5898e579f1cb8c9fb9a3da8dd5dbc9956a585f37
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43
44 #include "opcode/mips.h"
45 #include "elf/mips.h"
46 #include "elf-bfd.h"
47 #include "symcat.h"
48
49 /* A useful bit in the CP0 status register (PS_REGNUM). */
50 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
51 #define ST0_FR (1 << 26)
52
53 /* The sizes of floating point registers. */
54
55 enum
56 {
57 MIPS_FPU_SINGLE_REGSIZE = 4,
58 MIPS_FPU_DOUBLE_REGSIZE = 8
59 };
60
61
62 static const char *mips_abi_string;
63
64 static const char *mips_abi_strings[] = {
65 "auto",
66 "n32",
67 "o32",
68 "n64",
69 "o64",
70 "eabi32",
71 "eabi64",
72 NULL
73 };
74
75 struct frame_extra_info
76 {
77 mips_extra_func_info_t proc_desc;
78 int num_args;
79 };
80
81 /* Various MIPS ISA options (related to stack analysis) can be
82 overridden dynamically. Establish an enum/array for managing
83 them. */
84
85 static const char size_auto[] = "auto";
86 static const char size_32[] = "32";
87 static const char size_64[] = "64";
88
89 static const char *size_enums[] = {
90 size_auto,
91 size_32,
92 size_64,
93 0
94 };
95
96 /* Some MIPS boards don't support floating point while others only
97 support single-precision floating-point operations. See also
98 FP_REGISTER_DOUBLE. */
99
100 enum mips_fpu_type
101 {
102 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
103 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
104 MIPS_FPU_NONE /* No floating point. */
105 };
106
107 #ifndef MIPS_DEFAULT_FPU_TYPE
108 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
109 #endif
110 static int mips_fpu_type_auto = 1;
111 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
112
113 static int mips_debug = 0;
114
115 /* MIPS specific per-architecture information */
116 struct gdbarch_tdep
117 {
118 /* from the elf header */
119 int elf_flags;
120
121 /* mips options */
122 enum mips_abi mips_abi;
123 enum mips_abi found_abi;
124 enum mips_fpu_type mips_fpu_type;
125 int mips_last_arg_regnum;
126 int mips_last_fp_arg_regnum;
127 int mips_default_saved_regsize;
128 int mips_fp_register_double;
129 int mips_default_stack_argsize;
130 int gdb_target_is_mips64;
131 int default_mask_address_p;
132 };
133
134 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
135 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
136
137 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
138
139 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
140
141 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
142
143 /* Return the currently configured (or set) saved register size. */
144
145 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
146
147 static const char *mips_saved_regsize_string = size_auto;
148
149 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
150
151 /* Return the MIPS ABI associated with GDBARCH. */
152 enum mips_abi
153 mips_abi (struct gdbarch *gdbarch)
154 {
155 return gdbarch_tdep (gdbarch)->mips_abi;
156 }
157
158 static unsigned int
159 mips_saved_regsize (void)
160 {
161 if (mips_saved_regsize_string == size_auto)
162 return MIPS_DEFAULT_SAVED_REGSIZE;
163 else if (mips_saved_regsize_string == size_64)
164 return 8;
165 else /* if (mips_saved_regsize_string == size_32) */
166 return 4;
167 }
168
169 /* Functions for setting and testing a bit in a minimal symbol that
170 marks it as 16-bit function. The MSB of the minimal symbol's
171 "info" field is used for this purpose. This field is already
172 being used to store the symbol size, so the assumption is
173 that the symbol size cannot exceed 2^31.
174
175 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
176 i.e. refers to a 16-bit function, and sets a "special" bit in a
177 minimal symbol to mark it as a 16-bit function
178
179 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
180 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
181 the "info" field with the "special" bit masked out */
182
183 static void
184 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
185 {
186 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
187 {
188 MSYMBOL_INFO (msym) = (char *)
189 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
190 SYMBOL_VALUE_ADDRESS (msym) |= 1;
191 }
192 }
193
194 static int
195 msymbol_is_special (struct minimal_symbol *msym)
196 {
197 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
198 }
199
200 static long
201 msymbol_size (struct minimal_symbol *msym)
202 {
203 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
204 }
205
206 /* XFER a value from the big/little/left end of the register.
207 Depending on the size of the value it might occupy the entire
208 register or just part of it. Make an allowance for this, aligning
209 things accordingly. */
210
211 static void
212 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
213 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
214 int buf_offset)
215 {
216 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
217 int reg_offset = 0;
218 /* Need to transfer the left or right part of the register, based on
219 the targets byte order. */
220 switch (endian)
221 {
222 case BFD_ENDIAN_BIG:
223 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
224 break;
225 case BFD_ENDIAN_LITTLE:
226 reg_offset = 0;
227 break;
228 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
229 reg_offset = 0;
230 break;
231 default:
232 internal_error (__FILE__, __LINE__, "bad switch");
233 }
234 if (mips_debug)
235 fprintf_unfiltered (gdb_stderr,
236 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
237 reg_num, reg_offset, buf_offset, length);
238 if (mips_debug && out != NULL)
239 {
240 int i;
241 fprintf_unfiltered (gdb_stdlog, "out ");
242 for (i = 0; i < length; i++)
243 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
244 }
245 if (in != NULL)
246 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
247 if (out != NULL)
248 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
249 if (mips_debug && in != NULL)
250 {
251 int i;
252 fprintf_unfiltered (gdb_stdlog, "in ");
253 for (i = 0; i < length; i++)
254 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
255 }
256 if (mips_debug)
257 fprintf_unfiltered (gdb_stdlog, "\n");
258 }
259
260 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
261 compatiblity mode. A return value of 1 means that we have
262 physical 64-bit registers, but should treat them as 32-bit registers. */
263
264 static int
265 mips2_fp_compat (void)
266 {
267 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
268 meaningful. */
269 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
270 return 0;
271
272 #if 0
273 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
274 in all the places we deal with FP registers. PR gdb/413. */
275 /* Otherwise check the FR bit in the status register - it controls
276 the FP compatiblity mode. If it is clear we are in compatibility
277 mode. */
278 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
279 return 1;
280 #endif
281
282 return 0;
283 }
284
285 /* Indicate that the ABI makes use of double-precision registers
286 provided by the FPU (rather than combining pairs of registers to
287 form double-precision values). Do not use "TARGET_IS_MIPS64" to
288 determine if the ABI is using double-precision registers. See also
289 MIPS_FPU_TYPE. */
290 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
291
292 /* The amount of space reserved on the stack for registers. This is
293 different to MIPS_SAVED_REGSIZE as it determines the alignment of
294 data allocated after the registers have run out. */
295
296 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
297
298 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
299
300 static const char *mips_stack_argsize_string = size_auto;
301
302 static unsigned int
303 mips_stack_argsize (void)
304 {
305 if (mips_stack_argsize_string == size_auto)
306 return MIPS_DEFAULT_STACK_ARGSIZE;
307 else if (mips_stack_argsize_string == size_64)
308 return 8;
309 else /* if (mips_stack_argsize_string == size_32) */
310 return 4;
311 }
312
313 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
314
315 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
316
317 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
318
319 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
320
321 static void mips_print_register (int, int);
322
323 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
324 struct frame_info *, int);
325
326 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
327
328 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
329
330 static int mips_set_processor_type (char *);
331
332 static void mips_show_processor_type_command (char *, int);
333
334 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
335
336 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
337 struct frame_info *next_frame,
338 int cur_frame);
339
340 static CORE_ADDR after_prologue (CORE_ADDR pc,
341 mips_extra_func_info_t proc_desc);
342
343 static void mips_read_fp_register_single (int regno, char *rare_buffer);
344 static void mips_read_fp_register_double (int regno, char *rare_buffer);
345
346 static struct type *mips_float_register_type (void);
347 static struct type *mips_double_register_type (void);
348
349 /* This value is the model of MIPS in use. It is derived from the value
350 of the PrID register. */
351
352 char *mips_processor_type;
353
354 char *tmp_mips_processor_type;
355
356 /* The list of available "set mips " and "show mips " commands */
357
358 static struct cmd_list_element *setmipscmdlist = NULL;
359 static struct cmd_list_element *showmipscmdlist = NULL;
360
361 /* A set of original names, to be used when restoring back to generic
362 registers from a specific set. */
363
364 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
365 char **mips_processor_reg_names = mips_generic_reg_names;
366
367 static const char *
368 mips_register_name (int i)
369 {
370 return mips_processor_reg_names[i];
371 }
372 /* *INDENT-OFF* */
373 /* Names of IDT R3041 registers. */
374
375 char *mips_r3041_reg_names[] = {
376 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
377 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
378 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
379 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
380 "sr", "lo", "hi", "bad", "cause","pc",
381 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
382 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
383 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
384 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
385 "fsr", "fir", "",/*"fp"*/ "",
386 "", "", "bus", "ccfg", "", "", "", "",
387 "", "", "port", "cmp", "", "", "epc", "prid",
388 };
389
390 /* Names of IDT R3051 registers. */
391
392 char *mips_r3051_reg_names[] = {
393 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
394 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
395 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
396 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
397 "sr", "lo", "hi", "bad", "cause","pc",
398 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
399 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
400 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
401 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
402 "fsr", "fir", ""/*"fp"*/, "",
403 "inx", "rand", "elo", "", "ctxt", "", "", "",
404 "", "", "ehi", "", "", "", "epc", "prid",
405 };
406
407 /* Names of IDT R3081 registers. */
408
409 char *mips_r3081_reg_names[] = {
410 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
411 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
412 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
413 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
414 "sr", "lo", "hi", "bad", "cause","pc",
415 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
416 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
417 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
418 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
419 "fsr", "fir", ""/*"fp"*/, "",
420 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
421 "", "", "ehi", "", "", "", "epc", "prid",
422 };
423
424 /* Names of LSI 33k registers. */
425
426 char *mips_lsi33k_reg_names[] = {
427 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
428 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
429 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
430 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
431 "epc", "hi", "lo", "sr", "cause","badvaddr",
432 "dcic", "bpc", "bda", "", "", "", "", "",
433 "", "", "", "", "", "", "", "",
434 "", "", "", "", "", "", "", "",
435 "", "", "", "", "", "", "", "",
436 "", "", "", "",
437 "", "", "", "", "", "", "", "",
438 "", "", "", "", "", "", "", "",
439 };
440
441 struct {
442 char *name;
443 char **regnames;
444 } mips_processor_type_table[] = {
445 { "generic", mips_generic_reg_names },
446 { "r3041", mips_r3041_reg_names },
447 { "r3051", mips_r3051_reg_names },
448 { "r3071", mips_r3081_reg_names },
449 { "r3081", mips_r3081_reg_names },
450 { "lsi33k", mips_lsi33k_reg_names },
451 { NULL, NULL }
452 };
453 /* *INDENT-ON* */
454
455
456
457
458 /* Table to translate MIPS16 register field to actual register number. */
459 static int mips16_to_32_reg[8] =
460 {16, 17, 2, 3, 4, 5, 6, 7};
461
462 /* Heuristic_proc_start may hunt through the text section for a long
463 time across a 2400 baud serial line. Allows the user to limit this
464 search. */
465
466 static unsigned int heuristic_fence_post = 0;
467
468 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
469 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
470 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
471 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
472 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
473 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
474 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
475 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
476 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
477 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
478 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
479 this will corrupt pdr.iline. Fortunately we don't use it. */
480 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
481 #define _PROC_MAGIC_ 0x0F0F0F0F
482 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
483 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
484
485 struct linked_proc_info
486 {
487 struct mips_extra_func_info info;
488 struct linked_proc_info *next;
489 }
490 *linked_proc_desc_table = NULL;
491
492 void
493 mips_print_extra_frame_info (struct frame_info *fi)
494 {
495 if (fi
496 && get_frame_extra_info (fi)
497 && get_frame_extra_info (fi)->proc_desc
498 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
499 printf_filtered (" frame pointer is at %s+%s\n",
500 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
501 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
502 }
503
504 /* Number of bytes of storage in the actual machine representation for
505 register N. NOTE: This indirectly defines the register size
506 transfered by the GDB protocol. */
507
508 static int mips64_transfers_32bit_regs_p = 0;
509
510 static int
511 mips_register_raw_size (int reg_nr)
512 {
513 if (mips64_transfers_32bit_regs_p)
514 return REGISTER_VIRTUAL_SIZE (reg_nr);
515 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
516 && FP_REGISTER_DOUBLE)
517 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
518 registers. */
519 return 8;
520 else
521 return MIPS_REGSIZE;
522 }
523
524 /* Convert between RAW and VIRTUAL registers. The RAW register size
525 defines the remote-gdb packet. */
526
527 static int
528 mips_register_convertible (int reg_nr)
529 {
530 if (mips64_transfers_32bit_regs_p)
531 return 0;
532 else
533 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
534 }
535
536 static void
537 mips_register_convert_to_virtual (int n, struct type *virtual_type,
538 char *raw_buf, char *virt_buf)
539 {
540 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
541 memcpy (virt_buf,
542 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
543 TYPE_LENGTH (virtual_type));
544 else
545 memcpy (virt_buf,
546 raw_buf,
547 TYPE_LENGTH (virtual_type));
548 }
549
550 static void
551 mips_register_convert_to_raw (struct type *virtual_type, int n,
552 char *virt_buf, char *raw_buf)
553 {
554 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
555 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
556 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
557 virt_buf,
558 TYPE_LENGTH (virtual_type));
559 else
560 memcpy (raw_buf,
561 virt_buf,
562 TYPE_LENGTH (virtual_type));
563 }
564
565 void
566 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
567 {
568 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
569 && REGISTER_RAW_SIZE (regnum) == 4
570 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
571 && TYPE_CODE(type) == TYPE_CODE_FLT
572 && TYPE_LENGTH(type) == 8)
573 {
574 char temp[4];
575 memcpy (temp, ((char *)(buffer))+4, 4);
576 memcpy (((char *)(buffer))+4, (buffer), 4);
577 memcpy (((char *)(buffer)), temp, 4);
578 }
579 }
580
581 void
582 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
583 {
584 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
585 && REGISTER_RAW_SIZE (regnum) == 4
586 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
587 && TYPE_CODE(type) == TYPE_CODE_FLT
588 && TYPE_LENGTH(type) == 8)
589 {
590 char temp[4];
591 memcpy (temp, ((char *)(buffer))+4, 4);
592 memcpy (((char *)(buffer))+4, (buffer), 4);
593 memcpy (((char *)(buffer)), temp, 4);
594 }
595 }
596
597 /* Return the GDB type object for the "standard" data type
598 of data in register REG.
599
600 Note: kevinb/2002-08-01: The definition below should faithfully
601 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
602 definitions found in config/mips/tm-*.h. I'm concerned about
603 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
604 though. In some cases FP_REGNUM is in this range, and I doubt
605 that this code is correct for the 64-bit case. */
606
607 static struct type *
608 mips_register_virtual_type (int reg)
609 {
610 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
611 {
612 /* Floating point registers... */
613 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
614 return builtin_type_ieee_double_big;
615 else
616 return builtin_type_ieee_double_little;
617 }
618 else if (reg == PS_REGNUM /* CR */)
619 return builtin_type_uint32;
620 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
621 return builtin_type_uint32;
622 else
623 {
624 /* Everything else...
625 Return type appropriate for width of register. */
626 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
627 return builtin_type_uint64;
628 else
629 return builtin_type_uint32;
630 }
631 }
632
633 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
634
635 static CORE_ADDR
636 mips_read_sp (void)
637 {
638 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
639 }
640
641 /* Should the upper word of 64-bit addresses be zeroed? */
642 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
643
644 static int
645 mips_mask_address_p (void)
646 {
647 switch (mask_address_var)
648 {
649 case AUTO_BOOLEAN_TRUE:
650 return 1;
651 case AUTO_BOOLEAN_FALSE:
652 return 0;
653 break;
654 case AUTO_BOOLEAN_AUTO:
655 return MIPS_DEFAULT_MASK_ADDRESS_P;
656 default:
657 internal_error (__FILE__, __LINE__,
658 "mips_mask_address_p: bad switch");
659 return -1;
660 }
661 }
662
663 static void
664 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
665 {
666 switch (mask_address_var)
667 {
668 case AUTO_BOOLEAN_TRUE:
669 printf_filtered ("The 32 bit mips address mask is enabled\n");
670 break;
671 case AUTO_BOOLEAN_FALSE:
672 printf_filtered ("The 32 bit mips address mask is disabled\n");
673 break;
674 case AUTO_BOOLEAN_AUTO:
675 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
676 mips_mask_address_p () ? "enabled" : "disabled");
677 break;
678 default:
679 internal_error (__FILE__, __LINE__,
680 "show_mask_address: bad switch");
681 break;
682 }
683 }
684
685 /* Should call_function allocate stack space for a struct return? */
686
687 static int
688 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
689 {
690 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
691 }
692
693 static int
694 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
695 {
696 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
697 }
698
699 static int
700 mips_o32_use_struct_convention (int gcc_p, struct type *type)
701 {
702 return 1; /* Structures are returned by ref in extra arg0. */
703 }
704
705 /* Should call_function pass struct by reference?
706 For each architecture, structs are passed either by
707 value or by reference, depending on their size. */
708
709 static int
710 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
711 {
712 enum type_code typecode = TYPE_CODE (check_typedef (type));
713 int len = TYPE_LENGTH (check_typedef (type));
714
715 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
716 return (len > MIPS_SAVED_REGSIZE);
717
718 return 0;
719 }
720
721 static int
722 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
723 {
724 return 0; /* Assumption: N32/N64 never passes struct by ref. */
725 }
726
727 static int
728 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
729 {
730 return 0; /* Assumption: O32/O64 never passes struct by ref. */
731 }
732
733 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
734
735 static int
736 pc_is_mips16 (bfd_vma memaddr)
737 {
738 struct minimal_symbol *sym;
739
740 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
741 if (IS_MIPS16_ADDR (memaddr))
742 return 1;
743
744 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
745 the high bit of the info field. Use this to decide if the function is
746 MIPS16 or normal MIPS. */
747 sym = lookup_minimal_symbol_by_pc (memaddr);
748 if (sym)
749 return msymbol_is_special (sym);
750 else
751 return 0;
752 }
753
754 /* MIPS believes that the PC has a sign extended value. Perhaphs the
755 all registers should be sign extended for simplicity? */
756
757 static CORE_ADDR
758 mips_read_pc (ptid_t ptid)
759 {
760 return read_signed_register_pid (PC_REGNUM, ptid);
761 }
762
763 /* This returns the PC of the first inst after the prologue. If we can't
764 find the prologue, then return 0. */
765
766 static CORE_ADDR
767 after_prologue (CORE_ADDR pc,
768 mips_extra_func_info_t proc_desc)
769 {
770 struct symtab_and_line sal;
771 CORE_ADDR func_addr, func_end;
772
773 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
774 to read the stack pointer from the current machine state, because
775 the current machine state has nothing to do with the information
776 we need from the proc_desc; and the process may or may not exist
777 right now. */
778 if (!proc_desc)
779 proc_desc = find_proc_desc (pc, NULL, 0);
780
781 if (proc_desc)
782 {
783 /* If function is frameless, then we need to do it the hard way. I
784 strongly suspect that frameless always means prologueless... */
785 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
786 && PROC_FRAME_OFFSET (proc_desc) == 0)
787 return 0;
788 }
789
790 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
791 return 0; /* Unknown */
792
793 sal = find_pc_line (func_addr, 0);
794
795 if (sal.end < func_end)
796 return sal.end;
797
798 /* The line after the prologue is after the end of the function. In this
799 case, tell the caller to find the prologue the hard way. */
800
801 return 0;
802 }
803
804 /* Decode a MIPS32 instruction that saves a register in the stack, and
805 set the appropriate bit in the general register mask or float register mask
806 to indicate which register is saved. This is a helper function
807 for mips_find_saved_regs. */
808
809 static void
810 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
811 unsigned long *float_mask)
812 {
813 int reg;
814
815 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
816 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
817 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
818 {
819 /* It might be possible to use the instruction to
820 find the offset, rather than the code below which
821 is based on things being in a certain order in the
822 frame, but figuring out what the instruction's offset
823 is relative to might be a little tricky. */
824 reg = (inst & 0x001f0000) >> 16;
825 *gen_mask |= (1 << reg);
826 }
827 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
828 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
829 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
830
831 {
832 reg = ((inst & 0x001f0000) >> 16);
833 *float_mask |= (1 << reg);
834 }
835 }
836
837 /* Decode a MIPS16 instruction that saves a register in the stack, and
838 set the appropriate bit in the general register or float register mask
839 to indicate which register is saved. This is a helper function
840 for mips_find_saved_regs. */
841
842 static void
843 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
844 {
845 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
846 {
847 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
848 *gen_mask |= (1 << reg);
849 }
850 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
851 {
852 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
853 *gen_mask |= (1 << reg);
854 }
855 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
856 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
857 *gen_mask |= (1 << RA_REGNUM);
858 }
859
860
861 /* Fetch and return instruction from the specified location. If the PC
862 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
863
864 static t_inst
865 mips_fetch_instruction (CORE_ADDR addr)
866 {
867 char buf[MIPS_INSTLEN];
868 int instlen;
869 int status;
870
871 if (pc_is_mips16 (addr))
872 {
873 instlen = MIPS16_INSTLEN;
874 addr = UNMAKE_MIPS16_ADDR (addr);
875 }
876 else
877 instlen = MIPS_INSTLEN;
878 status = read_memory_nobpt (addr, buf, instlen);
879 if (status)
880 memory_error (status, addr);
881 return extract_unsigned_integer (buf, instlen);
882 }
883
884
885 /* These the fields of 32 bit mips instructions */
886 #define mips32_op(x) (x >> 26)
887 #define itype_op(x) (x >> 26)
888 #define itype_rs(x) ((x >> 21) & 0x1f)
889 #define itype_rt(x) ((x >> 16) & 0x1f)
890 #define itype_immediate(x) (x & 0xffff)
891
892 #define jtype_op(x) (x >> 26)
893 #define jtype_target(x) (x & 0x03ffffff)
894
895 #define rtype_op(x) (x >> 26)
896 #define rtype_rs(x) ((x >> 21) & 0x1f)
897 #define rtype_rt(x) ((x >> 16) & 0x1f)
898 #define rtype_rd(x) ((x >> 11) & 0x1f)
899 #define rtype_shamt(x) ((x >> 6) & 0x1f)
900 #define rtype_funct(x) (x & 0x3f)
901
902 static CORE_ADDR
903 mips32_relative_offset (unsigned long inst)
904 {
905 long x;
906 x = itype_immediate (inst);
907 if (x & 0x8000) /* sign bit set */
908 {
909 x |= 0xffff0000; /* sign extension */
910 }
911 x = x << 2;
912 return x;
913 }
914
915 /* Determine whate to set a single step breakpoint while considering
916 branch prediction */
917 static CORE_ADDR
918 mips32_next_pc (CORE_ADDR pc)
919 {
920 unsigned long inst;
921 int op;
922 inst = mips_fetch_instruction (pc);
923 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
924 {
925 if (itype_op (inst) >> 2 == 5)
926 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
927 {
928 op = (itype_op (inst) & 0x03);
929 switch (op)
930 {
931 case 0: /* BEQL */
932 goto equal_branch;
933 case 1: /* BNEL */
934 goto neq_branch;
935 case 2: /* BLEZL */
936 goto less_branch;
937 case 3: /* BGTZ */
938 goto greater_branch;
939 default:
940 pc += 4;
941 }
942 }
943 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
944 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
945 {
946 int tf = itype_rt (inst) & 0x01;
947 int cnum = itype_rt (inst) >> 2;
948 int fcrcs = read_signed_register (FCRCS_REGNUM);
949 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
950
951 if (((cond >> cnum) & 0x01) == tf)
952 pc += mips32_relative_offset (inst) + 4;
953 else
954 pc += 8;
955 }
956 else
957 pc += 4; /* Not a branch, next instruction is easy */
958 }
959 else
960 { /* This gets way messy */
961
962 /* Further subdivide into SPECIAL, REGIMM and other */
963 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
964 {
965 case 0: /* SPECIAL */
966 op = rtype_funct (inst);
967 switch (op)
968 {
969 case 8: /* JR */
970 case 9: /* JALR */
971 /* Set PC to that address */
972 pc = read_signed_register (rtype_rs (inst));
973 break;
974 default:
975 pc += 4;
976 }
977
978 break; /* end SPECIAL */
979 case 1: /* REGIMM */
980 {
981 op = itype_rt (inst); /* branch condition */
982 switch (op)
983 {
984 case 0: /* BLTZ */
985 case 2: /* BLTZL */
986 case 16: /* BLTZAL */
987 case 18: /* BLTZALL */
988 less_branch:
989 if (read_signed_register (itype_rs (inst)) < 0)
990 pc += mips32_relative_offset (inst) + 4;
991 else
992 pc += 8; /* after the delay slot */
993 break;
994 case 1: /* BGEZ */
995 case 3: /* BGEZL */
996 case 17: /* BGEZAL */
997 case 19: /* BGEZALL */
998 greater_equal_branch:
999 if (read_signed_register (itype_rs (inst)) >= 0)
1000 pc += mips32_relative_offset (inst) + 4;
1001 else
1002 pc += 8; /* after the delay slot */
1003 break;
1004 /* All of the other instructions in the REGIMM category */
1005 default:
1006 pc += 4;
1007 }
1008 }
1009 break; /* end REGIMM */
1010 case 2: /* J */
1011 case 3: /* JAL */
1012 {
1013 unsigned long reg;
1014 reg = jtype_target (inst) << 2;
1015 /* Upper four bits get never changed... */
1016 pc = reg + ((pc + 4) & 0xf0000000);
1017 }
1018 break;
1019 /* FIXME case JALX : */
1020 {
1021 unsigned long reg;
1022 reg = jtype_target (inst) << 2;
1023 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1024 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1025 }
1026 break; /* The new PC will be alternate mode */
1027 case 4: /* BEQ, BEQL */
1028 equal_branch:
1029 if (read_signed_register (itype_rs (inst)) ==
1030 read_signed_register (itype_rt (inst)))
1031 pc += mips32_relative_offset (inst) + 4;
1032 else
1033 pc += 8;
1034 break;
1035 case 5: /* BNE, BNEL */
1036 neq_branch:
1037 if (read_signed_register (itype_rs (inst)) !=
1038 read_signed_register (itype_rt (inst)))
1039 pc += mips32_relative_offset (inst) + 4;
1040 else
1041 pc += 8;
1042 break;
1043 case 6: /* BLEZ, BLEZL */
1044 less_zero_branch:
1045 if (read_signed_register (itype_rs (inst) <= 0))
1046 pc += mips32_relative_offset (inst) + 4;
1047 else
1048 pc += 8;
1049 break;
1050 case 7:
1051 default:
1052 greater_branch: /* BGTZ, BGTZL */
1053 if (read_signed_register (itype_rs (inst) > 0))
1054 pc += mips32_relative_offset (inst) + 4;
1055 else
1056 pc += 8;
1057 break;
1058 } /* switch */
1059 } /* else */
1060 return pc;
1061 } /* mips32_next_pc */
1062
1063 /* Decoding the next place to set a breakpoint is irregular for the
1064 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1065 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1066 We dont want to set a single step instruction on the extend instruction
1067 either.
1068 */
1069
1070 /* Lots of mips16 instruction formats */
1071 /* Predicting jumps requires itype,ritype,i8type
1072 and their extensions extItype,extritype,extI8type
1073 */
1074 enum mips16_inst_fmts
1075 {
1076 itype, /* 0 immediate 5,10 */
1077 ritype, /* 1 5,3,8 */
1078 rrtype, /* 2 5,3,3,5 */
1079 rritype, /* 3 5,3,3,5 */
1080 rrrtype, /* 4 5,3,3,3,2 */
1081 rriatype, /* 5 5,3,3,1,4 */
1082 shifttype, /* 6 5,3,3,3,2 */
1083 i8type, /* 7 5,3,8 */
1084 i8movtype, /* 8 5,3,3,5 */
1085 i8mov32rtype, /* 9 5,3,5,3 */
1086 i64type, /* 10 5,3,8 */
1087 ri64type, /* 11 5,3,3,5 */
1088 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1089 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1090 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1091 extRRItype, /* 15 5,5,5,5,3,3,5 */
1092 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1093 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1094 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1095 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1096 extRi64type, /* 20 5,6,5,5,3,3,5 */
1097 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1098 };
1099 /* I am heaping all the fields of the formats into one structure and
1100 then, only the fields which are involved in instruction extension */
1101 struct upk_mips16
1102 {
1103 CORE_ADDR offset;
1104 unsigned int regx; /* Function in i8 type */
1105 unsigned int regy;
1106 };
1107
1108
1109 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1110 for the bits which make up the immediatate extension. */
1111
1112 static CORE_ADDR
1113 extended_offset (unsigned int extension)
1114 {
1115 CORE_ADDR value;
1116 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1117 value = value << 6;
1118 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1119 value = value << 5;
1120 value |= extension & 0x01f; /* extract 4:0 */
1121 return value;
1122 }
1123
1124 /* Only call this function if you know that this is an extendable
1125 instruction, It wont malfunction, but why make excess remote memory references?
1126 If the immediate operands get sign extended or somthing, do it after
1127 the extension is performed.
1128 */
1129 /* FIXME: Every one of these cases needs to worry about sign extension
1130 when the offset is to be used in relative addressing */
1131
1132
1133 static unsigned int
1134 fetch_mips_16 (CORE_ADDR pc)
1135 {
1136 char buf[8];
1137 pc &= 0xfffffffe; /* clear the low order bit */
1138 target_read_memory (pc, buf, 2);
1139 return extract_unsigned_integer (buf, 2);
1140 }
1141
1142 static void
1143 unpack_mips16 (CORE_ADDR pc,
1144 unsigned int extension,
1145 unsigned int inst,
1146 enum mips16_inst_fmts insn_format,
1147 struct upk_mips16 *upk)
1148 {
1149 CORE_ADDR offset;
1150 int regx;
1151 int regy;
1152 switch (insn_format)
1153 {
1154 case itype:
1155 {
1156 CORE_ADDR value;
1157 if (extension)
1158 {
1159 value = extended_offset (extension);
1160 value = value << 11; /* rom for the original value */
1161 value |= inst & 0x7ff; /* eleven bits from instruction */
1162 }
1163 else
1164 {
1165 value = inst & 0x7ff;
1166 /* FIXME : Consider sign extension */
1167 }
1168 offset = value;
1169 regx = -1;
1170 regy = -1;
1171 }
1172 break;
1173 case ritype:
1174 case i8type:
1175 { /* A register identifier and an offset */
1176 /* Most of the fields are the same as I type but the
1177 immediate value is of a different length */
1178 CORE_ADDR value;
1179 if (extension)
1180 {
1181 value = extended_offset (extension);
1182 value = value << 8; /* from the original instruction */
1183 value |= inst & 0xff; /* eleven bits from instruction */
1184 regx = (extension >> 8) & 0x07; /* or i8 funct */
1185 if (value & 0x4000) /* test the sign bit , bit 26 */
1186 {
1187 value &= ~0x3fff; /* remove the sign bit */
1188 value = -value;
1189 }
1190 }
1191 else
1192 {
1193 value = inst & 0xff; /* 8 bits */
1194 regx = (inst >> 8) & 0x07; /* or i8 funct */
1195 /* FIXME: Do sign extension , this format needs it */
1196 if (value & 0x80) /* THIS CONFUSES ME */
1197 {
1198 value &= 0xef; /* remove the sign bit */
1199 value = -value;
1200 }
1201 }
1202 offset = value;
1203 regy = -1;
1204 break;
1205 }
1206 case jalxtype:
1207 {
1208 unsigned long value;
1209 unsigned int nexthalf;
1210 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1211 value = value << 16;
1212 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1213 value |= nexthalf;
1214 offset = value;
1215 regx = -1;
1216 regy = -1;
1217 break;
1218 }
1219 default:
1220 internal_error (__FILE__, __LINE__,
1221 "bad switch");
1222 }
1223 upk->offset = offset;
1224 upk->regx = regx;
1225 upk->regy = regy;
1226 }
1227
1228
1229 static CORE_ADDR
1230 add_offset_16 (CORE_ADDR pc, int offset)
1231 {
1232 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1233 }
1234
1235 static CORE_ADDR
1236 extended_mips16_next_pc (CORE_ADDR pc,
1237 unsigned int extension,
1238 unsigned int insn)
1239 {
1240 int op = (insn >> 11);
1241 switch (op)
1242 {
1243 case 2: /* Branch */
1244 {
1245 CORE_ADDR offset;
1246 struct upk_mips16 upk;
1247 unpack_mips16 (pc, extension, insn, itype, &upk);
1248 offset = upk.offset;
1249 if (offset & 0x800)
1250 {
1251 offset &= 0xeff;
1252 offset = -offset;
1253 }
1254 pc += (offset << 1) + 2;
1255 break;
1256 }
1257 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1258 {
1259 struct upk_mips16 upk;
1260 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1261 pc = add_offset_16 (pc, upk.offset);
1262 if ((insn >> 10) & 0x01) /* Exchange mode */
1263 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1264 else
1265 pc |= 0x01;
1266 break;
1267 }
1268 case 4: /* beqz */
1269 {
1270 struct upk_mips16 upk;
1271 int reg;
1272 unpack_mips16 (pc, extension, insn, ritype, &upk);
1273 reg = read_signed_register (upk.regx);
1274 if (reg == 0)
1275 pc += (upk.offset << 1) + 2;
1276 else
1277 pc += 2;
1278 break;
1279 }
1280 case 5: /* bnez */
1281 {
1282 struct upk_mips16 upk;
1283 int reg;
1284 unpack_mips16 (pc, extension, insn, ritype, &upk);
1285 reg = read_signed_register (upk.regx);
1286 if (reg != 0)
1287 pc += (upk.offset << 1) + 2;
1288 else
1289 pc += 2;
1290 break;
1291 }
1292 case 12: /* I8 Formats btez btnez */
1293 {
1294 struct upk_mips16 upk;
1295 int reg;
1296 unpack_mips16 (pc, extension, insn, i8type, &upk);
1297 /* upk.regx contains the opcode */
1298 reg = read_signed_register (24); /* Test register is 24 */
1299 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1300 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1301 /* pc = add_offset_16(pc,upk.offset) ; */
1302 pc += (upk.offset << 1) + 2;
1303 else
1304 pc += 2;
1305 break;
1306 }
1307 case 29: /* RR Formats JR, JALR, JALR-RA */
1308 {
1309 struct upk_mips16 upk;
1310 /* upk.fmt = rrtype; */
1311 op = insn & 0x1f;
1312 if (op == 0)
1313 {
1314 int reg;
1315 upk.regx = (insn >> 8) & 0x07;
1316 upk.regy = (insn >> 5) & 0x07;
1317 switch (upk.regy)
1318 {
1319 case 0:
1320 reg = upk.regx;
1321 break;
1322 case 1:
1323 reg = 31;
1324 break; /* Function return instruction */
1325 case 2:
1326 reg = upk.regx;
1327 break;
1328 default:
1329 reg = 31;
1330 break; /* BOGUS Guess */
1331 }
1332 pc = read_signed_register (reg);
1333 }
1334 else
1335 pc += 2;
1336 break;
1337 }
1338 case 30:
1339 /* This is an instruction extension. Fetch the real instruction
1340 (which follows the extension) and decode things based on
1341 that. */
1342 {
1343 pc += 2;
1344 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1345 break;
1346 }
1347 default:
1348 {
1349 pc += 2;
1350 break;
1351 }
1352 }
1353 return pc;
1354 }
1355
1356 static CORE_ADDR
1357 mips16_next_pc (CORE_ADDR pc)
1358 {
1359 unsigned int insn = fetch_mips_16 (pc);
1360 return extended_mips16_next_pc (pc, 0, insn);
1361 }
1362
1363 /* The mips_next_pc function supports single_step when the remote
1364 target monitor or stub is not developed enough to do a single_step.
1365 It works by decoding the current instruction and predicting where a
1366 branch will go. This isnt hard because all the data is available.
1367 The MIPS32 and MIPS16 variants are quite different */
1368 CORE_ADDR
1369 mips_next_pc (CORE_ADDR pc)
1370 {
1371 if (pc & 0x01)
1372 return mips16_next_pc (pc);
1373 else
1374 return mips32_next_pc (pc);
1375 }
1376
1377 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1378 NULL).
1379
1380 Note: kevinb/2002-08-09: The only caller of this function is (and
1381 should remain) mips_frame_init_saved_regs(). In fact,
1382 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1383 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1384 functions should really be combined and now that there is only one
1385 caller, it should be straightforward. (Watch out for multiple returns
1386 though.) */
1387
1388 static void
1389 mips_find_saved_regs (struct frame_info *fci)
1390 {
1391 int ireg;
1392 CORE_ADDR reg_position;
1393 /* r0 bit means kernel trap */
1394 int kernel_trap;
1395 /* What registers have been saved? Bitmasks. */
1396 unsigned long gen_mask, float_mask;
1397 mips_extra_func_info_t proc_desc;
1398 t_inst inst;
1399
1400 frame_saved_regs_zalloc (fci);
1401
1402 /* If it is the frame for sigtramp, the saved registers are located
1403 in a sigcontext structure somewhere on the stack.
1404 If the stack layout for sigtramp changes we might have to change these
1405 constants and the companion fixup_sigtramp in mdebugread.c */
1406 #ifndef SIGFRAME_BASE
1407 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1408 above the sigtramp frame. */
1409 #define SIGFRAME_BASE MIPS_REGSIZE
1410 /* FIXME! Are these correct?? */
1411 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1412 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1413 #define SIGFRAME_FPREGSAVE_OFF \
1414 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1415 #endif
1416 #ifndef SIGFRAME_REG_SIZE
1417 /* FIXME! Is this correct?? */
1418 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1419 #endif
1420 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1421 {
1422 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1423 {
1424 reg_position = get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1425 + ireg * SIGFRAME_REG_SIZE;
1426 get_frame_saved_regs (fci)[ireg] = reg_position;
1427 }
1428 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1429 {
1430 reg_position = get_frame_base (fci) + SIGFRAME_FPREGSAVE_OFF
1431 + ireg * SIGFRAME_REG_SIZE;
1432 get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
1433 }
1434 get_frame_saved_regs (fci)[PC_REGNUM] = get_frame_base (fci) + SIGFRAME_PC_OFF;
1435 return;
1436 }
1437
1438 proc_desc = get_frame_extra_info (fci)->proc_desc;
1439 if (proc_desc == NULL)
1440 /* I'm not sure how/whether this can happen. Normally when we can't
1441 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1442 and set the saved_regs right away. */
1443 return;
1444
1445 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1446 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1447 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1448
1449 if ( /* In any frame other than the innermost or a frame interrupted by
1450 a signal, we assume that all registers have been saved.
1451 This assumes that all register saves in a function happen before
1452 the first function call. */
1453 (get_next_frame (fci) == NULL
1454 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1455
1456 /* In a dummy frame we know exactly where things are saved. */
1457 && !PROC_DESC_IS_DUMMY (proc_desc)
1458
1459 /* Don't bother unless we are inside a function prologue. Outside the
1460 prologue, we know where everything is. */
1461
1462 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1463
1464 /* Not sure exactly what kernel_trap means, but if it means
1465 the kernel saves the registers without a prologue doing it,
1466 we better not examine the prologue to see whether registers
1467 have been saved yet. */
1468 && !kernel_trap)
1469 {
1470 /* We need to figure out whether the registers that the proc_desc
1471 claims are saved have been saved yet. */
1472
1473 CORE_ADDR addr;
1474
1475 /* Bitmasks; set if we have found a save for the register. */
1476 unsigned long gen_save_found = 0;
1477 unsigned long float_save_found = 0;
1478 int instlen;
1479
1480 /* If the address is odd, assume this is MIPS16 code. */
1481 addr = PROC_LOW_ADDR (proc_desc);
1482 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1483
1484 /* Scan through this function's instructions preceding the current
1485 PC, and look for those that save registers. */
1486 while (addr < get_frame_pc (fci))
1487 {
1488 inst = mips_fetch_instruction (addr);
1489 if (pc_is_mips16 (addr))
1490 mips16_decode_reg_save (inst, &gen_save_found);
1491 else
1492 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1493 addr += instlen;
1494 }
1495 gen_mask = gen_save_found;
1496 float_mask = float_save_found;
1497 }
1498
1499 /* Fill in the offsets for the registers which gen_mask says
1500 were saved. */
1501 reg_position = get_frame_base (fci) + PROC_REG_OFFSET (proc_desc);
1502 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1503 if (gen_mask & 0x80000000)
1504 {
1505 get_frame_saved_regs (fci)[ireg] = reg_position;
1506 reg_position -= MIPS_SAVED_REGSIZE;
1507 }
1508
1509 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1510 of that normally used by gcc. Therefore, we have to fetch the first
1511 instruction of the function, and if it's an entry instruction that
1512 saves $s0 or $s1, correct their saved addresses. */
1513 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1514 {
1515 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1516 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1517 {
1518 int reg;
1519 int sreg_count = (inst >> 6) & 3;
1520
1521 /* Check if the ra register was pushed on the stack. */
1522 reg_position = get_frame_base (fci) + PROC_REG_OFFSET (proc_desc);
1523 if (inst & 0x20)
1524 reg_position -= MIPS_SAVED_REGSIZE;
1525
1526 /* Check if the s0 and s1 registers were pushed on the stack. */
1527 for (reg = 16; reg < sreg_count + 16; reg++)
1528 {
1529 get_frame_saved_regs (fci)[reg] = reg_position;
1530 reg_position -= MIPS_SAVED_REGSIZE;
1531 }
1532 }
1533 }
1534
1535 /* Fill in the offsets for the registers which float_mask says
1536 were saved. */
1537 reg_position = get_frame_base (fci) + PROC_FREG_OFFSET (proc_desc);
1538
1539 /* Apparently, the freg_offset gives the offset to the first 64 bit
1540 saved.
1541
1542 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1543 designates the first saved 64 bit register.
1544
1545 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1546 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1547 FREG_OFFSET, designates the address of the lower register of the
1548 register pair. Adjust the offset so that it designates the upper
1549 register of the pair -- i.e., the address of the first saved 32
1550 bit register. */
1551
1552 if (MIPS_SAVED_REGSIZE == 4)
1553 reg_position += MIPS_SAVED_REGSIZE;
1554
1555 /* Fill in the offsets for the float registers which float_mask says
1556 were saved. */
1557 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1558 if (float_mask & 0x80000000)
1559 {
1560 get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
1561 reg_position -= MIPS_SAVED_REGSIZE;
1562 }
1563
1564 get_frame_saved_regs (fci)[PC_REGNUM] = get_frame_saved_regs (fci)[RA_REGNUM];
1565 }
1566
1567 /* Set up the 'saved_regs' array. This is a data structure containing
1568 the addresses on the stack where each register has been saved, for
1569 each stack frame. Registers that have not been saved will have
1570 zero here. The stack pointer register is special: rather than the
1571 address where the stack register has been saved, saved_regs[SP_REGNUM]
1572 will have the actual value of the previous frame's stack register. */
1573
1574 static void
1575 mips_frame_init_saved_regs (struct frame_info *frame)
1576 {
1577 if (get_frame_saved_regs (frame) == NULL)
1578 {
1579 mips_find_saved_regs (frame);
1580 }
1581 get_frame_saved_regs (frame)[SP_REGNUM] = get_frame_base (frame);
1582 }
1583
1584 static CORE_ADDR
1585 read_next_frame_reg (struct frame_info *fi, int regno)
1586 {
1587 int optimized;
1588 CORE_ADDR addr;
1589 int realnum;
1590 enum lval_type lval;
1591 void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1592 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1593 raw_buffer);
1594 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1595 should have a pseudo register range that correspons to the ABI's,
1596 rather than the ISA's, view of registers. These registers would
1597 then implicitly describe their size and hence could be used
1598 without the below munging. */
1599 if (lval == lval_memory)
1600 {
1601 if (regno < 32)
1602 {
1603 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1604 saved. */
1605 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1606 }
1607 }
1608
1609 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
1610 }
1611
1612 /* mips_addr_bits_remove - remove useless address bits */
1613
1614 static CORE_ADDR
1615 mips_addr_bits_remove (CORE_ADDR addr)
1616 {
1617 if (GDB_TARGET_IS_MIPS64)
1618 {
1619 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1620 {
1621 /* This hack is a work-around for existing boards using
1622 PMON, the simulator, and any other 64-bit targets that
1623 doesn't have true 64-bit addressing. On these targets,
1624 the upper 32 bits of addresses are ignored by the
1625 hardware. Thus, the PC or SP are likely to have been
1626 sign extended to all 1s by instruction sequences that
1627 load 32-bit addresses. For example, a typical piece of
1628 code that loads an address is this:
1629 lui $r2, <upper 16 bits>
1630 ori $r2, <lower 16 bits>
1631 But the lui sign-extends the value such that the upper 32
1632 bits may be all 1s. The workaround is simply to mask off
1633 these bits. In the future, gcc may be changed to support
1634 true 64-bit addressing, and this masking will have to be
1635 disabled. */
1636 addr &= (CORE_ADDR) 0xffffffff;
1637 }
1638 }
1639 else if (mips_mask_address_p ())
1640 {
1641 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1642 masking off bits, instead, the actual target should be asking
1643 for the address to be converted to a valid pointer. */
1644 /* Even when GDB is configured for some 32-bit targets
1645 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1646 so CORE_ADDR is 64 bits. So we still have to mask off
1647 useless bits from addresses. */
1648 addr &= (CORE_ADDR) 0xffffffff;
1649 }
1650 return addr;
1651 }
1652
1653 /* mips_software_single_step() is called just before we want to resume
1654 the inferior, if we want to single-step it but there is no hardware
1655 or kernel single-step support (MIPS on GNU/Linux for example). We find
1656 the target of the coming instruction and breakpoint it.
1657
1658 single_step is also called just after the inferior stops. If we had
1659 set up a simulated single-step, we undo our damage. */
1660
1661 void
1662 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1663 {
1664 static CORE_ADDR next_pc;
1665 typedef char binsn_quantum[BREAKPOINT_MAX];
1666 static binsn_quantum break_mem;
1667 CORE_ADDR pc;
1668
1669 if (insert_breakpoints_p)
1670 {
1671 pc = read_register (PC_REGNUM);
1672 next_pc = mips_next_pc (pc);
1673
1674 target_insert_breakpoint (next_pc, break_mem);
1675 }
1676 else
1677 target_remove_breakpoint (next_pc, break_mem);
1678 }
1679
1680 static CORE_ADDR
1681 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1682 {
1683 CORE_ADDR pc, tmp;
1684
1685 pc = ((fromleaf)
1686 ? SAVED_PC_AFTER_CALL (get_next_frame (prev))
1687 : get_next_frame (prev)
1688 ? FRAME_SAVED_PC (get_next_frame (prev))
1689 : read_pc ());
1690 tmp = SKIP_TRAMPOLINE_CODE (pc);
1691 return tmp ? tmp : pc;
1692 }
1693
1694
1695 static CORE_ADDR
1696 mips_frame_saved_pc (struct frame_info *frame)
1697 {
1698 CORE_ADDR saved_pc;
1699 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
1700 /* We have to get the saved pc from the sigcontext
1701 if it is a signal handler frame. */
1702 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
1703 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1704
1705 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1706 {
1707 LONGEST tmp;
1708 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1709 saved_pc = tmp;
1710 }
1711 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1712 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1713 else
1714 saved_pc = read_next_frame_reg (frame, pcreg);
1715
1716 return ADDR_BITS_REMOVE (saved_pc);
1717 }
1718
1719 static struct mips_extra_func_info temp_proc_desc;
1720
1721 /* This hack will go away once the get_prev_frame() code has been
1722 modified to set the frame's type first. That is BEFORE init extra
1723 frame info et.al. is called. This is because it will become
1724 possible to skip the init extra info call for sigtramp and dummy
1725 frames. */
1726 static CORE_ADDR *temp_saved_regs;
1727
1728 /* Set a register's saved stack address in temp_saved_regs. If an address
1729 has already been set for this register, do nothing; this way we will
1730 only recognize the first save of a given register in a function prologue.
1731 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1732
1733 static void
1734 set_reg_offset (int regno, CORE_ADDR offset)
1735 {
1736 if (temp_saved_regs[regno] == 0)
1737 temp_saved_regs[regno] = offset;
1738 }
1739
1740
1741 /* Test whether the PC points to the return instruction at the
1742 end of a function. */
1743
1744 static int
1745 mips_about_to_return (CORE_ADDR pc)
1746 {
1747 if (pc_is_mips16 (pc))
1748 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1749 generates a "jr $ra"; other times it generates code to load
1750 the return address from the stack to an accessible register (such
1751 as $a3), then a "jr" using that register. This second case
1752 is almost impossible to distinguish from an indirect jump
1753 used for switch statements, so we don't even try. */
1754 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1755 else
1756 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1757 }
1758
1759
1760 /* This fencepost looks highly suspicious to me. Removing it also
1761 seems suspicious as it could affect remote debugging across serial
1762 lines. */
1763
1764 static CORE_ADDR
1765 heuristic_proc_start (CORE_ADDR pc)
1766 {
1767 CORE_ADDR start_pc;
1768 CORE_ADDR fence;
1769 int instlen;
1770 int seen_adjsp = 0;
1771
1772 pc = ADDR_BITS_REMOVE (pc);
1773 start_pc = pc;
1774 fence = start_pc - heuristic_fence_post;
1775 if (start_pc == 0)
1776 return 0;
1777
1778 if (heuristic_fence_post == UINT_MAX
1779 || fence < VM_MIN_ADDRESS)
1780 fence = VM_MIN_ADDRESS;
1781
1782 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1783
1784 /* search back for previous return */
1785 for (start_pc -= instlen;; start_pc -= instlen)
1786 if (start_pc < fence)
1787 {
1788 /* It's not clear to me why we reach this point when
1789 stop_soon_quietly, but with this test, at least we
1790 don't print out warnings for every child forked (eg, on
1791 decstation). 22apr93 rich@cygnus.com. */
1792 if (!stop_soon_quietly)
1793 {
1794 static int blurb_printed = 0;
1795
1796 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1797 paddr_nz (pc));
1798
1799 if (!blurb_printed)
1800 {
1801 /* This actually happens frequently in embedded
1802 development, when you first connect to a board
1803 and your stack pointer and pc are nowhere in
1804 particular. This message needs to give people
1805 in that situation enough information to
1806 determine that it's no big deal. */
1807 printf_filtered ("\n\
1808 GDB is unable to find the start of the function at 0x%s\n\
1809 and thus can't determine the size of that function's stack frame.\n\
1810 This means that GDB may be unable to access that stack frame, or\n\
1811 the frames below it.\n\
1812 This problem is most likely caused by an invalid program counter or\n\
1813 stack pointer.\n\
1814 However, if you think GDB should simply search farther back\n\
1815 from 0x%s for code which looks like the beginning of a\n\
1816 function, you can increase the range of the search using the `set\n\
1817 heuristic-fence-post' command.\n",
1818 paddr_nz (pc), paddr_nz (pc));
1819 blurb_printed = 1;
1820 }
1821 }
1822
1823 return 0;
1824 }
1825 else if (pc_is_mips16 (start_pc))
1826 {
1827 unsigned short inst;
1828
1829 /* On MIPS16, any one of the following is likely to be the
1830 start of a function:
1831 entry
1832 addiu sp,-n
1833 daddiu sp,-n
1834 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1835 inst = mips_fetch_instruction (start_pc);
1836 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1837 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1838 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1839 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1840 break;
1841 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1842 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1843 seen_adjsp = 1;
1844 else
1845 seen_adjsp = 0;
1846 }
1847 else if (mips_about_to_return (start_pc))
1848 {
1849 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1850 break;
1851 }
1852
1853 return start_pc;
1854 }
1855
1856 /* Fetch the immediate value from a MIPS16 instruction.
1857 If the previous instruction was an EXTEND, use it to extend
1858 the upper bits of the immediate value. This is a helper function
1859 for mips16_heuristic_proc_desc. */
1860
1861 static int
1862 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1863 unsigned short inst, /* current instruction */
1864 int nbits, /* number of bits in imm field */
1865 int scale, /* scale factor to be applied to imm */
1866 int is_signed) /* is the imm field signed? */
1867 {
1868 int offset;
1869
1870 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1871 {
1872 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1873 if (offset & 0x8000) /* check for negative extend */
1874 offset = 0 - (0x10000 - (offset & 0xffff));
1875 return offset | (inst & 0x1f);
1876 }
1877 else
1878 {
1879 int max_imm = 1 << nbits;
1880 int mask = max_imm - 1;
1881 int sign_bit = max_imm >> 1;
1882
1883 offset = inst & mask;
1884 if (is_signed && (offset & sign_bit))
1885 offset = 0 - (max_imm - offset);
1886 return offset * scale;
1887 }
1888 }
1889
1890
1891 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1892 stream from start_pc to limit_pc. */
1893
1894 static void
1895 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1896 struct frame_info *next_frame, CORE_ADDR sp)
1897 {
1898 CORE_ADDR cur_pc;
1899 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1900 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1901 unsigned inst = 0; /* current instruction */
1902 unsigned entry_inst = 0; /* the entry instruction */
1903 int reg, offset;
1904
1905 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1906 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1907
1908 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1909 {
1910 /* Save the previous instruction. If it's an EXTEND, we'll extract
1911 the immediate offset extension from it in mips16_get_imm. */
1912 prev_inst = inst;
1913
1914 /* Fetch and decode the instruction. */
1915 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1916 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1917 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1918 {
1919 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1920 if (offset < 0) /* negative stack adjustment? */
1921 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1922 else
1923 /* Exit loop if a positive stack adjustment is found, which
1924 usually means that the stack cleanup code in the function
1925 epilogue is reached. */
1926 break;
1927 }
1928 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1929 {
1930 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1931 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1932 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1933 set_reg_offset (reg, sp + offset);
1934 }
1935 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1936 {
1937 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1938 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1939 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1940 set_reg_offset (reg, sp + offset);
1941 }
1942 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1943 {
1944 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1945 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1946 set_reg_offset (RA_REGNUM, sp + offset);
1947 }
1948 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1949 {
1950 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1951 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1952 set_reg_offset (RA_REGNUM, sp + offset);
1953 }
1954 else if (inst == 0x673d) /* move $s1, $sp */
1955 {
1956 frame_addr = sp;
1957 PROC_FRAME_REG (&temp_proc_desc) = 17;
1958 }
1959 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1960 {
1961 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1962 frame_addr = sp + offset;
1963 PROC_FRAME_REG (&temp_proc_desc) = 17;
1964 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1965 }
1966 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1967 {
1968 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1969 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1970 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1971 set_reg_offset (reg, frame_addr + offset);
1972 }
1973 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1974 {
1975 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1976 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1977 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1978 set_reg_offset (reg, frame_addr + offset);
1979 }
1980 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1981 entry_inst = inst; /* save for later processing */
1982 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1983 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1984 }
1985
1986 /* The entry instruction is typically the first instruction in a function,
1987 and it stores registers at offsets relative to the value of the old SP
1988 (before the prologue). But the value of the sp parameter to this
1989 function is the new SP (after the prologue has been executed). So we
1990 can't calculate those offsets until we've seen the entire prologue,
1991 and can calculate what the old SP must have been. */
1992 if (entry_inst != 0)
1993 {
1994 int areg_count = (entry_inst >> 8) & 7;
1995 int sreg_count = (entry_inst >> 6) & 3;
1996
1997 /* The entry instruction always subtracts 32 from the SP. */
1998 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1999
2000 /* Now we can calculate what the SP must have been at the
2001 start of the function prologue. */
2002 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2003
2004 /* Check if a0-a3 were saved in the caller's argument save area. */
2005 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2006 {
2007 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2008 set_reg_offset (reg, sp + offset);
2009 offset += MIPS_SAVED_REGSIZE;
2010 }
2011
2012 /* Check if the ra register was pushed on the stack. */
2013 offset = -4;
2014 if (entry_inst & 0x20)
2015 {
2016 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2017 set_reg_offset (RA_REGNUM, sp + offset);
2018 offset -= MIPS_SAVED_REGSIZE;
2019 }
2020
2021 /* Check if the s0 and s1 registers were pushed on the stack. */
2022 for (reg = 16; reg < sreg_count + 16; reg++)
2023 {
2024 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2025 set_reg_offset (reg, sp + offset);
2026 offset -= MIPS_SAVED_REGSIZE;
2027 }
2028 }
2029 }
2030
2031 static void
2032 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2033 struct frame_info *next_frame, CORE_ADDR sp)
2034 {
2035 CORE_ADDR cur_pc;
2036 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2037 restart:
2038 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2039 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2040 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2041 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2042 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2043 {
2044 unsigned long inst, high_word, low_word;
2045 int reg;
2046
2047 /* Fetch the instruction. */
2048 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2049
2050 /* Save some code by pre-extracting some useful fields. */
2051 high_word = (inst >> 16) & 0xffff;
2052 low_word = inst & 0xffff;
2053 reg = high_word & 0x1f;
2054
2055 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2056 || high_word == 0x23bd /* addi $sp,$sp,-i */
2057 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2058 {
2059 if (low_word & 0x8000) /* negative stack adjustment? */
2060 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2061 else
2062 /* Exit loop if a positive stack adjustment is found, which
2063 usually means that the stack cleanup code in the function
2064 epilogue is reached. */
2065 break;
2066 }
2067 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2068 {
2069 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2070 set_reg_offset (reg, sp + low_word);
2071 }
2072 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2073 {
2074 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2075 but the register size used is only 32 bits. Make the address
2076 for the saved register point to the lower 32 bits. */
2077 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2078 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2079 }
2080 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2081 {
2082 /* Old gcc frame, r30 is virtual frame pointer. */
2083 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2084 frame_addr = sp + low_word;
2085 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2086 {
2087 unsigned alloca_adjust;
2088 PROC_FRAME_REG (&temp_proc_desc) = 30;
2089 frame_addr = read_next_frame_reg (next_frame, 30);
2090 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2091 if (alloca_adjust > 0)
2092 {
2093 /* FP > SP + frame_size. This may be because
2094 * of an alloca or somethings similar.
2095 * Fix sp to "pre-alloca" value, and try again.
2096 */
2097 sp += alloca_adjust;
2098 goto restart;
2099 }
2100 }
2101 }
2102 /* move $30,$sp. With different versions of gas this will be either
2103 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2104 Accept any one of these. */
2105 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2106 {
2107 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2108 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2109 {
2110 unsigned alloca_adjust;
2111 PROC_FRAME_REG (&temp_proc_desc) = 30;
2112 frame_addr = read_next_frame_reg (next_frame, 30);
2113 alloca_adjust = (unsigned) (frame_addr - sp);
2114 if (alloca_adjust > 0)
2115 {
2116 /* FP > SP + frame_size. This may be because
2117 * of an alloca or somethings similar.
2118 * Fix sp to "pre-alloca" value, and try again.
2119 */
2120 sp += alloca_adjust;
2121 goto restart;
2122 }
2123 }
2124 }
2125 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2126 {
2127 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2128 set_reg_offset (reg, frame_addr + low_word);
2129 }
2130 }
2131 }
2132
2133 static mips_extra_func_info_t
2134 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2135 struct frame_info *next_frame, int cur_frame)
2136 {
2137 CORE_ADDR sp;
2138
2139 if (cur_frame)
2140 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2141 else
2142 sp = 0;
2143
2144 if (start_pc == 0)
2145 return NULL;
2146 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2147 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2148 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2149 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2150 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2151 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2152
2153 if (start_pc + 200 < limit_pc)
2154 limit_pc = start_pc + 200;
2155 if (pc_is_mips16 (start_pc))
2156 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2157 else
2158 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2159 return &temp_proc_desc;
2160 }
2161
2162 struct mips_objfile_private
2163 {
2164 bfd_size_type size;
2165 char *contents;
2166 };
2167
2168 /* Global used to communicate between non_heuristic_proc_desc and
2169 compare_pdr_entries within qsort (). */
2170 static bfd *the_bfd;
2171
2172 static int
2173 compare_pdr_entries (const void *a, const void *b)
2174 {
2175 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2176 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2177
2178 if (lhs < rhs)
2179 return -1;
2180 else if (lhs == rhs)
2181 return 0;
2182 else
2183 return 1;
2184 }
2185
2186 static mips_extra_func_info_t
2187 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2188 {
2189 CORE_ADDR startaddr;
2190 mips_extra_func_info_t proc_desc;
2191 struct block *b = block_for_pc (pc);
2192 struct symbol *sym;
2193 struct obj_section *sec;
2194 struct mips_objfile_private *priv;
2195
2196 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2197 return NULL;
2198
2199 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2200 if (addrptr)
2201 *addrptr = startaddr;
2202
2203 priv = NULL;
2204
2205 sec = find_pc_section (pc);
2206 if (sec != NULL)
2207 {
2208 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2209
2210 /* Search the ".pdr" section generated by GAS. This includes most of
2211 the information normally found in ECOFF PDRs. */
2212
2213 the_bfd = sec->objfile->obfd;
2214 if (priv == NULL
2215 && (the_bfd->format == bfd_object
2216 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2217 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2218 {
2219 /* Right now GAS only outputs the address as a four-byte sequence.
2220 This means that we should not bother with this method on 64-bit
2221 targets (until that is fixed). */
2222
2223 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2224 sizeof (struct mips_objfile_private));
2225 priv->size = 0;
2226 sec->objfile->obj_private = priv;
2227 }
2228 else if (priv == NULL)
2229 {
2230 asection *bfdsec;
2231
2232 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2233 sizeof (struct mips_objfile_private));
2234
2235 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2236 if (bfdsec != NULL)
2237 {
2238 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2239 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2240 priv->size);
2241 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2242 priv->contents, 0, priv->size);
2243
2244 /* In general, the .pdr section is sorted. However, in the
2245 presence of multiple code sections (and other corner cases)
2246 it can become unsorted. Sort it so that we can use a faster
2247 binary search. */
2248 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2249 }
2250 else
2251 priv->size = 0;
2252
2253 sec->objfile->obj_private = priv;
2254 }
2255 the_bfd = NULL;
2256
2257 if (priv->size != 0)
2258 {
2259 int low, mid, high;
2260 char *ptr;
2261
2262 low = 0;
2263 high = priv->size / 32;
2264
2265 do
2266 {
2267 CORE_ADDR pdr_pc;
2268
2269 mid = (low + high) / 2;
2270
2271 ptr = priv->contents + mid * 32;
2272 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2273 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2274 SECT_OFF_TEXT (sec->objfile));
2275 if (pdr_pc == startaddr)
2276 break;
2277 if (pdr_pc > startaddr)
2278 high = mid;
2279 else
2280 low = mid + 1;
2281 }
2282 while (low != high);
2283
2284 if (low != high)
2285 {
2286 struct symbol *sym = find_pc_function (pc);
2287
2288 /* Fill in what we need of the proc_desc. */
2289 proc_desc = (mips_extra_func_info_t)
2290 obstack_alloc (&sec->objfile->psymbol_obstack,
2291 sizeof (struct mips_extra_func_info));
2292 PROC_LOW_ADDR (proc_desc) = startaddr;
2293
2294 /* Only used for dummy frames. */
2295 PROC_HIGH_ADDR (proc_desc) = 0;
2296
2297 PROC_FRAME_OFFSET (proc_desc)
2298 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2299 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2300 ptr + 24);
2301 PROC_FRAME_ADJUST (proc_desc) = 0;
2302 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2303 ptr + 4);
2304 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2305 ptr + 12);
2306 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2307 ptr + 8);
2308 PROC_FREG_OFFSET (proc_desc)
2309 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2310 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2311 ptr + 28);
2312 proc_desc->pdr.isym = (long) sym;
2313
2314 return proc_desc;
2315 }
2316 }
2317 }
2318
2319 if (b == NULL)
2320 return NULL;
2321
2322 if (startaddr > BLOCK_START (b))
2323 {
2324 /* This is the "pathological" case referred to in a comment in
2325 print_frame_info. It might be better to move this check into
2326 symbol reading. */
2327 return NULL;
2328 }
2329
2330 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2331
2332 /* If we never found a PDR for this function in symbol reading, then
2333 examine prologues to find the information. */
2334 if (sym)
2335 {
2336 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2337 if (PROC_FRAME_REG (proc_desc) == -1)
2338 return NULL;
2339 else
2340 return proc_desc;
2341 }
2342 else
2343 return NULL;
2344 }
2345
2346
2347 static mips_extra_func_info_t
2348 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2349 {
2350 mips_extra_func_info_t proc_desc;
2351 CORE_ADDR startaddr = 0;
2352
2353 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2354
2355 if (proc_desc)
2356 {
2357 /* IF this is the topmost frame AND
2358 * (this proc does not have debugging information OR
2359 * the PC is in the procedure prologue)
2360 * THEN create a "heuristic" proc_desc (by analyzing
2361 * the actual code) to replace the "official" proc_desc.
2362 */
2363 if (next_frame == NULL)
2364 {
2365 struct symtab_and_line val;
2366 struct symbol *proc_symbol =
2367 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2368
2369 if (proc_symbol)
2370 {
2371 val = find_pc_line (BLOCK_START
2372 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2373 0);
2374 val.pc = val.end ? val.end : pc;
2375 }
2376 if (!proc_symbol || pc < val.pc)
2377 {
2378 mips_extra_func_info_t found_heuristic =
2379 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2380 pc, next_frame, cur_frame);
2381 if (found_heuristic)
2382 proc_desc = found_heuristic;
2383 }
2384 }
2385 }
2386 else
2387 {
2388 /* Is linked_proc_desc_table really necessary? It only seems to be used
2389 by procedure call dummys. However, the procedures being called ought
2390 to have their own proc_descs, and even if they don't,
2391 heuristic_proc_desc knows how to create them! */
2392
2393 register struct linked_proc_info *link;
2394
2395 for (link = linked_proc_desc_table; link; link = link->next)
2396 if (PROC_LOW_ADDR (&link->info) <= pc
2397 && PROC_HIGH_ADDR (&link->info) > pc)
2398 return &link->info;
2399
2400 if (startaddr == 0)
2401 startaddr = heuristic_proc_start (pc);
2402
2403 proc_desc =
2404 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2405 }
2406 return proc_desc;
2407 }
2408
2409 static CORE_ADDR
2410 get_frame_pointer (struct frame_info *frame,
2411 mips_extra_func_info_t proc_desc)
2412 {
2413 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2414 PROC_FRAME_REG (proc_desc)) +
2415 PROC_FRAME_OFFSET (proc_desc) -
2416 PROC_FRAME_ADJUST (proc_desc));
2417 }
2418
2419 static mips_extra_func_info_t cached_proc_desc;
2420
2421 static CORE_ADDR
2422 mips_frame_chain (struct frame_info *frame)
2423 {
2424 mips_extra_func_info_t proc_desc;
2425 CORE_ADDR tmp;
2426 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2427
2428 if (saved_pc == 0 || inside_entry_file (saved_pc))
2429 return 0;
2430
2431 /* Check if the PC is inside a call stub. If it is, fetch the
2432 PC of the caller of that stub. */
2433 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2434 saved_pc = tmp;
2435
2436 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2437 {
2438 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2439 is well, frame->frame the bottom of the current frame will
2440 contain that value. */
2441 return get_frame_base (frame);
2442 }
2443
2444 /* Look up the procedure descriptor for this PC. */
2445 proc_desc = find_proc_desc (saved_pc, frame, 1);
2446 if (!proc_desc)
2447 return 0;
2448
2449 cached_proc_desc = proc_desc;
2450
2451 /* If no frame pointer and frame size is zero, we must be at end
2452 of stack (or otherwise hosed). If we don't check frame size,
2453 we loop forever if we see a zero size frame. */
2454 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2455 && PROC_FRAME_OFFSET (proc_desc) == 0
2456 /* The previous frame from a sigtramp frame might be frameless
2457 and have frame size zero. */
2458 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2459 /* For a generic dummy frame, let get_frame_pointer() unwind a
2460 register value saved as part of the dummy frame call. */
2461 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2462 return 0;
2463 else
2464 return get_frame_pointer (frame, proc_desc);
2465 }
2466
2467 static void
2468 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2469 {
2470 int regnum;
2471 mips_extra_func_info_t proc_desc;
2472
2473 if (get_frame_type (fci) == DUMMY_FRAME)
2474 return;
2475
2476 /* Use proc_desc calculated in frame_chain */
2477 proc_desc =
2478 get_next_frame (fci)
2479 ? cached_proc_desc
2480 : find_proc_desc (get_frame_pc (fci), get_next_frame (fci), 1);
2481
2482 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2483
2484 deprecated_set_frame_saved_regs_hack (fci, NULL);
2485 get_frame_extra_info (fci)->proc_desc =
2486 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2487 if (proc_desc)
2488 {
2489 /* Fixup frame-pointer - only needed for top frame */
2490 /* This may not be quite right, if proc has a real frame register.
2491 Get the value of the frame relative sp, procedure might have been
2492 interrupted by a signal at it's very start. */
2493 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2494 && !PROC_DESC_IS_DUMMY (proc_desc))
2495 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM));
2496 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2497 /* Do not ``fix'' fci->frame. It will have the value of the
2498 generic dummy frame's top-of-stack (since the draft
2499 fci->frame is obtained by returning the unwound stack
2500 pointer) and that is what we want. That way the fci->frame
2501 value will match the top-of-stack value that was saved as
2502 part of the dummy frames data. */
2503 /* Do nothing. */;
2504 else
2505 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2506
2507 if (proc_desc == &temp_proc_desc)
2508 {
2509 char *name;
2510
2511 /* Do not set the saved registers for a sigtramp frame,
2512 mips_find_saved_registers will do that for us. We can't
2513 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2514 yet set. */
2515 /* FIXME: cagney/2002-11-18: This problem will go away once
2516 frame.c:get_prev_frame() is modified to set the frame's
2517 type before calling functions like this. */
2518 find_pc_partial_function (get_frame_pc (fci), &name,
2519 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2520 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2521 {
2522 frame_saved_regs_zalloc (fci);
2523 memcpy (get_frame_saved_regs (fci), temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2524 get_frame_saved_regs (fci)[PC_REGNUM]
2525 = get_frame_saved_regs (fci)[RA_REGNUM];
2526 /* Set value of previous frame's stack pointer. Remember that
2527 saved_regs[SP_REGNUM] is special in that it contains the
2528 value of the stack pointer register. The other saved_regs
2529 values are addresses (in the inferior) at which a given
2530 register's value may be found. */
2531 get_frame_saved_regs (fci)[SP_REGNUM] = get_frame_base (fci);
2532 }
2533 }
2534
2535 /* hack: if argument regs are saved, guess these contain args */
2536 /* assume we can't tell how many args for now */
2537 get_frame_extra_info (fci)->num_args = -1;
2538 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2539 {
2540 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2541 {
2542 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2543 break;
2544 }
2545 }
2546 }
2547 }
2548
2549 /* MIPS stack frames are almost impenetrable. When execution stops,
2550 we basically have to look at symbol information for the function
2551 that we stopped in, which tells us *which* register (if any) is
2552 the base of the frame pointer, and what offset from that register
2553 the frame itself is at.
2554
2555 This presents a problem when trying to examine a stack in memory
2556 (that isn't executing at the moment), using the "frame" command. We
2557 don't have a PC, nor do we have any registers except SP.
2558
2559 This routine takes two arguments, SP and PC, and tries to make the
2560 cached frames look as if these two arguments defined a frame on the
2561 cache. This allows the rest of info frame to extract the important
2562 arguments without difficulty. */
2563
2564 struct frame_info *
2565 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2566 {
2567 if (argc != 2)
2568 error ("MIPS frame specifications require two arguments: sp and pc");
2569
2570 return create_new_frame (argv[0], argv[1]);
2571 }
2572
2573 /* According to the current ABI, should the type be passed in a
2574 floating-point register (assuming that there is space)? When there
2575 is no FPU, FP are not even considered as possibile candidates for
2576 FP registers and, consequently this returns false - forces FP
2577 arguments into integer registers. */
2578
2579 static int
2580 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2581 {
2582 return ((typecode == TYPE_CODE_FLT
2583 || (MIPS_EABI
2584 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2585 && TYPE_NFIELDS (arg_type) == 1
2586 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2587 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2588 }
2589
2590 /* On o32, argument passing in GPRs depends on the alignment of the type being
2591 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2592
2593 static int
2594 mips_type_needs_double_align (struct type *type)
2595 {
2596 enum type_code typecode = TYPE_CODE (type);
2597
2598 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2599 return 1;
2600 else if (typecode == TYPE_CODE_STRUCT)
2601 {
2602 if (TYPE_NFIELDS (type) < 1)
2603 return 0;
2604 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2605 }
2606 else if (typecode == TYPE_CODE_UNION)
2607 {
2608 int i, n;
2609
2610 n = TYPE_NFIELDS (type);
2611 for (i = 0; i < n; i++)
2612 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2613 return 1;
2614 return 0;
2615 }
2616 return 0;
2617 }
2618
2619 /* Macros to round N up or down to the next A boundary;
2620 A must be a power of two. */
2621
2622 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2623 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2624
2625 /* Adjust the address downward (direction of stack growth) so that it
2626 is correctly aligned for a new stack frame. */
2627 static CORE_ADDR
2628 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2629 {
2630 return ROUND_DOWN (addr, 16);
2631 }
2632
2633 static CORE_ADDR
2634 mips_eabi_push_arguments (int nargs,
2635 struct value **args,
2636 CORE_ADDR sp,
2637 int struct_return,
2638 CORE_ADDR struct_addr)
2639 {
2640 int argreg;
2641 int float_argreg;
2642 int argnum;
2643 int len = 0;
2644 int stack_offset = 0;
2645
2646 /* First ensure that the stack and structure return address (if any)
2647 are properly aligned. The stack has to be at least 64-bit
2648 aligned even on 32-bit machines, because doubles must be 64-bit
2649 aligned. For n32 and n64, stack frames need to be 128-bit
2650 aligned, so we round to this widest known alignment. */
2651
2652 sp = ROUND_DOWN (sp, 16);
2653 struct_addr = ROUND_DOWN (struct_addr, 16);
2654
2655 /* Now make space on the stack for the args. We allocate more
2656 than necessary for EABI, because the first few arguments are
2657 passed in registers, but that's OK. */
2658 for (argnum = 0; argnum < nargs; argnum++)
2659 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2660 MIPS_STACK_ARGSIZE);
2661 sp -= ROUND_UP (len, 16);
2662
2663 if (mips_debug)
2664 fprintf_unfiltered (gdb_stdlog,
2665 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
2666 paddr_nz (sp), ROUND_UP (len, 16));
2667
2668 /* Initialize the integer and float register pointers. */
2669 argreg = A0_REGNUM;
2670 float_argreg = FPA0_REGNUM;
2671
2672 /* The struct_return pointer occupies the first parameter-passing reg. */
2673 if (struct_return)
2674 {
2675 if (mips_debug)
2676 fprintf_unfiltered (gdb_stdlog,
2677 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
2678 argreg, paddr_nz (struct_addr));
2679 write_register (argreg++, struct_addr);
2680 }
2681
2682 /* Now load as many as possible of the first arguments into
2683 registers, and push the rest onto the stack. Loop thru args
2684 from first to last. */
2685 for (argnum = 0; argnum < nargs; argnum++)
2686 {
2687 char *val;
2688 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2689 struct value *arg = args[argnum];
2690 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2691 int len = TYPE_LENGTH (arg_type);
2692 enum type_code typecode = TYPE_CODE (arg_type);
2693
2694 if (mips_debug)
2695 fprintf_unfiltered (gdb_stdlog,
2696 "mips_eabi_push_arguments: %d len=%d type=%d",
2697 argnum + 1, len, (int) typecode);
2698
2699 /* The EABI passes structures that do not fit in a register by
2700 reference. */
2701 if (len > MIPS_SAVED_REGSIZE
2702 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2703 {
2704 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2705 typecode = TYPE_CODE_PTR;
2706 len = MIPS_SAVED_REGSIZE;
2707 val = valbuf;
2708 if (mips_debug)
2709 fprintf_unfiltered (gdb_stdlog, " push");
2710 }
2711 else
2712 val = (char *) VALUE_CONTENTS (arg);
2713
2714 /* 32-bit ABIs always start floating point arguments in an
2715 even-numbered floating point register. Round the FP register
2716 up before the check to see if there are any FP registers
2717 left. Non MIPS_EABI targets also pass the FP in the integer
2718 registers so also round up normal registers. */
2719 if (!FP_REGISTER_DOUBLE
2720 && fp_register_arg_p (typecode, arg_type))
2721 {
2722 if ((float_argreg & 1))
2723 float_argreg++;
2724 }
2725
2726 /* Floating point arguments passed in registers have to be
2727 treated specially. On 32-bit architectures, doubles
2728 are passed in register pairs; the even register gets
2729 the low word, and the odd register gets the high word.
2730 On non-EABI processors, the first two floating point arguments are
2731 also copied to general registers, because MIPS16 functions
2732 don't use float registers for arguments. This duplication of
2733 arguments in general registers can't hurt non-MIPS16 functions
2734 because those registers are normally skipped. */
2735 /* MIPS_EABI squeezes a struct that contains a single floating
2736 point value into an FP register instead of pushing it onto the
2737 stack. */
2738 if (fp_register_arg_p (typecode, arg_type)
2739 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2740 {
2741 if (!FP_REGISTER_DOUBLE && len == 8)
2742 {
2743 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2744 unsigned long regval;
2745
2746 /* Write the low word of the double to the even register(s). */
2747 regval = extract_unsigned_integer (val + low_offset, 4);
2748 if (mips_debug)
2749 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2750 float_argreg, phex (regval, 4));
2751 write_register (float_argreg++, regval);
2752
2753 /* Write the high word of the double to the odd register(s). */
2754 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2755 if (mips_debug)
2756 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2757 float_argreg, phex (regval, 4));
2758 write_register (float_argreg++, regval);
2759 }
2760 else
2761 {
2762 /* This is a floating point value that fits entirely
2763 in a single register. */
2764 /* On 32 bit ABI's the float_argreg is further adjusted
2765 above to ensure that it is even register aligned. */
2766 LONGEST regval = extract_unsigned_integer (val, len);
2767 if (mips_debug)
2768 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2769 float_argreg, phex (regval, len));
2770 write_register (float_argreg++, regval);
2771 }
2772 }
2773 else
2774 {
2775 /* Copy the argument to general registers or the stack in
2776 register-sized pieces. Large arguments are split between
2777 registers and stack. */
2778 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2779 are treated specially: Irix cc passes them in registers
2780 where gcc sometimes puts them on the stack. For maximum
2781 compatibility, we will put them in both places. */
2782 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2783 (len % MIPS_SAVED_REGSIZE != 0));
2784
2785 /* Note: Floating-point values that didn't fit into an FP
2786 register are only written to memory. */
2787 while (len > 0)
2788 {
2789 /* Remember if the argument was written to the stack. */
2790 int stack_used_p = 0;
2791 int partial_len =
2792 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2793
2794 if (mips_debug)
2795 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2796 partial_len);
2797
2798 /* Write this portion of the argument to the stack. */
2799 if (argreg > MIPS_LAST_ARG_REGNUM
2800 || odd_sized_struct
2801 || fp_register_arg_p (typecode, arg_type))
2802 {
2803 /* Should shorter than int integer values be
2804 promoted to int before being stored? */
2805 int longword_offset = 0;
2806 CORE_ADDR addr;
2807 stack_used_p = 1;
2808 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2809 {
2810 if (MIPS_STACK_ARGSIZE == 8 &&
2811 (typecode == TYPE_CODE_INT ||
2812 typecode == TYPE_CODE_PTR ||
2813 typecode == TYPE_CODE_FLT) && len <= 4)
2814 longword_offset = MIPS_STACK_ARGSIZE - len;
2815 else if ((typecode == TYPE_CODE_STRUCT ||
2816 typecode == TYPE_CODE_UNION) &&
2817 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2818 longword_offset = MIPS_STACK_ARGSIZE - len;
2819 }
2820
2821 if (mips_debug)
2822 {
2823 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2824 paddr_nz (stack_offset));
2825 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2826 paddr_nz (longword_offset));
2827 }
2828
2829 addr = sp + stack_offset + longword_offset;
2830
2831 if (mips_debug)
2832 {
2833 int i;
2834 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2835 paddr_nz (addr));
2836 for (i = 0; i < partial_len; i++)
2837 {
2838 fprintf_unfiltered (gdb_stdlog, "%02x",
2839 val[i] & 0xff);
2840 }
2841 }
2842 write_memory (addr, val, partial_len);
2843 }
2844
2845 /* Note!!! This is NOT an else clause. Odd sized
2846 structs may go thru BOTH paths. Floating point
2847 arguments will not. */
2848 /* Write this portion of the argument to a general
2849 purpose register. */
2850 if (argreg <= MIPS_LAST_ARG_REGNUM
2851 && !fp_register_arg_p (typecode, arg_type))
2852 {
2853 LONGEST regval = extract_unsigned_integer (val, partial_len);
2854
2855 if (mips_debug)
2856 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2857 argreg,
2858 phex (regval, MIPS_SAVED_REGSIZE));
2859 write_register (argreg, regval);
2860 argreg++;
2861 }
2862
2863 len -= partial_len;
2864 val += partial_len;
2865
2866 /* Compute the the offset into the stack at which we
2867 will copy the next parameter.
2868
2869 In the new EABI (and the NABI32), the stack_offset
2870 only needs to be adjusted when it has been used. */
2871
2872 if (stack_used_p)
2873 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2874 }
2875 }
2876 if (mips_debug)
2877 fprintf_unfiltered (gdb_stdlog, "\n");
2878 }
2879
2880 /* Return adjusted stack pointer. */
2881 return sp;
2882 }
2883
2884 /* N32/N64 version of push_arguments. */
2885
2886 static CORE_ADDR
2887 mips_n32n64_push_arguments (int nargs,
2888 struct value **args,
2889 CORE_ADDR sp,
2890 int struct_return,
2891 CORE_ADDR struct_addr)
2892 {
2893 int argreg;
2894 int float_argreg;
2895 int argnum;
2896 int len = 0;
2897 int stack_offset = 0;
2898
2899 /* First ensure that the stack and structure return address (if any)
2900 are properly aligned. The stack has to be at least 64-bit
2901 aligned even on 32-bit machines, because doubles must be 64-bit
2902 aligned. For n32 and n64, stack frames need to be 128-bit
2903 aligned, so we round to this widest known alignment. */
2904
2905 sp = ROUND_DOWN (sp, 16);
2906 struct_addr = ROUND_DOWN (struct_addr, 16);
2907
2908 /* Now make space on the stack for the args. */
2909 for (argnum = 0; argnum < nargs; argnum++)
2910 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2911 MIPS_STACK_ARGSIZE);
2912 sp -= ROUND_UP (len, 16);
2913
2914 if (mips_debug)
2915 fprintf_unfiltered (gdb_stdlog,
2916 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2917 paddr_nz (sp), ROUND_UP (len, 16));
2918
2919 /* Initialize the integer and float register pointers. */
2920 argreg = A0_REGNUM;
2921 float_argreg = FPA0_REGNUM;
2922
2923 /* The struct_return pointer occupies the first parameter-passing reg. */
2924 if (struct_return)
2925 {
2926 if (mips_debug)
2927 fprintf_unfiltered (gdb_stdlog,
2928 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2929 argreg, paddr_nz (struct_addr));
2930 write_register (argreg++, struct_addr);
2931 }
2932
2933 /* Now load as many as possible of the first arguments into
2934 registers, and push the rest onto the stack. Loop thru args
2935 from first to last. */
2936 for (argnum = 0; argnum < nargs; argnum++)
2937 {
2938 char *val;
2939 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2940 struct value *arg = args[argnum];
2941 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2942 int len = TYPE_LENGTH (arg_type);
2943 enum type_code typecode = TYPE_CODE (arg_type);
2944
2945 if (mips_debug)
2946 fprintf_unfiltered (gdb_stdlog,
2947 "mips_n32n64_push_arguments: %d len=%d type=%d",
2948 argnum + 1, len, (int) typecode);
2949
2950 val = (char *) VALUE_CONTENTS (arg);
2951
2952 if (fp_register_arg_p (typecode, arg_type)
2953 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2954 {
2955 /* This is a floating point value that fits entirely
2956 in a single register. */
2957 /* On 32 bit ABI's the float_argreg is further adjusted
2958 above to ensure that it is even register aligned. */
2959 LONGEST regval = extract_unsigned_integer (val, len);
2960 if (mips_debug)
2961 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2962 float_argreg, phex (regval, len));
2963 write_register (float_argreg++, regval);
2964
2965 if (mips_debug)
2966 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2967 argreg, phex (regval, len));
2968 write_register (argreg, regval);
2969 argreg += 1;
2970 }
2971 else
2972 {
2973 /* Copy the argument to general registers or the stack in
2974 register-sized pieces. Large arguments are split between
2975 registers and stack. */
2976 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2977 are treated specially: Irix cc passes them in registers
2978 where gcc sometimes puts them on the stack. For maximum
2979 compatibility, we will put them in both places. */
2980 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2981 (len % MIPS_SAVED_REGSIZE != 0));
2982 /* Note: Floating-point values that didn't fit into an FP
2983 register are only written to memory. */
2984 while (len > 0)
2985 {
2986 /* Rememer if the argument was written to the stack. */
2987 int stack_used_p = 0;
2988 int partial_len = len < MIPS_SAVED_REGSIZE ?
2989 len : MIPS_SAVED_REGSIZE;
2990
2991 if (mips_debug)
2992 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2993 partial_len);
2994
2995 /* Write this portion of the argument to the stack. */
2996 if (argreg > MIPS_LAST_ARG_REGNUM
2997 || odd_sized_struct
2998 || fp_register_arg_p (typecode, arg_type))
2999 {
3000 /* Should shorter than int integer values be
3001 promoted to int before being stored? */
3002 int longword_offset = 0;
3003 CORE_ADDR addr;
3004 stack_used_p = 1;
3005 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3006 {
3007 if (MIPS_STACK_ARGSIZE == 8 &&
3008 (typecode == TYPE_CODE_INT ||
3009 typecode == TYPE_CODE_PTR ||
3010 typecode == TYPE_CODE_FLT) && len <= 4)
3011 longword_offset = MIPS_STACK_ARGSIZE - len;
3012 }
3013
3014 if (mips_debug)
3015 {
3016 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3017 paddr_nz (stack_offset));
3018 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3019 paddr_nz (longword_offset));
3020 }
3021
3022 addr = sp + stack_offset + longword_offset;
3023
3024 if (mips_debug)
3025 {
3026 int i;
3027 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3028 paddr_nz (addr));
3029 for (i = 0; i < partial_len; i++)
3030 {
3031 fprintf_unfiltered (gdb_stdlog, "%02x",
3032 val[i] & 0xff);
3033 }
3034 }
3035 write_memory (addr, val, partial_len);
3036 }
3037
3038 /* Note!!! This is NOT an else clause. Odd sized
3039 structs may go thru BOTH paths. Floating point
3040 arguments will not. */
3041 /* Write this portion of the argument to a general
3042 purpose register. */
3043 if (argreg <= MIPS_LAST_ARG_REGNUM
3044 && !fp_register_arg_p (typecode, arg_type))
3045 {
3046 LONGEST regval = extract_unsigned_integer (val, partial_len);
3047
3048 /* A non-floating-point argument being passed in a
3049 general register. If a struct or union, and if
3050 the remaining length is smaller than the register
3051 size, we have to adjust the register value on
3052 big endian targets.
3053
3054 It does not seem to be necessary to do the
3055 same for integral types.
3056
3057 cagney/2001-07-23: gdb/179: Also, GCC, when
3058 outputting LE O32 with sizeof (struct) <
3059 MIPS_SAVED_REGSIZE, generates a left shift as
3060 part of storing the argument in a register a
3061 register (the left shift isn't generated when
3062 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3063 is quite possible that this is GCC contradicting
3064 the LE/O32 ABI, GDB has not been adjusted to
3065 accommodate this. Either someone needs to
3066 demonstrate that the LE/O32 ABI specifies such a
3067 left shift OR this new ABI gets identified as
3068 such and GDB gets tweaked accordingly. */
3069
3070 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3071 && partial_len < MIPS_SAVED_REGSIZE
3072 && (typecode == TYPE_CODE_STRUCT ||
3073 typecode == TYPE_CODE_UNION))
3074 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3075 TARGET_CHAR_BIT);
3076
3077 if (mips_debug)
3078 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3079 argreg,
3080 phex (regval, MIPS_SAVED_REGSIZE));
3081 write_register (argreg, regval);
3082 argreg++;
3083 }
3084
3085 len -= partial_len;
3086 val += partial_len;
3087
3088 /* Compute the the offset into the stack at which we
3089 will copy the next parameter.
3090
3091 In N32 (N64?), the stack_offset only needs to be
3092 adjusted when it has been used. */
3093
3094 if (stack_used_p)
3095 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3096 }
3097 }
3098 if (mips_debug)
3099 fprintf_unfiltered (gdb_stdlog, "\n");
3100 }
3101
3102 /* Return adjusted stack pointer. */
3103 return sp;
3104 }
3105
3106 /* O32 version of push_arguments. */
3107
3108 static CORE_ADDR
3109 mips_o32_push_arguments (int nargs,
3110 struct value **args,
3111 CORE_ADDR sp,
3112 int struct_return,
3113 CORE_ADDR struct_addr)
3114 {
3115 int argreg;
3116 int float_argreg;
3117 int argnum;
3118 int len = 0;
3119 int stack_offset = 0;
3120
3121 /* First ensure that the stack and structure return address (if any)
3122 are properly aligned. The stack has to be at least 64-bit
3123 aligned even on 32-bit machines, because doubles must be 64-bit
3124 aligned. For n32 and n64, stack frames need to be 128-bit
3125 aligned, so we round to this widest known alignment. */
3126
3127 sp = ROUND_DOWN (sp, 16);
3128 struct_addr = ROUND_DOWN (struct_addr, 16);
3129
3130 /* Now make space on the stack for the args. */
3131 for (argnum = 0; argnum < nargs; argnum++)
3132 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3133 MIPS_STACK_ARGSIZE);
3134 sp -= ROUND_UP (len, 16);
3135
3136 if (mips_debug)
3137 fprintf_unfiltered (gdb_stdlog,
3138 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
3139 paddr_nz (sp), ROUND_UP (len, 16));
3140
3141 /* Initialize the integer and float register pointers. */
3142 argreg = A0_REGNUM;
3143 float_argreg = FPA0_REGNUM;
3144
3145 /* The struct_return pointer occupies the first parameter-passing reg. */
3146 if (struct_return)
3147 {
3148 if (mips_debug)
3149 fprintf_unfiltered (gdb_stdlog,
3150 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
3151 argreg, paddr_nz (struct_addr));
3152 write_register (argreg++, struct_addr);
3153 stack_offset += MIPS_STACK_ARGSIZE;
3154 }
3155
3156 /* Now load as many as possible of the first arguments into
3157 registers, and push the rest onto the stack. Loop thru args
3158 from first to last. */
3159 for (argnum = 0; argnum < nargs; argnum++)
3160 {
3161 char *val;
3162 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3163 struct value *arg = args[argnum];
3164 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3165 int len = TYPE_LENGTH (arg_type);
3166 enum type_code typecode = TYPE_CODE (arg_type);
3167
3168 if (mips_debug)
3169 fprintf_unfiltered (gdb_stdlog,
3170 "mips_o32_push_arguments: %d len=%d type=%d",
3171 argnum + 1, len, (int) typecode);
3172
3173 val = (char *) VALUE_CONTENTS (arg);
3174
3175 /* 32-bit ABIs always start floating point arguments in an
3176 even-numbered floating point register. Round the FP register
3177 up before the check to see if there are any FP registers
3178 left. O32/O64 targets also pass the FP in the integer
3179 registers so also round up normal registers. */
3180 if (!FP_REGISTER_DOUBLE
3181 && fp_register_arg_p (typecode, arg_type))
3182 {
3183 if ((float_argreg & 1))
3184 float_argreg++;
3185 }
3186
3187 /* Floating point arguments passed in registers have to be
3188 treated specially. On 32-bit architectures, doubles
3189 are passed in register pairs; the even register gets
3190 the low word, and the odd register gets the high word.
3191 On O32/O64, the first two floating point arguments are
3192 also copied to general registers, because MIPS16 functions
3193 don't use float registers for arguments. This duplication of
3194 arguments in general registers can't hurt non-MIPS16 functions
3195 because those registers are normally skipped. */
3196
3197 if (fp_register_arg_p (typecode, arg_type)
3198 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3199 {
3200 if (!FP_REGISTER_DOUBLE && len == 8)
3201 {
3202 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3203 unsigned long regval;
3204
3205 /* Write the low word of the double to the even register(s). */
3206 regval = extract_unsigned_integer (val + low_offset, 4);
3207 if (mips_debug)
3208 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3209 float_argreg, phex (regval, 4));
3210 write_register (float_argreg++, regval);
3211 if (mips_debug)
3212 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3213 argreg, phex (regval, 4));
3214 write_register (argreg++, regval);
3215
3216 /* Write the high word of the double to the odd register(s). */
3217 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3218 if (mips_debug)
3219 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3220 float_argreg, phex (regval, 4));
3221 write_register (float_argreg++, regval);
3222
3223 if (mips_debug)
3224 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3225 argreg, phex (regval, 4));
3226 write_register (argreg++, regval);
3227 }
3228 else
3229 {
3230 /* This is a floating point value that fits entirely
3231 in a single register. */
3232 /* On 32 bit ABI's the float_argreg is further adjusted
3233 above to ensure that it is even register aligned. */
3234 LONGEST regval = extract_unsigned_integer (val, len);
3235 if (mips_debug)
3236 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3237 float_argreg, phex (regval, len));
3238 write_register (float_argreg++, regval);
3239 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3240 registers for each argument. The below is (my
3241 guess) to ensure that the corresponding integer
3242 register has reserved the same space. */
3243 if (mips_debug)
3244 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3245 argreg, phex (regval, len));
3246 write_register (argreg, regval);
3247 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3248 }
3249 /* Reserve space for the FP register. */
3250 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3251 }
3252 else
3253 {
3254 /* Copy the argument to general registers or the stack in
3255 register-sized pieces. Large arguments are split between
3256 registers and stack. */
3257 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3258 are treated specially: Irix cc passes them in registers
3259 where gcc sometimes puts them on the stack. For maximum
3260 compatibility, we will put them in both places. */
3261 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3262 (len % MIPS_SAVED_REGSIZE != 0));
3263 /* Structures should be aligned to eight bytes (even arg registers)
3264 on MIPS_ABI_O32, if their first member has double precision. */
3265 if (MIPS_SAVED_REGSIZE < 8
3266 && mips_type_needs_double_align (arg_type))
3267 {
3268 if ((argreg & 1))
3269 argreg++;
3270 }
3271 /* Note: Floating-point values that didn't fit into an FP
3272 register are only written to memory. */
3273 while (len > 0)
3274 {
3275 /* Remember if the argument was written to the stack. */
3276 int stack_used_p = 0;
3277 int partial_len =
3278 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3279
3280 if (mips_debug)
3281 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3282 partial_len);
3283
3284 /* Write this portion of the argument to the stack. */
3285 if (argreg > MIPS_LAST_ARG_REGNUM
3286 || odd_sized_struct
3287 || fp_register_arg_p (typecode, arg_type))
3288 {
3289 /* Should shorter than int integer values be
3290 promoted to int before being stored? */
3291 int longword_offset = 0;
3292 CORE_ADDR addr;
3293 stack_used_p = 1;
3294 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3295 {
3296 if (MIPS_STACK_ARGSIZE == 8 &&
3297 (typecode == TYPE_CODE_INT ||
3298 typecode == TYPE_CODE_PTR ||
3299 typecode == TYPE_CODE_FLT) && len <= 4)
3300 longword_offset = MIPS_STACK_ARGSIZE - len;
3301 }
3302
3303 if (mips_debug)
3304 {
3305 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3306 paddr_nz (stack_offset));
3307 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3308 paddr_nz (longword_offset));
3309 }
3310
3311 addr = sp + stack_offset + longword_offset;
3312
3313 if (mips_debug)
3314 {
3315 int i;
3316 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3317 paddr_nz (addr));
3318 for (i = 0; i < partial_len; i++)
3319 {
3320 fprintf_unfiltered (gdb_stdlog, "%02x",
3321 val[i] & 0xff);
3322 }
3323 }
3324 write_memory (addr, val, partial_len);
3325 }
3326
3327 /* Note!!! This is NOT an else clause. Odd sized
3328 structs may go thru BOTH paths. Floating point
3329 arguments will not. */
3330 /* Write this portion of the argument to a general
3331 purpose register. */
3332 if (argreg <= MIPS_LAST_ARG_REGNUM
3333 && !fp_register_arg_p (typecode, arg_type))
3334 {
3335 LONGEST regval = extract_signed_integer (val, partial_len);
3336 /* Value may need to be sign extended, because
3337 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3338
3339 /* A non-floating-point argument being passed in a
3340 general register. If a struct or union, and if
3341 the remaining length is smaller than the register
3342 size, we have to adjust the register value on
3343 big endian targets.
3344
3345 It does not seem to be necessary to do the
3346 same for integral types.
3347
3348 Also don't do this adjustment on O64 binaries.
3349
3350 cagney/2001-07-23: gdb/179: Also, GCC, when
3351 outputting LE O32 with sizeof (struct) <
3352 MIPS_SAVED_REGSIZE, generates a left shift as
3353 part of storing the argument in a register a
3354 register (the left shift isn't generated when
3355 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3356 is quite possible that this is GCC contradicting
3357 the LE/O32 ABI, GDB has not been adjusted to
3358 accommodate this. Either someone needs to
3359 demonstrate that the LE/O32 ABI specifies such a
3360 left shift OR this new ABI gets identified as
3361 such and GDB gets tweaked accordingly. */
3362
3363 if (MIPS_SAVED_REGSIZE < 8
3364 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3365 && partial_len < MIPS_SAVED_REGSIZE
3366 && (typecode == TYPE_CODE_STRUCT ||
3367 typecode == TYPE_CODE_UNION))
3368 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3369 TARGET_CHAR_BIT);
3370
3371 if (mips_debug)
3372 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3373 argreg,
3374 phex (regval, MIPS_SAVED_REGSIZE));
3375 write_register (argreg, regval);
3376 argreg++;
3377
3378 /* Prevent subsequent floating point arguments from
3379 being passed in floating point registers. */
3380 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3381 }
3382
3383 len -= partial_len;
3384 val += partial_len;
3385
3386 /* Compute the the offset into the stack at which we
3387 will copy the next parameter.
3388
3389 In older ABIs, the caller reserved space for
3390 registers that contained arguments. This was loosely
3391 refered to as their "home". Consequently, space is
3392 always allocated. */
3393
3394 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3395 }
3396 }
3397 if (mips_debug)
3398 fprintf_unfiltered (gdb_stdlog, "\n");
3399 }
3400
3401 /* Return adjusted stack pointer. */
3402 return sp;
3403 }
3404
3405 /* O64 version of push_arguments. */
3406
3407 static CORE_ADDR
3408 mips_o64_push_arguments (int nargs,
3409 struct value **args,
3410 CORE_ADDR sp,
3411 int struct_return,
3412 CORE_ADDR struct_addr)
3413 {
3414 int argreg;
3415 int float_argreg;
3416 int argnum;
3417 int len = 0;
3418 int stack_offset = 0;
3419
3420 /* First ensure that the stack and structure return address (if any)
3421 are properly aligned. The stack has to be at least 64-bit
3422 aligned even on 32-bit machines, because doubles must be 64-bit
3423 aligned. For n32 and n64, stack frames need to be 128-bit
3424 aligned, so we round to this widest known alignment. */
3425
3426 sp = ROUND_DOWN (sp, 16);
3427 struct_addr = ROUND_DOWN (struct_addr, 16);
3428
3429 /* Now make space on the stack for the args. */
3430 for (argnum = 0; argnum < nargs; argnum++)
3431 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3432 MIPS_STACK_ARGSIZE);
3433 sp -= ROUND_UP (len, 16);
3434
3435 if (mips_debug)
3436 fprintf_unfiltered (gdb_stdlog,
3437 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3438 paddr_nz (sp), ROUND_UP (len, 16));
3439
3440 /* Initialize the integer and float register pointers. */
3441 argreg = A0_REGNUM;
3442 float_argreg = FPA0_REGNUM;
3443
3444 /* The struct_return pointer occupies the first parameter-passing reg. */
3445 if (struct_return)
3446 {
3447 if (mips_debug)
3448 fprintf_unfiltered (gdb_stdlog,
3449 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3450 argreg, paddr_nz (struct_addr));
3451 write_register (argreg++, struct_addr);
3452 stack_offset += MIPS_STACK_ARGSIZE;
3453 }
3454
3455 /* Now load as many as possible of the first arguments into
3456 registers, and push the rest onto the stack. Loop thru args
3457 from first to last. */
3458 for (argnum = 0; argnum < nargs; argnum++)
3459 {
3460 char *val;
3461 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3462 struct value *arg = args[argnum];
3463 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3464 int len = TYPE_LENGTH (arg_type);
3465 enum type_code typecode = TYPE_CODE (arg_type);
3466
3467 if (mips_debug)
3468 fprintf_unfiltered (gdb_stdlog,
3469 "mips_o64_push_arguments: %d len=%d type=%d",
3470 argnum + 1, len, (int) typecode);
3471
3472 val = (char *) VALUE_CONTENTS (arg);
3473
3474 /* 32-bit ABIs always start floating point arguments in an
3475 even-numbered floating point register. Round the FP register
3476 up before the check to see if there are any FP registers
3477 left. O32/O64 targets also pass the FP in the integer
3478 registers so also round up normal registers. */
3479 if (!FP_REGISTER_DOUBLE
3480 && fp_register_arg_p (typecode, arg_type))
3481 {
3482 if ((float_argreg & 1))
3483 float_argreg++;
3484 }
3485
3486 /* Floating point arguments passed in registers have to be
3487 treated specially. On 32-bit architectures, doubles
3488 are passed in register pairs; the even register gets
3489 the low word, and the odd register gets the high word.
3490 On O32/O64, the first two floating point arguments are
3491 also copied to general registers, because MIPS16 functions
3492 don't use float registers for arguments. This duplication of
3493 arguments in general registers can't hurt non-MIPS16 functions
3494 because those registers are normally skipped. */
3495
3496 if (fp_register_arg_p (typecode, arg_type)
3497 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3498 {
3499 if (!FP_REGISTER_DOUBLE && len == 8)
3500 {
3501 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3502 unsigned long regval;
3503
3504 /* Write the low word of the double to the even register(s). */
3505 regval = extract_unsigned_integer (val + low_offset, 4);
3506 if (mips_debug)
3507 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3508 float_argreg, phex (regval, 4));
3509 write_register (float_argreg++, regval);
3510 if (mips_debug)
3511 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3512 argreg, phex (regval, 4));
3513 write_register (argreg++, regval);
3514
3515 /* Write the high word of the double to the odd register(s). */
3516 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3517 if (mips_debug)
3518 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3519 float_argreg, phex (regval, 4));
3520 write_register (float_argreg++, regval);
3521
3522 if (mips_debug)
3523 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3524 argreg, phex (regval, 4));
3525 write_register (argreg++, regval);
3526 }
3527 else
3528 {
3529 /* This is a floating point value that fits entirely
3530 in a single register. */
3531 /* On 32 bit ABI's the float_argreg is further adjusted
3532 above to ensure that it is even register aligned. */
3533 LONGEST regval = extract_unsigned_integer (val, len);
3534 if (mips_debug)
3535 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3536 float_argreg, phex (regval, len));
3537 write_register (float_argreg++, regval);
3538 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3539 registers for each argument. The below is (my
3540 guess) to ensure that the corresponding integer
3541 register has reserved the same space. */
3542 if (mips_debug)
3543 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3544 argreg, phex (regval, len));
3545 write_register (argreg, regval);
3546 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3547 }
3548 /* Reserve space for the FP register. */
3549 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3550 }
3551 else
3552 {
3553 /* Copy the argument to general registers or the stack in
3554 register-sized pieces. Large arguments are split between
3555 registers and stack. */
3556 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3557 are treated specially: Irix cc passes them in registers
3558 where gcc sometimes puts them on the stack. For maximum
3559 compatibility, we will put them in both places. */
3560 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3561 (len % MIPS_SAVED_REGSIZE != 0));
3562 /* Structures should be aligned to eight bytes (even arg registers)
3563 on MIPS_ABI_O32, if their first member has double precision. */
3564 if (MIPS_SAVED_REGSIZE < 8
3565 && mips_type_needs_double_align (arg_type))
3566 {
3567 if ((argreg & 1))
3568 argreg++;
3569 }
3570 /* Note: Floating-point values that didn't fit into an FP
3571 register are only written to memory. */
3572 while (len > 0)
3573 {
3574 /* Remember if the argument was written to the stack. */
3575 int stack_used_p = 0;
3576 int partial_len =
3577 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3578
3579 if (mips_debug)
3580 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3581 partial_len);
3582
3583 /* Write this portion of the argument to the stack. */
3584 if (argreg > MIPS_LAST_ARG_REGNUM
3585 || odd_sized_struct
3586 || fp_register_arg_p (typecode, arg_type))
3587 {
3588 /* Should shorter than int integer values be
3589 promoted to int before being stored? */
3590 int longword_offset = 0;
3591 CORE_ADDR addr;
3592 stack_used_p = 1;
3593 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3594 {
3595 if (MIPS_STACK_ARGSIZE == 8 &&
3596 (typecode == TYPE_CODE_INT ||
3597 typecode == TYPE_CODE_PTR ||
3598 typecode == TYPE_CODE_FLT) && len <= 4)
3599 longword_offset = MIPS_STACK_ARGSIZE - len;
3600 }
3601
3602 if (mips_debug)
3603 {
3604 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3605 paddr_nz (stack_offset));
3606 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3607 paddr_nz (longword_offset));
3608 }
3609
3610 addr = sp + stack_offset + longword_offset;
3611
3612 if (mips_debug)
3613 {
3614 int i;
3615 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3616 paddr_nz (addr));
3617 for (i = 0; i < partial_len; i++)
3618 {
3619 fprintf_unfiltered (gdb_stdlog, "%02x",
3620 val[i] & 0xff);
3621 }
3622 }
3623 write_memory (addr, val, partial_len);
3624 }
3625
3626 /* Note!!! This is NOT an else clause. Odd sized
3627 structs may go thru BOTH paths. Floating point
3628 arguments will not. */
3629 /* Write this portion of the argument to a general
3630 purpose register. */
3631 if (argreg <= MIPS_LAST_ARG_REGNUM
3632 && !fp_register_arg_p (typecode, arg_type))
3633 {
3634 LONGEST regval = extract_signed_integer (val, partial_len);
3635 /* Value may need to be sign extended, because
3636 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3637
3638 /* A non-floating-point argument being passed in a
3639 general register. If a struct or union, and if
3640 the remaining length is smaller than the register
3641 size, we have to adjust the register value on
3642 big endian targets.
3643
3644 It does not seem to be necessary to do the
3645 same for integral types.
3646
3647 Also don't do this adjustment on O64 binaries.
3648
3649 cagney/2001-07-23: gdb/179: Also, GCC, when
3650 outputting LE O32 with sizeof (struct) <
3651 MIPS_SAVED_REGSIZE, generates a left shift as
3652 part of storing the argument in a register a
3653 register (the left shift isn't generated when
3654 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3655 is quite possible that this is GCC contradicting
3656 the LE/O32 ABI, GDB has not been adjusted to
3657 accommodate this. Either someone needs to
3658 demonstrate that the LE/O32 ABI specifies such a
3659 left shift OR this new ABI gets identified as
3660 such and GDB gets tweaked accordingly. */
3661
3662 if (MIPS_SAVED_REGSIZE < 8
3663 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3664 && partial_len < MIPS_SAVED_REGSIZE
3665 && (typecode == TYPE_CODE_STRUCT ||
3666 typecode == TYPE_CODE_UNION))
3667 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3668 TARGET_CHAR_BIT);
3669
3670 if (mips_debug)
3671 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3672 argreg,
3673 phex (regval, MIPS_SAVED_REGSIZE));
3674 write_register (argreg, regval);
3675 argreg++;
3676
3677 /* Prevent subsequent floating point arguments from
3678 being passed in floating point registers. */
3679 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3680 }
3681
3682 len -= partial_len;
3683 val += partial_len;
3684
3685 /* Compute the the offset into the stack at which we
3686 will copy the next parameter.
3687
3688 In older ABIs, the caller reserved space for
3689 registers that contained arguments. This was loosely
3690 refered to as their "home". Consequently, space is
3691 always allocated. */
3692
3693 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3694 }
3695 }
3696 if (mips_debug)
3697 fprintf_unfiltered (gdb_stdlog, "\n");
3698 }
3699
3700 /* Return adjusted stack pointer. */
3701 return sp;
3702 }
3703
3704 static CORE_ADDR
3705 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
3706 {
3707 /* Set the return address register to point to the entry
3708 point of the program, where a breakpoint lies in wait. */
3709 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
3710 return sp;
3711 }
3712
3713 static void
3714 mips_push_register (CORE_ADDR * sp, int regno)
3715 {
3716 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
3717 int regsize;
3718 int offset;
3719 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3720 {
3721 regsize = MIPS_SAVED_REGSIZE;
3722 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3723 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3724 : 0);
3725 }
3726 else
3727 {
3728 regsize = REGISTER_RAW_SIZE (regno);
3729 offset = 0;
3730 }
3731 *sp -= regsize;
3732 deprecated_read_register_gen (regno, buffer);
3733 write_memory (*sp, buffer + offset, regsize);
3734 }
3735
3736 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3737 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3738
3739 static void
3740 mips_push_dummy_frame (void)
3741 {
3742 int ireg;
3743 struct linked_proc_info *link = (struct linked_proc_info *)
3744 xmalloc (sizeof (struct linked_proc_info));
3745 mips_extra_func_info_t proc_desc = &link->info;
3746 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
3747 CORE_ADDR old_sp = sp;
3748 link->next = linked_proc_desc_table;
3749 linked_proc_desc_table = link;
3750
3751 /* FIXME! are these correct ? */
3752 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
3753 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3754 #define FLOAT_REG_SAVE_MASK MASK(0,19)
3755 #define FLOAT_SINGLE_REG_SAVE_MASK \
3756 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3757 /*
3758 * The registers we must save are all those not preserved across
3759 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3760 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3761 * and FP Control/Status registers.
3762 *
3763 *
3764 * Dummy frame layout:
3765 * (high memory)
3766 * Saved PC
3767 * Saved MMHI, MMLO, FPC_CSR
3768 * Saved R31
3769 * Saved R28
3770 * ...
3771 * Saved R1
3772 * Saved D18 (i.e. F19, F18)
3773 * ...
3774 * Saved D0 (i.e. F1, F0)
3775 * Argument build area and stack arguments written via mips_push_arguments
3776 * (low memory)
3777 */
3778
3779 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
3780 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3781 PROC_FRAME_OFFSET (proc_desc) = 0;
3782 PROC_FRAME_ADJUST (proc_desc) = 0;
3783 mips_push_register (&sp, PC_REGNUM);
3784 mips_push_register (&sp, HI_REGNUM);
3785 mips_push_register (&sp, LO_REGNUM);
3786 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3787
3788 /* Save general CPU registers */
3789 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
3790 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
3791 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3792 for (ireg = 32; --ireg >= 0;)
3793 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
3794 mips_push_register (&sp, ireg);
3795
3796 /* Save floating point registers starting with high order word */
3797 PROC_FREG_MASK (proc_desc) =
3798 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3799 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3800 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3801 from FP. */
3802 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3803 for (ireg = 32; --ireg >= 0;)
3804 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
3805 mips_push_register (&sp, ireg + FP0_REGNUM);
3806
3807 /* Update the frame pointer for the call dummy and the stack pointer.
3808 Set the procedure's starting and ending addresses to point to the
3809 call dummy address at the entry point. */
3810 write_register (PUSH_FP_REGNUM, old_sp);
3811 write_register (SP_REGNUM, sp);
3812 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3813 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3814 SET_PROC_DESC_IS_DUMMY (proc_desc);
3815 PROC_PC_REG (proc_desc) = RA_REGNUM;
3816 }
3817
3818 static void
3819 mips_pop_frame (void)
3820 {
3821 register int regnum;
3822 struct frame_info *frame = get_current_frame ();
3823 CORE_ADDR new_sp = get_frame_base (frame);
3824 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
3825
3826 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3827 {
3828 generic_pop_dummy_frame ();
3829 flush_cached_frames ();
3830 return;
3831 }
3832
3833 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
3834 if (get_frame_saved_regs (frame) == NULL)
3835 FRAME_INIT_SAVED_REGS (frame);
3836 for (regnum = 0; regnum < NUM_REGS; regnum++)
3837 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3838 && get_frame_saved_regs (frame)[regnum])
3839 {
3840 /* Floating point registers must not be sign extended,
3841 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3842
3843 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3844 write_register (regnum,
3845 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
3846 MIPS_SAVED_REGSIZE));
3847 else
3848 write_register (regnum,
3849 read_memory_integer (get_frame_saved_regs (frame)[regnum],
3850 MIPS_SAVED_REGSIZE));
3851 }
3852
3853 write_register (SP_REGNUM, new_sp);
3854 flush_cached_frames ();
3855
3856 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3857 {
3858 struct linked_proc_info *pi_ptr, *prev_ptr;
3859
3860 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3861 pi_ptr != NULL;
3862 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3863 {
3864 if (&pi_ptr->info == proc_desc)
3865 break;
3866 }
3867
3868 if (pi_ptr == NULL)
3869 error ("Can't locate dummy extra frame info\n");
3870
3871 if (prev_ptr != NULL)
3872 prev_ptr->next = pi_ptr->next;
3873 else
3874 linked_proc_desc_table = pi_ptr->next;
3875
3876 xfree (pi_ptr);
3877
3878 write_register (HI_REGNUM,
3879 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3880 MIPS_SAVED_REGSIZE));
3881 write_register (LO_REGNUM,
3882 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3883 MIPS_SAVED_REGSIZE));
3884 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3885 write_register (FCRCS_REGNUM,
3886 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3887 MIPS_SAVED_REGSIZE));
3888 }
3889 }
3890
3891 static void
3892 mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3893 struct value **args, struct type *type, int gcc_p)
3894 {
3895 write_register(T9_REGNUM, fun);
3896 }
3897
3898 /* Floating point register management.
3899
3900 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3901 64bit operations, these early MIPS cpus treat fp register pairs
3902 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3903 registers and offer a compatibility mode that emulates the MIPS2 fp
3904 model. When operating in MIPS2 fp compat mode, later cpu's split
3905 double precision floats into two 32-bit chunks and store them in
3906 consecutive fp regs. To display 64-bit floats stored in this
3907 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3908 Throw in user-configurable endianness and you have a real mess.
3909
3910 The way this works is:
3911 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3912 double-precision value will be split across two logical registers.
3913 The lower-numbered logical register will hold the low-order bits,
3914 regardless of the processor's endianness.
3915 - If we are on a 64-bit processor, and we are looking for a
3916 single-precision value, it will be in the low ordered bits
3917 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3918 save slot in memory.
3919 - If we are in 64-bit mode, everything is straightforward.
3920
3921 Note that this code only deals with "live" registers at the top of the
3922 stack. We will attempt to deal with saved registers later, when
3923 the raw/cooked register interface is in place. (We need a general
3924 interface that can deal with dynamic saved register sizes -- fp
3925 regs could be 32 bits wide in one frame and 64 on the frame above
3926 and below). */
3927
3928 static struct type *
3929 mips_float_register_type (void)
3930 {
3931 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3932 return builtin_type_ieee_single_big;
3933 else
3934 return builtin_type_ieee_single_little;
3935 }
3936
3937 static struct type *
3938 mips_double_register_type (void)
3939 {
3940 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3941 return builtin_type_ieee_double_big;
3942 else
3943 return builtin_type_ieee_double_little;
3944 }
3945
3946 /* Copy a 32-bit single-precision value from the current frame
3947 into rare_buffer. */
3948
3949 static void
3950 mips_read_fp_register_single (int regno, char *rare_buffer)
3951 {
3952 int raw_size = REGISTER_RAW_SIZE (regno);
3953 char *raw_buffer = alloca (raw_size);
3954
3955 if (!frame_register_read (deprecated_selected_frame, regno, raw_buffer))
3956 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3957 if (raw_size == 8)
3958 {
3959 /* We have a 64-bit value for this register. Find the low-order
3960 32 bits. */
3961 int offset;
3962
3963 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3964 offset = 4;
3965 else
3966 offset = 0;
3967
3968 memcpy (rare_buffer, raw_buffer + offset, 4);
3969 }
3970 else
3971 {
3972 memcpy (rare_buffer, raw_buffer, 4);
3973 }
3974 }
3975
3976 /* Copy a 64-bit double-precision value from the current frame into
3977 rare_buffer. This may include getting half of it from the next
3978 register. */
3979
3980 static void
3981 mips_read_fp_register_double (int regno, char *rare_buffer)
3982 {
3983 int raw_size = REGISTER_RAW_SIZE (regno);
3984
3985 if (raw_size == 8 && !mips2_fp_compat ())
3986 {
3987 /* We have a 64-bit value for this register, and we should use
3988 all 64 bits. */
3989 if (!frame_register_read (deprecated_selected_frame, regno, rare_buffer))
3990 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3991 }
3992 else
3993 {
3994 if ((regno - FP0_REGNUM) & 1)
3995 internal_error (__FILE__, __LINE__,
3996 "mips_read_fp_register_double: bad access to "
3997 "odd-numbered FP register");
3998
3999 /* mips_read_fp_register_single will find the correct 32 bits from
4000 each register. */
4001 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4002 {
4003 mips_read_fp_register_single (regno, rare_buffer + 4);
4004 mips_read_fp_register_single (regno + 1, rare_buffer);
4005 }
4006 else
4007 {
4008 mips_read_fp_register_single (regno, rare_buffer);
4009 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
4010 }
4011 }
4012 }
4013
4014 static void
4015 mips_print_register (int regnum, int all)
4016 {
4017 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4018
4019 /* Get the data in raw format. */
4020 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4021 {
4022 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
4023 return;
4024 }
4025
4026 /* If we have a actual 32-bit floating point register (or we are in
4027 32-bit compatibility mode), and the register is even-numbered,
4028 also print it as a double (spanning two registers). */
4029 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
4030 && (REGISTER_RAW_SIZE (regnum) == 4
4031 || mips2_fp_compat ())
4032 && !((regnum - FP0_REGNUM) & 1))
4033 {
4034 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
4035
4036 mips_read_fp_register_double (regnum, dbuffer);
4037
4038 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
4039 val_print (mips_double_register_type (), dbuffer, 0, 0,
4040 gdb_stdout, 0, 1, 0, Val_pretty_default);
4041 printf_filtered ("); ");
4042 }
4043 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
4044
4045 /* The problem with printing numeric register names (r26, etc.) is that
4046 the user can't use them on input. Probably the best solution is to
4047 fix it so that either the numeric or the funky (a2, etc.) names
4048 are accepted on input. */
4049 if (regnum < MIPS_NUMREGS)
4050 printf_filtered ("(r%d): ", regnum);
4051 else
4052 printf_filtered (": ");
4053
4054 /* If virtual format is floating, print it that way. */
4055 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4056 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
4057 {
4058 /* We have a meaningful 64-bit value in this register. Show
4059 it as a 32-bit float and a 64-bit double. */
4060 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
4061
4062 printf_filtered (" (float) ");
4063 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
4064 gdb_stdout, 0, 1, 0, Val_pretty_default);
4065 printf_filtered (", (double) ");
4066 val_print (mips_double_register_type (), raw_buffer, 0, 0,
4067 gdb_stdout, 0, 1, 0, Val_pretty_default);
4068 }
4069 else
4070 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4071 gdb_stdout, 0, 1, 0, Val_pretty_default);
4072 /* Else print as integer in hex. */
4073 else
4074 {
4075 int offset;
4076
4077 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4078 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4079 else
4080 offset = 0;
4081
4082 print_scalar_formatted (raw_buffer + offset,
4083 REGISTER_VIRTUAL_TYPE (regnum),
4084 'x', 0, gdb_stdout);
4085 }
4086 }
4087
4088 /* Replacement for generic do_registers_info.
4089 Print regs in pretty columns. */
4090
4091 static int
4092 do_fp_register_row (int regnum)
4093 { /* do values for FP (float) regs */
4094 char *raw_buffer;
4095 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4096 int inv1, inv2, inv3;
4097
4098 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4099
4100 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4101 {
4102 /* 4-byte registers: we can fit two registers per row. */
4103 /* Also print every pair of 4-byte regs as an 8-byte double. */
4104 mips_read_fp_register_single (regnum, raw_buffer);
4105 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4106
4107 mips_read_fp_register_single (regnum + 1, raw_buffer);
4108 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
4109
4110 mips_read_fp_register_double (regnum, raw_buffer);
4111 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4112
4113 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4114 if (inv1)
4115 printf_filtered (": <invalid float>");
4116 else
4117 printf_filtered ("%-17.9g", flt1);
4118
4119 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4120 if (inv2)
4121 printf_filtered (": <invalid float>");
4122 else
4123 printf_filtered ("%-17.9g", flt2);
4124
4125 printf_filtered (" dbl: ");
4126 if (inv3)
4127 printf_filtered ("<invalid double>");
4128 else
4129 printf_filtered ("%-24.17g", doub);
4130 printf_filtered ("\n");
4131
4132 /* may want to do hex display here (future enhancement) */
4133 regnum += 2;
4134 }
4135 else
4136 {
4137 /* Eight byte registers: print each one as float AND as double. */
4138 mips_read_fp_register_single (regnum, raw_buffer);
4139 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
4140
4141 mips_read_fp_register_double (regnum, raw_buffer);
4142 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4143
4144 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4145 if (inv1)
4146 printf_filtered ("<invalid float>");
4147 else
4148 printf_filtered ("flt: %-17.9g", flt1);
4149
4150 printf_filtered (" dbl: ");
4151 if (inv3)
4152 printf_filtered ("<invalid double>");
4153 else
4154 printf_filtered ("%-24.17g", doub);
4155
4156 printf_filtered ("\n");
4157 /* may want to do hex display here (future enhancement) */
4158 regnum++;
4159 }
4160 return regnum;
4161 }
4162
4163 /* Print a row's worth of GP (int) registers, with name labels above */
4164
4165 static int
4166 do_gp_register_row (int regnum)
4167 {
4168 /* do values for GP (int) regs */
4169 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4170 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4171 int col, byte;
4172 int start_regnum = regnum;
4173 int numregs = NUM_REGS;
4174
4175
4176 /* For GP registers, we print a separate row of names above the vals */
4177 printf_filtered (" ");
4178 for (col = 0; col < ncols && regnum < numregs; regnum++)
4179 {
4180 if (*REGISTER_NAME (regnum) == '\0')
4181 continue; /* unused register */
4182 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4183 break; /* end the row: reached FP register */
4184 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4185 REGISTER_NAME (regnum));
4186 col++;
4187 }
4188 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4189 start_regnum); /* print the R0 to R31 names */
4190
4191 regnum = start_regnum; /* go back to start of row */
4192 /* now print the values in hex, 4 or 8 to the row */
4193 for (col = 0; col < ncols && regnum < numregs; regnum++)
4194 {
4195 if (*REGISTER_NAME (regnum) == '\0')
4196 continue; /* unused register */
4197 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4198 break; /* end row: reached FP register */
4199 /* OK: get the data in raw format. */
4200 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4201 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4202 /* pad small registers */
4203 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4204 printf_filtered (" ");
4205 /* Now print the register value in hex, endian order. */
4206 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4207 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4208 byte < REGISTER_RAW_SIZE (regnum);
4209 byte++)
4210 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4211 else
4212 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4213 byte >= 0;
4214 byte--)
4215 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4216 printf_filtered (" ");
4217 col++;
4218 }
4219 if (col > 0) /* ie. if we actually printed anything... */
4220 printf_filtered ("\n");
4221
4222 return regnum;
4223 }
4224
4225 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4226
4227 static void
4228 mips_do_registers_info (int regnum, int fpregs)
4229 {
4230 if (regnum != -1) /* do one specified register */
4231 {
4232 if (*(REGISTER_NAME (regnum)) == '\0')
4233 error ("Not a valid register for the current processor type");
4234
4235 mips_print_register (regnum, 0);
4236 printf_filtered ("\n");
4237 }
4238 else
4239 /* do all (or most) registers */
4240 {
4241 regnum = 0;
4242 while (regnum < NUM_REGS)
4243 {
4244 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4245 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
4246 regnum = do_fp_register_row (regnum); /* FP regs */
4247 else
4248 regnum += MIPS_NUMREGS; /* skip floating point regs */
4249 else
4250 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4251 }
4252 }
4253 }
4254
4255 /* Is this a branch with a delay slot? */
4256
4257 static int is_delayed (unsigned long);
4258
4259 static int
4260 is_delayed (unsigned long insn)
4261 {
4262 int i;
4263 for (i = 0; i < NUMOPCODES; ++i)
4264 if (mips_opcodes[i].pinfo != INSN_MACRO
4265 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4266 break;
4267 return (i < NUMOPCODES
4268 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4269 | INSN_COND_BRANCH_DELAY
4270 | INSN_COND_BRANCH_LIKELY)));
4271 }
4272
4273 int
4274 mips_step_skips_delay (CORE_ADDR pc)
4275 {
4276 char buf[MIPS_INSTLEN];
4277
4278 /* There is no branch delay slot on MIPS16. */
4279 if (pc_is_mips16 (pc))
4280 return 0;
4281
4282 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4283 /* If error reading memory, guess that it is not a delayed branch. */
4284 return 0;
4285 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4286 }
4287
4288
4289 /* Skip the PC past function prologue instructions (32-bit version).
4290 This is a helper function for mips_skip_prologue. */
4291
4292 static CORE_ADDR
4293 mips32_skip_prologue (CORE_ADDR pc)
4294 {
4295 t_inst inst;
4296 CORE_ADDR end_pc;
4297 int seen_sp_adjust = 0;
4298 int load_immediate_bytes = 0;
4299
4300 /* Skip the typical prologue instructions. These are the stack adjustment
4301 instruction and the instructions that save registers on the stack
4302 or in the gcc frame. */
4303 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4304 {
4305 unsigned long high_word;
4306
4307 inst = mips_fetch_instruction (pc);
4308 high_word = (inst >> 16) & 0xffff;
4309
4310 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4311 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4312 seen_sp_adjust = 1;
4313 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4314 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4315 seen_sp_adjust = 1;
4316 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4317 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4318 && (inst & 0x001F0000)) /* reg != $zero */
4319 continue;
4320
4321 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4322 continue;
4323 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4324 /* sx reg,n($s8) */
4325 continue; /* reg != $zero */
4326
4327 /* move $s8,$sp. With different versions of gas this will be either
4328 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4329 Accept any one of these. */
4330 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4331 continue;
4332
4333 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4334 continue;
4335 else if (high_word == 0x3c1c) /* lui $gp,n */
4336 continue;
4337 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4338 continue;
4339 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4340 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4341 continue;
4342 /* The following instructions load $at or $t0 with an immediate
4343 value in preparation for a stack adjustment via
4344 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4345 a local variable, so we accept them only before a stack adjustment
4346 instruction was seen. */
4347 else if (!seen_sp_adjust)
4348 {
4349 if (high_word == 0x3c01 || /* lui $at,n */
4350 high_word == 0x3c08) /* lui $t0,n */
4351 {
4352 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4353 continue;
4354 }
4355 else if (high_word == 0x3421 || /* ori $at,$at,n */
4356 high_word == 0x3508 || /* ori $t0,$t0,n */
4357 high_word == 0x3401 || /* ori $at,$zero,n */
4358 high_word == 0x3408) /* ori $t0,$zero,n */
4359 {
4360 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4361 continue;
4362 }
4363 else
4364 break;
4365 }
4366 else
4367 break;
4368 }
4369
4370 /* In a frameless function, we might have incorrectly
4371 skipped some load immediate instructions. Undo the skipping
4372 if the load immediate was not followed by a stack adjustment. */
4373 if (load_immediate_bytes && !seen_sp_adjust)
4374 pc -= load_immediate_bytes;
4375 return pc;
4376 }
4377
4378 /* Skip the PC past function prologue instructions (16-bit version).
4379 This is a helper function for mips_skip_prologue. */
4380
4381 static CORE_ADDR
4382 mips16_skip_prologue (CORE_ADDR pc)
4383 {
4384 CORE_ADDR end_pc;
4385 int extend_bytes = 0;
4386 int prev_extend_bytes;
4387
4388 /* Table of instructions likely to be found in a function prologue. */
4389 static struct
4390 {
4391 unsigned short inst;
4392 unsigned short mask;
4393 }
4394 table[] =
4395 {
4396 {
4397 0x6300, 0xff00
4398 }
4399 , /* addiu $sp,offset */
4400 {
4401 0xfb00, 0xff00
4402 }
4403 , /* daddiu $sp,offset */
4404 {
4405 0xd000, 0xf800
4406 }
4407 , /* sw reg,n($sp) */
4408 {
4409 0xf900, 0xff00
4410 }
4411 , /* sd reg,n($sp) */
4412 {
4413 0x6200, 0xff00
4414 }
4415 , /* sw $ra,n($sp) */
4416 {
4417 0xfa00, 0xff00
4418 }
4419 , /* sd $ra,n($sp) */
4420 {
4421 0x673d, 0xffff
4422 }
4423 , /* move $s1,sp */
4424 {
4425 0xd980, 0xff80
4426 }
4427 , /* sw $a0-$a3,n($s1) */
4428 {
4429 0x6704, 0xff1c
4430 }
4431 , /* move reg,$a0-$a3 */
4432 {
4433 0xe809, 0xf81f
4434 }
4435 , /* entry pseudo-op */
4436 {
4437 0x0100, 0xff00
4438 }
4439 , /* addiu $s1,$sp,n */
4440 {
4441 0, 0
4442 } /* end of table marker */
4443 };
4444
4445 /* Skip the typical prologue instructions. These are the stack adjustment
4446 instruction and the instructions that save registers on the stack
4447 or in the gcc frame. */
4448 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4449 {
4450 unsigned short inst;
4451 int i;
4452
4453 inst = mips_fetch_instruction (pc);
4454
4455 /* Normally we ignore an extend instruction. However, if it is
4456 not followed by a valid prologue instruction, we must adjust
4457 the pc back over the extend so that it won't be considered
4458 part of the prologue. */
4459 if ((inst & 0xf800) == 0xf000) /* extend */
4460 {
4461 extend_bytes = MIPS16_INSTLEN;
4462 continue;
4463 }
4464 prev_extend_bytes = extend_bytes;
4465 extend_bytes = 0;
4466
4467 /* Check for other valid prologue instructions besides extend. */
4468 for (i = 0; table[i].mask != 0; i++)
4469 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4470 break;
4471 if (table[i].mask != 0) /* it was in table? */
4472 continue; /* ignore it */
4473 else
4474 /* non-prologue */
4475 {
4476 /* Return the current pc, adjusted backwards by 2 if
4477 the previous instruction was an extend. */
4478 return pc - prev_extend_bytes;
4479 }
4480 }
4481 return pc;
4482 }
4483
4484 /* To skip prologues, I use this predicate. Returns either PC itself
4485 if the code at PC does not look like a function prologue; otherwise
4486 returns an address that (if we're lucky) follows the prologue. If
4487 LENIENT, then we must skip everything which is involved in setting
4488 up the frame (it's OK to skip more, just so long as we don't skip
4489 anything which might clobber the registers which are being saved.
4490 We must skip more in the case where part of the prologue is in the
4491 delay slot of a non-prologue instruction). */
4492
4493 static CORE_ADDR
4494 mips_skip_prologue (CORE_ADDR pc)
4495 {
4496 /* See if we can determine the end of the prologue via the symbol table.
4497 If so, then return either PC, or the PC after the prologue, whichever
4498 is greater. */
4499
4500 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4501
4502 if (post_prologue_pc != 0)
4503 return max (pc, post_prologue_pc);
4504
4505 /* Can't determine prologue from the symbol table, need to examine
4506 instructions. */
4507
4508 if (pc_is_mips16 (pc))
4509 return mips16_skip_prologue (pc);
4510 else
4511 return mips32_skip_prologue (pc);
4512 }
4513
4514 /* Determine how a return value is stored within the MIPS register
4515 file, given the return type `valtype'. */
4516
4517 struct return_value_word
4518 {
4519 int len;
4520 int reg;
4521 int reg_offset;
4522 int buf_offset;
4523 };
4524
4525 static void
4526 return_value_location (struct type *valtype,
4527 struct return_value_word *hi,
4528 struct return_value_word *lo)
4529 {
4530 int len = TYPE_LENGTH (valtype);
4531
4532 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4533 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4534 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4535 {
4536 if (!FP_REGISTER_DOUBLE && len == 8)
4537 {
4538 /* We need to break a 64bit float in two 32 bit halves and
4539 spread them across a floating-point register pair. */
4540 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4541 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4542 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4543 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4544 ? 4 : 0);
4545 hi->reg_offset = lo->reg_offset;
4546 lo->reg = FP0_REGNUM + 0;
4547 hi->reg = FP0_REGNUM + 1;
4548 lo->len = 4;
4549 hi->len = 4;
4550 }
4551 else
4552 {
4553 /* The floating point value fits in a single floating-point
4554 register. */
4555 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4556 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4557 && len == 4)
4558 ? 4 : 0);
4559 lo->reg = FP0_REGNUM;
4560 lo->len = len;
4561 lo->buf_offset = 0;
4562 hi->len = 0;
4563 hi->reg_offset = 0;
4564 hi->buf_offset = 0;
4565 hi->reg = 0;
4566 }
4567 }
4568 else
4569 {
4570 /* Locate a result possibly spread across two registers. */
4571 int regnum = 2;
4572 lo->reg = regnum + 0;
4573 hi->reg = regnum + 1;
4574 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4575 && len < MIPS_SAVED_REGSIZE)
4576 {
4577 /* "un-left-justify" the value in the low register */
4578 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4579 lo->len = len;
4580 hi->reg_offset = 0;
4581 hi->len = 0;
4582 }
4583 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4584 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4585 && len < MIPS_SAVED_REGSIZE * 2
4586 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4587 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4588 {
4589 /* "un-left-justify" the value spread across two registers. */
4590 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4591 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4592 hi->reg_offset = 0;
4593 hi->len = len - lo->len;
4594 }
4595 else
4596 {
4597 /* Only perform a partial copy of the second register. */
4598 lo->reg_offset = 0;
4599 hi->reg_offset = 0;
4600 if (len > MIPS_SAVED_REGSIZE)
4601 {
4602 lo->len = MIPS_SAVED_REGSIZE;
4603 hi->len = len - MIPS_SAVED_REGSIZE;
4604 }
4605 else
4606 {
4607 lo->len = len;
4608 hi->len = 0;
4609 }
4610 }
4611 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4612 && REGISTER_RAW_SIZE (regnum) == 8
4613 && MIPS_SAVED_REGSIZE == 4)
4614 {
4615 /* Account for the fact that only the least-signficant part
4616 of the register is being used */
4617 lo->reg_offset += 4;
4618 hi->reg_offset += 4;
4619 }
4620 lo->buf_offset = 0;
4621 hi->buf_offset = lo->len;
4622 }
4623 }
4624
4625 /* Given a return value in `regbuf' with a type `valtype', extract and
4626 copy its value into `valbuf'. */
4627
4628 static void
4629 mips_eabi_extract_return_value (struct type *valtype,
4630 char regbuf[REGISTER_BYTES],
4631 char *valbuf)
4632 {
4633 struct return_value_word lo;
4634 struct return_value_word hi;
4635 return_value_location (valtype, &hi, &lo);
4636
4637 memcpy (valbuf + lo.buf_offset,
4638 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4639 lo.len);
4640
4641 if (hi.len > 0)
4642 memcpy (valbuf + hi.buf_offset,
4643 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4644 hi.len);
4645 }
4646
4647 static void
4648 mips_o64_extract_return_value (struct type *valtype,
4649 char regbuf[REGISTER_BYTES],
4650 char *valbuf)
4651 {
4652 struct return_value_word lo;
4653 struct return_value_word hi;
4654 return_value_location (valtype, &hi, &lo);
4655
4656 memcpy (valbuf + lo.buf_offset,
4657 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4658 lo.len);
4659
4660 if (hi.len > 0)
4661 memcpy (valbuf + hi.buf_offset,
4662 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4663 hi.len);
4664 }
4665
4666 /* Given a return value in `valbuf' with a type `valtype', write it's
4667 value into the appropriate register. */
4668
4669 static void
4670 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4671 {
4672 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4673 struct return_value_word lo;
4674 struct return_value_word hi;
4675 return_value_location (valtype, &hi, &lo);
4676
4677 memset (raw_buffer, 0, sizeof (raw_buffer));
4678 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4679 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4680 REGISTER_RAW_SIZE (lo.reg));
4681
4682 if (hi.len > 0)
4683 {
4684 memset (raw_buffer, 0, sizeof (raw_buffer));
4685 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4686 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4687 REGISTER_RAW_SIZE (hi.reg));
4688 }
4689 }
4690
4691 static void
4692 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4693 {
4694 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4695 struct return_value_word lo;
4696 struct return_value_word hi;
4697 return_value_location (valtype, &hi, &lo);
4698
4699 memset (raw_buffer, 0, sizeof (raw_buffer));
4700 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4701 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4702 REGISTER_RAW_SIZE (lo.reg));
4703
4704 if (hi.len > 0)
4705 {
4706 memset (raw_buffer, 0, sizeof (raw_buffer));
4707 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4708 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4709 REGISTER_RAW_SIZE (hi.reg));
4710 }
4711 }
4712
4713 /* O32 ABI stuff. */
4714
4715 static void
4716 mips_o32_xfer_return_value (struct type *type,
4717 struct regcache *regcache,
4718 bfd_byte *in, const bfd_byte *out)
4719 {
4720 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4721 if (TYPE_CODE (type) == TYPE_CODE_FLT
4722 && TYPE_LENGTH (type) == 4
4723 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4724 {
4725 /* A single-precision floating-point value. It fits in the
4726 least significant part of FP0. */
4727 if (mips_debug)
4728 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4729 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4730 TARGET_BYTE_ORDER, in, out, 0);
4731 }
4732 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4733 && TYPE_LENGTH (type) == 8
4734 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4735 {
4736 /* A double-precision floating-point value. It fits in the
4737 least significant part of FP0/FP1 but with byte ordering
4738 based on the target (???). */
4739 if (mips_debug)
4740 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4741 switch (TARGET_BYTE_ORDER)
4742 {
4743 case BFD_ENDIAN_LITTLE:
4744 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4745 TARGET_BYTE_ORDER, in, out, 0);
4746 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4747 TARGET_BYTE_ORDER, in, out, 4);
4748 break;
4749 case BFD_ENDIAN_BIG:
4750 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4751 TARGET_BYTE_ORDER, in, out, 0);
4752 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4753 TARGET_BYTE_ORDER, in, out, 4);
4754 break;
4755 default:
4756 internal_error (__FILE__, __LINE__, "bad switch");
4757 }
4758 }
4759 #if 0
4760 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4761 && TYPE_NFIELDS (type) <= 2
4762 && TYPE_NFIELDS (type) >= 1
4763 && ((TYPE_NFIELDS (type) == 1
4764 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4765 == TYPE_CODE_FLT))
4766 || (TYPE_NFIELDS (type) == 2
4767 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4768 == TYPE_CODE_FLT)
4769 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4770 == TYPE_CODE_FLT)))
4771 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4772 {
4773 /* A struct that contains one or two floats. Each value is part
4774 in the least significant part of their floating point
4775 register.. */
4776 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4777 int regnum;
4778 int field;
4779 for (field = 0, regnum = FP0_REGNUM;
4780 field < TYPE_NFIELDS (type);
4781 field++, regnum += 2)
4782 {
4783 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4784 / TARGET_CHAR_BIT);
4785 if (mips_debug)
4786 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4787 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4788 TARGET_BYTE_ORDER, in, out, offset);
4789 }
4790 }
4791 #endif
4792 #if 0
4793 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4794 || TYPE_CODE (type) == TYPE_CODE_UNION)
4795 {
4796 /* A structure or union. Extract the left justified value,
4797 regardless of the byte order. I.e. DO NOT USE
4798 mips_xfer_lower. */
4799 int offset;
4800 int regnum;
4801 for (offset = 0, regnum = V0_REGNUM;
4802 offset < TYPE_LENGTH (type);
4803 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4804 {
4805 int xfer = REGISTER_RAW_SIZE (regnum);
4806 if (offset + xfer > TYPE_LENGTH (type))
4807 xfer = TYPE_LENGTH (type) - offset;
4808 if (mips_debug)
4809 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4810 offset, xfer, regnum);
4811 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4812 in, out, offset);
4813 }
4814 }
4815 #endif
4816 else
4817 {
4818 /* A scalar extract each part but least-significant-byte
4819 justified. o32 thinks registers are 4 byte, regardless of
4820 the ISA. mips_stack_argsize controls this. */
4821 int offset;
4822 int regnum;
4823 for (offset = 0, regnum = V0_REGNUM;
4824 offset < TYPE_LENGTH (type);
4825 offset += mips_stack_argsize (), regnum++)
4826 {
4827 int xfer = mips_stack_argsize ();
4828 int pos = 0;
4829 if (offset + xfer > TYPE_LENGTH (type))
4830 xfer = TYPE_LENGTH (type) - offset;
4831 if (mips_debug)
4832 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4833 offset, xfer, regnum);
4834 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4835 in, out, offset);
4836 }
4837 }
4838 }
4839
4840 static void
4841 mips_o32_extract_return_value (struct type *type,
4842 struct regcache *regcache,
4843 void *valbuf)
4844 {
4845 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4846 }
4847
4848 static void
4849 mips_o32_store_return_value (struct type *type, char *valbuf)
4850 {
4851 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4852 }
4853
4854 /* N32/N44 ABI stuff. */
4855
4856 static void
4857 mips_n32n64_xfer_return_value (struct type *type,
4858 struct regcache *regcache,
4859 bfd_byte *in, const bfd_byte *out)
4860 {
4861 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4862 if (TYPE_CODE (type) == TYPE_CODE_FLT
4863 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4864 {
4865 /* A floating-point value belongs in the least significant part
4866 of FP0. */
4867 if (mips_debug)
4868 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4869 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4870 TARGET_BYTE_ORDER, in, out, 0);
4871 }
4872 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4873 && TYPE_NFIELDS (type) <= 2
4874 && TYPE_NFIELDS (type) >= 1
4875 && ((TYPE_NFIELDS (type) == 1
4876 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4877 == TYPE_CODE_FLT))
4878 || (TYPE_NFIELDS (type) == 2
4879 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4880 == TYPE_CODE_FLT)
4881 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4882 == TYPE_CODE_FLT)))
4883 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4884 {
4885 /* A struct that contains one or two floats. Each value is part
4886 in the least significant part of their floating point
4887 register.. */
4888 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4889 int regnum;
4890 int field;
4891 for (field = 0, regnum = FP0_REGNUM;
4892 field < TYPE_NFIELDS (type);
4893 field++, regnum += 2)
4894 {
4895 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4896 / TARGET_CHAR_BIT);
4897 if (mips_debug)
4898 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4899 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4900 TARGET_BYTE_ORDER, in, out, offset);
4901 }
4902 }
4903 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4904 || TYPE_CODE (type) == TYPE_CODE_UNION)
4905 {
4906 /* A structure or union. Extract the left justified value,
4907 regardless of the byte order. I.e. DO NOT USE
4908 mips_xfer_lower. */
4909 int offset;
4910 int regnum;
4911 for (offset = 0, regnum = V0_REGNUM;
4912 offset < TYPE_LENGTH (type);
4913 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4914 {
4915 int xfer = REGISTER_RAW_SIZE (regnum);
4916 if (offset + xfer > TYPE_LENGTH (type))
4917 xfer = TYPE_LENGTH (type) - offset;
4918 if (mips_debug)
4919 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4920 offset, xfer, regnum);
4921 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4922 in, out, offset);
4923 }
4924 }
4925 else
4926 {
4927 /* A scalar extract each part but least-significant-byte
4928 justified. */
4929 int offset;
4930 int regnum;
4931 for (offset = 0, regnum = V0_REGNUM;
4932 offset < TYPE_LENGTH (type);
4933 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4934 {
4935 int xfer = REGISTER_RAW_SIZE (regnum);
4936 int pos = 0;
4937 if (offset + xfer > TYPE_LENGTH (type))
4938 xfer = TYPE_LENGTH (type) - offset;
4939 if (mips_debug)
4940 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4941 offset, xfer, regnum);
4942 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4943 in, out, offset);
4944 }
4945 }
4946 }
4947
4948 static void
4949 mips_n32n64_extract_return_value (struct type *type,
4950 struct regcache *regcache,
4951 void *valbuf)
4952 {
4953 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4954 }
4955
4956 static void
4957 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4958 {
4959 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4960 }
4961
4962 static void
4963 mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4964 {
4965 /* Nothing to do -- push_arguments does all the work. */
4966 }
4967
4968 static CORE_ADDR
4969 mips_extract_struct_value_address (struct regcache *regcache)
4970 {
4971 /* FIXME: This will only work at random. The caller passes the
4972 struct_return address in V0, but it is not preserved. It may
4973 still be there, or this may be a random value. */
4974 LONGEST val;
4975
4976 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
4977 return val;
4978 }
4979
4980 /* Exported procedure: Is PC in the signal trampoline code */
4981
4982 static int
4983 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4984 {
4985 if (sigtramp_address == 0)
4986 fixup_sigtramp ();
4987 return (pc >= sigtramp_address && pc < sigtramp_end);
4988 }
4989
4990 /* Root of all "set mips "/"show mips " commands. This will eventually be
4991 used for all MIPS-specific commands. */
4992
4993 static void
4994 show_mips_command (char *args, int from_tty)
4995 {
4996 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4997 }
4998
4999 static void
5000 set_mips_command (char *args, int from_tty)
5001 {
5002 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5003 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5004 }
5005
5006 /* Commands to show/set the MIPS FPU type. */
5007
5008 static void
5009 show_mipsfpu_command (char *args, int from_tty)
5010 {
5011 char *fpu;
5012 switch (MIPS_FPU_TYPE)
5013 {
5014 case MIPS_FPU_SINGLE:
5015 fpu = "single-precision";
5016 break;
5017 case MIPS_FPU_DOUBLE:
5018 fpu = "double-precision";
5019 break;
5020 case MIPS_FPU_NONE:
5021 fpu = "absent (none)";
5022 break;
5023 default:
5024 internal_error (__FILE__, __LINE__, "bad switch");
5025 }
5026 if (mips_fpu_type_auto)
5027 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5028 fpu);
5029 else
5030 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5031 fpu);
5032 }
5033
5034
5035 static void
5036 set_mipsfpu_command (char *args, int from_tty)
5037 {
5038 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5039 show_mipsfpu_command (args, from_tty);
5040 }
5041
5042 static void
5043 set_mipsfpu_single_command (char *args, int from_tty)
5044 {
5045 mips_fpu_type = MIPS_FPU_SINGLE;
5046 mips_fpu_type_auto = 0;
5047 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5048 }
5049
5050 static void
5051 set_mipsfpu_double_command (char *args, int from_tty)
5052 {
5053 mips_fpu_type = MIPS_FPU_DOUBLE;
5054 mips_fpu_type_auto = 0;
5055 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5056 }
5057
5058 static void
5059 set_mipsfpu_none_command (char *args, int from_tty)
5060 {
5061 mips_fpu_type = MIPS_FPU_NONE;
5062 mips_fpu_type_auto = 0;
5063 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5064 }
5065
5066 static void
5067 set_mipsfpu_auto_command (char *args, int from_tty)
5068 {
5069 mips_fpu_type_auto = 1;
5070 }
5071
5072 /* Command to set the processor type. */
5073
5074 void
5075 mips_set_processor_type_command (char *args, int from_tty)
5076 {
5077 int i;
5078
5079 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5080 {
5081 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5082 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5083 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5084
5085 /* Restore the value. */
5086 tmp_mips_processor_type = xstrdup (mips_processor_type);
5087
5088 return;
5089 }
5090
5091 if (!mips_set_processor_type (tmp_mips_processor_type))
5092 {
5093 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5094 /* Restore its value. */
5095 tmp_mips_processor_type = xstrdup (mips_processor_type);
5096 }
5097 }
5098
5099 static void
5100 mips_show_processor_type_command (char *args, int from_tty)
5101 {
5102 }
5103
5104 /* Modify the actual processor type. */
5105
5106 static int
5107 mips_set_processor_type (char *str)
5108 {
5109 int i;
5110
5111 if (str == NULL)
5112 return 0;
5113
5114 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5115 {
5116 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5117 {
5118 mips_processor_type = str;
5119 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5120 return 1;
5121 /* FIXME tweak fpu flag too */
5122 }
5123 }
5124
5125 return 0;
5126 }
5127
5128 /* Attempt to identify the particular processor model by reading the
5129 processor id. */
5130
5131 char *
5132 mips_read_processor_type (void)
5133 {
5134 CORE_ADDR prid;
5135
5136 prid = read_register (PRID_REGNUM);
5137
5138 if ((prid & ~0xf) == 0x700)
5139 return savestring ("r3041", strlen ("r3041"));
5140
5141 return NULL;
5142 }
5143
5144 /* Just like reinit_frame_cache, but with the right arguments to be
5145 callable as an sfunc. */
5146
5147 static void
5148 reinit_frame_cache_sfunc (char *args, int from_tty,
5149 struct cmd_list_element *c)
5150 {
5151 reinit_frame_cache ();
5152 }
5153
5154 int
5155 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5156 {
5157 mips_extra_func_info_t proc_desc;
5158
5159 /* Search for the function containing this address. Set the low bit
5160 of the address when searching, in case we were given an even address
5161 that is the start of a 16-bit function. If we didn't do this,
5162 the search would fail because the symbol table says the function
5163 starts at an odd address, i.e. 1 byte past the given address. */
5164 memaddr = ADDR_BITS_REMOVE (memaddr);
5165 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5166
5167 /* Make an attempt to determine if this is a 16-bit function. If
5168 the procedure descriptor exists and the address therein is odd,
5169 it's definitely a 16-bit function. Otherwise, we have to just
5170 guess that if the address passed in is odd, it's 16-bits. */
5171 if (proc_desc)
5172 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5173 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5174 else
5175 info->mach = pc_is_mips16 (memaddr) ?
5176 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5177
5178 /* Round down the instruction address to the appropriate boundary. */
5179 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5180
5181 /* Call the appropriate disassembler based on the target endian-ness. */
5182 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5183 return print_insn_big_mips (memaddr, info);
5184 else
5185 return print_insn_little_mips (memaddr, info);
5186 }
5187
5188 /* Old-style breakpoint macros.
5189 The IDT board uses an unusual breakpoint value, and sometimes gets
5190 confused when it sees the usual MIPS breakpoint instruction. */
5191
5192 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5193 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5194 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5195 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5196 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5197 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5198 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5199 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5200
5201 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5202 counter value to determine whether a 16- or 32-bit breakpoint should be
5203 used. It returns a pointer to a string of bytes that encode a breakpoint
5204 instruction, stores the length of the string to *lenptr, and adjusts pc
5205 (if necessary) to point to the actual memory location where the
5206 breakpoint should be inserted. */
5207
5208 static const unsigned char *
5209 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5210 {
5211 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5212 {
5213 if (pc_is_mips16 (*pcptr))
5214 {
5215 static unsigned char mips16_big_breakpoint[] =
5216 MIPS16_BIG_BREAKPOINT;
5217 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5218 *lenptr = sizeof (mips16_big_breakpoint);
5219 return mips16_big_breakpoint;
5220 }
5221 else
5222 {
5223 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5224 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5225 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
5226
5227 *lenptr = sizeof (big_breakpoint);
5228
5229 if (strcmp (target_shortname, "mips") == 0)
5230 return idt_big_breakpoint;
5231 else if (strcmp (target_shortname, "ddb") == 0
5232 || strcmp (target_shortname, "pmon") == 0
5233 || strcmp (target_shortname, "lsi") == 0)
5234 return pmon_big_breakpoint;
5235 else
5236 return big_breakpoint;
5237 }
5238 }
5239 else
5240 {
5241 if (pc_is_mips16 (*pcptr))
5242 {
5243 static unsigned char mips16_little_breakpoint[] =
5244 MIPS16_LITTLE_BREAKPOINT;
5245 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5246 *lenptr = sizeof (mips16_little_breakpoint);
5247 return mips16_little_breakpoint;
5248 }
5249 else
5250 {
5251 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5252 static unsigned char pmon_little_breakpoint[] =
5253 PMON_LITTLE_BREAKPOINT;
5254 static unsigned char idt_little_breakpoint[] =
5255 IDT_LITTLE_BREAKPOINT;
5256
5257 *lenptr = sizeof (little_breakpoint);
5258
5259 if (strcmp (target_shortname, "mips") == 0)
5260 return idt_little_breakpoint;
5261 else if (strcmp (target_shortname, "ddb") == 0
5262 || strcmp (target_shortname, "pmon") == 0
5263 || strcmp (target_shortname, "lsi") == 0)
5264 return pmon_little_breakpoint;
5265 else
5266 return little_breakpoint;
5267 }
5268 }
5269 }
5270
5271 /* If PC is in a mips16 call or return stub, return the address of the target
5272 PC, which is either the callee or the caller. There are several
5273 cases which must be handled:
5274
5275 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5276 target PC is in $31 ($ra).
5277 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5278 and the target PC is in $2.
5279 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5280 before the jal instruction, this is effectively a call stub
5281 and the the target PC is in $2. Otherwise this is effectively
5282 a return stub and the target PC is in $18.
5283
5284 See the source code for the stubs in gcc/config/mips/mips16.S for
5285 gory details.
5286
5287 This function implements the SKIP_TRAMPOLINE_CODE macro.
5288 */
5289
5290 static CORE_ADDR
5291 mips_skip_stub (CORE_ADDR pc)
5292 {
5293 char *name;
5294 CORE_ADDR start_addr;
5295
5296 /* Find the starting address and name of the function containing the PC. */
5297 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5298 return 0;
5299
5300 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5301 target PC is in $31 ($ra). */
5302 if (strcmp (name, "__mips16_ret_sf") == 0
5303 || strcmp (name, "__mips16_ret_df") == 0)
5304 return read_signed_register (RA_REGNUM);
5305
5306 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5307 {
5308 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5309 and the target PC is in $2. */
5310 if (name[19] >= '0' && name[19] <= '9')
5311 return read_signed_register (2);
5312
5313 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5314 before the jal instruction, this is effectively a call stub
5315 and the the target PC is in $2. Otherwise this is effectively
5316 a return stub and the target PC is in $18. */
5317 else if (name[19] == 's' || name[19] == 'd')
5318 {
5319 if (pc == start_addr)
5320 {
5321 /* Check if the target of the stub is a compiler-generated
5322 stub. Such a stub for a function bar might have a name
5323 like __fn_stub_bar, and might look like this:
5324 mfc1 $4,$f13
5325 mfc1 $5,$f12
5326 mfc1 $6,$f15
5327 mfc1 $7,$f14
5328 la $1,bar (becomes a lui/addiu pair)
5329 jr $1
5330 So scan down to the lui/addi and extract the target
5331 address from those two instructions. */
5332
5333 CORE_ADDR target_pc = read_signed_register (2);
5334 t_inst inst;
5335 int i;
5336
5337 /* See if the name of the target function is __fn_stub_*. */
5338 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5339 return target_pc;
5340 if (strncmp (name, "__fn_stub_", 10) != 0
5341 && strcmp (name, "etext") != 0
5342 && strcmp (name, "_etext") != 0)
5343 return target_pc;
5344
5345 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5346 The limit on the search is arbitrarily set to 20
5347 instructions. FIXME. */
5348 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5349 {
5350 inst = mips_fetch_instruction (target_pc);
5351 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5352 pc = (inst << 16) & 0xffff0000; /* high word */
5353 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5354 return pc | (inst & 0xffff); /* low word */
5355 }
5356
5357 /* Couldn't find the lui/addui pair, so return stub address. */
5358 return target_pc;
5359 }
5360 else
5361 /* This is the 'return' part of a call stub. The return
5362 address is in $r18. */
5363 return read_signed_register (18);
5364 }
5365 }
5366 return 0; /* not a stub */
5367 }
5368
5369
5370 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5371 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5372
5373 static int
5374 mips_in_call_stub (CORE_ADDR pc, char *name)
5375 {
5376 CORE_ADDR start_addr;
5377
5378 /* Find the starting address of the function containing the PC. If the
5379 caller didn't give us a name, look it up at the same time. */
5380 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5381 return 0;
5382
5383 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5384 {
5385 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5386 if (name[19] >= '0' && name[19] <= '9')
5387 return 1;
5388 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5389 before the jal instruction, this is effectively a call stub. */
5390 else if (name[19] == 's' || name[19] == 'd')
5391 return pc == start_addr;
5392 }
5393
5394 return 0; /* not a stub */
5395 }
5396
5397
5398 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5399 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5400
5401 static int
5402 mips_in_return_stub (CORE_ADDR pc, char *name)
5403 {
5404 CORE_ADDR start_addr;
5405
5406 /* Find the starting address of the function containing the PC. */
5407 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5408 return 0;
5409
5410 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5411 if (strcmp (name, "__mips16_ret_sf") == 0
5412 || strcmp (name, "__mips16_ret_df") == 0)
5413 return 1;
5414
5415 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5416 i.e. after the jal instruction, this is effectively a return stub. */
5417 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5418 && (name[19] == 's' || name[19] == 'd')
5419 && pc != start_addr)
5420 return 1;
5421
5422 return 0; /* not a stub */
5423 }
5424
5425
5426 /* Return non-zero if the PC is in a library helper function that should
5427 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5428
5429 int
5430 mips_ignore_helper (CORE_ADDR pc)
5431 {
5432 char *name;
5433
5434 /* Find the starting address and name of the function containing the PC. */
5435 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5436 return 0;
5437
5438 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5439 that we want to ignore. */
5440 return (strcmp (name, "__mips16_ret_sf") == 0
5441 || strcmp (name, "__mips16_ret_df") == 0);
5442 }
5443
5444
5445 /* Return a location where we can set a breakpoint that will be hit
5446 when an inferior function call returns. This is normally the
5447 program's entry point. Executables that don't have an entry
5448 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5449 whose address is the location where the breakpoint should be placed. */
5450
5451 static CORE_ADDR
5452 mips_call_dummy_address (void)
5453 {
5454 struct minimal_symbol *sym;
5455
5456 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5457 if (sym)
5458 return SYMBOL_VALUE_ADDRESS (sym);
5459 else
5460 return entry_point_address ();
5461 }
5462
5463
5464 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5465 the register stored on the stack (32) is different to its real raw
5466 size (64). The below ensures that registers are fetched from the
5467 stack using their ABI size and then stored into the RAW_BUFFER
5468 using their raw size.
5469
5470 The alternative to adding this function would be to add an ABI
5471 macro - REGISTER_STACK_SIZE(). */
5472
5473 static void
5474 mips_get_saved_register (char *raw_buffer,
5475 int *optimizedp,
5476 CORE_ADDR *addrp,
5477 struct frame_info *frame,
5478 int regnum,
5479 enum lval_type *lvalp)
5480 {
5481 CORE_ADDR addrx;
5482 enum lval_type lvalx;
5483 int optimizedx;
5484 int realnum;
5485
5486 if (!target_has_registers)
5487 error ("No registers.");
5488
5489 /* Make certain that all needed parameters are present. */
5490 if (addrp == NULL)
5491 addrp = &addrx;
5492 if (lvalp == NULL)
5493 lvalp = &lvalx;
5494 if (optimizedp == NULL)
5495 optimizedp = &optimizedx;
5496 frame_register_unwind (get_next_frame (frame), regnum, optimizedp, lvalp,
5497 addrp, &realnum, raw_buffer);
5498 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5499 have a pseudo register range that correspons to the ABI's, rather
5500 than the ISA's, view of registers. These registers would then
5501 implicitly describe their size and hence could be used without
5502 the below munging. */
5503 if ((*lvalp) == lval_memory)
5504 {
5505 if (raw_buffer != NULL)
5506 {
5507 if (regnum < 32)
5508 {
5509 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5510 saved. */
5511 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5512 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5513 }
5514 }
5515 }
5516 }
5517
5518 /* Immediately after a function call, return the saved pc.
5519 Can't always go through the frames for this because on some machines
5520 the new frame is not set up until the new function executes
5521 some instructions. */
5522
5523 static CORE_ADDR
5524 mips_saved_pc_after_call (struct frame_info *frame)
5525 {
5526 return read_signed_register (RA_REGNUM);
5527 }
5528
5529
5530 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5531 REGNUM */
5532
5533 static int
5534 mips_stab_reg_to_regnum (int num)
5535 {
5536 if (num < 32)
5537 return num;
5538 else
5539 return num + FP0_REGNUM - 38;
5540 }
5541
5542 /* Convert a ecoff register number to a gdb REGNUM */
5543
5544 static int
5545 mips_ecoff_reg_to_regnum (int num)
5546 {
5547 if (num < 32)
5548 return num;
5549 else
5550 return num + FP0_REGNUM - 32;
5551 }
5552
5553 /* Convert an integer into an address. By first converting the value
5554 into a pointer and then extracting it signed, the address is
5555 guarenteed to be correctly sign extended. */
5556
5557 static CORE_ADDR
5558 mips_integer_to_address (struct type *type, void *buf)
5559 {
5560 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5561 LONGEST val = unpack_long (type, buf);
5562 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5563 return extract_signed_integer (tmp,
5564 TYPE_LENGTH (builtin_type_void_data_ptr));
5565 }
5566
5567 static void
5568 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5569 {
5570 enum mips_abi *abip = (enum mips_abi *) obj;
5571 const char *name = bfd_get_section_name (abfd, sect);
5572
5573 if (*abip != MIPS_ABI_UNKNOWN)
5574 return;
5575
5576 if (strncmp (name, ".mdebug.", 8) != 0)
5577 return;
5578
5579 if (strcmp (name, ".mdebug.abi32") == 0)
5580 *abip = MIPS_ABI_O32;
5581 else if (strcmp (name, ".mdebug.abiN32") == 0)
5582 *abip = MIPS_ABI_N32;
5583 else if (strcmp (name, ".mdebug.abi64") == 0)
5584 *abip = MIPS_ABI_N64;
5585 else if (strcmp (name, ".mdebug.abiO64") == 0)
5586 *abip = MIPS_ABI_O64;
5587 else if (strcmp (name, ".mdebug.eabi32") == 0)
5588 *abip = MIPS_ABI_EABI32;
5589 else if (strcmp (name, ".mdebug.eabi64") == 0)
5590 *abip = MIPS_ABI_EABI64;
5591 else
5592 warning ("unsupported ABI %s.", name + 8);
5593 }
5594
5595 static enum mips_abi
5596 global_mips_abi (void)
5597 {
5598 int i;
5599
5600 for (i = 0; mips_abi_strings[i] != NULL; i++)
5601 if (mips_abi_strings[i] == mips_abi_string)
5602 return (enum mips_abi) i;
5603
5604 internal_error (__FILE__, __LINE__,
5605 "unknown ABI string");
5606 }
5607
5608 static struct gdbarch *
5609 mips_gdbarch_init (struct gdbarch_info info,
5610 struct gdbarch_list *arches)
5611 {
5612 static LONGEST mips_call_dummy_words[] =
5613 {0};
5614 struct gdbarch *gdbarch;
5615 struct gdbarch_tdep *tdep;
5616 int elf_flags;
5617 enum mips_abi mips_abi, found_abi, wanted_abi;
5618
5619 /* Reset the disassembly info, in case it was set to something
5620 non-default. */
5621 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5622 tm_print_insn_info.arch = bfd_arch_unknown;
5623 tm_print_insn_info.mach = 0;
5624
5625 elf_flags = 0;
5626
5627 if (info.abfd)
5628 {
5629 /* First of all, extract the elf_flags, if available. */
5630 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5631 elf_flags = elf_elfheader (info.abfd)->e_flags;
5632 }
5633
5634 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5635 switch ((elf_flags & EF_MIPS_ABI))
5636 {
5637 case E_MIPS_ABI_O32:
5638 mips_abi = MIPS_ABI_O32;
5639 break;
5640 case E_MIPS_ABI_O64:
5641 mips_abi = MIPS_ABI_O64;
5642 break;
5643 case E_MIPS_ABI_EABI32:
5644 mips_abi = MIPS_ABI_EABI32;
5645 break;
5646 case E_MIPS_ABI_EABI64:
5647 mips_abi = MIPS_ABI_EABI64;
5648 break;
5649 default:
5650 if ((elf_flags & EF_MIPS_ABI2))
5651 mips_abi = MIPS_ABI_N32;
5652 else
5653 mips_abi = MIPS_ABI_UNKNOWN;
5654 break;
5655 }
5656
5657 /* GCC creates a pseudo-section whose name describes the ABI. */
5658 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5659 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5660
5661 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5662 Use the ABI from the last architecture if there is one. */
5663 if (info.abfd == NULL && arches != NULL)
5664 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5665
5666 /* Try the architecture for any hint of the correct ABI. */
5667 if (mips_abi == MIPS_ABI_UNKNOWN
5668 && info.bfd_arch_info != NULL
5669 && info.bfd_arch_info->arch == bfd_arch_mips)
5670 {
5671 switch (info.bfd_arch_info->mach)
5672 {
5673 case bfd_mach_mips3900:
5674 mips_abi = MIPS_ABI_EABI32;
5675 break;
5676 case bfd_mach_mips4100:
5677 case bfd_mach_mips5000:
5678 mips_abi = MIPS_ABI_EABI64;
5679 break;
5680 case bfd_mach_mips8000:
5681 case bfd_mach_mips10000:
5682 /* On Irix, ELF64 executables use the N64 ABI. The
5683 pseudo-sections which describe the ABI aren't present
5684 on IRIX. (Even for executables created by gcc.) */
5685 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5686 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5687 mips_abi = MIPS_ABI_N64;
5688 else
5689 mips_abi = MIPS_ABI_N32;
5690 break;
5691 }
5692 }
5693
5694 if (mips_abi == MIPS_ABI_UNKNOWN)
5695 mips_abi = MIPS_ABI_O32;
5696
5697 /* Now that we have found what the ABI for this binary would be,
5698 check whether the user is overriding it. */
5699 found_abi = mips_abi;
5700 wanted_abi = global_mips_abi ();
5701 if (wanted_abi != MIPS_ABI_UNKNOWN)
5702 mips_abi = wanted_abi;
5703
5704 if (gdbarch_debug)
5705 {
5706 fprintf_unfiltered (gdb_stdlog,
5707 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5708 elf_flags);
5709 fprintf_unfiltered (gdb_stdlog,
5710 "mips_gdbarch_init: mips_abi = %d\n",
5711 mips_abi);
5712 fprintf_unfiltered (gdb_stdlog,
5713 "mips_gdbarch_init: found_mips_abi = %d\n",
5714 found_abi);
5715 }
5716
5717 /* try to find a pre-existing architecture */
5718 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5719 arches != NULL;
5720 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5721 {
5722 /* MIPS needs to be pedantic about which ABI the object is
5723 using. */
5724 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5725 continue;
5726 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5727 continue;
5728 return arches->gdbarch;
5729 }
5730
5731 /* Need a new architecture. Fill in a target specific vector. */
5732 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5733 gdbarch = gdbarch_alloc (&info, tdep);
5734 tdep->elf_flags = elf_flags;
5735
5736 /* Initially set everything according to the default ABI/ISA. */
5737 set_gdbarch_short_bit (gdbarch, 16);
5738 set_gdbarch_int_bit (gdbarch, 32);
5739 set_gdbarch_float_bit (gdbarch, 32);
5740 set_gdbarch_double_bit (gdbarch, 64);
5741 set_gdbarch_long_double_bit (gdbarch, 64);
5742 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5743 set_gdbarch_max_register_raw_size (gdbarch, 8);
5744 set_gdbarch_max_register_virtual_size (gdbarch, 8);
5745 tdep->found_abi = found_abi;
5746 tdep->mips_abi = mips_abi;
5747
5748 set_gdbarch_elf_make_msymbol_special (gdbarch,
5749 mips_elf_make_msymbol_special);
5750
5751 if (info.osabi == GDB_OSABI_IRIX)
5752 set_gdbarch_num_regs (gdbarch, 71);
5753 else
5754 set_gdbarch_num_regs (gdbarch, 90);
5755
5756 switch (mips_abi)
5757 {
5758 case MIPS_ABI_O32:
5759 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
5760 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5761 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5762 tdep->mips_default_saved_regsize = 4;
5763 tdep->mips_default_stack_argsize = 4;
5764 tdep->mips_fp_register_double = 0;
5765 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5766 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5767 tdep->gdb_target_is_mips64 = 0;
5768 tdep->default_mask_address_p = 0;
5769 set_gdbarch_long_bit (gdbarch, 32);
5770 set_gdbarch_ptr_bit (gdbarch, 32);
5771 set_gdbarch_long_long_bit (gdbarch, 64);
5772 set_gdbarch_reg_struct_has_addr (gdbarch,
5773 mips_o32_reg_struct_has_addr);
5774 set_gdbarch_use_struct_convention (gdbarch,
5775 mips_o32_use_struct_convention);
5776 break;
5777 case MIPS_ABI_O64:
5778 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
5779 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5780 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5781 tdep->mips_default_saved_regsize = 8;
5782 tdep->mips_default_stack_argsize = 8;
5783 tdep->mips_fp_register_double = 1;
5784 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5785 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5786 tdep->gdb_target_is_mips64 = 1;
5787 tdep->default_mask_address_p = 0;
5788 set_gdbarch_long_bit (gdbarch, 32);
5789 set_gdbarch_ptr_bit (gdbarch, 32);
5790 set_gdbarch_long_long_bit (gdbarch, 64);
5791 set_gdbarch_reg_struct_has_addr (gdbarch,
5792 mips_o32_reg_struct_has_addr);
5793 set_gdbarch_use_struct_convention (gdbarch,
5794 mips_o32_use_struct_convention);
5795 break;
5796 case MIPS_ABI_EABI32:
5797 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5798 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5799 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5800 tdep->mips_default_saved_regsize = 4;
5801 tdep->mips_default_stack_argsize = 4;
5802 tdep->mips_fp_register_double = 0;
5803 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5804 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5805 tdep->gdb_target_is_mips64 = 0;
5806 tdep->default_mask_address_p = 0;
5807 set_gdbarch_long_bit (gdbarch, 32);
5808 set_gdbarch_ptr_bit (gdbarch, 32);
5809 set_gdbarch_long_long_bit (gdbarch, 64);
5810 set_gdbarch_reg_struct_has_addr (gdbarch,
5811 mips_eabi_reg_struct_has_addr);
5812 set_gdbarch_use_struct_convention (gdbarch,
5813 mips_eabi_use_struct_convention);
5814 break;
5815 case MIPS_ABI_EABI64:
5816 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5817 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5818 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5819 tdep->mips_default_saved_regsize = 8;
5820 tdep->mips_default_stack_argsize = 8;
5821 tdep->mips_fp_register_double = 1;
5822 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5823 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5824 tdep->gdb_target_is_mips64 = 1;
5825 tdep->default_mask_address_p = 0;
5826 set_gdbarch_long_bit (gdbarch, 64);
5827 set_gdbarch_ptr_bit (gdbarch, 64);
5828 set_gdbarch_long_long_bit (gdbarch, 64);
5829 set_gdbarch_reg_struct_has_addr (gdbarch,
5830 mips_eabi_reg_struct_has_addr);
5831 set_gdbarch_use_struct_convention (gdbarch,
5832 mips_eabi_use_struct_convention);
5833 break;
5834 case MIPS_ABI_N32:
5835 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5836 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5837 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5838 tdep->mips_default_saved_regsize = 8;
5839 tdep->mips_default_stack_argsize = 8;
5840 tdep->mips_fp_register_double = 1;
5841 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5842 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5843 tdep->gdb_target_is_mips64 = 1;
5844 tdep->default_mask_address_p = 0;
5845 set_gdbarch_long_bit (gdbarch, 32);
5846 set_gdbarch_ptr_bit (gdbarch, 32);
5847 set_gdbarch_long_long_bit (gdbarch, 64);
5848
5849 /* Set up the disassembler info, so that we get the right
5850 register names from libopcodes. */
5851 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5852 tm_print_insn_info.arch = bfd_arch_mips;
5853 if (info.bfd_arch_info != NULL
5854 && info.bfd_arch_info->arch == bfd_arch_mips
5855 && info.bfd_arch_info->mach)
5856 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5857 else
5858 tm_print_insn_info.mach = bfd_mach_mips8000;
5859
5860 set_gdbarch_use_struct_convention (gdbarch,
5861 mips_n32n64_use_struct_convention);
5862 set_gdbarch_reg_struct_has_addr (gdbarch,
5863 mips_n32n64_reg_struct_has_addr);
5864 break;
5865 case MIPS_ABI_N64:
5866 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5867 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5868 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5869 tdep->mips_default_saved_regsize = 8;
5870 tdep->mips_default_stack_argsize = 8;
5871 tdep->mips_fp_register_double = 1;
5872 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5873 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5874 tdep->gdb_target_is_mips64 = 1;
5875 tdep->default_mask_address_p = 0;
5876 set_gdbarch_long_bit (gdbarch, 64);
5877 set_gdbarch_ptr_bit (gdbarch, 64);
5878 set_gdbarch_long_long_bit (gdbarch, 64);
5879
5880 /* Set up the disassembler info, so that we get the right
5881 register names from libopcodes. */
5882 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5883 tm_print_insn_info.arch = bfd_arch_mips;
5884 if (info.bfd_arch_info != NULL
5885 && info.bfd_arch_info->arch == bfd_arch_mips
5886 && info.bfd_arch_info->mach)
5887 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5888 else
5889 tm_print_insn_info.mach = bfd_mach_mips8000;
5890
5891 set_gdbarch_use_struct_convention (gdbarch,
5892 mips_n32n64_use_struct_convention);
5893 set_gdbarch_reg_struct_has_addr (gdbarch,
5894 mips_n32n64_reg_struct_has_addr);
5895 break;
5896 default:
5897 internal_error (__FILE__, __LINE__,
5898 "unknown ABI in switch");
5899 }
5900
5901 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5902 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5903 comment:
5904
5905 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5906 flag in object files because to do so would make it impossible to
5907 link with libraries compiled without "-gp32". This is
5908 unnecessarily restrictive.
5909
5910 We could solve this problem by adding "-gp32" multilibs to gcc,
5911 but to set this flag before gcc is built with such multilibs will
5912 break too many systems.''
5913
5914 But even more unhelpfully, the default linker output target for
5915 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5916 for 64-bit programs - you need to change the ABI to change this,
5917 and not all gcc targets support that currently. Therefore using
5918 this flag to detect 32-bit mode would do the wrong thing given
5919 the current gcc - it would make GDB treat these 64-bit programs
5920 as 32-bit programs by default. */
5921
5922 /* enable/disable the MIPS FPU */
5923 if (!mips_fpu_type_auto)
5924 tdep->mips_fpu_type = mips_fpu_type;
5925 else if (info.bfd_arch_info != NULL
5926 && info.bfd_arch_info->arch == bfd_arch_mips)
5927 switch (info.bfd_arch_info->mach)
5928 {
5929 case bfd_mach_mips3900:
5930 case bfd_mach_mips4100:
5931 case bfd_mach_mips4111:
5932 tdep->mips_fpu_type = MIPS_FPU_NONE;
5933 break;
5934 case bfd_mach_mips4650:
5935 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5936 break;
5937 default:
5938 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5939 break;
5940 }
5941 else
5942 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5943
5944 /* MIPS version of register names. NOTE: At present the MIPS
5945 register name management is part way between the old -
5946 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5947 Further work on it is required. */
5948 /* NOTE: many targets (esp. embedded) do not go thru the
5949 gdbarch_register_name vector at all, instead bypassing it
5950 by defining REGISTER_NAMES. */
5951 set_gdbarch_register_name (gdbarch, mips_register_name);
5952 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5953 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5954 set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5955 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5956 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5957
5958 /* Add/remove bits from an address. The MIPS needs be careful to
5959 ensure that all 32 bit addresses are sign extended to 64 bits. */
5960 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5961
5962 /* There's a mess in stack frame creation. See comments in
5963 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5964 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5965 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
5966
5967 /* Map debug register numbers onto internal register numbers. */
5968 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5969 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5970
5971 /* Initialize a frame */
5972 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5973 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
5974
5975 /* MIPS version of CALL_DUMMY */
5976
5977 set_gdbarch_call_dummy_p (gdbarch, 1);
5978 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5979 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5980 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5981 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
5982 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
5983 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5984 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
5985 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5986 set_gdbarch_call_dummy_length (gdbarch, 0);
5987 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
5988 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
5989 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
5990 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5991 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5992 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
5993 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
5994 set_gdbarch_register_convert_to_virtual (gdbarch,
5995 mips_register_convert_to_virtual);
5996 set_gdbarch_register_convert_to_raw (gdbarch,
5997 mips_register_convert_to_raw);
5998
5999 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
6000 set_gdbarch_frameless_function_invocation (gdbarch,
6001 generic_frameless_function_invocation_not);
6002 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6003 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
6004 set_gdbarch_frame_args_skip (gdbarch, 0);
6005
6006 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
6007
6008 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6009 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6010 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6011
6012 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6013 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6014
6015 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6016 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6017 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6018
6019 set_gdbarch_function_start_offset (gdbarch, 0);
6020
6021 /* There are MIPS targets which do not yet use this since they still
6022 define REGISTER_VIRTUAL_TYPE. */
6023 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
6024 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
6025
6026 set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
6027 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6028
6029 /* Hook in OS ABI-specific overrides, if they have been registered. */
6030 gdbarch_init_osabi (info, gdbarch);
6031
6032 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6033 set_gdbarch_extract_struct_value_address (gdbarch,
6034 mips_extract_struct_value_address);
6035
6036 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6037
6038 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6039 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6040
6041 return gdbarch;
6042 }
6043
6044 static void
6045 mips_abi_update (char *ignore_args, int from_tty,
6046 struct cmd_list_element *c)
6047 {
6048 struct gdbarch_info info;
6049
6050 /* Force the architecture to update, and (if it's a MIPS architecture)
6051 mips_gdbarch_init will take care of the rest. */
6052 gdbarch_info_init (&info);
6053 gdbarch_update_p (info);
6054 }
6055
6056 static void
6057 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6058 {
6059 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6060 if (tdep != NULL)
6061 {
6062 int ef_mips_arch;
6063 int ef_mips_32bitmode;
6064 /* determine the ISA */
6065 switch (tdep->elf_flags & EF_MIPS_ARCH)
6066 {
6067 case E_MIPS_ARCH_1:
6068 ef_mips_arch = 1;
6069 break;
6070 case E_MIPS_ARCH_2:
6071 ef_mips_arch = 2;
6072 break;
6073 case E_MIPS_ARCH_3:
6074 ef_mips_arch = 3;
6075 break;
6076 case E_MIPS_ARCH_4:
6077 ef_mips_arch = 4;
6078 break;
6079 default:
6080 ef_mips_arch = 0;
6081 break;
6082 }
6083 /* determine the size of a pointer */
6084 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6085 fprintf_unfiltered (file,
6086 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6087 tdep->elf_flags);
6088 fprintf_unfiltered (file,
6089 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6090 ef_mips_32bitmode);
6091 fprintf_unfiltered (file,
6092 "mips_dump_tdep: ef_mips_arch = %d\n",
6093 ef_mips_arch);
6094 fprintf_unfiltered (file,
6095 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6096 tdep->mips_abi,
6097 mips_abi_strings[tdep->mips_abi]);
6098 fprintf_unfiltered (file,
6099 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6100 mips_mask_address_p (),
6101 tdep->default_mask_address_p);
6102 }
6103 fprintf_unfiltered (file,
6104 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6105 FP_REGISTER_DOUBLE);
6106 fprintf_unfiltered (file,
6107 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6108 MIPS_DEFAULT_FPU_TYPE,
6109 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6110 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6111 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6112 : "???"));
6113 fprintf_unfiltered (file,
6114 "mips_dump_tdep: MIPS_EABI = %d\n",
6115 MIPS_EABI);
6116 fprintf_unfiltered (file,
6117 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6118 MIPS_LAST_FP_ARG_REGNUM,
6119 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6120 fprintf_unfiltered (file,
6121 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6122 MIPS_FPU_TYPE,
6123 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6124 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6125 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6126 : "???"));
6127 fprintf_unfiltered (file,
6128 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6129 MIPS_DEFAULT_SAVED_REGSIZE);
6130 fprintf_unfiltered (file,
6131 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6132 FP_REGISTER_DOUBLE);
6133 fprintf_unfiltered (file,
6134 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6135 MIPS_DEFAULT_STACK_ARGSIZE);
6136 fprintf_unfiltered (file,
6137 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6138 MIPS_STACK_ARGSIZE);
6139 fprintf_unfiltered (file,
6140 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6141 MIPS_REGSIZE);
6142 fprintf_unfiltered (file,
6143 "mips_dump_tdep: A0_REGNUM = %d\n",
6144 A0_REGNUM);
6145 fprintf_unfiltered (file,
6146 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6147 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6148 fprintf_unfiltered (file,
6149 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6150 XSTRING (ATTACH_DETACH));
6151 fprintf_unfiltered (file,
6152 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6153 BADVADDR_REGNUM);
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6156 fprintf_unfiltered (file,
6157 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6158 CAUSE_REGNUM);
6159 fprintf_unfiltered (file,
6160 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6161 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6162 fprintf_unfiltered (file,
6163 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6164 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6165 fprintf_unfiltered (file,
6166 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6167 FCRCS_REGNUM);
6168 fprintf_unfiltered (file,
6169 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6170 FCRIR_REGNUM);
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6173 FIRST_EMBED_REGNUM);
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6176 FPA0_REGNUM);
6177 fprintf_unfiltered (file,
6178 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6179 GDB_TARGET_IS_MIPS64);
6180 fprintf_unfiltered (file,
6181 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6182 GEN_REG_SAVE_MASK);
6183 fprintf_unfiltered (file,
6184 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6185 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6186 fprintf_unfiltered (file,
6187 "mips_dump_tdep: HI_REGNUM = %d\n",
6188 HI_REGNUM);
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6193 fprintf_unfiltered (file,
6194 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6195 XSTRING (IGNORE_HELPER_CALL (PC)));
6196 fprintf_unfiltered (file,
6197 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6198 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6199 fprintf_unfiltered (file,
6200 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6201 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6202 fprintf_unfiltered (file,
6203 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6204 fprintf_unfiltered (file,
6205 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6206 LAST_EMBED_REGNUM);
6207 fprintf_unfiltered (file,
6208 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6209 fprintf_unfiltered (file,
6210 "mips_dump_tdep: LO_REGNUM = %d\n",
6211 LO_REGNUM);
6212 #ifdef MACHINE_CPROC_FP_OFFSET
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6215 MACHINE_CPROC_FP_OFFSET);
6216 #endif
6217 #ifdef MACHINE_CPROC_PC_OFFSET
6218 fprintf_unfiltered (file,
6219 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6220 MACHINE_CPROC_PC_OFFSET);
6221 #endif
6222 #ifdef MACHINE_CPROC_SP_OFFSET
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6225 MACHINE_CPROC_SP_OFFSET);
6226 #endif
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6229 fprintf_unfiltered (file,
6230 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6231 fprintf_unfiltered (file,
6232 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6233 MIPS16_INSTLEN);
6234 fprintf_unfiltered (file,
6235 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6236 fprintf_unfiltered (file,
6237 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6240 fprintf_unfiltered (file,
6241 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6242 MIPS_INSTLEN);
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6245 MIPS_LAST_ARG_REGNUM,
6246 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6249 MIPS_NUMREGS);
6250 fprintf_unfiltered (file,
6251 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6254 MIPS_SAVED_REGSIZE);
6255 fprintf_unfiltered (file,
6256 "mips_dump_tdep: OP_LDFPR = used?\n");
6257 fprintf_unfiltered (file,
6258 "mips_dump_tdep: OP_LDGPR = used?\n");
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6261 fprintf_unfiltered (file,
6262 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: PRID_REGNUM = %d\n",
6265 PRID_REGNUM);
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6268 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6269 fprintf_unfiltered (file,
6270 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: PROC_PC_REG = function?\n");
6287 fprintf_unfiltered (file,
6288 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: PS_REGNUM = %d\n",
6295 PS_REGNUM);
6296 fprintf_unfiltered (file,
6297 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6298 PUSH_FP_REGNUM);
6299 fprintf_unfiltered (file,
6300 "mips_dump_tdep: RA_REGNUM = %d\n",
6301 RA_REGNUM);
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6304 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6307 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6308 fprintf_unfiltered (file,
6309 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: ROUND_DOWN = function?\n");
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: ROUND_UP = function?\n");
6314 #ifdef SAVED_BYTES
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: SAVED_BYTES = %d\n",
6317 SAVED_BYTES);
6318 #endif
6319 #ifdef SAVED_FP
6320 fprintf_unfiltered (file,
6321 "mips_dump_tdep: SAVED_FP = %d\n",
6322 SAVED_FP);
6323 #endif
6324 #ifdef SAVED_PC
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: SAVED_PC = %d\n",
6327 SAVED_PC);
6328 #endif
6329 fprintf_unfiltered (file,
6330 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6331 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6334 fprintf_unfiltered (file,
6335 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6336 SIGFRAME_BASE);
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6339 SIGFRAME_FPREGSAVE_OFF);
6340 fprintf_unfiltered (file,
6341 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6342 SIGFRAME_PC_OFF);
6343 fprintf_unfiltered (file,
6344 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6345 SIGFRAME_REGSAVE_OFF);
6346 fprintf_unfiltered (file,
6347 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6348 SIGFRAME_REG_SIZE);
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6351 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6352 fprintf_unfiltered (file,
6353 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6354 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6355 fprintf_unfiltered (file,
6356 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6357 SOFTWARE_SINGLE_STEP_P ());
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6360 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6361 #ifdef STACK_END_ADDR
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6364 STACK_END_ADDR);
6365 #endif
6366 fprintf_unfiltered (file,
6367 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6368 XSTRING (STEP_SKIPS_DELAY (PC)));
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6371 STEP_SKIPS_DELAY_P);
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6374 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: T9_REGNUM = %d\n",
6377 T9_REGNUM);
6378 fprintf_unfiltered (file,
6379 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6380 fprintf_unfiltered (file,
6381 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6382 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6383 fprintf_unfiltered (file,
6384 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6385 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6386 fprintf_unfiltered (file,
6387 "mips_dump_tdep: TARGET_MIPS = used?\n");
6388 fprintf_unfiltered (file,
6389 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6390 XSTRING (TM_PRINT_INSN_MACH));
6391 #ifdef TRACE_CLEAR
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6394 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6395 #endif
6396 #ifdef TRACE_FLAVOR
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6399 TRACE_FLAVOR);
6400 #endif
6401 #ifdef TRACE_FLAVOR_SIZE
6402 fprintf_unfiltered (file,
6403 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6404 TRACE_FLAVOR_SIZE);
6405 #endif
6406 #ifdef TRACE_SET
6407 fprintf_unfiltered (file,
6408 "mips_dump_tdep: TRACE_SET # %s\n",
6409 XSTRING (TRACE_SET (X,STATE)));
6410 #endif
6411 fprintf_unfiltered (file,
6412 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6413 #ifdef UNUSED_REGNUM
6414 fprintf_unfiltered (file,
6415 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6416 UNUSED_REGNUM);
6417 #endif
6418 fprintf_unfiltered (file,
6419 "mips_dump_tdep: V0_REGNUM = %d\n",
6420 V0_REGNUM);
6421 fprintf_unfiltered (file,
6422 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6423 (long) VM_MIN_ADDRESS);
6424 #ifdef VX_NUM_REGS
6425 fprintf_unfiltered (file,
6426 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6427 VX_NUM_REGS);
6428 #endif
6429 fprintf_unfiltered (file,
6430 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6431 ZERO_REGNUM);
6432 fprintf_unfiltered (file,
6433 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6434 _PROC_MAGIC_);
6435 }
6436
6437 void
6438 _initialize_mips_tdep (void)
6439 {
6440 static struct cmd_list_element *mipsfpulist = NULL;
6441 struct cmd_list_element *c;
6442
6443 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6444 if (MIPS_ABI_LAST + 1
6445 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6446 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6447
6448 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6449 if (!tm_print_insn) /* Someone may have already set it */
6450 tm_print_insn = gdb_print_insn_mips;
6451
6452 /* Add root prefix command for all "set mips"/"show mips" commands */
6453 add_prefix_cmd ("mips", no_class, set_mips_command,
6454 "Various MIPS specific commands.",
6455 &setmipscmdlist, "set mips ", 0, &setlist);
6456
6457 add_prefix_cmd ("mips", no_class, show_mips_command,
6458 "Various MIPS specific commands.",
6459 &showmipscmdlist, "show mips ", 0, &showlist);
6460
6461 /* Allow the user to override the saved register size. */
6462 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6463 class_obscure,
6464 size_enums,
6465 &mips_saved_regsize_string, "\
6466 Set size of general purpose registers saved on the stack.\n\
6467 This option can be set to one of:\n\
6468 32 - Force GDB to treat saved GP registers as 32-bit\n\
6469 64 - Force GDB to treat saved GP registers as 64-bit\n\
6470 auto - Allow GDB to use the target's default setting or autodetect the\n\
6471 saved GP register size from information contained in the executable.\n\
6472 (default: auto)",
6473 &setmipscmdlist),
6474 &showmipscmdlist);
6475
6476 /* Allow the user to override the argument stack size. */
6477 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6478 class_obscure,
6479 size_enums,
6480 &mips_stack_argsize_string, "\
6481 Set the amount of stack space reserved for each argument.\n\
6482 This option can be set to one of:\n\
6483 32 - Force GDB to allocate 32-bit chunks per argument\n\
6484 64 - Force GDB to allocate 64-bit chunks per argument\n\
6485 auto - Allow GDB to determine the correct setting from the current\n\
6486 target and executable (default)",
6487 &setmipscmdlist),
6488 &showmipscmdlist);
6489
6490 /* Allow the user to override the ABI. */
6491 c = add_set_enum_cmd
6492 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6493 "Set the ABI used by this program.\n"
6494 "This option can be set to one of:\n"
6495 " auto - the default ABI associated with the current binary\n"
6496 " o32\n"
6497 " o64\n"
6498 " n32\n"
6499 " n64\n"
6500 " eabi32\n"
6501 " eabi64",
6502 &setmipscmdlist);
6503 add_show_from_set (c, &showmipscmdlist);
6504 set_cmd_sfunc (c, mips_abi_update);
6505
6506 /* Let the user turn off floating point and set the fence post for
6507 heuristic_proc_start. */
6508
6509 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6510 "Set use of MIPS floating-point coprocessor.",
6511 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6512 add_cmd ("single", class_support, set_mipsfpu_single_command,
6513 "Select single-precision MIPS floating-point coprocessor.",
6514 &mipsfpulist);
6515 add_cmd ("double", class_support, set_mipsfpu_double_command,
6516 "Select double-precision MIPS floating-point coprocessor.",
6517 &mipsfpulist);
6518 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6519 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6520 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6521 add_cmd ("none", class_support, set_mipsfpu_none_command,
6522 "Select no MIPS floating-point coprocessor.",
6523 &mipsfpulist);
6524 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6525 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6526 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6527 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6528 "Select MIPS floating-point coprocessor automatically.",
6529 &mipsfpulist);
6530 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6531 "Show current use of MIPS floating-point coprocessor target.",
6532 &showlist);
6533
6534 /* We really would like to have both "0" and "unlimited" work, but
6535 command.c doesn't deal with that. So make it a var_zinteger
6536 because the user can always use "999999" or some such for unlimited. */
6537 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6538 (char *) &heuristic_fence_post,
6539 "\
6540 Set the distance searched for the start of a function.\n\
6541 If you are debugging a stripped executable, GDB needs to search through the\n\
6542 program for the start of a function. This command sets the distance of the\n\
6543 search. The only need to set it is when debugging a stripped executable.",
6544 &setlist);
6545 /* We need to throw away the frame cache when we set this, since it
6546 might change our ability to get backtraces. */
6547 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6548 add_show_from_set (c, &showlist);
6549
6550 /* Allow the user to control whether the upper bits of 64-bit
6551 addresses should be zeroed. */
6552 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6553 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6554 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6555 allow GDB to determine the correct value.\n", "\
6556 Show zeroing of upper 32 bits of 64-bit addresses.",
6557 NULL, show_mask_address,
6558 &setmipscmdlist, &showmipscmdlist);
6559
6560 /* Allow the user to control the size of 32 bit registers within the
6561 raw remote packet. */
6562 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6563 class_obscure,
6564 var_boolean,
6565 (char *)&mips64_transfers_32bit_regs_p, "\
6566 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6567 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6568 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6569 64 bits for others. Use \"off\" to disable compatibility mode",
6570 &setlist),
6571 &showlist);
6572
6573 /* Debug this files internals. */
6574 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6575 &mips_debug, "Set mips debugging.\n\
6576 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6577 &showdebuglist);
6578 }
This page took 0.218609 seconds and 3 git commands to generate.