* config/tc-xtensa.c (xg_assembly_relax): Increment steps_taken for
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "value.h"
34 #include "gdbcmd.h"
35 #include "language.h"
36 #include "gdbcore.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbtypes.h"
40 #include "target.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "mips-tdep.h"
45 #include "block.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
48 #include "elf/mips.h"
49 #include "elf-bfd.h"
50 #include "symcat.h"
51 #include "sim-regno.h"
52 #include "dis-asm.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
56 #include "infcall.h"
57 #include "floatformat.h"
58
59 static const struct objfile_data *mips_pdr_data;
60
61 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
62
63 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
64 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
65 #define ST0_FR (1 << 26)
66
67 /* The sizes of floating point registers. */
68
69 enum
70 {
71 MIPS_FPU_SINGLE_REGSIZE = 4,
72 MIPS_FPU_DOUBLE_REGSIZE = 8
73 };
74
75
76 static const char *mips_abi_string;
77
78 static const char *mips_abi_strings[] = {
79 "auto",
80 "n32",
81 "o32",
82 "n64",
83 "o64",
84 "eabi32",
85 "eabi64",
86 NULL
87 };
88
89 /* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
91 them. */
92
93 static const char size_auto[] = "auto";
94 static const char size_32[] = "32";
95 static const char size_64[] = "64";
96
97 static const char *size_enums[] = {
98 size_auto,
99 size_32,
100 size_64,
101 0
102 };
103
104 /* Some MIPS boards don't support floating point while others only
105 support single-precision floating-point operations. */
106
107 enum mips_fpu_type
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
113
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116 #endif
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
119
120 static int mips_debug = 0;
121
122 /* MIPS specific per-architecture information */
123 struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int default_mask_address_p;
135 /* Is the target using 64-bit raw integer registers but only
136 storing a left-aligned 32-bit value in each? */
137 int mips64_transfers_32bit_regs_p;
138 /* Indexes for various registers. IRIX and embedded have
139 different values. This contains the "public" fields. Don't
140 add any that do not need to be public. */
141 const struct mips_regnum *regnum;
142 /* Register names table for the current register set. */
143 const char **mips_processor_reg_names;
144 };
145
146 static int
147 n32n64_floatformat_always_valid (const struct floatformat *fmt,
148 const void *from)
149 {
150 return 1;
151 }
152
153 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
154 They are implemented as a pair of 64bit doubles where the high
155 part holds the result of the operation rounded to double, and
156 the low double holds the difference between the exact result and
157 the rounded result. So "high" + "low" contains the result with
158 added precision. Unfortunately, the floatformat structure used
159 by GDB is not powerful enough to describe this format. As a temporary
160 measure, we define a 128bit floatformat that only uses the high part.
161 We lose a bit of precision but that's probably the best we can do
162 for now with the current infrastructure. */
163
164 static const struct floatformat floatformat_n32n64_long_double_big =
165 {
166 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
167 floatformat_intbit_no,
168 "floatformat_ieee_double_big",
169 n32n64_floatformat_always_valid
170 };
171
172 const struct mips_regnum *
173 mips_regnum (struct gdbarch *gdbarch)
174 {
175 return gdbarch_tdep (gdbarch)->regnum;
176 }
177
178 static int
179 mips_fpa0_regnum (struct gdbarch *gdbarch)
180 {
181 return mips_regnum (gdbarch)->fp0 + 12;
182 }
183
184 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
185 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
186
187 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
188
189 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
190
191 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
192
193 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
195
196 static CORE_ADDR
197 is_mips16_addr (CORE_ADDR addr)
198 {
199 return ((addr) & 1);
200 }
201
202 static CORE_ADDR
203 unmake_mips16_addr (CORE_ADDR addr)
204 {
205 return ((addr) & ~1);
206 }
207
208 /* Return the contents of register REGNUM as a signed integer. */
209
210 static LONGEST
211 read_signed_register (int regnum)
212 {
213 LONGEST val;
214 regcache_cooked_read_signed (current_regcache, regnum, &val);
215 return val;
216 }
217
218 static LONGEST
219 read_signed_register_pid (int regnum, ptid_t ptid)
220 {
221 ptid_t save_ptid;
222 LONGEST retval;
223
224 if (ptid_equal (ptid, inferior_ptid))
225 return read_signed_register (regnum);
226
227 save_ptid = inferior_ptid;
228
229 inferior_ptid = ptid;
230
231 retval = read_signed_register (regnum);
232
233 inferior_ptid = save_ptid;
234
235 return retval;
236 }
237
238 /* Return the MIPS ABI associated with GDBARCH. */
239 enum mips_abi
240 mips_abi (struct gdbarch *gdbarch)
241 {
242 return gdbarch_tdep (gdbarch)->mips_abi;
243 }
244
245 int
246 mips_isa_regsize (struct gdbarch *gdbarch)
247 {
248 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
249 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
250 }
251
252 /* Return the currently configured (or set) saved register size. */
253
254 static const char *mips_abi_regsize_string = size_auto;
255
256 unsigned int
257 mips_abi_regsize (struct gdbarch *gdbarch)
258 {
259 if (mips_abi_regsize_string == size_auto)
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
273 internal_error (__FILE__, __LINE__, _("bad switch"));
274 }
275 else if (mips_abi_regsize_string == size_64)
276 return 8;
277 else /* if (mips_abi_regsize_string == size_32) */
278 return 4;
279 }
280
281 /* Functions for setting and testing a bit in a minimal symbol that
282 marks it as 16-bit function. The MSB of the minimal symbol's
283 "info" field is used for this purpose.
284
285 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
286 i.e. refers to a 16-bit function, and sets a "special" bit in a
287 minimal symbol to mark it as a 16-bit function
288
289 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
290
291 static void
292 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
293 {
294 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
295 {
296 MSYMBOL_INFO (msym) = (char *)
297 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
298 SYMBOL_VALUE_ADDRESS (msym) |= 1;
299 }
300 }
301
302 static int
303 msymbol_is_special (struct minimal_symbol *msym)
304 {
305 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
306 }
307
308 /* XFER a value from the big/little/left end of the register.
309 Depending on the size of the value it might occupy the entire
310 register or just part of it. Make an allowance for this, aligning
311 things accordingly. */
312
313 static void
314 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
315 enum bfd_endian endian, gdb_byte *in,
316 const gdb_byte *out, int buf_offset)
317 {
318 int reg_offset = 0;
319 gdb_assert (reg_num >= NUM_REGS);
320 /* Need to transfer the left or right part of the register, based on
321 the targets byte order. */
322 switch (endian)
323 {
324 case BFD_ENDIAN_BIG:
325 reg_offset = register_size (current_gdbarch, reg_num) - length;
326 break;
327 case BFD_ENDIAN_LITTLE:
328 reg_offset = 0;
329 break;
330 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
331 reg_offset = 0;
332 break;
333 default:
334 internal_error (__FILE__, __LINE__, _("bad switch"));
335 }
336 if (mips_debug)
337 fprintf_unfiltered (gdb_stderr,
338 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
339 reg_num, reg_offset, buf_offset, length);
340 if (mips_debug && out != NULL)
341 {
342 int i;
343 fprintf_unfiltered (gdb_stdlog, "out ");
344 for (i = 0; i < length; i++)
345 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
346 }
347 if (in != NULL)
348 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
349 in + buf_offset);
350 if (out != NULL)
351 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
352 out + buf_offset);
353 if (mips_debug && in != NULL)
354 {
355 int i;
356 fprintf_unfiltered (gdb_stdlog, "in ");
357 for (i = 0; i < length; i++)
358 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
359 }
360 if (mips_debug)
361 fprintf_unfiltered (gdb_stdlog, "\n");
362 }
363
364 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
365 compatiblity mode. A return value of 1 means that we have
366 physical 64-bit registers, but should treat them as 32-bit registers. */
367
368 static int
369 mips2_fp_compat (void)
370 {
371 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
372 meaningful. */
373 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
374 4)
375 return 0;
376
377 #if 0
378 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
379 in all the places we deal with FP registers. PR gdb/413. */
380 /* Otherwise check the FR bit in the status register - it controls
381 the FP compatiblity mode. If it is clear we are in compatibility
382 mode. */
383 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
384 return 1;
385 #endif
386
387 return 0;
388 }
389
390 /* The amount of space reserved on the stack for registers. This is
391 different to MIPS_ABI_REGSIZE as it determines the alignment of
392 data allocated after the registers have run out. */
393
394 static const char *mips_stack_argsize_string = size_auto;
395
396 static unsigned int
397 mips_stack_argsize (struct gdbarch *gdbarch)
398 {
399 if (mips_stack_argsize_string == size_auto)
400 return mips_abi_regsize (gdbarch);
401 else if (mips_stack_argsize_string == size_64)
402 return 8;
403 else /* if (mips_stack_argsize_string == size_32) */
404 return 4;
405 }
406
407 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
408
409 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
410
411 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
412
413 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
414
415 static struct type *mips_float_register_type (void);
416 static struct type *mips_double_register_type (void);
417
418 /* The list of available "set mips " and "show mips " commands */
419
420 static struct cmd_list_element *setmipscmdlist = NULL;
421 static struct cmd_list_element *showmipscmdlist = NULL;
422
423 /* Integer registers 0 thru 31 are handled explicitly by
424 mips_register_name(). Processor specific registers 32 and above
425 are listed in the followign tables. */
426
427 enum
428 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
429
430 /* Generic MIPS. */
431
432 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
433 "sr", "lo", "hi", "bad", "cause", "pc",
434 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
435 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
436 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
437 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
438 "fsr", "fir", "" /*"fp" */ , "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 };
442
443 /* Names of IDT R3041 registers. */
444
445 static const char *mips_r3041_reg_names[] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "", /*"fp" */ "",
452 "", "", "bus", "ccfg", "", "", "", "",
453 "", "", "port", "cmp", "", "", "epc", "prid",
454 };
455
456 /* Names of tx39 registers. */
457
458 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "", "", "", "", "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 "", "", "", "", "", "", "", "",
463 "", "", "", "", "", "", "", "",
464 "", "", "", "",
465 "", "", "", "", "", "", "", "",
466 "", "", "config", "cache", "debug", "depc", "epc", ""
467 };
468
469 /* Names of IRIX registers. */
470 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
471 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
472 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
473 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
474 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
475 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
476 };
477
478
479 /* Return the name of the register corresponding to REGNO. */
480 static const char *
481 mips_register_name (int regno)
482 {
483 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
484 /* GPR names for all ABIs other than n32/n64. */
485 static char *mips_gpr_names[] = {
486 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
487 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
488 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
489 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
490 };
491
492 /* GPR names for n32 and n64 ABIs. */
493 static char *mips_n32_n64_gpr_names[] = {
494 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
495 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
496 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
497 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
498 };
499
500 enum mips_abi abi = mips_abi (current_gdbarch);
501
502 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
503 don't make the raw register names visible. */
504 int rawnum = regno % NUM_REGS;
505 if (regno < NUM_REGS)
506 return "";
507
508 /* The MIPS integer registers are always mapped from 0 to 31. The
509 names of the registers (which reflects the conventions regarding
510 register use) vary depending on the ABI. */
511 if (0 <= rawnum && rawnum < 32)
512 {
513 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
514 return mips_n32_n64_gpr_names[rawnum];
515 else
516 return mips_gpr_names[rawnum];
517 }
518 else if (32 <= rawnum && rawnum < NUM_REGS)
519 {
520 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
521 return tdep->mips_processor_reg_names[rawnum - 32];
522 }
523 else
524 internal_error (__FILE__, __LINE__,
525 _("mips_register_name: bad register number %d"), rawnum);
526 }
527
528 /* Return the groups that a MIPS register can be categorised into. */
529
530 static int
531 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
532 struct reggroup *reggroup)
533 {
534 int vector_p;
535 int float_p;
536 int raw_p;
537 int rawnum = regnum % NUM_REGS;
538 int pseudo = regnum / NUM_REGS;
539 if (reggroup == all_reggroup)
540 return pseudo;
541 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
542 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
543 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
544 (gdbarch), as not all architectures are multi-arch. */
545 raw_p = rawnum < NUM_REGS;
546 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
547 return 0;
548 if (reggroup == float_reggroup)
549 return float_p && pseudo;
550 if (reggroup == vector_reggroup)
551 return vector_p && pseudo;
552 if (reggroup == general_reggroup)
553 return (!vector_p && !float_p) && pseudo;
554 /* Save the pseudo registers. Need to make certain that any code
555 extracting register values from a saved register cache also uses
556 pseudo registers. */
557 if (reggroup == save_reggroup)
558 return raw_p && pseudo;
559 /* Restore the same pseudo register. */
560 if (reggroup == restore_reggroup)
561 return raw_p && pseudo;
562 return 0;
563 }
564
565 /* Map the symbol table registers which live in the range [1 *
566 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
567 registers. Take care of alignment and size problems. */
568
569 static void
570 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
571 int cookednum, gdb_byte *buf)
572 {
573 int rawnum = cookednum % NUM_REGS;
574 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
575 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
576 regcache_raw_read (regcache, rawnum, buf);
577 else if (register_size (gdbarch, rawnum) >
578 register_size (gdbarch, cookednum))
579 {
580 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
581 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
582 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
583 else
584 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
585 }
586 else
587 internal_error (__FILE__, __LINE__, _("bad register size"));
588 }
589
590 static void
591 mips_pseudo_register_write (struct gdbarch *gdbarch,
592 struct regcache *regcache, int cookednum,
593 const gdb_byte *buf)
594 {
595 int rawnum = cookednum % NUM_REGS;
596 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
597 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
598 regcache_raw_write (regcache, rawnum, buf);
599 else if (register_size (gdbarch, rawnum) >
600 register_size (gdbarch, cookednum))
601 {
602 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
603 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
604 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
605 else
606 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
607 }
608 else
609 internal_error (__FILE__, __LINE__, _("bad register size"));
610 }
611
612 /* Table to translate MIPS16 register field to actual register number. */
613 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
614
615 /* Heuristic_proc_start may hunt through the text section for a long
616 time across a 2400 baud serial line. Allows the user to limit this
617 search. */
618
619 static unsigned int heuristic_fence_post = 0;
620
621 /* Number of bytes of storage in the actual machine representation for
622 register N. NOTE: This defines the pseudo register type so need to
623 rebuild the architecture vector. */
624
625 static int mips64_transfers_32bit_regs_p = 0;
626
627 static void
628 set_mips64_transfers_32bit_regs (char *args, int from_tty,
629 struct cmd_list_element *c)
630 {
631 struct gdbarch_info info;
632 gdbarch_info_init (&info);
633 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
634 instead of relying on globals. Doing that would let generic code
635 handle the search for this specific architecture. */
636 if (!gdbarch_update_p (info))
637 {
638 mips64_transfers_32bit_regs_p = 0;
639 error (_("32-bit compatibility mode not supported"));
640 }
641 }
642
643 /* Convert to/from a register and the corresponding memory value. */
644
645 static int
646 mips_convert_register_p (int regnum, struct type *type)
647 {
648 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
649 && register_size (current_gdbarch, regnum) == 4
650 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
651 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
652 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
653 }
654
655 static void
656 mips_register_to_value (struct frame_info *frame, int regnum,
657 struct type *type, gdb_byte *to)
658 {
659 get_frame_register (frame, regnum + 0, to + 4);
660 get_frame_register (frame, regnum + 1, to + 0);
661 }
662
663 static void
664 mips_value_to_register (struct frame_info *frame, int regnum,
665 struct type *type, const gdb_byte *from)
666 {
667 put_frame_register (frame, regnum + 0, from + 4);
668 put_frame_register (frame, regnum + 1, from + 0);
669 }
670
671 /* Return the GDB type object for the "standard" data type of data in
672 register REG. */
673
674 static struct type *
675 mips_register_type (struct gdbarch *gdbarch, int regnum)
676 {
677 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
678 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
679 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
680 {
681 /* The floating-point registers raw, or cooked, always match
682 mips_isa_regsize(), and also map 1:1, byte for byte. */
683 switch (gdbarch_byte_order (gdbarch))
684 {
685 case BFD_ENDIAN_BIG:
686 if (mips_isa_regsize (gdbarch) == 4)
687 return builtin_type_ieee_single_big;
688 else
689 return builtin_type_ieee_double_big;
690 case BFD_ENDIAN_LITTLE:
691 if (mips_isa_regsize (gdbarch) == 4)
692 return builtin_type_ieee_single_little;
693 else
694 return builtin_type_ieee_double_little;
695 case BFD_ENDIAN_UNKNOWN:
696 default:
697 internal_error (__FILE__, __LINE__, _("bad switch"));
698 }
699 }
700 else if (regnum < NUM_REGS)
701 {
702 /* The raw or ISA registers. These are all sized according to
703 the ISA regsize. */
704 if (mips_isa_regsize (gdbarch) == 4)
705 return builtin_type_int32;
706 else
707 return builtin_type_int64;
708 }
709 else
710 {
711 /* The cooked or ABI registers. These are sized according to
712 the ABI (with a few complications). */
713 if (regnum >= (NUM_REGS
714 + mips_regnum (current_gdbarch)->fp_control_status)
715 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32;
719 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
720 /* The target, while possibly using a 64-bit register buffer,
721 is only transfering 32-bits of each integer register.
722 Reflect this in the cooked/pseudo (ABI) register value. */
723 return builtin_type_int32;
724 else if (mips_abi_regsize (gdbarch) == 4)
725 /* The ABI is restricted to 32-bit registers (the ISA could be
726 32- or 64-bit). */
727 return builtin_type_int32;
728 else
729 /* 64-bit ABI. */
730 return builtin_type_int64;
731 }
732 }
733
734 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
735
736 static CORE_ADDR
737 mips_read_sp (void)
738 {
739 return read_signed_register (MIPS_SP_REGNUM);
740 }
741
742 /* Should the upper word of 64-bit addresses be zeroed? */
743 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
744
745 static int
746 mips_mask_address_p (struct gdbarch_tdep *tdep)
747 {
748 switch (mask_address_var)
749 {
750 case AUTO_BOOLEAN_TRUE:
751 return 1;
752 case AUTO_BOOLEAN_FALSE:
753 return 0;
754 break;
755 case AUTO_BOOLEAN_AUTO:
756 return tdep->default_mask_address_p;
757 default:
758 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
759 return -1;
760 }
761 }
762
763 static void
764 show_mask_address (struct ui_file *file, int from_tty,
765 struct cmd_list_element *c, const char *value)
766 {
767 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
768
769 deprecated_show_value_hack (file, from_tty, c, value);
770 switch (mask_address_var)
771 {
772 case AUTO_BOOLEAN_TRUE:
773 printf_filtered ("The 32 bit mips address mask is enabled\n");
774 break;
775 case AUTO_BOOLEAN_FALSE:
776 printf_filtered ("The 32 bit mips address mask is disabled\n");
777 break;
778 case AUTO_BOOLEAN_AUTO:
779 printf_filtered
780 ("The 32 bit address mask is set automatically. Currently %s\n",
781 mips_mask_address_p (tdep) ? "enabled" : "disabled");
782 break;
783 default:
784 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
785 break;
786 }
787 }
788
789 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
790
791 int
792 mips_pc_is_mips16 (CORE_ADDR memaddr)
793 {
794 struct minimal_symbol *sym;
795
796 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
797 if (is_mips16_addr (memaddr))
798 return 1;
799
800 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
801 the high bit of the info field. Use this to decide if the function is
802 MIPS16 or normal MIPS. */
803 sym = lookup_minimal_symbol_by_pc (memaddr);
804 if (sym)
805 return msymbol_is_special (sym);
806 else
807 return 0;
808 }
809
810 /* MIPS believes that the PC has a sign extended value. Perhaps the
811 all registers should be sign extended for simplicity? */
812
813 static CORE_ADDR
814 mips_read_pc (ptid_t ptid)
815 {
816 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
817 }
818
819 static CORE_ADDR
820 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
821 {
822 return frame_unwind_register_signed (next_frame,
823 NUM_REGS + mips_regnum (gdbarch)->pc);
824 }
825
826 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
827 dummy frame. The frame ID's base needs to match the TOS value
828 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
829 breakpoint. */
830
831 static struct frame_id
832 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
833 {
834 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
835 frame_pc_unwind (next_frame));
836 }
837
838 static void
839 mips_write_pc (CORE_ADDR pc, ptid_t ptid)
840 {
841 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
842 }
843
844 /* Fetch and return instruction from the specified location. If the PC
845 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
846
847 static ULONGEST
848 mips_fetch_instruction (CORE_ADDR addr)
849 {
850 gdb_byte buf[MIPS_INSN32_SIZE];
851 int instlen;
852 int status;
853
854 if (mips_pc_is_mips16 (addr))
855 {
856 instlen = MIPS_INSN16_SIZE;
857 addr = unmake_mips16_addr (addr);
858 }
859 else
860 instlen = MIPS_INSN32_SIZE;
861 status = deprecated_read_memory_nobpt (addr, buf, instlen);
862 if (status)
863 memory_error (status, addr);
864 return extract_unsigned_integer (buf, instlen);
865 }
866
867 /* These the fields of 32 bit mips instructions */
868 #define mips32_op(x) (x >> 26)
869 #define itype_op(x) (x >> 26)
870 #define itype_rs(x) ((x >> 21) & 0x1f)
871 #define itype_rt(x) ((x >> 16) & 0x1f)
872 #define itype_immediate(x) (x & 0xffff)
873
874 #define jtype_op(x) (x >> 26)
875 #define jtype_target(x) (x & 0x03ffffff)
876
877 #define rtype_op(x) (x >> 26)
878 #define rtype_rs(x) ((x >> 21) & 0x1f)
879 #define rtype_rt(x) ((x >> 16) & 0x1f)
880 #define rtype_rd(x) ((x >> 11) & 0x1f)
881 #define rtype_shamt(x) ((x >> 6) & 0x1f)
882 #define rtype_funct(x) (x & 0x3f)
883
884 static LONGEST
885 mips32_relative_offset (ULONGEST inst)
886 {
887 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
888 }
889
890 /* Determine whate to set a single step breakpoint while considering
891 branch prediction */
892 static CORE_ADDR
893 mips32_next_pc (CORE_ADDR pc)
894 {
895 unsigned long inst;
896 int op;
897 inst = mips_fetch_instruction (pc);
898 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
899 {
900 if (itype_op (inst) >> 2 == 5)
901 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
902 {
903 op = (itype_op (inst) & 0x03);
904 switch (op)
905 {
906 case 0: /* BEQL */
907 goto equal_branch;
908 case 1: /* BNEL */
909 goto neq_branch;
910 case 2: /* BLEZL */
911 goto less_branch;
912 case 3: /* BGTZ */
913 goto greater_branch;
914 default:
915 pc += 4;
916 }
917 }
918 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
919 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
920 {
921 int tf = itype_rt (inst) & 0x01;
922 int cnum = itype_rt (inst) >> 2;
923 int fcrcs =
924 read_signed_register (mips_regnum (current_gdbarch)->
925 fp_control_status);
926 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
927
928 if (((cond >> cnum) & 0x01) == tf)
929 pc += mips32_relative_offset (inst) + 4;
930 else
931 pc += 8;
932 }
933 else
934 pc += 4; /* Not a branch, next instruction is easy */
935 }
936 else
937 { /* This gets way messy */
938
939 /* Further subdivide into SPECIAL, REGIMM and other */
940 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
941 {
942 case 0: /* SPECIAL */
943 op = rtype_funct (inst);
944 switch (op)
945 {
946 case 8: /* JR */
947 case 9: /* JALR */
948 /* Set PC to that address */
949 pc = read_signed_register (rtype_rs (inst));
950 break;
951 default:
952 pc += 4;
953 }
954
955 break; /* end SPECIAL */
956 case 1: /* REGIMM */
957 {
958 op = itype_rt (inst); /* branch condition */
959 switch (op)
960 {
961 case 0: /* BLTZ */
962 case 2: /* BLTZL */
963 case 16: /* BLTZAL */
964 case 18: /* BLTZALL */
965 less_branch:
966 if (read_signed_register (itype_rs (inst)) < 0)
967 pc += mips32_relative_offset (inst) + 4;
968 else
969 pc += 8; /* after the delay slot */
970 break;
971 case 1: /* BGEZ */
972 case 3: /* BGEZL */
973 case 17: /* BGEZAL */
974 case 19: /* BGEZALL */
975 if (read_signed_register (itype_rs (inst)) >= 0)
976 pc += mips32_relative_offset (inst) + 4;
977 else
978 pc += 8; /* after the delay slot */
979 break;
980 /* All of the other instructions in the REGIMM category */
981 default:
982 pc += 4;
983 }
984 }
985 break; /* end REGIMM */
986 case 2: /* J */
987 case 3: /* JAL */
988 {
989 unsigned long reg;
990 reg = jtype_target (inst) << 2;
991 /* Upper four bits get never changed... */
992 pc = reg + ((pc + 4) & 0xf0000000);
993 }
994 break;
995 /* FIXME case JALX : */
996 {
997 unsigned long reg;
998 reg = jtype_target (inst) << 2;
999 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1000 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1001 }
1002 break; /* The new PC will be alternate mode */
1003 case 4: /* BEQ, BEQL */
1004 equal_branch:
1005 if (read_signed_register (itype_rs (inst)) ==
1006 read_signed_register (itype_rt (inst)))
1007 pc += mips32_relative_offset (inst) + 4;
1008 else
1009 pc += 8;
1010 break;
1011 case 5: /* BNE, BNEL */
1012 neq_branch:
1013 if (read_signed_register (itype_rs (inst)) !=
1014 read_signed_register (itype_rt (inst)))
1015 pc += mips32_relative_offset (inst) + 4;
1016 else
1017 pc += 8;
1018 break;
1019 case 6: /* BLEZ, BLEZL */
1020 if (read_signed_register (itype_rs (inst)) <= 0)
1021 pc += mips32_relative_offset (inst) + 4;
1022 else
1023 pc += 8;
1024 break;
1025 case 7:
1026 default:
1027 greater_branch: /* BGTZ, BGTZL */
1028 if (read_signed_register (itype_rs (inst)) > 0)
1029 pc += mips32_relative_offset (inst) + 4;
1030 else
1031 pc += 8;
1032 break;
1033 } /* switch */
1034 } /* else */
1035 return pc;
1036 } /* mips32_next_pc */
1037
1038 /* Decoding the next place to set a breakpoint is irregular for the
1039 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1040 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1041 We dont want to set a single step instruction on the extend instruction
1042 either.
1043 */
1044
1045 /* Lots of mips16 instruction formats */
1046 /* Predicting jumps requires itype,ritype,i8type
1047 and their extensions extItype,extritype,extI8type
1048 */
1049 enum mips16_inst_fmts
1050 {
1051 itype, /* 0 immediate 5,10 */
1052 ritype, /* 1 5,3,8 */
1053 rrtype, /* 2 5,3,3,5 */
1054 rritype, /* 3 5,3,3,5 */
1055 rrrtype, /* 4 5,3,3,3,2 */
1056 rriatype, /* 5 5,3,3,1,4 */
1057 shifttype, /* 6 5,3,3,3,2 */
1058 i8type, /* 7 5,3,8 */
1059 i8movtype, /* 8 5,3,3,5 */
1060 i8mov32rtype, /* 9 5,3,5,3 */
1061 i64type, /* 10 5,3,8 */
1062 ri64type, /* 11 5,3,3,5 */
1063 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1064 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1065 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1066 extRRItype, /* 15 5,5,5,5,3,3,5 */
1067 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1068 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1069 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1070 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1071 extRi64type, /* 20 5,6,5,5,3,3,5 */
1072 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1073 };
1074 /* I am heaping all the fields of the formats into one structure and
1075 then, only the fields which are involved in instruction extension */
1076 struct upk_mips16
1077 {
1078 CORE_ADDR offset;
1079 unsigned int regx; /* Function in i8 type */
1080 unsigned int regy;
1081 };
1082
1083
1084 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1085 for the bits which make up the immediatate extension. */
1086
1087 static CORE_ADDR
1088 extended_offset (unsigned int extension)
1089 {
1090 CORE_ADDR value;
1091 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1092 value = value << 6;
1093 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1094 value = value << 5;
1095 value |= extension & 0x01f; /* extract 4:0 */
1096 return value;
1097 }
1098
1099 /* Only call this function if you know that this is an extendable
1100 instruction, It wont malfunction, but why make excess remote memory references?
1101 If the immediate operands get sign extended or somthing, do it after
1102 the extension is performed.
1103 */
1104 /* FIXME: Every one of these cases needs to worry about sign extension
1105 when the offset is to be used in relative addressing */
1106
1107
1108 static unsigned int
1109 fetch_mips_16 (CORE_ADDR pc)
1110 {
1111 gdb_byte buf[8];
1112 pc &= 0xfffffffe; /* clear the low order bit */
1113 target_read_memory (pc, buf, 2);
1114 return extract_unsigned_integer (buf, 2);
1115 }
1116
1117 static void
1118 unpack_mips16 (CORE_ADDR pc,
1119 unsigned int extension,
1120 unsigned int inst,
1121 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1122 {
1123 CORE_ADDR offset;
1124 int regx;
1125 int regy;
1126 switch (insn_format)
1127 {
1128 case itype:
1129 {
1130 CORE_ADDR value;
1131 if (extension)
1132 {
1133 value = extended_offset (extension);
1134 value = value << 11; /* rom for the original value */
1135 value |= inst & 0x7ff; /* eleven bits from instruction */
1136 }
1137 else
1138 {
1139 value = inst & 0x7ff;
1140 /* FIXME : Consider sign extension */
1141 }
1142 offset = value;
1143 regx = -1;
1144 regy = -1;
1145 }
1146 break;
1147 case ritype:
1148 case i8type:
1149 { /* A register identifier and an offset */
1150 /* Most of the fields are the same as I type but the
1151 immediate value is of a different length */
1152 CORE_ADDR value;
1153 if (extension)
1154 {
1155 value = extended_offset (extension);
1156 value = value << 8; /* from the original instruction */
1157 value |= inst & 0xff; /* eleven bits from instruction */
1158 regx = (extension >> 8) & 0x07; /* or i8 funct */
1159 if (value & 0x4000) /* test the sign bit , bit 26 */
1160 {
1161 value &= ~0x3fff; /* remove the sign bit */
1162 value = -value;
1163 }
1164 }
1165 else
1166 {
1167 value = inst & 0xff; /* 8 bits */
1168 regx = (inst >> 8) & 0x07; /* or i8 funct */
1169 /* FIXME: Do sign extension , this format needs it */
1170 if (value & 0x80) /* THIS CONFUSES ME */
1171 {
1172 value &= 0xef; /* remove the sign bit */
1173 value = -value;
1174 }
1175 }
1176 offset = value;
1177 regy = -1;
1178 break;
1179 }
1180 case jalxtype:
1181 {
1182 unsigned long value;
1183 unsigned int nexthalf;
1184 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1185 value = value << 16;
1186 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1187 value |= nexthalf;
1188 offset = value;
1189 regx = -1;
1190 regy = -1;
1191 break;
1192 }
1193 default:
1194 internal_error (__FILE__, __LINE__, _("bad switch"));
1195 }
1196 upk->offset = offset;
1197 upk->regx = regx;
1198 upk->regy = regy;
1199 }
1200
1201
1202 static CORE_ADDR
1203 add_offset_16 (CORE_ADDR pc, int offset)
1204 {
1205 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1206 }
1207
1208 static CORE_ADDR
1209 extended_mips16_next_pc (CORE_ADDR pc,
1210 unsigned int extension, unsigned int insn)
1211 {
1212 int op = (insn >> 11);
1213 switch (op)
1214 {
1215 case 2: /* Branch */
1216 {
1217 CORE_ADDR offset;
1218 struct upk_mips16 upk;
1219 unpack_mips16 (pc, extension, insn, itype, &upk);
1220 offset = upk.offset;
1221 if (offset & 0x800)
1222 {
1223 offset &= 0xeff;
1224 offset = -offset;
1225 }
1226 pc += (offset << 1) + 2;
1227 break;
1228 }
1229 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1230 {
1231 struct upk_mips16 upk;
1232 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1233 pc = add_offset_16 (pc, upk.offset);
1234 if ((insn >> 10) & 0x01) /* Exchange mode */
1235 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1236 else
1237 pc |= 0x01;
1238 break;
1239 }
1240 case 4: /* beqz */
1241 {
1242 struct upk_mips16 upk;
1243 int reg;
1244 unpack_mips16 (pc, extension, insn, ritype, &upk);
1245 reg = read_signed_register (upk.regx);
1246 if (reg == 0)
1247 pc += (upk.offset << 1) + 2;
1248 else
1249 pc += 2;
1250 break;
1251 }
1252 case 5: /* bnez */
1253 {
1254 struct upk_mips16 upk;
1255 int reg;
1256 unpack_mips16 (pc, extension, insn, ritype, &upk);
1257 reg = read_signed_register (upk.regx);
1258 if (reg != 0)
1259 pc += (upk.offset << 1) + 2;
1260 else
1261 pc += 2;
1262 break;
1263 }
1264 case 12: /* I8 Formats btez btnez */
1265 {
1266 struct upk_mips16 upk;
1267 int reg;
1268 unpack_mips16 (pc, extension, insn, i8type, &upk);
1269 /* upk.regx contains the opcode */
1270 reg = read_signed_register (24); /* Test register is 24 */
1271 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1272 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1273 /* pc = add_offset_16(pc,upk.offset) ; */
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
1279 case 29: /* RR Formats JR, JALR, JALR-RA */
1280 {
1281 struct upk_mips16 upk;
1282 /* upk.fmt = rrtype; */
1283 op = insn & 0x1f;
1284 if (op == 0)
1285 {
1286 int reg;
1287 upk.regx = (insn >> 8) & 0x07;
1288 upk.regy = (insn >> 5) & 0x07;
1289 switch (upk.regy)
1290 {
1291 case 0:
1292 reg = upk.regx;
1293 break;
1294 case 1:
1295 reg = 31;
1296 break; /* Function return instruction */
1297 case 2:
1298 reg = upk.regx;
1299 break;
1300 default:
1301 reg = 31;
1302 break; /* BOGUS Guess */
1303 }
1304 pc = read_signed_register (reg);
1305 }
1306 else
1307 pc += 2;
1308 break;
1309 }
1310 case 30:
1311 /* This is an instruction extension. Fetch the real instruction
1312 (which follows the extension) and decode things based on
1313 that. */
1314 {
1315 pc += 2;
1316 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1317 break;
1318 }
1319 default:
1320 {
1321 pc += 2;
1322 break;
1323 }
1324 }
1325 return pc;
1326 }
1327
1328 static CORE_ADDR
1329 mips16_next_pc (CORE_ADDR pc)
1330 {
1331 unsigned int insn = fetch_mips_16 (pc);
1332 return extended_mips16_next_pc (pc, 0, insn);
1333 }
1334
1335 /* The mips_next_pc function supports single_step when the remote
1336 target monitor or stub is not developed enough to do a single_step.
1337 It works by decoding the current instruction and predicting where a
1338 branch will go. This isnt hard because all the data is available.
1339 The MIPS32 and MIPS16 variants are quite different */
1340 CORE_ADDR
1341 mips_next_pc (CORE_ADDR pc)
1342 {
1343 if (pc & 0x01)
1344 return mips16_next_pc (pc);
1345 else
1346 return mips32_next_pc (pc);
1347 }
1348
1349 struct mips_frame_cache
1350 {
1351 CORE_ADDR base;
1352 struct trad_frame_saved_reg *saved_regs;
1353 };
1354
1355 /* Set a register's saved stack address in temp_saved_regs. If an
1356 address has already been set for this register, do nothing; this
1357 way we will only recognize the first save of a given register in a
1358 function prologue.
1359
1360 For simplicity, save the address in both [0 .. NUM_REGS) and
1361 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1362 is used as it is only second range (the ABI instead of ISA
1363 registers) that comes into play when finding saved registers in a
1364 frame. */
1365
1366 static void
1367 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1368 CORE_ADDR offset)
1369 {
1370 if (this_cache != NULL
1371 && this_cache->saved_regs[regnum].addr == -1)
1372 {
1373 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1374 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1375 }
1376 }
1377
1378
1379 /* Fetch the immediate value from a MIPS16 instruction.
1380 If the previous instruction was an EXTEND, use it to extend
1381 the upper bits of the immediate value. This is a helper function
1382 for mips16_scan_prologue. */
1383
1384 static int
1385 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1386 unsigned short inst, /* current instruction */
1387 int nbits, /* number of bits in imm field */
1388 int scale, /* scale factor to be applied to imm */
1389 int is_signed) /* is the imm field signed? */
1390 {
1391 int offset;
1392
1393 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1394 {
1395 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1396 if (offset & 0x8000) /* check for negative extend */
1397 offset = 0 - (0x10000 - (offset & 0xffff));
1398 return offset | (inst & 0x1f);
1399 }
1400 else
1401 {
1402 int max_imm = 1 << nbits;
1403 int mask = max_imm - 1;
1404 int sign_bit = max_imm >> 1;
1405
1406 offset = inst & mask;
1407 if (is_signed && (offset & sign_bit))
1408 offset = 0 - (max_imm - offset);
1409 return offset * scale;
1410 }
1411 }
1412
1413
1414 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1415 the associated FRAME_CACHE if not null.
1416 Return the address of the first instruction past the prologue. */
1417
1418 static CORE_ADDR
1419 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1420 struct frame_info *next_frame,
1421 struct mips_frame_cache *this_cache)
1422 {
1423 CORE_ADDR cur_pc;
1424 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1425 CORE_ADDR sp;
1426 long frame_offset = 0; /* Size of stack frame. */
1427 long frame_adjust = 0; /* Offset of FP from SP. */
1428 int frame_reg = MIPS_SP_REGNUM;
1429 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1430 unsigned inst = 0; /* current instruction */
1431 unsigned entry_inst = 0; /* the entry instruction */
1432 int reg, offset;
1433
1434 int extend_bytes = 0;
1435 int prev_extend_bytes;
1436 CORE_ADDR end_prologue_addr = 0;
1437
1438 /* Can be called when there's no process, and hence when there's no
1439 NEXT_FRAME. */
1440 if (next_frame != NULL)
1441 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1442 else
1443 sp = 0;
1444
1445 if (limit_pc > start_pc + 200)
1446 limit_pc = start_pc + 200;
1447
1448 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1449 {
1450 /* Save the previous instruction. If it's an EXTEND, we'll extract
1451 the immediate offset extension from it in mips16_get_imm. */
1452 prev_inst = inst;
1453
1454 /* Fetch and decode the instruction. */
1455 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1456
1457 /* Normally we ignore extend instructions. However, if it is
1458 not followed by a valid prologue instruction, then this
1459 instruction is not part of the prologue either. We must
1460 remember in this case to adjust the end_prologue_addr back
1461 over the extend. */
1462 if ((inst & 0xf800) == 0xf000) /* extend */
1463 {
1464 extend_bytes = MIPS_INSN16_SIZE;
1465 continue;
1466 }
1467
1468 prev_extend_bytes = extend_bytes;
1469 extend_bytes = 0;
1470
1471 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1472 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1473 {
1474 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1475 if (offset < 0) /* negative stack adjustment? */
1476 frame_offset -= offset;
1477 else
1478 /* Exit loop if a positive stack adjustment is found, which
1479 usually means that the stack cleanup code in the function
1480 epilogue is reached. */
1481 break;
1482 }
1483 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1484 {
1485 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1486 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1487 set_reg_offset (this_cache, reg, sp + offset);
1488 }
1489 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1490 {
1491 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1492 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1493 set_reg_offset (this_cache, reg, sp + offset);
1494 }
1495 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1496 {
1497 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1498 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1499 }
1500 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1501 {
1502 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1503 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1504 }
1505 else if (inst == 0x673d) /* move $s1, $sp */
1506 {
1507 frame_addr = sp;
1508 frame_reg = 17;
1509 }
1510 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1511 {
1512 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1513 frame_addr = sp + offset;
1514 frame_reg = 17;
1515 frame_adjust = offset;
1516 }
1517 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1518 {
1519 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1520 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1521 set_reg_offset (this_cache, reg, frame_addr + offset);
1522 }
1523 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1524 {
1525 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1526 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1527 set_reg_offset (this_cache, reg, frame_addr + offset);
1528 }
1529 else if ((inst & 0xf81f) == 0xe809
1530 && (inst & 0x700) != 0x700) /* entry */
1531 entry_inst = inst; /* save for later processing */
1532 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1533 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1534 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1535 {
1536 /* This instruction is part of the prologue, but we don't
1537 need to do anything special to handle it. */
1538 }
1539 else
1540 {
1541 /* This instruction is not an instruction typically found
1542 in a prologue, so we must have reached the end of the
1543 prologue. */
1544 if (end_prologue_addr == 0)
1545 end_prologue_addr = cur_pc - prev_extend_bytes;
1546 }
1547 }
1548
1549 /* The entry instruction is typically the first instruction in a function,
1550 and it stores registers at offsets relative to the value of the old SP
1551 (before the prologue). But the value of the sp parameter to this
1552 function is the new SP (after the prologue has been executed). So we
1553 can't calculate those offsets until we've seen the entire prologue,
1554 and can calculate what the old SP must have been. */
1555 if (entry_inst != 0)
1556 {
1557 int areg_count = (entry_inst >> 8) & 7;
1558 int sreg_count = (entry_inst >> 6) & 3;
1559
1560 /* The entry instruction always subtracts 32 from the SP. */
1561 frame_offset += 32;
1562
1563 /* Now we can calculate what the SP must have been at the
1564 start of the function prologue. */
1565 sp += frame_offset;
1566
1567 /* Check if a0-a3 were saved in the caller's argument save area. */
1568 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1569 {
1570 set_reg_offset (this_cache, reg, sp + offset);
1571 offset += mips_abi_regsize (current_gdbarch);
1572 }
1573
1574 /* Check if the ra register was pushed on the stack. */
1575 offset = -4;
1576 if (entry_inst & 0x20)
1577 {
1578 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1579 offset -= mips_abi_regsize (current_gdbarch);
1580 }
1581
1582 /* Check if the s0 and s1 registers were pushed on the stack. */
1583 for (reg = 16; reg < sreg_count + 16; reg++)
1584 {
1585 set_reg_offset (this_cache, reg, sp + offset);
1586 offset -= mips_abi_regsize (current_gdbarch);
1587 }
1588 }
1589
1590 if (this_cache != NULL)
1591 {
1592 this_cache->base =
1593 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1594 + frame_offset - frame_adjust);
1595 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1596 be able to get rid of the assignment below, evetually. But it's
1597 still needed for now. */
1598 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1599 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1600 }
1601
1602 /* If we didn't reach the end of the prologue when scanning the function
1603 instructions, then set end_prologue_addr to the address of the
1604 instruction immediately after the last one we scanned. */
1605 if (end_prologue_addr == 0)
1606 end_prologue_addr = cur_pc;
1607
1608 return end_prologue_addr;
1609 }
1610
1611 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1612 Procedures that use the 32-bit instruction set are handled by the
1613 mips_insn32 unwinder. */
1614
1615 static struct mips_frame_cache *
1616 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1617 {
1618 struct mips_frame_cache *cache;
1619
1620 if ((*this_cache) != NULL)
1621 return (*this_cache);
1622 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1623 (*this_cache) = cache;
1624 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1625
1626 /* Analyze the function prologue. */
1627 {
1628 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1629 CORE_ADDR start_addr;
1630
1631 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1632 if (start_addr == 0)
1633 start_addr = heuristic_proc_start (pc);
1634 /* We can't analyze the prologue if we couldn't find the begining
1635 of the function. */
1636 if (start_addr == 0)
1637 return cache;
1638
1639 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1640 }
1641
1642 /* SP_REGNUM, contains the value and not the address. */
1643 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1644
1645 return (*this_cache);
1646 }
1647
1648 static void
1649 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1650 struct frame_id *this_id)
1651 {
1652 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1653 this_cache);
1654 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1655 }
1656
1657 static void
1658 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1659 void **this_cache,
1660 int regnum, int *optimizedp,
1661 enum lval_type *lvalp, CORE_ADDR *addrp,
1662 int *realnump, gdb_byte *valuep)
1663 {
1664 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1665 this_cache);
1666 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1667 optimizedp, lvalp, addrp, realnump, valuep);
1668 }
1669
1670 static const struct frame_unwind mips_insn16_frame_unwind =
1671 {
1672 NORMAL_FRAME,
1673 mips_insn16_frame_this_id,
1674 mips_insn16_frame_prev_register
1675 };
1676
1677 static const struct frame_unwind *
1678 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1679 {
1680 CORE_ADDR pc = frame_pc_unwind (next_frame);
1681 if (mips_pc_is_mips16 (pc))
1682 return &mips_insn16_frame_unwind;
1683 return NULL;
1684 }
1685
1686 static CORE_ADDR
1687 mips_insn16_frame_base_address (struct frame_info *next_frame,
1688 void **this_cache)
1689 {
1690 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1691 this_cache);
1692 return info->base;
1693 }
1694
1695 static const struct frame_base mips_insn16_frame_base =
1696 {
1697 &mips_insn16_frame_unwind,
1698 mips_insn16_frame_base_address,
1699 mips_insn16_frame_base_address,
1700 mips_insn16_frame_base_address
1701 };
1702
1703 static const struct frame_base *
1704 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1705 {
1706 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1707 return &mips_insn16_frame_base;
1708 else
1709 return NULL;
1710 }
1711
1712 /* Mark all the registers as unset in the saved_regs array
1713 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1714
1715 void
1716 reset_saved_regs (struct mips_frame_cache *this_cache)
1717 {
1718 if (this_cache == NULL || this_cache->saved_regs == NULL)
1719 return;
1720
1721 {
1722 const int num_regs = NUM_REGS;
1723 int i;
1724
1725 for (i = 0; i < num_regs; i++)
1726 {
1727 this_cache->saved_regs[i].addr = -1;
1728 }
1729 }
1730 }
1731
1732 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1733 the associated FRAME_CACHE if not null.
1734 Return the address of the first instruction past the prologue. */
1735
1736 static CORE_ADDR
1737 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1738 struct frame_info *next_frame,
1739 struct mips_frame_cache *this_cache)
1740 {
1741 CORE_ADDR cur_pc;
1742 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1743 CORE_ADDR sp;
1744 long frame_offset;
1745 int frame_reg = MIPS_SP_REGNUM;
1746
1747 CORE_ADDR end_prologue_addr = 0;
1748 int seen_sp_adjust = 0;
1749 int load_immediate_bytes = 0;
1750
1751 /* Can be called when there's no process, and hence when there's no
1752 NEXT_FRAME. */
1753 if (next_frame != NULL)
1754 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1755 else
1756 sp = 0;
1757
1758 if (limit_pc > start_pc + 200)
1759 limit_pc = start_pc + 200;
1760
1761 restart:
1762
1763 frame_offset = 0;
1764 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1765 {
1766 unsigned long inst, high_word, low_word;
1767 int reg;
1768
1769 /* Fetch the instruction. */
1770 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1771
1772 /* Save some code by pre-extracting some useful fields. */
1773 high_word = (inst >> 16) & 0xffff;
1774 low_word = inst & 0xffff;
1775 reg = high_word & 0x1f;
1776
1777 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1778 || high_word == 0x23bd /* addi $sp,$sp,-i */
1779 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1780 {
1781 if (low_word & 0x8000) /* negative stack adjustment? */
1782 frame_offset += 0x10000 - low_word;
1783 else
1784 /* Exit loop if a positive stack adjustment is found, which
1785 usually means that the stack cleanup code in the function
1786 epilogue is reached. */
1787 break;
1788 seen_sp_adjust = 1;
1789 }
1790 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1791 {
1792 set_reg_offset (this_cache, reg, sp + low_word);
1793 }
1794 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1795 {
1796 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1797 set_reg_offset (this_cache, reg, sp + low_word);
1798 }
1799 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1800 {
1801 /* Old gcc frame, r30 is virtual frame pointer. */
1802 if ((long) low_word != frame_offset)
1803 frame_addr = sp + low_word;
1804 else if (frame_reg == MIPS_SP_REGNUM)
1805 {
1806 unsigned alloca_adjust;
1807
1808 frame_reg = 30;
1809 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1810 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1811 if (alloca_adjust > 0)
1812 {
1813 /* FP > SP + frame_size. This may be because of
1814 an alloca or somethings similar. Fix sp to
1815 "pre-alloca" value, and try again. */
1816 sp += alloca_adjust;
1817 /* Need to reset the status of all registers. Otherwise,
1818 we will hit a guard that prevents the new address
1819 for each register to be recomputed during the second
1820 pass. */
1821 reset_saved_regs (this_cache);
1822 goto restart;
1823 }
1824 }
1825 }
1826 /* move $30,$sp. With different versions of gas this will be either
1827 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1828 Accept any one of these. */
1829 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1830 {
1831 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1832 if (frame_reg == MIPS_SP_REGNUM)
1833 {
1834 unsigned alloca_adjust;
1835
1836 frame_reg = 30;
1837 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1838 alloca_adjust = (unsigned) (frame_addr - sp);
1839 if (alloca_adjust > 0)
1840 {
1841 /* FP > SP + frame_size. This may be because of
1842 an alloca or somethings similar. Fix sp to
1843 "pre-alloca" value, and try again. */
1844 sp = frame_addr;
1845 /* Need to reset the status of all registers. Otherwise,
1846 we will hit a guard that prevents the new address
1847 for each register to be recomputed during the second
1848 pass. */
1849 reset_saved_regs (this_cache);
1850 goto restart;
1851 }
1852 }
1853 }
1854 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1855 {
1856 set_reg_offset (this_cache, reg, frame_addr + low_word);
1857 }
1858 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1859 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1860 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1861 || high_word == 0x3c1c /* lui $gp,n */
1862 || high_word == 0x279c /* addiu $gp,$gp,n */
1863 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1864 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1865 )
1866 {
1867 /* These instructions are part of the prologue, but we don't
1868 need to do anything special to handle them. */
1869 }
1870 /* The instructions below load $at or $t0 with an immediate
1871 value in preparation for a stack adjustment via
1872 subu $sp,$sp,[$at,$t0]. These instructions could also
1873 initialize a local variable, so we accept them only before
1874 a stack adjustment instruction was seen. */
1875 else if (!seen_sp_adjust
1876 && (high_word == 0x3c01 /* lui $at,n */
1877 || high_word == 0x3c08 /* lui $t0,n */
1878 || high_word == 0x3421 /* ori $at,$at,n */
1879 || high_word == 0x3508 /* ori $t0,$t0,n */
1880 || high_word == 0x3401 /* ori $at,$zero,n */
1881 || high_word == 0x3408 /* ori $t0,$zero,n */
1882 ))
1883 {
1884 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
1885 }
1886 else
1887 {
1888 /* This instruction is not an instruction typically found
1889 in a prologue, so we must have reached the end of the
1890 prologue. */
1891 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1892 loop now? Why would we need to continue scanning the function
1893 instructions? */
1894 if (end_prologue_addr == 0)
1895 end_prologue_addr = cur_pc;
1896 }
1897 }
1898
1899 if (this_cache != NULL)
1900 {
1901 this_cache->base =
1902 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1903 + frame_offset);
1904 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1905 this assignment below, eventually. But it's still needed
1906 for now. */
1907 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1908 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1909 }
1910
1911 /* If we didn't reach the end of the prologue when scanning the function
1912 instructions, then set end_prologue_addr to the address of the
1913 instruction immediately after the last one we scanned. */
1914 /* brobecker/2004-10-10: I don't think this would ever happen, but
1915 we may as well be careful and do our best if we have a null
1916 end_prologue_addr. */
1917 if (end_prologue_addr == 0)
1918 end_prologue_addr = cur_pc;
1919
1920 /* In a frameless function, we might have incorrectly
1921 skipped some load immediate instructions. Undo the skipping
1922 if the load immediate was not followed by a stack adjustment. */
1923 if (load_immediate_bytes && !seen_sp_adjust)
1924 end_prologue_addr -= load_immediate_bytes;
1925
1926 return end_prologue_addr;
1927 }
1928
1929 /* Heuristic unwinder for procedures using 32-bit instructions (covers
1930 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1931 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1932 unwinder. */
1933
1934 static struct mips_frame_cache *
1935 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
1936 {
1937 struct mips_frame_cache *cache;
1938
1939 if ((*this_cache) != NULL)
1940 return (*this_cache);
1941
1942 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1943 (*this_cache) = cache;
1944 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1945
1946 /* Analyze the function prologue. */
1947 {
1948 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1949 CORE_ADDR start_addr;
1950
1951 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1952 if (start_addr == 0)
1953 start_addr = heuristic_proc_start (pc);
1954 /* We can't analyze the prologue if we couldn't find the begining
1955 of the function. */
1956 if (start_addr == 0)
1957 return cache;
1958
1959 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1960 }
1961
1962 /* SP_REGNUM, contains the value and not the address. */
1963 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1964
1965 return (*this_cache);
1966 }
1967
1968 static void
1969 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1970 struct frame_id *this_id)
1971 {
1972 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1973 this_cache);
1974 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1975 }
1976
1977 static void
1978 mips_insn32_frame_prev_register (struct frame_info *next_frame,
1979 void **this_cache,
1980 int regnum, int *optimizedp,
1981 enum lval_type *lvalp, CORE_ADDR *addrp,
1982 int *realnump, gdb_byte *valuep)
1983 {
1984 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1985 this_cache);
1986 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1987 optimizedp, lvalp, addrp, realnump, valuep);
1988 }
1989
1990 static const struct frame_unwind mips_insn32_frame_unwind =
1991 {
1992 NORMAL_FRAME,
1993 mips_insn32_frame_this_id,
1994 mips_insn32_frame_prev_register
1995 };
1996
1997 static const struct frame_unwind *
1998 mips_insn32_frame_sniffer (struct frame_info *next_frame)
1999 {
2000 CORE_ADDR pc = frame_pc_unwind (next_frame);
2001 if (! mips_pc_is_mips16 (pc))
2002 return &mips_insn32_frame_unwind;
2003 return NULL;
2004 }
2005
2006 static CORE_ADDR
2007 mips_insn32_frame_base_address (struct frame_info *next_frame,
2008 void **this_cache)
2009 {
2010 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2011 this_cache);
2012 return info->base;
2013 }
2014
2015 static const struct frame_base mips_insn32_frame_base =
2016 {
2017 &mips_insn32_frame_unwind,
2018 mips_insn32_frame_base_address,
2019 mips_insn32_frame_base_address,
2020 mips_insn32_frame_base_address
2021 };
2022
2023 static const struct frame_base *
2024 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2025 {
2026 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2027 return &mips_insn32_frame_base;
2028 else
2029 return NULL;
2030 }
2031
2032 static struct trad_frame_cache *
2033 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2034 {
2035 CORE_ADDR pc;
2036 CORE_ADDR start_addr;
2037 CORE_ADDR stack_addr;
2038 struct trad_frame_cache *this_trad_cache;
2039
2040 if ((*this_cache) != NULL)
2041 return (*this_cache);
2042 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2043 (*this_cache) = this_trad_cache;
2044
2045 /* The return address is in the link register. */
2046 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
2047
2048 /* Frame ID, since it's a frameless / stackless function, no stack
2049 space is allocated and SP on entry is the current SP. */
2050 pc = frame_pc_unwind (next_frame);
2051 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2052 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2053 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2054
2055 /* Assume that the frame's base is the same as the
2056 stack-pointer. */
2057 trad_frame_set_this_base (this_trad_cache, stack_addr);
2058
2059 return this_trad_cache;
2060 }
2061
2062 static void
2063 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2064 struct frame_id *this_id)
2065 {
2066 struct trad_frame_cache *this_trad_cache
2067 = mips_stub_frame_cache (next_frame, this_cache);
2068 trad_frame_get_id (this_trad_cache, this_id);
2069 }
2070
2071 static void
2072 mips_stub_frame_prev_register (struct frame_info *next_frame,
2073 void **this_cache,
2074 int regnum, int *optimizedp,
2075 enum lval_type *lvalp, CORE_ADDR *addrp,
2076 int *realnump, gdb_byte *valuep)
2077 {
2078 struct trad_frame_cache *this_trad_cache
2079 = mips_stub_frame_cache (next_frame, this_cache);
2080 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2081 lvalp, addrp, realnump, valuep);
2082 }
2083
2084 static const struct frame_unwind mips_stub_frame_unwind =
2085 {
2086 NORMAL_FRAME,
2087 mips_stub_frame_this_id,
2088 mips_stub_frame_prev_register
2089 };
2090
2091 static const struct frame_unwind *
2092 mips_stub_frame_sniffer (struct frame_info *next_frame)
2093 {
2094 struct obj_section *s;
2095 CORE_ADDR pc = frame_pc_unwind (next_frame);
2096
2097 if (in_plt_section (pc, NULL))
2098 return &mips_stub_frame_unwind;
2099
2100 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2101 s = find_pc_section (pc);
2102
2103 if (s != NULL
2104 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2105 ".MIPS.stubs") == 0)
2106 return &mips_stub_frame_unwind;
2107
2108 return NULL;
2109 }
2110
2111 static CORE_ADDR
2112 mips_stub_frame_base_address (struct frame_info *next_frame,
2113 void **this_cache)
2114 {
2115 struct trad_frame_cache *this_trad_cache
2116 = mips_stub_frame_cache (next_frame, this_cache);
2117 return trad_frame_get_this_base (this_trad_cache);
2118 }
2119
2120 static const struct frame_base mips_stub_frame_base =
2121 {
2122 &mips_stub_frame_unwind,
2123 mips_stub_frame_base_address,
2124 mips_stub_frame_base_address,
2125 mips_stub_frame_base_address
2126 };
2127
2128 static const struct frame_base *
2129 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2130 {
2131 if (mips_stub_frame_sniffer (next_frame) != NULL)
2132 return &mips_stub_frame_base;
2133 else
2134 return NULL;
2135 }
2136
2137 static CORE_ADDR
2138 read_next_frame_reg (struct frame_info *fi, int regno)
2139 {
2140 /* Always a pseudo. */
2141 gdb_assert (regno >= NUM_REGS);
2142 if (fi == NULL)
2143 {
2144 LONGEST val;
2145 regcache_cooked_read_signed (current_regcache, regno, &val);
2146 return val;
2147 }
2148 else
2149 return frame_unwind_register_signed (fi, regno);
2150
2151 }
2152
2153 /* mips_addr_bits_remove - remove useless address bits */
2154
2155 static CORE_ADDR
2156 mips_addr_bits_remove (CORE_ADDR addr)
2157 {
2158 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2159 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2160 /* This hack is a work-around for existing boards using PMON, the
2161 simulator, and any other 64-bit targets that doesn't have true
2162 64-bit addressing. On these targets, the upper 32 bits of
2163 addresses are ignored by the hardware. Thus, the PC or SP are
2164 likely to have been sign extended to all 1s by instruction
2165 sequences that load 32-bit addresses. For example, a typical
2166 piece of code that loads an address is this:
2167
2168 lui $r2, <upper 16 bits>
2169 ori $r2, <lower 16 bits>
2170
2171 But the lui sign-extends the value such that the upper 32 bits
2172 may be all 1s. The workaround is simply to mask off these
2173 bits. In the future, gcc may be changed to support true 64-bit
2174 addressing, and this masking will have to be disabled. */
2175 return addr &= 0xffffffffUL;
2176 else
2177 return addr;
2178 }
2179
2180 /* mips_software_single_step() is called just before we want to resume
2181 the inferior, if we want to single-step it but there is no hardware
2182 or kernel single-step support (MIPS on GNU/Linux for example). We find
2183 the target of the coming instruction and breakpoint it.
2184
2185 single_step is also called just after the inferior stops. If we had
2186 set up a simulated single-step, we undo our damage. */
2187
2188 void
2189 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
2190 {
2191 static CORE_ADDR next_pc;
2192 typedef char binsn_quantum[BREAKPOINT_MAX];
2193 static binsn_quantum break_mem;
2194 CORE_ADDR pc;
2195
2196 if (insert_breakpoints_p)
2197 {
2198 pc = read_register (mips_regnum (current_gdbarch)->pc);
2199 next_pc = mips_next_pc (pc);
2200
2201 target_insert_breakpoint (next_pc, break_mem);
2202 }
2203 else
2204 target_remove_breakpoint (next_pc, break_mem);
2205 }
2206
2207 /* Test whether the PC points to the return instruction at the
2208 end of a function. */
2209
2210 static int
2211 mips_about_to_return (CORE_ADDR pc)
2212 {
2213 if (mips_pc_is_mips16 (pc))
2214 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2215 generates a "jr $ra"; other times it generates code to load
2216 the return address from the stack to an accessible register (such
2217 as $a3), then a "jr" using that register. This second case
2218 is almost impossible to distinguish from an indirect jump
2219 used for switch statements, so we don't even try. */
2220 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2221 else
2222 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2223 }
2224
2225
2226 /* This fencepost looks highly suspicious to me. Removing it also
2227 seems suspicious as it could affect remote debugging across serial
2228 lines. */
2229
2230 static CORE_ADDR
2231 heuristic_proc_start (CORE_ADDR pc)
2232 {
2233 CORE_ADDR start_pc;
2234 CORE_ADDR fence;
2235 int instlen;
2236 int seen_adjsp = 0;
2237
2238 pc = ADDR_BITS_REMOVE (pc);
2239 start_pc = pc;
2240 fence = start_pc - heuristic_fence_post;
2241 if (start_pc == 0)
2242 return 0;
2243
2244 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2245 fence = VM_MIN_ADDRESS;
2246
2247 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2248
2249 /* search back for previous return */
2250 for (start_pc -= instlen;; start_pc -= instlen)
2251 if (start_pc < fence)
2252 {
2253 /* It's not clear to me why we reach this point when
2254 stop_soon, but with this test, at least we
2255 don't print out warnings for every child forked (eg, on
2256 decstation). 22apr93 rich@cygnus.com. */
2257 if (stop_soon == NO_STOP_QUIETLY)
2258 {
2259 static int blurb_printed = 0;
2260
2261 warning (_("GDB can't find the start of the function at 0x%s."),
2262 paddr_nz (pc));
2263
2264 if (!blurb_printed)
2265 {
2266 /* This actually happens frequently in embedded
2267 development, when you first connect to a board
2268 and your stack pointer and pc are nowhere in
2269 particular. This message needs to give people
2270 in that situation enough information to
2271 determine that it's no big deal. */
2272 printf_filtered ("\n\
2273 GDB is unable to find the start of the function at 0x%s\n\
2274 and thus can't determine the size of that function's stack frame.\n\
2275 This means that GDB may be unable to access that stack frame, or\n\
2276 the frames below it.\n\
2277 This problem is most likely caused by an invalid program counter or\n\
2278 stack pointer.\n\
2279 However, if you think GDB should simply search farther back\n\
2280 from 0x%s for code which looks like the beginning of a\n\
2281 function, you can increase the range of the search using the `set\n\
2282 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2283 blurb_printed = 1;
2284 }
2285 }
2286
2287 return 0;
2288 }
2289 else if (mips_pc_is_mips16 (start_pc))
2290 {
2291 unsigned short inst;
2292
2293 /* On MIPS16, any one of the following is likely to be the
2294 start of a function:
2295 entry
2296 addiu sp,-n
2297 daddiu sp,-n
2298 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2299 inst = mips_fetch_instruction (start_pc);
2300 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2301 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2302 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2303 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2304 break;
2305 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2306 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2307 seen_adjsp = 1;
2308 else
2309 seen_adjsp = 0;
2310 }
2311 else if (mips_about_to_return (start_pc))
2312 {
2313 /* Skip return and its delay slot. */
2314 start_pc += 2 * MIPS_INSN32_SIZE;
2315 break;
2316 }
2317
2318 return start_pc;
2319 }
2320
2321 struct mips_objfile_private
2322 {
2323 bfd_size_type size;
2324 char *contents;
2325 };
2326
2327 /* According to the current ABI, should the type be passed in a
2328 floating-point register (assuming that there is space)? When there
2329 is no FPU, FP are not even considered as possibile candidates for
2330 FP registers and, consequently this returns false - forces FP
2331 arguments into integer registers. */
2332
2333 static int
2334 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2335 {
2336 return ((typecode == TYPE_CODE_FLT
2337 || (MIPS_EABI
2338 && (typecode == TYPE_CODE_STRUCT
2339 || typecode == TYPE_CODE_UNION)
2340 && TYPE_NFIELDS (arg_type) == 1
2341 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2342 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2343 }
2344
2345 /* On o32, argument passing in GPRs depends on the alignment of the type being
2346 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2347
2348 static int
2349 mips_type_needs_double_align (struct type *type)
2350 {
2351 enum type_code typecode = TYPE_CODE (type);
2352
2353 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2354 return 1;
2355 else if (typecode == TYPE_CODE_STRUCT)
2356 {
2357 if (TYPE_NFIELDS (type) < 1)
2358 return 0;
2359 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2360 }
2361 else if (typecode == TYPE_CODE_UNION)
2362 {
2363 int i, n;
2364
2365 n = TYPE_NFIELDS (type);
2366 for (i = 0; i < n; i++)
2367 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2368 return 1;
2369 return 0;
2370 }
2371 return 0;
2372 }
2373
2374 /* Adjust the address downward (direction of stack growth) so that it
2375 is correctly aligned for a new stack frame. */
2376 static CORE_ADDR
2377 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2378 {
2379 return align_down (addr, 16);
2380 }
2381
2382 static CORE_ADDR
2383 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2384 struct regcache *regcache, CORE_ADDR bp_addr,
2385 int nargs, struct value **args, CORE_ADDR sp,
2386 int struct_return, CORE_ADDR struct_addr)
2387 {
2388 int argreg;
2389 int float_argreg;
2390 int argnum;
2391 int len = 0;
2392 int stack_offset = 0;
2393 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2394 CORE_ADDR func_addr = find_function_addr (function, NULL);
2395
2396 /* For shared libraries, "t9" needs to point at the function
2397 address. */
2398 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2399
2400 /* Set the return address register to point to the entry point of
2401 the program, where a breakpoint lies in wait. */
2402 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2403
2404 /* First ensure that the stack and structure return address (if any)
2405 are properly aligned. The stack has to be at least 64-bit
2406 aligned even on 32-bit machines, because doubles must be 64-bit
2407 aligned. For n32 and n64, stack frames need to be 128-bit
2408 aligned, so we round to this widest known alignment. */
2409
2410 sp = align_down (sp, 16);
2411 struct_addr = align_down (struct_addr, 16);
2412
2413 /* Now make space on the stack for the args. We allocate more
2414 than necessary for EABI, because the first few arguments are
2415 passed in registers, but that's OK. */
2416 for (argnum = 0; argnum < nargs; argnum++)
2417 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2418 mips_stack_argsize (gdbarch));
2419 sp -= align_up (len, 16);
2420
2421 if (mips_debug)
2422 fprintf_unfiltered (gdb_stdlog,
2423 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2424 paddr_nz (sp), (long) align_up (len, 16));
2425
2426 /* Initialize the integer and float register pointers. */
2427 argreg = MIPS_A0_REGNUM;
2428 float_argreg = mips_fpa0_regnum (current_gdbarch);
2429
2430 /* The struct_return pointer occupies the first parameter-passing reg. */
2431 if (struct_return)
2432 {
2433 if (mips_debug)
2434 fprintf_unfiltered (gdb_stdlog,
2435 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2436 argreg, paddr_nz (struct_addr));
2437 write_register (argreg++, struct_addr);
2438 }
2439
2440 /* Now load as many as possible of the first arguments into
2441 registers, and push the rest onto the stack. Loop thru args
2442 from first to last. */
2443 for (argnum = 0; argnum < nargs; argnum++)
2444 {
2445 const gdb_byte *val;
2446 gdb_byte valbuf[MAX_REGISTER_SIZE];
2447 struct value *arg = args[argnum];
2448 struct type *arg_type = check_typedef (value_type (arg));
2449 int len = TYPE_LENGTH (arg_type);
2450 enum type_code typecode = TYPE_CODE (arg_type);
2451
2452 if (mips_debug)
2453 fprintf_unfiltered (gdb_stdlog,
2454 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2455 argnum + 1, len, (int) typecode);
2456
2457 /* The EABI passes structures that do not fit in a register by
2458 reference. */
2459 if (len > mips_abi_regsize (gdbarch)
2460 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2461 {
2462 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
2463 VALUE_ADDRESS (arg));
2464 typecode = TYPE_CODE_PTR;
2465 len = mips_abi_regsize (gdbarch);
2466 val = valbuf;
2467 if (mips_debug)
2468 fprintf_unfiltered (gdb_stdlog, " push");
2469 }
2470 else
2471 val = value_contents (arg);
2472
2473 /* 32-bit ABIs always start floating point arguments in an
2474 even-numbered floating point register. Round the FP register
2475 up before the check to see if there are any FP registers
2476 left. Non MIPS_EABI targets also pass the FP in the integer
2477 registers so also round up normal registers. */
2478 if (mips_abi_regsize (gdbarch) < 8
2479 && fp_register_arg_p (typecode, arg_type))
2480 {
2481 if ((float_argreg & 1))
2482 float_argreg++;
2483 }
2484
2485 /* Floating point arguments passed in registers have to be
2486 treated specially. On 32-bit architectures, doubles
2487 are passed in register pairs; the even register gets
2488 the low word, and the odd register gets the high word.
2489 On non-EABI processors, the first two floating point arguments are
2490 also copied to general registers, because MIPS16 functions
2491 don't use float registers for arguments. This duplication of
2492 arguments in general registers can't hurt non-MIPS16 functions
2493 because those registers are normally skipped. */
2494 /* MIPS_EABI squeezes a struct that contains a single floating
2495 point value into an FP register instead of pushing it onto the
2496 stack. */
2497 if (fp_register_arg_p (typecode, arg_type)
2498 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2499 {
2500 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
2501 {
2502 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2503 unsigned long regval;
2504
2505 /* Write the low word of the double to the even register(s). */
2506 regval = extract_unsigned_integer (val + low_offset, 4);
2507 if (mips_debug)
2508 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2509 float_argreg, phex (regval, 4));
2510 write_register (float_argreg++, regval);
2511
2512 /* Write the high word of the double to the odd register(s). */
2513 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2514 if (mips_debug)
2515 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2516 float_argreg, phex (regval, 4));
2517 write_register (float_argreg++, regval);
2518 }
2519 else
2520 {
2521 /* This is a floating point value that fits entirely
2522 in a single register. */
2523 /* On 32 bit ABI's the float_argreg is further adjusted
2524 above to ensure that it is even register aligned. */
2525 LONGEST regval = extract_unsigned_integer (val, len);
2526 if (mips_debug)
2527 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2528 float_argreg, phex (regval, len));
2529 write_register (float_argreg++, regval);
2530 }
2531 }
2532 else
2533 {
2534 /* Copy the argument to general registers or the stack in
2535 register-sized pieces. Large arguments are split between
2536 registers and stack. */
2537 /* Note: structs whose size is not a multiple of
2538 mips_abi_regsize() are treated specially: Irix cc passes
2539 them in registers where gcc sometimes puts them on the
2540 stack. For maximum compatibility, we will put them in
2541 both places. */
2542 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2543 && (len % mips_abi_regsize (gdbarch) != 0));
2544
2545 /* Note: Floating-point values that didn't fit into an FP
2546 register are only written to memory. */
2547 while (len > 0)
2548 {
2549 /* Remember if the argument was written to the stack. */
2550 int stack_used_p = 0;
2551 int partial_len = (len < mips_abi_regsize (gdbarch)
2552 ? len : mips_abi_regsize (gdbarch));
2553
2554 if (mips_debug)
2555 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2556 partial_len);
2557
2558 /* Write this portion of the argument to the stack. */
2559 if (argreg > MIPS_LAST_ARG_REGNUM
2560 || odd_sized_struct
2561 || fp_register_arg_p (typecode, arg_type))
2562 {
2563 /* Should shorter than int integer values be
2564 promoted to int before being stored? */
2565 int longword_offset = 0;
2566 CORE_ADDR addr;
2567 stack_used_p = 1;
2568 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2569 {
2570 if (mips_stack_argsize (gdbarch) == 8
2571 && (typecode == TYPE_CODE_INT
2572 || typecode == TYPE_CODE_PTR
2573 || typecode == TYPE_CODE_FLT) && len <= 4)
2574 longword_offset = mips_stack_argsize (gdbarch) - len;
2575 else if ((typecode == TYPE_CODE_STRUCT
2576 || typecode == TYPE_CODE_UNION)
2577 && (TYPE_LENGTH (arg_type)
2578 < mips_stack_argsize (gdbarch)))
2579 longword_offset = mips_stack_argsize (gdbarch) - len;
2580 }
2581
2582 if (mips_debug)
2583 {
2584 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2585 paddr_nz (stack_offset));
2586 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2587 paddr_nz (longword_offset));
2588 }
2589
2590 addr = sp + stack_offset + longword_offset;
2591
2592 if (mips_debug)
2593 {
2594 int i;
2595 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2596 paddr_nz (addr));
2597 for (i = 0; i < partial_len; i++)
2598 {
2599 fprintf_unfiltered (gdb_stdlog, "%02x",
2600 val[i] & 0xff);
2601 }
2602 }
2603 write_memory (addr, val, partial_len);
2604 }
2605
2606 /* Note!!! This is NOT an else clause. Odd sized
2607 structs may go thru BOTH paths. Floating point
2608 arguments will not. */
2609 /* Write this portion of the argument to a general
2610 purpose register. */
2611 if (argreg <= MIPS_LAST_ARG_REGNUM
2612 && !fp_register_arg_p (typecode, arg_type))
2613 {
2614 LONGEST regval =
2615 extract_unsigned_integer (val, partial_len);
2616
2617 if (mips_debug)
2618 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2619 argreg,
2620 phex (regval,
2621 mips_abi_regsize (gdbarch)));
2622 write_register (argreg, regval);
2623 argreg++;
2624 }
2625
2626 len -= partial_len;
2627 val += partial_len;
2628
2629 /* Compute the the offset into the stack at which we
2630 will copy the next parameter.
2631
2632 In the new EABI (and the NABI32), the stack_offset
2633 only needs to be adjusted when it has been used. */
2634
2635 if (stack_used_p)
2636 stack_offset += align_up (partial_len,
2637 mips_stack_argsize (gdbarch));
2638 }
2639 }
2640 if (mips_debug)
2641 fprintf_unfiltered (gdb_stdlog, "\n");
2642 }
2643
2644 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2645
2646 /* Return adjusted stack pointer. */
2647 return sp;
2648 }
2649
2650 /* Determin the return value convention being used. */
2651
2652 static enum return_value_convention
2653 mips_eabi_return_value (struct gdbarch *gdbarch,
2654 struct type *type, struct regcache *regcache,
2655 gdb_byte *readbuf, const gdb_byte *writebuf)
2656 {
2657 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2658 return RETURN_VALUE_STRUCT_CONVENTION;
2659 if (readbuf)
2660 memset (readbuf, 0, TYPE_LENGTH (type));
2661 return RETURN_VALUE_REGISTER_CONVENTION;
2662 }
2663
2664
2665 /* N32/N64 ABI stuff. */
2666
2667 static CORE_ADDR
2668 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2669 struct regcache *regcache, CORE_ADDR bp_addr,
2670 int nargs, struct value **args, CORE_ADDR sp,
2671 int struct_return, CORE_ADDR struct_addr)
2672 {
2673 int argreg;
2674 int float_argreg;
2675 int argnum;
2676 int len = 0;
2677 int stack_offset = 0;
2678 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2679 CORE_ADDR func_addr = find_function_addr (function, NULL);
2680
2681 /* For shared libraries, "t9" needs to point at the function
2682 address. */
2683 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2684
2685 /* Set the return address register to point to the entry point of
2686 the program, where a breakpoint lies in wait. */
2687 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2688
2689 /* First ensure that the stack and structure return address (if any)
2690 are properly aligned. The stack has to be at least 64-bit
2691 aligned even on 32-bit machines, because doubles must be 64-bit
2692 aligned. For n32 and n64, stack frames need to be 128-bit
2693 aligned, so we round to this widest known alignment. */
2694
2695 sp = align_down (sp, 16);
2696 struct_addr = align_down (struct_addr, 16);
2697
2698 /* Now make space on the stack for the args. */
2699 for (argnum = 0; argnum < nargs; argnum++)
2700 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2701 mips_stack_argsize (gdbarch));
2702 sp -= align_up (len, 16);
2703
2704 if (mips_debug)
2705 fprintf_unfiltered (gdb_stdlog,
2706 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2707 paddr_nz (sp), (long) align_up (len, 16));
2708
2709 /* Initialize the integer and float register pointers. */
2710 argreg = MIPS_A0_REGNUM;
2711 float_argreg = mips_fpa0_regnum (current_gdbarch);
2712
2713 /* The struct_return pointer occupies the first parameter-passing reg. */
2714 if (struct_return)
2715 {
2716 if (mips_debug)
2717 fprintf_unfiltered (gdb_stdlog,
2718 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2719 argreg, paddr_nz (struct_addr));
2720 write_register (argreg++, struct_addr);
2721 }
2722
2723 /* Now load as many as possible of the first arguments into
2724 registers, and push the rest onto the stack. Loop thru args
2725 from first to last. */
2726 for (argnum = 0; argnum < nargs; argnum++)
2727 {
2728 const gdb_byte *val;
2729 struct value *arg = args[argnum];
2730 struct type *arg_type = check_typedef (value_type (arg));
2731 int len = TYPE_LENGTH (arg_type);
2732 enum type_code typecode = TYPE_CODE (arg_type);
2733
2734 if (mips_debug)
2735 fprintf_unfiltered (gdb_stdlog,
2736 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2737 argnum + 1, len, (int) typecode);
2738
2739 val = value_contents (arg);
2740
2741 if (fp_register_arg_p (typecode, arg_type)
2742 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2743 {
2744 /* This is a floating point value that fits entirely
2745 in a single register. */
2746 /* On 32 bit ABI's the float_argreg is further adjusted
2747 above to ensure that it is even register aligned. */
2748 LONGEST regval = extract_unsigned_integer (val, len);
2749 if (mips_debug)
2750 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2751 float_argreg, phex (regval, len));
2752 write_register (float_argreg++, regval);
2753
2754 if (mips_debug)
2755 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2756 argreg, phex (regval, len));
2757 write_register (argreg, regval);
2758 argreg += 1;
2759 }
2760 else
2761 {
2762 /* Copy the argument to general registers or the stack in
2763 register-sized pieces. Large arguments are split between
2764 registers and stack. */
2765 /* Note: structs whose size is not a multiple of
2766 mips_abi_regsize() are treated specially: Irix cc passes
2767 them in registers where gcc sometimes puts them on the
2768 stack. For maximum compatibility, we will put them in
2769 both places. */
2770 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2771 && (len % mips_abi_regsize (gdbarch) != 0));
2772 /* Note: Floating-point values that didn't fit into an FP
2773 register are only written to memory. */
2774 while (len > 0)
2775 {
2776 /* Rememer if the argument was written to the stack. */
2777 int stack_used_p = 0;
2778 int partial_len = (len < mips_abi_regsize (gdbarch)
2779 ? len : mips_abi_regsize (gdbarch));
2780
2781 if (mips_debug)
2782 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2783 partial_len);
2784
2785 /* Write this portion of the argument to the stack. */
2786 if (argreg > MIPS_LAST_ARG_REGNUM
2787 || odd_sized_struct
2788 || fp_register_arg_p (typecode, arg_type))
2789 {
2790 /* Should shorter than int integer values be
2791 promoted to int before being stored? */
2792 int longword_offset = 0;
2793 CORE_ADDR addr;
2794 stack_used_p = 1;
2795 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2796 {
2797 if (mips_stack_argsize (gdbarch) == 8
2798 && (typecode == TYPE_CODE_INT
2799 || typecode == TYPE_CODE_PTR
2800 || typecode == TYPE_CODE_FLT) && len <= 4)
2801 longword_offset = mips_stack_argsize (gdbarch) - len;
2802 }
2803
2804 if (mips_debug)
2805 {
2806 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2807 paddr_nz (stack_offset));
2808 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2809 paddr_nz (longword_offset));
2810 }
2811
2812 addr = sp + stack_offset + longword_offset;
2813
2814 if (mips_debug)
2815 {
2816 int i;
2817 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2818 paddr_nz (addr));
2819 for (i = 0; i < partial_len; i++)
2820 {
2821 fprintf_unfiltered (gdb_stdlog, "%02x",
2822 val[i] & 0xff);
2823 }
2824 }
2825 write_memory (addr, val, partial_len);
2826 }
2827
2828 /* Note!!! This is NOT an else clause. Odd sized
2829 structs may go thru BOTH paths. Floating point
2830 arguments will not. */
2831 /* Write this portion of the argument to a general
2832 purpose register. */
2833 if (argreg <= MIPS_LAST_ARG_REGNUM
2834 && !fp_register_arg_p (typecode, arg_type))
2835 {
2836 LONGEST regval =
2837 extract_unsigned_integer (val, partial_len);
2838
2839 /* A non-floating-point argument being passed in a
2840 general register. If a struct or union, and if
2841 the remaining length is smaller than the register
2842 size, we have to adjust the register value on
2843 big endian targets.
2844
2845 It does not seem to be necessary to do the
2846 same for integral types.
2847
2848 cagney/2001-07-23: gdb/179: Also, GCC, when
2849 outputting LE O32 with sizeof (struct) <
2850 mips_abi_regsize(), generates a left shift as
2851 part of storing the argument in a register a
2852 register (the left shift isn't generated when
2853 sizeof (struct) >= mips_abi_regsize()). Since
2854 it is quite possible that this is GCC
2855 contradicting the LE/O32 ABI, GDB has not been
2856 adjusted to accommodate this. Either someone
2857 needs to demonstrate that the LE/O32 ABI
2858 specifies such a left shift OR this new ABI gets
2859 identified as such and GDB gets tweaked
2860 accordingly. */
2861
2862 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2863 && partial_len < mips_abi_regsize (gdbarch)
2864 && (typecode == TYPE_CODE_STRUCT ||
2865 typecode == TYPE_CODE_UNION))
2866 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
2867 TARGET_CHAR_BIT);
2868
2869 if (mips_debug)
2870 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2871 argreg,
2872 phex (regval,
2873 mips_abi_regsize (gdbarch)));
2874 write_register (argreg, regval);
2875 argreg++;
2876 }
2877
2878 len -= partial_len;
2879 val += partial_len;
2880
2881 /* Compute the the offset into the stack at which we
2882 will copy the next parameter.
2883
2884 In N32 (N64?), the stack_offset only needs to be
2885 adjusted when it has been used. */
2886
2887 if (stack_used_p)
2888 stack_offset += align_up (partial_len,
2889 mips_stack_argsize (gdbarch));
2890 }
2891 }
2892 if (mips_debug)
2893 fprintf_unfiltered (gdb_stdlog, "\n");
2894 }
2895
2896 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2897
2898 /* Return adjusted stack pointer. */
2899 return sp;
2900 }
2901
2902 static enum return_value_convention
2903 mips_n32n64_return_value (struct gdbarch *gdbarch,
2904 struct type *type, struct regcache *regcache,
2905 gdb_byte *readbuf, const gdb_byte *writebuf)
2906 {
2907 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2908 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2909 || TYPE_CODE (type) == TYPE_CODE_UNION
2910 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2911 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2912 return RETURN_VALUE_STRUCT_CONVENTION;
2913 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2914 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2915 {
2916 /* A floating-point value belongs in the least significant part
2917 of FP0. */
2918 if (mips_debug)
2919 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2920 mips_xfer_register (regcache,
2921 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2922 TYPE_LENGTH (type),
2923 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2924 return RETURN_VALUE_REGISTER_CONVENTION;
2925 }
2926 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2927 && TYPE_NFIELDS (type) <= 2
2928 && TYPE_NFIELDS (type) >= 1
2929 && ((TYPE_NFIELDS (type) == 1
2930 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2931 == TYPE_CODE_FLT))
2932 || (TYPE_NFIELDS (type) == 2
2933 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2934 == TYPE_CODE_FLT)
2935 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2936 == TYPE_CODE_FLT)))
2937 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2938 {
2939 /* A struct that contains one or two floats. Each value is part
2940 in the least significant part of their floating point
2941 register.. */
2942 int regnum;
2943 int field;
2944 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2945 field < TYPE_NFIELDS (type); field++, regnum += 2)
2946 {
2947 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2948 / TARGET_CHAR_BIT);
2949 if (mips_debug)
2950 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2951 offset);
2952 mips_xfer_register (regcache, NUM_REGS + regnum,
2953 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2954 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2955 }
2956 return RETURN_VALUE_REGISTER_CONVENTION;
2957 }
2958 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2959 || TYPE_CODE (type) == TYPE_CODE_UNION)
2960 {
2961 /* A structure or union. Extract the left justified value,
2962 regardless of the byte order. I.e. DO NOT USE
2963 mips_xfer_lower. */
2964 int offset;
2965 int regnum;
2966 for (offset = 0, regnum = MIPS_V0_REGNUM;
2967 offset < TYPE_LENGTH (type);
2968 offset += register_size (current_gdbarch, regnum), regnum++)
2969 {
2970 int xfer = register_size (current_gdbarch, regnum);
2971 if (offset + xfer > TYPE_LENGTH (type))
2972 xfer = TYPE_LENGTH (type) - offset;
2973 if (mips_debug)
2974 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
2975 offset, xfer, regnum);
2976 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2977 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
2978 }
2979 return RETURN_VALUE_REGISTER_CONVENTION;
2980 }
2981 else
2982 {
2983 /* A scalar extract each part but least-significant-byte
2984 justified. */
2985 int offset;
2986 int regnum;
2987 for (offset = 0, regnum = MIPS_V0_REGNUM;
2988 offset < TYPE_LENGTH (type);
2989 offset += register_size (current_gdbarch, regnum), regnum++)
2990 {
2991 int xfer = register_size (current_gdbarch, regnum);
2992 if (offset + xfer > TYPE_LENGTH (type))
2993 xfer = TYPE_LENGTH (type) - offset;
2994 if (mips_debug)
2995 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
2996 offset, xfer, regnum);
2997 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2998 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2999 }
3000 return RETURN_VALUE_REGISTER_CONVENTION;
3001 }
3002 }
3003
3004 /* O32 ABI stuff. */
3005
3006 static CORE_ADDR
3007 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3008 struct regcache *regcache, CORE_ADDR bp_addr,
3009 int nargs, struct value **args, CORE_ADDR sp,
3010 int struct_return, CORE_ADDR struct_addr)
3011 {
3012 int argreg;
3013 int float_argreg;
3014 int argnum;
3015 int len = 0;
3016 int stack_offset = 0;
3017 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3018 CORE_ADDR func_addr = find_function_addr (function, NULL);
3019
3020 /* For shared libraries, "t9" needs to point at the function
3021 address. */
3022 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3023
3024 /* Set the return address register to point to the entry point of
3025 the program, where a breakpoint lies in wait. */
3026 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3027
3028 /* First ensure that the stack and structure return address (if any)
3029 are properly aligned. The stack has to be at least 64-bit
3030 aligned even on 32-bit machines, because doubles must be 64-bit
3031 aligned. For n32 and n64, stack frames need to be 128-bit
3032 aligned, so we round to this widest known alignment. */
3033
3034 sp = align_down (sp, 16);
3035 struct_addr = align_down (struct_addr, 16);
3036
3037 /* Now make space on the stack for the args. */
3038 for (argnum = 0; argnum < nargs; argnum++)
3039 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
3040 mips_stack_argsize (gdbarch));
3041 sp -= align_up (len, 16);
3042
3043 if (mips_debug)
3044 fprintf_unfiltered (gdb_stdlog,
3045 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3046 paddr_nz (sp), (long) align_up (len, 16));
3047
3048 /* Initialize the integer and float register pointers. */
3049 argreg = MIPS_A0_REGNUM;
3050 float_argreg = mips_fpa0_regnum (current_gdbarch);
3051
3052 /* The struct_return pointer occupies the first parameter-passing reg. */
3053 if (struct_return)
3054 {
3055 if (mips_debug)
3056 fprintf_unfiltered (gdb_stdlog,
3057 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3058 argreg, paddr_nz (struct_addr));
3059 write_register (argreg++, struct_addr);
3060 stack_offset += mips_stack_argsize (gdbarch);
3061 }
3062
3063 /* Now load as many as possible of the first arguments into
3064 registers, and push the rest onto the stack. Loop thru args
3065 from first to last. */
3066 for (argnum = 0; argnum < nargs; argnum++)
3067 {
3068 const gdb_byte *val;
3069 struct value *arg = args[argnum];
3070 struct type *arg_type = check_typedef (value_type (arg));
3071 int len = TYPE_LENGTH (arg_type);
3072 enum type_code typecode = TYPE_CODE (arg_type);
3073
3074 if (mips_debug)
3075 fprintf_unfiltered (gdb_stdlog,
3076 "mips_o32_push_dummy_call: %d len=%d type=%d",
3077 argnum + 1, len, (int) typecode);
3078
3079 val = value_contents (arg);
3080
3081 /* 32-bit ABIs always start floating point arguments in an
3082 even-numbered floating point register. Round the FP register
3083 up before the check to see if there are any FP registers
3084 left. O32/O64 targets also pass the FP in the integer
3085 registers so also round up normal registers. */
3086 if (mips_abi_regsize (gdbarch) < 8
3087 && fp_register_arg_p (typecode, arg_type))
3088 {
3089 if ((float_argreg & 1))
3090 float_argreg++;
3091 }
3092
3093 /* Floating point arguments passed in registers have to be
3094 treated specially. On 32-bit architectures, doubles
3095 are passed in register pairs; the even register gets
3096 the low word, and the odd register gets the high word.
3097 On O32/O64, the first two floating point arguments are
3098 also copied to general registers, because MIPS16 functions
3099 don't use float registers for arguments. This duplication of
3100 arguments in general registers can't hurt non-MIPS16 functions
3101 because those registers are normally skipped. */
3102
3103 if (fp_register_arg_p (typecode, arg_type)
3104 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3105 {
3106 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3107 {
3108 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3109 unsigned long regval;
3110
3111 /* Write the low word of the double to the even register(s). */
3112 regval = extract_unsigned_integer (val + low_offset, 4);
3113 if (mips_debug)
3114 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3115 float_argreg, phex (regval, 4));
3116 write_register (float_argreg++, regval);
3117 if (mips_debug)
3118 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3119 argreg, phex (regval, 4));
3120 write_register (argreg++, regval);
3121
3122 /* Write the high word of the double to the odd register(s). */
3123 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3124 if (mips_debug)
3125 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3126 float_argreg, phex (regval, 4));
3127 write_register (float_argreg++, regval);
3128
3129 if (mips_debug)
3130 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3131 argreg, phex (regval, 4));
3132 write_register (argreg++, regval);
3133 }
3134 else
3135 {
3136 /* This is a floating point value that fits entirely
3137 in a single register. */
3138 /* On 32 bit ABI's the float_argreg is further adjusted
3139 above to ensure that it is even register aligned. */
3140 LONGEST regval = extract_unsigned_integer (val, len);
3141 if (mips_debug)
3142 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3143 float_argreg, phex (regval, len));
3144 write_register (float_argreg++, regval);
3145 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3146 registers for each argument. The below is (my
3147 guess) to ensure that the corresponding integer
3148 register has reserved the same space. */
3149 if (mips_debug)
3150 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3151 argreg, phex (regval, len));
3152 write_register (argreg, regval);
3153 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3154 }
3155 /* Reserve space for the FP register. */
3156 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3157 }
3158 else
3159 {
3160 /* Copy the argument to general registers or the stack in
3161 register-sized pieces. Large arguments are split between
3162 registers and stack. */
3163 /* Note: structs whose size is not a multiple of
3164 mips_abi_regsize() are treated specially: Irix cc passes
3165 them in registers where gcc sometimes puts them on the
3166 stack. For maximum compatibility, we will put them in
3167 both places. */
3168 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3169 && (len % mips_abi_regsize (gdbarch) != 0));
3170 /* Structures should be aligned to eight bytes (even arg registers)
3171 on MIPS_ABI_O32, if their first member has double precision. */
3172 if (mips_abi_regsize (gdbarch) < 8
3173 && mips_type_needs_double_align (arg_type))
3174 {
3175 if ((argreg & 1))
3176 argreg++;
3177 }
3178 /* Note: Floating-point values that didn't fit into an FP
3179 register are only written to memory. */
3180 while (len > 0)
3181 {
3182 /* Remember if the argument was written to the stack. */
3183 int stack_used_p = 0;
3184 int partial_len = (len < mips_abi_regsize (gdbarch)
3185 ? len : mips_abi_regsize (gdbarch));
3186
3187 if (mips_debug)
3188 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3189 partial_len);
3190
3191 /* Write this portion of the argument to the stack. */
3192 if (argreg > MIPS_LAST_ARG_REGNUM
3193 || odd_sized_struct
3194 || fp_register_arg_p (typecode, arg_type))
3195 {
3196 /* Should shorter than int integer values be
3197 promoted to int before being stored? */
3198 int longword_offset = 0;
3199 CORE_ADDR addr;
3200 stack_used_p = 1;
3201 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3202 {
3203 if (mips_stack_argsize (gdbarch) == 8
3204 && (typecode == TYPE_CODE_INT
3205 || typecode == TYPE_CODE_PTR
3206 || typecode == TYPE_CODE_FLT) && len <= 4)
3207 longword_offset = mips_stack_argsize (gdbarch) - len;
3208 }
3209
3210 if (mips_debug)
3211 {
3212 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3213 paddr_nz (stack_offset));
3214 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3215 paddr_nz (longword_offset));
3216 }
3217
3218 addr = sp + stack_offset + longword_offset;
3219
3220 if (mips_debug)
3221 {
3222 int i;
3223 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3224 paddr_nz (addr));
3225 for (i = 0; i < partial_len; i++)
3226 {
3227 fprintf_unfiltered (gdb_stdlog, "%02x",
3228 val[i] & 0xff);
3229 }
3230 }
3231 write_memory (addr, val, partial_len);
3232 }
3233
3234 /* Note!!! This is NOT an else clause. Odd sized
3235 structs may go thru BOTH paths. Floating point
3236 arguments will not. */
3237 /* Write this portion of the argument to a general
3238 purpose register. */
3239 if (argreg <= MIPS_LAST_ARG_REGNUM
3240 && !fp_register_arg_p (typecode, arg_type))
3241 {
3242 LONGEST regval = extract_signed_integer (val, partial_len);
3243 /* Value may need to be sign extended, because
3244 mips_isa_regsize() != mips_abi_regsize(). */
3245
3246 /* A non-floating-point argument being passed in a
3247 general register. If a struct or union, and if
3248 the remaining length is smaller than the register
3249 size, we have to adjust the register value on
3250 big endian targets.
3251
3252 It does not seem to be necessary to do the
3253 same for integral types.
3254
3255 Also don't do this adjustment on O64 binaries.
3256
3257 cagney/2001-07-23: gdb/179: Also, GCC, when
3258 outputting LE O32 with sizeof (struct) <
3259 mips_abi_regsize(), generates a left shift as
3260 part of storing the argument in a register a
3261 register (the left shift isn't generated when
3262 sizeof (struct) >= mips_abi_regsize()). Since
3263 it is quite possible that this is GCC
3264 contradicting the LE/O32 ABI, GDB has not been
3265 adjusted to accommodate this. Either someone
3266 needs to demonstrate that the LE/O32 ABI
3267 specifies such a left shift OR this new ABI gets
3268 identified as such and GDB gets tweaked
3269 accordingly. */
3270
3271 if (mips_abi_regsize (gdbarch) < 8
3272 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3273 && partial_len < mips_abi_regsize (gdbarch)
3274 && (typecode == TYPE_CODE_STRUCT ||
3275 typecode == TYPE_CODE_UNION))
3276 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3277 TARGET_CHAR_BIT);
3278
3279 if (mips_debug)
3280 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3281 argreg,
3282 phex (regval,
3283 mips_abi_regsize (gdbarch)));
3284 write_register (argreg, regval);
3285 argreg++;
3286
3287 /* Prevent subsequent floating point arguments from
3288 being passed in floating point registers. */
3289 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3290 }
3291
3292 len -= partial_len;
3293 val += partial_len;
3294
3295 /* Compute the the offset into the stack at which we
3296 will copy the next parameter.
3297
3298 In older ABIs, the caller reserved space for
3299 registers that contained arguments. This was loosely
3300 refered to as their "home". Consequently, space is
3301 always allocated. */
3302
3303 stack_offset += align_up (partial_len,
3304 mips_stack_argsize (gdbarch));
3305 }
3306 }
3307 if (mips_debug)
3308 fprintf_unfiltered (gdb_stdlog, "\n");
3309 }
3310
3311 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3312
3313 /* Return adjusted stack pointer. */
3314 return sp;
3315 }
3316
3317 static enum return_value_convention
3318 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3319 struct regcache *regcache,
3320 gdb_byte *readbuf, const gdb_byte *writebuf)
3321 {
3322 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3323
3324 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3325 || TYPE_CODE (type) == TYPE_CODE_UNION
3326 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3327 return RETURN_VALUE_STRUCT_CONVENTION;
3328 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3329 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3330 {
3331 /* A single-precision floating-point value. It fits in the
3332 least significant part of FP0. */
3333 if (mips_debug)
3334 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3335 mips_xfer_register (regcache,
3336 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3337 TYPE_LENGTH (type),
3338 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3339 return RETURN_VALUE_REGISTER_CONVENTION;
3340 }
3341 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3342 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3343 {
3344 /* A double-precision floating-point value. The most
3345 significant part goes in FP1, and the least significant in
3346 FP0. */
3347 if (mips_debug)
3348 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3349 switch (TARGET_BYTE_ORDER)
3350 {
3351 case BFD_ENDIAN_LITTLE:
3352 mips_xfer_register (regcache,
3353 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3354 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3355 mips_xfer_register (regcache,
3356 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3357 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3358 break;
3359 case BFD_ENDIAN_BIG:
3360 mips_xfer_register (regcache,
3361 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3362 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3363 mips_xfer_register (regcache,
3364 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3365 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3366 break;
3367 default:
3368 internal_error (__FILE__, __LINE__, _("bad switch"));
3369 }
3370 return RETURN_VALUE_REGISTER_CONVENTION;
3371 }
3372 #if 0
3373 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3374 && TYPE_NFIELDS (type) <= 2
3375 && TYPE_NFIELDS (type) >= 1
3376 && ((TYPE_NFIELDS (type) == 1
3377 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3378 == TYPE_CODE_FLT))
3379 || (TYPE_NFIELDS (type) == 2
3380 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3381 == TYPE_CODE_FLT)
3382 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3383 == TYPE_CODE_FLT)))
3384 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3385 {
3386 /* A struct that contains one or two floats. Each value is part
3387 in the least significant part of their floating point
3388 register.. */
3389 gdb_byte reg[MAX_REGISTER_SIZE];
3390 int regnum;
3391 int field;
3392 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3393 field < TYPE_NFIELDS (type); field++, regnum += 2)
3394 {
3395 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3396 / TARGET_CHAR_BIT);
3397 if (mips_debug)
3398 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3399 offset);
3400 mips_xfer_register (regcache, NUM_REGS + regnum,
3401 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3402 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3403 }
3404 return RETURN_VALUE_REGISTER_CONVENTION;
3405 }
3406 #endif
3407 #if 0
3408 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3409 || TYPE_CODE (type) == TYPE_CODE_UNION)
3410 {
3411 /* A structure or union. Extract the left justified value,
3412 regardless of the byte order. I.e. DO NOT USE
3413 mips_xfer_lower. */
3414 int offset;
3415 int regnum;
3416 for (offset = 0, regnum = MIPS_V0_REGNUM;
3417 offset < TYPE_LENGTH (type);
3418 offset += register_size (current_gdbarch, regnum), regnum++)
3419 {
3420 int xfer = register_size (current_gdbarch, regnum);
3421 if (offset + xfer > TYPE_LENGTH (type))
3422 xfer = TYPE_LENGTH (type) - offset;
3423 if (mips_debug)
3424 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3425 offset, xfer, regnum);
3426 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3427 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3428 }
3429 return RETURN_VALUE_REGISTER_CONVENTION;
3430 }
3431 #endif
3432 else
3433 {
3434 /* A scalar extract each part but least-significant-byte
3435 justified. o32 thinks registers are 4 byte, regardless of
3436 the ISA. mips_stack_argsize controls this. */
3437 int offset;
3438 int regnum;
3439 for (offset = 0, regnum = MIPS_V0_REGNUM;
3440 offset < TYPE_LENGTH (type);
3441 offset += mips_stack_argsize (gdbarch), regnum++)
3442 {
3443 int xfer = mips_stack_argsize (gdbarch);
3444 if (offset + xfer > TYPE_LENGTH (type))
3445 xfer = TYPE_LENGTH (type) - offset;
3446 if (mips_debug)
3447 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3448 offset, xfer, regnum);
3449 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3450 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3451 }
3452 return RETURN_VALUE_REGISTER_CONVENTION;
3453 }
3454 }
3455
3456 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3457 ABI. */
3458
3459 static CORE_ADDR
3460 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3461 struct regcache *regcache, CORE_ADDR bp_addr,
3462 int nargs,
3463 struct value **args, CORE_ADDR sp,
3464 int struct_return, CORE_ADDR struct_addr)
3465 {
3466 int argreg;
3467 int float_argreg;
3468 int argnum;
3469 int len = 0;
3470 int stack_offset = 0;
3471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3472 CORE_ADDR func_addr = find_function_addr (function, NULL);
3473
3474 /* For shared libraries, "t9" needs to point at the function
3475 address. */
3476 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3477
3478 /* Set the return address register to point to the entry point of
3479 the program, where a breakpoint lies in wait. */
3480 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3481
3482 /* First ensure that the stack and structure return address (if any)
3483 are properly aligned. The stack has to be at least 64-bit
3484 aligned even on 32-bit machines, because doubles must be 64-bit
3485 aligned. For n32 and n64, stack frames need to be 128-bit
3486 aligned, so we round to this widest known alignment. */
3487
3488 sp = align_down (sp, 16);
3489 struct_addr = align_down (struct_addr, 16);
3490
3491 /* Now make space on the stack for the args. */
3492 for (argnum = 0; argnum < nargs; argnum++)
3493 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
3494 mips_stack_argsize (gdbarch));
3495 sp -= align_up (len, 16);
3496
3497 if (mips_debug)
3498 fprintf_unfiltered (gdb_stdlog,
3499 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3500 paddr_nz (sp), (long) align_up (len, 16));
3501
3502 /* Initialize the integer and float register pointers. */
3503 argreg = MIPS_A0_REGNUM;
3504 float_argreg = mips_fpa0_regnum (current_gdbarch);
3505
3506 /* The struct_return pointer occupies the first parameter-passing reg. */
3507 if (struct_return)
3508 {
3509 if (mips_debug)
3510 fprintf_unfiltered (gdb_stdlog,
3511 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3512 argreg, paddr_nz (struct_addr));
3513 write_register (argreg++, struct_addr);
3514 stack_offset += mips_stack_argsize (gdbarch);
3515 }
3516
3517 /* Now load as many as possible of the first arguments into
3518 registers, and push the rest onto the stack. Loop thru args
3519 from first to last. */
3520 for (argnum = 0; argnum < nargs; argnum++)
3521 {
3522 const gdb_byte *val;
3523 struct value *arg = args[argnum];
3524 struct type *arg_type = check_typedef (value_type (arg));
3525 int len = TYPE_LENGTH (arg_type);
3526 enum type_code typecode = TYPE_CODE (arg_type);
3527
3528 if (mips_debug)
3529 fprintf_unfiltered (gdb_stdlog,
3530 "mips_o64_push_dummy_call: %d len=%d type=%d",
3531 argnum + 1, len, (int) typecode);
3532
3533 val = value_contents (arg);
3534
3535 /* 32-bit ABIs always start floating point arguments in an
3536 even-numbered floating point register. Round the FP register
3537 up before the check to see if there are any FP registers
3538 left. O32/O64 targets also pass the FP in the integer
3539 registers so also round up normal registers. */
3540 if (mips_abi_regsize (gdbarch) < 8
3541 && fp_register_arg_p (typecode, arg_type))
3542 {
3543 if ((float_argreg & 1))
3544 float_argreg++;
3545 }
3546
3547 /* Floating point arguments passed in registers have to be
3548 treated specially. On 32-bit architectures, doubles
3549 are passed in register pairs; the even register gets
3550 the low word, and the odd register gets the high word.
3551 On O32/O64, the first two floating point arguments are
3552 also copied to general registers, because MIPS16 functions
3553 don't use float registers for arguments. This duplication of
3554 arguments in general registers can't hurt non-MIPS16 functions
3555 because those registers are normally skipped. */
3556
3557 if (fp_register_arg_p (typecode, arg_type)
3558 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3559 {
3560 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3561 {
3562 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3563 unsigned long regval;
3564
3565 /* Write the low word of the double to the even register(s). */
3566 regval = extract_unsigned_integer (val + low_offset, 4);
3567 if (mips_debug)
3568 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3569 float_argreg, phex (regval, 4));
3570 write_register (float_argreg++, regval);
3571 if (mips_debug)
3572 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3573 argreg, phex (regval, 4));
3574 write_register (argreg++, regval);
3575
3576 /* Write the high word of the double to the odd register(s). */
3577 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3578 if (mips_debug)
3579 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3580 float_argreg, phex (regval, 4));
3581 write_register (float_argreg++, regval);
3582
3583 if (mips_debug)
3584 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3585 argreg, phex (regval, 4));
3586 write_register (argreg++, regval);
3587 }
3588 else
3589 {
3590 /* This is a floating point value that fits entirely
3591 in a single register. */
3592 /* On 32 bit ABI's the float_argreg is further adjusted
3593 above to ensure that it is even register aligned. */
3594 LONGEST regval = extract_unsigned_integer (val, len);
3595 if (mips_debug)
3596 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3597 float_argreg, phex (regval, len));
3598 write_register (float_argreg++, regval);
3599 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3600 registers for each argument. The below is (my
3601 guess) to ensure that the corresponding integer
3602 register has reserved the same space. */
3603 if (mips_debug)
3604 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3605 argreg, phex (regval, len));
3606 write_register (argreg, regval);
3607 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3608 }
3609 /* Reserve space for the FP register. */
3610 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3611 }
3612 else
3613 {
3614 /* Copy the argument to general registers or the stack in
3615 register-sized pieces. Large arguments are split between
3616 registers and stack. */
3617 /* Note: structs whose size is not a multiple of
3618 mips_abi_regsize() are treated specially: Irix cc passes
3619 them in registers where gcc sometimes puts them on the
3620 stack. For maximum compatibility, we will put them in
3621 both places. */
3622 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3623 && (len % mips_abi_regsize (gdbarch) != 0));
3624 /* Structures should be aligned to eight bytes (even arg registers)
3625 on MIPS_ABI_O32, if their first member has double precision. */
3626 if (mips_abi_regsize (gdbarch) < 8
3627 && mips_type_needs_double_align (arg_type))
3628 {
3629 if ((argreg & 1))
3630 argreg++;
3631 }
3632 /* Note: Floating-point values that didn't fit into an FP
3633 register are only written to memory. */
3634 while (len > 0)
3635 {
3636 /* Remember if the argument was written to the stack. */
3637 int stack_used_p = 0;
3638 int partial_len = (len < mips_abi_regsize (gdbarch)
3639 ? len : mips_abi_regsize (gdbarch));
3640
3641 if (mips_debug)
3642 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3643 partial_len);
3644
3645 /* Write this portion of the argument to the stack. */
3646 if (argreg > MIPS_LAST_ARG_REGNUM
3647 || odd_sized_struct
3648 || fp_register_arg_p (typecode, arg_type))
3649 {
3650 /* Should shorter than int integer values be
3651 promoted to int before being stored? */
3652 int longword_offset = 0;
3653 CORE_ADDR addr;
3654 stack_used_p = 1;
3655 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3656 {
3657 if (mips_stack_argsize (gdbarch) == 8
3658 && (typecode == TYPE_CODE_INT
3659 || typecode == TYPE_CODE_PTR
3660 || typecode == TYPE_CODE_FLT) && len <= 4)
3661 longword_offset = mips_stack_argsize (gdbarch) - len;
3662 }
3663
3664 if (mips_debug)
3665 {
3666 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3667 paddr_nz (stack_offset));
3668 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3669 paddr_nz (longword_offset));
3670 }
3671
3672 addr = sp + stack_offset + longword_offset;
3673
3674 if (mips_debug)
3675 {
3676 int i;
3677 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3678 paddr_nz (addr));
3679 for (i = 0; i < partial_len; i++)
3680 {
3681 fprintf_unfiltered (gdb_stdlog, "%02x",
3682 val[i] & 0xff);
3683 }
3684 }
3685 write_memory (addr, val, partial_len);
3686 }
3687
3688 /* Note!!! This is NOT an else clause. Odd sized
3689 structs may go thru BOTH paths. Floating point
3690 arguments will not. */
3691 /* Write this portion of the argument to a general
3692 purpose register. */
3693 if (argreg <= MIPS_LAST_ARG_REGNUM
3694 && !fp_register_arg_p (typecode, arg_type))
3695 {
3696 LONGEST regval = extract_signed_integer (val, partial_len);
3697 /* Value may need to be sign extended, because
3698 mips_isa_regsize() != mips_abi_regsize(). */
3699
3700 /* A non-floating-point argument being passed in a
3701 general register. If a struct or union, and if
3702 the remaining length is smaller than the register
3703 size, we have to adjust the register value on
3704 big endian targets.
3705
3706 It does not seem to be necessary to do the
3707 same for integral types.
3708
3709 Also don't do this adjustment on O64 binaries.
3710
3711 cagney/2001-07-23: gdb/179: Also, GCC, when
3712 outputting LE O32 with sizeof (struct) <
3713 mips_abi_regsize(), generates a left shift as
3714 part of storing the argument in a register a
3715 register (the left shift isn't generated when
3716 sizeof (struct) >= mips_abi_regsize()). Since
3717 it is quite possible that this is GCC
3718 contradicting the LE/O32 ABI, GDB has not been
3719 adjusted to accommodate this. Either someone
3720 needs to demonstrate that the LE/O32 ABI
3721 specifies such a left shift OR this new ABI gets
3722 identified as such and GDB gets tweaked
3723 accordingly. */
3724
3725 if (mips_abi_regsize (gdbarch) < 8
3726 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3727 && partial_len < mips_abi_regsize (gdbarch)
3728 && (typecode == TYPE_CODE_STRUCT ||
3729 typecode == TYPE_CODE_UNION))
3730 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3731 TARGET_CHAR_BIT);
3732
3733 if (mips_debug)
3734 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3735 argreg,
3736 phex (regval,
3737 mips_abi_regsize (gdbarch)));
3738 write_register (argreg, regval);
3739 argreg++;
3740
3741 /* Prevent subsequent floating point arguments from
3742 being passed in floating point registers. */
3743 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3744 }
3745
3746 len -= partial_len;
3747 val += partial_len;
3748
3749 /* Compute the the offset into the stack at which we
3750 will copy the next parameter.
3751
3752 In older ABIs, the caller reserved space for
3753 registers that contained arguments. This was loosely
3754 refered to as their "home". Consequently, space is
3755 always allocated. */
3756
3757 stack_offset += align_up (partial_len,
3758 mips_stack_argsize (gdbarch));
3759 }
3760 }
3761 if (mips_debug)
3762 fprintf_unfiltered (gdb_stdlog, "\n");
3763 }
3764
3765 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3766
3767 /* Return adjusted stack pointer. */
3768 return sp;
3769 }
3770
3771 static enum return_value_convention
3772 mips_o64_return_value (struct gdbarch *gdbarch,
3773 struct type *type, struct regcache *regcache,
3774 gdb_byte *readbuf, const gdb_byte *writebuf)
3775 {
3776 return RETURN_VALUE_STRUCT_CONVENTION;
3777 }
3778
3779 /* Floating point register management.
3780
3781 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3782 64bit operations, these early MIPS cpus treat fp register pairs
3783 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3784 registers and offer a compatibility mode that emulates the MIPS2 fp
3785 model. When operating in MIPS2 fp compat mode, later cpu's split
3786 double precision floats into two 32-bit chunks and store them in
3787 consecutive fp regs. To display 64-bit floats stored in this
3788 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3789 Throw in user-configurable endianness and you have a real mess.
3790
3791 The way this works is:
3792 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3793 double-precision value will be split across two logical registers.
3794 The lower-numbered logical register will hold the low-order bits,
3795 regardless of the processor's endianness.
3796 - If we are on a 64-bit processor, and we are looking for a
3797 single-precision value, it will be in the low ordered bits
3798 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3799 save slot in memory.
3800 - If we are in 64-bit mode, everything is straightforward.
3801
3802 Note that this code only deals with "live" registers at the top of the
3803 stack. We will attempt to deal with saved registers later, when
3804 the raw/cooked register interface is in place. (We need a general
3805 interface that can deal with dynamic saved register sizes -- fp
3806 regs could be 32 bits wide in one frame and 64 on the frame above
3807 and below). */
3808
3809 static struct type *
3810 mips_float_register_type (void)
3811 {
3812 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3813 return builtin_type_ieee_single_big;
3814 else
3815 return builtin_type_ieee_single_little;
3816 }
3817
3818 static struct type *
3819 mips_double_register_type (void)
3820 {
3821 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3822 return builtin_type_ieee_double_big;
3823 else
3824 return builtin_type_ieee_double_little;
3825 }
3826
3827 /* Copy a 32-bit single-precision value from the current frame
3828 into rare_buffer. */
3829
3830 static void
3831 mips_read_fp_register_single (struct frame_info *frame, int regno,
3832 gdb_byte *rare_buffer)
3833 {
3834 int raw_size = register_size (current_gdbarch, regno);
3835 gdb_byte *raw_buffer = alloca (raw_size);
3836
3837 if (!frame_register_read (frame, regno, raw_buffer))
3838 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3839 if (raw_size == 8)
3840 {
3841 /* We have a 64-bit value for this register. Find the low-order
3842 32 bits. */
3843 int offset;
3844
3845 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3846 offset = 4;
3847 else
3848 offset = 0;
3849
3850 memcpy (rare_buffer, raw_buffer + offset, 4);
3851 }
3852 else
3853 {
3854 memcpy (rare_buffer, raw_buffer, 4);
3855 }
3856 }
3857
3858 /* Copy a 64-bit double-precision value from the current frame into
3859 rare_buffer. This may include getting half of it from the next
3860 register. */
3861
3862 static void
3863 mips_read_fp_register_double (struct frame_info *frame, int regno,
3864 gdb_byte *rare_buffer)
3865 {
3866 int raw_size = register_size (current_gdbarch, regno);
3867
3868 if (raw_size == 8 && !mips2_fp_compat ())
3869 {
3870 /* We have a 64-bit value for this register, and we should use
3871 all 64 bits. */
3872 if (!frame_register_read (frame, regno, rare_buffer))
3873 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3874 }
3875 else
3876 {
3877 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
3878 internal_error (__FILE__, __LINE__,
3879 _("mips_read_fp_register_double: bad access to "
3880 "odd-numbered FP register"));
3881
3882 /* mips_read_fp_register_single will find the correct 32 bits from
3883 each register. */
3884 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3885 {
3886 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3887 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3888 }
3889 else
3890 {
3891 mips_read_fp_register_single (frame, regno, rare_buffer);
3892 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
3893 }
3894 }
3895 }
3896
3897 static void
3898 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3899 int regnum)
3900 { /* do values for FP (float) regs */
3901 gdb_byte *raw_buffer;
3902 double doub, flt1; /* doubles extracted from raw hex data */
3903 int inv1, inv2;
3904
3905 raw_buffer = alloca (2 * register_size (current_gdbarch,
3906 mips_regnum (current_gdbarch)->fp0));
3907
3908 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3909 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3910 "");
3911
3912 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
3913 {
3914 /* 4-byte registers: Print hex and floating. Also print even
3915 numbered registers as doubles. */
3916 mips_read_fp_register_single (frame, regnum, raw_buffer);
3917 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3918
3919 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3920 file);
3921
3922 fprintf_filtered (file, " flt: ");
3923 if (inv1)
3924 fprintf_filtered (file, " <invalid float> ");
3925 else
3926 fprintf_filtered (file, "%-17.9g", flt1);
3927
3928 if (regnum % 2 == 0)
3929 {
3930 mips_read_fp_register_double (frame, regnum, raw_buffer);
3931 doub = unpack_double (mips_double_register_type (), raw_buffer,
3932 &inv2);
3933
3934 fprintf_filtered (file, " dbl: ");
3935 if (inv2)
3936 fprintf_filtered (file, "<invalid double>");
3937 else
3938 fprintf_filtered (file, "%-24.17g", doub);
3939 }
3940 }
3941 else
3942 {
3943 /* Eight byte registers: print each one as hex, float and double. */
3944 mips_read_fp_register_single (frame, regnum, raw_buffer);
3945 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3946
3947 mips_read_fp_register_double (frame, regnum, raw_buffer);
3948 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3949
3950
3951 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
3952 file);
3953
3954 fprintf_filtered (file, " flt: ");
3955 if (inv1)
3956 fprintf_filtered (file, "<invalid float>");
3957 else
3958 fprintf_filtered (file, "%-17.9g", flt1);
3959
3960 fprintf_filtered (file, " dbl: ");
3961 if (inv2)
3962 fprintf_filtered (file, "<invalid double>");
3963 else
3964 fprintf_filtered (file, "%-24.17g", doub);
3965 }
3966 }
3967
3968 static void
3969 mips_print_register (struct ui_file *file, struct frame_info *frame,
3970 int regnum, int all)
3971 {
3972 struct gdbarch *gdbarch = get_frame_arch (frame);
3973 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
3974 int offset;
3975
3976 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
3977 {
3978 mips_print_fp_register (file, frame, regnum);
3979 return;
3980 }
3981
3982 /* Get the data in raw format. */
3983 if (!frame_register_read (frame, regnum, raw_buffer))
3984 {
3985 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
3986 return;
3987 }
3988
3989 fputs_filtered (REGISTER_NAME (regnum), file);
3990
3991 /* The problem with printing numeric register names (r26, etc.) is that
3992 the user can't use them on input. Probably the best solution is to
3993 fix it so that either the numeric or the funky (a2, etc.) names
3994 are accepted on input. */
3995 if (regnum < MIPS_NUMREGS)
3996 fprintf_filtered (file, "(r%d): ", regnum);
3997 else
3998 fprintf_filtered (file, ": ");
3999
4000 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4001 offset =
4002 register_size (current_gdbarch,
4003 regnum) - register_size (current_gdbarch, regnum);
4004 else
4005 offset = 0;
4006
4007 print_scalar_formatted (raw_buffer + offset,
4008 gdbarch_register_type (gdbarch, regnum), 'x', 0,
4009 file);
4010 }
4011
4012 /* Replacement for generic do_registers_info.
4013 Print regs in pretty columns. */
4014
4015 static int
4016 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4017 int regnum)
4018 {
4019 fprintf_filtered (file, " ");
4020 mips_print_fp_register (file, frame, regnum);
4021 fprintf_filtered (file, "\n");
4022 return regnum + 1;
4023 }
4024
4025
4026 /* Print a row's worth of GP (int) registers, with name labels above */
4027
4028 static int
4029 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4030 int start_regnum)
4031 {
4032 struct gdbarch *gdbarch = get_frame_arch (frame);
4033 /* do values for GP (int) regs */
4034 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4035 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4036 int col, byte;
4037 int regnum;
4038
4039 /* For GP registers, we print a separate row of names above the vals */
4040 fprintf_filtered (file, " ");
4041 for (col = 0, regnum = start_regnum;
4042 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4043 {
4044 if (*REGISTER_NAME (regnum) == '\0')
4045 continue; /* unused register */
4046 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4047 TYPE_CODE_FLT)
4048 break; /* end the row: reached FP register */
4049 fprintf_filtered (file,
4050 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4051 REGISTER_NAME (regnum));
4052 col++;
4053 }
4054 /* print the R0 to R31 names */
4055 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4056 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4057 else
4058 fprintf_filtered (file, "\n ");
4059
4060 /* now print the values in hex, 4 or 8 to the row */
4061 for (col = 0, regnum = start_regnum;
4062 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4063 {
4064 if (*REGISTER_NAME (regnum) == '\0')
4065 continue; /* unused register */
4066 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4067 TYPE_CODE_FLT)
4068 break; /* end row: reached FP register */
4069 /* OK: get the data in raw format. */
4070 if (!frame_register_read (frame, regnum, raw_buffer))
4071 error (_("can't read register %d (%s)"), regnum, REGISTER_NAME (regnum));
4072 /* pad small registers */
4073 for (byte = 0;
4074 byte < (mips_abi_regsize (current_gdbarch)
4075 - register_size (current_gdbarch, regnum)); byte++)
4076 printf_filtered (" ");
4077 /* Now print the register value in hex, endian order. */
4078 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4079 for (byte =
4080 register_size (current_gdbarch,
4081 regnum) - register_size (current_gdbarch, regnum);
4082 byte < register_size (current_gdbarch, regnum); byte++)
4083 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4084 else
4085 for (byte = register_size (current_gdbarch, regnum) - 1;
4086 byte >= 0; byte--)
4087 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4088 fprintf_filtered (file, " ");
4089 col++;
4090 }
4091 if (col > 0) /* ie. if we actually printed anything... */
4092 fprintf_filtered (file, "\n");
4093
4094 return regnum;
4095 }
4096
4097 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4098
4099 static void
4100 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4101 struct frame_info *frame, int regnum, int all)
4102 {
4103 if (regnum != -1) /* do one specified register */
4104 {
4105 gdb_assert (regnum >= NUM_REGS);
4106 if (*(REGISTER_NAME (regnum)) == '\0')
4107 error (_("Not a valid register for the current processor type"));
4108
4109 mips_print_register (file, frame, regnum, 0);
4110 fprintf_filtered (file, "\n");
4111 }
4112 else
4113 /* do all (or most) registers */
4114 {
4115 regnum = NUM_REGS;
4116 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4117 {
4118 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4119 TYPE_CODE_FLT)
4120 {
4121 if (all) /* true for "INFO ALL-REGISTERS" command */
4122 regnum = print_fp_register_row (file, frame, regnum);
4123 else
4124 regnum += MIPS_NUMREGS; /* skip floating point regs */
4125 }
4126 else
4127 regnum = print_gp_register_row (file, frame, regnum);
4128 }
4129 }
4130 }
4131
4132 /* Is this a branch with a delay slot? */
4133
4134 static int
4135 is_delayed (unsigned long insn)
4136 {
4137 int i;
4138 for (i = 0; i < NUMOPCODES; ++i)
4139 if (mips_opcodes[i].pinfo != INSN_MACRO
4140 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4141 break;
4142 return (i < NUMOPCODES
4143 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4144 | INSN_COND_BRANCH_DELAY
4145 | INSN_COND_BRANCH_LIKELY)));
4146 }
4147
4148 int
4149 mips_single_step_through_delay (struct gdbarch *gdbarch,
4150 struct frame_info *frame)
4151 {
4152 CORE_ADDR pc = get_frame_pc (frame);
4153 gdb_byte buf[MIPS_INSN32_SIZE];
4154
4155 /* There is no branch delay slot on MIPS16. */
4156 if (mips_pc_is_mips16 (pc))
4157 return 0;
4158
4159 if (!breakpoint_here_p (pc + 4))
4160 return 0;
4161
4162 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4163 /* If error reading memory, guess that it is not a delayed
4164 branch. */
4165 return 0;
4166 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4167 }
4168
4169 /* To skip prologues, I use this predicate. Returns either PC itself
4170 if the code at PC does not look like a function prologue; otherwise
4171 returns an address that (if we're lucky) follows the prologue. If
4172 LENIENT, then we must skip everything which is involved in setting
4173 up the frame (it's OK to skip more, just so long as we don't skip
4174 anything which might clobber the registers which are being saved.
4175 We must skip more in the case where part of the prologue is in the
4176 delay slot of a non-prologue instruction). */
4177
4178 static CORE_ADDR
4179 mips_skip_prologue (CORE_ADDR pc)
4180 {
4181 CORE_ADDR limit_pc;
4182 CORE_ADDR func_addr;
4183
4184 /* See if we can determine the end of the prologue via the symbol table.
4185 If so, then return either PC, or the PC after the prologue, whichever
4186 is greater. */
4187 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4188 {
4189 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4190 if (post_prologue_pc != 0)
4191 return max (pc, post_prologue_pc);
4192 }
4193
4194 /* Can't determine prologue from the symbol table, need to examine
4195 instructions. */
4196
4197 /* Find an upper limit on the function prologue using the debug
4198 information. If the debug information could not be used to provide
4199 that bound, then use an arbitrary large number as the upper bound. */
4200 limit_pc = skip_prologue_using_sal (pc);
4201 if (limit_pc == 0)
4202 limit_pc = pc + 100; /* Magic. */
4203
4204 if (mips_pc_is_mips16 (pc))
4205 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4206 else
4207 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4208 }
4209
4210 /* Root of all "set mips "/"show mips " commands. This will eventually be
4211 used for all MIPS-specific commands. */
4212
4213 static void
4214 show_mips_command (char *args, int from_tty)
4215 {
4216 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4217 }
4218
4219 static void
4220 set_mips_command (char *args, int from_tty)
4221 {
4222 printf_unfiltered
4223 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4224 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4225 }
4226
4227 /* Commands to show/set the MIPS FPU type. */
4228
4229 static void
4230 show_mipsfpu_command (char *args, int from_tty)
4231 {
4232 char *fpu;
4233 switch (MIPS_FPU_TYPE)
4234 {
4235 case MIPS_FPU_SINGLE:
4236 fpu = "single-precision";
4237 break;
4238 case MIPS_FPU_DOUBLE:
4239 fpu = "double-precision";
4240 break;
4241 case MIPS_FPU_NONE:
4242 fpu = "absent (none)";
4243 break;
4244 default:
4245 internal_error (__FILE__, __LINE__, _("bad switch"));
4246 }
4247 if (mips_fpu_type_auto)
4248 printf_unfiltered
4249 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4250 fpu);
4251 else
4252 printf_unfiltered
4253 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4254 }
4255
4256
4257 static void
4258 set_mipsfpu_command (char *args, int from_tty)
4259 {
4260 printf_unfiltered
4261 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4262 show_mipsfpu_command (args, from_tty);
4263 }
4264
4265 static void
4266 set_mipsfpu_single_command (char *args, int from_tty)
4267 {
4268 struct gdbarch_info info;
4269 gdbarch_info_init (&info);
4270 mips_fpu_type = MIPS_FPU_SINGLE;
4271 mips_fpu_type_auto = 0;
4272 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4273 instead of relying on globals. Doing that would let generic code
4274 handle the search for this specific architecture. */
4275 if (!gdbarch_update_p (info))
4276 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4277 }
4278
4279 static void
4280 set_mipsfpu_double_command (char *args, int from_tty)
4281 {
4282 struct gdbarch_info info;
4283 gdbarch_info_init (&info);
4284 mips_fpu_type = MIPS_FPU_DOUBLE;
4285 mips_fpu_type_auto = 0;
4286 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4287 instead of relying on globals. Doing that would let generic code
4288 handle the search for this specific architecture. */
4289 if (!gdbarch_update_p (info))
4290 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4291 }
4292
4293 static void
4294 set_mipsfpu_none_command (char *args, int from_tty)
4295 {
4296 struct gdbarch_info info;
4297 gdbarch_info_init (&info);
4298 mips_fpu_type = MIPS_FPU_NONE;
4299 mips_fpu_type_auto = 0;
4300 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4301 instead of relying on globals. Doing that would let generic code
4302 handle the search for this specific architecture. */
4303 if (!gdbarch_update_p (info))
4304 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4305 }
4306
4307 static void
4308 set_mipsfpu_auto_command (char *args, int from_tty)
4309 {
4310 mips_fpu_type_auto = 1;
4311 }
4312
4313 /* Attempt to identify the particular processor model by reading the
4314 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4315 the relevant processor still exists (it dates back to '94) and
4316 secondly this is not the way to do this. The processor type should
4317 be set by forcing an architecture change. */
4318
4319 void
4320 deprecated_mips_set_processor_regs_hack (void)
4321 {
4322 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4323 CORE_ADDR prid;
4324
4325 prid = read_register (MIPS_PRID_REGNUM);
4326
4327 if ((prid & ~0xf) == 0x700)
4328 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4329 }
4330
4331 /* Just like reinit_frame_cache, but with the right arguments to be
4332 callable as an sfunc. */
4333
4334 static void
4335 reinit_frame_cache_sfunc (char *args, int from_tty,
4336 struct cmd_list_element *c)
4337 {
4338 reinit_frame_cache ();
4339 }
4340
4341 static int
4342 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4343 {
4344 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4345
4346 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4347 disassembler needs to be able to locally determine the ISA, and
4348 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4349 work. */
4350 if (mips_pc_is_mips16 (memaddr))
4351 info->mach = bfd_mach_mips16;
4352
4353 /* Round down the instruction address to the appropriate boundary. */
4354 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4355
4356 /* Set the disassembler options. */
4357 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4358 {
4359 /* Set up the disassembler info, so that we get the right
4360 register names from libopcodes. */
4361 if (tdep->mips_abi == MIPS_ABI_N32)
4362 info->disassembler_options = "gpr-names=n32";
4363 else
4364 info->disassembler_options = "gpr-names=64";
4365 info->flavour = bfd_target_elf_flavour;
4366 }
4367 else
4368 /* This string is not recognized explicitly by the disassembler,
4369 but it tells the disassembler to not try to guess the ABI from
4370 the bfd elf headers, such that, if the user overrides the ABI
4371 of a program linked as NewABI, the disassembly will follow the
4372 register naming conventions specified by the user. */
4373 info->disassembler_options = "gpr-names=32";
4374
4375 /* Call the appropriate disassembler based on the target endian-ness. */
4376 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4377 return print_insn_big_mips (memaddr, info);
4378 else
4379 return print_insn_little_mips (memaddr, info);
4380 }
4381
4382 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4383 counter value to determine whether a 16- or 32-bit breakpoint should be
4384 used. It returns a pointer to a string of bytes that encode a breakpoint
4385 instruction, stores the length of the string to *lenptr, and adjusts pc
4386 (if necessary) to point to the actual memory location where the
4387 breakpoint should be inserted. */
4388
4389 static const gdb_byte *
4390 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4391 {
4392 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4393 {
4394 if (mips_pc_is_mips16 (*pcptr))
4395 {
4396 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4397 *pcptr = unmake_mips16_addr (*pcptr);
4398 *lenptr = sizeof (mips16_big_breakpoint);
4399 return mips16_big_breakpoint;
4400 }
4401 else
4402 {
4403 /* The IDT board uses an unusual breakpoint value, and
4404 sometimes gets confused when it sees the usual MIPS
4405 breakpoint instruction. */
4406 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4407 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4408 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4409
4410 *lenptr = sizeof (big_breakpoint);
4411
4412 if (strcmp (target_shortname, "mips") == 0)
4413 return idt_big_breakpoint;
4414 else if (strcmp (target_shortname, "ddb") == 0
4415 || strcmp (target_shortname, "pmon") == 0
4416 || strcmp (target_shortname, "lsi") == 0)
4417 return pmon_big_breakpoint;
4418 else
4419 return big_breakpoint;
4420 }
4421 }
4422 else
4423 {
4424 if (mips_pc_is_mips16 (*pcptr))
4425 {
4426 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4427 *pcptr = unmake_mips16_addr (*pcptr);
4428 *lenptr = sizeof (mips16_little_breakpoint);
4429 return mips16_little_breakpoint;
4430 }
4431 else
4432 {
4433 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4434 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4435 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4436
4437 *lenptr = sizeof (little_breakpoint);
4438
4439 if (strcmp (target_shortname, "mips") == 0)
4440 return idt_little_breakpoint;
4441 else if (strcmp (target_shortname, "ddb") == 0
4442 || strcmp (target_shortname, "pmon") == 0
4443 || strcmp (target_shortname, "lsi") == 0)
4444 return pmon_little_breakpoint;
4445 else
4446 return little_breakpoint;
4447 }
4448 }
4449 }
4450
4451 /* If PC is in a mips16 call or return stub, return the address of the target
4452 PC, which is either the callee or the caller. There are several
4453 cases which must be handled:
4454
4455 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4456 target PC is in $31 ($ra).
4457 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4458 and the target PC is in $2.
4459 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4460 before the jal instruction, this is effectively a call stub
4461 and the the target PC is in $2. Otherwise this is effectively
4462 a return stub and the target PC is in $18.
4463
4464 See the source code for the stubs in gcc/config/mips/mips16.S for
4465 gory details. */
4466
4467 static CORE_ADDR
4468 mips_skip_trampoline_code (CORE_ADDR pc)
4469 {
4470 char *name;
4471 CORE_ADDR start_addr;
4472
4473 /* Find the starting address and name of the function containing the PC. */
4474 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4475 return 0;
4476
4477 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4478 target PC is in $31 ($ra). */
4479 if (strcmp (name, "__mips16_ret_sf") == 0
4480 || strcmp (name, "__mips16_ret_df") == 0)
4481 return read_signed_register (MIPS_RA_REGNUM);
4482
4483 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4484 {
4485 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4486 and the target PC is in $2. */
4487 if (name[19] >= '0' && name[19] <= '9')
4488 return read_signed_register (2);
4489
4490 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4491 before the jal instruction, this is effectively a call stub
4492 and the the target PC is in $2. Otherwise this is effectively
4493 a return stub and the target PC is in $18. */
4494 else if (name[19] == 's' || name[19] == 'd')
4495 {
4496 if (pc == start_addr)
4497 {
4498 /* Check if the target of the stub is a compiler-generated
4499 stub. Such a stub for a function bar might have a name
4500 like __fn_stub_bar, and might look like this:
4501 mfc1 $4,$f13
4502 mfc1 $5,$f12
4503 mfc1 $6,$f15
4504 mfc1 $7,$f14
4505 la $1,bar (becomes a lui/addiu pair)
4506 jr $1
4507 So scan down to the lui/addi and extract the target
4508 address from those two instructions. */
4509
4510 CORE_ADDR target_pc = read_signed_register (2);
4511 ULONGEST inst;
4512 int i;
4513
4514 /* See if the name of the target function is __fn_stub_*. */
4515 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4516 0)
4517 return target_pc;
4518 if (strncmp (name, "__fn_stub_", 10) != 0
4519 && strcmp (name, "etext") != 0
4520 && strcmp (name, "_etext") != 0)
4521 return target_pc;
4522
4523 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4524 The limit on the search is arbitrarily set to 20
4525 instructions. FIXME. */
4526 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4527 {
4528 inst = mips_fetch_instruction (target_pc);
4529 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4530 pc = (inst << 16) & 0xffff0000; /* high word */
4531 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4532 return pc | (inst & 0xffff); /* low word */
4533 }
4534
4535 /* Couldn't find the lui/addui pair, so return stub address. */
4536 return target_pc;
4537 }
4538 else
4539 /* This is the 'return' part of a call stub. The return
4540 address is in $r18. */
4541 return read_signed_register (18);
4542 }
4543 }
4544 return 0; /* not a stub */
4545 }
4546
4547 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4548 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4549
4550 static int
4551 mips_stab_reg_to_regnum (int num)
4552 {
4553 int regnum;
4554 if (num >= 0 && num < 32)
4555 regnum = num;
4556 else if (num >= 38 && num < 70)
4557 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4558 else if (num == 70)
4559 regnum = mips_regnum (current_gdbarch)->hi;
4560 else if (num == 71)
4561 regnum = mips_regnum (current_gdbarch)->lo;
4562 else
4563 /* This will hopefully (eventually) provoke a warning. Should
4564 we be calling complaint() here? */
4565 return NUM_REGS + NUM_PSEUDO_REGS;
4566 return NUM_REGS + regnum;
4567 }
4568
4569
4570 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4571 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4572
4573 static int
4574 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4575 {
4576 int regnum;
4577 if (num >= 0 && num < 32)
4578 regnum = num;
4579 else if (num >= 32 && num < 64)
4580 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4581 else if (num == 64)
4582 regnum = mips_regnum (current_gdbarch)->hi;
4583 else if (num == 65)
4584 regnum = mips_regnum (current_gdbarch)->lo;
4585 else
4586 /* This will hopefully (eventually) provoke a warning. Should we
4587 be calling complaint() here? */
4588 return NUM_REGS + NUM_PSEUDO_REGS;
4589 return NUM_REGS + regnum;
4590 }
4591
4592 static int
4593 mips_register_sim_regno (int regnum)
4594 {
4595 /* Only makes sense to supply raw registers. */
4596 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4597 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4598 decide if it is valid. Should instead define a standard sim/gdb
4599 register numbering scheme. */
4600 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4601 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4602 return regnum;
4603 else
4604 return LEGACY_SIM_REGNO_IGNORE;
4605 }
4606
4607
4608 /* Convert an integer into an address. By first converting the value
4609 into a pointer and then extracting it signed, the address is
4610 guarenteed to be correctly sign extended. */
4611
4612 static CORE_ADDR
4613 mips_integer_to_address (struct gdbarch *gdbarch,
4614 struct type *type, const gdb_byte *buf)
4615 {
4616 gdb_byte *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
4617 LONGEST val = unpack_long (type, buf);
4618 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
4619 return extract_signed_integer (tmp,
4620 TYPE_LENGTH (builtin_type_void_data_ptr));
4621 }
4622
4623 static void
4624 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4625 {
4626 enum mips_abi *abip = (enum mips_abi *) obj;
4627 const char *name = bfd_get_section_name (abfd, sect);
4628
4629 if (*abip != MIPS_ABI_UNKNOWN)
4630 return;
4631
4632 if (strncmp (name, ".mdebug.", 8) != 0)
4633 return;
4634
4635 if (strcmp (name, ".mdebug.abi32") == 0)
4636 *abip = MIPS_ABI_O32;
4637 else if (strcmp (name, ".mdebug.abiN32") == 0)
4638 *abip = MIPS_ABI_N32;
4639 else if (strcmp (name, ".mdebug.abi64") == 0)
4640 *abip = MIPS_ABI_N64;
4641 else if (strcmp (name, ".mdebug.abiO64") == 0)
4642 *abip = MIPS_ABI_O64;
4643 else if (strcmp (name, ".mdebug.eabi32") == 0)
4644 *abip = MIPS_ABI_EABI32;
4645 else if (strcmp (name, ".mdebug.eabi64") == 0)
4646 *abip = MIPS_ABI_EABI64;
4647 else
4648 warning (_("unsupported ABI %s."), name + 8);
4649 }
4650
4651 static enum mips_abi
4652 global_mips_abi (void)
4653 {
4654 int i;
4655
4656 for (i = 0; mips_abi_strings[i] != NULL; i++)
4657 if (mips_abi_strings[i] == mips_abi_string)
4658 return (enum mips_abi) i;
4659
4660 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4661 }
4662
4663 static struct gdbarch *
4664 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4665 {
4666 struct gdbarch *gdbarch;
4667 struct gdbarch_tdep *tdep;
4668 int elf_flags;
4669 enum mips_abi mips_abi, found_abi, wanted_abi;
4670 int num_regs;
4671 enum mips_fpu_type fpu_type;
4672
4673 /* First of all, extract the elf_flags, if available. */
4674 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4675 elf_flags = elf_elfheader (info.abfd)->e_flags;
4676 else if (arches != NULL)
4677 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
4678 else
4679 elf_flags = 0;
4680 if (gdbarch_debug)
4681 fprintf_unfiltered (gdb_stdlog,
4682 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
4683
4684 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4685 switch ((elf_flags & EF_MIPS_ABI))
4686 {
4687 case E_MIPS_ABI_O32:
4688 found_abi = MIPS_ABI_O32;
4689 break;
4690 case E_MIPS_ABI_O64:
4691 found_abi = MIPS_ABI_O64;
4692 break;
4693 case E_MIPS_ABI_EABI32:
4694 found_abi = MIPS_ABI_EABI32;
4695 break;
4696 case E_MIPS_ABI_EABI64:
4697 found_abi = MIPS_ABI_EABI64;
4698 break;
4699 default:
4700 if ((elf_flags & EF_MIPS_ABI2))
4701 found_abi = MIPS_ABI_N32;
4702 else
4703 found_abi = MIPS_ABI_UNKNOWN;
4704 break;
4705 }
4706
4707 /* GCC creates a pseudo-section whose name describes the ABI. */
4708 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4709 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
4710
4711 /* If we have no useful BFD information, use the ABI from the last
4712 MIPS architecture (if there is one). */
4713 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4714 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4715
4716 /* Try the architecture for any hint of the correct ABI. */
4717 if (found_abi == MIPS_ABI_UNKNOWN
4718 && info.bfd_arch_info != NULL
4719 && info.bfd_arch_info->arch == bfd_arch_mips)
4720 {
4721 switch (info.bfd_arch_info->mach)
4722 {
4723 case bfd_mach_mips3900:
4724 found_abi = MIPS_ABI_EABI32;
4725 break;
4726 case bfd_mach_mips4100:
4727 case bfd_mach_mips5000:
4728 found_abi = MIPS_ABI_EABI64;
4729 break;
4730 case bfd_mach_mips8000:
4731 case bfd_mach_mips10000:
4732 /* On Irix, ELF64 executables use the N64 ABI. The
4733 pseudo-sections which describe the ABI aren't present
4734 on IRIX. (Even for executables created by gcc.) */
4735 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4736 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4737 found_abi = MIPS_ABI_N64;
4738 else
4739 found_abi = MIPS_ABI_N32;
4740 break;
4741 }
4742 }
4743
4744 if (gdbarch_debug)
4745 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4746 found_abi);
4747
4748 /* What has the user specified from the command line? */
4749 wanted_abi = global_mips_abi ();
4750 if (gdbarch_debug)
4751 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4752 wanted_abi);
4753
4754 /* Now that we have found what the ABI for this binary would be,
4755 check whether the user is overriding it. */
4756 if (wanted_abi != MIPS_ABI_UNKNOWN)
4757 mips_abi = wanted_abi;
4758 else if (found_abi != MIPS_ABI_UNKNOWN)
4759 mips_abi = found_abi;
4760 else
4761 mips_abi = MIPS_ABI_O32;
4762 if (gdbarch_debug)
4763 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4764 mips_abi);
4765
4766 /* Also used when doing an architecture lookup. */
4767 if (gdbarch_debug)
4768 fprintf_unfiltered (gdb_stdlog,
4769 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4770 mips64_transfers_32bit_regs_p);
4771
4772 /* Determine the MIPS FPU type. */
4773 if (!mips_fpu_type_auto)
4774 fpu_type = mips_fpu_type;
4775 else if (info.bfd_arch_info != NULL
4776 && info.bfd_arch_info->arch == bfd_arch_mips)
4777 switch (info.bfd_arch_info->mach)
4778 {
4779 case bfd_mach_mips3900:
4780 case bfd_mach_mips4100:
4781 case bfd_mach_mips4111:
4782 case bfd_mach_mips4120:
4783 fpu_type = MIPS_FPU_NONE;
4784 break;
4785 case bfd_mach_mips4650:
4786 fpu_type = MIPS_FPU_SINGLE;
4787 break;
4788 default:
4789 fpu_type = MIPS_FPU_DOUBLE;
4790 break;
4791 }
4792 else if (arches != NULL)
4793 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4794 else
4795 fpu_type = MIPS_FPU_DOUBLE;
4796 if (gdbarch_debug)
4797 fprintf_unfiltered (gdb_stdlog,
4798 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
4799
4800 /* try to find a pre-existing architecture */
4801 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4802 arches != NULL;
4803 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4804 {
4805 /* MIPS needs to be pedantic about which ABI the object is
4806 using. */
4807 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4808 continue;
4809 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4810 continue;
4811 /* Need to be pedantic about which register virtual size is
4812 used. */
4813 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4814 != mips64_transfers_32bit_regs_p)
4815 continue;
4816 /* Be pedantic about which FPU is selected. */
4817 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4818 continue;
4819 return arches->gdbarch;
4820 }
4821
4822 /* Need a new architecture. Fill in a target specific vector. */
4823 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4824 gdbarch = gdbarch_alloc (&info, tdep);
4825 tdep->elf_flags = elf_flags;
4826 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
4827 tdep->found_abi = found_abi;
4828 tdep->mips_abi = mips_abi;
4829 tdep->mips_fpu_type = fpu_type;
4830
4831 /* Initially set everything according to the default ABI/ISA. */
4832 set_gdbarch_short_bit (gdbarch, 16);
4833 set_gdbarch_int_bit (gdbarch, 32);
4834 set_gdbarch_float_bit (gdbarch, 32);
4835 set_gdbarch_double_bit (gdbarch, 64);
4836 set_gdbarch_long_double_bit (gdbarch, 64);
4837 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4838 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4839 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
4840
4841 set_gdbarch_elf_make_msymbol_special (gdbarch,
4842 mips_elf_make_msymbol_special);
4843
4844 /* Fill in the OS dependant register numbers and names. */
4845 {
4846 const char **reg_names;
4847 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4848 struct mips_regnum);
4849 if (info.osabi == GDB_OSABI_IRIX)
4850 {
4851 regnum->fp0 = 32;
4852 regnum->pc = 64;
4853 regnum->cause = 65;
4854 regnum->badvaddr = 66;
4855 regnum->hi = 67;
4856 regnum->lo = 68;
4857 regnum->fp_control_status = 69;
4858 regnum->fp_implementation_revision = 70;
4859 num_regs = 71;
4860 reg_names = mips_irix_reg_names;
4861 }
4862 else
4863 {
4864 regnum->lo = MIPS_EMBED_LO_REGNUM;
4865 regnum->hi = MIPS_EMBED_HI_REGNUM;
4866 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4867 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4868 regnum->pc = MIPS_EMBED_PC_REGNUM;
4869 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4870 regnum->fp_control_status = 70;
4871 regnum->fp_implementation_revision = 71;
4872 num_regs = 90;
4873 if (info.bfd_arch_info != NULL
4874 && info.bfd_arch_info->mach == bfd_mach_mips3900)
4875 reg_names = mips_tx39_reg_names;
4876 else
4877 reg_names = mips_generic_reg_names;
4878 }
4879 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4880 replaced by read_pc? */
4881 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
4882 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
4883 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
4884 set_gdbarch_num_regs (gdbarch, num_regs);
4885 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
4886 set_gdbarch_register_name (gdbarch, mips_register_name);
4887 tdep->mips_processor_reg_names = reg_names;
4888 tdep->regnum = regnum;
4889 }
4890
4891 switch (mips_abi)
4892 {
4893 case MIPS_ABI_O32:
4894 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
4895 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4896 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4897 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4898 tdep->default_mask_address_p = 0;
4899 set_gdbarch_long_bit (gdbarch, 32);
4900 set_gdbarch_ptr_bit (gdbarch, 32);
4901 set_gdbarch_long_long_bit (gdbarch, 64);
4902 break;
4903 case MIPS_ABI_O64:
4904 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
4905 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4906 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4907 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4908 tdep->default_mask_address_p = 0;
4909 set_gdbarch_long_bit (gdbarch, 32);
4910 set_gdbarch_ptr_bit (gdbarch, 32);
4911 set_gdbarch_long_long_bit (gdbarch, 64);
4912 break;
4913 case MIPS_ABI_EABI32:
4914 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4915 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4916 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4917 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4918 tdep->default_mask_address_p = 0;
4919 set_gdbarch_long_bit (gdbarch, 32);
4920 set_gdbarch_ptr_bit (gdbarch, 32);
4921 set_gdbarch_long_long_bit (gdbarch, 64);
4922 break;
4923 case MIPS_ABI_EABI64:
4924 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4925 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4926 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4927 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4928 tdep->default_mask_address_p = 0;
4929 set_gdbarch_long_bit (gdbarch, 64);
4930 set_gdbarch_ptr_bit (gdbarch, 64);
4931 set_gdbarch_long_long_bit (gdbarch, 64);
4932 break;
4933 case MIPS_ABI_N32:
4934 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
4935 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4936 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4937 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4938 tdep->default_mask_address_p = 0;
4939 set_gdbarch_long_bit (gdbarch, 32);
4940 set_gdbarch_ptr_bit (gdbarch, 32);
4941 set_gdbarch_long_long_bit (gdbarch, 64);
4942 set_gdbarch_long_double_bit (gdbarch, 128);
4943 set_gdbarch_long_double_format (gdbarch,
4944 &floatformat_n32n64_long_double_big);
4945 break;
4946 case MIPS_ABI_N64:
4947 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
4948 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4949 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4950 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4951 tdep->default_mask_address_p = 0;
4952 set_gdbarch_long_bit (gdbarch, 64);
4953 set_gdbarch_ptr_bit (gdbarch, 64);
4954 set_gdbarch_long_long_bit (gdbarch, 64);
4955 set_gdbarch_long_double_bit (gdbarch, 128);
4956 set_gdbarch_long_double_format (gdbarch,
4957 &floatformat_n32n64_long_double_big);
4958 break;
4959 default:
4960 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
4961 }
4962
4963 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4964 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4965 comment:
4966
4967 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4968 flag in object files because to do so would make it impossible to
4969 link with libraries compiled without "-gp32". This is
4970 unnecessarily restrictive.
4971
4972 We could solve this problem by adding "-gp32" multilibs to gcc,
4973 but to set this flag before gcc is built with such multilibs will
4974 break too many systems.''
4975
4976 But even more unhelpfully, the default linker output target for
4977 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4978 for 64-bit programs - you need to change the ABI to change this,
4979 and not all gcc targets support that currently. Therefore using
4980 this flag to detect 32-bit mode would do the wrong thing given
4981 the current gcc - it would make GDB treat these 64-bit programs
4982 as 32-bit programs by default. */
4983
4984 set_gdbarch_read_pc (gdbarch, mips_read_pc);
4985 set_gdbarch_write_pc (gdbarch, mips_write_pc);
4986 set_gdbarch_read_sp (gdbarch, mips_read_sp);
4987
4988 /* Add/remove bits from an address. The MIPS needs be careful to
4989 ensure that all 32 bit addresses are sign extended to 64 bits. */
4990 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
4991
4992 /* Unwind the frame. */
4993 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
4994 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
4995
4996 /* Map debug register numbers onto internal register numbers. */
4997 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4998 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
4999 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5000 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5001 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5002 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5003 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5004 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5005
5006 /* MIPS version of CALL_DUMMY */
5007
5008 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5009 replaced by a command, and all targets will default to on stack
5010 (regardless of the stack's execute status). */
5011 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5012 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5013
5014 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5015 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5016 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5017
5018 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5019 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5020
5021 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5022
5023 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5024 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5025 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5026
5027 set_gdbarch_register_type (gdbarch, mips_register_type);
5028
5029 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5030
5031 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5032
5033 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5034 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5035 need to all be folded into the target vector. Since they are
5036 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5037 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5038 is sitting on? */
5039 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5040
5041 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5042
5043 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5044
5045 /* Hook in OS ABI-specific overrides, if they have been registered. */
5046 gdbarch_init_osabi (info, gdbarch);
5047
5048 /* Unwind the frame. */
5049 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5050 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5051 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5052 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5053 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5054 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5055
5056 return gdbarch;
5057 }
5058
5059 static void
5060 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5061 {
5062 struct gdbarch_info info;
5063
5064 /* Force the architecture to update, and (if it's a MIPS architecture)
5065 mips_gdbarch_init will take care of the rest. */
5066 gdbarch_info_init (&info);
5067 gdbarch_update_p (info);
5068 }
5069
5070 /* Print out which MIPS ABI is in use. */
5071
5072 static void
5073 show_mips_abi (struct ui_file *file,
5074 int from_tty,
5075 struct cmd_list_element *ignored_cmd,
5076 const char *ignored_value)
5077 {
5078 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5079 fprintf_filtered
5080 (file,
5081 "The MIPS ABI is unknown because the current architecture "
5082 "is not MIPS.\n");
5083 else
5084 {
5085 enum mips_abi global_abi = global_mips_abi ();
5086 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5087 const char *actual_abi_str = mips_abi_strings[actual_abi];
5088
5089 if (global_abi == MIPS_ABI_UNKNOWN)
5090 fprintf_filtered
5091 (file,
5092 "The MIPS ABI is set automatically (currently \"%s\").\n",
5093 actual_abi_str);
5094 else if (global_abi == actual_abi)
5095 fprintf_filtered
5096 (file,
5097 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5098 actual_abi_str);
5099 else
5100 {
5101 /* Probably shouldn't happen... */
5102 fprintf_filtered
5103 (file,
5104 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5105 actual_abi_str, mips_abi_strings[global_abi]);
5106 }
5107 }
5108 }
5109
5110 static void
5111 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5112 {
5113 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5114 if (tdep != NULL)
5115 {
5116 int ef_mips_arch;
5117 int ef_mips_32bitmode;
5118 /* determine the ISA */
5119 switch (tdep->elf_flags & EF_MIPS_ARCH)
5120 {
5121 case E_MIPS_ARCH_1:
5122 ef_mips_arch = 1;
5123 break;
5124 case E_MIPS_ARCH_2:
5125 ef_mips_arch = 2;
5126 break;
5127 case E_MIPS_ARCH_3:
5128 ef_mips_arch = 3;
5129 break;
5130 case E_MIPS_ARCH_4:
5131 ef_mips_arch = 4;
5132 break;
5133 default:
5134 ef_mips_arch = 0;
5135 break;
5136 }
5137 /* determine the size of a pointer */
5138 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5139 fprintf_unfiltered (file,
5140 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5141 tdep->elf_flags);
5142 fprintf_unfiltered (file,
5143 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5144 ef_mips_32bitmode);
5145 fprintf_unfiltered (file,
5146 "mips_dump_tdep: ef_mips_arch = %d\n",
5147 ef_mips_arch);
5148 fprintf_unfiltered (file,
5149 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5150 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5151 fprintf_unfiltered (file,
5152 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5153 mips_mask_address_p (tdep),
5154 tdep->default_mask_address_p);
5155 }
5156 fprintf_unfiltered (file,
5157 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5158 MIPS_DEFAULT_FPU_TYPE,
5159 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5160 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5161 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5162 : "???"));
5163 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5164 fprintf_unfiltered (file,
5165 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5166 MIPS_FPU_TYPE,
5167 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5168 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5169 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5170 : "???"));
5171 fprintf_unfiltered (file,
5172 "mips_dump_tdep: mips_stack_argsize() = %d\n",
5173 mips_stack_argsize (current_gdbarch));
5174 }
5175
5176 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5177
5178 void
5179 _initialize_mips_tdep (void)
5180 {
5181 static struct cmd_list_element *mipsfpulist = NULL;
5182 struct cmd_list_element *c;
5183
5184 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5185 if (MIPS_ABI_LAST + 1
5186 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5187 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5188
5189 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5190
5191 mips_pdr_data = register_objfile_data ();
5192
5193 /* Add root prefix command for all "set mips"/"show mips" commands */
5194 add_prefix_cmd ("mips", no_class, set_mips_command,
5195 _("Various MIPS specific commands."),
5196 &setmipscmdlist, "set mips ", 0, &setlist);
5197
5198 add_prefix_cmd ("mips", no_class, show_mips_command,
5199 _("Various MIPS specific commands."),
5200 &showmipscmdlist, "show mips ", 0, &showlist);
5201
5202 /* Allow the user to override the saved register size. */
5203 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
5204 size_enums, &mips_abi_regsize_string, _("\
5205 Set size of general purpose registers saved on the stack."), _("\
5206 Show size of general purpose registers saved on the stack."), _("\
5207 This option can be set to one of:\n\
5208 32 - Force GDB to treat saved GP registers as 32-bit\n\
5209 64 - Force GDB to treat saved GP registers as 64-bit\n\
5210 auto - Allow GDB to use the target's default setting or autodetect the\n\
5211 saved GP register size from information contained in the\n\
5212 executable (default)."),
5213 NULL,
5214 NULL, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
5215 &setmipscmdlist, &showmipscmdlist);
5216
5217 /* Allow the user to override the argument stack size. */
5218 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
5219 size_enums, &mips_stack_argsize_string, _("\
5220 Set the amount of stack space reserved for each argument."), _("\
5221 Show the amount of stack space reserved for each argument."), _("\
5222 This option can be set to one of:\n\
5223 32 - Force GDB to allocate 32-bit chunks per argument\n\
5224 64 - Force GDB to allocate 64-bit chunks per argument\n\
5225 auto - Allow GDB to determine the correct setting from the current\n\
5226 target and executable (default)"),
5227 NULL,
5228 NULL, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
5229 &setmipscmdlist, &showmipscmdlist);
5230
5231 /* Allow the user to override the ABI. */
5232 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5233 &mips_abi_string, _("\
5234 Set the MIPS ABI used by this program."), _("\
5235 Show the MIPS ABI used by this program."), _("\
5236 This option can be set to one of:\n\
5237 auto - the default ABI associated with the current binary\n\
5238 o32\n\
5239 o64\n\
5240 n32\n\
5241 n64\n\
5242 eabi32\n\
5243 eabi64"),
5244 mips_abi_update,
5245 show_mips_abi,
5246 &setmipscmdlist, &showmipscmdlist);
5247
5248 /* Let the user turn off floating point and set the fence post for
5249 heuristic_proc_start. */
5250
5251 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5252 _("Set use of MIPS floating-point coprocessor."),
5253 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5254 add_cmd ("single", class_support, set_mipsfpu_single_command,
5255 _("Select single-precision MIPS floating-point coprocessor."),
5256 &mipsfpulist);
5257 add_cmd ("double", class_support, set_mipsfpu_double_command,
5258 _("Select double-precision MIPS floating-point coprocessor."),
5259 &mipsfpulist);
5260 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5261 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5262 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5263 add_cmd ("none", class_support, set_mipsfpu_none_command,
5264 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5265 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5266 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5267 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5268 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5269 _("Select MIPS floating-point coprocessor automatically."),
5270 &mipsfpulist);
5271 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5272 _("Show current use of MIPS floating-point coprocessor target."),
5273 &showlist);
5274
5275 /* We really would like to have both "0" and "unlimited" work, but
5276 command.c doesn't deal with that. So make it a var_zinteger
5277 because the user can always use "999999" or some such for unlimited. */
5278 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5279 &heuristic_fence_post, _("\
5280 Set the distance searched for the start of a function."), _("\
5281 Show the distance searched for the start of a function."), _("\
5282 If you are debugging a stripped executable, GDB needs to search through the\n\
5283 program for the start of a function. This command sets the distance of the\n\
5284 search. The only need to set it is when debugging a stripped executable."),
5285 reinit_frame_cache_sfunc,
5286 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5287 &setlist, &showlist);
5288
5289 /* Allow the user to control whether the upper bits of 64-bit
5290 addresses should be zeroed. */
5291 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5292 &mask_address_var, _("\
5293 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5294 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5295 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5296 allow GDB to determine the correct value."),
5297 NULL, show_mask_address,
5298 &setmipscmdlist, &showmipscmdlist);
5299
5300 /* Allow the user to control the size of 32 bit registers within the
5301 raw remote packet. */
5302 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5303 &mips64_transfers_32bit_regs_p, _("\
5304 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5305 _("\
5306 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5307 _("\
5308 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5309 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5310 64 bits for others. Use \"off\" to disable compatibility mode"),
5311 set_mips64_transfers_32bit_regs,
5312 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5313 &setlist, &showlist);
5314
5315 /* Debug this files internals. */
5316 add_setshow_zinteger_cmd ("mips", class_maintenance,
5317 &mips_debug, _("\
5318 Set mips debugging."), _("\
5319 Show mips debugging."), _("\
5320 When non-zero, mips specific debugging is enabled."),
5321 NULL,
5322 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5323 &setdebuglist, &showdebuglist);
5324 }
This page took 0.643924 seconds and 4 git commands to generate.