPS version of register names. NOTE: At present the MIPS
5962 register name management is part way between the old -
5963 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5964 Further work on it is required. */
5965 /* NOTE: many targets (esp. embedded) do not go thru the
5966 gdbarch_register_name vector at all, instead bypassing it
5967 by defining REGISTER_NAMES. */
5968 set_gdbarch_register_name (gdbarch, mips_register_name);
5969 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5970 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5971 set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5972 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5973 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5974
5975 /* Add/remove bits from an address. The MIPS needs be careful to
5976 ensure that all 32 bit addresses are sign extended to 64 bits. */
5977 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5978
5979 /* There's a mess in stack frame creation. See comments in
5980 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5981 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5982 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
5983
5984 /* Map debug register numbers onto internal register numbers. */
5985 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5986 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5987
5988 /* Initialize a frame */
5989 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5990 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
5991
5992 /* MIPS version of CALL_DUMMY */
5993
5994 set_gdbarch_call_dummy_p (gdbarch, 1);
5995 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5996 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5997 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5998 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
5999 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
6000 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
6001 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
6002 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
6003 set_gdbarch_call_dummy_length (gdbarch, 0);
6004 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
6005 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
6006 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
6007 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
6008 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6009 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6010 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
6011 set_gdbarch_register_convert_to_virtual (gdbarch,
6012 mips_register_convert_to_virtual);
6013 set_gdbarch_register_convert_to_raw (gdbarch,
6014 mips_register_convert_to_raw);
6015
6016 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
6017
6018 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
6019 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
6020 set_gdbarch_frameless_function_invocation (gdbarch,
6021 generic_frameless_function_invocation_not);
6022 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6023 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
6024 set_gdbarch_frame_args_skip (gdbarch, 0);
6025
6026 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
6027
6028 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6029 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6030 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6031
6032 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6033 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6034
6035 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6036 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6037 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6038
6039 set_gdbarch_function_start_offset (gdbarch, 0);
6040
6041 /* There are MIPS targets which do not yet use this since they still
6042 define REGISTER_VIRTUAL_TYPE. */
6043 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
6044 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
6045
6046 set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
6047 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6048
6049 /* Hook in OS ABI-specific overrides, if they have been registered. */
6050 gdbarch_init_osabi (info, gdbarch, osabi);
6051
6052 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6053 set_gdbarch_extract_struct_value_address (gdbarch,
6054 mips_extract_struct_value_address);
6055
6056 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6057
6058 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6059 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6060
6061 return gdbarch;
6062 }
6063
6064 static void
6065 mips_abi_update (char *ignore_args, int from_tty,
6066 struct cmd_list_element *c)
6067 {
6068 struct gdbarch_info info;
6069
6070 /* Force the architecture to update, and (if it's a MIPS architecture)
6071 mips_gdbarch_init will take care of the rest. */
6072 gdbarch_info_init (&info);
6073 gdbarch_update_p (info);
6074 }
6075
6076 static void
6077 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6078 {
6079 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6080 if (tdep != NULL)
6081 {
6082 int ef_mips_arch;
6083 int ef_mips_32bitmode;
6084 /* determine the ISA */
6085 switch (tdep->elf_flags & EF_MIPS_ARCH)
6086 {
6087 case E_MIPS_ARCH_1:
6088 ef_mips_arch = 1;
6089 break;
6090 case E_MIPS_ARCH_2:
6091 ef_mips_arch = 2;
6092 break;
6093 case E_MIPS_ARCH_3:
6094 ef_mips_arch = 3;
6095 break;
6096 case E_MIPS_ARCH_4:
6097 ef_mips_arch = 4;
6098 break;
6099 default:
6100 ef_mips_arch = 0;
6101 break;
6102 }
6103 /* determine the size of a pointer */
6104 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6105 fprintf_unfiltered (file,
6106 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6107 tdep->elf_flags);
6108 fprintf_unfiltered (file,
6109 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6110 ef_mips_32bitmode);
6111 fprintf_unfiltered (file,
6112 "mips_dump_tdep: ef_mips_arch = %d\n",
6113 ef_mips_arch);
6114 fprintf_unfiltered (file,
6115 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6116 tdep->mips_abi,
6117 mips_abi_strings[tdep->mips_abi]);
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6120 mips_mask_address_p (),
6121 tdep->default_mask_address_p);
6122 }
6123 fprintf_unfiltered (file,
6124 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6125 FP_REGISTER_DOUBLE);
6126 fprintf_unfiltered (file,
6127 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6128 MIPS_DEFAULT_FPU_TYPE,
6129 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6130 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6131 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6132 : "???"));
6133 fprintf_unfiltered (file,
6134 "mips_dump_tdep: MIPS_EABI = %d\n",
6135 MIPS_EABI);
6136 fprintf_unfiltered (file,
6137 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6138 MIPS_LAST_FP_ARG_REGNUM,
6139 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6140 fprintf_unfiltered (file,
6141 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6142 MIPS_FPU_TYPE,
6143 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6144 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6145 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6146 : "???"));
6147 fprintf_unfiltered (file,
6148 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6149 MIPS_DEFAULT_SAVED_REGSIZE);
6150 fprintf_unfiltered (file,
6151 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6152 FP_REGISTER_DOUBLE);
6153 fprintf_unfiltered (file,
6154 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6155 MIPS_DEFAULT_STACK_ARGSIZE);
6156 fprintf_unfiltered (file,
6157 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6158 MIPS_STACK_ARGSIZE);
6159 fprintf_unfiltered (file,
6160 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6161 MIPS_REGSIZE);
6162 fprintf_unfiltered (file,
6163 "mips_dump_tdep: A0_REGNUM = %d\n",
6164 A0_REGNUM);
6165 fprintf_unfiltered (file,
6166 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6167 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6168 fprintf_unfiltered (file,
6169 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6170 XSTRING (ATTACH_DETACH));
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6173 BADVADDR_REGNUM);
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6178 CAUSE_REGNUM);
6179 fprintf_unfiltered (file,
6180 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6181 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6182 fprintf_unfiltered (file,
6183 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6184 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6187 FCRCS_REGNUM);
6188 fprintf_unfiltered (file,
6189 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6190 FCRIR_REGNUM);
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6193 FIRST_EMBED_REGNUM);
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6196 FPA0_REGNUM);
6197 fprintf_unfiltered (file,
6198 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6199 GDB_TARGET_IS_MIPS64);
6200 fprintf_unfiltered (file,
6201 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6202 GEN_REG_SAVE_MASK);
6203 fprintf_unfiltered (file,
6204 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6205 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6206 fprintf_unfiltered (file,
6207 "mips_dump_tdep: HI_REGNUM = %d\n",
6208 HI_REGNUM);
6209 fprintf_unfiltered (file,
6210 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6211 fprintf_unfiltered (file,
6212 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6215 XSTRING (IGNORE_HELPER_CALL (PC)));
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6218 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6221 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6222 fprintf_unfiltered (file,
6223 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6224 fprintf_unfiltered (file,
6225 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6226 LAST_EMBED_REGNUM);
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6229 fprintf_unfiltered (file,
6230 "mips_dump_tdep: LO_REGNUM = %d\n",
6231 LO_REGNUM);
6232 #ifdef MACHINE_CPROC_FP_OFFSET
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6235 MACHINE_CPROC_FP_OFFSET);
6236 #endif
6237 #ifdef MACHINE_CPROC_PC_OFFSET
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6240 MACHINE_CPROC_PC_OFFSET);
6241 #endif
6242 #ifdef MACHINE_CPROC_SP_OFFSET
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6245 MACHINE_CPROC_SP_OFFSET);
6246 #endif
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6253 MIPS16_INSTLEN);
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6262 MIPS_INSTLEN);
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6265 MIPS_LAST_ARG_REGNUM,
6266 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6269 MIPS_NUMREGS);
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6274 MIPS_SAVED_REGSIZE);
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: OP_LDFPR = used?\n");
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: OP_LDGPR = used?\n");
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: PRID_REGNUM = %d\n",
6285 PRID_REGNUM);
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6288 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6299 fprintf_unfiltered (file,
6300 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6301 fprintf_unfiltered (file,
6302 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: PROC_PC_REG = function?\n");
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6311 fprintf_unfiltered (file,
6312 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6313 fprintf_unfiltered (file,
6314 "mips_dump_tdep: PS_REGNUM = %d\n",
6315 PS_REGNUM);
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6318 PUSH_FP_REGNUM);
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: RA_REGNUM = %d\n",
6321 RA_REGNUM);
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6324 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6327 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6330 fprintf_unfiltered (file,
6331 "mips_dump_tdep: ROUND_DOWN = function?\n");
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: ROUND_UP = function?\n");
6334 #ifdef SAVED_BYTES
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: SAVED_BYTES = %d\n",
6337 SAVED_BYTES);
6338 #endif
6339 #ifdef SAVED_FP
6340 fprintf_unfiltered (file,
6341 "mips_dump_tdep: SAVED_FP = %d\n",
6342 SAVED_FP);
6343 #endif
6344 #ifdef SAVED_PC
6345 fprintf_unfiltered (file,
6346 "mips_dump_tdep: SAVED_PC = %d\n",
6347 SAVED_PC);
6348 #endif
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6351 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6352 fprintf_unfiltered (file,
6353 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6356 SIGFRAME_BASE);
6357 fprintf_unfiltered (file,
6358 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6359 SIGFRAME_FPREGSAVE_OFF);
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6362 SIGFRAME_PC_OFF);
6363 fprintf_unfiltered (file,
6364 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6365 SIGFRAME_REGSAVE_OFF);
6366 fprintf_unfiltered (file,
6367 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6368 SIGFRAME_REG_SIZE);
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6371 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6374 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6377 SOFTWARE_SINGLE_STEP_P ());
6378 fprintf_unfiltered (file,
6379 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6380 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6381 #ifdef STACK_END_ADDR
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6384 STACK_END_ADDR);
6385 #endif
6386 fprintf_unfiltered (file,
6387 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6388 XSTRING (STEP_SKIPS_DELAY (PC)));
6389 fprintf_unfiltered (file,
6390 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6391 STEP_SKIPS_DELAY_P);
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6394 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6395 fprintf_unfiltered (file,
6396 "mips_dump_tdep: T9_REGNUM = %d\n",
6397 T9_REGNUM);
6398 fprintf_unfiltered (file,
6399 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6400 fprintf_unfiltered (file,
6401 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6402 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6403 fprintf_unfiltered (file,
6404 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6405 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6406 fprintf_unfiltered (file,
6407 "mips_dump_tdep: TARGET_MIPS = used?\n");
6408 fprintf_unfiltered (file,
6409 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6410 XSTRING (TM_PRINT_INSN_MACH));
6411 #ifdef TRACE_CLEAR
6412 fprintf_unfiltered (file,
6413 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6414 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6415 #endif
6416 #ifdef TRACE_FLAVOR
6417 fprintf_unfiltered (file,
6418 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6419 TRACE_FLAVOR);
6420 #endif
6421 #ifdef TRACE_FLAVOR_SIZE
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6424 TRACE_FLAVOR_SIZE);
6425 #endif
6426 #ifdef TRACE_SET
6427 fprintf_unfiltered (file,
6428 "mips_dump_tdep: TRACE_SET # %s\n",
6429 XSTRING (TRACE_SET (X,STATE)));
6430 #endif
6431 fprintf_unfiltered (file,
6432 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6433 #ifdef UNUSED_REGNUM
6434 fprintf_unfiltered (file,
6435 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6436 UNUSED_REGNUM);
6437 #endif
6438 fprintf_unfiltered (file,
6439 "mips_dump_tdep: V0_REGNUM = %d\n",
6440 V0_REGNUM);
6441 fprintf_unfiltered (file,
6442 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6443 (long) VM_MIN_ADDRESS);
6444 #ifdef VX_NUM_REGS
6445 fprintf_unfiltered (file,
6446 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6447 VX_NUM_REGS);
6448 #endif
6449 fprintf_unfiltered (file,
6450 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6451 ZERO_REGNUM);
6452 fprintf_unfiltered (file,
6453 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6454 _PROC_MAGIC_);
6455
6456 fprintf_unfiltered (file,
6457 "mips_dump_tdep: OS ABI = %s\n",
6458 gdbarch_osabi_name (tdep->osabi));
6459 }
6460
6461 void
6462 _initialize_mips_tdep (void)
6463 {
6464 static struct cmd_list_element *mipsfpulist = NULL;
6465 struct cmd_list_element *c;
6466
6467 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6468 if (MIPS_ABI_LAST + 1
6469 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6470 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6471
6472 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6473 if (!tm_print_insn) /* Someone may have already set it */
6474 tm_print_insn = gdb_print_insn_mips;
6475
6476 /* Add root prefix command for all "set mips"/"show mips" commands */
6477 add_prefix_cmd ("mips", no_class, set_mips_command,
6478 "Various MIPS specific commands.",
6479 &setmipscmdlist, "set mips ", 0, &setlist);
6480
6481 add_prefix_cmd ("mips", no_class, show_mips_command,
6482 "Various MIPS specific commands.",
6483 &showmipscmdlist, "show mips ", 0, &showlist);
6484
6485 /* Allow the user to override the saved register size. */
6486 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6487 class_obscure,
6488 size_enums,
6489 &mips_saved_regsize_string, "\
6490 Set size of general purpose registers saved on the stack.\n\
6491 This option can be set to one of:\n\
6492 32 - Force GDB to treat saved GP registers as 32-bit\n\
6493 64 - Force GDB to treat saved GP registers as 64-bit\n\
6494 auto - Allow GDB to use the target's default setting or autodetect the\n\
6495 saved GP register size from information contained in the executable.\n\
6496 (default: auto)",
6497 &setmipscmdlist),
6498 &showmipscmdlist);
6499
6500 /* Allow the user to override the argument stack size. */
6501 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6502 class_obscure,
6503 size_enums,
6504 &mips_stack_argsize_string, "\
6505 Set the amount of stack space reserved for each argument.\n\
6506 This option can be set to one of:\n\
6507 32 - Force GDB to allocate 32-bit chunks per argument\n\
6508 64 - Force GDB to allocate 64-bit chunks per argument\n\
6509 auto - Allow GDB to determine the correct setting from the current\n\
6510 target and executable (default)",
6511 &setmipscmdlist),
6512 &showmipscmdlist);
6513
6514 /* Allow the user to override the ABI. */
6515 c = add_set_enum_cmd
6516 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6517 "Set the ABI used by this program.\n"
6518 "This option can be set to one of:\n"
6519 " auto - the default ABI associated with the current binary\n"
6520 " o32\n"
6521 " o64\n"
6522 " n32\n"
6523 " n64\n"
6524 " eabi32\n"
6525 " eabi64",
6526 &setmipscmdlist);
6527 add_show_from_set (c, &showmipscmdlist);
6528 set_cmd_sfunc (c, mips_abi_update);
6529
6530 /* Let the user turn off floating point and set the fence post for
6531 heuristic_proc_start. */
6532
6533 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6534 "Set use of MIPS floating-point coprocessor.",
6535 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6536 add_cmd ("single", class_support, set_mipsfpu_single_command,
6537 "Select single-precision MIPS floating-point coprocessor.",
6538 &mipsfpulist);
6539 add_cmd ("double", class_support, set_mipsfpu_double_command,
6540 "Select double-precision MIPS floating-point coprocessor.",
6541 &mipsfpulist);
6542 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6543 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6544 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6545 add_cmd ("none", class_support, set_mipsfpu_none_command,
6546 "Select no MIPS floating-point coprocessor.",
6547 &mipsfpulist);
6548 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6549 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6550 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6551 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6552 "Select MIPS floating-point coprocessor automatically.",
6553 &mipsfpulist);
6554 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6555 "Show current use of MIPS floating-point coprocessor target.",
6556 &showlist);
6557
6558 /* We really would like to have both "0" and "unlimited" work, but
6559 command.c doesn't deal with that. So make it a var_zinteger
6560 because the user can always use "999999" or some such for unlimited. */
6561 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6562 (char *) &heuristic_fence_post,
6563 "\
6564 Set the distance searched for the start of a function.\n\
6565 If you are debugging a stripped executable, GDB needs to search through the\n\
6566 program for the start of a function. This command sets the distance of the\n\
6567 search. The only need to set it is when debugging a stripped executable.",
6568 &setlist);
6569 /* We need to throw away the frame cache when we set this, since it
6570 might change our ability to get backtraces. */
6571 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6572 add_show_from_set (c, &showlist);
6573
6574 /* Allow the user to control whether the upper bits of 64-bit
6575 addresses should be zeroed. */
6576 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6577 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6578 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6579 allow GDB to determine the correct value.\n", "\
6580 Show zeroing of upper 32 bits of 64-bit addresses.",
6581 NULL, show_mask_address,
6582 &setmipscmdlist, &showmipscmdlist);
6583
6584 /* Allow the user to control the size of 32 bit registers within the
6585 raw remote packet. */
6586 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6587 class_obscure,
6588 var_boolean,
6589 (char *)&mips64_transfers_32bit_regs_p, "\
6590 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6591 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6592 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6593 64 bits for others. Use \"off\" to disable compatibility mode",
6594 &setlist),
6595 &showlist);
6596
6597 /* Debug this files internals. */
6598 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6599 &mips_debug, "Set mips debugging.\n\
6600 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6601 &showdebuglist);
6602 }
This page took 0.266219 seconds and 4 git commands to generate.