1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
35 #include "arch-utils.h"
38 #include "mips-tdep.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
45 #include "sim-regno.h"
48 #include "frame-unwind.h"
49 #include "frame-base.h"
50 #include "trad-frame.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
58 #include "target-float.h"
61 static const struct objfile_data
*mips_pdr_data
;
63 static struct type
*mips_register_type (struct gdbarch
*gdbarch
, int regnum
);
65 static int mips32_instruction_has_delay_slot (struct gdbarch
*gdbarch
,
67 static int micromips_instruction_has_delay_slot (ULONGEST insn
, int mustbe32
);
68 static int mips16_instruction_has_delay_slot (unsigned short inst
,
71 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch
*gdbarch
,
73 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch
*gdbarch
,
74 CORE_ADDR addr
, int mustbe32
);
75 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch
*gdbarch
,
76 CORE_ADDR addr
, int mustbe32
);
78 static void mips_print_float_info (struct gdbarch
*, struct ui_file
*,
79 struct frame_info
*, const char *);
81 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
82 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
83 #define ST0_FR (1 << 26)
85 /* The sizes of floating point registers. */
89 MIPS_FPU_SINGLE_REGSIZE
= 4,
90 MIPS_FPU_DOUBLE_REGSIZE
= 8
99 static const char *mips_abi_string
;
101 static const char *const mips_abi_strings
[] = {
112 /* Enum describing the different kinds of breakpoints. */
114 enum mips_breakpoint_kind
116 /* 16-bit MIPS16 mode breakpoint. */
117 MIPS_BP_KIND_MIPS16
= 2,
119 /* 16-bit microMIPS mode breakpoint. */
120 MIPS_BP_KIND_MICROMIPS16
= 3,
122 /* 32-bit standard MIPS mode breakpoint. */
123 MIPS_BP_KIND_MIPS32
= 4,
125 /* 32-bit microMIPS mode breakpoint. */
126 MIPS_BP_KIND_MICROMIPS32
= 5,
129 /* For backwards compatibility we default to MIPS16. This flag is
130 overridden as soon as unambiguous ELF file flags tell us the
131 compressed ISA encoding used. */
132 static const char mips_compression_mips16
[] = "mips16";
133 static const char mips_compression_micromips
[] = "micromips";
134 static const char *const mips_compression_strings
[] =
136 mips_compression_mips16
,
137 mips_compression_micromips
,
141 static const char *mips_compression_string
= mips_compression_mips16
;
143 /* The standard register names, and all the valid aliases for them. */
144 struct register_alias
150 /* Aliases for o32 and most other ABIs. */
151 const struct register_alias mips_o32_aliases
[] = {
158 /* Aliases for n32 and n64. */
159 const struct register_alias mips_n32_n64_aliases
[] = {
166 /* Aliases for ABI-independent registers. */
167 const struct register_alias mips_register_aliases
[] = {
168 /* The architecture manuals specify these ABI-independent names for
170 #define R(n) { "r" #n, n }
171 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
172 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
173 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
174 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
177 /* k0 and k1 are sometimes called these instead (for "kernel
182 /* This is the traditional GDB name for the CP0 status register. */
183 { "sr", MIPS_PS_REGNUM
},
185 /* This is the traditional GDB name for the CP0 BadVAddr register. */
186 { "bad", MIPS_EMBED_BADVADDR_REGNUM
},
188 /* This is the traditional GDB name for the FCSR. */
189 { "fsr", MIPS_EMBED_FP0_REGNUM
+ 32 }
192 const struct register_alias mips_numeric_register_aliases
[] = {
193 #define R(n) { #n, n }
194 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
195 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
196 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
197 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
201 #ifndef MIPS_DEFAULT_FPU_TYPE
202 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
204 static int mips_fpu_type_auto
= 1;
205 static enum mips_fpu_type mips_fpu_type
= MIPS_DEFAULT_FPU_TYPE
;
207 static unsigned int mips_debug
= 0;
209 /* Properties (for struct target_desc) describing the g/G packet
211 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
212 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
214 struct target_desc
*mips_tdesc_gp32
;
215 struct target_desc
*mips_tdesc_gp64
;
217 /* The current set of options to be passed to the disassembler. */
218 static char *mips_disassembler_options
;
220 /* Implicit disassembler options for individual ABIs. These tell
221 libopcodes to use general-purpose register names corresponding
222 to the ABI we have selected, perhaps via a `set mips abi ...'
223 override, rather than ones inferred from the ABI set in the ELF
224 headers of the binary file selected for debugging. */
225 static const char mips_disassembler_options_o32
[] = "gpr-names=32";
226 static const char mips_disassembler_options_n32
[] = "gpr-names=n32";
227 static const char mips_disassembler_options_n64
[] = "gpr-names=64";
229 const struct mips_regnum
*
230 mips_regnum (struct gdbarch
*gdbarch
)
232 return gdbarch_tdep (gdbarch
)->regnum
;
236 mips_fpa0_regnum (struct gdbarch
*gdbarch
)
238 return mips_regnum (gdbarch
)->fp0
+ 12;
241 /* Return 1 if REGNUM refers to a floating-point general register, raw
242 or cooked. Otherwise return 0. */
245 mips_float_register_p (struct gdbarch
*gdbarch
, int regnum
)
247 int rawnum
= regnum
% gdbarch_num_regs (gdbarch
);
249 return (rawnum
>= mips_regnum (gdbarch
)->fp0
250 && rawnum
< mips_regnum (gdbarch
)->fp0
+ 32);
253 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
255 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
257 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
258 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
260 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
261 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
263 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
265 /* Return the MIPS ABI associated with GDBARCH. */
267 mips_abi (struct gdbarch
*gdbarch
)
269 return gdbarch_tdep (gdbarch
)->mips_abi
;
273 mips_isa_regsize (struct gdbarch
*gdbarch
)
275 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
277 /* If we know how big the registers are, use that size. */
278 if (tdep
->register_size_valid_p
)
279 return tdep
->register_size
;
281 /* Fall back to the previous behavior. */
282 return (gdbarch_bfd_arch_info (gdbarch
)->bits_per_word
283 / gdbarch_bfd_arch_info (gdbarch
)->bits_per_byte
);
286 /* Max saved register size. */
287 #define MAX_MIPS_ABI_REGSIZE 8
289 /* Return the currently configured (or set) saved register size. */
292 mips_abi_regsize (struct gdbarch
*gdbarch
)
294 switch (mips_abi (gdbarch
))
296 case MIPS_ABI_EABI32
:
302 case MIPS_ABI_EABI64
:
304 case MIPS_ABI_UNKNOWN
:
307 internal_error (__FILE__
, __LINE__
, _("bad switch"));
311 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
312 are some functions to handle addresses associated with compressed
313 code including but not limited to testing, setting, or clearing
314 bit 0 of such addresses. */
316 /* Return one iff compressed code is the MIPS16 instruction set. */
319 is_mips16_isa (struct gdbarch
*gdbarch
)
321 return gdbarch_tdep (gdbarch
)->mips_isa
== ISA_MIPS16
;
324 /* Return one iff compressed code is the microMIPS instruction set. */
327 is_micromips_isa (struct gdbarch
*gdbarch
)
329 return gdbarch_tdep (gdbarch
)->mips_isa
== ISA_MICROMIPS
;
332 /* Return one iff ADDR denotes compressed code. */
335 is_compact_addr (CORE_ADDR addr
)
340 /* Return one iff ADDR denotes standard ISA code. */
343 is_mips_addr (CORE_ADDR addr
)
345 return !is_compact_addr (addr
);
348 /* Return one iff ADDR denotes MIPS16 code. */
351 is_mips16_addr (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
353 return is_compact_addr (addr
) && is_mips16_isa (gdbarch
);
356 /* Return one iff ADDR denotes microMIPS code. */
359 is_micromips_addr (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
361 return is_compact_addr (addr
) && is_micromips_isa (gdbarch
);
364 /* Strip the ISA (compression) bit off from ADDR. */
367 unmake_compact_addr (CORE_ADDR addr
)
369 return ((addr
) & ~(CORE_ADDR
) 1);
372 /* Add the ISA (compression) bit to ADDR. */
375 make_compact_addr (CORE_ADDR addr
)
377 return ((addr
) | (CORE_ADDR
) 1);
380 /* Extern version of unmake_compact_addr; we use a separate function
381 so that unmake_compact_addr can be inlined throughout this file. */
384 mips_unmake_compact_addr (CORE_ADDR addr
)
386 return unmake_compact_addr (addr
);
389 /* Functions for setting and testing a bit in a minimal symbol that
390 marks it as MIPS16 or microMIPS function. The MSB of the minimal
391 symbol's "info" field is used for this purpose.
393 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
394 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
395 one of the "special" bits in a minimal symbol to mark it accordingly.
396 The test checks an ELF-private flag that is valid for true function
397 symbols only; for synthetic symbols such as for PLT stubs that have
398 no ELF-private part at all the MIPS BFD backend arranges for this
399 information to be carried in the asymbol's udata field instead.
401 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
402 in a minimal symbol. */
405 mips_elf_make_msymbol_special (asymbol
* sym
, struct minimal_symbol
*msym
)
407 elf_symbol_type
*elfsym
= (elf_symbol_type
*) sym
;
408 unsigned char st_other
;
410 if ((sym
->flags
& BSF_SYNTHETIC
) == 0)
411 st_other
= elfsym
->internal_elf_sym
.st_other
;
412 else if ((sym
->flags
& BSF_FUNCTION
) != 0)
413 st_other
= sym
->udata
.i
;
417 if (ELF_ST_IS_MICROMIPS (st_other
))
419 MSYMBOL_TARGET_FLAG_MICROMIPS (msym
) = 1;
420 SET_MSYMBOL_VALUE_ADDRESS (msym
, MSYMBOL_VALUE_RAW_ADDRESS (msym
) | 1);
422 else if (ELF_ST_IS_MIPS16 (st_other
))
424 MSYMBOL_TARGET_FLAG_MIPS16 (msym
) = 1;
425 SET_MSYMBOL_VALUE_ADDRESS (msym
, MSYMBOL_VALUE_RAW_ADDRESS (msym
) | 1);
429 /* Return one iff MSYM refers to standard ISA code. */
432 msymbol_is_mips (struct minimal_symbol
*msym
)
434 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym
)
435 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym
));
438 /* Return one iff MSYM refers to MIPS16 code. */
441 msymbol_is_mips16 (struct minimal_symbol
*msym
)
443 return MSYMBOL_TARGET_FLAG_MIPS16 (msym
);
446 /* Return one iff MSYM refers to microMIPS code. */
449 msymbol_is_micromips (struct minimal_symbol
*msym
)
451 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym
);
454 /* Set the ISA bit in the main symbol too, complementing the corresponding
455 minimal symbol setting and reflecting the run-time value of the symbol.
456 The need for comes from the ISA bit having been cleared as code in
457 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
458 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
459 of symbols referring to compressed code different in GDB to the values
460 used by actual code. That in turn makes them evaluate incorrectly in
461 expressions, producing results different to what the same expressions
462 yield when compiled into the program being debugged. */
465 mips_make_symbol_special (struct symbol
*sym
, struct objfile
*objfile
)
467 if (SYMBOL_CLASS (sym
) == LOC_BLOCK
)
469 /* We are in symbol reading so it is OK to cast away constness. */
470 struct block
*block
= (struct block
*) SYMBOL_BLOCK_VALUE (sym
);
471 CORE_ADDR compact_block_start
;
472 struct bound_minimal_symbol msym
;
474 compact_block_start
= BLOCK_START (block
) | 1;
475 msym
= lookup_minimal_symbol_by_pc (compact_block_start
);
476 if (msym
.minsym
&& !msymbol_is_mips (msym
.minsym
))
478 BLOCK_START (block
) = compact_block_start
;
483 /* XFER a value from the big/little/left end of the register.
484 Depending on the size of the value it might occupy the entire
485 register or just part of it. Make an allowance for this, aligning
486 things accordingly. */
489 mips_xfer_register (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
490 int reg_num
, int length
,
491 enum bfd_endian endian
, gdb_byte
*in
,
492 const gdb_byte
*out
, int buf_offset
)
496 gdb_assert (reg_num
>= gdbarch_num_regs (gdbarch
));
497 /* Need to transfer the left or right part of the register, based on
498 the targets byte order. */
502 reg_offset
= register_size (gdbarch
, reg_num
) - length
;
504 case BFD_ENDIAN_LITTLE
:
507 case BFD_ENDIAN_UNKNOWN
: /* Indicates no alignment. */
511 internal_error (__FILE__
, __LINE__
, _("bad switch"));
514 fprintf_unfiltered (gdb_stderr
,
515 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
516 reg_num
, reg_offset
, buf_offset
, length
);
517 if (mips_debug
&& out
!= NULL
)
520 fprintf_unfiltered (gdb_stdlog
, "out ");
521 for (i
= 0; i
< length
; i
++)
522 fprintf_unfiltered (gdb_stdlog
, "%02x", out
[buf_offset
+ i
]);
525 regcache
->cooked_read_part (reg_num
, reg_offset
, length
, in
+ buf_offset
);
527 regcache
->cooked_write_part (reg_num
, reg_offset
, length
, out
+ buf_offset
);
528 if (mips_debug
&& in
!= NULL
)
531 fprintf_unfiltered (gdb_stdlog
, "in ");
532 for (i
= 0; i
< length
; i
++)
533 fprintf_unfiltered (gdb_stdlog
, "%02x", in
[buf_offset
+ i
]);
536 fprintf_unfiltered (gdb_stdlog
, "\n");
539 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
540 compatiblity mode. A return value of 1 means that we have
541 physical 64-bit registers, but should treat them as 32-bit registers. */
544 mips2_fp_compat (struct frame_info
*frame
)
546 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
547 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
549 if (register_size (gdbarch
, mips_regnum (gdbarch
)->fp0
) == 4)
553 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
554 in all the places we deal with FP registers. PR gdb/413. */
555 /* Otherwise check the FR bit in the status register - it controls
556 the FP compatiblity mode. If it is clear we are in compatibility
558 if ((get_frame_register_unsigned (frame
, MIPS_PS_REGNUM
) & ST0_FR
) == 0)
565 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
567 static CORE_ADDR
heuristic_proc_start (struct gdbarch
*, CORE_ADDR
);
569 /* The list of available "set mips " and "show mips " commands. */
571 static struct cmd_list_element
*setmipscmdlist
= NULL
;
572 static struct cmd_list_element
*showmipscmdlist
= NULL
;
574 /* Integer registers 0 thru 31 are handled explicitly by
575 mips_register_name(). Processor specific registers 32 and above
576 are listed in the following tables. */
579 { NUM_MIPS_PROCESSOR_REGS
= (90 - 32) };
583 static const char *mips_generic_reg_names
[NUM_MIPS_PROCESSOR_REGS
] = {
584 "sr", "lo", "hi", "bad", "cause", "pc",
585 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
586 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
587 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
588 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
592 /* Names of tx39 registers. */
594 static const char *mips_tx39_reg_names
[NUM_MIPS_PROCESSOR_REGS
] = {
595 "sr", "lo", "hi", "bad", "cause", "pc",
596 "", "", "", "", "", "", "", "",
597 "", "", "", "", "", "", "", "",
598 "", "", "", "", "", "", "", "",
599 "", "", "", "", "", "", "", "",
601 "", "", "", "", "", "", "", "",
602 "", "", "config", "cache", "debug", "depc", "epc",
605 /* Names of registers with Linux kernels. */
606 static const char *mips_linux_reg_names
[NUM_MIPS_PROCESSOR_REGS
] = {
607 "sr", "lo", "hi", "bad", "cause", "pc",
608 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
609 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
610 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
611 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
616 /* Return the name of the register corresponding to REGNO. */
618 mips_register_name (struct gdbarch
*gdbarch
, int regno
)
620 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
621 /* GPR names for all ABIs other than n32/n64. */
622 static const char *mips_gpr_names
[] = {
623 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
624 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
625 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
626 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
629 /* GPR names for n32 and n64 ABIs. */
630 static const char *mips_n32_n64_gpr_names
[] = {
631 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
632 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
633 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
634 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
637 enum mips_abi abi
= mips_abi (gdbarch
);
639 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
640 but then don't make the raw register names visible. This (upper)
641 range of user visible register numbers are the pseudo-registers.
643 This approach was adopted accommodate the following scenario:
644 It is possible to debug a 64-bit device using a 32-bit
645 programming model. In such instances, the raw registers are
646 configured to be 64-bits wide, while the pseudo registers are
647 configured to be 32-bits wide. The registers that the user
648 sees - the pseudo registers - match the users expectations
649 given the programming model being used. */
650 int rawnum
= regno
% gdbarch_num_regs (gdbarch
);
651 if (regno
< gdbarch_num_regs (gdbarch
))
654 /* The MIPS integer registers are always mapped from 0 to 31. The
655 names of the registers (which reflects the conventions regarding
656 register use) vary depending on the ABI. */
657 if (0 <= rawnum
&& rawnum
< 32)
659 if (abi
== MIPS_ABI_N32
|| abi
== MIPS_ABI_N64
)
660 return mips_n32_n64_gpr_names
[rawnum
];
662 return mips_gpr_names
[rawnum
];
664 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch
)))
665 return tdesc_register_name (gdbarch
, rawnum
);
666 else if (32 <= rawnum
&& rawnum
< gdbarch_num_regs (gdbarch
))
668 gdb_assert (rawnum
- 32 < NUM_MIPS_PROCESSOR_REGS
);
669 if (tdep
->mips_processor_reg_names
[rawnum
- 32])
670 return tdep
->mips_processor_reg_names
[rawnum
- 32];
674 internal_error (__FILE__
, __LINE__
,
675 _("mips_register_name: bad register number %d"), rawnum
);
678 /* Return the groups that a MIPS register can be categorised into. */
681 mips_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
682 struct reggroup
*reggroup
)
687 int rawnum
= regnum
% gdbarch_num_regs (gdbarch
);
688 int pseudo
= regnum
/ gdbarch_num_regs (gdbarch
);
689 if (reggroup
== all_reggroup
)
691 vector_p
= TYPE_VECTOR (register_type (gdbarch
, regnum
));
692 float_p
= TYPE_CODE (register_type (gdbarch
, regnum
)) == TYPE_CODE_FLT
;
693 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
694 (gdbarch), as not all architectures are multi-arch. */
695 raw_p
= rawnum
< gdbarch_num_regs (gdbarch
);
696 if (gdbarch_register_name (gdbarch
, regnum
) == NULL
697 || gdbarch_register_name (gdbarch
, regnum
)[0] == '\0')
699 if (reggroup
== float_reggroup
)
700 return float_p
&& pseudo
;
701 if (reggroup
== vector_reggroup
)
702 return vector_p
&& pseudo
;
703 if (reggroup
== general_reggroup
)
704 return (!vector_p
&& !float_p
) && pseudo
;
705 /* Save the pseudo registers. Need to make certain that any code
706 extracting register values from a saved register cache also uses
708 if (reggroup
== save_reggroup
)
709 return raw_p
&& pseudo
;
710 /* Restore the same pseudo register. */
711 if (reggroup
== restore_reggroup
)
712 return raw_p
&& pseudo
;
716 /* Return the groups that a MIPS register can be categorised into.
717 This version is only used if we have a target description which
718 describes real registers (and their groups). */
721 mips_tdesc_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
722 struct reggroup
*reggroup
)
724 int rawnum
= regnum
% gdbarch_num_regs (gdbarch
);
725 int pseudo
= regnum
/ gdbarch_num_regs (gdbarch
);
728 /* Only save, restore, and display the pseudo registers. Need to
729 make certain that any code extracting register values from a
730 saved register cache also uses pseudo registers.
732 Note: saving and restoring the pseudo registers is slightly
733 strange; if we have 64 bits, we should save and restore all
734 64 bits. But this is hard and has little benefit. */
738 ret
= tdesc_register_in_reggroup_p (gdbarch
, rawnum
, reggroup
);
742 return mips_register_reggroup_p (gdbarch
, regnum
, reggroup
);
745 /* Map the symbol table registers which live in the range [1 *
746 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
747 registers. Take care of alignment and size problems. */
749 static enum register_status
750 mips_pseudo_register_read (struct gdbarch
*gdbarch
, readable_regcache
*regcache
,
751 int cookednum
, gdb_byte
*buf
)
753 int rawnum
= cookednum
% gdbarch_num_regs (gdbarch
);
754 gdb_assert (cookednum
>= gdbarch_num_regs (gdbarch
)
755 && cookednum
< 2 * gdbarch_num_regs (gdbarch
));
756 if (register_size (gdbarch
, rawnum
) == register_size (gdbarch
, cookednum
))
757 return regcache
->raw_read (rawnum
, buf
);
758 else if (register_size (gdbarch
, rawnum
) >
759 register_size (gdbarch
, cookednum
))
761 if (gdbarch_tdep (gdbarch
)->mips64_transfers_32bit_regs_p
)
762 return regcache
->raw_read_part (rawnum
, 0, 4, buf
);
765 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
767 enum register_status status
;
769 status
= regcache
->raw_read (rawnum
, ®val
);
770 if (status
== REG_VALID
)
771 store_signed_integer (buf
, 4, byte_order
, regval
);
776 internal_error (__FILE__
, __LINE__
, _("bad register size"));
780 mips_pseudo_register_write (struct gdbarch
*gdbarch
,
781 struct regcache
*regcache
, int cookednum
,
784 int rawnum
= cookednum
% gdbarch_num_regs (gdbarch
);
785 gdb_assert (cookednum
>= gdbarch_num_regs (gdbarch
)
786 && cookednum
< 2 * gdbarch_num_regs (gdbarch
));
787 if (register_size (gdbarch
, rawnum
) == register_size (gdbarch
, cookednum
))
788 regcache
->raw_write (rawnum
, buf
);
789 else if (register_size (gdbarch
, rawnum
) >
790 register_size (gdbarch
, cookednum
))
792 if (gdbarch_tdep (gdbarch
)->mips64_transfers_32bit_regs_p
)
793 regcache
->raw_write_part (rawnum
, 0, 4, buf
);
796 /* Sign extend the shortened version of the register prior
797 to placing it in the raw register. This is required for
798 some mips64 parts in order to avoid unpredictable behavior. */
799 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
800 LONGEST regval
= extract_signed_integer (buf
, 4, byte_order
);
801 regcache_raw_write_signed (regcache
, rawnum
, regval
);
805 internal_error (__FILE__
, __LINE__
, _("bad register size"));
809 mips_ax_pseudo_register_collect (struct gdbarch
*gdbarch
,
810 struct agent_expr
*ax
, int reg
)
812 int rawnum
= reg
% gdbarch_num_regs (gdbarch
);
813 gdb_assert (reg
>= gdbarch_num_regs (gdbarch
)
814 && reg
< 2 * gdbarch_num_regs (gdbarch
));
816 ax_reg_mask (ax
, rawnum
);
822 mips_ax_pseudo_register_push_stack (struct gdbarch
*gdbarch
,
823 struct agent_expr
*ax
, int reg
)
825 int rawnum
= reg
% gdbarch_num_regs (gdbarch
);
826 gdb_assert (reg
>= gdbarch_num_regs (gdbarch
)
827 && reg
< 2 * gdbarch_num_regs (gdbarch
));
828 if (register_size (gdbarch
, rawnum
) >= register_size (gdbarch
, reg
))
832 if (register_size (gdbarch
, rawnum
) > register_size (gdbarch
, reg
))
834 if (!gdbarch_tdep (gdbarch
)->mips64_transfers_32bit_regs_p
835 || gdbarch_byte_order (gdbarch
) != BFD_ENDIAN_BIG
)
838 ax_simple (ax
, aop_lsh
);
841 ax_simple (ax
, aop_rsh_signed
);
845 internal_error (__FILE__
, __LINE__
, _("bad register size"));
850 /* Table to translate 3-bit register field to actual register number. */
851 static const signed char mips_reg3_to_reg
[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
853 /* Heuristic_proc_start may hunt through the text section for a long
854 time across a 2400 baud serial line. Allows the user to limit this
857 static int heuristic_fence_post
= 0;
859 /* Number of bytes of storage in the actual machine representation for
860 register N. NOTE: This defines the pseudo register type so need to
861 rebuild the architecture vector. */
863 static int mips64_transfers_32bit_regs_p
= 0;
866 set_mips64_transfers_32bit_regs (const char *args
, int from_tty
,
867 struct cmd_list_element
*c
)
869 struct gdbarch_info info
;
870 gdbarch_info_init (&info
);
871 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
872 instead of relying on globals. Doing that would let generic code
873 handle the search for this specific architecture. */
874 if (!gdbarch_update_p (info
))
876 mips64_transfers_32bit_regs_p
= 0;
877 error (_("32-bit compatibility mode not supported"));
881 /* Convert to/from a register and the corresponding memory value. */
883 /* This predicate tests for the case of an 8 byte floating point
884 value that is being transferred to or from a pair of floating point
885 registers each of which are (or are considered to be) only 4 bytes
888 mips_convert_register_float_case_p (struct gdbarch
*gdbarch
, int regnum
,
891 return (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
892 && register_size (gdbarch
, regnum
) == 4
893 && mips_float_register_p (gdbarch
, regnum
)
894 && TYPE_CODE (type
) == TYPE_CODE_FLT
&& TYPE_LENGTH (type
) == 8);
897 /* This predicate tests for the case of a value of less than 8
898 bytes in width that is being transfered to or from an 8 byte
899 general purpose register. */
901 mips_convert_register_gpreg_case_p (struct gdbarch
*gdbarch
, int regnum
,
904 int num_regs
= gdbarch_num_regs (gdbarch
);
906 return (register_size (gdbarch
, regnum
) == 8
907 && regnum
% num_regs
> 0 && regnum
% num_regs
< 32
908 && TYPE_LENGTH (type
) < 8);
912 mips_convert_register_p (struct gdbarch
*gdbarch
,
913 int regnum
, struct type
*type
)
915 return (mips_convert_register_float_case_p (gdbarch
, regnum
, type
)
916 || mips_convert_register_gpreg_case_p (gdbarch
, regnum
, type
));
920 mips_register_to_value (struct frame_info
*frame
, int regnum
,
921 struct type
*type
, gdb_byte
*to
,
922 int *optimizedp
, int *unavailablep
)
924 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
926 if (mips_convert_register_float_case_p (gdbarch
, regnum
, type
))
928 get_frame_register (frame
, regnum
+ 0, to
+ 4);
929 get_frame_register (frame
, regnum
+ 1, to
+ 0);
931 if (!get_frame_register_bytes (frame
, regnum
+ 0, 0, 4, to
+ 4,
932 optimizedp
, unavailablep
))
935 if (!get_frame_register_bytes (frame
, regnum
+ 1, 0, 4, to
+ 0,
936 optimizedp
, unavailablep
))
938 *optimizedp
= *unavailablep
= 0;
941 else if (mips_convert_register_gpreg_case_p (gdbarch
, regnum
, type
))
943 int len
= TYPE_LENGTH (type
);
946 offset
= gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
? 8 - len
: 0;
947 if (!get_frame_register_bytes (frame
, regnum
, offset
, len
, to
,
948 optimizedp
, unavailablep
))
951 *optimizedp
= *unavailablep
= 0;
956 internal_error (__FILE__
, __LINE__
,
957 _("mips_register_to_value: unrecognized case"));
962 mips_value_to_register (struct frame_info
*frame
, int regnum
,
963 struct type
*type
, const gdb_byte
*from
)
965 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
967 if (mips_convert_register_float_case_p (gdbarch
, regnum
, type
))
969 put_frame_register (frame
, regnum
+ 0, from
+ 4);
970 put_frame_register (frame
, regnum
+ 1, from
+ 0);
972 else if (mips_convert_register_gpreg_case_p (gdbarch
, regnum
, type
))
975 int len
= TYPE_LENGTH (type
);
977 /* Sign extend values, irrespective of type, that are stored to
978 a 64-bit general purpose register. (32-bit unsigned values
979 are stored as signed quantities within a 64-bit register.
980 When performing an operation, in compiled code, that combines
981 a 32-bit unsigned value with a signed 64-bit value, a type
982 conversion is first performed that zeroes out the high 32 bits.) */
983 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
986 store_signed_integer (fill
, 8, BFD_ENDIAN_BIG
, -1);
988 store_signed_integer (fill
, 8, BFD_ENDIAN_BIG
, 0);
989 put_frame_register_bytes (frame
, regnum
, 0, 8 - len
, fill
);
990 put_frame_register_bytes (frame
, regnum
, 8 - len
, len
, from
);
994 if (from
[len
-1] & 0x80)
995 store_signed_integer (fill
, 8, BFD_ENDIAN_LITTLE
, -1);
997 store_signed_integer (fill
, 8, BFD_ENDIAN_LITTLE
, 0);
998 put_frame_register_bytes (frame
, regnum
, 0, len
, from
);
999 put_frame_register_bytes (frame
, regnum
, len
, 8 - len
, fill
);
1004 internal_error (__FILE__
, __LINE__
,
1005 _("mips_value_to_register: unrecognized case"));
1009 /* Return the GDB type object for the "standard" data type of data in
1012 static struct type
*
1013 mips_register_type (struct gdbarch
*gdbarch
, int regnum
)
1015 gdb_assert (regnum
>= 0 && regnum
< 2 * gdbarch_num_regs (gdbarch
));
1016 if (mips_float_register_p (gdbarch
, regnum
))
1018 /* The floating-point registers raw, or cooked, always match
1019 mips_isa_regsize(), and also map 1:1, byte for byte. */
1020 if (mips_isa_regsize (gdbarch
) == 4)
1021 return builtin_type (gdbarch
)->builtin_float
;
1023 return builtin_type (gdbarch
)->builtin_double
;
1025 else if (regnum
< gdbarch_num_regs (gdbarch
))
1027 /* The raw or ISA registers. These are all sized according to
1029 if (mips_isa_regsize (gdbarch
) == 4)
1030 return builtin_type (gdbarch
)->builtin_int32
;
1032 return builtin_type (gdbarch
)->builtin_int64
;
1036 int rawnum
= regnum
- gdbarch_num_regs (gdbarch
);
1038 /* The cooked or ABI registers. These are sized according to
1039 the ABI (with a few complications). */
1040 if (rawnum
== mips_regnum (gdbarch
)->fp_control_status
1041 || rawnum
== mips_regnum (gdbarch
)->fp_implementation_revision
)
1042 return builtin_type (gdbarch
)->builtin_int32
;
1043 else if (gdbarch_osabi (gdbarch
) != GDB_OSABI_LINUX
1044 && rawnum
>= MIPS_FIRST_EMBED_REGNUM
1045 && rawnum
<= MIPS_LAST_EMBED_REGNUM
)
1046 /* The pseudo/cooked view of the embedded registers is always
1047 32-bit. The raw view is handled below. */
1048 return builtin_type (gdbarch
)->builtin_int32
;
1049 else if (gdbarch_tdep (gdbarch
)->mips64_transfers_32bit_regs_p
)
1050 /* The target, while possibly using a 64-bit register buffer,
1051 is only transfering 32-bits of each integer register.
1052 Reflect this in the cooked/pseudo (ABI) register value. */
1053 return builtin_type (gdbarch
)->builtin_int32
;
1054 else if (mips_abi_regsize (gdbarch
) == 4)
1055 /* The ABI is restricted to 32-bit registers (the ISA could be
1057 return builtin_type (gdbarch
)->builtin_int32
;
1060 return builtin_type (gdbarch
)->builtin_int64
;
1064 /* Return the GDB type for the pseudo register REGNUM, which is the
1065 ABI-level view. This function is only called if there is a target
1066 description which includes registers, so we know precisely the
1067 types of hardware registers. */
1069 static struct type
*
1070 mips_pseudo_register_type (struct gdbarch
*gdbarch
, int regnum
)
1072 const int num_regs
= gdbarch_num_regs (gdbarch
);
1073 int rawnum
= regnum
% num_regs
;
1074 struct type
*rawtype
;
1076 gdb_assert (regnum
>= num_regs
&& regnum
< 2 * num_regs
);
1078 /* Absent registers are still absent. */
1079 rawtype
= gdbarch_register_type (gdbarch
, rawnum
);
1080 if (TYPE_LENGTH (rawtype
) == 0)
1083 /* Present the floating point registers however the hardware did;
1084 do not try to convert between FPU layouts. */
1085 if (mips_float_register_p (gdbarch
, rawnum
))
1088 /* Floating-point control registers are always 32-bit even though for
1089 backwards compatibility reasons 64-bit targets will transfer them
1090 as 64-bit quantities even if using XML descriptions. */
1091 if (rawnum
== mips_regnum (gdbarch
)->fp_control_status
1092 || rawnum
== mips_regnum (gdbarch
)->fp_implementation_revision
)
1093 return builtin_type (gdbarch
)->builtin_int32
;
1095 /* Use pointer types for registers if we can. For n32 we can not,
1096 since we do not have a 64-bit pointer type. */
1097 if (mips_abi_regsize (gdbarch
)
1098 == TYPE_LENGTH (builtin_type (gdbarch
)->builtin_data_ptr
))
1100 if (rawnum
== MIPS_SP_REGNUM
1101 || rawnum
== mips_regnum (gdbarch
)->badvaddr
)
1102 return builtin_type (gdbarch
)->builtin_data_ptr
;
1103 else if (rawnum
== mips_regnum (gdbarch
)->pc
)
1104 return builtin_type (gdbarch
)->builtin_func_ptr
;
1107 if (mips_abi_regsize (gdbarch
) == 4 && TYPE_LENGTH (rawtype
) == 8
1108 && ((rawnum
>= MIPS_ZERO_REGNUM
&& rawnum
<= MIPS_PS_REGNUM
)
1109 || rawnum
== mips_regnum (gdbarch
)->lo
1110 || rawnum
== mips_regnum (gdbarch
)->hi
1111 || rawnum
== mips_regnum (gdbarch
)->badvaddr
1112 || rawnum
== mips_regnum (gdbarch
)->cause
1113 || rawnum
== mips_regnum (gdbarch
)->pc
1114 || (mips_regnum (gdbarch
)->dspacc
!= -1
1115 && rawnum
>= mips_regnum (gdbarch
)->dspacc
1116 && rawnum
< mips_regnum (gdbarch
)->dspacc
+ 6)))
1117 return builtin_type (gdbarch
)->builtin_int32
;
1119 /* The pseudo/cooked view of embedded registers is always
1120 32-bit, even if the target transfers 64-bit values for them.
1121 New targets relying on XML descriptions should only transfer
1122 the necessary 32 bits, but older versions of GDB expected 64,
1123 so allow the target to provide 64 bits without interfering
1124 with the displayed type. */
1125 if (gdbarch_osabi (gdbarch
) != GDB_OSABI_LINUX
1126 && rawnum
>= MIPS_FIRST_EMBED_REGNUM
1127 && rawnum
<= MIPS_LAST_EMBED_REGNUM
)
1128 return builtin_type (gdbarch
)->builtin_int32
;
1130 /* For all other registers, pass through the hardware type. */
1134 /* Should the upper word of 64-bit addresses be zeroed? */
1135 static enum auto_boolean mask_address_var
= AUTO_BOOLEAN_AUTO
;
1138 mips_mask_address_p (struct gdbarch_tdep
*tdep
)
1140 switch (mask_address_var
)
1142 case AUTO_BOOLEAN_TRUE
:
1144 case AUTO_BOOLEAN_FALSE
:
1147 case AUTO_BOOLEAN_AUTO
:
1148 return tdep
->default_mask_address_p
;
1150 internal_error (__FILE__
, __LINE__
,
1151 _("mips_mask_address_p: bad switch"));
1157 show_mask_address (struct ui_file
*file
, int from_tty
,
1158 struct cmd_list_element
*c
, const char *value
)
1160 struct gdbarch_tdep
*tdep
= gdbarch_tdep (target_gdbarch ());
1162 deprecated_show_value_hack (file
, from_tty
, c
, value
);
1163 switch (mask_address_var
)
1165 case AUTO_BOOLEAN_TRUE
:
1166 printf_filtered ("The 32 bit mips address mask is enabled\n");
1168 case AUTO_BOOLEAN_FALSE
:
1169 printf_filtered ("The 32 bit mips address mask is disabled\n");
1171 case AUTO_BOOLEAN_AUTO
:
1173 ("The 32 bit address mask is set automatically. Currently %s\n",
1174 mips_mask_address_p (tdep
) ? "enabled" : "disabled");
1177 internal_error (__FILE__
, __LINE__
, _("show_mask_address: bad switch"));
1182 /* Tell if the program counter value in MEMADDR is in a standard ISA
1186 mips_pc_is_mips (CORE_ADDR memaddr
)
1188 struct bound_minimal_symbol sym
;
1190 /* Flags indicating that this is a MIPS16 or microMIPS function is
1191 stored by elfread.c in the high bit of the info field. Use this
1192 to decide if the function is standard MIPS. Otherwise if bit 0
1193 of the address is clear, then this is a standard MIPS function. */
1194 sym
= lookup_minimal_symbol_by_pc (make_compact_addr (memaddr
));
1196 return msymbol_is_mips (sym
.minsym
);
1198 return is_mips_addr (memaddr
);
1201 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1204 mips_pc_is_mips16 (struct gdbarch
*gdbarch
, CORE_ADDR memaddr
)
1206 struct bound_minimal_symbol sym
;
1208 /* A flag indicating that this is a MIPS16 function is stored by
1209 elfread.c in the high bit of the info field. Use this to decide
1210 if the function is MIPS16. Otherwise if bit 0 of the address is
1211 set, then ELF file flags will tell if this is a MIPS16 function. */
1212 sym
= lookup_minimal_symbol_by_pc (make_compact_addr (memaddr
));
1214 return msymbol_is_mips16 (sym
.minsym
);
1216 return is_mips16_addr (gdbarch
, memaddr
);
1219 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1222 mips_pc_is_micromips (struct gdbarch
*gdbarch
, CORE_ADDR memaddr
)
1224 struct bound_minimal_symbol sym
;
1226 /* A flag indicating that this is a microMIPS function is stored by
1227 elfread.c in the high bit of the info field. Use this to decide
1228 if the function is microMIPS. Otherwise if bit 0 of the address
1229 is set, then ELF file flags will tell if this is a microMIPS
1231 sym
= lookup_minimal_symbol_by_pc (make_compact_addr (memaddr
));
1233 return msymbol_is_micromips (sym
.minsym
);
1235 return is_micromips_addr (gdbarch
, memaddr
);
1238 /* Tell the ISA type of the function the program counter value in MEMADDR
1241 static enum mips_isa
1242 mips_pc_isa (struct gdbarch
*gdbarch
, CORE_ADDR memaddr
)
1244 struct bound_minimal_symbol sym
;
1246 /* A flag indicating that this is a MIPS16 or a microMIPS function
1247 is stored by elfread.c in the high bit of the info field. Use
1248 this to decide if the function is MIPS16 or microMIPS or normal
1249 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1250 flags will tell if this is a MIPS16 or a microMIPS function. */
1251 sym
= lookup_minimal_symbol_by_pc (make_compact_addr (memaddr
));
1254 if (msymbol_is_micromips (sym
.minsym
))
1255 return ISA_MICROMIPS
;
1256 else if (msymbol_is_mips16 (sym
.minsym
))
1263 if (is_mips_addr (memaddr
))
1265 else if (is_micromips_addr (gdbarch
, memaddr
))
1266 return ISA_MICROMIPS
;
1272 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1273 The need for comes from the ISA bit having been cleared, making
1274 addresses in FDE, range records, etc. referring to compressed code
1275 different to those in line information, the symbol table and finally
1276 the PC register. That in turn confuses many operations. */
1279 mips_adjust_dwarf2_addr (CORE_ADDR pc
)
1281 pc
= unmake_compact_addr (pc
);
1282 return mips_pc_is_mips (pc
) ? pc
: make_compact_addr (pc
);
1285 /* Recalculate the line record requested so that the resulting PC has
1286 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1287 this adjustment comes from some records associated with compressed
1288 code having the ISA bit cleared, most notably at function prologue
1289 ends. The ISA bit is in this context retrieved from the minimal
1290 symbol covering the address requested, which in turn has been
1291 constructed from the binary's symbol table rather than DWARF-2
1292 information. The correct setting of the ISA bit is required for
1293 breakpoint addresses to correctly match against the stop PC.
1295 As line entries can specify relative address adjustments we need to
1296 keep track of the absolute value of the last line address recorded
1297 in line information, so that we can calculate the actual address to
1298 apply the ISA bit adjustment to. We use PC for this tracking and
1299 keep the original address there.
1301 As such relative address adjustments can be odd within compressed
1302 code we need to keep track of the last line address with the ISA
1303 bit adjustment applied too, as the original address may or may not
1304 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1305 the adjusted address there.
1307 For relative address adjustments we then use these variables to
1308 calculate the address intended by line information, which will be
1309 PC-relative, and return an updated adjustment carrying ISA bit
1310 information, which will be ADJ_PC-relative. For absolute address
1311 adjustments we just return the same address that we store in ADJ_PC
1314 As the first line entry can be relative to an implied address value
1315 of 0 we need to have the initial address set up that we store in PC
1316 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1317 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1320 mips_adjust_dwarf2_line (CORE_ADDR addr
, int rel
)
1322 static CORE_ADDR adj_pc
;
1323 static CORE_ADDR pc
;
1326 pc
= rel
? pc
+ addr
: addr
;
1327 isa_pc
= mips_adjust_dwarf2_addr (pc
);
1328 addr
= rel
? isa_pc
- adj_pc
: isa_pc
;
1333 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1335 static const char mips_str_mips16_call_stub
[] = "__mips16_call_stub_";
1336 static const char mips_str_mips16_ret_stub
[] = "__mips16_ret_";
1337 static const char mips_str_call_fp_stub
[] = "__call_stub_fp_";
1338 static const char mips_str_call_stub
[] = "__call_stub_";
1339 static const char mips_str_fn_stub
[] = "__fn_stub_";
1341 /* This is used as a PIC thunk prefix. */
1343 static const char mips_str_pic
[] = ".pic.";
1345 /* Return non-zero if the PC is inside a call thunk (aka stub or
1346 trampoline) that should be treated as a temporary frame. */
1349 mips_in_frame_stub (CORE_ADDR pc
)
1351 CORE_ADDR start_addr
;
1354 /* Find the starting address of the function containing the PC. */
1355 if (find_pc_partial_function (pc
, &name
, &start_addr
, NULL
) == 0)
1358 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1359 if (startswith (name
, mips_str_mips16_call_stub
))
1361 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1362 if (startswith (name
, mips_str_call_stub
))
1364 /* If the PC is in __fn_stub_*, this is a call stub. */
1365 if (startswith (name
, mips_str_fn_stub
))
1368 return 0; /* Not a stub. */
1371 /* MIPS believes that the PC has a sign extended value. Perhaps the
1372 all registers should be sign extended for simplicity? */
1375 mips_read_pc (readable_regcache
*regcache
)
1377 int regnum
= gdbarch_pc_regnum (regcache
->arch ());
1380 regcache
->cooked_read (regnum
, &pc
);
1385 mips_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1389 pc
= frame_unwind_register_signed (next_frame
, gdbarch_pc_regnum (gdbarch
));
1390 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1391 intermediate frames. In this case we can get the caller's address
1392 from $ra, or if $ra contains an address within a thunk as well, then
1393 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1394 and thus the caller's address is in $s2. */
1395 if (frame_relative_level (next_frame
) >= 0 && mips_in_frame_stub (pc
))
1397 pc
= frame_unwind_register_signed
1398 (next_frame
, gdbarch_num_regs (gdbarch
) + MIPS_RA_REGNUM
);
1399 if (mips_in_frame_stub (pc
))
1400 pc
= frame_unwind_register_signed
1401 (next_frame
, gdbarch_num_regs (gdbarch
) + MIPS_S2_REGNUM
);
1407 mips_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1409 return frame_unwind_register_signed
1410 (next_frame
, gdbarch_num_regs (gdbarch
) + MIPS_SP_REGNUM
);
1413 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1414 dummy frame. The frame ID's base needs to match the TOS value
1415 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1418 static struct frame_id
1419 mips_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
1421 return frame_id_build
1422 (get_frame_register_signed (this_frame
,
1423 gdbarch_num_regs (gdbarch
)
1425 get_frame_pc (this_frame
));
1428 /* Implement the "write_pc" gdbarch method. */
1431 mips_write_pc (struct regcache
*regcache
, CORE_ADDR pc
)
1433 int regnum
= gdbarch_pc_regnum (regcache
->arch ());
1435 regcache_cooked_write_unsigned (regcache
, regnum
, pc
);
1438 /* Fetch and return instruction from the specified location. Handle
1439 MIPS16/microMIPS as appropriate. */
1442 mips_fetch_instruction (struct gdbarch
*gdbarch
,
1443 enum mips_isa isa
, CORE_ADDR addr
, int *errp
)
1445 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1446 gdb_byte buf
[MIPS_INSN32_SIZE
];
1454 instlen
= MIPS_INSN16_SIZE
;
1455 addr
= unmake_compact_addr (addr
);
1458 instlen
= MIPS_INSN32_SIZE
;
1461 internal_error (__FILE__
, __LINE__
, _("invalid ISA"));
1464 err
= target_read_memory (addr
, buf
, instlen
);
1470 memory_error (TARGET_XFER_E_IO
, addr
);
1473 return extract_unsigned_integer (buf
, instlen
, byte_order
);
1476 /* These are the fields of 32 bit mips instructions. */
1477 #define mips32_op(x) (x >> 26)
1478 #define itype_op(x) (x >> 26)
1479 #define itype_rs(x) ((x >> 21) & 0x1f)
1480 #define itype_rt(x) ((x >> 16) & 0x1f)
1481 #define itype_immediate(x) (x & 0xffff)
1483 #define jtype_op(x) (x >> 26)
1484 #define jtype_target(x) (x & 0x03ffffff)
1486 #define rtype_op(x) (x >> 26)
1487 #define rtype_rs(x) ((x >> 21) & 0x1f)
1488 #define rtype_rt(x) ((x >> 16) & 0x1f)
1489 #define rtype_rd(x) ((x >> 11) & 0x1f)
1490 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1491 #define rtype_funct(x) (x & 0x3f)
1493 /* MicroMIPS instruction fields. */
1494 #define micromips_op(x) ((x) >> 10)
1496 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1497 bit and the size respectively of the field extracted. */
1498 #define b0s4_imm(x) ((x) & 0xf)
1499 #define b0s5_imm(x) ((x) & 0x1f)
1500 #define b0s5_reg(x) ((x) & 0x1f)
1501 #define b0s7_imm(x) ((x) & 0x7f)
1502 #define b0s10_imm(x) ((x) & 0x3ff)
1503 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1504 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1505 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1506 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1507 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1508 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1509 #define b6s4_op(x) (((x) >> 6) & 0xf)
1510 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1512 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1513 respectively of the field extracted. */
1514 #define b0s6_op(x) ((x) & 0x3f)
1515 #define b0s11_op(x) ((x) & 0x7ff)
1516 #define b0s12_imm(x) ((x) & 0xfff)
1517 #define b0s16_imm(x) ((x) & 0xffff)
1518 #define b0s26_imm(x) ((x) & 0x3ffffff)
1519 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1520 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1521 #define b12s4_op(x) (((x) >> 12) & 0xf)
1523 /* Return the size in bytes of the instruction INSN encoded in the ISA
1527 mips_insn_size (enum mips_isa isa
, ULONGEST insn
)
1532 if ((micromips_op (insn
) & 0x4) == 0x4
1533 || (micromips_op (insn
) & 0x7) == 0x0)
1534 return 2 * MIPS_INSN16_SIZE
;
1536 return MIPS_INSN16_SIZE
;
1538 if ((insn
& 0xf800) == 0xf000)
1539 return 2 * MIPS_INSN16_SIZE
;
1541 return MIPS_INSN16_SIZE
;
1543 return MIPS_INSN32_SIZE
;
1545 internal_error (__FILE__
, __LINE__
, _("invalid ISA"));
1549 mips32_relative_offset (ULONGEST inst
)
1551 return ((itype_immediate (inst
) ^ 0x8000) - 0x8000) << 2;
1554 /* Determine the address of the next instruction executed after the INST
1555 floating condition branch instruction at PC. COUNT specifies the
1556 number of the floating condition bits tested by the branch. */
1559 mips32_bc1_pc (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
1560 ULONGEST inst
, CORE_ADDR pc
, int count
)
1562 int fcsr
= mips_regnum (gdbarch
)->fp_control_status
;
1563 int cnum
= (itype_rt (inst
) >> 2) & (count
- 1);
1564 int tf
= itype_rt (inst
) & 1;
1565 int mask
= (1 << count
) - 1;
1570 /* No way to handle; it'll most likely trap anyway. */
1573 fcs
= regcache_raw_get_unsigned (regcache
, fcsr
);
1574 cond
= ((fcs
>> 24) & 0xfe) | ((fcs
>> 23) & 0x01);
1576 if (((cond
>> cnum
) & mask
) != mask
* !tf
)
1577 pc
+= mips32_relative_offset (inst
);
1584 /* Return nonzero if the gdbarch is an Octeon series. */
1587 is_octeon (struct gdbarch
*gdbarch
)
1589 const struct bfd_arch_info
*info
= gdbarch_bfd_arch_info (gdbarch
);
1591 return (info
->mach
== bfd_mach_mips_octeon
1592 || info
->mach
== bfd_mach_mips_octeonp
1593 || info
->mach
== bfd_mach_mips_octeon2
);
1596 /* Return true if the OP represents the Octeon's BBIT instruction. */
1599 is_octeon_bbit_op (int op
, struct gdbarch
*gdbarch
)
1601 if (!is_octeon (gdbarch
))
1603 /* BBIT0 is encoded as LWC2: 110 010. */
1604 /* BBIT032 is encoded as LDC2: 110 110. */
1605 /* BBIT1 is encoded as SWC2: 111 010. */
1606 /* BBIT132 is encoded as SDC2: 111 110. */
1607 if (op
== 50 || op
== 54 || op
== 58 || op
== 62)
1613 /* Determine where to set a single step breakpoint while considering
1614 branch prediction. */
1617 mips32_next_pc (struct regcache
*regcache
, CORE_ADDR pc
)
1619 struct gdbarch
*gdbarch
= regcache
->arch ();
1622 inst
= mips_fetch_instruction (gdbarch
, ISA_MIPS
, pc
, NULL
);
1623 op
= itype_op (inst
);
1624 if ((inst
& 0xe0000000) != 0) /* Not a special, jump or branch
1628 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1639 goto greater_branch
;
1644 else if (op
== 17 && itype_rs (inst
) == 8)
1645 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1646 pc
= mips32_bc1_pc (gdbarch
, regcache
, inst
, pc
+ 4, 1);
1647 else if (op
== 17 && itype_rs (inst
) == 9
1648 && (itype_rt (inst
) & 2) == 0)
1649 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1650 pc
= mips32_bc1_pc (gdbarch
, regcache
, inst
, pc
+ 4, 2);
1651 else if (op
== 17 && itype_rs (inst
) == 10
1652 && (itype_rt (inst
) & 2) == 0)
1653 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1654 pc
= mips32_bc1_pc (gdbarch
, regcache
, inst
, pc
+ 4, 4);
1657 /* The new PC will be alternate mode. */
1661 reg
= jtype_target (inst
) << 2;
1662 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1663 pc
= ((pc
+ 4) & ~(CORE_ADDR
) 0x0fffffff) + reg
+ 1;
1665 else if (is_octeon_bbit_op (op
, gdbarch
))
1669 branch_if
= op
== 58 || op
== 62;
1670 bit
= itype_rt (inst
);
1672 /* Take into account the *32 instructions. */
1673 if (op
== 54 || op
== 62)
1676 if (((regcache_raw_get_signed (regcache
,
1677 itype_rs (inst
)) >> bit
) & 1)
1679 pc
+= mips32_relative_offset (inst
) + 4;
1681 pc
+= 8; /* After the delay slot. */
1685 pc
+= 4; /* Not a branch, next instruction is easy. */
1688 { /* This gets way messy. */
1690 /* Further subdivide into SPECIAL, REGIMM and other. */
1691 switch (op
& 0x07) /* Extract bits 28,27,26. */
1693 case 0: /* SPECIAL */
1694 op
= rtype_funct (inst
);
1699 /* Set PC to that address. */
1700 pc
= regcache_raw_get_signed (regcache
, rtype_rs (inst
));
1702 case 12: /* SYSCALL */
1704 struct gdbarch_tdep
*tdep
;
1706 tdep
= gdbarch_tdep (gdbarch
);
1707 if (tdep
->syscall_next_pc
!= NULL
)
1708 pc
= tdep
->syscall_next_pc (get_current_frame ());
1717 break; /* end SPECIAL */
1718 case 1: /* REGIMM */
1720 op
= itype_rt (inst
); /* branch condition */
1725 case 16: /* BLTZAL */
1726 case 18: /* BLTZALL */
1728 if (regcache_raw_get_signed (regcache
, itype_rs (inst
)) < 0)
1729 pc
+= mips32_relative_offset (inst
) + 4;
1731 pc
+= 8; /* after the delay slot */
1735 case 17: /* BGEZAL */
1736 case 19: /* BGEZALL */
1737 if (regcache_raw_get_signed (regcache
, itype_rs (inst
)) >= 0)
1738 pc
+= mips32_relative_offset (inst
) + 4;
1740 pc
+= 8; /* after the delay slot */
1742 case 0x1c: /* BPOSGE32 */
1743 case 0x1e: /* BPOSGE64 */
1745 if (itype_rs (inst
) == 0)
1747 unsigned int pos
= (op
& 2) ? 64 : 32;
1748 int dspctl
= mips_regnum (gdbarch
)->dspctl
;
1751 /* No way to handle; it'll most likely trap anyway. */
1754 if ((regcache_raw_get_unsigned (regcache
,
1755 dspctl
) & 0x7f) >= pos
)
1756 pc
+= mips32_relative_offset (inst
);
1761 /* All of the other instructions in the REGIMM category */
1766 break; /* end REGIMM */
1771 reg
= jtype_target (inst
) << 2;
1772 /* Upper four bits get never changed... */
1773 pc
= reg
+ ((pc
+ 4) & ~(CORE_ADDR
) 0x0fffffff);
1776 case 4: /* BEQ, BEQL */
1778 if (regcache_raw_get_signed (regcache
, itype_rs (inst
)) ==
1779 regcache_raw_get_signed (regcache
, itype_rt (inst
)))
1780 pc
+= mips32_relative_offset (inst
) + 4;
1784 case 5: /* BNE, BNEL */
1786 if (regcache_raw_get_signed (regcache
, itype_rs (inst
)) !=
1787 regcache_raw_get_signed (regcache
, itype_rt (inst
)))
1788 pc
+= mips32_relative_offset (inst
) + 4;
1792 case 6: /* BLEZ, BLEZL */
1793 if (regcache_raw_get_signed (regcache
, itype_rs (inst
)) <= 0)
1794 pc
+= mips32_relative_offset (inst
) + 4;
1800 greater_branch
: /* BGTZ, BGTZL */
1801 if (regcache_raw_get_signed (regcache
, itype_rs (inst
)) > 0)
1802 pc
+= mips32_relative_offset (inst
) + 4;
1809 } /* mips32_next_pc */
1811 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1815 micromips_relative_offset7 (ULONGEST insn
)
1817 return ((b0s7_imm (insn
) ^ 0x40) - 0x40) << 1;
1820 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1824 micromips_relative_offset10 (ULONGEST insn
)
1826 return ((b0s10_imm (insn
) ^ 0x200) - 0x200) << 1;
1829 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1833 micromips_relative_offset16 (ULONGEST insn
)
1835 return ((b0s16_imm (insn
) ^ 0x8000) - 0x8000) << 1;
1838 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1841 micromips_pc_insn_size (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1845 insn
= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
, pc
, NULL
);
1846 return mips_insn_size (ISA_MICROMIPS
, insn
);
1849 /* Calculate the address of the next microMIPS instruction to execute
1850 after the INSN coprocessor 1 conditional branch instruction at the
1851 address PC. COUNT denotes the number of coprocessor condition bits
1852 examined by the branch. */
1855 micromips_bc1_pc (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
1856 ULONGEST insn
, CORE_ADDR pc
, int count
)
1858 int fcsr
= mips_regnum (gdbarch
)->fp_control_status
;
1859 int cnum
= b2s3_cc (insn
>> 16) & (count
- 1);
1860 int tf
= b5s5_op (insn
>> 16) & 1;
1861 int mask
= (1 << count
) - 1;
1866 /* No way to handle; it'll most likely trap anyway. */
1869 fcs
= regcache_raw_get_unsigned (regcache
, fcsr
);
1870 cond
= ((fcs
>> 24) & 0xfe) | ((fcs
>> 23) & 0x01);
1872 if (((cond
>> cnum
) & mask
) != mask
* !tf
)
1873 pc
+= micromips_relative_offset16 (insn
);
1875 pc
+= micromips_pc_insn_size (gdbarch
, pc
);
1880 /* Calculate the address of the next microMIPS instruction to execute
1881 after the instruction at the address PC. */
1884 micromips_next_pc (struct regcache
*regcache
, CORE_ADDR pc
)
1886 struct gdbarch
*gdbarch
= regcache
->arch ();
1889 insn
= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
, pc
, NULL
);
1890 pc
+= MIPS_INSN16_SIZE
;
1891 switch (mips_insn_size (ISA_MICROMIPS
, insn
))
1893 /* 32-bit instructions. */
1894 case 2 * MIPS_INSN16_SIZE
:
1896 insn
|= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
, pc
, NULL
);
1897 pc
+= MIPS_INSN16_SIZE
;
1898 switch (micromips_op (insn
>> 16))
1900 case 0x00: /* POOL32A: bits 000000 */
1901 switch (b0s6_op (insn
))
1903 case 0x3c: /* POOL32Axf: bits 000000 ... 111100 */
1904 switch (b6s10_ext (insn
))
1906 case 0x3c: /* JALR: 000000 0000111100 111100 */
1907 case 0x7c: /* JALR.HB: 000000 0001111100 111100 */
1908 case 0x13c: /* JALRS: 000000 0100111100 111100 */
1909 case 0x17c: /* JALRS.HB: 000000 0101111100 111100 */
1910 pc
= regcache_raw_get_signed (regcache
,
1911 b0s5_reg (insn
>> 16));
1913 case 0x22d: /* SYSCALL: 000000 1000101101 111100 */
1915 struct gdbarch_tdep
*tdep
;
1917 tdep
= gdbarch_tdep (gdbarch
);
1918 if (tdep
->syscall_next_pc
!= NULL
)
1919 pc
= tdep
->syscall_next_pc (get_current_frame ());
1927 case 0x10: /* POOL32I: bits 010000 */
1928 switch (b5s5_op (insn
>> 16))
1930 case 0x00: /* BLTZ: bits 010000 00000 */
1931 case 0x01: /* BLTZAL: bits 010000 00001 */
1932 case 0x11: /* BLTZALS: bits 010000 10001 */
1933 if (regcache_raw_get_signed (regcache
,
1934 b0s5_reg (insn
>> 16)) < 0)
1935 pc
+= micromips_relative_offset16 (insn
);
1937 pc
+= micromips_pc_insn_size (gdbarch
, pc
);
1940 case 0x02: /* BGEZ: bits 010000 00010 */
1941 case 0x03: /* BGEZAL: bits 010000 00011 */
1942 case 0x13: /* BGEZALS: bits 010000 10011 */
1943 if (regcache_raw_get_signed (regcache
,
1944 b0s5_reg (insn
>> 16)) >= 0)
1945 pc
+= micromips_relative_offset16 (insn
);
1947 pc
+= micromips_pc_insn_size (gdbarch
, pc
);
1950 case 0x04: /* BLEZ: bits 010000 00100 */
1951 if (regcache_raw_get_signed (regcache
,
1952 b0s5_reg (insn
>> 16)) <= 0)
1953 pc
+= micromips_relative_offset16 (insn
);
1955 pc
+= micromips_pc_insn_size (gdbarch
, pc
);
1958 case 0x05: /* BNEZC: bits 010000 00101 */
1959 if (regcache_raw_get_signed (regcache
,
1960 b0s5_reg (insn
>> 16)) != 0)
1961 pc
+= micromips_relative_offset16 (insn
);
1964 case 0x06: /* BGTZ: bits 010000 00110 */
1965 if (regcache_raw_get_signed (regcache
,
1966 b0s5_reg (insn
>> 16)) > 0)
1967 pc
+= micromips_relative_offset16 (insn
);
1969 pc
+= micromips_pc_insn_size (gdbarch
, pc
);
1972 case 0x07: /* BEQZC: bits 010000 00111 */
1973 if (regcache_raw_get_signed (regcache
,
1974 b0s5_reg (insn
>> 16)) == 0)
1975 pc
+= micromips_relative_offset16 (insn
);
1978 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1979 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1980 if (((insn
>> 16) & 0x3) == 0x0)
1981 /* BC2F, BC2T: don't know how to handle these. */
1985 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1986 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1988 unsigned int pos
= (b5s5_op (insn
>> 16) & 1) ? 32 : 64;
1989 int dspctl
= mips_regnum (gdbarch
)->dspctl
;
1992 /* No way to handle; it'll most likely trap anyway. */
1995 if ((regcache_raw_get_unsigned (regcache
,
1996 dspctl
) & 0x7f) >= pos
)
1997 pc
+= micromips_relative_offset16 (insn
);
1999 pc
+= micromips_pc_insn_size (gdbarch
, pc
);
2003 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
2004 /* BC1ANY2F: bits 010000 11100 xxx01 */
2005 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
2006 /* BC1ANY2T: bits 010000 11101 xxx01 */
2007 if (((insn
>> 16) & 0x2) == 0x0)
2008 pc
= micromips_bc1_pc (gdbarch
, regcache
, insn
, pc
,
2009 ((insn
>> 16) & 0x1) + 1);
2012 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
2013 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
2014 if (((insn
>> 16) & 0x3) == 0x1)
2015 pc
= micromips_bc1_pc (gdbarch
, regcache
, insn
, pc
, 4);
2020 case 0x1d: /* JALS: bits 011101 */
2021 case 0x35: /* J: bits 110101 */
2022 case 0x3d: /* JAL: bits 111101 */
2023 pc
= ((pc
| 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn
) << 1);
2026 case 0x25: /* BEQ: bits 100101 */
2027 if (regcache_raw_get_signed (regcache
, b0s5_reg (insn
>> 16))
2028 == regcache_raw_get_signed (regcache
, b5s5_reg (insn
>> 16)))
2029 pc
+= micromips_relative_offset16 (insn
);
2031 pc
+= micromips_pc_insn_size (gdbarch
, pc
);
2034 case 0x2d: /* BNE: bits 101101 */
2035 if (regcache_raw_get_signed (regcache
, b0s5_reg (insn
>> 16))
2036 != regcache_raw_get_signed (regcache
, b5s5_reg (insn
>> 16)))
2037 pc
+= micromips_relative_offset16 (insn
);
2039 pc
+= micromips_pc_insn_size (gdbarch
, pc
);
2042 case 0x3c: /* JALX: bits 111100 */
2043 pc
= ((pc
| 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn
) << 2);
2048 /* 16-bit instructions. */
2049 case MIPS_INSN16_SIZE
:
2050 switch (micromips_op (insn
))
2052 case 0x11: /* POOL16C: bits 010001 */
2053 if ((b5s5_op (insn
) & 0x1c) == 0xc)
2054 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2055 pc
= regcache_raw_get_signed (regcache
, b0s5_reg (insn
));
2056 else if (b5s5_op (insn
) == 0x18)
2057 /* JRADDIUSP: bits 010001 11000 */
2058 pc
= regcache_raw_get_signed (regcache
, MIPS_RA_REGNUM
);
2061 case 0x23: /* BEQZ16: bits 100011 */
2063 int rs
= mips_reg3_to_reg
[b7s3_reg (insn
)];
2065 if (regcache_raw_get_signed (regcache
, rs
) == 0)
2066 pc
+= micromips_relative_offset7 (insn
);
2068 pc
+= micromips_pc_insn_size (gdbarch
, pc
);
2072 case 0x2b: /* BNEZ16: bits 101011 */
2074 int rs
= mips_reg3_to_reg
[b7s3_reg (insn
)];
2076 if (regcache_raw_get_signed (regcache
, rs
) != 0)
2077 pc
+= micromips_relative_offset7 (insn
);
2079 pc
+= micromips_pc_insn_size (gdbarch
, pc
);
2083 case 0x33: /* B16: bits 110011 */
2084 pc
+= micromips_relative_offset10 (insn
);
2093 /* Decoding the next place to set a breakpoint is irregular for the
2094 mips 16 variant, but fortunately, there fewer instructions. We have
2095 to cope ith extensions for 16 bit instructions and a pair of actual
2096 32 bit instructions. We dont want to set a single step instruction
2097 on the extend instruction either. */
2099 /* Lots of mips16 instruction formats */
2100 /* Predicting jumps requires itype,ritype,i8type
2101 and their extensions extItype,extritype,extI8type. */
2102 enum mips16_inst_fmts
2104 itype
, /* 0 immediate 5,10 */
2105 ritype
, /* 1 5,3,8 */
2106 rrtype
, /* 2 5,3,3,5 */
2107 rritype
, /* 3 5,3,3,5 */
2108 rrrtype
, /* 4 5,3,3,3,2 */
2109 rriatype
, /* 5 5,3,3,1,4 */
2110 shifttype
, /* 6 5,3,3,3,2 */
2111 i8type
, /* 7 5,3,8 */
2112 i8movtype
, /* 8 5,3,3,5 */
2113 i8mov32rtype
, /* 9 5,3,5,3 */
2114 i64type
, /* 10 5,3,8 */
2115 ri64type
, /* 11 5,3,3,5 */
2116 jalxtype
, /* 12 5,1,5,5,16 - a 32 bit instruction */
2117 exiItype
, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2118 extRitype
, /* 14 5,6,5,5,3,1,1,1,5 */
2119 extRRItype
, /* 15 5,5,5,5,3,3,5 */
2120 extRRIAtype
, /* 16 5,7,4,5,3,3,1,4 */
2121 EXTshifttype
, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2122 extI8type
, /* 18 5,6,5,5,3,1,1,1,5 */
2123 extI64type
, /* 19 5,6,5,5,3,1,1,1,5 */
2124 extRi64type
, /* 20 5,6,5,5,3,3,5 */
2125 extshift64type
/* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2127 /* I am heaping all the fields of the formats into one structure and
2128 then, only the fields which are involved in instruction extension. */
2132 unsigned int regx
; /* Function in i8 type. */
2137 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2138 for the bits which make up the immediate extension. */
2141 extended_offset (unsigned int extension
)
2145 value
= (extension
>> 16) & 0x1f; /* Extract 15:11. */
2147 value
|= (extension
>> 21) & 0x3f; /* Extract 10:5. */
2149 value
|= extension
& 0x1f; /* Extract 4:0. */
2154 /* Only call this function if you know that this is an extendable
2155 instruction. It won't malfunction, but why make excess remote memory
2156 references? If the immediate operands get sign extended or something,
2157 do it after the extension is performed. */
2158 /* FIXME: Every one of these cases needs to worry about sign extension
2159 when the offset is to be used in relative addressing. */
2162 fetch_mips_16 (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
2164 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2167 pc
= unmake_compact_addr (pc
); /* Clear the low order bit. */
2168 target_read_memory (pc
, buf
, 2);
2169 return extract_unsigned_integer (buf
, 2, byte_order
);
2173 unpack_mips16 (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
2174 unsigned int extension
,
2176 enum mips16_inst_fmts insn_format
, struct upk_mips16
*upk
)
2181 switch (insn_format
)
2188 value
= extended_offset ((extension
<< 16) | inst
);
2189 value
= (value
^ 0x8000) - 0x8000; /* Sign-extend. */
2193 value
= inst
& 0x7ff;
2194 value
= (value
^ 0x400) - 0x400; /* Sign-extend. */
2203 { /* A register identifier and an offset. */
2204 /* Most of the fields are the same as I type but the
2205 immediate value is of a different length. */
2209 value
= extended_offset ((extension
<< 16) | inst
);
2210 value
= (value
^ 0x8000) - 0x8000; /* Sign-extend. */
2214 value
= inst
& 0xff; /* 8 bits */
2215 value
= (value
^ 0x80) - 0x80; /* Sign-extend. */
2218 regx
= (inst
>> 8) & 0x07; /* i8 funct */
2224 unsigned long value
;
2225 unsigned int nexthalf
;
2226 value
= ((inst
& 0x1f) << 5) | ((inst
>> 5) & 0x1f);
2227 value
= value
<< 16;
2228 nexthalf
= mips_fetch_instruction (gdbarch
, ISA_MIPS16
, pc
+ 2, NULL
);
2229 /* Low bit still set. */
2237 internal_error (__FILE__
, __LINE__
, _("bad switch"));
2239 upk
->offset
= offset
;
2245 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2246 and having a signed 16-bit OFFSET. */
2249 add_offset_16 (CORE_ADDR pc
, int offset
)
2251 return pc
+ (offset
<< 1) + 2;
2255 extended_mips16_next_pc (regcache
*regcache
, CORE_ADDR pc
,
2256 unsigned int extension
, unsigned int insn
)
2258 struct gdbarch
*gdbarch
= regcache
->arch ();
2259 int op
= (insn
>> 11);
2262 case 2: /* Branch */
2264 struct upk_mips16 upk
;
2265 unpack_mips16 (gdbarch
, pc
, extension
, insn
, itype
, &upk
);
2266 pc
= add_offset_16 (pc
, upk
.offset
);
2269 case 3: /* JAL , JALX - Watch out, these are 32 bit
2272 struct upk_mips16 upk
;
2273 unpack_mips16 (gdbarch
, pc
, extension
, insn
, jalxtype
, &upk
);
2274 pc
= ((pc
+ 2) & (~(CORE_ADDR
) 0x0fffffff)) | (upk
.offset
<< 2);
2275 if ((insn
>> 10) & 0x01) /* Exchange mode */
2276 pc
= pc
& ~0x01; /* Clear low bit, indicate 32 bit mode. */
2283 struct upk_mips16 upk
;
2285 unpack_mips16 (gdbarch
, pc
, extension
, insn
, ritype
, &upk
);
2286 reg
= regcache_raw_get_signed (regcache
, mips_reg3_to_reg
[upk
.regx
]);
2288 pc
= add_offset_16 (pc
, upk
.offset
);
2295 struct upk_mips16 upk
;
2297 unpack_mips16 (gdbarch
, pc
, extension
, insn
, ritype
, &upk
);
2298 reg
= regcache_raw_get_signed (regcache
, mips_reg3_to_reg
[upk
.regx
]);
2300 pc
= add_offset_16 (pc
, upk
.offset
);
2305 case 12: /* I8 Formats btez btnez */
2307 struct upk_mips16 upk
;
2309 unpack_mips16 (gdbarch
, pc
, extension
, insn
, i8type
, &upk
);
2310 /* upk.regx contains the opcode */
2311 /* Test register is 24 */
2312 reg
= regcache_raw_get_signed (regcache
, 24);
2313 if (((upk
.regx
== 0) && (reg
== 0)) /* BTEZ */
2314 || ((upk
.regx
== 1) && (reg
!= 0))) /* BTNEZ */
2315 pc
= add_offset_16 (pc
, upk
.offset
);
2320 case 29: /* RR Formats JR, JALR, JALR-RA */
2322 struct upk_mips16 upk
;
2323 /* upk.fmt = rrtype; */
2328 upk
.regx
= (insn
>> 8) & 0x07;
2329 upk
.regy
= (insn
>> 5) & 0x07;
2330 if ((upk
.regy
& 1) == 0)
2331 reg
= mips_reg3_to_reg
[upk
.regx
];
2333 reg
= 31; /* Function return instruction. */
2334 pc
= regcache_raw_get_signed (regcache
, reg
);
2341 /* This is an instruction extension. Fetch the real instruction
2342 (which follows the extension) and decode things based on
2346 pc
= extended_mips16_next_pc (regcache
, pc
, insn
,
2347 fetch_mips_16 (gdbarch
, pc
));
2360 mips16_next_pc (struct regcache
*regcache
, CORE_ADDR pc
)
2362 struct gdbarch
*gdbarch
= regcache
->arch ();
2363 unsigned int insn
= fetch_mips_16 (gdbarch
, pc
);
2364 return extended_mips16_next_pc (regcache
, pc
, 0, insn
);
2367 /* The mips_next_pc function supports single_step when the remote
2368 target monitor or stub is not developed enough to do a single_step.
2369 It works by decoding the current instruction and predicting where a
2370 branch will go. This isn't hard because all the data is available.
2371 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2373 mips_next_pc (struct regcache
*regcache
, CORE_ADDR pc
)
2375 struct gdbarch
*gdbarch
= regcache
->arch ();
2377 if (mips_pc_is_mips16 (gdbarch
, pc
))
2378 return mips16_next_pc (regcache
, pc
);
2379 else if (mips_pc_is_micromips (gdbarch
, pc
))
2380 return micromips_next_pc (regcache
, pc
);
2382 return mips32_next_pc (regcache
, pc
);
2385 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2389 mips16_instruction_is_compact_branch (unsigned short insn
)
2391 switch (insn
& 0xf800)
2394 return (insn
& 0x009f) == 0x80; /* JALRC/JRC */
2396 return (insn
& 0x0600) == 0; /* BTNEZ/BTEQZ */
2397 case 0x2800: /* BNEZ */
2398 case 0x2000: /* BEQZ */
2399 case 0x1000: /* B */
2406 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2410 micromips_instruction_is_compact_branch (unsigned short insn
)
2412 switch (micromips_op (insn
))
2414 case 0x11: /* POOL16C: bits 010001 */
2415 return (b5s5_op (insn
) == 0x18
2416 /* JRADDIUSP: bits 010001 11000 */
2417 || b5s5_op (insn
) == 0xd);
2418 /* JRC: bits 010011 01101 */
2419 case 0x10: /* POOL32I: bits 010000 */
2420 return (b5s5_op (insn
) & 0x1d) == 0x5;
2421 /* BEQZC/BNEZC: bits 010000 001x1 */
2427 struct mips_frame_cache
2430 struct trad_frame_saved_reg
*saved_regs
;
2433 /* Set a register's saved stack address in temp_saved_regs. If an
2434 address has already been set for this register, do nothing; this
2435 way we will only recognize the first save of a given register in a
2438 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2439 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2440 Strictly speaking, only the second range is used as it is only second
2441 range (the ABI instead of ISA registers) that comes into play when finding
2442 saved registers in a frame. */
2445 set_reg_offset (struct gdbarch
*gdbarch
, struct mips_frame_cache
*this_cache
,
2446 int regnum
, CORE_ADDR offset
)
2448 if (this_cache
!= NULL
2449 && this_cache
->saved_regs
[regnum
].addr
== -1)
2451 this_cache
->saved_regs
[regnum
+ 0 * gdbarch_num_regs (gdbarch
)].addr
2453 this_cache
->saved_regs
[regnum
+ 1 * gdbarch_num_regs (gdbarch
)].addr
2459 /* Fetch the immediate value from a MIPS16 instruction.
2460 If the previous instruction was an EXTEND, use it to extend
2461 the upper bits of the immediate value. This is a helper function
2462 for mips16_scan_prologue. */
2465 mips16_get_imm (unsigned short prev_inst
, /* previous instruction */
2466 unsigned short inst
, /* current instruction */
2467 int nbits
, /* number of bits in imm field */
2468 int scale
, /* scale factor to be applied to imm */
2469 int is_signed
) /* is the imm field signed? */
2473 if ((prev_inst
& 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2475 offset
= ((prev_inst
& 0x1f) << 11) | (prev_inst
& 0x7e0);
2476 if (offset
& 0x8000) /* check for negative extend */
2477 offset
= 0 - (0x10000 - (offset
& 0xffff));
2478 return offset
| (inst
& 0x1f);
2482 int max_imm
= 1 << nbits
;
2483 int mask
= max_imm
- 1;
2484 int sign_bit
= max_imm
>> 1;
2486 offset
= inst
& mask
;
2487 if (is_signed
&& (offset
& sign_bit
))
2488 offset
= 0 - (max_imm
- offset
);
2489 return offset
* scale
;
2494 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2495 the associated FRAME_CACHE if not null.
2496 Return the address of the first instruction past the prologue. */
2499 mips16_scan_prologue (struct gdbarch
*gdbarch
,
2500 CORE_ADDR start_pc
, CORE_ADDR limit_pc
,
2501 struct frame_info
*this_frame
,
2502 struct mips_frame_cache
*this_cache
)
2504 int prev_non_prologue_insn
= 0;
2505 int this_non_prologue_insn
;
2506 int non_prologue_insns
= 0;
2509 CORE_ADDR frame_addr
= 0; /* Value of $r17, used as frame pointer. */
2511 long frame_offset
= 0; /* Size of stack frame. */
2512 long frame_adjust
= 0; /* Offset of FP from SP. */
2513 int frame_reg
= MIPS_SP_REGNUM
;
2514 unsigned short prev_inst
= 0; /* saved copy of previous instruction. */
2515 unsigned inst
= 0; /* current instruction */
2516 unsigned entry_inst
= 0; /* the entry instruction */
2517 unsigned save_inst
= 0; /* the save instruction */
2518 int prev_delay_slot
= 0;
2522 int extend_bytes
= 0;
2523 int prev_extend_bytes
= 0;
2524 CORE_ADDR end_prologue_addr
;
2526 /* Can be called when there's no process, and hence when there's no
2528 if (this_frame
!= NULL
)
2529 sp
= get_frame_register_signed (this_frame
,
2530 gdbarch_num_regs (gdbarch
)
2535 if (limit_pc
> start_pc
+ 200)
2536 limit_pc
= start_pc
+ 200;
2539 /* Permit at most one non-prologue non-control-transfer instruction
2540 in the middle which may have been reordered by the compiler for
2542 for (cur_pc
= start_pc
; cur_pc
< limit_pc
; cur_pc
+= MIPS_INSN16_SIZE
)
2544 this_non_prologue_insn
= 0;
2547 /* Save the previous instruction. If it's an EXTEND, we'll extract
2548 the immediate offset extension from it in mips16_get_imm. */
2551 /* Fetch and decode the instruction. */
2552 inst
= (unsigned short) mips_fetch_instruction (gdbarch
, ISA_MIPS16
,
2555 /* Normally we ignore extend instructions. However, if it is
2556 not followed by a valid prologue instruction, then this
2557 instruction is not part of the prologue either. We must
2558 remember in this case to adjust the end_prologue_addr back
2560 if ((inst
& 0xf800) == 0xf000) /* extend */
2562 extend_bytes
= MIPS_INSN16_SIZE
;
2566 prev_extend_bytes
= extend_bytes
;
2569 if ((inst
& 0xff00) == 0x6300 /* addiu sp */
2570 || (inst
& 0xff00) == 0xfb00) /* daddiu sp */
2572 offset
= mips16_get_imm (prev_inst
, inst
, 8, 8, 1);
2573 if (offset
< 0) /* Negative stack adjustment? */
2574 frame_offset
-= offset
;
2576 /* Exit loop if a positive stack adjustment is found, which
2577 usually means that the stack cleanup code in the function
2578 epilogue is reached. */
2581 else if ((inst
& 0xf800) == 0xd000) /* sw reg,n($sp) */
2583 offset
= mips16_get_imm (prev_inst
, inst
, 8, 4, 0);
2584 reg
= mips_reg3_to_reg
[(inst
& 0x700) >> 8];
2585 set_reg_offset (gdbarch
, this_cache
, reg
, sp
+ offset
);
2587 else if ((inst
& 0xff00) == 0xf900) /* sd reg,n($sp) */
2589 offset
= mips16_get_imm (prev_inst
, inst
, 5, 8, 0);
2590 reg
= mips_reg3_to_reg
[(inst
& 0xe0) >> 5];
2591 set_reg_offset (gdbarch
, this_cache
, reg
, sp
+ offset
);
2593 else if ((inst
& 0xff00) == 0x6200) /* sw $ra,n($sp) */
2595 offset
= mips16_get_imm (prev_inst
, inst
, 8, 4, 0);
2596 set_reg_offset (gdbarch
, this_cache
, MIPS_RA_REGNUM
, sp
+ offset
);
2598 else if ((inst
& 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2600 offset
= mips16_get_imm (prev_inst
, inst
, 8, 8, 0);
2601 set_reg_offset (gdbarch
, this_cache
, MIPS_RA_REGNUM
, sp
+ offset
);
2603 else if (inst
== 0x673d) /* move $s1, $sp */
2608 else if ((inst
& 0xff00) == 0x0100) /* addiu $s1,sp,n */
2610 offset
= mips16_get_imm (prev_inst
, inst
, 8, 4, 0);
2611 frame_addr
= sp
+ offset
;
2613 frame_adjust
= offset
;
2615 else if ((inst
& 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2617 offset
= mips16_get_imm (prev_inst
, inst
, 5, 4, 0);
2618 reg
= mips_reg3_to_reg
[(inst
& 0xe0) >> 5];
2619 set_reg_offset (gdbarch
, this_cache
, reg
, frame_addr
+ offset
);
2621 else if ((inst
& 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2623 offset
= mips16_get_imm (prev_inst
, inst
, 5, 8, 0);
2624 reg
= mips_reg3_to_reg
[(inst
& 0xe0) >> 5];
2625 set_reg_offset (gdbarch
, this_cache
, reg
, frame_addr
+ offset
);
2627 else if ((inst
& 0xf81f) == 0xe809
2628 && (inst
& 0x700) != 0x700) /* entry */
2629 entry_inst
= inst
; /* Save for later processing. */
2630 else if ((inst
& 0xff80) == 0x6480) /* save */
2632 save_inst
= inst
; /* Save for later processing. */
2633 if (prev_extend_bytes
) /* extend */
2634 save_inst
|= prev_inst
<< 16;
2636 else if ((inst
& 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2638 /* This instruction is part of the prologue, but we don't
2639 need to do anything special to handle it. */
2641 else if (mips16_instruction_has_delay_slot (inst
, 0))
2642 /* JAL/JALR/JALX/JR */
2644 /* The instruction in the delay slot can be a part
2645 of the prologue, so move forward once more. */
2647 if (mips16_instruction_has_delay_slot (inst
, 1))
2650 prev_extend_bytes
= MIPS_INSN16_SIZE
;
2651 cur_pc
+= MIPS_INSN16_SIZE
; /* 32-bit instruction */
2656 this_non_prologue_insn
= 1;
2659 non_prologue_insns
+= this_non_prologue_insn
;
2661 /* A jump or branch, or enough non-prologue insns seen? If so,
2662 then we must have reached the end of the prologue by now. */
2663 if (prev_delay_slot
|| non_prologue_insns
> 1
2664 || mips16_instruction_is_compact_branch (inst
))
2667 prev_non_prologue_insn
= this_non_prologue_insn
;
2668 prev_delay_slot
= in_delay_slot
;
2669 prev_pc
= cur_pc
- prev_extend_bytes
;
2672 /* The entry instruction is typically the first instruction in a function,
2673 and it stores registers at offsets relative to the value of the old SP
2674 (before the prologue). But the value of the sp parameter to this
2675 function is the new SP (after the prologue has been executed). So we
2676 can't calculate those offsets until we've seen the entire prologue,
2677 and can calculate what the old SP must have been. */
2678 if (entry_inst
!= 0)
2680 int areg_count
= (entry_inst
>> 8) & 7;
2681 int sreg_count
= (entry_inst
>> 6) & 3;
2683 /* The entry instruction always subtracts 32 from the SP. */
2686 /* Now we can calculate what the SP must have been at the
2687 start of the function prologue. */
2690 /* Check if a0-a3 were saved in the caller's argument save area. */
2691 for (reg
= 4, offset
= 0; reg
< areg_count
+ 4; reg
++)
2693 set_reg_offset (gdbarch
, this_cache
, reg
, sp
+ offset
);
2694 offset
+= mips_abi_regsize (gdbarch
);
2697 /* Check if the ra register was pushed on the stack. */
2699 if (entry_inst
& 0x20)
2701 set_reg_offset (gdbarch
, this_cache
, MIPS_RA_REGNUM
, sp
+ offset
);
2702 offset
-= mips_abi_regsize (gdbarch
);
2705 /* Check if the s0 and s1 registers were pushed on the stack. */
2706 for (reg
= 16; reg
< sreg_count
+ 16; reg
++)
2708 set_reg_offset (gdbarch
, this_cache
, reg
, sp
+ offset
);
2709 offset
-= mips_abi_regsize (gdbarch
);
2713 /* The SAVE instruction is similar to ENTRY, except that defined by the
2714 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2715 size of the frame is specified as an immediate field of instruction
2716 and an extended variation exists which lets additional registers and
2717 frame space to be specified. The instruction always treats registers
2718 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2719 if (save_inst
!= 0 && mips_abi_regsize (gdbarch
) == 4)
2721 static int args_table
[16] = {
2722 0, 0, 0, 0, 1, 1, 1, 1,
2723 2, 2, 2, 0, 3, 3, 4, -1,
2725 static int astatic_table
[16] = {
2726 0, 1, 2, 3, 0, 1, 2, 3,
2727 0, 1, 2, 4, 0, 1, 0, -1,
2729 int aregs
= (save_inst
>> 16) & 0xf;
2730 int xsregs
= (save_inst
>> 24) & 0x7;
2731 int args
= args_table
[aregs
];
2732 int astatic
= astatic_table
[aregs
];
2737 warning (_("Invalid number of argument registers encoded in SAVE."));
2742 warning (_("Invalid number of static registers encoded in SAVE."));
2746 /* For standard SAVE the frame size of 0 means 128. */
2747 frame_size
= ((save_inst
>> 16) & 0xf0) | (save_inst
& 0xf);
2748 if (frame_size
== 0 && (save_inst
>> 16) == 0)
2751 frame_offset
+= frame_size
;
2753 /* Now we can calculate what the SP must have been at the
2754 start of the function prologue. */
2757 /* Check if A0-A3 were saved in the caller's argument save area. */
2758 for (reg
= MIPS_A0_REGNUM
, offset
= 0; reg
< args
+ 4; reg
++)
2760 set_reg_offset (gdbarch
, this_cache
, reg
, sp
+ offset
);
2761 offset
+= mips_abi_regsize (gdbarch
);
2766 /* Check if the RA register was pushed on the stack. */
2767 if (save_inst
& 0x40)
2769 set_reg_offset (gdbarch
, this_cache
, MIPS_RA_REGNUM
, sp
+ offset
);
2770 offset
-= mips_abi_regsize (gdbarch
);
2773 /* Check if the S8 register was pushed on the stack. */
2776 set_reg_offset (gdbarch
, this_cache
, 30, sp
+ offset
);
2777 offset
-= mips_abi_regsize (gdbarch
);
2780 /* Check if S2-S7 were pushed on the stack. */
2781 for (reg
= 18 + xsregs
- 1; reg
> 18 - 1; reg
--)
2783 set_reg_offset (gdbarch
, this_cache
, reg
, sp
+ offset
);
2784 offset
-= mips_abi_regsize (gdbarch
);
2787 /* Check if the S1 register was pushed on the stack. */
2788 if (save_inst
& 0x10)
2790 set_reg_offset (gdbarch
, this_cache
, 17, sp
+ offset
);
2791 offset
-= mips_abi_regsize (gdbarch
);
2793 /* Check if the S0 register was pushed on the stack. */
2794 if (save_inst
& 0x20)
2796 set_reg_offset (gdbarch
, this_cache
, 16, sp
+ offset
);
2797 offset
-= mips_abi_regsize (gdbarch
);
2800 /* Check if A0-A3 were pushed on the stack. */
2801 for (reg
= MIPS_A0_REGNUM
+ 3; reg
> MIPS_A0_REGNUM
+ 3 - astatic
; reg
--)
2803 set_reg_offset (gdbarch
, this_cache
, reg
, sp
+ offset
);
2804 offset
-= mips_abi_regsize (gdbarch
);
2808 if (this_cache
!= NULL
)
2811 (get_frame_register_signed (this_frame
,
2812 gdbarch_num_regs (gdbarch
) + frame_reg
)
2813 + frame_offset
- frame_adjust
);
2814 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2815 be able to get rid of the assignment below, evetually. But it's
2816 still needed for now. */
2817 this_cache
->saved_regs
[gdbarch_num_regs (gdbarch
)
2818 + mips_regnum (gdbarch
)->pc
]
2819 = this_cache
->saved_regs
[gdbarch_num_regs (gdbarch
) + MIPS_RA_REGNUM
];
2822 /* Set end_prologue_addr to the address of the instruction immediately
2823 after the last one we scanned. Unless the last one looked like a
2824 non-prologue instruction (and we looked ahead), in which case use
2825 its address instead. */
2826 end_prologue_addr
= (prev_non_prologue_insn
|| prev_delay_slot
2827 ? prev_pc
: cur_pc
- prev_extend_bytes
);
2829 return end_prologue_addr
;
2832 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2833 Procedures that use the 32-bit instruction set are handled by the
2834 mips_insn32 unwinder. */
2836 static struct mips_frame_cache
*
2837 mips_insn16_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2839 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2840 struct mips_frame_cache
*cache
;
2842 if ((*this_cache
) != NULL
)
2843 return (struct mips_frame_cache
*) (*this_cache
);
2844 cache
= FRAME_OBSTACK_ZALLOC (struct mips_frame_cache
);
2845 (*this_cache
) = cache
;
2846 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
2848 /* Analyze the function prologue. */
2850 const CORE_ADDR pc
= get_frame_address_in_block (this_frame
);
2851 CORE_ADDR start_addr
;
2853 find_pc_partial_function (pc
, NULL
, &start_addr
, NULL
);
2854 if (start_addr
== 0)
2855 start_addr
= heuristic_proc_start (gdbarch
, pc
);
2856 /* We can't analyze the prologue if we couldn't find the begining
2858 if (start_addr
== 0)
2861 mips16_scan_prologue (gdbarch
, start_addr
, pc
, this_frame
,
2862 (struct mips_frame_cache
*) *this_cache
);
2865 /* gdbarch_sp_regnum contains the value and not the address. */
2866 trad_frame_set_value (cache
->saved_regs
,
2867 gdbarch_num_regs (gdbarch
) + MIPS_SP_REGNUM
,
2870 return (struct mips_frame_cache
*) (*this_cache
);
2874 mips_insn16_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2875 struct frame_id
*this_id
)
2877 struct mips_frame_cache
*info
= mips_insn16_frame_cache (this_frame
,
2879 /* This marks the outermost frame. */
2880 if (info
->base
== 0)
2882 (*this_id
) = frame_id_build (info
->base
, get_frame_func (this_frame
));
2885 static struct value
*
2886 mips_insn16_frame_prev_register (struct frame_info
*this_frame
,
2887 void **this_cache
, int regnum
)
2889 struct mips_frame_cache
*info
= mips_insn16_frame_cache (this_frame
,
2891 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
2895 mips_insn16_frame_sniffer (const struct frame_unwind
*self
,
2896 struct frame_info
*this_frame
, void **this_cache
)
2898 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2899 CORE_ADDR pc
= get_frame_pc (this_frame
);
2900 if (mips_pc_is_mips16 (gdbarch
, pc
))
2905 static const struct frame_unwind mips_insn16_frame_unwind
=
2908 default_frame_unwind_stop_reason
,
2909 mips_insn16_frame_this_id
,
2910 mips_insn16_frame_prev_register
,
2912 mips_insn16_frame_sniffer
2916 mips_insn16_frame_base_address (struct frame_info
*this_frame
,
2919 struct mips_frame_cache
*info
= mips_insn16_frame_cache (this_frame
,
2924 static const struct frame_base mips_insn16_frame_base
=
2926 &mips_insn16_frame_unwind
,
2927 mips_insn16_frame_base_address
,
2928 mips_insn16_frame_base_address
,
2929 mips_insn16_frame_base_address
2932 static const struct frame_base
*
2933 mips_insn16_frame_base_sniffer (struct frame_info
*this_frame
)
2935 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2936 CORE_ADDR pc
= get_frame_pc (this_frame
);
2937 if (mips_pc_is_mips16 (gdbarch
, pc
))
2938 return &mips_insn16_frame_base
;
2943 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2944 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2945 interpreted directly, and then multiplied by 4. */
2948 micromips_decode_imm9 (int imm
)
2950 imm
= (imm
^ 0x100) - 0x100;
2951 if (imm
> -3 && imm
< 2)
2956 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2957 the address of the first instruction past the prologue. */
2960 micromips_scan_prologue (struct gdbarch
*gdbarch
,
2961 CORE_ADDR start_pc
, CORE_ADDR limit_pc
,
2962 struct frame_info
*this_frame
,
2963 struct mips_frame_cache
*this_cache
)
2965 CORE_ADDR end_prologue_addr
;
2966 int prev_non_prologue_insn
= 0;
2967 int frame_reg
= MIPS_SP_REGNUM
;
2968 int this_non_prologue_insn
;
2969 int non_prologue_insns
= 0;
2970 long frame_offset
= 0; /* Size of stack frame. */
2971 long frame_adjust
= 0; /* Offset of FP from SP. */
2972 int prev_delay_slot
= 0;
2976 ULONGEST insn
; /* current instruction */
2980 long v1_off
= 0; /* The assumption is LUI will replace it. */
2991 /* Can be called when there's no process, and hence when there's no
2993 if (this_frame
!= NULL
)
2994 sp
= get_frame_register_signed (this_frame
,
2995 gdbarch_num_regs (gdbarch
)
3000 if (limit_pc
> start_pc
+ 200)
3001 limit_pc
= start_pc
+ 200;
3004 /* Permit at most one non-prologue non-control-transfer instruction
3005 in the middle which may have been reordered by the compiler for
3007 for (cur_pc
= start_pc
; cur_pc
< limit_pc
; cur_pc
+= loc
)
3009 this_non_prologue_insn
= 0;
3013 insn
= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
, cur_pc
, NULL
);
3014 loc
+= MIPS_INSN16_SIZE
;
3015 switch (mips_insn_size (ISA_MICROMIPS
, insn
))
3017 /* 32-bit instructions. */
3018 case 2 * MIPS_INSN16_SIZE
:
3020 insn
|= mips_fetch_instruction (gdbarch
,
3021 ISA_MICROMIPS
, cur_pc
+ loc
, NULL
);
3022 loc
+= MIPS_INSN16_SIZE
;
3023 switch (micromips_op (insn
>> 16))
3025 /* Record $sp/$fp adjustment. */
3026 /* Discard (D)ADDU $gp,$jp used for PIC code. */
3027 case 0x0: /* POOL32A: bits 000000 */
3028 case 0x16: /* POOL32S: bits 010110 */
3029 op
= b0s11_op (insn
);
3030 sreg
= b0s5_reg (insn
>> 16);
3031 treg
= b5s5_reg (insn
>> 16);
3032 dreg
= b11s5_reg (insn
);
3034 /* SUBU: bits 000000 00111010000 */
3035 /* DSUBU: bits 010110 00111010000 */
3036 && dreg
== MIPS_SP_REGNUM
&& sreg
== MIPS_SP_REGNUM
3038 /* (D)SUBU $sp, $v1 */
3040 else if (op
!= 0x150
3041 /* ADDU: bits 000000 00101010000 */
3042 /* DADDU: bits 010110 00101010000 */
3043 || dreg
!= 28 || sreg
!= 28 || treg
!= MIPS_T9_REGNUM
)
3044 this_non_prologue_insn
= 1;
3047 case 0x8: /* POOL32B: bits 001000 */
3048 op
= b12s4_op (insn
);
3049 breg
= b0s5_reg (insn
>> 16);
3050 reglist
= sreg
= b5s5_reg (insn
>> 16);
3051 offset
= (b0s12_imm (insn
) ^ 0x800) - 0x800;
3052 if ((op
== 0x9 || op
== 0xc)
3053 /* SWP: bits 001000 1001 */
3054 /* SDP: bits 001000 1100 */
3055 && breg
== MIPS_SP_REGNUM
&& sreg
< MIPS_RA_REGNUM
)
3056 /* S[DW]P reg,offset($sp) */
3058 s
= 4 << ((b12s4_op (insn
) & 0x4) == 0x4);
3059 set_reg_offset (gdbarch
, this_cache
,
3061 set_reg_offset (gdbarch
, this_cache
,
3062 sreg
+ 1, sp
+ offset
+ s
);
3064 else if ((op
== 0xd || op
== 0xf)
3065 /* SWM: bits 001000 1101 */
3066 /* SDM: bits 001000 1111 */
3067 && breg
== MIPS_SP_REGNUM
3068 /* SWM reglist,offset($sp) */
3069 && ((reglist
>= 1 && reglist
<= 9)
3070 || (reglist
>= 16 && reglist
<= 25)))
3072 int sreglist
= std::min(reglist
& 0xf, 8);
3074 s
= 4 << ((b12s4_op (insn
) & 0x2) == 0x2);
3075 for (i
= 0; i
< sreglist
; i
++)
3076 set_reg_offset (gdbarch
, this_cache
, 16 + i
, sp
+ s
* i
);
3077 if ((reglist
& 0xf) > 8)
3078 set_reg_offset (gdbarch
, this_cache
, 30, sp
+ s
* i
++);
3079 if ((reglist
& 0x10) == 0x10)
3080 set_reg_offset (gdbarch
, this_cache
,
3081 MIPS_RA_REGNUM
, sp
+ s
* i
++);
3084 this_non_prologue_insn
= 1;
3087 /* Record $sp/$fp adjustment. */
3088 /* Discard (D)ADDIU $gp used for PIC code. */
3089 case 0xc: /* ADDIU: bits 001100 */
3090 case 0x17: /* DADDIU: bits 010111 */
3091 sreg
= b0s5_reg (insn
>> 16);
3092 dreg
= b5s5_reg (insn
>> 16);
3093 offset
= (b0s16_imm (insn
) ^ 0x8000) - 0x8000;
3094 if (sreg
== MIPS_SP_REGNUM
&& dreg
== MIPS_SP_REGNUM
)
3095 /* (D)ADDIU $sp, imm */
3097 else if (sreg
== MIPS_SP_REGNUM
&& dreg
== 30)
3098 /* (D)ADDIU $fp, $sp, imm */
3100 frame_adjust
= offset
;
3103 else if (sreg
!= 28 || dreg
!= 28)
3104 /* (D)ADDIU $gp, imm */
3105 this_non_prologue_insn
= 1;
3108 /* LUI $v1 is used for larger $sp adjustments. */
3109 /* Discard LUI $gp used for PIC code. */
3110 case 0x10: /* POOL32I: bits 010000 */
3111 if (b5s5_op (insn
>> 16) == 0xd
3112 /* LUI: bits 010000 001101 */
3113 && b0s5_reg (insn
>> 16) == 3)
3115 v1_off
= ((b0s16_imm (insn
) << 16) ^ 0x80000000) - 0x80000000;
3116 else if (b5s5_op (insn
>> 16) != 0xd
3117 /* LUI: bits 010000 001101 */
3118 || b0s5_reg (insn
>> 16) != 28)
3120 this_non_prologue_insn
= 1;
3123 /* ORI $v1 is used for larger $sp adjustments. */
3124 case 0x14: /* ORI: bits 010100 */
3125 sreg
= b0s5_reg (insn
>> 16);
3126 dreg
= b5s5_reg (insn
>> 16);
3127 if (sreg
== 3 && dreg
== 3)
3129 v1_off
|= b0s16_imm (insn
);
3131 this_non_prologue_insn
= 1;
3134 case 0x26: /* SWC1: bits 100110 */
3135 case 0x2e: /* SDC1: bits 101110 */
3136 breg
= b0s5_reg (insn
>> 16);
3137 if (breg
!= MIPS_SP_REGNUM
)
3138 /* S[DW]C1 reg,offset($sp) */
3139 this_non_prologue_insn
= 1;
3142 case 0x36: /* SD: bits 110110 */
3143 case 0x3e: /* SW: bits 111110 */
3144 breg
= b0s5_reg (insn
>> 16);
3145 sreg
= b5s5_reg (insn
>> 16);
3146 offset
= (b0s16_imm (insn
) ^ 0x8000) - 0x8000;
3147 if (breg
== MIPS_SP_REGNUM
)
3148 /* S[DW] reg,offset($sp) */
3149 set_reg_offset (gdbarch
, this_cache
, sreg
, sp
+ offset
);
3151 this_non_prologue_insn
= 1;
3155 /* The instruction in the delay slot can be a part
3156 of the prologue, so move forward once more. */
3157 if (micromips_instruction_has_delay_slot (insn
, 0))
3160 this_non_prologue_insn
= 1;
3166 /* 16-bit instructions. */
3167 case MIPS_INSN16_SIZE
:
3168 switch (micromips_op (insn
))
3170 case 0x3: /* MOVE: bits 000011 */
3171 sreg
= b0s5_reg (insn
);
3172 dreg
= b5s5_reg (insn
);
3173 if (sreg
== MIPS_SP_REGNUM
&& dreg
== 30)
3176 else if ((sreg
& 0x1c) != 0x4)
3177 /* MOVE reg, $a0-$a3 */
3178 this_non_prologue_insn
= 1;
3181 case 0x11: /* POOL16C: bits 010001 */
3182 if (b6s4_op (insn
) == 0x5)
3183 /* SWM: bits 010001 0101 */
3185 offset
= ((b0s4_imm (insn
) << 2) ^ 0x20) - 0x20;
3186 reglist
= b4s2_regl (insn
);
3187 for (i
= 0; i
<= reglist
; i
++)
3188 set_reg_offset (gdbarch
, this_cache
, 16 + i
, sp
+ 4 * i
);
3189 set_reg_offset (gdbarch
, this_cache
,
3190 MIPS_RA_REGNUM
, sp
+ 4 * i
++);
3193 this_non_prologue_insn
= 1;
3196 case 0x13: /* POOL16D: bits 010011 */
3197 if ((insn
& 0x1) == 0x1)
3198 /* ADDIUSP: bits 010011 1 */
3199 sp_adj
= micromips_decode_imm9 (b1s9_imm (insn
));
3200 else if (b5s5_reg (insn
) == MIPS_SP_REGNUM
)
3201 /* ADDIUS5: bits 010011 0 */
3202 /* ADDIUS5 $sp, imm */
3203 sp_adj
= (b1s4_imm (insn
) ^ 8) - 8;
3205 this_non_prologue_insn
= 1;
3208 case 0x32: /* SWSP: bits 110010 */
3209 offset
= b0s5_imm (insn
) << 2;
3210 sreg
= b5s5_reg (insn
);
3211 set_reg_offset (gdbarch
, this_cache
, sreg
, sp
+ offset
);
3215 /* The instruction in the delay slot can be a part
3216 of the prologue, so move forward once more. */
3217 if (micromips_instruction_has_delay_slot (insn
<< 16, 0))
3220 this_non_prologue_insn
= 1;
3226 frame_offset
-= sp_adj
;
3228 non_prologue_insns
+= this_non_prologue_insn
;
3230 /* A jump or branch, enough non-prologue insns seen or positive
3231 stack adjustment? If so, then we must have reached the end
3232 of the prologue by now. */
3233 if (prev_delay_slot
|| non_prologue_insns
> 1 || sp_adj
> 0
3234 || micromips_instruction_is_compact_branch (insn
))
3237 prev_non_prologue_insn
= this_non_prologue_insn
;
3238 prev_delay_slot
= in_delay_slot
;
3242 if (this_cache
!= NULL
)
3245 (get_frame_register_signed (this_frame
,
3246 gdbarch_num_regs (gdbarch
) + frame_reg
)
3247 + frame_offset
- frame_adjust
);
3248 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3249 be able to get rid of the assignment below, evetually. But it's
3250 still needed for now. */
3251 this_cache
->saved_regs
[gdbarch_num_regs (gdbarch
)
3252 + mips_regnum (gdbarch
)->pc
]
3253 = this_cache
->saved_regs
[gdbarch_num_regs (gdbarch
) + MIPS_RA_REGNUM
];
3256 /* Set end_prologue_addr to the address of the instruction immediately
3257 after the last one we scanned. Unless the last one looked like a
3258 non-prologue instruction (and we looked ahead), in which case use
3259 its address instead. */
3261 = prev_non_prologue_insn
|| prev_delay_slot
? prev_pc
: cur_pc
;
3263 return end_prologue_addr
;
3266 /* Heuristic unwinder for procedures using microMIPS instructions.
3267 Procedures that use the 32-bit instruction set are handled by the
3268 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3270 static struct mips_frame_cache
*
3271 mips_micro_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
3273 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
3274 struct mips_frame_cache
*cache
;
3276 if ((*this_cache
) != NULL
)
3277 return (struct mips_frame_cache
*) (*this_cache
);
3279 cache
= FRAME_OBSTACK_ZALLOC (struct mips_frame_cache
);
3280 (*this_cache
) = cache
;
3281 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
3283 /* Analyze the function prologue. */
3285 const CORE_ADDR pc
= get_frame_address_in_block (this_frame
);
3286 CORE_ADDR start_addr
;
3288 find_pc_partial_function (pc
, NULL
, &start_addr
, NULL
);
3289 if (start_addr
== 0)
3290 start_addr
= heuristic_proc_start (get_frame_arch (this_frame
), pc
);
3291 /* We can't analyze the prologue if we couldn't find the begining
3293 if (start_addr
== 0)
3296 micromips_scan_prologue (gdbarch
, start_addr
, pc
, this_frame
,
3297 (struct mips_frame_cache
*) *this_cache
);
3300 /* gdbarch_sp_regnum contains the value and not the address. */
3301 trad_frame_set_value (cache
->saved_regs
,
3302 gdbarch_num_regs (gdbarch
) + MIPS_SP_REGNUM
,
3305 return (struct mips_frame_cache
*) (*this_cache
);
3309 mips_micro_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
3310 struct frame_id
*this_id
)
3312 struct mips_frame_cache
*info
= mips_micro_frame_cache (this_frame
,
3314 /* This marks the outermost frame. */
3315 if (info
->base
== 0)
3317 (*this_id
) = frame_id_build (info
->base
, get_frame_func (this_frame
));
3320 static struct value
*
3321 mips_micro_frame_prev_register (struct frame_info
*this_frame
,
3322 void **this_cache
, int regnum
)
3324 struct mips_frame_cache
*info
= mips_micro_frame_cache (this_frame
,
3326 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
3330 mips_micro_frame_sniffer (const struct frame_unwind
*self
,
3331 struct frame_info
*this_frame
, void **this_cache
)
3333 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
3334 CORE_ADDR pc
= get_frame_pc (this_frame
);
3336 if (mips_pc_is_micromips (gdbarch
, pc
))
3341 static const struct frame_unwind mips_micro_frame_unwind
=
3344 default_frame_unwind_stop_reason
,
3345 mips_micro_frame_this_id
,
3346 mips_micro_frame_prev_register
,
3348 mips_micro_frame_sniffer
3352 mips_micro_frame_base_address (struct frame_info
*this_frame
,
3355 struct mips_frame_cache
*info
= mips_micro_frame_cache (this_frame
,
3360 static const struct frame_base mips_micro_frame_base
=
3362 &mips_micro_frame_unwind
,
3363 mips_micro_frame_base_address
,
3364 mips_micro_frame_base_address
,
3365 mips_micro_frame_base_address
3368 static const struct frame_base
*
3369 mips_micro_frame_base_sniffer (struct frame_info
*this_frame
)
3371 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
3372 CORE_ADDR pc
= get_frame_pc (this_frame
);
3374 if (mips_pc_is_micromips (gdbarch
, pc
))
3375 return &mips_micro_frame_base
;
3380 /* Mark all the registers as unset in the saved_regs array
3381 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3384 reset_saved_regs (struct gdbarch
*gdbarch
, struct mips_frame_cache
*this_cache
)
3386 if (this_cache
== NULL
|| this_cache
->saved_regs
== NULL
)
3390 const int num_regs
= gdbarch_num_regs (gdbarch
);
3393 for (i
= 0; i
< num_regs
; i
++)
3395 this_cache
->saved_regs
[i
].addr
= -1;
3400 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3401 the associated FRAME_CACHE if not null.
3402 Return the address of the first instruction past the prologue. */
3405 mips32_scan_prologue (struct gdbarch
*gdbarch
,
3406 CORE_ADDR start_pc
, CORE_ADDR limit_pc
,
3407 struct frame_info
*this_frame
,
3408 struct mips_frame_cache
*this_cache
)
3410 int prev_non_prologue_insn
;
3411 int this_non_prologue_insn
;
3412 int non_prologue_insns
;
3413 CORE_ADDR frame_addr
= 0; /* Value of $r30. Used by gcc for
3415 int prev_delay_slot
;
3420 int frame_reg
= MIPS_SP_REGNUM
;
3422 CORE_ADDR end_prologue_addr
;
3423 int seen_sp_adjust
= 0;
3424 int load_immediate_bytes
= 0;
3426 int regsize_is_64_bits
= (mips_abi_regsize (gdbarch
) == 8);
3428 /* Can be called when there's no process, and hence when there's no
3430 if (this_frame
!= NULL
)
3431 sp
= get_frame_register_signed (this_frame
,
3432 gdbarch_num_regs (gdbarch
)
3437 if (limit_pc
> start_pc
+ 200)
3438 limit_pc
= start_pc
+ 200;
3441 prev_non_prologue_insn
= 0;
3442 non_prologue_insns
= 0;
3443 prev_delay_slot
= 0;
3446 /* Permit at most one non-prologue non-control-transfer instruction
3447 in the middle which may have been reordered by the compiler for
3450 for (cur_pc
= start_pc
; cur_pc
< limit_pc
; cur_pc
+= MIPS_INSN32_SIZE
)
3452 unsigned long inst
, high_word
;
3456 this_non_prologue_insn
= 0;
3459 /* Fetch the instruction. */
3460 inst
= (unsigned long) mips_fetch_instruction (gdbarch
, ISA_MIPS
,
3463 /* Save some code by pre-extracting some useful fields. */
3464 high_word
= (inst
>> 16) & 0xffff;
3465 offset
= ((inst
& 0xffff) ^ 0x8000) - 0x8000;
3466 reg
= high_word
& 0x1f;
3468 if (high_word
== 0x27bd /* addiu $sp,$sp,-i */
3469 || high_word
== 0x23bd /* addi $sp,$sp,-i */
3470 || high_word
== 0x67bd) /* daddiu $sp,$sp,-i */
3472 if (offset
< 0) /* Negative stack adjustment? */
3473 frame_offset
-= offset
;
3475 /* Exit loop if a positive stack adjustment is found, which
3476 usually means that the stack cleanup code in the function
3477 epilogue is reached. */
3481 else if (((high_word
& 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3482 && !regsize_is_64_bits
)
3484 set_reg_offset (gdbarch
, this_cache
, reg
, sp
+ offset
);
3486 else if (((high_word
& 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3487 && regsize_is_64_bits
)
3489 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3490 set_reg_offset (gdbarch
, this_cache
, reg
, sp
+ offset
);
3492 else if (high_word
== 0x27be) /* addiu $30,$sp,size */
3494 /* Old gcc frame, r30 is virtual frame pointer. */
3495 if (offset
!= frame_offset
)
3496 frame_addr
= sp
+ offset
;
3497 else if (this_frame
&& frame_reg
== MIPS_SP_REGNUM
)
3499 unsigned alloca_adjust
;
3502 frame_addr
= get_frame_register_signed
3503 (this_frame
, gdbarch_num_regs (gdbarch
) + 30);
3506 alloca_adjust
= (unsigned) (frame_addr
- (sp
+ offset
));
3507 if (alloca_adjust
> 0)
3509 /* FP > SP + frame_size. This may be because of
3510 an alloca or somethings similar. Fix sp to
3511 "pre-alloca" value, and try again. */
3512 sp
+= alloca_adjust
;
3513 /* Need to reset the status of all registers. Otherwise,
3514 we will hit a guard that prevents the new address
3515 for each register to be recomputed during the second
3517 reset_saved_regs (gdbarch
, this_cache
);
3522 /* move $30,$sp. With different versions of gas this will be either
3523 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3524 Accept any one of these. */
3525 else if (inst
== 0x03A0F021 || inst
== 0x03a0f025 || inst
== 0x03a0f02d)
3527 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3528 if (this_frame
&& frame_reg
== MIPS_SP_REGNUM
)
3530 unsigned alloca_adjust
;
3533 frame_addr
= get_frame_register_signed
3534 (this_frame
, gdbarch_num_regs (gdbarch
) + 30);
3536 alloca_adjust
= (unsigned) (frame_addr
- sp
);
3537 if (alloca_adjust
> 0)
3539 /* FP > SP + frame_size. This may be because of
3540 an alloca or somethings similar. Fix sp to
3541 "pre-alloca" value, and try again. */
3543 /* Need to reset the status of all registers. Otherwise,
3544 we will hit a guard that prevents the new address
3545 for each register to be recomputed during the second
3547 reset_saved_regs (gdbarch
, this_cache
);
3552 else if ((high_word
& 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3553 && !regsize_is_64_bits
)
3555 set_reg_offset (gdbarch
, this_cache
, reg
, frame_addr
+ offset
);
3557 else if ((high_word
& 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3558 || (high_word
& 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3559 || (inst
& 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3560 || high_word
== 0x3c1c /* lui $gp,n */
3561 || high_word
== 0x279c /* addiu $gp,$gp,n */
3562 || inst
== 0x0399e021 /* addu $gp,$gp,$t9 */
3563 || inst
== 0x033ce021 /* addu $gp,$t9,$gp */
3566 /* These instructions are part of the prologue, but we don't
3567 need to do anything special to handle them. */
3569 /* The instructions below load $at or $t0 with an immediate
3570 value in preparation for a stack adjustment via
3571 subu $sp,$sp,[$at,$t0]. These instructions could also
3572 initialize a local variable, so we accept them only before
3573 a stack adjustment instruction was seen. */
3574 else if (!seen_sp_adjust
3576 && (high_word
== 0x3c01 /* lui $at,n */
3577 || high_word
== 0x3c08 /* lui $t0,n */
3578 || high_word
== 0x3421 /* ori $at,$at,n */
3579 || high_word
== 0x3508 /* ori $t0,$t0,n */
3580 || high_word
== 0x3401 /* ori $at,$zero,n */
3581 || high_word
== 0x3408 /* ori $t0,$zero,n */
3584 load_immediate_bytes
+= MIPS_INSN32_SIZE
; /* FIXME! */
3586 /* Check for branches and jumps. The instruction in the delay
3587 slot can be a part of the prologue, so move forward once more. */
3588 else if (mips32_instruction_has_delay_slot (gdbarch
, inst
))
3592 /* This instruction is not an instruction typically found
3593 in a prologue, so we must have reached the end of the
3597 this_non_prologue_insn
= 1;
3600 non_prologue_insns
+= this_non_prologue_insn
;
3602 /* A jump or branch, or enough non-prologue insns seen? If so,
3603 then we must have reached the end of the prologue by now. */
3604 if (prev_delay_slot
|| non_prologue_insns
> 1)
3607 prev_non_prologue_insn
= this_non_prologue_insn
;
3608 prev_delay_slot
= in_delay_slot
;
3612 if (this_cache
!= NULL
)
3615 (get_frame_register_signed (this_frame
,
3616 gdbarch_num_regs (gdbarch
) + frame_reg
)
3618 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3619 this assignment below, eventually. But it's still needed
3621 this_cache
->saved_regs
[gdbarch_num_regs (gdbarch
)
3622 + mips_regnum (gdbarch
)->pc
]
3623 = this_cache
->saved_regs
[gdbarch_num_regs (gdbarch
)
3627 /* Set end_prologue_addr to the address of the instruction immediately
3628 after the last one we scanned. Unless the last one looked like a
3629 non-prologue instruction (and we looked ahead), in which case use
3630 its address instead. */
3632 = prev_non_prologue_insn
|| prev_delay_slot
? prev_pc
: cur_pc
;
3634 /* In a frameless function, we might have incorrectly
3635 skipped some load immediate instructions. Undo the skipping
3636 if the load immediate was not followed by a stack adjustment. */
3637 if (load_immediate_bytes
&& !seen_sp_adjust
)
3638 end_prologue_addr
-= load_immediate_bytes
;
3640 return end_prologue_addr
;
3643 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3644 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3645 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3646 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3648 static struct mips_frame_cache
*
3649 mips_insn32_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
3651 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
3652 struct mips_frame_cache
*cache
;
3654 if ((*this_cache
) != NULL
)
3655 return (struct mips_frame_cache
*) (*this_cache
);
3657 cache
= FRAME_OBSTACK_ZALLOC (struct mips_frame_cache
);
3658 (*this_cache
) = cache
;
3659 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
3661 /* Analyze the function prologue. */
3663 const CORE_ADDR pc
= get_frame_address_in_block (this_frame
);
3664 CORE_ADDR start_addr
;
3666 find_pc_partial_function (pc
, NULL
, &start_addr
, NULL
);
3667 if (start_addr
== 0)
3668 start_addr
= heuristic_proc_start (gdbarch
, pc
);
3669 /* We can't analyze the prologue if we couldn't find the begining
3671 if (start_addr
== 0)
3674 mips32_scan_prologue (gdbarch
, start_addr
, pc
, this_frame
,
3675 (struct mips_frame_cache
*) *this_cache
);
3678 /* gdbarch_sp_regnum contains the value and not the address. */
3679 trad_frame_set_value (cache
->saved_regs
,
3680 gdbarch_num_regs (gdbarch
) + MIPS_SP_REGNUM
,
3683 return (struct mips_frame_cache
*) (*this_cache
);
3687 mips_insn32_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
3688 struct frame_id
*this_id
)
3690 struct mips_frame_cache
*info
= mips_insn32_frame_cache (this_frame
,
3692 /* This marks the outermost frame. */
3693 if (info
->base
== 0)
3695 (*this_id
) = frame_id_build (info
->base
, get_frame_func (this_frame
));
3698 static struct value
*
3699 mips_insn32_frame_prev_register (struct frame_info
*this_frame
,
3700 void **this_cache
, int regnum
)
3702 struct mips_frame_cache
*info
= mips_insn32_frame_cache (this_frame
,
3704 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
3708 mips_insn32_frame_sniffer (const struct frame_unwind
*self
,
3709 struct frame_info
*this_frame
, void **this_cache
)
3711 CORE_ADDR pc
= get_frame_pc (this_frame
);
3712 if (mips_pc_is_mips (pc
))
3717 static const struct frame_unwind mips_insn32_frame_unwind
=
3720 default_frame_unwind_stop_reason
,
3721 mips_insn32_frame_this_id
,
3722 mips_insn32_frame_prev_register
,
3724 mips_insn32_frame_sniffer
3728 mips_insn32_frame_base_address (struct frame_info
*this_frame
,
3731 struct mips_frame_cache
*info
= mips_insn32_frame_cache (this_frame
,
3736 static const struct frame_base mips_insn32_frame_base
=
3738 &mips_insn32_frame_unwind
,
3739 mips_insn32_frame_base_address
,
3740 mips_insn32_frame_base_address
,
3741 mips_insn32_frame_base_address
3744 static const struct frame_base
*
3745 mips_insn32_frame_base_sniffer (struct frame_info
*this_frame
)
3747 CORE_ADDR pc
= get_frame_pc (this_frame
);
3748 if (mips_pc_is_mips (pc
))
3749 return &mips_insn32_frame_base
;
3754 static struct trad_frame_cache
*
3755 mips_stub_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
3758 CORE_ADDR start_addr
;
3759 CORE_ADDR stack_addr
;
3760 struct trad_frame_cache
*this_trad_cache
;
3761 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
3762 int num_regs
= gdbarch_num_regs (gdbarch
);
3764 if ((*this_cache
) != NULL
)
3765 return (struct trad_frame_cache
*) (*this_cache
);
3766 this_trad_cache
= trad_frame_cache_zalloc (this_frame
);
3767 (*this_cache
) = this_trad_cache
;
3769 /* The return address is in the link register. */
3770 trad_frame_set_reg_realreg (this_trad_cache
,
3771 gdbarch_pc_regnum (gdbarch
),
3772 num_regs
+ MIPS_RA_REGNUM
);
3774 /* Frame ID, since it's a frameless / stackless function, no stack
3775 space is allocated and SP on entry is the current SP. */
3776 pc
= get_frame_pc (this_frame
);
3777 find_pc_partial_function (pc
, NULL
, &start_addr
, NULL
);
3778 stack_addr
= get_frame_register_signed (this_frame
,
3779 num_regs
+ MIPS_SP_REGNUM
);
3780 trad_frame_set_id (this_trad_cache
, frame_id_build (stack_addr
, start_addr
));
3782 /* Assume that the frame's base is the same as the
3784 trad_frame_set_this_base (this_trad_cache
, stack_addr
);
3786 return this_trad_cache
;
3790 mips_stub_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
3791 struct frame_id
*this_id
)
3793 struct trad_frame_cache
*this_trad_cache
3794 = mips_stub_frame_cache (this_frame
, this_cache
);
3795 trad_frame_get_id (this_trad_cache
, this_id
);
3798 static struct value
*
3799 mips_stub_frame_prev_register (struct frame_info
*this_frame
,
3800 void **this_cache
, int regnum
)
3802 struct trad_frame_cache
*this_trad_cache
3803 = mips_stub_frame_cache (this_frame
, this_cache
);
3804 return trad_frame_get_register (this_trad_cache
, this_frame
, regnum
);
3808 mips_stub_frame_sniffer (const struct frame_unwind
*self
,
3809 struct frame_info
*this_frame
, void **this_cache
)
3812 CORE_ADDR pc
= get_frame_address_in_block (this_frame
);
3813 struct bound_minimal_symbol msym
;
3815 /* Use the stub unwinder for unreadable code. */
3816 if (target_read_memory (get_frame_pc (this_frame
), dummy
, 4) != 0)
3819 if (in_plt_section (pc
) || in_mips_stubs_section (pc
))
3822 /* Calling a PIC function from a non-PIC function passes through a
3823 stub. The stub for foo is named ".pic.foo". */
3824 msym
= lookup_minimal_symbol_by_pc (pc
);
3825 if (msym
.minsym
!= NULL
3826 && MSYMBOL_LINKAGE_NAME (msym
.minsym
) != NULL
3827 && startswith (MSYMBOL_LINKAGE_NAME (msym
.minsym
), ".pic."))
3833 static const struct frame_unwind mips_stub_frame_unwind
=
3836 default_frame_unwind_stop_reason
,
3837 mips_stub_frame_this_id
,
3838 mips_stub_frame_prev_register
,
3840 mips_stub_frame_sniffer
3844 mips_stub_frame_base_address (struct frame_info
*this_frame
,
3847 struct trad_frame_cache
*this_trad_cache
3848 = mips_stub_frame_cache (this_frame
, this_cache
);
3849 return trad_frame_get_this_base (this_trad_cache
);
3852 static const struct frame_base mips_stub_frame_base
=
3854 &mips_stub_frame_unwind
,
3855 mips_stub_frame_base_address
,
3856 mips_stub_frame_base_address
,
3857 mips_stub_frame_base_address
3860 static const struct frame_base
*
3861 mips_stub_frame_base_sniffer (struct frame_info
*this_frame
)
3863 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind
, this_frame
, NULL
))
3864 return &mips_stub_frame_base
;
3869 /* mips_addr_bits_remove - remove useless address bits */
3872 mips_addr_bits_remove (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
3874 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3876 if (mips_mask_address_p (tdep
) && (((ULONGEST
) addr
) >> 32 == 0xffffffffUL
))
3877 /* This hack is a work-around for existing boards using PMON, the
3878 simulator, and any other 64-bit targets that doesn't have true
3879 64-bit addressing. On these targets, the upper 32 bits of
3880 addresses are ignored by the hardware. Thus, the PC or SP are
3881 likely to have been sign extended to all 1s by instruction
3882 sequences that load 32-bit addresses. For example, a typical
3883 piece of code that loads an address is this:
3885 lui $r2, <upper 16 bits>
3886 ori $r2, <lower 16 bits>
3888 But the lui sign-extends the value such that the upper 32 bits
3889 may be all 1s. The workaround is simply to mask off these
3890 bits. In the future, gcc may be changed to support true 64-bit
3891 addressing, and this masking will have to be disabled. */
3892 return addr
&= 0xffffffffUL
;
3898 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3899 instruction and ending with a SC/SCD instruction. If such a sequence
3900 is found, attempt to step through it. A breakpoint is placed at the end of
3903 /* Instructions used during single-stepping of atomic sequences, standard
3905 #define LL_OPCODE 0x30
3906 #define LLD_OPCODE 0x34
3907 #define SC_OPCODE 0x38
3908 #define SCD_OPCODE 0x3c
3910 static std::vector
<CORE_ADDR
>
3911 mips_deal_with_atomic_sequence (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
3913 CORE_ADDR breaks
[2] = {CORE_ADDR_MAX
, CORE_ADDR_MAX
};
3915 CORE_ADDR branch_bp
; /* Breakpoint at branch instruction's destination. */
3919 int last_breakpoint
= 0; /* Defaults to 0 (no breakpoints placed). */
3920 const int atomic_sequence_length
= 16; /* Instruction sequence length. */
3922 insn
= mips_fetch_instruction (gdbarch
, ISA_MIPS
, loc
, NULL
);
3923 /* Assume all atomic sequences start with a ll/lld instruction. */
3924 if (itype_op (insn
) != LL_OPCODE
&& itype_op (insn
) != LLD_OPCODE
)
3927 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3929 for (insn_count
= 0; insn_count
< atomic_sequence_length
; ++insn_count
)
3932 loc
+= MIPS_INSN32_SIZE
;
3933 insn
= mips_fetch_instruction (gdbarch
, ISA_MIPS
, loc
, NULL
);
3935 /* Assume that there is at most one branch in the atomic
3936 sequence. If a branch is found, put a breakpoint in its
3937 destination address. */
3938 switch (itype_op (insn
))
3940 case 0: /* SPECIAL */
3941 if (rtype_funct (insn
) >> 1 == 4) /* JR, JALR */
3942 return {}; /* fallback to the standard single-step code. */
3944 case 1: /* REGIMM */
3945 is_branch
= ((itype_rt (insn
) & 0xc) == 0 /* B{LT,GE}Z* */
3946 || ((itype_rt (insn
) & 0x1e) == 0
3947 && itype_rs (insn
) == 0)); /* BPOSGE* */
3951 return {}; /* fallback to the standard single-step code. */
3958 case 22: /* BLEZL */
3959 case 23: /* BGTTL */
3963 is_branch
= ((itype_rs (insn
) == 9 || itype_rs (insn
) == 10)
3964 && (itype_rt (insn
) & 0x2) == 0);
3965 if (is_branch
) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3970 is_branch
= (itype_rs (insn
) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3975 branch_bp
= loc
+ mips32_relative_offset (insn
) + 4;
3976 if (last_breakpoint
>= 1)
3977 return {}; /* More than one branch found, fallback to the
3978 standard single-step code. */
3979 breaks
[1] = branch_bp
;
3983 if (itype_op (insn
) == SC_OPCODE
|| itype_op (insn
) == SCD_OPCODE
)
3987 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3988 if (itype_op (insn
) != SC_OPCODE
&& itype_op (insn
) != SCD_OPCODE
)
3991 loc
+= MIPS_INSN32_SIZE
;
3993 /* Insert a breakpoint right after the end of the atomic sequence. */
3996 /* Check for duplicated breakpoints. Check also for a breakpoint
3997 placed (branch instruction's destination) in the atomic sequence. */
3998 if (last_breakpoint
&& pc
<= breaks
[1] && breaks
[1] <= breaks
[0])
3999 last_breakpoint
= 0;
4001 std::vector
<CORE_ADDR
> next_pcs
;
4003 /* Effectively inserts the breakpoints. */
4004 for (index
= 0; index
<= last_breakpoint
; index
++)
4005 next_pcs
.push_back (breaks
[index
]);
4010 static std::vector
<CORE_ADDR
>
4011 micromips_deal_with_atomic_sequence (struct gdbarch
*gdbarch
,
4014 const int atomic_sequence_length
= 16; /* Instruction sequence length. */
4015 int last_breakpoint
= 0; /* Defaults to 0 (no breakpoints placed). */
4016 CORE_ADDR breaks
[2] = {CORE_ADDR_MAX
, CORE_ADDR_MAX
};
4017 CORE_ADDR branch_bp
= 0; /* Breakpoint at branch instruction's
4025 /* Assume all atomic sequences start with a ll/lld instruction. */
4026 insn
= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
, loc
, NULL
);
4027 if (micromips_op (insn
) != 0x18) /* POOL32C: bits 011000 */
4029 loc
+= MIPS_INSN16_SIZE
;
4031 insn
|= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
, loc
, NULL
);
4032 if ((b12s4_op (insn
) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4034 loc
+= MIPS_INSN16_SIZE
;
4036 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4037 that no atomic sequence is longer than "atomic_sequence_length"
4039 for (insn_count
= 0;
4040 !sc_found
&& insn_count
< atomic_sequence_length
;
4045 insn
= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
, loc
, NULL
);
4046 loc
+= MIPS_INSN16_SIZE
;
4048 /* Assume that there is at most one conditional branch in the
4049 atomic sequence. If a branch is found, put a breakpoint in
4050 its destination address. */
4051 switch (mips_insn_size (ISA_MICROMIPS
, insn
))
4053 /* 32-bit instructions. */
4054 case 2 * MIPS_INSN16_SIZE
:
4055 switch (micromips_op (insn
))
4057 case 0x10: /* POOL32I: bits 010000 */
4058 if ((b5s5_op (insn
) & 0x18) != 0x0
4059 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4060 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4061 && (b5s5_op (insn
) & 0x1d) != 0x11
4062 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4063 && ((b5s5_op (insn
) & 0x1e) != 0x14
4064 || (insn
& 0x3) != 0x0)
4065 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4066 && (b5s5_op (insn
) & 0x1e) != 0x1a
4067 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4068 && ((b5s5_op (insn
) & 0x1e) != 0x1c
4069 || (insn
& 0x3) != 0x0)
4070 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4071 && ((b5s5_op (insn
) & 0x1c) != 0x1c
4072 || (insn
& 0x3) != 0x1))
4073 /* BC1ANY*: bits 010000 111xx xxx01 */
4077 case 0x25: /* BEQ: bits 100101 */
4078 case 0x2d: /* BNE: bits 101101 */
4080 insn
|= mips_fetch_instruction (gdbarch
,
4081 ISA_MICROMIPS
, loc
, NULL
);
4082 branch_bp
= (loc
+ MIPS_INSN16_SIZE
4083 + micromips_relative_offset16 (insn
));
4087 case 0x00: /* POOL32A: bits 000000 */
4089 insn
|= mips_fetch_instruction (gdbarch
,
4090 ISA_MICROMIPS
, loc
, NULL
);
4091 if (b0s6_op (insn
) != 0x3c
4092 /* POOL32Axf: bits 000000 ... 111100 */
4093 || (b6s10_ext (insn
) & 0x2bf) != 0x3c)
4094 /* JALR, JALR.HB: 000000 000x111100 111100 */
4095 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4099 case 0x1d: /* JALS: bits 011101 */
4100 case 0x35: /* J: bits 110101 */
4101 case 0x3d: /* JAL: bits 111101 */
4102 case 0x3c: /* JALX: bits 111100 */
4103 return {}; /* Fall back to the standard single-step code. */
4105 case 0x18: /* POOL32C: bits 011000 */
4106 if ((b12s4_op (insn
) & 0xb) == 0xb)
4107 /* SC, SCD: bits 011000 1x11 */
4111 loc
+= MIPS_INSN16_SIZE
;
4114 /* 16-bit instructions. */
4115 case MIPS_INSN16_SIZE
:
4116 switch (micromips_op (insn
))
4118 case 0x23: /* BEQZ16: bits 100011 */
4119 case 0x2b: /* BNEZ16: bits 101011 */
4120 branch_bp
= loc
+ micromips_relative_offset7 (insn
);
4124 case 0x11: /* POOL16C: bits 010001 */
4125 if ((b5s5_op (insn
) & 0x1c) != 0xc
4126 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4127 && b5s5_op (insn
) != 0x18)
4128 /* JRADDIUSP: bits 010001 11000 */
4130 return {}; /* Fall back to the standard single-step code. */
4132 case 0x33: /* B16: bits 110011 */
4133 return {}; /* Fall back to the standard single-step code. */
4139 if (last_breakpoint
>= 1)
4140 return {}; /* More than one branch found, fallback to the
4141 standard single-step code. */
4142 breaks
[1] = branch_bp
;
4149 /* Insert a breakpoint right after the end of the atomic sequence. */
4152 /* Check for duplicated breakpoints. Check also for a breakpoint
4153 placed (branch instruction's destination) in the atomic sequence */
4154 if (last_breakpoint
&& pc
<= breaks
[1] && breaks
[1] <= breaks
[0])
4155 last_breakpoint
= 0;
4157 std::vector
<CORE_ADDR
> next_pcs
;
4159 /* Effectively inserts the breakpoints. */
4160 for (index
= 0; index
<= last_breakpoint
; index
++)
4161 next_pcs
.push_back (breaks
[index
]);
4166 static std::vector
<CORE_ADDR
>
4167 deal_with_atomic_sequence (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
4169 if (mips_pc_is_mips (pc
))
4170 return mips_deal_with_atomic_sequence (gdbarch
, pc
);
4171 else if (mips_pc_is_micromips (gdbarch
, pc
))
4172 return micromips_deal_with_atomic_sequence (gdbarch
, pc
);
4177 /* mips_software_single_step() is called just before we want to resume
4178 the inferior, if we want to single-step it but there is no hardware
4179 or kernel single-step support (MIPS on GNU/Linux for example). We find
4180 the target of the coming instruction and breakpoint it. */
4182 std::vector
<CORE_ADDR
>
4183 mips_software_single_step (struct regcache
*regcache
)
4185 struct gdbarch
*gdbarch
= regcache
->arch ();
4186 CORE_ADDR pc
, next_pc
;
4188 pc
= regcache_read_pc (regcache
);
4189 std::vector
<CORE_ADDR
> next_pcs
= deal_with_atomic_sequence (gdbarch
, pc
);
4191 if (!next_pcs
.empty ())
4194 next_pc
= mips_next_pc (regcache
, pc
);
4199 /* Test whether the PC points to the return instruction at the
4200 end of a function. */
4203 mips_about_to_return (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
4208 /* This used to check for MIPS16, but this piece of code is never
4209 called for MIPS16 functions. And likewise microMIPS ones. */
4210 gdb_assert (mips_pc_is_mips (pc
));
4212 insn
= mips_fetch_instruction (gdbarch
, ISA_MIPS
, pc
, NULL
);
4214 return (insn
& ~hint
) == 0x3e00008; /* jr(.hb) $ra */
4218 /* This fencepost looks highly suspicious to me. Removing it also
4219 seems suspicious as it could affect remote debugging across serial
4223 heuristic_proc_start (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
4229 struct inferior
*inf
;
4231 pc
= gdbarch_addr_bits_remove (gdbarch
, pc
);
4233 fence
= start_pc
- heuristic_fence_post
;
4237 if (heuristic_fence_post
== -1 || fence
< VM_MIN_ADDRESS
)
4238 fence
= VM_MIN_ADDRESS
;
4240 instlen
= mips_pc_is_mips (pc
) ? MIPS_INSN32_SIZE
: MIPS_INSN16_SIZE
;
4242 inf
= current_inferior ();
4244 /* Search back for previous return. */
4245 for (start_pc
-= instlen
;; start_pc
-= instlen
)
4246 if (start_pc
< fence
)
4248 /* It's not clear to me why we reach this point when
4249 stop_soon, but with this test, at least we
4250 don't print out warnings for every child forked (eg, on
4251 decstation). 22apr93 rich@cygnus.com. */
4252 if (inf
->control
.stop_soon
== NO_STOP_QUIETLY
)
4254 static int blurb_printed
= 0;
4256 warning (_("GDB can't find the start of the function at %s."),
4257 paddress (gdbarch
, pc
));
4261 /* This actually happens frequently in embedded
4262 development, when you first connect to a board
4263 and your stack pointer and pc are nowhere in
4264 particular. This message needs to give people
4265 in that situation enough information to
4266 determine that it's no big deal. */
4267 printf_filtered ("\n\
4268 GDB is unable to find the start of the function at %s\n\
4269 and thus can't determine the size of that function's stack frame.\n\
4270 This means that GDB may be unable to access that stack frame, or\n\
4271 the frames below it.\n\
4272 This problem is most likely caused by an invalid program counter or\n\
4274 However, if you think GDB should simply search farther back\n\
4275 from %s for code which looks like the beginning of a\n\
4276 function, you can increase the range of the search using the `set\n\
4277 heuristic-fence-post' command.\n",
4278 paddress (gdbarch
, pc
), paddress (gdbarch
, pc
));
4285 else if (mips_pc_is_mips16 (gdbarch
, start_pc
))
4287 unsigned short inst
;
4289 /* On MIPS16, any one of the following is likely to be the
4290 start of a function:
4296 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4297 inst
= mips_fetch_instruction (gdbarch
, ISA_MIPS16
, start_pc
, NULL
);
4298 if ((inst
& 0xff80) == 0x6480) /* save */
4300 if (start_pc
- instlen
>= fence
)
4302 inst
= mips_fetch_instruction (gdbarch
, ISA_MIPS16
,
4303 start_pc
- instlen
, NULL
);
4304 if ((inst
& 0xf800) == 0xf000) /* extend */
4305 start_pc
-= instlen
;
4309 else if (((inst
& 0xf81f) == 0xe809
4310 && (inst
& 0x700) != 0x700) /* entry */
4311 || (inst
& 0xff80) == 0x6380 /* addiu sp,-n */
4312 || (inst
& 0xff80) == 0xfb80 /* daddiu sp,-n */
4313 || ((inst
& 0xf810) == 0xf010 && seen_adjsp
)) /* extend -n */
4315 else if ((inst
& 0xff00) == 0x6300 /* addiu sp */
4316 || (inst
& 0xff00) == 0xfb00) /* daddiu sp */
4321 else if (mips_pc_is_micromips (gdbarch
, start_pc
))
4329 /* On microMIPS, any one of the following is likely to be the
4330 start of a function:
4334 insn
= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
, pc
, NULL
);
4335 switch (micromips_op (insn
))
4337 case 0xc: /* ADDIU: bits 001100 */
4338 case 0x17: /* DADDIU: bits 010111 */
4339 sreg
= b0s5_reg (insn
);
4340 dreg
= b5s5_reg (insn
);
4342 insn
|= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
,
4343 pc
+ MIPS_INSN16_SIZE
, NULL
);
4344 offset
= (b0s16_imm (insn
) ^ 0x8000) - 0x8000;
4345 if (sreg
== MIPS_SP_REGNUM
&& dreg
== MIPS_SP_REGNUM
4346 /* (D)ADDIU $sp, imm */
4351 case 0x10: /* POOL32I: bits 010000 */
4352 if (b5s5_op (insn
) == 0xd
4353 /* LUI: bits 010000 001101 */
4354 && b0s5_reg (insn
>> 16) == 28)
4359 case 0x13: /* POOL16D: bits 010011 */
4360 if ((insn
& 0x1) == 0x1)
4361 /* ADDIUSP: bits 010011 1 */
4363 offset
= micromips_decode_imm9 (b1s9_imm (insn
));
4369 /* ADDIUS5: bits 010011 0 */
4371 dreg
= b5s5_reg (insn
);
4372 offset
= (b1s4_imm (insn
) ^ 8) - 8;
4373 if (dreg
== MIPS_SP_REGNUM
&& offset
< 0)
4374 /* ADDIUS5 $sp, -imm */
4382 else if (mips_about_to_return (gdbarch
, start_pc
))
4384 /* Skip return and its delay slot. */
4385 start_pc
+= 2 * MIPS_INSN32_SIZE
;
4392 struct mips_objfile_private
4398 /* According to the current ABI, should the type be passed in a
4399 floating-point register (assuming that there is space)? When there
4400 is no FPU, FP are not even considered as possible candidates for
4401 FP registers and, consequently this returns false - forces FP
4402 arguments into integer registers. */
4405 fp_register_arg_p (struct gdbarch
*gdbarch
, enum type_code typecode
,
4406 struct type
*arg_type
)
4408 return ((typecode
== TYPE_CODE_FLT
4409 || (MIPS_EABI (gdbarch
)
4410 && (typecode
== TYPE_CODE_STRUCT
4411 || typecode
== TYPE_CODE_UNION
)
4412 && TYPE_NFIELDS (arg_type
) == 1
4413 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type
, 0)))
4415 && MIPS_FPU_TYPE(gdbarch
) != MIPS_FPU_NONE
);
4418 /* On o32, argument passing in GPRs depends on the alignment of the type being
4419 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4422 mips_type_needs_double_align (struct type
*type
)
4424 enum type_code typecode
= TYPE_CODE (type
);
4426 if (typecode
== TYPE_CODE_FLT
&& TYPE_LENGTH (type
) == 8)
4428 else if (typecode
== TYPE_CODE_STRUCT
)
4430 if (TYPE_NFIELDS (type
) < 1)
4432 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type
, 0));
4434 else if (typecode
== TYPE_CODE_UNION
)
4438 n
= TYPE_NFIELDS (type
);
4439 for (i
= 0; i
< n
; i
++)
4440 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type
, i
)))
4447 /* Adjust the address downward (direction of stack growth) so that it
4448 is correctly aligned for a new stack frame. */
4450 mips_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
4452 return align_down (addr
, 16);
4455 /* Implement the "push_dummy_code" gdbarch method. */
4458 mips_push_dummy_code (struct gdbarch
*gdbarch
, CORE_ADDR sp
,
4459 CORE_ADDR funaddr
, struct value
**args
,
4460 int nargs
, struct type
*value_type
,
4461 CORE_ADDR
*real_pc
, CORE_ADDR
*bp_addr
,
4462 struct regcache
*regcache
)
4464 static gdb_byte nop_insn
[] = { 0, 0, 0, 0 };
4468 /* Reserve enough room on the stack for our breakpoint instruction. */
4469 bp_slot
= sp
- sizeof (nop_insn
);
4471 /* Return to microMIPS mode if calling microMIPS code to avoid
4472 triggering an address error exception on processors that only
4473 support microMIPS execution. */
4474 *bp_addr
= (mips_pc_is_micromips (gdbarch
, funaddr
)
4475 ? make_compact_addr (bp_slot
) : bp_slot
);
4477 /* The breakpoint layer automatically adjusts the address of
4478 breakpoints inserted in a branch delay slot. With enough
4479 bad luck, the 4 bytes located just before our breakpoint
4480 instruction could look like a branch instruction, and thus
4481 trigger the adjustement, and break the function call entirely.
4482 So, we reserve those 4 bytes and write a nop instruction
4483 to prevent that from happening. */
4484 nop_addr
= bp_slot
- sizeof (nop_insn
);
4485 write_memory (nop_addr
, nop_insn
, sizeof (nop_insn
));
4486 sp
= mips_frame_align (gdbarch
, nop_addr
);
4488 /* Inferior resumes at the function entry point. */
4495 mips_eabi_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
4496 struct regcache
*regcache
, CORE_ADDR bp_addr
,
4497 int nargs
, struct value
**args
, CORE_ADDR sp
,
4498 int struct_return
, CORE_ADDR struct_addr
)
4504 int stack_offset
= 0;
4505 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4506 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
4507 int abi_regsize
= mips_abi_regsize (gdbarch
);
4509 /* For shared libraries, "t9" needs to point at the function
4511 regcache_cooked_write_signed (regcache
, MIPS_T9_REGNUM
, func_addr
);
4513 /* Set the return address register to point to the entry point of
4514 the program, where a breakpoint lies in wait. */
4515 regcache_cooked_write_signed (regcache
, MIPS_RA_REGNUM
, bp_addr
);
4517 /* First ensure that the stack and structure return address (if any)
4518 are properly aligned. The stack has to be at least 64-bit
4519 aligned even on 32-bit machines, because doubles must be 64-bit
4520 aligned. For n32 and n64, stack frames need to be 128-bit
4521 aligned, so we round to this widest known alignment. */
4523 sp
= align_down (sp
, 16);
4524 struct_addr
= align_down (struct_addr
, 16);
4526 /* Now make space on the stack for the args. We allocate more
4527 than necessary for EABI, because the first few arguments are
4528 passed in registers, but that's OK. */
4529 for (argnum
= 0; argnum
< nargs
; argnum
++)
4530 len
+= align_up (TYPE_LENGTH (value_type (args
[argnum
])), abi_regsize
);
4531 sp
-= align_up (len
, 16);
4534 fprintf_unfiltered (gdb_stdlog
,
4535 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4536 paddress (gdbarch
, sp
), (long) align_up (len
, 16));
4538 /* Initialize the integer and float register pointers. */
4539 argreg
= MIPS_A0_REGNUM
;
4540 float_argreg
= mips_fpa0_regnum (gdbarch
);
4542 /* The struct_return pointer occupies the first parameter-passing reg. */
4546 fprintf_unfiltered (gdb_stdlog
,
4547 "mips_eabi_push_dummy_call: "
4548 "struct_return reg=%d %s\n",
4549 argreg
, paddress (gdbarch
, struct_addr
));
4550 regcache_cooked_write_unsigned (regcache
, argreg
++, struct_addr
);
4553 /* Now load as many as possible of the first arguments into
4554 registers, and push the rest onto the stack. Loop thru args
4555 from first to last. */
4556 for (argnum
= 0; argnum
< nargs
; argnum
++)
4558 const gdb_byte
*val
;
4559 /* This holds the address of structures that are passed by
4561 gdb_byte ref_valbuf
[MAX_MIPS_ABI_REGSIZE
];
4562 struct value
*arg
= args
[argnum
];
4563 struct type
*arg_type
= check_typedef (value_type (arg
));
4564 int len
= TYPE_LENGTH (arg_type
);
4565 enum type_code typecode
= TYPE_CODE (arg_type
);
4568 fprintf_unfiltered (gdb_stdlog
,
4569 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4570 argnum
+ 1, len
, (int) typecode
);
4572 /* The EABI passes structures that do not fit in a register by
4574 if (len
> abi_regsize
4575 && (typecode
== TYPE_CODE_STRUCT
|| typecode
== TYPE_CODE_UNION
))
4577 gdb_assert (abi_regsize
<= ARRAY_SIZE (ref_valbuf
));
4578 store_unsigned_integer (ref_valbuf
, abi_regsize
, byte_order
,
4579 value_address (arg
));
4580 typecode
= TYPE_CODE_PTR
;
4584 fprintf_unfiltered (gdb_stdlog
, " push");
4587 val
= value_contents (arg
);
4589 /* 32-bit ABIs always start floating point arguments in an
4590 even-numbered floating point register. Round the FP register
4591 up before the check to see if there are any FP registers
4592 left. Non MIPS_EABI targets also pass the FP in the integer
4593 registers so also round up normal registers. */
4594 if (abi_regsize
< 8 && fp_register_arg_p (gdbarch
, typecode
, arg_type
))
4596 if ((float_argreg
& 1))
4600 /* Floating point arguments passed in registers have to be
4601 treated specially. On 32-bit architectures, doubles
4602 are passed in register pairs; the even register gets
4603 the low word, and the odd register gets the high word.
4604 On non-EABI processors, the first two floating point arguments are
4605 also copied to general registers, because MIPS16 functions
4606 don't use float registers for arguments. This duplication of
4607 arguments in general registers can't hurt non-MIPS16 functions
4608 because those registers are normally skipped. */
4609 /* MIPS_EABI squeezes a struct that contains a single floating
4610 point value into an FP register instead of pushing it onto the
4612 if (fp_register_arg_p (gdbarch
, typecode
, arg_type
)
4613 && float_argreg
<= MIPS_LAST_FP_ARG_REGNUM (gdbarch
))
4615 /* EABI32 will pass doubles in consecutive registers, even on
4616 64-bit cores. At one time, we used to check the size of
4617 `float_argreg' to determine whether or not to pass doubles
4618 in consecutive registers, but this is not sufficient for
4619 making the ABI determination. */
4620 if (len
== 8 && mips_abi (gdbarch
) == MIPS_ABI_EABI32
)
4622 int low_offset
= gdbarch_byte_order (gdbarch
)
4623 == BFD_ENDIAN_BIG
? 4 : 0;
4626 /* Write the low word of the double to the even register(s). */
4627 regval
= extract_signed_integer (val
+ low_offset
,
4630 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
4631 float_argreg
, phex (regval
, 4));
4632 regcache_cooked_write_signed (regcache
, float_argreg
++, regval
);
4634 /* Write the high word of the double to the odd register(s). */
4635 regval
= extract_signed_integer (val
+ 4 - low_offset
,
4638 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
4639 float_argreg
, phex (regval
, 4));
4640 regcache_cooked_write_signed (regcache
, float_argreg
++, regval
);
4644 /* This is a floating point value that fits entirely
4645 in a single register. */
4646 /* On 32 bit ABI's the float_argreg is further adjusted
4647 above to ensure that it is even register aligned. */
4648 LONGEST regval
= extract_signed_integer (val
, len
, byte_order
);
4650 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
4651 float_argreg
, phex (regval
, len
));
4652 regcache_cooked_write_signed (regcache
, float_argreg
++, regval
);
4657 /* Copy the argument to general registers or the stack in
4658 register-sized pieces. Large arguments are split between
4659 registers and stack. */
4660 /* Note: structs whose size is not a multiple of abi_regsize
4661 are treated specially: Irix cc passes
4662 them in registers where gcc sometimes puts them on the
4663 stack. For maximum compatibility, we will put them in
4665 int odd_sized_struct
= (len
> abi_regsize
&& len
% abi_regsize
!= 0);
4667 /* Note: Floating-point values that didn't fit into an FP
4668 register are only written to memory. */
4671 /* Remember if the argument was written to the stack. */
4672 int stack_used_p
= 0;
4673 int partial_len
= (len
< abi_regsize
? len
: abi_regsize
);
4676 fprintf_unfiltered (gdb_stdlog
, " -- partial=%d",
4679 /* Write this portion of the argument to the stack. */
4680 if (argreg
> MIPS_LAST_ARG_REGNUM (gdbarch
)
4682 || fp_register_arg_p (gdbarch
, typecode
, arg_type
))
4684 /* Should shorter than int integer values be
4685 promoted to int before being stored? */
4686 int longword_offset
= 0;
4689 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
4691 if (abi_regsize
== 8
4692 && (typecode
== TYPE_CODE_INT
4693 || typecode
== TYPE_CODE_PTR
4694 || typecode
== TYPE_CODE_FLT
) && len
<= 4)
4695 longword_offset
= abi_regsize
- len
;
4696 else if ((typecode
== TYPE_CODE_STRUCT
4697 || typecode
== TYPE_CODE_UNION
)
4698 && TYPE_LENGTH (arg_type
) < abi_regsize
)
4699 longword_offset
= abi_regsize
- len
;
4704 fprintf_unfiltered (gdb_stdlog
, " - stack_offset=%s",
4705 paddress (gdbarch
, stack_offset
));
4706 fprintf_unfiltered (gdb_stdlog
, " longword_offset=%s",
4707 paddress (gdbarch
, longword_offset
));
4710 addr
= sp
+ stack_offset
+ longword_offset
;
4715 fprintf_unfiltered (gdb_stdlog
, " @%s ",
4716 paddress (gdbarch
, addr
));
4717 for (i
= 0; i
< partial_len
; i
++)
4719 fprintf_unfiltered (gdb_stdlog
, "%02x",
4723 write_memory (addr
, val
, partial_len
);
4726 /* Note!!! This is NOT an else clause. Odd sized
4727 structs may go thru BOTH paths. Floating point
4728 arguments will not. */
4729 /* Write this portion of the argument to a general
4730 purpose register. */
4731 if (argreg
<= MIPS_LAST_ARG_REGNUM (gdbarch
)
4732 && !fp_register_arg_p (gdbarch
, typecode
, arg_type
))
4735 extract_signed_integer (val
, partial_len
, byte_order
);
4738 fprintf_filtered (gdb_stdlog
, " - reg=%d val=%s",
4740 phex (regval
, abi_regsize
));
4741 regcache_cooked_write_signed (regcache
, argreg
, regval
);
4748 /* Compute the offset into the stack at which we will
4749 copy the next parameter.
4751 In the new EABI (and the NABI32), the stack_offset
4752 only needs to be adjusted when it has been used. */
4755 stack_offset
+= align_up (partial_len
, abi_regsize
);
4759 fprintf_unfiltered (gdb_stdlog
, "\n");
4762 regcache_cooked_write_signed (regcache
, MIPS_SP_REGNUM
, sp
);
4764 /* Return adjusted stack pointer. */
4768 /* Determine the return value convention being used. */
4770 static enum return_value_convention
4771 mips_eabi_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
4772 struct type
*type
, struct regcache
*regcache
,
4773 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
4775 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
4776 int fp_return_type
= 0;
4777 int offset
, regnum
, xfer
;
4779 if (TYPE_LENGTH (type
) > 2 * mips_abi_regsize (gdbarch
))
4780 return RETURN_VALUE_STRUCT_CONVENTION
;
4782 /* Floating point type? */
4783 if (tdep
->mips_fpu_type
!= MIPS_FPU_NONE
)
4785 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
4787 /* Structs with a single field of float type
4788 are returned in a floating point register. */
4789 if ((TYPE_CODE (type
) == TYPE_CODE_STRUCT
4790 || TYPE_CODE (type
) == TYPE_CODE_UNION
)
4791 && TYPE_NFIELDS (type
) == 1)
4793 struct type
*fieldtype
= TYPE_FIELD_TYPE (type
, 0);
4795 if (TYPE_CODE (check_typedef (fieldtype
)) == TYPE_CODE_FLT
)
4802 /* A floating-point value belongs in the least significant part
4805 fprintf_unfiltered (gdb_stderr
, "Return float in $fp0\n");
4806 regnum
= mips_regnum (gdbarch
)->fp0
;
4810 /* An integer value goes in V0/V1. */
4812 fprintf_unfiltered (gdb_stderr
, "Return scalar in $v0\n");
4813 regnum
= MIPS_V0_REGNUM
;
4816 offset
< TYPE_LENGTH (type
);
4817 offset
+= mips_abi_regsize (gdbarch
), regnum
++)
4819 xfer
= mips_abi_regsize (gdbarch
);
4820 if (offset
+ xfer
> TYPE_LENGTH (type
))
4821 xfer
= TYPE_LENGTH (type
) - offset
;
4822 mips_xfer_register (gdbarch
, regcache
,
4823 gdbarch_num_regs (gdbarch
) + regnum
, xfer
,
4824 gdbarch_byte_order (gdbarch
), readbuf
, writebuf
,
4828 return RETURN_VALUE_REGISTER_CONVENTION
;
4832 /* N32/N64 ABI stuff. */
4834 /* Search for a naturally aligned double at OFFSET inside a struct
4835 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4839 mips_n32n64_fp_arg_chunk_p (struct gdbarch
*gdbarch
, struct type
*arg_type
,
4844 if (TYPE_CODE (arg_type
) != TYPE_CODE_STRUCT
)
4847 if (MIPS_FPU_TYPE (gdbarch
) != MIPS_FPU_DOUBLE
)
4850 if (TYPE_LENGTH (arg_type
) < offset
+ MIPS64_REGSIZE
)
4853 for (i
= 0; i
< TYPE_NFIELDS (arg_type
); i
++)
4856 struct type
*field_type
;
4858 /* We're only looking at normal fields. */
4859 if (field_is_static (&TYPE_FIELD (arg_type
, i
))
4860 || (TYPE_FIELD_BITPOS (arg_type
, i
) % 8) != 0)
4863 /* If we have gone past the offset, there is no double to pass. */
4864 pos
= TYPE_FIELD_BITPOS (arg_type
, i
) / 8;
4868 field_type
= check_typedef (TYPE_FIELD_TYPE (arg_type
, i
));
4870 /* If this field is entirely before the requested offset, go
4871 on to the next one. */
4872 if (pos
+ TYPE_LENGTH (field_type
) <= offset
)
4875 /* If this is our special aligned double, we can stop. */
4876 if (TYPE_CODE (field_type
) == TYPE_CODE_FLT
4877 && TYPE_LENGTH (field_type
) == MIPS64_REGSIZE
)
4880 /* This field starts at or before the requested offset, and
4881 overlaps it. If it is a structure, recurse inwards. */
4882 return mips_n32n64_fp_arg_chunk_p (gdbarch
, field_type
, offset
- pos
);
4889 mips_n32n64_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
4890 struct regcache
*regcache
, CORE_ADDR bp_addr
,
4891 int nargs
, struct value
**args
, CORE_ADDR sp
,
4892 int struct_return
, CORE_ADDR struct_addr
)
4898 int stack_offset
= 0;
4899 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4900 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
4902 /* For shared libraries, "t9" needs to point at the function
4904 regcache_cooked_write_signed (regcache
, MIPS_T9_REGNUM
, func_addr
);
4906 /* Set the return address register to point to the entry point of
4907 the program, where a breakpoint lies in wait. */
4908 regcache_cooked_write_signed (regcache
, MIPS_RA_REGNUM
, bp_addr
);
4910 /* First ensure that the stack and structure return address (if any)
4911 are properly aligned. The stack has to be at least 64-bit
4912 aligned even on 32-bit machines, because doubles must be 64-bit
4913 aligned. For n32 and n64, stack frames need to be 128-bit
4914 aligned, so we round to this widest known alignment. */
4916 sp
= align_down (sp
, 16);
4917 struct_addr
= align_down (struct_addr
, 16);
4919 /* Now make space on the stack for the args. */
4920 for (argnum
= 0; argnum
< nargs
; argnum
++)
4921 len
+= align_up (TYPE_LENGTH (value_type (args
[argnum
])), MIPS64_REGSIZE
);
4922 sp
-= align_up (len
, 16);
4925 fprintf_unfiltered (gdb_stdlog
,
4926 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4927 paddress (gdbarch
, sp
), (long) align_up (len
, 16));
4929 /* Initialize the integer and float register pointers. */
4930 argreg
= MIPS_A0_REGNUM
;
4931 float_argreg
= mips_fpa0_regnum (gdbarch
);
4933 /* The struct_return pointer occupies the first parameter-passing reg. */
4937 fprintf_unfiltered (gdb_stdlog
,
4938 "mips_n32n64_push_dummy_call: "
4939 "struct_return reg=%d %s\n",
4940 argreg
, paddress (gdbarch
, struct_addr
));
4941 regcache_cooked_write_unsigned (regcache
, argreg
++, struct_addr
);
4944 /* Now load as many as possible of the first arguments into
4945 registers, and push the rest onto the stack. Loop thru args
4946 from first to last. */
4947 for (argnum
= 0; argnum
< nargs
; argnum
++)
4949 const gdb_byte
*val
;
4950 struct value
*arg
= args
[argnum
];
4951 struct type
*arg_type
= check_typedef (value_type (arg
));
4952 int len
= TYPE_LENGTH (arg_type
);
4953 enum type_code typecode
= TYPE_CODE (arg_type
);
4956 fprintf_unfiltered (gdb_stdlog
,
4957 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4958 argnum
+ 1, len
, (int) typecode
);
4960 val
= value_contents (arg
);
4962 /* A 128-bit long double value requires an even-odd pair of
4963 floating-point registers. */
4965 && fp_register_arg_p (gdbarch
, typecode
, arg_type
)
4966 && (float_argreg
& 1))
4972 if (fp_register_arg_p (gdbarch
, typecode
, arg_type
)
4973 && argreg
<= MIPS_LAST_ARG_REGNUM (gdbarch
))
4975 /* This is a floating point value that fits entirely
4976 in a single register or a pair of registers. */
4977 int reglen
= (len
<= MIPS64_REGSIZE
? len
: MIPS64_REGSIZE
);
4978 LONGEST regval
= extract_unsigned_integer (val
, reglen
, byte_order
);
4980 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
4981 float_argreg
, phex (regval
, reglen
));
4982 regcache_cooked_write_unsigned (regcache
, float_argreg
, regval
);
4985 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
4986 argreg
, phex (regval
, reglen
));
4987 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
4992 regval
= extract_unsigned_integer (val
+ reglen
,
4993 reglen
, byte_order
);
4995 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
4996 float_argreg
, phex (regval
, reglen
));
4997 regcache_cooked_write_unsigned (regcache
, float_argreg
, regval
);
5000 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
5001 argreg
, phex (regval
, reglen
));
5002 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
5009 /* Copy the argument to general registers or the stack in
5010 register-sized pieces. Large arguments are split between
5011 registers and stack. */
5012 /* For N32/N64, structs, unions, or other composite types are
5013 treated as a sequence of doublewords, and are passed in integer
5014 or floating point registers as though they were simple scalar
5015 parameters to the extent that they fit, with any excess on the
5016 stack packed according to the normal memory layout of the
5018 The caller does not reserve space for the register arguments;
5019 the callee is responsible for reserving it if required. */
5020 /* Note: Floating-point values that didn't fit into an FP
5021 register are only written to memory. */
5024 /* Remember if the argument was written to the stack. */
5025 int stack_used_p
= 0;
5026 int partial_len
= (len
< MIPS64_REGSIZE
? len
: MIPS64_REGSIZE
);
5029 fprintf_unfiltered (gdb_stdlog
, " -- partial=%d",
5032 if (fp_register_arg_p (gdbarch
, typecode
, arg_type
))
5033 gdb_assert (argreg
> MIPS_LAST_ARG_REGNUM (gdbarch
));
5035 /* Write this portion of the argument to the stack. */
5036 if (argreg
> MIPS_LAST_ARG_REGNUM (gdbarch
))
5038 /* Should shorter than int integer values be
5039 promoted to int before being stored? */
5040 int longword_offset
= 0;
5043 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
5045 if ((typecode
== TYPE_CODE_INT
5046 || typecode
== TYPE_CODE_PTR
)
5048 longword_offset
= MIPS64_REGSIZE
- len
;
5053 fprintf_unfiltered (gdb_stdlog
, " - stack_offset=%s",
5054 paddress (gdbarch
, stack_offset
));
5055 fprintf_unfiltered (gdb_stdlog
, " longword_offset=%s",
5056 paddress (gdbarch
, longword_offset
));
5059 addr
= sp
+ stack_offset
+ longword_offset
;
5064 fprintf_unfiltered (gdb_stdlog
, " @%s ",
5065 paddress (gdbarch
, addr
));
5066 for (i
= 0; i
< partial_len
; i
++)
5068 fprintf_unfiltered (gdb_stdlog
, "%02x",
5072 write_memory (addr
, val
, partial_len
);
5075 /* Note!!! This is NOT an else clause. Odd sized
5076 structs may go thru BOTH paths. */
5077 /* Write this portion of the argument to a general
5078 purpose register. */
5079 if (argreg
<= MIPS_LAST_ARG_REGNUM (gdbarch
))
5083 /* Sign extend pointers, 32-bit integers and signed
5084 16-bit and 8-bit integers; everything else is taken
5087 if ((partial_len
== 4
5088 && (typecode
== TYPE_CODE_PTR
5089 || typecode
== TYPE_CODE_INT
))
5091 && typecode
== TYPE_CODE_INT
5092 && !TYPE_UNSIGNED (arg_type
)))
5093 regval
= extract_signed_integer (val
, partial_len
,
5096 regval
= extract_unsigned_integer (val
, partial_len
,
5099 /* A non-floating-point argument being passed in a
5100 general register. If a struct or union, and if
5101 the remaining length is smaller than the register
5102 size, we have to adjust the register value on
5105 It does not seem to be necessary to do the
5106 same for integral types. */
5108 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
5109 && partial_len
< MIPS64_REGSIZE
5110 && (typecode
== TYPE_CODE_STRUCT
5111 || typecode
== TYPE_CODE_UNION
))
5112 regval
<<= ((MIPS64_REGSIZE
- partial_len
)
5116 fprintf_filtered (gdb_stdlog
, " - reg=%d val=%s",
5118 phex (regval
, MIPS64_REGSIZE
));
5119 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
5121 if (mips_n32n64_fp_arg_chunk_p (gdbarch
, arg_type
,
5122 TYPE_LENGTH (arg_type
) - len
))
5125 fprintf_filtered (gdb_stdlog
, " - fpreg=%d val=%s",
5127 phex (regval
, MIPS64_REGSIZE
));
5128 regcache_cooked_write_unsigned (regcache
, float_argreg
,
5139 /* Compute the offset into the stack at which we will
5140 copy the next parameter.
5142 In N32 (N64?), the stack_offset only needs to be
5143 adjusted when it has been used. */
5146 stack_offset
+= align_up (partial_len
, MIPS64_REGSIZE
);
5150 fprintf_unfiltered (gdb_stdlog
, "\n");
5153 regcache_cooked_write_signed (regcache
, MIPS_SP_REGNUM
, sp
);
5155 /* Return adjusted stack pointer. */
5159 static enum return_value_convention
5160 mips_n32n64_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
5161 struct type
*type
, struct regcache
*regcache
,
5162 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
5164 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
5166 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5168 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5169 if needed), as appropriate for the type. Composite results (struct,
5170 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5173 * A struct with only one or two floating point fields is returned in $f0
5174 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5177 * Any other composite results of at most 128 bits are returned in
5178 $2 (first 64 bits) and $3 (remainder, if necessary).
5180 * Larger composite results are handled by converting the function to a
5181 procedure with an implicit first parameter, which is a pointer to an area
5182 reserved by the caller to receive the result. [The o32-bit ABI requires
5183 that all composite results be handled by conversion to implicit first
5184 parameters. The MIPS/SGI Fortran implementation has always made a
5185 specific exception to return COMPLEX results in the floating point
5188 if (TYPE_LENGTH (type
) > 2 * MIPS64_REGSIZE
)
5189 return RETURN_VALUE_STRUCT_CONVENTION
;
5190 else if (TYPE_CODE (type
) == TYPE_CODE_FLT
5191 && TYPE_LENGTH (type
) == 16
5192 && tdep
->mips_fpu_type
!= MIPS_FPU_NONE
)
5194 /* A 128-bit floating-point value fills both $f0 and $f2. The
5195 two registers are used in the same as memory order, so the
5196 eight bytes with the lower memory address are in $f0. */
5198 fprintf_unfiltered (gdb_stderr
, "Return float in $f0 and $f2\n");
5199 mips_xfer_register (gdbarch
, regcache
,
5200 (gdbarch_num_regs (gdbarch
)
5201 + mips_regnum (gdbarch
)->fp0
),
5202 8, gdbarch_byte_order (gdbarch
),
5203 readbuf
, writebuf
, 0);
5204 mips_xfer_register (gdbarch
, regcache
,
5205 (gdbarch_num_regs (gdbarch
)
5206 + mips_regnum (gdbarch
)->fp0
+ 2),
5207 8, gdbarch_byte_order (gdbarch
),
5208 readbuf
? readbuf
+ 8 : readbuf
,
5209 writebuf
? writebuf
+ 8 : writebuf
, 0);
5210 return RETURN_VALUE_REGISTER_CONVENTION
;
5212 else if (TYPE_CODE (type
) == TYPE_CODE_FLT
5213 && tdep
->mips_fpu_type
!= MIPS_FPU_NONE
)
5215 /* A single or double floating-point value that fits in FP0. */
5217 fprintf_unfiltered (gdb_stderr
, "Return float in $fp0\n");
5218 mips_xfer_register (gdbarch
, regcache
,
5219 (gdbarch_num_regs (gdbarch
)
5220 + mips_regnum (gdbarch
)->fp0
),
5222 gdbarch_byte_order (gdbarch
),
5223 readbuf
, writebuf
, 0);
5224 return RETURN_VALUE_REGISTER_CONVENTION
;
5226 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
5227 && TYPE_NFIELDS (type
) <= 2
5228 && TYPE_NFIELDS (type
) >= 1
5229 && ((TYPE_NFIELDS (type
) == 1
5230 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type
, 0)))
5232 || (TYPE_NFIELDS (type
) == 2
5233 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type
, 0)))
5235 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type
, 1)))
5236 == TYPE_CODE_FLT
))))
5238 /* A struct that contains one or two floats. Each value is part
5239 in the least significant part of their floating point
5240 register (or GPR, for soft float). */
5243 for (field
= 0, regnum
= (tdep
->mips_fpu_type
!= MIPS_FPU_NONE
5244 ? mips_regnum (gdbarch
)->fp0
5246 field
< TYPE_NFIELDS (type
); field
++, regnum
+= 2)
5248 int offset
= (FIELD_BITPOS (TYPE_FIELDS (type
)[field
])
5251 fprintf_unfiltered (gdb_stderr
, "Return float struct+%d\n",
5253 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type
, field
)) == 16)
5255 /* A 16-byte long double field goes in two consecutive
5257 mips_xfer_register (gdbarch
, regcache
,
5258 gdbarch_num_regs (gdbarch
) + regnum
,
5260 gdbarch_byte_order (gdbarch
),
5261 readbuf
, writebuf
, offset
);
5262 mips_xfer_register (gdbarch
, regcache
,
5263 gdbarch_num_regs (gdbarch
) + regnum
+ 1,
5265 gdbarch_byte_order (gdbarch
),
5266 readbuf
, writebuf
, offset
+ 8);
5269 mips_xfer_register (gdbarch
, regcache
,
5270 gdbarch_num_regs (gdbarch
) + regnum
,
5271 TYPE_LENGTH (TYPE_FIELD_TYPE (type
, field
)),
5272 gdbarch_byte_order (gdbarch
),
5273 readbuf
, writebuf
, offset
);
5275 return RETURN_VALUE_REGISTER_CONVENTION
;
5277 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
5278 || TYPE_CODE (type
) == TYPE_CODE_UNION
5279 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
5281 /* A composite type. Extract the left justified value,
5282 regardless of the byte order. I.e. DO NOT USE
5286 for (offset
= 0, regnum
= MIPS_V0_REGNUM
;
5287 offset
< TYPE_LENGTH (type
);
5288 offset
+= register_size (gdbarch
, regnum
), regnum
++)
5290 int xfer
= register_size (gdbarch
, regnum
);
5291 if (offset
+ xfer
> TYPE_LENGTH (type
))
5292 xfer
= TYPE_LENGTH (type
) - offset
;
5294 fprintf_unfiltered (gdb_stderr
, "Return struct+%d:%d in $%d\n",
5295 offset
, xfer
, regnum
);
5296 mips_xfer_register (gdbarch
, regcache
,
5297 gdbarch_num_regs (gdbarch
) + regnum
,
5298 xfer
, BFD_ENDIAN_UNKNOWN
, readbuf
, writebuf
,
5301 return RETURN_VALUE_REGISTER_CONVENTION
;
5305 /* A scalar extract each part but least-significant-byte
5309 for (offset
= 0, regnum
= MIPS_V0_REGNUM
;
5310 offset
< TYPE_LENGTH (type
);
5311 offset
+= register_size (gdbarch
, regnum
), regnum
++)
5313 int xfer
= register_size (gdbarch
, regnum
);
5314 if (offset
+ xfer
> TYPE_LENGTH (type
))
5315 xfer
= TYPE_LENGTH (type
) - offset
;
5317 fprintf_unfiltered (gdb_stderr
, "Return scalar+%d:%d in $%d\n",
5318 offset
, xfer
, regnum
);
5319 mips_xfer_register (gdbarch
, regcache
,
5320 gdbarch_num_regs (gdbarch
) + regnum
,
5321 xfer
, gdbarch_byte_order (gdbarch
),
5322 readbuf
, writebuf
, offset
);
5324 return RETURN_VALUE_REGISTER_CONVENTION
;
5328 /* Which registers to use for passing floating-point values between
5329 function calls, one of floating-point, general and both kinds of
5330 registers. O32 and O64 use different register kinds for standard
5331 MIPS and MIPS16 code; to make the handling of cases where we may
5332 not know what kind of code is being used (e.g. no debug information)
5333 easier we sometimes use both kinds. */
5342 /* O32 ABI stuff. */
5345 mips_o32_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
5346 struct regcache
*regcache
, CORE_ADDR bp_addr
,
5347 int nargs
, struct value
**args
, CORE_ADDR sp
,
5348 int struct_return
, CORE_ADDR struct_addr
)
5354 int stack_offset
= 0;
5355 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
5356 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
5358 /* For shared libraries, "t9" needs to point at the function
5360 regcache_cooked_write_signed (regcache
, MIPS_T9_REGNUM
, func_addr
);
5362 /* Set the return address register to point to the entry point of
5363 the program, where a breakpoint lies in wait. */
5364 regcache_cooked_write_signed (regcache
, MIPS_RA_REGNUM
, bp_addr
);
5366 /* First ensure that the stack and structure return address (if any)
5367 are properly aligned. The stack has to be at least 64-bit
5368 aligned even on 32-bit machines, because doubles must be 64-bit
5369 aligned. For n32 and n64, stack frames need to be 128-bit
5370 aligned, so we round to this widest known alignment. */
5372 sp
= align_down (sp
, 16);
5373 struct_addr
= align_down (struct_addr
, 16);
5375 /* Now make space on the stack for the args. */
5376 for (argnum
= 0; argnum
< nargs
; argnum
++)
5378 struct type
*arg_type
= check_typedef (value_type (args
[argnum
]));
5380 /* Align to double-word if necessary. */
5381 if (mips_type_needs_double_align (arg_type
))
5382 len
= align_up (len
, MIPS32_REGSIZE
* 2);
5383 /* Allocate space on the stack. */
5384 len
+= align_up (TYPE_LENGTH (arg_type
), MIPS32_REGSIZE
);
5386 sp
-= align_up (len
, 16);
5389 fprintf_unfiltered (gdb_stdlog
,
5390 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5391 paddress (gdbarch
, sp
), (long) align_up (len
, 16));
5393 /* Initialize the integer and float register pointers. */
5394 argreg
= MIPS_A0_REGNUM
;
5395 float_argreg
= mips_fpa0_regnum (gdbarch
);
5397 /* The struct_return pointer occupies the first parameter-passing reg. */
5401 fprintf_unfiltered (gdb_stdlog
,
5402 "mips_o32_push_dummy_call: "
5403 "struct_return reg=%d %s\n",
5404 argreg
, paddress (gdbarch
, struct_addr
));
5405 regcache_cooked_write_unsigned (regcache
, argreg
++, struct_addr
);
5406 stack_offset
+= MIPS32_REGSIZE
;
5409 /* Now load as many as possible of the first arguments into
5410 registers, and push the rest onto the stack. Loop thru args
5411 from first to last. */
5412 for (argnum
= 0; argnum
< nargs
; argnum
++)
5414 const gdb_byte
*val
;
5415 struct value
*arg
= args
[argnum
];
5416 struct type
*arg_type
= check_typedef (value_type (arg
));
5417 int len
= TYPE_LENGTH (arg_type
);
5418 enum type_code typecode
= TYPE_CODE (arg_type
);
5421 fprintf_unfiltered (gdb_stdlog
,
5422 "mips_o32_push_dummy_call: %d len=%d type=%d",
5423 argnum
+ 1, len
, (int) typecode
);
5425 val
= value_contents (arg
);
5427 /* 32-bit ABIs always start floating point arguments in an
5428 even-numbered floating point register. Round the FP register
5429 up before the check to see if there are any FP registers
5430 left. O32 targets also pass the FP in the integer registers
5431 so also round up normal registers. */
5432 if (fp_register_arg_p (gdbarch
, typecode
, arg_type
))
5434 if ((float_argreg
& 1))
5438 /* Floating point arguments passed in registers have to be
5439 treated specially. On 32-bit architectures, doubles are
5440 passed in register pairs; the even FP register gets the
5441 low word, and the odd FP register gets the high word.
5442 On O32, the first two floating point arguments are also
5443 copied to general registers, following their memory order,
5444 because MIPS16 functions don't use float registers for
5445 arguments. This duplication of arguments in general
5446 registers can't hurt non-MIPS16 functions, because those
5447 registers are normally skipped. */
5449 if (fp_register_arg_p (gdbarch
, typecode
, arg_type
)
5450 && float_argreg
<= MIPS_LAST_FP_ARG_REGNUM (gdbarch
))
5452 if (register_size (gdbarch
, float_argreg
) < 8 && len
== 8)
5454 int freg_offset
= gdbarch_byte_order (gdbarch
)
5455 == BFD_ENDIAN_BIG
? 1 : 0;
5456 unsigned long regval
;
5459 regval
= extract_unsigned_integer (val
, 4, byte_order
);
5461 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
5462 float_argreg
+ freg_offset
,
5464 regcache_cooked_write_unsigned (regcache
,
5465 float_argreg
++ + freg_offset
,
5468 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
5469 argreg
, phex (regval
, 4));
5470 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
5473 regval
= extract_unsigned_integer (val
+ 4, 4, byte_order
);
5475 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
5476 float_argreg
- freg_offset
,
5478 regcache_cooked_write_unsigned (regcache
,
5479 float_argreg
++ - freg_offset
,
5482 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
5483 argreg
, phex (regval
, 4));
5484 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
5488 /* This is a floating point value that fits entirely
5489 in a single register. */
5490 /* On 32 bit ABI's the float_argreg is further adjusted
5491 above to ensure that it is even register aligned. */
5492 LONGEST regval
= extract_unsigned_integer (val
, len
, byte_order
);
5494 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
5495 float_argreg
, phex (regval
, len
));
5496 regcache_cooked_write_unsigned (regcache
,
5497 float_argreg
++, regval
);
5498 /* Although two FP registers are reserved for each
5499 argument, only one corresponding integer register is
5502 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
5503 argreg
, phex (regval
, len
));
5504 regcache_cooked_write_unsigned (regcache
, argreg
++, regval
);
5506 /* Reserve space for the FP register. */
5507 stack_offset
+= align_up (len
, MIPS32_REGSIZE
);
5511 /* Copy the argument to general registers or the stack in
5512 register-sized pieces. Large arguments are split between
5513 registers and stack. */
5514 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5515 are treated specially: Irix cc passes
5516 them in registers where gcc sometimes puts them on the
5517 stack. For maximum compatibility, we will put them in
5519 int odd_sized_struct
= (len
> MIPS32_REGSIZE
5520 && len
% MIPS32_REGSIZE
!= 0);
5521 /* Structures should be aligned to eight bytes (even arg registers)
5522 on MIPS_ABI_O32, if their first member has double precision. */
5523 if (mips_type_needs_double_align (arg_type
))
5528 stack_offset
+= MIPS32_REGSIZE
;
5533 int partial_len
= (len
< MIPS32_REGSIZE
? len
: MIPS32_REGSIZE
);
5536 fprintf_unfiltered (gdb_stdlog
, " -- partial=%d",
5539 /* Write this portion of the argument to the stack. */
5540 if (argreg
> MIPS_LAST_ARG_REGNUM (gdbarch
)
5541 || odd_sized_struct
)
5543 /* Should shorter than int integer values be
5544 promoted to int before being stored? */
5545 int longword_offset
= 0;
5550 fprintf_unfiltered (gdb_stdlog
, " - stack_offset=%s",
5551 paddress (gdbarch
, stack_offset
));
5552 fprintf_unfiltered (gdb_stdlog
, " longword_offset=%s",
5553 paddress (gdbarch
, longword_offset
));
5556 addr
= sp
+ stack_offset
+ longword_offset
;
5561 fprintf_unfiltered (gdb_stdlog
, " @%s ",
5562 paddress (gdbarch
, addr
));
5563 for (i
= 0; i
< partial_len
; i
++)
5565 fprintf_unfiltered (gdb_stdlog
, "%02x",
5569 write_memory (addr
, val
, partial_len
);
5572 /* Note!!! This is NOT an else clause. Odd sized
5573 structs may go thru BOTH paths. */
5574 /* Write this portion of the argument to a general
5575 purpose register. */
5576 if (argreg
<= MIPS_LAST_ARG_REGNUM (gdbarch
))
5578 LONGEST regval
= extract_signed_integer (val
, partial_len
,
5580 /* Value may need to be sign extended, because
5581 mips_isa_regsize() != mips_abi_regsize(). */
5583 /* A non-floating-point argument being passed in a
5584 general register. If a struct or union, and if
5585 the remaining length is smaller than the register
5586 size, we have to adjust the register value on
5589 It does not seem to be necessary to do the
5590 same for integral types.
5592 Also don't do this adjustment on O64 binaries.
5594 cagney/2001-07-23: gdb/179: Also, GCC, when
5595 outputting LE O32 with sizeof (struct) <
5596 mips_abi_regsize(), generates a left shift
5597 as part of storing the argument in a register
5598 (the left shift isn't generated when
5599 sizeof (struct) >= mips_abi_regsize()). Since
5600 it is quite possible that this is GCC
5601 contradicting the LE/O32 ABI, GDB has not been
5602 adjusted to accommodate this. Either someone
5603 needs to demonstrate that the LE/O32 ABI
5604 specifies such a left shift OR this new ABI gets
5605 identified as such and GDB gets tweaked
5608 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
5609 && partial_len
< MIPS32_REGSIZE
5610 && (typecode
== TYPE_CODE_STRUCT
5611 || typecode
== TYPE_CODE_UNION
))
5612 regval
<<= ((MIPS32_REGSIZE
- partial_len
)
5616 fprintf_filtered (gdb_stdlog
, " - reg=%d val=%s",
5618 phex (regval
, MIPS32_REGSIZE
));
5619 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
5622 /* Prevent subsequent floating point arguments from
5623 being passed in floating point registers. */
5624 float_argreg
= MIPS_LAST_FP_ARG_REGNUM (gdbarch
) + 1;
5630 /* Compute the offset into the stack at which we will
5631 copy the next parameter.
5633 In older ABIs, the caller reserved space for
5634 registers that contained arguments. This was loosely
5635 refered to as their "home". Consequently, space is
5636 always allocated. */
5638 stack_offset
+= align_up (partial_len
, MIPS32_REGSIZE
);
5642 fprintf_unfiltered (gdb_stdlog
, "\n");
5645 regcache_cooked_write_signed (regcache
, MIPS_SP_REGNUM
, sp
);
5647 /* Return adjusted stack pointer. */
5651 static enum return_value_convention
5652 mips_o32_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
5653 struct type
*type
, struct regcache
*regcache
,
5654 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
5656 CORE_ADDR func_addr
= function
? find_function_addr (function
, NULL
) : 0;
5657 int mips16
= mips_pc_is_mips16 (gdbarch
, func_addr
);
5658 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
5659 enum mips_fval_reg fval_reg
;
5661 fval_reg
= readbuf
? mips16
? mips_fval_gpr
: mips_fval_fpr
: mips_fval_both
;
5662 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
5663 || TYPE_CODE (type
) == TYPE_CODE_UNION
5664 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
5665 return RETURN_VALUE_STRUCT_CONVENTION
;
5666 else if (TYPE_CODE (type
) == TYPE_CODE_FLT
5667 && TYPE_LENGTH (type
) == 4 && tdep
->mips_fpu_type
!= MIPS_FPU_NONE
)
5669 /* A single-precision floating-point value. If reading in or copying,
5670 then we get it from/put it to FP0 for standard MIPS code or GPR2
5671 for MIPS16 code. If writing out only, then we put it to both FP0
5672 and GPR2. We do not support reading in with no function known, if
5673 this safety check ever triggers, then we'll have to try harder. */
5674 gdb_assert (function
|| !readbuf
);
5679 fprintf_unfiltered (gdb_stderr
, "Return float in $fp0\n");
5682 fprintf_unfiltered (gdb_stderr
, "Return float in $2\n");
5684 case mips_fval_both
:
5685 fprintf_unfiltered (gdb_stderr
, "Return float in $fp0 and $2\n");
5688 if (fval_reg
!= mips_fval_gpr
)
5689 mips_xfer_register (gdbarch
, regcache
,
5690 (gdbarch_num_regs (gdbarch
)
5691 + mips_regnum (gdbarch
)->fp0
),
5693 gdbarch_byte_order (gdbarch
),
5694 readbuf
, writebuf
, 0);
5695 if (fval_reg
!= mips_fval_fpr
)
5696 mips_xfer_register (gdbarch
, regcache
,
5697 gdbarch_num_regs (gdbarch
) + 2,
5699 gdbarch_byte_order (gdbarch
),
5700 readbuf
, writebuf
, 0);
5701 return RETURN_VALUE_REGISTER_CONVENTION
;
5703 else if (TYPE_CODE (type
) == TYPE_CODE_FLT
5704 && TYPE_LENGTH (type
) == 8 && tdep
->mips_fpu_type
!= MIPS_FPU_NONE
)
5706 /* A double-precision floating-point value. If reading in or copying,
5707 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5708 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5709 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5710 no function known, if this safety check ever triggers, then we'll
5711 have to try harder. */
5712 gdb_assert (function
|| !readbuf
);
5717 fprintf_unfiltered (gdb_stderr
, "Return float in $fp1/$fp0\n");
5720 fprintf_unfiltered (gdb_stderr
, "Return float in $2/$3\n");
5722 case mips_fval_both
:
5723 fprintf_unfiltered (gdb_stderr
,
5724 "Return float in $fp1/$fp0 and $2/$3\n");
5727 if (fval_reg
!= mips_fval_gpr
)
5729 /* The most significant part goes in FP1, and the least significant
5731 switch (gdbarch_byte_order (gdbarch
))
5733 case BFD_ENDIAN_LITTLE
:
5734 mips_xfer_register (gdbarch
, regcache
,
5735 (gdbarch_num_regs (gdbarch
)
5736 + mips_regnum (gdbarch
)->fp0
+ 0),
5737 4, gdbarch_byte_order (gdbarch
),
5738 readbuf
, writebuf
, 0);
5739 mips_xfer_register (gdbarch
, regcache
,
5740 (gdbarch_num_regs (gdbarch
)
5741 + mips_regnum (gdbarch
)->fp0
+ 1),
5742 4, gdbarch_byte_order (gdbarch
),
5743 readbuf
, writebuf
, 4);
5745 case BFD_ENDIAN_BIG
:
5746 mips_xfer_register (gdbarch
, regcache
,
5747 (gdbarch_num_regs (gdbarch
)
5748 + mips_regnum (gdbarch
)->fp0
+ 1),
5749 4, gdbarch_byte_order (gdbarch
),
5750 readbuf
, writebuf
, 0);
5751 mips_xfer_register (gdbarch
, regcache
,
5752 (gdbarch_num_regs (gdbarch
)
5753 + mips_regnum (gdbarch
)->fp0
+ 0),
5754 4, gdbarch_byte_order (gdbarch
),
5755 readbuf
, writebuf
, 4);
5758 internal_error (__FILE__
, __LINE__
, _("bad switch"));
5761 if (fval_reg
!= mips_fval_fpr
)
5763 /* The two 32-bit parts are always placed in GPR2 and GPR3
5764 following these registers' memory order. */
5765 mips_xfer_register (gdbarch
, regcache
,
5766 gdbarch_num_regs (gdbarch
) + 2,
5767 4, gdbarch_byte_order (gdbarch
),
5768 readbuf
, writebuf
, 0);
5769 mips_xfer_register (gdbarch
, regcache
,
5770 gdbarch_num_regs (gdbarch
) + 3,
5771 4, gdbarch_byte_order (gdbarch
),
5772 readbuf
, writebuf
, 4);
5774 return RETURN_VALUE_REGISTER_CONVENTION
;
5777 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
5778 && TYPE_NFIELDS (type
) <= 2
5779 && TYPE_NFIELDS (type
) >= 1
5780 && ((TYPE_NFIELDS (type
) == 1
5781 && (TYPE_CODE (TYPE_FIELD_TYPE (type
, 0))
5783 || (TYPE_NFIELDS (type
) == 2
5784 && (TYPE_CODE (TYPE_FIELD_TYPE (type
, 0))
5786 && (TYPE_CODE (TYPE_FIELD_TYPE (type
, 1))
5788 && tdep
->mips_fpu_type
!= MIPS_FPU_NONE
)
5790 /* A struct that contains one or two floats. Each value is part
5791 in the least significant part of their floating point
5795 for (field
= 0, regnum
= mips_regnum (gdbarch
)->fp0
;
5796 field
< TYPE_NFIELDS (type
); field
++, regnum
+= 2)
5798 int offset
= (FIELD_BITPOS (TYPE_FIELDS (type
)[field
])
5801 fprintf_unfiltered (gdb_stderr
, "Return float struct+%d\n",
5803 mips_xfer_register (gdbarch
, regcache
,
5804 gdbarch_num_regs (gdbarch
) + regnum
,
5805 TYPE_LENGTH (TYPE_FIELD_TYPE (type
, field
)),
5806 gdbarch_byte_order (gdbarch
),
5807 readbuf
, writebuf
, offset
);
5809 return RETURN_VALUE_REGISTER_CONVENTION
;
5813 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
5814 || TYPE_CODE (type
) == TYPE_CODE_UNION
)
5816 /* A structure or union. Extract the left justified value,
5817 regardless of the byte order. I.e. DO NOT USE
5821 for (offset
= 0, regnum
= MIPS_V0_REGNUM
;
5822 offset
< TYPE_LENGTH (type
);
5823 offset
+= register_size (gdbarch
, regnum
), regnum
++)
5825 int xfer
= register_size (gdbarch
, regnum
);
5826 if (offset
+ xfer
> TYPE_LENGTH (type
))
5827 xfer
= TYPE_LENGTH (type
) - offset
;
5829 fprintf_unfiltered (gdb_stderr
, "Return struct+%d:%d in $%d\n",
5830 offset
, xfer
, regnum
);
5831 mips_xfer_register (gdbarch
, regcache
,
5832 gdbarch_num_regs (gdbarch
) + regnum
, xfer
,
5833 BFD_ENDIAN_UNKNOWN
, readbuf
, writebuf
, offset
);
5835 return RETURN_VALUE_REGISTER_CONVENTION
;
5840 /* A scalar extract each part but least-significant-byte
5841 justified. o32 thinks registers are 4 byte, regardless of
5845 for (offset
= 0, regnum
= MIPS_V0_REGNUM
;
5846 offset
< TYPE_LENGTH (type
);
5847 offset
+= MIPS32_REGSIZE
, regnum
++)
5849 int xfer
= MIPS32_REGSIZE
;
5850 if (offset
+ xfer
> TYPE_LENGTH (type
))
5851 xfer
= TYPE_LENGTH (type
) - offset
;
5853 fprintf_unfiltered (gdb_stderr
, "Return scalar+%d:%d in $%d\n",
5854 offset
, xfer
, regnum
);
5855 mips_xfer_register (gdbarch
, regcache
,
5856 gdbarch_num_regs (gdbarch
) + regnum
, xfer
,
5857 gdbarch_byte_order (gdbarch
),
5858 readbuf
, writebuf
, offset
);
5860 return RETURN_VALUE_REGISTER_CONVENTION
;
5864 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5868 mips_o64_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
5869 struct regcache
*regcache
, CORE_ADDR bp_addr
,
5871 struct value
**args
, CORE_ADDR sp
,
5872 int struct_return
, CORE_ADDR struct_addr
)
5878 int stack_offset
= 0;
5879 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
5880 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
5882 /* For shared libraries, "t9" needs to point at the function
5884 regcache_cooked_write_signed (regcache
, MIPS_T9_REGNUM
, func_addr
);
5886 /* Set the return address register to point to the entry point of
5887 the program, where a breakpoint lies in wait. */
5888 regcache_cooked_write_signed (regcache
, MIPS_RA_REGNUM
, bp_addr
);
5890 /* First ensure that the stack and structure return address (if any)
5891 are properly aligned. The stack has to be at least 64-bit
5892 aligned even on 32-bit machines, because doubles must be 64-bit
5893 aligned. For n32 and n64, stack frames need to be 128-bit
5894 aligned, so we round to this widest known alignment. */
5896 sp
= align_down (sp
, 16);
5897 struct_addr
= align_down (struct_addr
, 16);
5899 /* Now make space on the stack for the args. */
5900 for (argnum
= 0; argnum
< nargs
; argnum
++)
5902 struct type
*arg_type
= check_typedef (value_type (args
[argnum
]));
5904 /* Allocate space on the stack. */
5905 len
+= align_up (TYPE_LENGTH (arg_type
), MIPS64_REGSIZE
);
5907 sp
-= align_up (len
, 16);
5910 fprintf_unfiltered (gdb_stdlog
,
5911 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5912 paddress (gdbarch
, sp
), (long) align_up (len
, 16));
5914 /* Initialize the integer and float register pointers. */
5915 argreg
= MIPS_A0_REGNUM
;
5916 float_argreg
= mips_fpa0_regnum (gdbarch
);
5918 /* The struct_return pointer occupies the first parameter-passing reg. */
5922 fprintf_unfiltered (gdb_stdlog
,
5923 "mips_o64_push_dummy_call: "
5924 "struct_return reg=%d %s\n",
5925 argreg
, paddress (gdbarch
, struct_addr
));
5926 regcache_cooked_write_unsigned (regcache
, argreg
++, struct_addr
);
5927 stack_offset
+= MIPS64_REGSIZE
;
5930 /* Now load as many as possible of the first arguments into
5931 registers, and push the rest onto the stack. Loop thru args
5932 from first to last. */
5933 for (argnum
= 0; argnum
< nargs
; argnum
++)
5935 const gdb_byte
*val
;
5936 struct value
*arg
= args
[argnum
];
5937 struct type
*arg_type
= check_typedef (value_type (arg
));
5938 int len
= TYPE_LENGTH (arg_type
);
5939 enum type_code typecode
= TYPE_CODE (arg_type
);
5942 fprintf_unfiltered (gdb_stdlog
,
5943 "mips_o64_push_dummy_call: %d len=%d type=%d",
5944 argnum
+ 1, len
, (int) typecode
);
5946 val
= value_contents (arg
);
5948 /* Floating point arguments passed in registers have to be
5949 treated specially. On 32-bit architectures, doubles are
5950 passed in register pairs; the even FP register gets the
5951 low word, and the odd FP register gets the high word.
5952 On O64, the first two floating point arguments are also
5953 copied to general registers, because MIPS16 functions
5954 don't use float registers for arguments. This duplication
5955 of arguments in general registers can't hurt non-MIPS16
5956 functions because those registers are normally skipped. */
5958 if (fp_register_arg_p (gdbarch
, typecode
, arg_type
)
5959 && float_argreg
<= MIPS_LAST_FP_ARG_REGNUM (gdbarch
))
5961 LONGEST regval
= extract_unsigned_integer (val
, len
, byte_order
);
5963 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
5964 float_argreg
, phex (regval
, len
));
5965 regcache_cooked_write_unsigned (regcache
, float_argreg
++, regval
);
5967 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
5968 argreg
, phex (regval
, len
));
5969 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
5971 /* Reserve space for the FP register. */
5972 stack_offset
+= align_up (len
, MIPS64_REGSIZE
);
5976 /* Copy the argument to general registers or the stack in
5977 register-sized pieces. Large arguments are split between
5978 registers and stack. */
5979 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5980 are treated specially: Irix cc passes them in registers
5981 where gcc sometimes puts them on the stack. For maximum
5982 compatibility, we will put them in both places. */
5983 int odd_sized_struct
= (len
> MIPS64_REGSIZE
5984 && len
% MIPS64_REGSIZE
!= 0);
5987 int partial_len
= (len
< MIPS64_REGSIZE
? len
: MIPS64_REGSIZE
);
5990 fprintf_unfiltered (gdb_stdlog
, " -- partial=%d",
5993 /* Write this portion of the argument to the stack. */
5994 if (argreg
> MIPS_LAST_ARG_REGNUM (gdbarch
)
5995 || odd_sized_struct
)
5997 /* Should shorter than int integer values be
5998 promoted to int before being stored? */
5999 int longword_offset
= 0;
6001 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
6003 if ((typecode
== TYPE_CODE_INT
6004 || typecode
== TYPE_CODE_PTR
6005 || typecode
== TYPE_CODE_FLT
)
6007 longword_offset
= MIPS64_REGSIZE
- len
;
6012 fprintf_unfiltered (gdb_stdlog
, " - stack_offset=%s",
6013 paddress (gdbarch
, stack_offset
));
6014 fprintf_unfiltered (gdb_stdlog
, " longword_offset=%s",
6015 paddress (gdbarch
, longword_offset
));
6018 addr
= sp
+ stack_offset
+ longword_offset
;
6023 fprintf_unfiltered (gdb_stdlog
, " @%s ",
6024 paddress (gdbarch
, addr
));
6025 for (i
= 0; i
< partial_len
; i
++)
6027 fprintf_unfiltered (gdb_stdlog
, "%02x",
6031 write_memory (addr
, val
, partial_len
);
6034 /* Note!!! This is NOT an else clause. Odd sized
6035 structs may go thru BOTH paths. */
6036 /* Write this portion of the argument to a general
6037 purpose register. */
6038 if (argreg
<= MIPS_LAST_ARG_REGNUM (gdbarch
))
6040 LONGEST regval
= extract_signed_integer (val
, partial_len
,
6042 /* Value may need to be sign extended, because
6043 mips_isa_regsize() != mips_abi_regsize(). */
6045 /* A non-floating-point argument being passed in a
6046 general register. If a struct or union, and if
6047 the remaining length is smaller than the register
6048 size, we have to adjust the register value on
6051 It does not seem to be necessary to do the
6052 same for integral types. */
6054 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
6055 && partial_len
< MIPS64_REGSIZE
6056 && (typecode
== TYPE_CODE_STRUCT
6057 || typecode
== TYPE_CODE_UNION
))
6058 regval
<<= ((MIPS64_REGSIZE
- partial_len
)
6062 fprintf_filtered (gdb_stdlog
, " - reg=%d val=%s",
6064 phex (regval
, MIPS64_REGSIZE
));
6065 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
6068 /* Prevent subsequent floating point arguments from
6069 being passed in floating point registers. */
6070 float_argreg
= MIPS_LAST_FP_ARG_REGNUM (gdbarch
) + 1;
6076 /* Compute the offset into the stack at which we will
6077 copy the next parameter.
6079 In older ABIs, the caller reserved space for
6080 registers that contained arguments. This was loosely
6081 refered to as their "home". Consequently, space is
6082 always allocated. */
6084 stack_offset
+= align_up (partial_len
, MIPS64_REGSIZE
);
6088 fprintf_unfiltered (gdb_stdlog
, "\n");
6091 regcache_cooked_write_signed (regcache
, MIPS_SP_REGNUM
, sp
);
6093 /* Return adjusted stack pointer. */
6097 static enum return_value_convention
6098 mips_o64_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
6099 struct type
*type
, struct regcache
*regcache
,
6100 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
6102 CORE_ADDR func_addr
= function
? find_function_addr (function
, NULL
) : 0;
6103 int mips16
= mips_pc_is_mips16 (gdbarch
, func_addr
);
6104 enum mips_fval_reg fval_reg
;
6106 fval_reg
= readbuf
? mips16
? mips_fval_gpr
: mips_fval_fpr
: mips_fval_both
;
6107 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
6108 || TYPE_CODE (type
) == TYPE_CODE_UNION
6109 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
6110 return RETURN_VALUE_STRUCT_CONVENTION
;
6111 else if (fp_register_arg_p (gdbarch
, TYPE_CODE (type
), type
))
6113 /* A floating-point value. If reading in or copying, then we get it
6114 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6115 If writing out only, then we put it to both FP0 and GPR2. We do
6116 not support reading in with no function known, if this safety
6117 check ever triggers, then we'll have to try harder. */
6118 gdb_assert (function
|| !readbuf
);
6123 fprintf_unfiltered (gdb_stderr
, "Return float in $fp0\n");
6126 fprintf_unfiltered (gdb_stderr
, "Return float in $2\n");
6128 case mips_fval_both
:
6129 fprintf_unfiltered (gdb_stderr
, "Return float in $fp0 and $2\n");
6132 if (fval_reg
!= mips_fval_gpr
)
6133 mips_xfer_register (gdbarch
, regcache
,
6134 (gdbarch_num_regs (gdbarch
)
6135 + mips_regnum (gdbarch
)->fp0
),
6137 gdbarch_byte_order (gdbarch
),
6138 readbuf
, writebuf
, 0);
6139 if (fval_reg
!= mips_fval_fpr
)
6140 mips_xfer_register (gdbarch
, regcache
,
6141 gdbarch_num_regs (gdbarch
) + 2,
6143 gdbarch_byte_order (gdbarch
),
6144 readbuf
, writebuf
, 0);
6145 return RETURN_VALUE_REGISTER_CONVENTION
;
6149 /* A scalar extract each part but least-significant-byte
6153 for (offset
= 0, regnum
= MIPS_V0_REGNUM
;
6154 offset
< TYPE_LENGTH (type
);
6155 offset
+= MIPS64_REGSIZE
, regnum
++)
6157 int xfer
= MIPS64_REGSIZE
;
6158 if (offset
+ xfer
> TYPE_LENGTH (type
))
6159 xfer
= TYPE_LENGTH (type
) - offset
;
6161 fprintf_unfiltered (gdb_stderr
, "Return scalar+%d:%d in $%d\n",
6162 offset
, xfer
, regnum
);
6163 mips_xfer_register (gdbarch
, regcache
,
6164 gdbarch_num_regs (gdbarch
) + regnum
,
6165 xfer
, gdbarch_byte_order (gdbarch
),
6166 readbuf
, writebuf
, offset
);
6168 return RETURN_VALUE_REGISTER_CONVENTION
;
6172 /* Floating point register management.
6174 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6175 64bit operations, these early MIPS cpus treat fp register pairs
6176 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6177 registers and offer a compatibility mode that emulates the MIPS2 fp
6178 model. When operating in MIPS2 fp compat mode, later cpu's split
6179 double precision floats into two 32-bit chunks and store them in
6180 consecutive fp regs. To display 64-bit floats stored in this
6181 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6182 Throw in user-configurable endianness and you have a real mess.
6184 The way this works is:
6185 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6186 double-precision value will be split across two logical registers.
6187 The lower-numbered logical register will hold the low-order bits,
6188 regardless of the processor's endianness.
6189 - If we are on a 64-bit processor, and we are looking for a
6190 single-precision value, it will be in the low ordered bits
6191 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6192 save slot in memory.
6193 - If we are in 64-bit mode, everything is straightforward.
6195 Note that this code only deals with "live" registers at the top of the
6196 stack. We will attempt to deal with saved registers later, when
6197 the raw/cooked register interface is in place. (We need a general
6198 interface that can deal with dynamic saved register sizes -- fp
6199 regs could be 32 bits wide in one frame and 64 on the frame above
6202 /* Copy a 32-bit single-precision value from the current frame
6203 into rare_buffer. */
6206 mips_read_fp_register_single (struct frame_info
*frame
, int regno
,
6207 gdb_byte
*rare_buffer
)
6209 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
6210 int raw_size
= register_size (gdbarch
, regno
);
6211 gdb_byte
*raw_buffer
= (gdb_byte
*) alloca (raw_size
);
6213 if (!deprecated_frame_register_read (frame
, regno
, raw_buffer
))
6214 error (_("can't read register %d (%s)"),
6215 regno
, gdbarch_register_name (gdbarch
, regno
));
6218 /* We have a 64-bit value for this register. Find the low-order
6222 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
6227 memcpy (rare_buffer
, raw_buffer
+ offset
, 4);
6231 memcpy (rare_buffer
, raw_buffer
, 4);
6235 /* Copy a 64-bit double-precision value from the current frame into
6236 rare_buffer. This may include getting half of it from the next
6240 mips_read_fp_register_double (struct frame_info
*frame
, int regno
,
6241 gdb_byte
*rare_buffer
)
6243 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
6244 int raw_size
= register_size (gdbarch
, regno
);
6246 if (raw_size
== 8 && !mips2_fp_compat (frame
))
6248 /* We have a 64-bit value for this register, and we should use
6250 if (!deprecated_frame_register_read (frame
, regno
, rare_buffer
))
6251 error (_("can't read register %d (%s)"),
6252 regno
, gdbarch_register_name (gdbarch
, regno
));
6256 int rawnum
= regno
% gdbarch_num_regs (gdbarch
);
6258 if ((rawnum
- mips_regnum (gdbarch
)->fp0
) & 1)
6259 internal_error (__FILE__
, __LINE__
,
6260 _("mips_read_fp_register_double: bad access to "
6261 "odd-numbered FP register"));
6263 /* mips_read_fp_register_single will find the correct 32 bits from
6265 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
6267 mips_read_fp_register_single (frame
, regno
, rare_buffer
+ 4);
6268 mips_read_fp_register_single (frame
, regno
+ 1, rare_buffer
);
6272 mips_read_fp_register_single (frame
, regno
, rare_buffer
);
6273 mips_read_fp_register_single (frame
, regno
+ 1, rare_buffer
+ 4);
6279 mips_print_fp_register (struct ui_file
*file
, struct frame_info
*frame
,
6281 { /* Do values for FP (float) regs. */
6282 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
6283 gdb_byte
*raw_buffer
;
6284 std::string flt_str
, dbl_str
;
6286 const struct type
*flt_type
= builtin_type (gdbarch
)->builtin_float
;
6287 const struct type
*dbl_type
= builtin_type (gdbarch
)->builtin_double
;
6291 alloca (2 * register_size (gdbarch
, mips_regnum (gdbarch
)->fp0
)));
6293 fprintf_filtered (file
, "%s:", gdbarch_register_name (gdbarch
, regnum
));
6294 fprintf_filtered (file
, "%*s",
6295 4 - (int) strlen (gdbarch_register_name (gdbarch
, regnum
)),
6298 if (register_size (gdbarch
, regnum
) == 4 || mips2_fp_compat (frame
))
6300 struct value_print_options opts
;
6302 /* 4-byte registers: Print hex and floating. Also print even
6303 numbered registers as doubles. */
6304 mips_read_fp_register_single (frame
, regnum
, raw_buffer
);
6305 flt_str
= target_float_to_string (raw_buffer
, flt_type
, "%-17.9g");
6307 get_formatted_print_options (&opts
, 'x');
6308 print_scalar_formatted (raw_buffer
,
6309 builtin_type (gdbarch
)->builtin_uint32
,
6312 fprintf_filtered (file
, " flt: %s", flt_str
.c_str ());
6314 if ((regnum
- gdbarch_num_regs (gdbarch
)) % 2 == 0)
6316 mips_read_fp_register_double (frame
, regnum
, raw_buffer
);
6317 dbl_str
= target_float_to_string (raw_buffer
, dbl_type
, "%-24.17g");
6319 fprintf_filtered (file
, " dbl: %s", dbl_str
.c_str ());
6324 struct value_print_options opts
;
6326 /* Eight byte registers: print each one as hex, float and double. */
6327 mips_read_fp_register_single (frame
, regnum
, raw_buffer
);
6328 flt_str
= target_float_to_string (raw_buffer
, flt_type
, "%-17.9g");
6330 mips_read_fp_register_double (frame
, regnum
, raw_buffer
);
6331 dbl_str
= target_float_to_string (raw_buffer
, dbl_type
, "%-24.17g");
6333 get_formatted_print_options (&opts
, 'x');
6334 print_scalar_formatted (raw_buffer
,
6335 builtin_type (gdbarch
)->builtin_uint64
,
6338 fprintf_filtered (file
, " flt: %s", flt_str
.c_str ());
6339 fprintf_filtered (file
, " dbl: %s", dbl_str
.c_str ());
6344 mips_print_register (struct ui_file
*file
, struct frame_info
*frame
,
6347 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
6348 struct value_print_options opts
;
6351 if (mips_float_register_p (gdbarch
, regnum
))
6353 mips_print_fp_register (file
, frame
, regnum
);
6357 val
= get_frame_register_value (frame
, regnum
);
6359 fputs_filtered (gdbarch_register_name (gdbarch
, regnum
), file
);
6361 /* The problem with printing numeric register names (r26, etc.) is that
6362 the user can't use them on input. Probably the best solution is to
6363 fix it so that either the numeric or the funky (a2, etc.) names
6364 are accepted on input. */
6365 if (regnum
< MIPS_NUMREGS
)
6366 fprintf_filtered (file
, "(r%d): ", regnum
);
6368 fprintf_filtered (file
, ": ");
6370 get_formatted_print_options (&opts
, 'x');
6371 val_print_scalar_formatted (value_type (val
),
6372 value_embedded_offset (val
),
6377 /* Print IEEE exception condition bits in FLAGS. */
6380 print_fpu_flags (struct ui_file
*file
, int flags
)
6382 if (flags
& (1 << 0))
6383 fputs_filtered (" inexact", file
);
6384 if (flags
& (1 << 1))
6385 fputs_filtered (" uflow", file
);
6386 if (flags
& (1 << 2))
6387 fputs_filtered (" oflow", file
);
6388 if (flags
& (1 << 3))
6389 fputs_filtered (" div0", file
);
6390 if (flags
& (1 << 4))
6391 fputs_filtered (" inval", file
);
6392 if (flags
& (1 << 5))
6393 fputs_filtered (" unimp", file
);
6394 fputc_filtered ('\n', file
);
6397 /* Print interesting information about the floating point processor
6398 (if present) or emulator. */
6401 mips_print_float_info (struct gdbarch
*gdbarch
, struct ui_file
*file
,
6402 struct frame_info
*frame
, const char *args
)
6404 int fcsr
= mips_regnum (gdbarch
)->fp_control_status
;
6405 enum mips_fpu_type type
= MIPS_FPU_TYPE (gdbarch
);
6409 if (fcsr
== -1 || !read_frame_register_unsigned (frame
, fcsr
, &fcs
))
6410 type
= MIPS_FPU_NONE
;
6412 fprintf_filtered (file
, "fpu type: %s\n",
6413 type
== MIPS_FPU_DOUBLE
? "double-precision"
6414 : type
== MIPS_FPU_SINGLE
? "single-precision"
6417 if (type
== MIPS_FPU_NONE
)
6420 fprintf_filtered (file
, "reg size: %d bits\n",
6421 register_size (gdbarch
, mips_regnum (gdbarch
)->fp0
) * 8);
6423 fputs_filtered ("cond :", file
);
6424 if (fcs
& (1 << 23))
6425 fputs_filtered (" 0", file
);
6426 for (i
= 1; i
<= 7; i
++)
6427 if (fcs
& (1 << (24 + i
)))
6428 fprintf_filtered (file
, " %d", i
);
6429 fputc_filtered ('\n', file
);
6431 fputs_filtered ("cause :", file
);
6432 print_fpu_flags (file
, (fcs
>> 12) & 0x3f);
6433 fputs ("mask :", stdout
);
6434 print_fpu_flags (file
, (fcs
>> 7) & 0x1f);
6435 fputs ("flags :", stdout
);
6436 print_fpu_flags (file
, (fcs
>> 2) & 0x1f);
6438 fputs_filtered ("rounding: ", file
);
6441 case 0: fputs_filtered ("nearest\n", file
); break;
6442 case 1: fputs_filtered ("zero\n", file
); break;
6443 case 2: fputs_filtered ("+inf\n", file
); break;
6444 case 3: fputs_filtered ("-inf\n", file
); break;
6447 fputs_filtered ("flush :", file
);
6448 if (fcs
& (1 << 21))
6449 fputs_filtered (" nearest", file
);
6450 if (fcs
& (1 << 22))
6451 fputs_filtered (" override", file
);
6452 if (fcs
& (1 << 24))
6453 fputs_filtered (" zero", file
);
6454 if ((fcs
& (0xb << 21)) == 0)
6455 fputs_filtered (" no", file
);
6456 fputc_filtered ('\n', file
);
6458 fprintf_filtered (file
, "nan2008 : %s\n", fcs
& (1 << 18) ? "yes" : "no");
6459 fprintf_filtered (file
, "abs2008 : %s\n", fcs
& (1 << 19) ? "yes" : "no");
6460 fputc_filtered ('\n', file
);
6462 default_print_float_info (gdbarch
, file
, frame
, args
);
6465 /* Replacement for generic do_registers_info.
6466 Print regs in pretty columns. */
6469 print_fp_register_row (struct ui_file
*file
, struct frame_info
*frame
,
6472 fprintf_filtered (file
, " ");
6473 mips_print_fp_register (file
, frame
, regnum
);
6474 fprintf_filtered (file
, "\n");
6479 /* Print a row's worth of GP (int) registers, with name labels above. */
6482 print_gp_register_row (struct ui_file
*file
, struct frame_info
*frame
,
6485 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
6486 /* Do values for GP (int) regs. */
6487 const gdb_byte
*raw_buffer
;
6488 struct value
*value
;
6489 int ncols
= (mips_abi_regsize (gdbarch
) == 8 ? 4 : 8); /* display cols
6494 /* For GP registers, we print a separate row of names above the vals. */
6495 for (col
= 0, regnum
= start_regnum
;
6496 col
< ncols
&& regnum
< gdbarch_num_regs (gdbarch
)
6497 + gdbarch_num_pseudo_regs (gdbarch
);
6500 if (*gdbarch_register_name (gdbarch
, regnum
) == '\0')
6501 continue; /* unused register */
6502 if (mips_float_register_p (gdbarch
, regnum
))
6503 break; /* End the row: reached FP register. */
6504 /* Large registers are handled separately. */
6505 if (register_size (gdbarch
, regnum
) > mips_abi_regsize (gdbarch
))
6508 break; /* End the row before this register. */
6510 /* Print this register on a row by itself. */
6511 mips_print_register (file
, frame
, regnum
);
6512 fprintf_filtered (file
, "\n");
6516 fprintf_filtered (file
, " ");
6517 fprintf_filtered (file
,
6518 mips_abi_regsize (gdbarch
) == 8 ? "%17s" : "%9s",
6519 gdbarch_register_name (gdbarch
, regnum
));
6526 /* Print the R0 to R31 names. */
6527 if ((start_regnum
% gdbarch_num_regs (gdbarch
)) < MIPS_NUMREGS
)
6528 fprintf_filtered (file
, "\n R%-4d",
6529 start_regnum
% gdbarch_num_regs (gdbarch
));
6531 fprintf_filtered (file
, "\n ");
6533 /* Now print the values in hex, 4 or 8 to the row. */
6534 for (col
= 0, regnum
= start_regnum
;
6535 col
< ncols
&& regnum
< gdbarch_num_regs (gdbarch
)
6536 + gdbarch_num_pseudo_regs (gdbarch
);
6539 if (*gdbarch_register_name (gdbarch
, regnum
) == '\0')
6540 continue; /* unused register */
6541 if (mips_float_register_p (gdbarch
, regnum
))
6542 break; /* End row: reached FP register. */
6543 if (register_size (gdbarch
, regnum
) > mips_abi_regsize (gdbarch
))
6544 break; /* End row: large register. */
6546 /* OK: get the data in raw format. */
6547 value
= get_frame_register_value (frame
, regnum
);
6548 if (value_optimized_out (value
)
6549 || !value_entirely_available (value
))
6551 fprintf_filtered (file
, "%*s ",
6552 (int) mips_abi_regsize (gdbarch
) * 2,
6553 (mips_abi_regsize (gdbarch
) == 4 ? "<unavl>"
6554 : "<unavailable>"));
6558 raw_buffer
= value_contents_all (value
);
6559 /* pad small registers */
6561 byte
< (mips_abi_regsize (gdbarch
)
6562 - register_size (gdbarch
, regnum
)); byte
++)
6563 fprintf_filtered (file
, " ");
6564 /* Now print the register value in hex, endian order. */
6565 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
6567 register_size (gdbarch
, regnum
) - register_size (gdbarch
, regnum
);
6568 byte
< register_size (gdbarch
, regnum
); byte
++)
6569 fprintf_filtered (file
, "%02x", raw_buffer
[byte
]);
6571 for (byte
= register_size (gdbarch
, regnum
) - 1;
6573 fprintf_filtered (file
, "%02x", raw_buffer
[byte
]);
6574 fprintf_filtered (file
, " ");
6577 if (col
> 0) /* ie. if we actually printed anything... */
6578 fprintf_filtered (file
, "\n");
6583 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6586 mips_print_registers_info (struct gdbarch
*gdbarch
, struct ui_file
*file
,
6587 struct frame_info
*frame
, int regnum
, int all
)
6589 if (regnum
!= -1) /* Do one specified register. */
6591 gdb_assert (regnum
>= gdbarch_num_regs (gdbarch
));
6592 if (*(gdbarch_register_name (gdbarch
, regnum
)) == '\0')
6593 error (_("Not a valid register for the current processor type"));
6595 mips_print_register (file
, frame
, regnum
);
6596 fprintf_filtered (file
, "\n");
6599 /* Do all (or most) registers. */
6601 regnum
= gdbarch_num_regs (gdbarch
);
6602 while (regnum
< gdbarch_num_regs (gdbarch
)
6603 + gdbarch_num_pseudo_regs (gdbarch
))
6605 if (mips_float_register_p (gdbarch
, regnum
))
6607 if (all
) /* True for "INFO ALL-REGISTERS" command. */
6608 regnum
= print_fp_register_row (file
, frame
, regnum
);
6610 regnum
+= MIPS_NUMREGS
; /* Skip floating point regs. */
6613 regnum
= print_gp_register_row (file
, frame
, regnum
);
6619 mips_single_step_through_delay (struct gdbarch
*gdbarch
,
6620 struct frame_info
*frame
)
6622 CORE_ADDR pc
= get_frame_pc (frame
);
6627 if ((mips_pc_is_mips (pc
)
6628 && !mips32_insn_at_pc_has_delay_slot (gdbarch
, pc
))
6629 || (mips_pc_is_micromips (gdbarch
, pc
)
6630 && !micromips_insn_at_pc_has_delay_slot (gdbarch
, pc
, 0))
6631 || (mips_pc_is_mips16 (gdbarch
, pc
)
6632 && !mips16_insn_at_pc_has_delay_slot (gdbarch
, pc
, 0)))
6635 isa
= mips_pc_isa (gdbarch
, pc
);
6636 /* _has_delay_slot above will have validated the read. */
6637 insn
= mips_fetch_instruction (gdbarch
, isa
, pc
, NULL
);
6638 size
= mips_insn_size (isa
, insn
);
6640 const address_space
*aspace
= get_frame_address_space (frame
);
6642 return breakpoint_here_p (aspace
, pc
+ size
) != no_breakpoint_here
;
6645 /* To skip prologues, I use this predicate. Returns either PC itself
6646 if the code at PC does not look like a function prologue; otherwise
6647 returns an address that (if we're lucky) follows the prologue. If
6648 LENIENT, then we must skip everything which is involved in setting
6649 up the frame (it's OK to skip more, just so long as we don't skip
6650 anything which might clobber the registers which are being saved.
6651 We must skip more in the case where part of the prologue is in the
6652 delay slot of a non-prologue instruction). */
6655 mips_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
6658 CORE_ADDR func_addr
;
6660 /* See if we can determine the end of the prologue via the symbol table.
6661 If so, then return either PC, or the PC after the prologue, whichever
6663 if (find_pc_partial_function (pc
, NULL
, &func_addr
, NULL
))
6665 CORE_ADDR post_prologue_pc
6666 = skip_prologue_using_sal (gdbarch
, func_addr
);
6667 if (post_prologue_pc
!= 0)
6668 return std::max (pc
, post_prologue_pc
);
6671 /* Can't determine prologue from the symbol table, need to examine
6674 /* Find an upper limit on the function prologue using the debug
6675 information. If the debug information could not be used to provide
6676 that bound, then use an arbitrary large number as the upper bound. */
6677 limit_pc
= skip_prologue_using_sal (gdbarch
, pc
);
6679 limit_pc
= pc
+ 100; /* Magic. */
6681 if (mips_pc_is_mips16 (gdbarch
, pc
))
6682 return mips16_scan_prologue (gdbarch
, pc
, limit_pc
, NULL
, NULL
);
6683 else if (mips_pc_is_micromips (gdbarch
, pc
))
6684 return micromips_scan_prologue (gdbarch
, pc
, limit_pc
, NULL
, NULL
);
6686 return mips32_scan_prologue (gdbarch
, pc
, limit_pc
, NULL
, NULL
);
6689 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6690 This is a helper function for mips_stack_frame_destroyed_p. */
6693 mips32_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
6695 CORE_ADDR func_addr
= 0, func_end
= 0;
6697 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
6699 /* The MIPS epilogue is max. 12 bytes long. */
6700 CORE_ADDR addr
= func_end
- 12;
6702 if (addr
< func_addr
+ 4)
6703 addr
= func_addr
+ 4;
6707 for (; pc
< func_end
; pc
+= MIPS_INSN32_SIZE
)
6709 unsigned long high_word
;
6712 inst
= mips_fetch_instruction (gdbarch
, ISA_MIPS
, pc
, NULL
);
6713 high_word
= (inst
>> 16) & 0xffff;
6715 if (high_word
!= 0x27bd /* addiu $sp,$sp,offset */
6716 && high_word
!= 0x67bd /* daddiu $sp,$sp,offset */
6717 && inst
!= 0x03e00008 /* jr $ra */
6718 && inst
!= 0x00000000) /* nop */
6728 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6729 This is a helper function for mips_stack_frame_destroyed_p. */
6732 micromips_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
6734 CORE_ADDR func_addr
= 0;
6735 CORE_ADDR func_end
= 0;
6743 if (!find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
6746 /* The microMIPS epilogue is max. 12 bytes long. */
6747 addr
= func_end
- 12;
6749 if (addr
< func_addr
+ 2)
6750 addr
= func_addr
+ 2;
6754 for (; pc
< func_end
; pc
+= loc
)
6757 insn
= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
, pc
, NULL
);
6758 loc
+= MIPS_INSN16_SIZE
;
6759 switch (mips_insn_size (ISA_MICROMIPS
, insn
))
6761 /* 32-bit instructions. */
6762 case 2 * MIPS_INSN16_SIZE
:
6764 insn
|= mips_fetch_instruction (gdbarch
,
6765 ISA_MICROMIPS
, pc
+ loc
, NULL
);
6766 loc
+= MIPS_INSN16_SIZE
;
6767 switch (micromips_op (insn
>> 16))
6769 case 0xc: /* ADDIU: bits 001100 */
6770 case 0x17: /* DADDIU: bits 010111 */
6771 sreg
= b0s5_reg (insn
>> 16);
6772 dreg
= b5s5_reg (insn
>> 16);
6773 offset
= (b0s16_imm (insn
) ^ 0x8000) - 0x8000;
6774 if (sreg
== MIPS_SP_REGNUM
&& dreg
== MIPS_SP_REGNUM
6775 /* (D)ADDIU $sp, imm */
6785 /* 16-bit instructions. */
6786 case MIPS_INSN16_SIZE
:
6787 switch (micromips_op (insn
))
6789 case 0x3: /* MOVE: bits 000011 */
6790 sreg
= b0s5_reg (insn
);
6791 dreg
= b5s5_reg (insn
);
6792 if (sreg
== 0 && dreg
== 0)
6793 /* MOVE $zero, $zero aka NOP */
6797 case 0x11: /* POOL16C: bits 010001 */
6798 if (b5s5_op (insn
) == 0x18
6799 /* JRADDIUSP: bits 010011 11000 */
6800 || (b5s5_op (insn
) == 0xd
6801 /* JRC: bits 010011 01101 */
6802 && b0s5_reg (insn
) == MIPS_RA_REGNUM
))
6807 case 0x13: /* POOL16D: bits 010011 */
6808 offset
= micromips_decode_imm9 (b1s9_imm (insn
));
6809 if ((insn
& 0x1) == 0x1
6810 /* ADDIUSP: bits 010011 1 */
6824 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6825 This is a helper function for mips_stack_frame_destroyed_p. */
6828 mips16_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
6830 CORE_ADDR func_addr
= 0, func_end
= 0;
6832 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
6834 /* The MIPS epilogue is max. 12 bytes long. */
6835 CORE_ADDR addr
= func_end
- 12;
6837 if (addr
< func_addr
+ 4)
6838 addr
= func_addr
+ 4;
6842 for (; pc
< func_end
; pc
+= MIPS_INSN16_SIZE
)
6844 unsigned short inst
;
6846 inst
= mips_fetch_instruction (gdbarch
, ISA_MIPS16
, pc
, NULL
);
6848 if ((inst
& 0xf800) == 0xf000) /* extend */
6851 if (inst
!= 0x6300 /* addiu $sp,offset */
6852 && inst
!= 0xfb00 /* daddiu $sp,$sp,offset */
6853 && inst
!= 0xe820 /* jr $ra */
6854 && inst
!= 0xe8a0 /* jrc $ra */
6855 && inst
!= 0x6500) /* nop */
6865 /* Implement the stack_frame_destroyed_p gdbarch method.
6867 The epilogue is defined here as the area at the end of a function,
6868 after an instruction which destroys the function's stack frame. */
6871 mips_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
6873 if (mips_pc_is_mips16 (gdbarch
, pc
))
6874 return mips16_stack_frame_destroyed_p (gdbarch
, pc
);
6875 else if (mips_pc_is_micromips (gdbarch
, pc
))
6876 return micromips_stack_frame_destroyed_p (gdbarch
, pc
);
6878 return mips32_stack_frame_destroyed_p (gdbarch
, pc
);
6881 /* Root of all "set mips "/"show mips " commands. This will eventually be
6882 used for all MIPS-specific commands. */
6885 show_mips_command (const char *args
, int from_tty
)
6887 help_list (showmipscmdlist
, "show mips ", all_commands
, gdb_stdout
);
6891 set_mips_command (const char *args
, int from_tty
)
6894 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6895 help_list (setmipscmdlist
, "set mips ", all_commands
, gdb_stdout
);
6898 /* Commands to show/set the MIPS FPU type. */
6901 show_mipsfpu_command (const char *args
, int from_tty
)
6905 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch
!= bfd_arch_mips
)
6908 ("The MIPS floating-point coprocessor is unknown "
6909 "because the current architecture is not MIPS.\n");
6913 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6915 case MIPS_FPU_SINGLE
:
6916 fpu
= "single-precision";
6918 case MIPS_FPU_DOUBLE
:
6919 fpu
= "double-precision";
6922 fpu
= "absent (none)";
6925 internal_error (__FILE__
, __LINE__
, _("bad switch"));
6927 if (mips_fpu_type_auto
)
6928 printf_unfiltered ("The MIPS floating-point coprocessor "
6929 "is set automatically (currently %s)\n",
6933 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu
);
6938 set_mipsfpu_command (const char *args
, int from_tty
)
6940 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6941 "\"single\",\"none\" or \"auto\".\n");
6942 show_mipsfpu_command (args
, from_tty
);
6946 set_mipsfpu_single_command (const char *args
, int from_tty
)
6948 struct gdbarch_info info
;
6949 gdbarch_info_init (&info
);
6950 mips_fpu_type
= MIPS_FPU_SINGLE
;
6951 mips_fpu_type_auto
= 0;
6952 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6953 instead of relying on globals. Doing that would let generic code
6954 handle the search for this specific architecture. */
6955 if (!gdbarch_update_p (info
))
6956 internal_error (__FILE__
, __LINE__
, _("set mipsfpu failed"));
6960 set_mipsfpu_double_command (const char *args
, int from_tty
)
6962 struct gdbarch_info info
;
6963 gdbarch_info_init (&info
);
6964 mips_fpu_type
= MIPS_FPU_DOUBLE
;
6965 mips_fpu_type_auto
= 0;
6966 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6967 instead of relying on globals. Doing that would let generic code
6968 handle the search for this specific architecture. */
6969 if (!gdbarch_update_p (info
))
6970 internal_error (__FILE__
, __LINE__
, _("set mipsfpu failed"));
6974 set_mipsfpu_none_command (const char *args
, int from_tty
)
6976 struct gdbarch_info info
;
6977 gdbarch_info_init (&info
);
6978 mips_fpu_type
= MIPS_FPU_NONE
;
6979 mips_fpu_type_auto
= 0;
6980 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6981 instead of relying on globals. Doing that would let generic code
6982 handle the search for this specific architecture. */
6983 if (!gdbarch_update_p (info
))
6984 internal_error (__FILE__
, __LINE__
, _("set mipsfpu failed"));
6988 set_mipsfpu_auto_command (const char *args
, int from_tty
)
6990 mips_fpu_type_auto
= 1;
6993 /* Just like reinit_frame_cache, but with the right arguments to be
6994 callable as an sfunc. */
6997 reinit_frame_cache_sfunc (const char *args
, int from_tty
,
6998 struct cmd_list_element
*c
)
7000 reinit_frame_cache ();
7004 gdb_print_insn_mips (bfd_vma memaddr
, struct disassemble_info
*info
)
7006 gdb_disassembler
*di
7007 = static_cast<gdb_disassembler
*>(info
->application_data
);
7008 struct gdbarch
*gdbarch
= di
->arch ();
7010 /* FIXME: cagney/2003-06-26: Is this even necessary? The
7011 disassembler needs to be able to locally determine the ISA, and
7012 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
7014 if (mips_pc_is_mips16 (gdbarch
, memaddr
))
7015 info
->mach
= bfd_mach_mips16
;
7016 else if (mips_pc_is_micromips (gdbarch
, memaddr
))
7017 info
->mach
= bfd_mach_mips_micromips
;
7019 /* Round down the instruction address to the appropriate boundary. */
7020 memaddr
&= (info
->mach
== bfd_mach_mips16
7021 || info
->mach
== bfd_mach_mips_micromips
) ? ~1 : ~3;
7023 return default_print_insn (memaddr
, info
);
7026 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7029 mips_breakpoint_kind_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pcptr
)
7031 CORE_ADDR pc
= *pcptr
;
7033 if (mips_pc_is_mips16 (gdbarch
, pc
))
7035 *pcptr
= unmake_compact_addr (pc
);
7036 return MIPS_BP_KIND_MIPS16
;
7038 else if (mips_pc_is_micromips (gdbarch
, pc
))
7043 *pcptr
= unmake_compact_addr (pc
);
7044 insn
= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
, pc
, &status
);
7045 if (status
|| (mips_insn_size (ISA_MICROMIPS
, insn
) == 2))
7046 return MIPS_BP_KIND_MICROMIPS16
;
7048 return MIPS_BP_KIND_MICROMIPS32
;
7051 return MIPS_BP_KIND_MIPS32
;
7054 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7056 static const gdb_byte
*
7057 mips_sw_breakpoint_from_kind (struct gdbarch
*gdbarch
, int kind
, int *size
)
7059 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
7063 case MIPS_BP_KIND_MIPS16
:
7065 static gdb_byte mips16_big_breakpoint
[] = { 0xe8, 0xa5 };
7066 static gdb_byte mips16_little_breakpoint
[] = { 0xa5, 0xe8 };
7069 if (byte_order_for_code
== BFD_ENDIAN_BIG
)
7070 return mips16_big_breakpoint
;
7072 return mips16_little_breakpoint
;
7074 case MIPS_BP_KIND_MICROMIPS16
:
7076 static gdb_byte micromips16_big_breakpoint
[] = { 0x46, 0x85 };
7077 static gdb_byte micromips16_little_breakpoint
[] = { 0x85, 0x46 };
7081 if (byte_order_for_code
== BFD_ENDIAN_BIG
)
7082 return micromips16_big_breakpoint
;
7084 return micromips16_little_breakpoint
;
7086 case MIPS_BP_KIND_MICROMIPS32
:
7088 static gdb_byte micromips32_big_breakpoint
[] = { 0, 0x5, 0, 0x7 };
7089 static gdb_byte micromips32_little_breakpoint
[] = { 0x5, 0, 0x7, 0 };
7092 if (byte_order_for_code
== BFD_ENDIAN_BIG
)
7093 return micromips32_big_breakpoint
;
7095 return micromips32_little_breakpoint
;
7097 case MIPS_BP_KIND_MIPS32
:
7099 static gdb_byte big_breakpoint
[] = { 0, 0x5, 0, 0xd };
7100 static gdb_byte little_breakpoint
[] = { 0xd, 0, 0x5, 0 };
7103 if (byte_order_for_code
== BFD_ENDIAN_BIG
)
7104 return big_breakpoint
;
7106 return little_breakpoint
;
7109 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7113 /* Return non-zero if the standard MIPS instruction INST has a branch
7114 delay slot (i.e. it is a jump or branch instruction). This function
7115 is based on mips32_next_pc. */
7118 mips32_instruction_has_delay_slot (struct gdbarch
*gdbarch
, ULONGEST inst
)
7124 op
= itype_op (inst
);
7125 if ((inst
& 0xe0000000) != 0)
7127 rs
= itype_rs (inst
);
7128 rt
= itype_rt (inst
);
7129 return (is_octeon_bbit_op (op
, gdbarch
)
7130 || op
>> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7131 || op
== 29 /* JALX: bits 011101 */
7134 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7135 || (rs
== 9 && (rt
& 0x2) == 0)
7136 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7137 || (rs
== 10 && (rt
& 0x2) == 0))));
7138 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7141 switch (op
& 0x07) /* extract bits 28,27,26 */
7143 case 0: /* SPECIAL */
7144 op
= rtype_funct (inst
);
7145 return (op
== 8 /* JR */
7146 || op
== 9); /* JALR */
7147 break; /* end SPECIAL */
7148 case 1: /* REGIMM */
7149 rs
= itype_rs (inst
);
7150 rt
= itype_rt (inst
); /* branch condition */
7151 return ((rt
& 0xc) == 0
7152 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7153 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7154 || ((rt
& 0x1e) == 0x1c && rs
== 0));
7155 /* BPOSGE32, BPOSGE64: bits 1110x */
7156 break; /* end REGIMM */
7157 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7163 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7164 delay slot (i.e. it is a jump or branch instruction). */
7167 mips32_insn_at_pc_has_delay_slot (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
7172 insn
= mips_fetch_instruction (gdbarch
, ISA_MIPS
, addr
, &status
);
7176 return mips32_instruction_has_delay_slot (gdbarch
, insn
);
7179 /* Return non-zero if the microMIPS instruction INSN, comprising the
7180 16-bit major opcode word in the high 16 bits and any second word
7181 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7182 jump or branch instruction). The instruction must be 32-bit if
7183 MUSTBE32 is set or can be any instruction otherwise. */
7186 micromips_instruction_has_delay_slot (ULONGEST insn
, int mustbe32
)
7188 ULONGEST major
= insn
>> 16;
7190 switch (micromips_op (major
))
7192 /* 16-bit instructions. */
7193 case 0x33: /* B16: bits 110011 */
7194 case 0x2b: /* BNEZ16: bits 101011 */
7195 case 0x23: /* BEQZ16: bits 100011 */
7197 case 0x11: /* POOL16C: bits 010001 */
7199 && ((b5s5_op (major
) == 0xc
7200 /* JR16: bits 010001 01100 */
7201 || (b5s5_op (major
) & 0x1e) == 0xe)));
7202 /* JALR16, JALRS16: bits 010001 0111x */
7203 /* 32-bit instructions. */
7204 case 0x3d: /* JAL: bits 111101 */
7205 case 0x3c: /* JALX: bits 111100 */
7206 case 0x35: /* J: bits 110101 */
7207 case 0x2d: /* BNE: bits 101101 */
7208 case 0x25: /* BEQ: bits 100101 */
7209 case 0x1d: /* JALS: bits 011101 */
7211 case 0x10: /* POOL32I: bits 010000 */
7212 return ((b5s5_op (major
) & 0x1c) == 0x0
7213 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7214 || (b5s5_op (major
) & 0x1d) == 0x4
7215 /* BLEZ, BGTZ: bits 010000 001x0 */
7216 || (b5s5_op (major
) & 0x1d) == 0x11
7217 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7218 || ((b5s5_op (major
) & 0x1e) == 0x14
7219 && (major
& 0x3) == 0x0)
7220 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7221 || (b5s5_op (major
) & 0x1e) == 0x1a
7222 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7223 || ((b5s5_op (major
) & 0x1e) == 0x1c
7224 && (major
& 0x3) == 0x0)
7225 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7226 || ((b5s5_op (major
) & 0x1c) == 0x1c
7227 && (major
& 0x3) == 0x1));
7228 /* BC1ANY*: bits 010000 111xx xxx01 */
7229 case 0x0: /* POOL32A: bits 000000 */
7230 return (b0s6_op (insn
) == 0x3c
7231 /* POOL32Axf: bits 000000 ... 111100 */
7232 && (b6s10_ext (insn
) & 0x2bf) == 0x3c);
7233 /* JALR, JALR.HB: 000000 000x111100 111100 */
7234 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7240 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7241 slot (i.e. it is a non-compact jump instruction). The instruction
7242 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7245 micromips_insn_at_pc_has_delay_slot (struct gdbarch
*gdbarch
,
7246 CORE_ADDR addr
, int mustbe32
)
7252 insn
= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
, addr
, &status
);
7255 size
= mips_insn_size (ISA_MICROMIPS
, insn
);
7257 if (size
== 2 * MIPS_INSN16_SIZE
)
7259 insn
|= mips_fetch_instruction (gdbarch
, ISA_MICROMIPS
, addr
, &status
);
7264 return micromips_instruction_has_delay_slot (insn
, mustbe32
);
7267 /* Return non-zero if the MIPS16 instruction INST, which must be
7268 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7269 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7270 instruction). This function is based on mips16_next_pc. */
7273 mips16_instruction_has_delay_slot (unsigned short inst
, int mustbe32
)
7275 if ((inst
& 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7277 return (inst
& 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7280 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7281 slot (i.e. it is a non-compact jump instruction). The instruction
7282 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7285 mips16_insn_at_pc_has_delay_slot (struct gdbarch
*gdbarch
,
7286 CORE_ADDR addr
, int mustbe32
)
7288 unsigned short insn
;
7291 insn
= mips_fetch_instruction (gdbarch
, ISA_MIPS16
, addr
, &status
);
7295 return mips16_instruction_has_delay_slot (insn
, mustbe32
);
7298 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7299 This assumes KSSEG exists. */
7302 mips_segment_boundary (CORE_ADDR bpaddr
)
7304 CORE_ADDR mask
= CORE_ADDR_MAX
;
7307 if (sizeof (CORE_ADDR
) == 8)
7308 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7309 a compiler warning produced where CORE_ADDR is a 32-bit type even
7310 though in that case this is dead code). */
7311 switch (bpaddr
>> ((sizeof (CORE_ADDR
) << 3) - 2) & 3)
7314 if (bpaddr
== (bfd_signed_vma
) (int32_t) bpaddr
)
7315 segsize
= 29; /* 32-bit compatibility segment */
7317 segsize
= 62; /* xkseg */
7319 case 2: /* xkphys */
7322 default: /* xksseg (1), xkuseg/kuseg (0) */
7326 else if (bpaddr
& 0x80000000) /* kernel segment */
7329 segsize
= 31; /* user segment */
7331 return bpaddr
& mask
;
7334 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7335 it backwards if necessary. Return the address of the new location. */
7338 mips_adjust_breakpoint_address (struct gdbarch
*gdbarch
, CORE_ADDR bpaddr
)
7340 CORE_ADDR prev_addr
;
7342 CORE_ADDR func_addr
;
7344 /* If a breakpoint is set on the instruction in a branch delay slot,
7345 GDB gets confused. When the breakpoint is hit, the PC isn't on
7346 the instruction in the branch delay slot, the PC will point to
7347 the branch instruction. Since the PC doesn't match any known
7348 breakpoints, GDB reports a trap exception.
7350 There are two possible fixes for this problem.
7352 1) When the breakpoint gets hit, see if the BD bit is set in the
7353 Cause register (which indicates the last exception occurred in a
7354 branch delay slot). If the BD bit is set, fix the PC to point to
7355 the instruction in the branch delay slot.
7357 2) When the user sets the breakpoint, don't allow him to set the
7358 breakpoint on the instruction in the branch delay slot. Instead
7359 move the breakpoint to the branch instruction (which will have
7362 The problem with the first solution is that if the user then
7363 single-steps the processor, the branch instruction will get
7364 skipped (since GDB thinks the PC is on the instruction in the
7367 So, we'll use the second solution. To do this we need to know if
7368 the instruction we're trying to set the breakpoint on is in the
7369 branch delay slot. */
7371 boundary
= mips_segment_boundary (bpaddr
);
7373 /* Make sure we don't scan back before the beginning of the current
7374 function, since we may fetch constant data or insns that look like
7375 a jump. Of course we might do that anyway if the compiler has
7376 moved constants inline. :-( */
7377 if (find_pc_partial_function (bpaddr
, NULL
, &func_addr
, NULL
)
7378 && func_addr
> boundary
&& func_addr
<= bpaddr
)
7379 boundary
= func_addr
;
7381 if (mips_pc_is_mips (bpaddr
))
7383 if (bpaddr
== boundary
)
7386 /* If the previous instruction has a branch delay slot, we have
7387 to move the breakpoint to the branch instruction. */
7388 prev_addr
= bpaddr
- 4;
7389 if (mips32_insn_at_pc_has_delay_slot (gdbarch
, prev_addr
))
7394 int (*insn_at_pc_has_delay_slot
) (struct gdbarch
*, CORE_ADDR
, int);
7395 CORE_ADDR addr
, jmpaddr
;
7398 boundary
= unmake_compact_addr (boundary
);
7400 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7401 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7402 so try for that first, then try the 2 byte JALR/JR.
7403 The microMIPS ASE has a whole range of jumps and branches
7404 with delay slots, some of which take 4 bytes and some take
7405 2 bytes, so the idea is the same.
7406 FIXME: We have to assume that bpaddr is not the second half
7407 of an extended instruction. */
7408 insn_at_pc_has_delay_slot
= (mips_pc_is_micromips (gdbarch
, bpaddr
)
7409 ? micromips_insn_at_pc_has_delay_slot
7410 : mips16_insn_at_pc_has_delay_slot
);
7414 for (i
= 1; i
< 4; i
++)
7416 if (unmake_compact_addr (addr
) == boundary
)
7418 addr
-= MIPS_INSN16_SIZE
;
7419 if (i
== 1 && insn_at_pc_has_delay_slot (gdbarch
, addr
, 0))
7420 /* Looks like a JR/JALR at [target-1], but it could be
7421 the second word of a previous JAL/JALX, so record it
7422 and check back one more. */
7424 else if (i
> 1 && insn_at_pc_has_delay_slot (gdbarch
, addr
, 1))
7427 /* Looks like a JAL/JALX at [target-2], but it could also
7428 be the second word of a previous JAL/JALX, record it,
7429 and check back one more. */
7432 /* Looks like a JAL/JALX at [target-3], so any previously
7433 recorded JAL/JALX or JR/JALR must be wrong, because:
7436 -2: JAL-ext (can't be JAL/JALX)
7437 -1: bdslot (can't be JR/JALR)
7440 Of course it could be another JAL-ext which looks
7441 like a JAL, but in that case we'd have broken out
7442 of this loop at [target-2]:
7446 -2: bdslot (can't be jmp)
7453 /* Not a jump instruction: if we're at [target-1] this
7454 could be the second word of a JAL/JALX, so continue;
7455 otherwise we're done. */
7468 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7469 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7472 mips_is_stub_suffix (const char *suffix
, int zero
)
7477 return zero
&& suffix
[1] == '\0';
7479 return suffix
[1] == '\0' || (suffix
[1] == '0' && suffix
[2] == '\0');
7484 return suffix
[1] == '\0';
7490 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7491 call stubs, one of sf, df, sc, or dc. */
7494 mips_is_stub_mode (const char *mode
)
7496 return ((mode
[0] == 's' || mode
[0] == 'd')
7497 && (mode
[1] == 'f' || mode
[1] == 'c'));
7500 /* Code at PC is a compiler-generated stub. Such a stub for a function
7501 bar might have a name like __fn_stub_bar, and might look like this:
7508 followed by (or interspersed with):
7515 addiu $25, $25, %lo(bar)
7518 ($1 may be used in old code; for robustness we accept any register)
7521 lui $28, %hi(_gp_disp)
7522 addiu $28, $28, %lo(_gp_disp)
7525 addiu $25, $25, %lo(bar)
7528 In the case of a __call_stub_bar stub, the sequence to set up
7529 arguments might look like this:
7536 followed by (or interspersed with) one of the jump sequences above.
7538 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7539 of J or JR, respectively, followed by:
7545 We are at the beginning of the stub here, and scan down and extract
7546 the target address from the jump immediate instruction or, if a jump
7547 register instruction is used, from the register referred. Return
7548 the value of PC calculated or 0 if inconclusive.
7550 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7553 mips_get_mips16_fn_stub_pc (struct frame_info
*frame
, CORE_ADDR pc
)
7555 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
7556 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
7557 int addrreg
= MIPS_ZERO_REGNUM
;
7558 CORE_ADDR start_pc
= pc
;
7559 CORE_ADDR target_pc
= 0;
7566 status
== 0 && target_pc
== 0 && i
< 20;
7567 i
++, pc
+= MIPS_INSN32_SIZE
)
7569 ULONGEST inst
= mips_fetch_instruction (gdbarch
, ISA_MIPS
, pc
, NULL
);
7575 switch (itype_op (inst
))
7577 case 0: /* SPECIAL */
7578 switch (rtype_funct (inst
))
7582 rs
= rtype_rs (inst
);
7583 if (rs
== MIPS_GP_REGNUM
)
7584 target_pc
= gp
; /* Hmm... */
7585 else if (rs
== addrreg
)
7589 case 0x21: /* ADDU */
7590 rt
= rtype_rt (inst
);
7591 rs
= rtype_rs (inst
);
7592 rd
= rtype_rd (inst
);
7593 if (rd
== MIPS_GP_REGNUM
7594 && ((rs
== MIPS_GP_REGNUM
&& rt
== MIPS_T9_REGNUM
)
7595 || (rs
== MIPS_T9_REGNUM
&& rt
== MIPS_GP_REGNUM
)))
7603 target_pc
= jtype_target (inst
) << 2;
7604 target_pc
+= ((pc
+ 4) & ~(CORE_ADDR
) 0x0fffffff);
7608 rt
= itype_rt (inst
);
7609 rs
= itype_rs (inst
);
7612 imm
= (itype_immediate (inst
) ^ 0x8000) - 0x8000;
7613 if (rt
== MIPS_GP_REGNUM
)
7615 else if (rt
== addrreg
)
7621 rt
= itype_rt (inst
);
7622 imm
= ((itype_immediate (inst
) ^ 0x8000) - 0x8000) << 16;
7623 if (rt
== MIPS_GP_REGNUM
)
7625 else if (rt
!= MIPS_ZERO_REGNUM
)
7633 rt
= itype_rt (inst
);
7634 rs
= itype_rs (inst
);
7635 imm
= (itype_immediate (inst
) ^ 0x8000) - 0x8000;
7636 if (gp
!= 0 && rs
== MIPS_GP_REGNUM
)
7640 memset (buf
, 0, sizeof (buf
));
7641 status
= target_read_memory (gp
+ imm
, buf
, sizeof (buf
));
7643 addr
= extract_signed_integer (buf
, sizeof (buf
), byte_order
);
7652 /* If PC is in a MIPS16 call or return stub, return the address of the
7653 target PC, which is either the callee or the caller. There are several
7654 cases which must be handled:
7656 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7657 and the target PC is in $31 ($ra).
7658 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7659 and the target PC is in $2.
7660 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7661 i.e. before the JALR instruction, this is effectively a call stub
7662 and the target PC is in $2. Otherwise this is effectively
7663 a return stub and the target PC is in $18.
7664 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7665 JAL or JALR instruction, this is effectively a call stub and the
7666 target PC is buried in the instruction stream. Otherwise this
7667 is effectively a return stub and the target PC is in $18.
7668 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7669 stub and the target PC is buried in the instruction stream.
7671 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7672 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7676 mips_skip_mips16_trampoline_code (struct frame_info
*frame
, CORE_ADDR pc
)
7678 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
7679 CORE_ADDR start_addr
;
7683 /* Find the starting address and name of the function containing the PC. */
7684 if (find_pc_partial_function (pc
, &name
, &start_addr
, NULL
) == 0)
7687 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7688 and the target PC is in $31 ($ra). */
7689 prefixlen
= strlen (mips_str_mips16_ret_stub
);
7690 if (strncmp (name
, mips_str_mips16_ret_stub
, prefixlen
) == 0
7691 && mips_is_stub_mode (name
+ prefixlen
)
7692 && name
[prefixlen
+ 2] == '\0')
7693 return get_frame_register_signed
7694 (frame
, gdbarch_num_regs (gdbarch
) + MIPS_RA_REGNUM
);
7696 /* If the PC is in __mips16_call_stub_*, this is one of the call
7697 call/return stubs. */
7698 prefixlen
= strlen (mips_str_mips16_call_stub
);
7699 if (strncmp (name
, mips_str_mips16_call_stub
, prefixlen
) == 0)
7701 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7702 and the target PC is in $2. */
7703 if (mips_is_stub_suffix (name
+ prefixlen
, 0))
7704 return get_frame_register_signed
7705 (frame
, gdbarch_num_regs (gdbarch
) + MIPS_V0_REGNUM
);
7707 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7708 i.e. before the JALR instruction, this is effectively a call stub
7709 and the target PC is in $2. Otherwise this is effectively
7710 a return stub and the target PC is in $18. */
7711 else if (mips_is_stub_mode (name
+ prefixlen
)
7712 && name
[prefixlen
+ 2] == '_'
7713 && mips_is_stub_suffix (name
+ prefixlen
+ 3, 0))
7715 if (pc
== start_addr
)
7716 /* This is the 'call' part of a call stub. The return
7717 address is in $2. */
7718 return get_frame_register_signed
7719 (frame
, gdbarch_num_regs (gdbarch
) + MIPS_V0_REGNUM
);
7721 /* This is the 'return' part of a call stub. The return
7722 address is in $18. */
7723 return get_frame_register_signed
7724 (frame
, gdbarch_num_regs (gdbarch
) + MIPS_S2_REGNUM
);
7727 return 0; /* Not a stub. */
7730 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7731 compiler-generated call or call/return stubs. */
7732 if (startswith (name
, mips_str_fn_stub
)
7733 || startswith (name
, mips_str_call_stub
))
7735 if (pc
== start_addr
)
7736 /* This is the 'call' part of a call stub. Call this helper
7737 to scan through this code for interesting instructions
7738 and determine the final PC. */
7739 return mips_get_mips16_fn_stub_pc (frame
, pc
);
7741 /* This is the 'return' part of a call stub. The return address
7743 return get_frame_register_signed
7744 (frame
, gdbarch_num_regs (gdbarch
) + MIPS_S2_REGNUM
);
7747 return 0; /* Not a stub. */
7750 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7751 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7754 mips_in_return_stub (struct gdbarch
*gdbarch
, CORE_ADDR pc
, const char *name
)
7756 CORE_ADDR start_addr
;
7759 /* Find the starting address of the function containing the PC. */
7760 if (find_pc_partial_function (pc
, NULL
, &start_addr
, NULL
) == 0)
7763 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7764 the start, i.e. after the JALR instruction, this is effectively
7766 prefixlen
= strlen (mips_str_mips16_call_stub
);
7767 if (pc
!= start_addr
7768 && strncmp (name
, mips_str_mips16_call_stub
, prefixlen
) == 0
7769 && mips_is_stub_mode (name
+ prefixlen
)
7770 && name
[prefixlen
+ 2] == '_'
7771 && mips_is_stub_suffix (name
+ prefixlen
+ 3, 1))
7774 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7775 the JAL or JALR instruction, this is effectively a return stub. */
7776 prefixlen
= strlen (mips_str_call_fp_stub
);
7777 if (pc
!= start_addr
7778 && strncmp (name
, mips_str_call_fp_stub
, prefixlen
) == 0)
7781 /* Consume the .pic. prefix of any PIC stub, this function must return
7782 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7783 or the call stub path will trigger in handle_inferior_event causing
7785 prefixlen
= strlen (mips_str_pic
);
7786 if (strncmp (name
, mips_str_pic
, prefixlen
) == 0)
7789 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7790 prefixlen
= strlen (mips_str_mips16_ret_stub
);
7791 if (strncmp (name
, mips_str_mips16_ret_stub
, prefixlen
) == 0
7792 && mips_is_stub_mode (name
+ prefixlen
)
7793 && name
[prefixlen
+ 2] == '\0')
7796 return 0; /* Not a stub. */
7799 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7800 PC of the stub target. The stub just loads $t9 and jumps to it,
7801 so that $t9 has the correct value at function entry. */
7804 mips_skip_pic_trampoline_code (struct frame_info
*frame
, CORE_ADDR pc
)
7806 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
7807 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
7808 struct bound_minimal_symbol msym
;
7810 gdb_byte stub_code
[16];
7811 int32_t stub_words
[4];
7813 /* The stub for foo is named ".pic.foo", and is either two
7814 instructions inserted before foo or a three instruction sequence
7815 which jumps to foo. */
7816 msym
= lookup_minimal_symbol_by_pc (pc
);
7817 if (msym
.minsym
== NULL
7818 || BMSYMBOL_VALUE_ADDRESS (msym
) != pc
7819 || MSYMBOL_LINKAGE_NAME (msym
.minsym
) == NULL
7820 || !startswith (MSYMBOL_LINKAGE_NAME (msym
.minsym
), ".pic."))
7823 /* A two-instruction header. */
7824 if (MSYMBOL_SIZE (msym
.minsym
) == 8)
7827 /* A three-instruction (plus delay slot) trampoline. */
7828 if (MSYMBOL_SIZE (msym
.minsym
) == 16)
7830 if (target_read_memory (pc
, stub_code
, 16) != 0)
7832 for (i
= 0; i
< 4; i
++)
7833 stub_words
[i
] = extract_unsigned_integer (stub_code
+ i
* 4,
7836 /* A stub contains these instructions:
7839 addiu t9, t9, %lo(target)
7842 This works even for N64, since stubs are only generated with
7844 if ((stub_words
[0] & 0xffff0000U
) == 0x3c190000
7845 && (stub_words
[1] & 0xfc000000U
) == 0x08000000
7846 && (stub_words
[2] & 0xffff0000U
) == 0x27390000
7847 && stub_words
[3] == 0x00000000)
7848 return ((((stub_words
[0] & 0x0000ffff) << 16)
7849 + (stub_words
[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7852 /* Not a recognized stub. */
7857 mips_skip_trampoline_code (struct frame_info
*frame
, CORE_ADDR pc
)
7859 CORE_ADDR requested_pc
= pc
;
7860 CORE_ADDR target_pc
;
7867 new_pc
= mips_skip_mips16_trampoline_code (frame
, pc
);
7871 new_pc
= find_solib_trampoline_target (frame
, pc
);
7875 new_pc
= mips_skip_pic_trampoline_code (frame
, pc
);
7879 while (pc
!= target_pc
);
7881 return pc
!= requested_pc
? pc
: 0;
7884 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7885 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7888 mips_stab_reg_to_regnum (struct gdbarch
*gdbarch
, int num
)
7891 if (num
>= 0 && num
< 32)
7893 else if (num
>= 38 && num
< 70)
7894 regnum
= num
+ mips_regnum (gdbarch
)->fp0
- 38;
7896 regnum
= mips_regnum (gdbarch
)->hi
;
7898 regnum
= mips_regnum (gdbarch
)->lo
;
7899 else if (mips_regnum (gdbarch
)->dspacc
!= -1 && num
>= 72 && num
< 78)
7900 regnum
= num
+ mips_regnum (gdbarch
)->dspacc
- 72;
7903 return gdbarch_num_regs (gdbarch
) + regnum
;
7907 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7908 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7911 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch
*gdbarch
, int num
)
7914 if (num
>= 0 && num
< 32)
7916 else if (num
>= 32 && num
< 64)
7917 regnum
= num
+ mips_regnum (gdbarch
)->fp0
- 32;
7919 regnum
= mips_regnum (gdbarch
)->hi
;
7921 regnum
= mips_regnum (gdbarch
)->lo
;
7922 else if (mips_regnum (gdbarch
)->dspacc
!= -1 && num
>= 66 && num
< 72)
7923 regnum
= num
+ mips_regnum (gdbarch
)->dspacc
- 66;
7926 return gdbarch_num_regs (gdbarch
) + regnum
;
7930 mips_register_sim_regno (struct gdbarch
*gdbarch
, int regnum
)
7932 /* Only makes sense to supply raw registers. */
7933 gdb_assert (regnum
>= 0 && regnum
< gdbarch_num_regs (gdbarch
));
7934 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7935 decide if it is valid. Should instead define a standard sim/gdb
7936 register numbering scheme. */
7937 if (gdbarch_register_name (gdbarch
,
7938 gdbarch_num_regs (gdbarch
) + regnum
) != NULL
7939 && gdbarch_register_name (gdbarch
,
7940 gdbarch_num_regs (gdbarch
)
7941 + regnum
)[0] != '\0')
7944 return LEGACY_SIM_REGNO_IGNORE
;
7948 /* Convert an integer into an address. Extracting the value signed
7949 guarantees a correctly sign extended address. */
7952 mips_integer_to_address (struct gdbarch
*gdbarch
,
7953 struct type
*type
, const gdb_byte
*buf
)
7955 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
7956 return extract_signed_integer (buf
, TYPE_LENGTH (type
), byte_order
);
7959 /* Dummy virtual frame pointer method. This is no more or less accurate
7960 than most other architectures; we just need to be explicit about it,
7961 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7962 an assertion failure. */
7965 mips_virtual_frame_pointer (struct gdbarch
*gdbarch
,
7966 CORE_ADDR pc
, int *reg
, LONGEST
*offset
)
7968 *reg
= MIPS_SP_REGNUM
;
7973 mips_find_abi_section (bfd
*abfd
, asection
*sect
, void *obj
)
7975 enum mips_abi
*abip
= (enum mips_abi
*) obj
;
7976 const char *name
= bfd_get_section_name (abfd
, sect
);
7978 if (*abip
!= MIPS_ABI_UNKNOWN
)
7981 if (!startswith (name
, ".mdebug."))
7984 if (strcmp (name
, ".mdebug.abi32") == 0)
7985 *abip
= MIPS_ABI_O32
;
7986 else if (strcmp (name
, ".mdebug.abiN32") == 0)
7987 *abip
= MIPS_ABI_N32
;
7988 else if (strcmp (name
, ".mdebug.abi64") == 0)
7989 *abip
= MIPS_ABI_N64
;
7990 else if (strcmp (name
, ".mdebug.abiO64") == 0)
7991 *abip
= MIPS_ABI_O64
;
7992 else if (strcmp (name
, ".mdebug.eabi32") == 0)
7993 *abip
= MIPS_ABI_EABI32
;
7994 else if (strcmp (name
, ".mdebug.eabi64") == 0)
7995 *abip
= MIPS_ABI_EABI64
;
7997 warning (_("unsupported ABI %s."), name
+ 8);
8001 mips_find_long_section (bfd
*abfd
, asection
*sect
, void *obj
)
8003 int *lbp
= (int *) obj
;
8004 const char *name
= bfd_get_section_name (abfd
, sect
);
8006 if (startswith (name
, ".gcc_compiled_long32"))
8008 else if (startswith (name
, ".gcc_compiled_long64"))
8010 else if (startswith (name
, ".gcc_compiled_long"))
8011 warning (_("unrecognized .gcc_compiled_longXX"));
8014 static enum mips_abi
8015 global_mips_abi (void)
8019 for (i
= 0; mips_abi_strings
[i
] != NULL
; i
++)
8020 if (mips_abi_strings
[i
] == mips_abi_string
)
8021 return (enum mips_abi
) i
;
8023 internal_error (__FILE__
, __LINE__
, _("unknown ABI string"));
8026 /* Return the default compressed instruction set, either of MIPS16
8027 or microMIPS, selected when none could have been determined from
8028 the ELF header of the binary being executed (or no binary has been
8031 static enum mips_isa
8032 global_mips_compression (void)
8036 for (i
= 0; mips_compression_strings
[i
] != NULL
; i
++)
8037 if (mips_compression_strings
[i
] == mips_compression_string
)
8038 return (enum mips_isa
) i
;
8040 internal_error (__FILE__
, __LINE__
, _("unknown compressed ISA string"));
8044 mips_register_g_packet_guesses (struct gdbarch
*gdbarch
)
8046 /* If the size matches the set of 32-bit or 64-bit integer registers,
8047 assume that's what we've got. */
8048 register_remote_g_packet_guess (gdbarch
, 38 * 4, mips_tdesc_gp32
);
8049 register_remote_g_packet_guess (gdbarch
, 38 * 8, mips_tdesc_gp64
);
8051 /* If the size matches the full set of registers GDB traditionally
8052 knows about, including floating point, for either 32-bit or
8053 64-bit, assume that's what we've got. */
8054 register_remote_g_packet_guess (gdbarch
, 90 * 4, mips_tdesc_gp32
);
8055 register_remote_g_packet_guess (gdbarch
, 90 * 8, mips_tdesc_gp64
);
8057 /* Otherwise we don't have a useful guess. */
8060 static struct value
*
8061 value_of_mips_user_reg (struct frame_info
*frame
, const void *baton
)
8063 const int *reg_p
= (const int *) baton
;
8064 return value_of_register (*reg_p
, frame
);
8067 static struct gdbarch
*
8068 mips_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
8070 struct gdbarch
*gdbarch
;
8071 struct gdbarch_tdep
*tdep
;
8073 enum mips_abi mips_abi
, found_abi
, wanted_abi
;
8075 enum mips_fpu_type fpu_type
;
8076 struct tdesc_arch_data
*tdesc_data
= NULL
;
8077 int elf_fpu_type
= Val_GNU_MIPS_ABI_FP_ANY
;
8078 const char **reg_names
;
8079 struct mips_regnum mips_regnum
, *regnum
;
8080 enum mips_isa mips_isa
;
8084 /* First of all, extract the elf_flags, if available. */
8085 if (info
.abfd
&& bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
)
8086 elf_flags
= elf_elfheader (info
.abfd
)->e_flags
;
8087 else if (arches
!= NULL
)
8088 elf_flags
= gdbarch_tdep (arches
->gdbarch
)->elf_flags
;
8092 fprintf_unfiltered (gdb_stdlog
,
8093 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags
);
8095 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8096 switch ((elf_flags
& EF_MIPS_ABI
))
8098 case E_MIPS_ABI_O32
:
8099 found_abi
= MIPS_ABI_O32
;
8101 case E_MIPS_ABI_O64
:
8102 found_abi
= MIPS_ABI_O64
;
8104 case E_MIPS_ABI_EABI32
:
8105 found_abi
= MIPS_ABI_EABI32
;
8107 case E_MIPS_ABI_EABI64
:
8108 found_abi
= MIPS_ABI_EABI64
;
8111 if ((elf_flags
& EF_MIPS_ABI2
))
8112 found_abi
= MIPS_ABI_N32
;
8114 found_abi
= MIPS_ABI_UNKNOWN
;
8118 /* GCC creates a pseudo-section whose name describes the ABI. */
8119 if (found_abi
== MIPS_ABI_UNKNOWN
&& info
.abfd
!= NULL
)
8120 bfd_map_over_sections (info
.abfd
, mips_find_abi_section
, &found_abi
);
8122 /* If we have no useful BFD information, use the ABI from the last
8123 MIPS architecture (if there is one). */
8124 if (found_abi
== MIPS_ABI_UNKNOWN
&& info
.abfd
== NULL
&& arches
!= NULL
)
8125 found_abi
= gdbarch_tdep (arches
->gdbarch
)->found_abi
;
8127 /* Try the architecture for any hint of the correct ABI. */
8128 if (found_abi
== MIPS_ABI_UNKNOWN
8129 && info
.bfd_arch_info
!= NULL
8130 && info
.bfd_arch_info
->arch
== bfd_arch_mips
)
8132 switch (info
.bfd_arch_info
->mach
)
8134 case bfd_mach_mips3900
:
8135 found_abi
= MIPS_ABI_EABI32
;
8137 case bfd_mach_mips4100
:
8138 case bfd_mach_mips5000
:
8139 found_abi
= MIPS_ABI_EABI64
;
8141 case bfd_mach_mips8000
:
8142 case bfd_mach_mips10000
:
8143 /* On Irix, ELF64 executables use the N64 ABI. The
8144 pseudo-sections which describe the ABI aren't present
8145 on IRIX. (Even for executables created by gcc.) */
8146 if (info
.abfd
!= NULL
8147 && bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
8148 && elf_elfheader (info
.abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
8149 found_abi
= MIPS_ABI_N64
;
8151 found_abi
= MIPS_ABI_N32
;
8156 /* Default 64-bit objects to N64 instead of O32. */
8157 if (found_abi
== MIPS_ABI_UNKNOWN
8158 && info
.abfd
!= NULL
8159 && bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
8160 && elf_elfheader (info
.abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
8161 found_abi
= MIPS_ABI_N64
;
8164 fprintf_unfiltered (gdb_stdlog
, "mips_gdbarch_init: found_abi = %d\n",
8167 /* What has the user specified from the command line? */
8168 wanted_abi
= global_mips_abi ();
8170 fprintf_unfiltered (gdb_stdlog
, "mips_gdbarch_init: wanted_abi = %d\n",
8173 /* Now that we have found what the ABI for this binary would be,
8174 check whether the user is overriding it. */
8175 if (wanted_abi
!= MIPS_ABI_UNKNOWN
)
8176 mips_abi
= wanted_abi
;
8177 else if (found_abi
!= MIPS_ABI_UNKNOWN
)
8178 mips_abi
= found_abi
;
8180 mips_abi
= MIPS_ABI_O32
;
8182 fprintf_unfiltered (gdb_stdlog
, "mips_gdbarch_init: mips_abi = %d\n",
8185 /* Make sure we don't use a 32-bit architecture with a 64-bit ABI. */
8186 if (mips_abi
!= MIPS_ABI_EABI32
8187 && mips_abi
!= MIPS_ABI_O32
8188 && info
.bfd_arch_info
!= NULL
8189 && info
.bfd_arch_info
->arch
== bfd_arch_mips
8190 && info
.bfd_arch_info
->bits_per_word
< 64)
8191 info
.bfd_arch_info
= bfd_lookup_arch (bfd_arch_mips
, bfd_mach_mips4000
);
8193 /* Determine the default compressed ISA. */
8194 if ((elf_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
) != 0
8195 && (elf_flags
& EF_MIPS_ARCH_ASE_M16
) == 0)
8196 mips_isa
= ISA_MICROMIPS
;
8197 else if ((elf_flags
& EF_MIPS_ARCH_ASE_M16
) != 0
8198 && (elf_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
) == 0)
8199 mips_isa
= ISA_MIPS16
;
8201 mips_isa
= global_mips_compression ();
8202 mips_compression_string
= mips_compression_strings
[mips_isa
];
8204 /* Also used when doing an architecture lookup. */
8206 fprintf_unfiltered (gdb_stdlog
,
8207 "mips_gdbarch_init: "
8208 "mips64_transfers_32bit_regs_p = %d\n",
8209 mips64_transfers_32bit_regs_p
);
8211 /* Determine the MIPS FPU type. */
8214 && bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
)
8215 elf_fpu_type
= bfd_elf_get_obj_attr_int (info
.abfd
, OBJ_ATTR_GNU
,
8216 Tag_GNU_MIPS_ABI_FP
);
8217 #endif /* HAVE_ELF */
8219 if (!mips_fpu_type_auto
)
8220 fpu_type
= mips_fpu_type
;
8221 else if (elf_fpu_type
!= Val_GNU_MIPS_ABI_FP_ANY
)
8223 switch (elf_fpu_type
)
8225 case Val_GNU_MIPS_ABI_FP_DOUBLE
:
8226 fpu_type
= MIPS_FPU_DOUBLE
;
8228 case Val_GNU_MIPS_ABI_FP_SINGLE
:
8229 fpu_type
= MIPS_FPU_SINGLE
;
8231 case Val_GNU_MIPS_ABI_FP_SOFT
:
8233 /* Soft float or unknown. */
8234 fpu_type
= MIPS_FPU_NONE
;
8238 else if (info
.bfd_arch_info
!= NULL
8239 && info
.bfd_arch_info
->arch
== bfd_arch_mips
)
8240 switch (info
.bfd_arch_info
->mach
)
8242 case bfd_mach_mips3900
:
8243 case bfd_mach_mips4100
:
8244 case bfd_mach_mips4111
:
8245 case bfd_mach_mips4120
:
8246 fpu_type
= MIPS_FPU_NONE
;
8248 case bfd_mach_mips4650
:
8249 fpu_type
= MIPS_FPU_SINGLE
;
8252 fpu_type
= MIPS_FPU_DOUBLE
;
8255 else if (arches
!= NULL
)
8256 fpu_type
= MIPS_FPU_TYPE (arches
->gdbarch
);
8258 fpu_type
= MIPS_FPU_DOUBLE
;
8260 fprintf_unfiltered (gdb_stdlog
,
8261 "mips_gdbarch_init: fpu_type = %d\n", fpu_type
);
8263 /* Check for blatant incompatibilities. */
8265 /* If we have only 32-bit registers, then we can't debug a 64-bit
8267 if (info
.target_desc
8268 && tdesc_property (info
.target_desc
, PROPERTY_GP32
) != NULL
8269 && mips_abi
!= MIPS_ABI_EABI32
8270 && mips_abi
!= MIPS_ABI_O32
)
8273 /* Fill in the OS dependent register numbers and names. */
8274 if (info
.osabi
== GDB_OSABI_LINUX
)
8276 mips_regnum
.fp0
= 38;
8277 mips_regnum
.pc
= 37;
8278 mips_regnum
.cause
= 36;
8279 mips_regnum
.badvaddr
= 35;
8280 mips_regnum
.hi
= 34;
8281 mips_regnum
.lo
= 33;
8282 mips_regnum
.fp_control_status
= 70;
8283 mips_regnum
.fp_implementation_revision
= 71;
8284 mips_regnum
.dspacc
= -1;
8285 mips_regnum
.dspctl
= -1;
8289 reg_names
= mips_linux_reg_names
;
8293 mips_regnum
.lo
= MIPS_EMBED_LO_REGNUM
;
8294 mips_regnum
.hi
= MIPS_EMBED_HI_REGNUM
;
8295 mips_regnum
.badvaddr
= MIPS_EMBED_BADVADDR_REGNUM
;
8296 mips_regnum
.cause
= MIPS_EMBED_CAUSE_REGNUM
;
8297 mips_regnum
.pc
= MIPS_EMBED_PC_REGNUM
;
8298 mips_regnum
.fp0
= MIPS_EMBED_FP0_REGNUM
;
8299 mips_regnum
.fp_control_status
= 70;
8300 mips_regnum
.fp_implementation_revision
= 71;
8301 mips_regnum
.dspacc
= dspacc
= -1;
8302 mips_regnum
.dspctl
= dspctl
= -1;
8303 num_regs
= MIPS_LAST_EMBED_REGNUM
+ 1;
8304 if (info
.bfd_arch_info
!= NULL
8305 && info
.bfd_arch_info
->mach
== bfd_mach_mips3900
)
8306 reg_names
= mips_tx39_reg_names
;
8308 reg_names
= mips_generic_reg_names
;
8311 /* Check any target description for validity. */
8312 if (tdesc_has_registers (info
.target_desc
))
8314 static const char *const mips_gprs
[] = {
8315 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8316 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8317 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8318 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8320 static const char *const mips_fprs
[] = {
8321 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8322 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8323 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8324 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8327 const struct tdesc_feature
*feature
;
8330 feature
= tdesc_find_feature (info
.target_desc
,
8331 "org.gnu.gdb.mips.cpu");
8332 if (feature
== NULL
)
8335 tdesc_data
= tdesc_data_alloc ();
8338 for (i
= MIPS_ZERO_REGNUM
; i
<= MIPS_RA_REGNUM
; i
++)
8339 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
, i
,
8343 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8344 mips_regnum
.lo
, "lo");
8345 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8346 mips_regnum
.hi
, "hi");
8347 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8348 mips_regnum
.pc
, "pc");
8352 tdesc_data_cleanup (tdesc_data
);
8356 feature
= tdesc_find_feature (info
.target_desc
,
8357 "org.gnu.gdb.mips.cp0");
8358 if (feature
== NULL
)
8360 tdesc_data_cleanup (tdesc_data
);
8365 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8366 mips_regnum
.badvaddr
, "badvaddr");
8367 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8368 MIPS_PS_REGNUM
, "status");
8369 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8370 mips_regnum
.cause
, "cause");
8374 tdesc_data_cleanup (tdesc_data
);
8378 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8379 backend is not prepared for that, though. */
8380 feature
= tdesc_find_feature (info
.target_desc
,
8381 "org.gnu.gdb.mips.fpu");
8382 if (feature
== NULL
)
8384 tdesc_data_cleanup (tdesc_data
);
8389 for (i
= 0; i
< 32; i
++)
8390 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8391 i
+ mips_regnum
.fp0
, mips_fprs
[i
]);
8393 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8394 mips_regnum
.fp_control_status
,
8397 &= tdesc_numbered_register (feature
, tdesc_data
,
8398 mips_regnum
.fp_implementation_revision
,
8403 tdesc_data_cleanup (tdesc_data
);
8407 num_regs
= mips_regnum
.fp_implementation_revision
+ 1;
8411 feature
= tdesc_find_feature (info
.target_desc
,
8412 "org.gnu.gdb.mips.dsp");
8413 /* The DSP registers are optional; it's OK if they are absent. */
8414 if (feature
!= NULL
)
8418 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8419 dspacc
+ i
++, "hi1");
8420 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8421 dspacc
+ i
++, "lo1");
8422 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8423 dspacc
+ i
++, "hi2");
8424 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8425 dspacc
+ i
++, "lo2");
8426 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8427 dspacc
+ i
++, "hi3");
8428 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8429 dspacc
+ i
++, "lo3");
8431 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
8436 tdesc_data_cleanup (tdesc_data
);
8440 mips_regnum
.dspacc
= dspacc
;
8441 mips_regnum
.dspctl
= dspctl
;
8443 num_regs
= mips_regnum
.dspctl
+ 1;
8447 /* It would be nice to detect an attempt to use a 64-bit ABI
8448 when only 32-bit registers are provided. */
8452 /* Try to find a pre-existing architecture. */
8453 for (arches
= gdbarch_list_lookup_by_info (arches
, &info
);
8455 arches
= gdbarch_list_lookup_by_info (arches
->next
, &info
))
8457 /* MIPS needs to be pedantic about which ABI and the compressed
8458 ISA variation the object is using. */
8459 if (gdbarch_tdep (arches
->gdbarch
)->elf_flags
!= elf_flags
)
8461 if (gdbarch_tdep (arches
->gdbarch
)->mips_abi
!= mips_abi
)
8463 if (gdbarch_tdep (arches
->gdbarch
)->mips_isa
!= mips_isa
)
8465 /* Need to be pedantic about which register virtual size is
8467 if (gdbarch_tdep (arches
->gdbarch
)->mips64_transfers_32bit_regs_p
8468 != mips64_transfers_32bit_regs_p
)
8470 /* Be pedantic about which FPU is selected. */
8471 if (MIPS_FPU_TYPE (arches
->gdbarch
) != fpu_type
)
8474 if (tdesc_data
!= NULL
)
8475 tdesc_data_cleanup (tdesc_data
);
8476 return arches
->gdbarch
;
8479 /* Need a new architecture. Fill in a target specific vector. */
8480 tdep
= XCNEW (struct gdbarch_tdep
);
8481 gdbarch
= gdbarch_alloc (&info
, tdep
);
8482 tdep
->elf_flags
= elf_flags
;
8483 tdep
->mips64_transfers_32bit_regs_p
= mips64_transfers_32bit_regs_p
;
8484 tdep
->found_abi
= found_abi
;
8485 tdep
->mips_abi
= mips_abi
;
8486 tdep
->mips_isa
= mips_isa
;
8487 tdep
->mips_fpu_type
= fpu_type
;
8488 tdep
->register_size_valid_p
= 0;
8489 tdep
->register_size
= 0;
8491 if (info
.target_desc
)
8493 /* Some useful properties can be inferred from the target. */
8494 if (tdesc_property (info
.target_desc
, PROPERTY_GP32
) != NULL
)
8496 tdep
->register_size_valid_p
= 1;
8497 tdep
->register_size
= 4;
8499 else if (tdesc_property (info
.target_desc
, PROPERTY_GP64
) != NULL
)
8501 tdep
->register_size_valid_p
= 1;
8502 tdep
->register_size
= 8;
8506 /* Initially set everything according to the default ABI/ISA. */
8507 set_gdbarch_short_bit (gdbarch
, 16);
8508 set_gdbarch_int_bit (gdbarch
, 32);
8509 set_gdbarch_float_bit (gdbarch
, 32);
8510 set_gdbarch_double_bit (gdbarch
, 64);
8511 set_gdbarch_long_double_bit (gdbarch
, 64);
8512 set_gdbarch_register_reggroup_p (gdbarch
, mips_register_reggroup_p
);
8513 set_gdbarch_pseudo_register_read (gdbarch
, mips_pseudo_register_read
);
8514 set_gdbarch_pseudo_register_write (gdbarch
, mips_pseudo_register_write
);
8516 set_gdbarch_ax_pseudo_register_collect (gdbarch
,
8517 mips_ax_pseudo_register_collect
);
8518 set_gdbarch_ax_pseudo_register_push_stack
8519 (gdbarch
, mips_ax_pseudo_register_push_stack
);
8521 set_gdbarch_elf_make_msymbol_special (gdbarch
,
8522 mips_elf_make_msymbol_special
);
8523 set_gdbarch_make_symbol_special (gdbarch
, mips_make_symbol_special
);
8524 set_gdbarch_adjust_dwarf2_addr (gdbarch
, mips_adjust_dwarf2_addr
);
8525 set_gdbarch_adjust_dwarf2_line (gdbarch
, mips_adjust_dwarf2_line
);
8527 regnum
= GDBARCH_OBSTACK_ZALLOC (gdbarch
, struct mips_regnum
);
8528 *regnum
= mips_regnum
;
8529 set_gdbarch_fp0_regnum (gdbarch
, regnum
->fp0
);
8530 set_gdbarch_num_regs (gdbarch
, num_regs
);
8531 set_gdbarch_num_pseudo_regs (gdbarch
, num_regs
);
8532 set_gdbarch_register_name (gdbarch
, mips_register_name
);
8533 set_gdbarch_virtual_frame_pointer (gdbarch
, mips_virtual_frame_pointer
);
8534 tdep
->mips_processor_reg_names
= reg_names
;
8535 tdep
->regnum
= regnum
;
8540 set_gdbarch_push_dummy_call (gdbarch
, mips_o32_push_dummy_call
);
8541 set_gdbarch_return_value (gdbarch
, mips_o32_return_value
);
8542 tdep
->mips_last_arg_regnum
= MIPS_A0_REGNUM
+ 4 - 1;
8543 tdep
->mips_last_fp_arg_regnum
= tdep
->regnum
->fp0
+ 12 + 4 - 1;
8544 tdep
->default_mask_address_p
= 0;
8545 set_gdbarch_long_bit (gdbarch
, 32);
8546 set_gdbarch_ptr_bit (gdbarch
, 32);
8547 set_gdbarch_long_long_bit (gdbarch
, 64);
8550 set_gdbarch_push_dummy_call (gdbarch
, mips_o64_push_dummy_call
);
8551 set_gdbarch_return_value (gdbarch
, mips_o64_return_value
);
8552 tdep
->mips_last_arg_regnum
= MIPS_A0_REGNUM
+ 4 - 1;
8553 tdep
->mips_last_fp_arg_regnum
= tdep
->regnum
->fp0
+ 12 + 4 - 1;
8554 tdep
->default_mask_address_p
= 0;
8555 set_gdbarch_long_bit (gdbarch
, 32);
8556 set_gdbarch_ptr_bit (gdbarch
, 32);
8557 set_gdbarch_long_long_bit (gdbarch
, 64);
8559 case MIPS_ABI_EABI32
:
8560 set_gdbarch_push_dummy_call (gdbarch
, mips_eabi_push_dummy_call
);
8561 set_gdbarch_return_value (gdbarch
, mips_eabi_return_value
);
8562 tdep
->mips_last_arg_regnum
= MIPS_A0_REGNUM
+ 8 - 1;
8563 tdep
->mips_last_fp_arg_regnum
= tdep
->regnum
->fp0
+ 12 + 8 - 1;
8564 tdep
->default_mask_address_p
= 0;
8565 set_gdbarch_long_bit (gdbarch
, 32);
8566 set_gdbarch_ptr_bit (gdbarch
, 32);
8567 set_gdbarch_long_long_bit (gdbarch
, 64);
8569 case MIPS_ABI_EABI64
:
8570 set_gdbarch_push_dummy_call (gdbarch
, mips_eabi_push_dummy_call
);
8571 set_gdbarch_return_value (gdbarch
, mips_eabi_return_value
);
8572 tdep
->mips_last_arg_regnum
= MIPS_A0_REGNUM
+ 8 - 1;
8573 tdep
->mips_last_fp_arg_regnum
= tdep
->regnum
->fp0
+ 12 + 8 - 1;
8574 tdep
->default_mask_address_p
= 0;
8575 set_gdbarch_long_bit (gdbarch
, 64);
8576 set_gdbarch_ptr_bit (gdbarch
, 64);
8577 set_gdbarch_long_long_bit (gdbarch
, 64);
8580 set_gdbarch_push_dummy_call (gdbarch
, mips_n32n64_push_dummy_call
);
8581 set_gdbarch_return_value (gdbarch
, mips_n32n64_return_value
);
8582 tdep
->mips_last_arg_regnum
= MIPS_A0_REGNUM
+ 8 - 1;
8583 tdep
->mips_last_fp_arg_regnum
= tdep
->regnum
->fp0
+ 12 + 8 - 1;
8584 tdep
->default_mask_address_p
= 0;
8585 set_gdbarch_long_bit (gdbarch
, 32);
8586 set_gdbarch_ptr_bit (gdbarch
, 32);
8587 set_gdbarch_long_long_bit (gdbarch
, 64);
8588 set_gdbarch_long_double_bit (gdbarch
, 128);
8589 set_gdbarch_long_double_format (gdbarch
, floatformats_ibm_long_double
);
8592 set_gdbarch_push_dummy_call (gdbarch
, mips_n32n64_push_dummy_call
);
8593 set_gdbarch_return_value (gdbarch
, mips_n32n64_return_value
);
8594 tdep
->mips_last_arg_regnum
= MIPS_A0_REGNUM
+ 8 - 1;
8595 tdep
->mips_last_fp_arg_regnum
= tdep
->regnum
->fp0
+ 12 + 8 - 1;
8596 tdep
->default_mask_address_p
= 0;
8597 set_gdbarch_long_bit (gdbarch
, 64);
8598 set_gdbarch_ptr_bit (gdbarch
, 64);
8599 set_gdbarch_long_long_bit (gdbarch
, 64);
8600 set_gdbarch_long_double_bit (gdbarch
, 128);
8601 set_gdbarch_long_double_format (gdbarch
, floatformats_ibm_long_double
);
8604 internal_error (__FILE__
, __LINE__
, _("unknown ABI in switch"));
8607 /* GCC creates a pseudo-section whose name specifies the size of
8608 longs, since -mlong32 or -mlong64 may be used independent of
8609 other options. How those options affect pointer sizes is ABI and
8610 architecture dependent, so use them to override the default sizes
8611 set by the ABI. This table shows the relationship between ABI,
8612 -mlongXX, and size of pointers:
8614 ABI -mlongXX ptr bits
8615 --- -------- --------
8629 Note that for o32 and eabi32, pointers are always 32 bits
8630 regardless of any -mlongXX option. For all others, pointers and
8631 longs are the same, as set by -mlongXX or set by defaults. */
8633 if (info
.abfd
!= NULL
)
8637 bfd_map_over_sections (info
.abfd
, mips_find_long_section
, &long_bit
);
8640 set_gdbarch_long_bit (gdbarch
, long_bit
);
8644 case MIPS_ABI_EABI32
:
8649 case MIPS_ABI_EABI64
:
8650 set_gdbarch_ptr_bit (gdbarch
, long_bit
);
8653 internal_error (__FILE__
, __LINE__
, _("unknown ABI in switch"));
8658 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8659 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8662 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8663 flag in object files because to do so would make it impossible to
8664 link with libraries compiled without "-gp32". This is
8665 unnecessarily restrictive.
8667 We could solve this problem by adding "-gp32" multilibs to gcc,
8668 but to set this flag before gcc is built with such multilibs will
8669 break too many systems.''
8671 But even more unhelpfully, the default linker output target for
8672 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8673 for 64-bit programs - you need to change the ABI to change this,
8674 and not all gcc targets support that currently. Therefore using
8675 this flag to detect 32-bit mode would do the wrong thing given
8676 the current gcc - it would make GDB treat these 64-bit programs
8677 as 32-bit programs by default. */
8679 set_gdbarch_read_pc (gdbarch
, mips_read_pc
);
8680 set_gdbarch_write_pc (gdbarch
, mips_write_pc
);
8682 /* Add/remove bits from an address. The MIPS needs be careful to
8683 ensure that all 32 bit addresses are sign extended to 64 bits. */
8684 set_gdbarch_addr_bits_remove (gdbarch
, mips_addr_bits_remove
);
8686 /* Unwind the frame. */
8687 set_gdbarch_unwind_pc (gdbarch
, mips_unwind_pc
);
8688 set_gdbarch_unwind_sp (gdbarch
, mips_unwind_sp
);
8689 set_gdbarch_dummy_id (gdbarch
, mips_dummy_id
);
8691 /* Map debug register numbers onto internal register numbers. */
8692 set_gdbarch_stab_reg_to_regnum (gdbarch
, mips_stab_reg_to_regnum
);
8693 set_gdbarch_ecoff_reg_to_regnum (gdbarch
,
8694 mips_dwarf_dwarf2_ecoff_reg_to_regnum
);
8695 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
,
8696 mips_dwarf_dwarf2_ecoff_reg_to_regnum
);
8697 set_gdbarch_register_sim_regno (gdbarch
, mips_register_sim_regno
);
8699 /* MIPS version of CALL_DUMMY. */
8701 set_gdbarch_call_dummy_location (gdbarch
, ON_STACK
);
8702 set_gdbarch_push_dummy_code (gdbarch
, mips_push_dummy_code
);
8703 set_gdbarch_frame_align (gdbarch
, mips_frame_align
);
8705 set_gdbarch_print_float_info (gdbarch
, mips_print_float_info
);
8707 set_gdbarch_convert_register_p (gdbarch
, mips_convert_register_p
);
8708 set_gdbarch_register_to_value (gdbarch
, mips_register_to_value
);
8709 set_gdbarch_value_to_register (gdbarch
, mips_value_to_register
);
8711 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
8712 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, mips_breakpoint_kind_from_pc
);
8713 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, mips_sw_breakpoint_from_kind
);
8714 set_gdbarch_adjust_breakpoint_address (gdbarch
,
8715 mips_adjust_breakpoint_address
);
8717 set_gdbarch_skip_prologue (gdbarch
, mips_skip_prologue
);
8719 set_gdbarch_stack_frame_destroyed_p (gdbarch
, mips_stack_frame_destroyed_p
);
8721 set_gdbarch_pointer_to_address (gdbarch
, signed_pointer_to_address
);
8722 set_gdbarch_address_to_pointer (gdbarch
, address_to_signed_pointer
);
8723 set_gdbarch_integer_to_address (gdbarch
, mips_integer_to_address
);
8725 set_gdbarch_register_type (gdbarch
, mips_register_type
);
8727 set_gdbarch_print_registers_info (gdbarch
, mips_print_registers_info
);
8729 set_gdbarch_print_insn (gdbarch
, gdb_print_insn_mips
);
8730 if (mips_abi
== MIPS_ABI_N64
)
8731 set_gdbarch_disassembler_options_implicit
8732 (gdbarch
, (const char *) mips_disassembler_options_n64
);
8733 else if (mips_abi
== MIPS_ABI_N32
)
8734 set_gdbarch_disassembler_options_implicit
8735 (gdbarch
, (const char *) mips_disassembler_options_n32
);
8737 set_gdbarch_disassembler_options_implicit
8738 (gdbarch
, (const char *) mips_disassembler_options_o32
);
8739 set_gdbarch_disassembler_options (gdbarch
, &mips_disassembler_options
);
8740 set_gdbarch_valid_disassembler_options (gdbarch
,
8741 disassembler_options_mips ());
8743 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8744 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8745 need to all be folded into the target vector. Since they are
8746 being used as guards for target_stopped_by_watchpoint, why not have
8747 target_stopped_by_watchpoint return the type of watchpoint that the code
8749 set_gdbarch_have_nonsteppable_watchpoint (gdbarch
, 1);
8751 set_gdbarch_skip_trampoline_code (gdbarch
, mips_skip_trampoline_code
);
8753 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8754 to support MIPS16. This is a bad thing. Make sure not to do it
8755 if we have an OS ABI that actually supports shared libraries, since
8756 shared library support is more important. If we have an OS someday
8757 that supports both shared libraries and MIPS16, we'll have to find
8758 a better place for these.
8759 macro/2012-04-25: But that applies to return trampolines only and
8760 currently no MIPS OS ABI uses shared libraries that have them. */
8761 set_gdbarch_in_solib_return_trampoline (gdbarch
, mips_in_return_stub
);
8763 set_gdbarch_single_step_through_delay (gdbarch
,
8764 mips_single_step_through_delay
);
8766 /* Virtual tables. */
8767 set_gdbarch_vbit_in_delta (gdbarch
, 1);
8769 mips_register_g_packet_guesses (gdbarch
);
8771 /* Hook in OS ABI-specific overrides, if they have been registered. */
8772 info
.tdesc_data
= tdesc_data
;
8773 gdbarch_init_osabi (info
, gdbarch
);
8775 /* The hook may have adjusted num_regs, fetch the final value and
8776 set pc_regnum and sp_regnum now that it has been fixed. */
8777 num_regs
= gdbarch_num_regs (gdbarch
);
8778 set_gdbarch_pc_regnum (gdbarch
, regnum
->pc
+ num_regs
);
8779 set_gdbarch_sp_regnum (gdbarch
, MIPS_SP_REGNUM
+ num_regs
);
8781 /* Unwind the frame. */
8782 dwarf2_append_unwinders (gdbarch
);
8783 frame_unwind_append_unwinder (gdbarch
, &mips_stub_frame_unwind
);
8784 frame_unwind_append_unwinder (gdbarch
, &mips_insn16_frame_unwind
);
8785 frame_unwind_append_unwinder (gdbarch
, &mips_micro_frame_unwind
);
8786 frame_unwind_append_unwinder (gdbarch
, &mips_insn32_frame_unwind
);
8787 frame_base_append_sniffer (gdbarch
, dwarf2_frame_base_sniffer
);
8788 frame_base_append_sniffer (gdbarch
, mips_stub_frame_base_sniffer
);
8789 frame_base_append_sniffer (gdbarch
, mips_insn16_frame_base_sniffer
);
8790 frame_base_append_sniffer (gdbarch
, mips_micro_frame_base_sniffer
);
8791 frame_base_append_sniffer (gdbarch
, mips_insn32_frame_base_sniffer
);
8795 set_tdesc_pseudo_register_type (gdbarch
, mips_pseudo_register_type
);
8796 tdesc_use_registers (gdbarch
, info
.target_desc
, tdesc_data
);
8798 /* Override the normal target description methods to handle our
8799 dual real and pseudo registers. */
8800 set_gdbarch_register_name (gdbarch
, mips_register_name
);
8801 set_gdbarch_register_reggroup_p (gdbarch
,
8802 mips_tdesc_register_reggroup_p
);
8804 num_regs
= gdbarch_num_regs (gdbarch
);
8805 set_gdbarch_num_pseudo_regs (gdbarch
, num_regs
);
8806 set_gdbarch_pc_regnum (gdbarch
, tdep
->regnum
->pc
+ num_regs
);
8807 set_gdbarch_sp_regnum (gdbarch
, MIPS_SP_REGNUM
+ num_regs
);
8810 /* Add ABI-specific aliases for the registers. */
8811 if (mips_abi
== MIPS_ABI_N32
|| mips_abi
== MIPS_ABI_N64
)
8812 for (i
= 0; i
< ARRAY_SIZE (mips_n32_n64_aliases
); i
++)
8813 user_reg_add (gdbarch
, mips_n32_n64_aliases
[i
].name
,
8814 value_of_mips_user_reg
, &mips_n32_n64_aliases
[i
].regnum
);
8816 for (i
= 0; i
< ARRAY_SIZE (mips_o32_aliases
); i
++)
8817 user_reg_add (gdbarch
, mips_o32_aliases
[i
].name
,
8818 value_of_mips_user_reg
, &mips_o32_aliases
[i
].regnum
);
8820 /* Add some other standard aliases. */
8821 for (i
= 0; i
< ARRAY_SIZE (mips_register_aliases
); i
++)
8822 user_reg_add (gdbarch
, mips_register_aliases
[i
].name
,
8823 value_of_mips_user_reg
, &mips_register_aliases
[i
].regnum
);
8825 for (i
= 0; i
< ARRAY_SIZE (mips_numeric_register_aliases
); i
++)
8826 user_reg_add (gdbarch
, mips_numeric_register_aliases
[i
].name
,
8827 value_of_mips_user_reg
,
8828 &mips_numeric_register_aliases
[i
].regnum
);
8834 mips_abi_update (const char *ignore_args
,
8835 int from_tty
, struct cmd_list_element
*c
)
8837 struct gdbarch_info info
;
8839 /* Force the architecture to update, and (if it's a MIPS architecture)
8840 mips_gdbarch_init will take care of the rest. */
8841 gdbarch_info_init (&info
);
8842 gdbarch_update_p (info
);
8845 /* Print out which MIPS ABI is in use. */
8848 show_mips_abi (struct ui_file
*file
,
8850 struct cmd_list_element
*ignored_cmd
,
8851 const char *ignored_value
)
8853 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch
!= bfd_arch_mips
)
8856 "The MIPS ABI is unknown because the current architecture "
8860 enum mips_abi global_abi
= global_mips_abi ();
8861 enum mips_abi actual_abi
= mips_abi (target_gdbarch ());
8862 const char *actual_abi_str
= mips_abi_strings
[actual_abi
];
8864 if (global_abi
== MIPS_ABI_UNKNOWN
)
8867 "The MIPS ABI is set automatically (currently \"%s\").\n",
8869 else if (global_abi
== actual_abi
)
8872 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8876 /* Probably shouldn't happen... */
8877 fprintf_filtered (file
,
8878 "The (auto detected) MIPS ABI \"%s\" is in use "
8879 "even though the user setting was \"%s\".\n",
8880 actual_abi_str
, mips_abi_strings
[global_abi
]);
8885 /* Print out which MIPS compressed ISA encoding is used. */
8888 show_mips_compression (struct ui_file
*file
, int from_tty
,
8889 struct cmd_list_element
*c
, const char *value
)
8891 fprintf_filtered (file
, _("The compressed ISA encoding used is %s.\n"),
8895 /* Return a textual name for MIPS FPU type FPU_TYPE. */
8898 mips_fpu_type_str (enum mips_fpu_type fpu_type
)
8904 case MIPS_FPU_SINGLE
:
8906 case MIPS_FPU_DOUBLE
:
8914 mips_dump_tdep (struct gdbarch
*gdbarch
, struct ui_file
*file
)
8916 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
8920 int ef_mips_32bitmode
;
8921 /* Determine the ISA. */
8922 switch (tdep
->elf_flags
& EF_MIPS_ARCH
)
8940 /* Determine the size of a pointer. */
8941 ef_mips_32bitmode
= (tdep
->elf_flags
& EF_MIPS_32BITMODE
);
8942 fprintf_unfiltered (file
,
8943 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8945 fprintf_unfiltered (file
,
8946 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8948 fprintf_unfiltered (file
,
8949 "mips_dump_tdep: ef_mips_arch = %d\n",
8951 fprintf_unfiltered (file
,
8952 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8953 tdep
->mips_abi
, mips_abi_strings
[tdep
->mips_abi
]);
8954 fprintf_unfiltered (file
,
8956 "mips_mask_address_p() %d (default %d)\n",
8957 mips_mask_address_p (tdep
),
8958 tdep
->default_mask_address_p
);
8960 fprintf_unfiltered (file
,
8961 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8962 MIPS_DEFAULT_FPU_TYPE
,
8963 mips_fpu_type_str (MIPS_DEFAULT_FPU_TYPE
));
8964 fprintf_unfiltered (file
, "mips_dump_tdep: MIPS_EABI = %d\n",
8965 MIPS_EABI (gdbarch
));
8966 fprintf_unfiltered (file
,
8967 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8968 MIPS_FPU_TYPE (gdbarch
),
8969 mips_fpu_type_str (MIPS_FPU_TYPE (gdbarch
)));
8973 _initialize_mips_tdep (void)
8975 static struct cmd_list_element
*mipsfpulist
= NULL
;
8977 mips_abi_string
= mips_abi_strings
[MIPS_ABI_UNKNOWN
];
8978 if (MIPS_ABI_LAST
+ 1
8979 != sizeof (mips_abi_strings
) / sizeof (mips_abi_strings
[0]))
8980 internal_error (__FILE__
, __LINE__
, _("mips_abi_strings out of sync"));
8982 gdbarch_register (bfd_arch_mips
, mips_gdbarch_init
, mips_dump_tdep
);
8984 mips_pdr_data
= register_objfile_data ();
8986 /* Create feature sets with the appropriate properties. The values
8987 are not important. */
8988 mips_tdesc_gp32
= allocate_target_description ();
8989 set_tdesc_property (mips_tdesc_gp32
, PROPERTY_GP32
, "");
8991 mips_tdesc_gp64
= allocate_target_description ();
8992 set_tdesc_property (mips_tdesc_gp64
, PROPERTY_GP64
, "");
8994 /* Add root prefix command for all "set mips"/"show mips" commands. */
8995 add_prefix_cmd ("mips", no_class
, set_mips_command
,
8996 _("Various MIPS specific commands."),
8997 &setmipscmdlist
, "set mips ", 0, &setlist
);
8999 add_prefix_cmd ("mips", no_class
, show_mips_command
,
9000 _("Various MIPS specific commands."),
9001 &showmipscmdlist
, "show mips ", 0, &showlist
);
9003 /* Allow the user to override the ABI. */
9004 add_setshow_enum_cmd ("abi", class_obscure
, mips_abi_strings
,
9005 &mips_abi_string
, _("\
9006 Set the MIPS ABI used by this program."), _("\
9007 Show the MIPS ABI used by this program."), _("\
9008 This option can be set to one of:\n\
9009 auto - the default ABI associated with the current binary\n\
9018 &setmipscmdlist
, &showmipscmdlist
);
9020 /* Allow the user to set the ISA to assume for compressed code if ELF
9021 file flags don't tell or there is no program file selected. This
9022 setting is updated whenever unambiguous ELF file flags are interpreted,
9023 and carried over to subsequent sessions. */
9024 add_setshow_enum_cmd ("compression", class_obscure
, mips_compression_strings
,
9025 &mips_compression_string
, _("\
9026 Set the compressed ISA encoding used by MIPS code."), _("\
9027 Show the compressed ISA encoding used by MIPS code."), _("\
9028 Select the compressed ISA encoding used in functions that have no symbol\n\
9029 information available. The encoding can be set to either of:\n\
9032 and is updated automatically from ELF file flags if available."),
9034 show_mips_compression
,
9035 &setmipscmdlist
, &showmipscmdlist
);
9037 /* Let the user turn off floating point and set the fence post for
9038 heuristic_proc_start. */
9040 add_prefix_cmd ("mipsfpu", class_support
, set_mipsfpu_command
,
9041 _("Set use of MIPS floating-point coprocessor."),
9042 &mipsfpulist
, "set mipsfpu ", 0, &setlist
);
9043 add_cmd ("single", class_support
, set_mipsfpu_single_command
,
9044 _("Select single-precision MIPS floating-point coprocessor."),
9046 add_cmd ("double", class_support
, set_mipsfpu_double_command
,
9047 _("Select double-precision MIPS floating-point coprocessor."),
9049 add_alias_cmd ("on", "double", class_support
, 1, &mipsfpulist
);
9050 add_alias_cmd ("yes", "double", class_support
, 1, &mipsfpulist
);
9051 add_alias_cmd ("1", "double", class_support
, 1, &mipsfpulist
);
9052 add_cmd ("none", class_support
, set_mipsfpu_none_command
,
9053 _("Select no MIPS floating-point coprocessor."), &mipsfpulist
);
9054 add_alias_cmd ("off", "none", class_support
, 1, &mipsfpulist
);
9055 add_alias_cmd ("no", "none", class_support
, 1, &mipsfpulist
);
9056 add_alias_cmd ("0", "none", class_support
, 1, &mipsfpulist
);
9057 add_cmd ("auto", class_support
, set_mipsfpu_auto_command
,
9058 _("Select MIPS floating-point coprocessor automatically."),
9060 add_cmd ("mipsfpu", class_support
, show_mipsfpu_command
,
9061 _("Show current use of MIPS floating-point coprocessor target."),
9064 /* We really would like to have both "0" and "unlimited" work, but
9065 command.c doesn't deal with that. So make it a var_zinteger
9066 because the user can always use "999999" or some such for unlimited. */
9067 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support
,
9068 &heuristic_fence_post
, _("\
9069 Set the distance searched for the start of a function."), _("\
9070 Show the distance searched for the start of a function."), _("\
9071 If you are debugging a stripped executable, GDB needs to search through the\n\
9072 program for the start of a function. This command sets the distance of the\n\
9073 search. The only need to set it is when debugging a stripped executable."),
9074 reinit_frame_cache_sfunc
,
9075 NULL
, /* FIXME: i18n: The distance searched for
9076 the start of a function is %s. */
9077 &setlist
, &showlist
);
9079 /* Allow the user to control whether the upper bits of 64-bit
9080 addresses should be zeroed. */
9081 add_setshow_auto_boolean_cmd ("mask-address", no_class
,
9082 &mask_address_var
, _("\
9083 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9084 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9085 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9086 allow GDB to determine the correct value."),
9087 NULL
, show_mask_address
,
9088 &setmipscmdlist
, &showmipscmdlist
);
9090 /* Allow the user to control the size of 32 bit registers within the
9091 raw remote packet. */
9092 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure
,
9093 &mips64_transfers_32bit_regs_p
, _("\
9094 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9096 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9098 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9099 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9100 64 bits for others. Use \"off\" to disable compatibility mode"),
9101 set_mips64_transfers_32bit_regs
,
9102 NULL
, /* FIXME: i18n: Compatibility with 64-bit
9103 MIPS target that transfers 32-bit
9104 quantities is %s. */
9105 &setlist
, &showlist
);
9107 /* Debug this files internals. */
9108 add_setshow_zuinteger_cmd ("mips", class_maintenance
,
9110 Set mips debugging."), _("\
9111 Show mips debugging."), _("\
9112 When non-zero, mips specific debugging is enabled."),
9114 NULL
, /* FIXME: i18n: Mips debugging is
9116 &setdebuglist
, &showdebuglist
);