2003-08-28 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "value.h"
33 #include "gdbcmd.h"
34 #include "language.h"
35 #include "gdbcore.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "gdbtypes.h"
39 #include "target.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "osabi.h"
43 #include "mips-tdep.h"
44 #include "block.h"
45 #include "reggroups.h"
46 #include "opcode/mips.h"
47 #include "elf/mips.h"
48 #include "elf-bfd.h"
49 #include "symcat.h"
50 #include "sim-regno.h"
51
52 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
53 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
54
55 /* A useful bit in the CP0 status register (PS_REGNUM). */
56 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
57 #define ST0_FR (1 << 26)
58
59 /* The sizes of floating point registers. */
60
61 enum
62 {
63 MIPS_FPU_SINGLE_REGSIZE = 4,
64 MIPS_FPU_DOUBLE_REGSIZE = 8
65 };
66
67
68 static const char *mips_abi_string;
69
70 static const char *mips_abi_strings[] = {
71 "auto",
72 "n32",
73 "o32",
74 "n64",
75 "o64",
76 "eabi32",
77 "eabi64",
78 NULL
79 };
80
81 struct frame_extra_info
82 {
83 mips_extra_func_info_t proc_desc;
84 int num_args;
85 };
86
87 /* Various MIPS ISA options (related to stack analysis) can be
88 overridden dynamically. Establish an enum/array for managing
89 them. */
90
91 static const char size_auto[] = "auto";
92 static const char size_32[] = "32";
93 static const char size_64[] = "64";
94
95 static const char *size_enums[] = {
96 size_auto,
97 size_32,
98 size_64,
99 0
100 };
101
102 /* Some MIPS boards don't support floating point while others only
103 support single-precision floating-point operations. See also
104 FP_REGISTER_DOUBLE. */
105
106 enum mips_fpu_type
107 {
108 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
109 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
110 MIPS_FPU_NONE /* No floating point. */
111 };
112
113 #ifndef MIPS_DEFAULT_FPU_TYPE
114 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
115 #endif
116 static int mips_fpu_type_auto = 1;
117 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
118
119 static int mips_debug = 0;
120
121 /* MIPS specific per-architecture information */
122 struct gdbarch_tdep
123 {
124 /* from the elf header */
125 int elf_flags;
126
127 /* mips options */
128 enum mips_abi mips_abi;
129 enum mips_abi found_abi;
130 enum mips_fpu_type mips_fpu_type;
131 int mips_last_arg_regnum;
132 int mips_last_fp_arg_regnum;
133 int mips_default_saved_regsize;
134 int mips_fp_register_double;
135 int mips_default_stack_argsize;
136 int gdb_target_is_mips64;
137 int default_mask_address_p;
138 };
139
140 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
141 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
142
143 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
144
145 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
146
147 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
148
149 /* Return the currently configured (or set) saved register size. */
150
151 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
152
153 static const char *mips_saved_regsize_string = size_auto;
154
155 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
156
157 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
158 functions to test, set, or clear bit 0 of addresses. */
159
160 static CORE_ADDR
161 is_mips16_addr (CORE_ADDR addr)
162 {
163 return ((addr) & 1);
164 }
165
166 static CORE_ADDR
167 make_mips16_addr (CORE_ADDR addr)
168 {
169 return ((addr) | 1);
170 }
171
172 static CORE_ADDR
173 unmake_mips16_addr (CORE_ADDR addr)
174 {
175 return ((addr) & ~1);
176 }
177
178 /* Return the contents of register REGNUM as a signed integer. */
179
180 static LONGEST
181 read_signed_register (int regnum)
182 {
183 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
184 deprecated_read_register_gen (regnum, buf);
185 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
186 }
187
188 static LONGEST
189 read_signed_register_pid (int regnum, ptid_t ptid)
190 {
191 ptid_t save_ptid;
192 LONGEST retval;
193
194 if (ptid_equal (ptid, inferior_ptid))
195 return read_signed_register (regnum);
196
197 save_ptid = inferior_ptid;
198
199 inferior_ptid = ptid;
200
201 retval = read_signed_register (regnum);
202
203 inferior_ptid = save_ptid;
204
205 return retval;
206 }
207
208 /* Return the MIPS ABI associated with GDBARCH. */
209 enum mips_abi
210 mips_abi (struct gdbarch *gdbarch)
211 {
212 return gdbarch_tdep (gdbarch)->mips_abi;
213 }
214
215 static unsigned int
216 mips_saved_regsize (void)
217 {
218 if (mips_saved_regsize_string == size_auto)
219 return MIPS_DEFAULT_SAVED_REGSIZE;
220 else if (mips_saved_regsize_string == size_64)
221 return 8;
222 else /* if (mips_saved_regsize_string == size_32) */
223 return 4;
224 }
225
226 /* Functions for setting and testing a bit in a minimal symbol that
227 marks it as 16-bit function. The MSB of the minimal symbol's
228 "info" field is used for this purpose. This field is already
229 being used to store the symbol size, so the assumption is
230 that the symbol size cannot exceed 2^31.
231
232 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
233 i.e. refers to a 16-bit function, and sets a "special" bit in a
234 minimal symbol to mark it as a 16-bit function
235
236 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
237 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
238 the "info" field with the "special" bit masked out */
239
240 static void
241 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
242 {
243 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
244 {
245 MSYMBOL_INFO (msym) = (char *)
246 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
247 SYMBOL_VALUE_ADDRESS (msym) |= 1;
248 }
249 }
250
251 static int
252 msymbol_is_special (struct minimal_symbol *msym)
253 {
254 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
255 }
256
257 static long
258 msymbol_size (struct minimal_symbol *msym)
259 {
260 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
261 }
262
263 /* XFER a value from the big/little/left end of the register.
264 Depending on the size of the value it might occupy the entire
265 register or just part of it. Make an allowance for this, aligning
266 things accordingly. */
267
268 static void
269 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
270 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
271 int buf_offset)
272 {
273 bfd_byte reg[MAX_REGISTER_SIZE];
274 int reg_offset = 0;
275 gdb_assert (reg_num >= NUM_REGS);
276 /* Need to transfer the left or right part of the register, based on
277 the targets byte order. */
278 switch (endian)
279 {
280 case BFD_ENDIAN_BIG:
281 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
282 break;
283 case BFD_ENDIAN_LITTLE:
284 reg_offset = 0;
285 break;
286 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
287 reg_offset = 0;
288 break;
289 default:
290 internal_error (__FILE__, __LINE__, "bad switch");
291 }
292 if (mips_debug)
293 fprintf_unfiltered (gdb_stderr,
294 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
295 reg_num, reg_offset, buf_offset, length);
296 if (mips_debug && out != NULL)
297 {
298 int i;
299 fprintf_unfiltered (gdb_stdlog, "out ");
300 for (i = 0; i < length; i++)
301 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
302 }
303 if (in != NULL)
304 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
305 if (out != NULL)
306 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
307 if (mips_debug && in != NULL)
308 {
309 int i;
310 fprintf_unfiltered (gdb_stdlog, "in ");
311 for (i = 0; i < length; i++)
312 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
313 }
314 if (mips_debug)
315 fprintf_unfiltered (gdb_stdlog, "\n");
316 }
317
318 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
319 compatiblity mode. A return value of 1 means that we have
320 physical 64-bit registers, but should treat them as 32-bit registers. */
321
322 static int
323 mips2_fp_compat (void)
324 {
325 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
326 meaningful. */
327 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
328 return 0;
329
330 #if 0
331 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
332 in all the places we deal with FP registers. PR gdb/413. */
333 /* Otherwise check the FR bit in the status register - it controls
334 the FP compatiblity mode. If it is clear we are in compatibility
335 mode. */
336 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
337 return 1;
338 #endif
339
340 return 0;
341 }
342
343 /* Indicate that the ABI makes use of double-precision registers
344 provided by the FPU (rather than combining pairs of registers to
345 form double-precision values). Do not use "TARGET_IS_MIPS64" to
346 determine if the ABI is using double-precision registers. See also
347 MIPS_FPU_TYPE. */
348 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
349
350 /* The amount of space reserved on the stack for registers. This is
351 different to MIPS_SAVED_REGSIZE as it determines the alignment of
352 data allocated after the registers have run out. */
353
354 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
355
356 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
357
358 static const char *mips_stack_argsize_string = size_auto;
359
360 static unsigned int
361 mips_stack_argsize (void)
362 {
363 if (mips_stack_argsize_string == size_auto)
364 return MIPS_DEFAULT_STACK_ARGSIZE;
365 else if (mips_stack_argsize_string == size_64)
366 return 8;
367 else /* if (mips_stack_argsize_string == size_32) */
368 return 4;
369 }
370
371 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
372
373 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
374
375 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
376
377 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
378
379 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
380 struct frame_info *, int);
381
382 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
383
384 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
385
386 static int mips_set_processor_type (char *);
387
388 static void mips_show_processor_type_command (char *, int);
389
390 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
391
392 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
393 struct frame_info *next_frame,
394 int cur_frame);
395
396 static CORE_ADDR after_prologue (CORE_ADDR pc,
397 mips_extra_func_info_t proc_desc);
398
399 static struct type *mips_float_register_type (void);
400 static struct type *mips_double_register_type (void);
401
402 /* This value is the model of MIPS in use. It is derived from the value
403 of the PrID register. */
404
405 char *mips_processor_type;
406
407 char *tmp_mips_processor_type;
408
409 /* The list of available "set mips " and "show mips " commands */
410
411 static struct cmd_list_element *setmipscmdlist = NULL;
412 static struct cmd_list_element *showmipscmdlist = NULL;
413
414 /* A set of original names, to be used when restoring back to generic
415 registers from a specific set. */
416 static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
417
418 /* Integer registers 0 thru 31 are handled explicitly by
419 mips_register_name(). Processor specific registers 32 and above
420 are listed in the sets of register names assigned to
421 mips_processor_reg_names. */
422 static char **mips_processor_reg_names = mips_generic_reg_names;
423
424 /* Return the name of the register corresponding to REGNO. */
425 static const char *
426 mips_register_name (int regno)
427 {
428 /* GPR names for all ABIs other than n32/n64. */
429 static char *mips_gpr_names[] = {
430 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
431 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
432 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
433 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
434 };
435
436 /* GPR names for n32 and n64 ABIs. */
437 static char *mips_n32_n64_gpr_names[] = {
438 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
439 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
440 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
441 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
442 };
443
444 enum mips_abi abi = mips_abi (current_gdbarch);
445
446 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
447 don't make the raw register names visible. */
448 int rawnum = regno % NUM_REGS;
449 if (regno < NUM_REGS)
450 return "";
451
452 /* The MIPS integer registers are always mapped from 0 to 31. The
453 names of the registers (which reflects the conventions regarding
454 register use) vary depending on the ABI. */
455 if (0 <= rawnum && rawnum < 32)
456 {
457 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
458 return mips_n32_n64_gpr_names[rawnum];
459 else
460 return mips_gpr_names[rawnum];
461 }
462 else if (32 <= rawnum && rawnum < NUM_REGS)
463 return mips_processor_reg_names[rawnum - 32];
464 else
465 internal_error (__FILE__, __LINE__,
466 "mips_register_name: bad register number %d", rawnum);
467 }
468
469 /* *INDENT-OFF* */
470 /* Names of IDT R3041 registers. */
471
472 char *mips_r3041_reg_names[] = {
473 "sr", "lo", "hi", "bad", "cause","pc",
474 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
475 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
476 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
477 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
478 "fsr", "fir", "",/*"fp"*/ "",
479 "", "", "bus", "ccfg", "", "", "", "",
480 "", "", "port", "cmp", "", "", "epc", "prid",
481 };
482
483 /* Names of IDT R3051 registers. */
484
485 char *mips_r3051_reg_names[] = {
486 "sr", "lo", "hi", "bad", "cause","pc",
487 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
488 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
489 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
490 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
491 "fsr", "fir", ""/*"fp"*/, "",
492 "inx", "rand", "elo", "", "ctxt", "", "", "",
493 "", "", "ehi", "", "", "", "epc", "prid",
494 };
495
496 /* Names of IDT R3081 registers. */
497
498 char *mips_r3081_reg_names[] = {
499 "sr", "lo", "hi", "bad", "cause","pc",
500 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
501 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
502 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
503 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
504 "fsr", "fir", ""/*"fp"*/, "",
505 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
506 "", "", "ehi", "", "", "", "epc", "prid",
507 };
508
509 /* Names of LSI 33k registers. */
510
511 char *mips_lsi33k_reg_names[] = {
512 "epc", "hi", "lo", "sr", "cause","badvaddr",
513 "dcic", "bpc", "bda", "", "", "", "", "",
514 "", "", "", "", "", "", "", "",
515 "", "", "", "", "", "", "", "",
516 "", "", "", "", "", "", "", "",
517 "", "", "", "",
518 "", "", "", "", "", "", "", "",
519 "", "", "", "", "", "", "", "",
520 };
521
522 struct {
523 char *name;
524 char **regnames;
525 } mips_processor_type_table[] = {
526 { "generic", mips_generic_reg_names },
527 { "r3041", mips_r3041_reg_names },
528 { "r3051", mips_r3051_reg_names },
529 { "r3071", mips_r3081_reg_names },
530 { "r3081", mips_r3081_reg_names },
531 { "lsi33k", mips_lsi33k_reg_names },
532 { NULL, NULL }
533 };
534 /* *INDENT-ON* */
535
536 /* Return the groups that a MIPS register can be categorised into. */
537
538 static int
539 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
540 struct reggroup *reggroup)
541 {
542 int vector_p;
543 int float_p;
544 int raw_p;
545 int rawnum = regnum % NUM_REGS;
546 int pseudo = regnum / NUM_REGS;
547 if (reggroup == all_reggroup)
548 return pseudo;
549 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
550 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
551 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
552 (gdbarch), as not all architectures are multi-arch. */
553 raw_p = rawnum < NUM_REGS;
554 if (REGISTER_NAME (regnum) == NULL
555 || REGISTER_NAME (regnum)[0] == '\0')
556 return 0;
557 if (reggroup == float_reggroup)
558 return float_p && pseudo;
559 if (reggroup == vector_reggroup)
560 return vector_p && pseudo;
561 if (reggroup == general_reggroup)
562 return (!vector_p && !float_p) && pseudo;
563 /* Save the pseudo registers. Need to make certain that any code
564 extracting register values from a saved register cache also uses
565 pseudo registers. */
566 if (reggroup == save_reggroup)
567 return raw_p && pseudo;
568 /* Restore the same pseudo register. */
569 if (reggroup == restore_reggroup)
570 return raw_p && pseudo;
571 return 0;
572 }
573
574 /* Map the symbol table registers which live in the range [1 *
575 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
576 registers. */
577
578 static void
579 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
580 int cookednum, void *buf)
581 {
582 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
583 return regcache_raw_read (regcache, cookednum % NUM_REGS, buf);
584 }
585
586 static void
587 mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
588 int cookednum, const void *buf)
589 {
590 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
591 return regcache_raw_write (regcache, cookednum % NUM_REGS, buf);
592 }
593
594 /* Table to translate MIPS16 register field to actual register number. */
595 static int mips16_to_32_reg[8] =
596 {16, 17, 2, 3, 4, 5, 6, 7};
597
598 /* Heuristic_proc_start may hunt through the text section for a long
599 time across a 2400 baud serial line. Allows the user to limit this
600 search. */
601
602 static unsigned int heuristic_fence_post = 0;
603
604 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
605 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
606 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
607 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
608 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
609 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
610 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
611 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
612 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
613 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
614 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
615 this will corrupt pdr.iline. Fortunately we don't use it. */
616 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
617 #define _PROC_MAGIC_ 0x0F0F0F0F
618 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
619 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
620
621 struct linked_proc_info
622 {
623 struct mips_extra_func_info info;
624 struct linked_proc_info *next;
625 }
626 *linked_proc_desc_table = NULL;
627
628 void
629 mips_print_extra_frame_info (struct frame_info *fi)
630 {
631 if (fi
632 && get_frame_extra_info (fi)
633 && get_frame_extra_info (fi)->proc_desc
634 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
635 printf_filtered (" frame pointer is at %s+%s\n",
636 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
637 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
638 }
639
640 /* Number of bytes of storage in the actual machine representation for
641 register N. NOTE: This indirectly defines the register size
642 transfered by the GDB protocol. */
643
644 static int mips64_transfers_32bit_regs_p = 0;
645
646 static int
647 mips_register_raw_size (int regnum)
648 {
649 gdb_assert (regnum >= 0);
650 if (regnum < NUM_REGS)
651 {
652 /* For compatibility with old code, implemnt the broken register raw
653 size map for the raw registers.
654
655 NOTE: cagney/2003-06-15: This is so bogus. The register's
656 raw size is changing according to the ABI
657 (FP_REGISTER_DOUBLE). Also, GDB's protocol is defined by a
658 combination of REGISTER_RAW_SIZE and REGISTER_BYTE. */
659 if (mips64_transfers_32bit_regs_p)
660 return REGISTER_VIRTUAL_SIZE (regnum);
661 else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32
662 && FP_REGISTER_DOUBLE)
663 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
664 registers. */
665 return 8;
666 else
667 return MIPS_REGSIZE;
668 }
669 else if (regnum < 2 * NUM_REGS)
670 {
671 /* For the moment map [NUM_REGS .. 2*NUM_REGS) onto the same raw
672 registers, but always return the virtual size. */
673 int rawnum = regnum % NUM_REGS;
674 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, rawnum));
675 }
676 else
677 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
678 }
679
680 /* Register offset in a buffer for each register.
681
682 FIXME: cagney/2003-06-15: This is so bogus. Instead REGISTER_TYPE
683 should strictly return the layout of the buffer. Unfortunatly
684 remote.c and the MIPS have come to rely on a custom layout that
685 doesn't 1:1 map onto the register type. */
686
687 static int
688 mips_register_byte (int regnum)
689 {
690 gdb_assert (regnum >= 0);
691 if (regnum < NUM_REGS)
692 /* Pick up the relevant per-tm file register byte method. */
693 return MIPS_REGISTER_BYTE (regnum);
694 else if (regnum < 2 * NUM_REGS)
695 {
696 int reg;
697 int byte;
698 /* Start with the end of the raw register buffer - assum that
699 MIPS_REGISTER_BYTE (NUM_REGS) returns that end. */
700 byte = MIPS_REGISTER_BYTE (NUM_REGS);
701 /* Add space for all the proceeding registers based on their
702 real size. */
703 for (reg = NUM_REGS; reg < regnum; reg++)
704 byte += TYPE_LENGTH (gdbarch_register_type (current_gdbarch,
705 (reg % NUM_REGS)));
706 return byte;
707 }
708 else
709 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
710 }
711
712 /* Convert between RAW and VIRTUAL registers. The RAW register size
713 defines the remote-gdb packet. */
714
715 static int
716 mips_register_convertible (int reg_nr)
717 {
718 if (mips64_transfers_32bit_regs_p)
719 return 0;
720 else
721 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
722 }
723
724 static void
725 mips_register_convert_to_virtual (int n, struct type *virtual_type,
726 char *raw_buf, char *virt_buf)
727 {
728 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
729 memcpy (virt_buf,
730 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
731 TYPE_LENGTH (virtual_type));
732 else
733 memcpy (virt_buf,
734 raw_buf,
735 TYPE_LENGTH (virtual_type));
736 }
737
738 static void
739 mips_register_convert_to_raw (struct type *virtual_type, int n,
740 const char *virt_buf, char *raw_buf)
741 {
742 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
743 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
744 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
745 virt_buf,
746 TYPE_LENGTH (virtual_type));
747 else
748 memcpy (raw_buf,
749 virt_buf,
750 TYPE_LENGTH (virtual_type));
751 }
752
753 static int
754 mips_convert_register_p (int regnum, struct type *type)
755 {
756 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
757 && REGISTER_RAW_SIZE (regnum) == 4
758 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
759 && TYPE_CODE(type) == TYPE_CODE_FLT
760 && TYPE_LENGTH(type) == 8);
761 }
762
763 static void
764 mips_register_to_value (struct frame_info *frame, int regnum,
765 struct type *type, void *to)
766 {
767 frame_read_register (frame, regnum + 0, (char *) to + 4);
768 frame_read_register (frame, regnum + 1, (char *) to + 0);
769 }
770
771 static void
772 mips_value_to_register (struct frame_info *frame, int regnum,
773 struct type *type, const void *from)
774 {
775 put_frame_register (frame, regnum + 0, (const char *) from + 4);
776 put_frame_register (frame, regnum + 1, (const char *) from + 0);
777 }
778
779 /* Return the GDB type object for the "standard" data type of data in
780 register REG. */
781
782 static struct type *
783 mips_register_type (struct gdbarch *gdbarch, int regnum)
784 {
785 /* For moment, map [NUM_REGS .. 2*NUM_REGS) onto the same raw
786 registers. Even return the same type. */
787 int rawnum = regnum % NUM_REGS;
788 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
789 #ifdef MIPS_REGISTER_TYPE
790 return MIPS_REGISTER_TYPE (rawnum);
791 #else
792 if (FP0_REGNUM <= rawnum && rawnum < FP0_REGNUM + 32)
793 {
794 /* Floating point registers... */
795 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
796 return builtin_type_ieee_double_big;
797 else
798 return builtin_type_ieee_double_little;
799 }
800 else if (rawnum == PS_REGNUM /* CR */)
801 return builtin_type_uint32;
802 else if (FCRCS_REGNUM <= rawnum && rawnum <= LAST_EMBED_REGNUM)
803 return builtin_type_uint32;
804 else
805 {
806 /* Everything else...
807 Return type appropriate for width of register. */
808 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
809 return builtin_type_uint64;
810 else
811 return builtin_type_uint32;
812 }
813 #endif
814 }
815
816 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
817
818 static CORE_ADDR
819 mips_read_sp (void)
820 {
821 return read_signed_register (SP_REGNUM);
822 }
823
824 /* Should the upper word of 64-bit addresses be zeroed? */
825 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
826
827 static int
828 mips_mask_address_p (void)
829 {
830 switch (mask_address_var)
831 {
832 case AUTO_BOOLEAN_TRUE:
833 return 1;
834 case AUTO_BOOLEAN_FALSE:
835 return 0;
836 break;
837 case AUTO_BOOLEAN_AUTO:
838 return MIPS_DEFAULT_MASK_ADDRESS_P;
839 default:
840 internal_error (__FILE__, __LINE__,
841 "mips_mask_address_p: bad switch");
842 return -1;
843 }
844 }
845
846 static void
847 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
848 {
849 switch (mask_address_var)
850 {
851 case AUTO_BOOLEAN_TRUE:
852 printf_filtered ("The 32 bit mips address mask is enabled\n");
853 break;
854 case AUTO_BOOLEAN_FALSE:
855 printf_filtered ("The 32 bit mips address mask is disabled\n");
856 break;
857 case AUTO_BOOLEAN_AUTO:
858 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
859 mips_mask_address_p () ? "enabled" : "disabled");
860 break;
861 default:
862 internal_error (__FILE__, __LINE__,
863 "show_mask_address: bad switch");
864 break;
865 }
866 }
867
868 /* Should call_function allocate stack space for a struct return? */
869
870 static int
871 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
872 {
873 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
874 }
875
876 static int
877 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
878 {
879 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
880 }
881
882 /* Should call_function pass struct by reference?
883 For each architecture, structs are passed either by
884 value or by reference, depending on their size. */
885
886 static int
887 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
888 {
889 enum type_code typecode = TYPE_CODE (check_typedef (type));
890 int len = TYPE_LENGTH (check_typedef (type));
891
892 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
893 return (len > MIPS_SAVED_REGSIZE);
894
895 return 0;
896 }
897
898 static int
899 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
900 {
901 return 0; /* Assumption: N32/N64 never passes struct by ref. */
902 }
903
904 static int
905 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
906 {
907 return 0; /* Assumption: O32/O64 never passes struct by ref. */
908 }
909
910 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
911
912 static int
913 pc_is_mips16 (bfd_vma memaddr)
914 {
915 struct minimal_symbol *sym;
916
917 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
918 if (is_mips16_addr (memaddr))
919 return 1;
920
921 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
922 the high bit of the info field. Use this to decide if the function is
923 MIPS16 or normal MIPS. */
924 sym = lookup_minimal_symbol_by_pc (memaddr);
925 if (sym)
926 return msymbol_is_special (sym);
927 else
928 return 0;
929 }
930
931 /* MIPS believes that the PC has a sign extended value. Perhaphs the
932 all registers should be sign extended for simplicity? */
933
934 static CORE_ADDR
935 mips_read_pc (ptid_t ptid)
936 {
937 return read_signed_register_pid (PC_REGNUM, ptid);
938 }
939
940 /* This returns the PC of the first inst after the prologue. If we can't
941 find the prologue, then return 0. */
942
943 static CORE_ADDR
944 after_prologue (CORE_ADDR pc,
945 mips_extra_func_info_t proc_desc)
946 {
947 struct symtab_and_line sal;
948 CORE_ADDR func_addr, func_end;
949
950 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
951 to read the stack pointer from the current machine state, because
952 the current machine state has nothing to do with the information
953 we need from the proc_desc; and the process may or may not exist
954 right now. */
955 if (!proc_desc)
956 proc_desc = find_proc_desc (pc, NULL, 0);
957
958 if (proc_desc)
959 {
960 /* If function is frameless, then we need to do it the hard way. I
961 strongly suspect that frameless always means prologueless... */
962 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
963 && PROC_FRAME_OFFSET (proc_desc) == 0)
964 return 0;
965 }
966
967 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
968 return 0; /* Unknown */
969
970 sal = find_pc_line (func_addr, 0);
971
972 if (sal.end < func_end)
973 return sal.end;
974
975 /* The line after the prologue is after the end of the function. In this
976 case, tell the caller to find the prologue the hard way. */
977
978 return 0;
979 }
980
981 /* Decode a MIPS32 instruction that saves a register in the stack, and
982 set the appropriate bit in the general register mask or float register mask
983 to indicate which register is saved. This is a helper function
984 for mips_find_saved_regs. */
985
986 static void
987 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
988 unsigned long *float_mask)
989 {
990 int reg;
991
992 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
993 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
994 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
995 {
996 /* It might be possible to use the instruction to
997 find the offset, rather than the code below which
998 is based on things being in a certain order in the
999 frame, but figuring out what the instruction's offset
1000 is relative to might be a little tricky. */
1001 reg = (inst & 0x001f0000) >> 16;
1002 *gen_mask |= (1 << reg);
1003 }
1004 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
1005 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
1006 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
1007
1008 {
1009 reg = ((inst & 0x001f0000) >> 16);
1010 *float_mask |= (1 << reg);
1011 }
1012 }
1013
1014 /* Decode a MIPS16 instruction that saves a register in the stack, and
1015 set the appropriate bit in the general register or float register mask
1016 to indicate which register is saved. This is a helper function
1017 for mips_find_saved_regs. */
1018
1019 static void
1020 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
1021 {
1022 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1023 {
1024 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1025 *gen_mask |= (1 << reg);
1026 }
1027 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1028 {
1029 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1030 *gen_mask |= (1 << reg);
1031 }
1032 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
1033 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1034 *gen_mask |= (1 << RA_REGNUM);
1035 }
1036
1037
1038 /* Fetch and return instruction from the specified location. If the PC
1039 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
1040
1041 static t_inst
1042 mips_fetch_instruction (CORE_ADDR addr)
1043 {
1044 char buf[MIPS_INSTLEN];
1045 int instlen;
1046 int status;
1047
1048 if (pc_is_mips16 (addr))
1049 {
1050 instlen = MIPS16_INSTLEN;
1051 addr = unmake_mips16_addr (addr);
1052 }
1053 else
1054 instlen = MIPS_INSTLEN;
1055 status = read_memory_nobpt (addr, buf, instlen);
1056 if (status)
1057 memory_error (status, addr);
1058 return extract_unsigned_integer (buf, instlen);
1059 }
1060
1061
1062 /* These the fields of 32 bit mips instructions */
1063 #define mips32_op(x) (x >> 26)
1064 #define itype_op(x) (x >> 26)
1065 #define itype_rs(x) ((x >> 21) & 0x1f)
1066 #define itype_rt(x) ((x >> 16) & 0x1f)
1067 #define itype_immediate(x) (x & 0xffff)
1068
1069 #define jtype_op(x) (x >> 26)
1070 #define jtype_target(x) (x & 0x03ffffff)
1071
1072 #define rtype_op(x) (x >> 26)
1073 #define rtype_rs(x) ((x >> 21) & 0x1f)
1074 #define rtype_rt(x) ((x >> 16) & 0x1f)
1075 #define rtype_rd(x) ((x >> 11) & 0x1f)
1076 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1077 #define rtype_funct(x) (x & 0x3f)
1078
1079 static CORE_ADDR
1080 mips32_relative_offset (unsigned long inst)
1081 {
1082 long x;
1083 x = itype_immediate (inst);
1084 if (x & 0x8000) /* sign bit set */
1085 {
1086 x |= 0xffff0000; /* sign extension */
1087 }
1088 x = x << 2;
1089 return x;
1090 }
1091
1092 /* Determine whate to set a single step breakpoint while considering
1093 branch prediction */
1094 static CORE_ADDR
1095 mips32_next_pc (CORE_ADDR pc)
1096 {
1097 unsigned long inst;
1098 int op;
1099 inst = mips_fetch_instruction (pc);
1100 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1101 {
1102 if (itype_op (inst) >> 2 == 5)
1103 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1104 {
1105 op = (itype_op (inst) & 0x03);
1106 switch (op)
1107 {
1108 case 0: /* BEQL */
1109 goto equal_branch;
1110 case 1: /* BNEL */
1111 goto neq_branch;
1112 case 2: /* BLEZL */
1113 goto less_branch;
1114 case 3: /* BGTZ */
1115 goto greater_branch;
1116 default:
1117 pc += 4;
1118 }
1119 }
1120 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1121 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1122 {
1123 int tf = itype_rt (inst) & 0x01;
1124 int cnum = itype_rt (inst) >> 2;
1125 int fcrcs = read_signed_register (FCRCS_REGNUM);
1126 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1127
1128 if (((cond >> cnum) & 0x01) == tf)
1129 pc += mips32_relative_offset (inst) + 4;
1130 else
1131 pc += 8;
1132 }
1133 else
1134 pc += 4; /* Not a branch, next instruction is easy */
1135 }
1136 else
1137 { /* This gets way messy */
1138
1139 /* Further subdivide into SPECIAL, REGIMM and other */
1140 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1141 {
1142 case 0: /* SPECIAL */
1143 op = rtype_funct (inst);
1144 switch (op)
1145 {
1146 case 8: /* JR */
1147 case 9: /* JALR */
1148 /* Set PC to that address */
1149 pc = read_signed_register (rtype_rs (inst));
1150 break;
1151 default:
1152 pc += 4;
1153 }
1154
1155 break; /* end SPECIAL */
1156 case 1: /* REGIMM */
1157 {
1158 op = itype_rt (inst); /* branch condition */
1159 switch (op)
1160 {
1161 case 0: /* BLTZ */
1162 case 2: /* BLTZL */
1163 case 16: /* BLTZAL */
1164 case 18: /* BLTZALL */
1165 less_branch:
1166 if (read_signed_register (itype_rs (inst)) < 0)
1167 pc += mips32_relative_offset (inst) + 4;
1168 else
1169 pc += 8; /* after the delay slot */
1170 break;
1171 case 1: /* BGEZ */
1172 case 3: /* BGEZL */
1173 case 17: /* BGEZAL */
1174 case 19: /* BGEZALL */
1175 greater_equal_branch:
1176 if (read_signed_register (itype_rs (inst)) >= 0)
1177 pc += mips32_relative_offset (inst) + 4;
1178 else
1179 pc += 8; /* after the delay slot */
1180 break;
1181 /* All of the other instructions in the REGIMM category */
1182 default:
1183 pc += 4;
1184 }
1185 }
1186 break; /* end REGIMM */
1187 case 2: /* J */
1188 case 3: /* JAL */
1189 {
1190 unsigned long reg;
1191 reg = jtype_target (inst) << 2;
1192 /* Upper four bits get never changed... */
1193 pc = reg + ((pc + 4) & 0xf0000000);
1194 }
1195 break;
1196 /* FIXME case JALX : */
1197 {
1198 unsigned long reg;
1199 reg = jtype_target (inst) << 2;
1200 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1201 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1202 }
1203 break; /* The new PC will be alternate mode */
1204 case 4: /* BEQ, BEQL */
1205 equal_branch:
1206 if (read_signed_register (itype_rs (inst)) ==
1207 read_signed_register (itype_rt (inst)))
1208 pc += mips32_relative_offset (inst) + 4;
1209 else
1210 pc += 8;
1211 break;
1212 case 5: /* BNE, BNEL */
1213 neq_branch:
1214 if (read_signed_register (itype_rs (inst)) !=
1215 read_signed_register (itype_rt (inst)))
1216 pc += mips32_relative_offset (inst) + 4;
1217 else
1218 pc += 8;
1219 break;
1220 case 6: /* BLEZ, BLEZL */
1221 less_zero_branch:
1222 if (read_signed_register (itype_rs (inst) <= 0))
1223 pc += mips32_relative_offset (inst) + 4;
1224 else
1225 pc += 8;
1226 break;
1227 case 7:
1228 default:
1229 greater_branch: /* BGTZ, BGTZL */
1230 if (read_signed_register (itype_rs (inst) > 0))
1231 pc += mips32_relative_offset (inst) + 4;
1232 else
1233 pc += 8;
1234 break;
1235 } /* switch */
1236 } /* else */
1237 return pc;
1238 } /* mips32_next_pc */
1239
1240 /* Decoding the next place to set a breakpoint is irregular for the
1241 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1242 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1243 We dont want to set a single step instruction on the extend instruction
1244 either.
1245 */
1246
1247 /* Lots of mips16 instruction formats */
1248 /* Predicting jumps requires itype,ritype,i8type
1249 and their extensions extItype,extritype,extI8type
1250 */
1251 enum mips16_inst_fmts
1252 {
1253 itype, /* 0 immediate 5,10 */
1254 ritype, /* 1 5,3,8 */
1255 rrtype, /* 2 5,3,3,5 */
1256 rritype, /* 3 5,3,3,5 */
1257 rrrtype, /* 4 5,3,3,3,2 */
1258 rriatype, /* 5 5,3,3,1,4 */
1259 shifttype, /* 6 5,3,3,3,2 */
1260 i8type, /* 7 5,3,8 */
1261 i8movtype, /* 8 5,3,3,5 */
1262 i8mov32rtype, /* 9 5,3,5,3 */
1263 i64type, /* 10 5,3,8 */
1264 ri64type, /* 11 5,3,3,5 */
1265 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1266 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1267 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1268 extRRItype, /* 15 5,5,5,5,3,3,5 */
1269 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1270 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1271 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1272 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1273 extRi64type, /* 20 5,6,5,5,3,3,5 */
1274 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1275 };
1276 /* I am heaping all the fields of the formats into one structure and
1277 then, only the fields which are involved in instruction extension */
1278 struct upk_mips16
1279 {
1280 CORE_ADDR offset;
1281 unsigned int regx; /* Function in i8 type */
1282 unsigned int regy;
1283 };
1284
1285
1286 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1287 for the bits which make up the immediatate extension. */
1288
1289 static CORE_ADDR
1290 extended_offset (unsigned int extension)
1291 {
1292 CORE_ADDR value;
1293 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1294 value = value << 6;
1295 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1296 value = value << 5;
1297 value |= extension & 0x01f; /* extract 4:0 */
1298 return value;
1299 }
1300
1301 /* Only call this function if you know that this is an extendable
1302 instruction, It wont malfunction, but why make excess remote memory references?
1303 If the immediate operands get sign extended or somthing, do it after
1304 the extension is performed.
1305 */
1306 /* FIXME: Every one of these cases needs to worry about sign extension
1307 when the offset is to be used in relative addressing */
1308
1309
1310 static unsigned int
1311 fetch_mips_16 (CORE_ADDR pc)
1312 {
1313 char buf[8];
1314 pc &= 0xfffffffe; /* clear the low order bit */
1315 target_read_memory (pc, buf, 2);
1316 return extract_unsigned_integer (buf, 2);
1317 }
1318
1319 static void
1320 unpack_mips16 (CORE_ADDR pc,
1321 unsigned int extension,
1322 unsigned int inst,
1323 enum mips16_inst_fmts insn_format,
1324 struct upk_mips16 *upk)
1325 {
1326 CORE_ADDR offset;
1327 int regx;
1328 int regy;
1329 switch (insn_format)
1330 {
1331 case itype:
1332 {
1333 CORE_ADDR value;
1334 if (extension)
1335 {
1336 value = extended_offset (extension);
1337 value = value << 11; /* rom for the original value */
1338 value |= inst & 0x7ff; /* eleven bits from instruction */
1339 }
1340 else
1341 {
1342 value = inst & 0x7ff;
1343 /* FIXME : Consider sign extension */
1344 }
1345 offset = value;
1346 regx = -1;
1347 regy = -1;
1348 }
1349 break;
1350 case ritype:
1351 case i8type:
1352 { /* A register identifier and an offset */
1353 /* Most of the fields are the same as I type but the
1354 immediate value is of a different length */
1355 CORE_ADDR value;
1356 if (extension)
1357 {
1358 value = extended_offset (extension);
1359 value = value << 8; /* from the original instruction */
1360 value |= inst & 0xff; /* eleven bits from instruction */
1361 regx = (extension >> 8) & 0x07; /* or i8 funct */
1362 if (value & 0x4000) /* test the sign bit , bit 26 */
1363 {
1364 value &= ~0x3fff; /* remove the sign bit */
1365 value = -value;
1366 }
1367 }
1368 else
1369 {
1370 value = inst & 0xff; /* 8 bits */
1371 regx = (inst >> 8) & 0x07; /* or i8 funct */
1372 /* FIXME: Do sign extension , this format needs it */
1373 if (value & 0x80) /* THIS CONFUSES ME */
1374 {
1375 value &= 0xef; /* remove the sign bit */
1376 value = -value;
1377 }
1378 }
1379 offset = value;
1380 regy = -1;
1381 break;
1382 }
1383 case jalxtype:
1384 {
1385 unsigned long value;
1386 unsigned int nexthalf;
1387 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1388 value = value << 16;
1389 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1390 value |= nexthalf;
1391 offset = value;
1392 regx = -1;
1393 regy = -1;
1394 break;
1395 }
1396 default:
1397 internal_error (__FILE__, __LINE__,
1398 "bad switch");
1399 }
1400 upk->offset = offset;
1401 upk->regx = regx;
1402 upk->regy = regy;
1403 }
1404
1405
1406 static CORE_ADDR
1407 add_offset_16 (CORE_ADDR pc, int offset)
1408 {
1409 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1410 }
1411
1412 static CORE_ADDR
1413 extended_mips16_next_pc (CORE_ADDR pc,
1414 unsigned int extension,
1415 unsigned int insn)
1416 {
1417 int op = (insn >> 11);
1418 switch (op)
1419 {
1420 case 2: /* Branch */
1421 {
1422 CORE_ADDR offset;
1423 struct upk_mips16 upk;
1424 unpack_mips16 (pc, extension, insn, itype, &upk);
1425 offset = upk.offset;
1426 if (offset & 0x800)
1427 {
1428 offset &= 0xeff;
1429 offset = -offset;
1430 }
1431 pc += (offset << 1) + 2;
1432 break;
1433 }
1434 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1435 {
1436 struct upk_mips16 upk;
1437 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1438 pc = add_offset_16 (pc, upk.offset);
1439 if ((insn >> 10) & 0x01) /* Exchange mode */
1440 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1441 else
1442 pc |= 0x01;
1443 break;
1444 }
1445 case 4: /* beqz */
1446 {
1447 struct upk_mips16 upk;
1448 int reg;
1449 unpack_mips16 (pc, extension, insn, ritype, &upk);
1450 reg = read_signed_register (upk.regx);
1451 if (reg == 0)
1452 pc += (upk.offset << 1) + 2;
1453 else
1454 pc += 2;
1455 break;
1456 }
1457 case 5: /* bnez */
1458 {
1459 struct upk_mips16 upk;
1460 int reg;
1461 unpack_mips16 (pc, extension, insn, ritype, &upk);
1462 reg = read_signed_register (upk.regx);
1463 if (reg != 0)
1464 pc += (upk.offset << 1) + 2;
1465 else
1466 pc += 2;
1467 break;
1468 }
1469 case 12: /* I8 Formats btez btnez */
1470 {
1471 struct upk_mips16 upk;
1472 int reg;
1473 unpack_mips16 (pc, extension, insn, i8type, &upk);
1474 /* upk.regx contains the opcode */
1475 reg = read_signed_register (24); /* Test register is 24 */
1476 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1477 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1478 /* pc = add_offset_16(pc,upk.offset) ; */
1479 pc += (upk.offset << 1) + 2;
1480 else
1481 pc += 2;
1482 break;
1483 }
1484 case 29: /* RR Formats JR, JALR, JALR-RA */
1485 {
1486 struct upk_mips16 upk;
1487 /* upk.fmt = rrtype; */
1488 op = insn & 0x1f;
1489 if (op == 0)
1490 {
1491 int reg;
1492 upk.regx = (insn >> 8) & 0x07;
1493 upk.regy = (insn >> 5) & 0x07;
1494 switch (upk.regy)
1495 {
1496 case 0:
1497 reg = upk.regx;
1498 break;
1499 case 1:
1500 reg = 31;
1501 break; /* Function return instruction */
1502 case 2:
1503 reg = upk.regx;
1504 break;
1505 default:
1506 reg = 31;
1507 break; /* BOGUS Guess */
1508 }
1509 pc = read_signed_register (reg);
1510 }
1511 else
1512 pc += 2;
1513 break;
1514 }
1515 case 30:
1516 /* This is an instruction extension. Fetch the real instruction
1517 (which follows the extension) and decode things based on
1518 that. */
1519 {
1520 pc += 2;
1521 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1522 break;
1523 }
1524 default:
1525 {
1526 pc += 2;
1527 break;
1528 }
1529 }
1530 return pc;
1531 }
1532
1533 static CORE_ADDR
1534 mips16_next_pc (CORE_ADDR pc)
1535 {
1536 unsigned int insn = fetch_mips_16 (pc);
1537 return extended_mips16_next_pc (pc, 0, insn);
1538 }
1539
1540 /* The mips_next_pc function supports single_step when the remote
1541 target monitor or stub is not developed enough to do a single_step.
1542 It works by decoding the current instruction and predicting where a
1543 branch will go. This isnt hard because all the data is available.
1544 The MIPS32 and MIPS16 variants are quite different */
1545 CORE_ADDR
1546 mips_next_pc (CORE_ADDR pc)
1547 {
1548 if (pc & 0x01)
1549 return mips16_next_pc (pc);
1550 else
1551 return mips32_next_pc (pc);
1552 }
1553
1554 /* Set up the 'saved_regs' array. This is a data structure containing
1555 the addresses on the stack where each register has been saved, for
1556 each stack frame. Registers that have not been saved will have
1557 zero here. The stack pointer register is special: rather than the
1558 address where the stack register has been saved,
1559 saved_regs[SP_REGNUM] will have the actual value of the previous
1560 frame's stack register. */
1561
1562 static void
1563 mips_find_saved_regs (struct frame_info *fci)
1564 {
1565 int ireg;
1566 /* r0 bit means kernel trap */
1567 int kernel_trap;
1568 /* What registers have been saved? Bitmasks. */
1569 unsigned long gen_mask, float_mask;
1570 mips_extra_func_info_t proc_desc;
1571 t_inst inst;
1572 CORE_ADDR *saved_regs;
1573
1574 if (get_frame_saved_regs (fci) != NULL)
1575 return;
1576 saved_regs = frame_saved_regs_zalloc (fci);
1577
1578 /* If it is the frame for sigtramp, the saved registers are located
1579 in a sigcontext structure somewhere on the stack. If the stack
1580 layout for sigtramp changes we might have to change these
1581 constants and the companion fixup_sigtramp in mdebugread.c */
1582 #ifndef SIGFRAME_BASE
1583 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1584 above the sigtramp frame. */
1585 #define SIGFRAME_BASE MIPS_REGSIZE
1586 /* FIXME! Are these correct?? */
1587 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1588 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1589 #define SIGFRAME_FPREGSAVE_OFF \
1590 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1591 #endif
1592 #ifndef SIGFRAME_REG_SIZE
1593 /* FIXME! Is this correct?? */
1594 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1595 #endif
1596 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1597 {
1598 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1599 {
1600 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1601 + ireg * SIGFRAME_REG_SIZE);
1602 set_reg_offset (saved_regs, ireg, reg_position);
1603 }
1604 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1605 {
1606 CORE_ADDR reg_position = (get_frame_base (fci)
1607 + SIGFRAME_FPREGSAVE_OFF
1608 + ireg * SIGFRAME_REG_SIZE);
1609 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1610 }
1611
1612 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1613 /* SP_REGNUM, contains the value and not the address. */
1614 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1615 return;
1616 }
1617
1618 proc_desc = get_frame_extra_info (fci)->proc_desc;
1619 if (proc_desc == NULL)
1620 /* I'm not sure how/whether this can happen. Normally when we
1621 can't find a proc_desc, we "synthesize" one using
1622 heuristic_proc_desc and set the saved_regs right away. */
1623 return;
1624
1625 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1626 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1627 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1628
1629 if (/* In any frame other than the innermost or a frame interrupted
1630 by a signal, we assume that all registers have been saved.
1631 This assumes that all register saves in a function happen
1632 before the first function call. */
1633 (get_next_frame (fci) == NULL
1634 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1635
1636 /* In a dummy frame we know exactly where things are saved. */
1637 && !PROC_DESC_IS_DUMMY (proc_desc)
1638
1639 /* Don't bother unless we are inside a function prologue.
1640 Outside the prologue, we know where everything is. */
1641
1642 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1643
1644 /* Not sure exactly what kernel_trap means, but if it means the
1645 kernel saves the registers without a prologue doing it, we
1646 better not examine the prologue to see whether registers
1647 have been saved yet. */
1648 && !kernel_trap)
1649 {
1650 /* We need to figure out whether the registers that the
1651 proc_desc claims are saved have been saved yet. */
1652
1653 CORE_ADDR addr;
1654
1655 /* Bitmasks; set if we have found a save for the register. */
1656 unsigned long gen_save_found = 0;
1657 unsigned long float_save_found = 0;
1658 int instlen;
1659
1660 /* If the address is odd, assume this is MIPS16 code. */
1661 addr = PROC_LOW_ADDR (proc_desc);
1662 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1663
1664 /* Scan through this function's instructions preceding the
1665 current PC, and look for those that save registers. */
1666 while (addr < get_frame_pc (fci))
1667 {
1668 inst = mips_fetch_instruction (addr);
1669 if (pc_is_mips16 (addr))
1670 mips16_decode_reg_save (inst, &gen_save_found);
1671 else
1672 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1673 addr += instlen;
1674 }
1675 gen_mask = gen_save_found;
1676 float_mask = float_save_found;
1677 }
1678
1679 /* Fill in the offsets for the registers which gen_mask says were
1680 saved. */
1681 {
1682 CORE_ADDR reg_position = (get_frame_base (fci)
1683 + PROC_REG_OFFSET (proc_desc));
1684 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1685 if (gen_mask & 0x80000000)
1686 {
1687 set_reg_offset (saved_regs, ireg, reg_position);
1688 reg_position -= MIPS_SAVED_REGSIZE;
1689 }
1690 }
1691
1692 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1693 order of that normally used by gcc. Therefore, we have to fetch
1694 the first instruction of the function, and if it's an entry
1695 instruction that saves $s0 or $s1, correct their saved addresses. */
1696 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1697 {
1698 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1699 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1700 /* entry */
1701 {
1702 int reg;
1703 int sreg_count = (inst >> 6) & 3;
1704
1705 /* Check if the ra register was pushed on the stack. */
1706 CORE_ADDR reg_position = (get_frame_base (fci)
1707 + PROC_REG_OFFSET (proc_desc));
1708 if (inst & 0x20)
1709 reg_position -= MIPS_SAVED_REGSIZE;
1710
1711 /* Check if the s0 and s1 registers were pushed on the
1712 stack. */
1713 for (reg = 16; reg < sreg_count + 16; reg++)
1714 {
1715 set_reg_offset (saved_regs, reg, reg_position);
1716 reg_position -= MIPS_SAVED_REGSIZE;
1717 }
1718 }
1719 }
1720
1721 /* Fill in the offsets for the registers which float_mask says were
1722 saved. */
1723 {
1724 CORE_ADDR reg_position = (get_frame_base (fci)
1725 + PROC_FREG_OFFSET (proc_desc));
1726
1727 /* Fill in the offsets for the float registers which float_mask
1728 says were saved. */
1729 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1730 if (float_mask & 0x80000000)
1731 {
1732 if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1733 {
1734 /* On a big endian 32 bit ABI, floating point registers
1735 are paired to form doubles such that the most
1736 significant part is in $f[N+1] and the least
1737 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1738 registers are also spilled as a pair and stored as a
1739 double.
1740
1741 When little-endian the least significant part is
1742 stored first leading to the memory order $f[N] and
1743 then $f[N+1].
1744
1745 Unfortunatly, when big-endian the most significant
1746 part of the double is stored first, and the least
1747 significant is stored second. This leads to the
1748 registers being ordered in memory as firt $f[N+1] and
1749 then $f[N].
1750
1751 For the big-endian case make certain that the
1752 addresses point at the correct (swapped) locations
1753 $f[N] and $f[N+1] pair (keep in mind that
1754 reg_position is decremented each time through the
1755 loop). */
1756 if ((ireg & 1))
1757 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1758 reg_position - MIPS_SAVED_REGSIZE);
1759 else
1760 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1761 reg_position + MIPS_SAVED_REGSIZE);
1762 }
1763 else
1764 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1765 reg_position -= MIPS_SAVED_REGSIZE;
1766 }
1767
1768 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1769 }
1770
1771 /* SP_REGNUM, contains the value and not the address. */
1772 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1773 }
1774
1775 static CORE_ADDR
1776 read_next_frame_reg (struct frame_info *fi, int regno)
1777 {
1778 /* Always a pseudo. */
1779 gdb_assert (regno >= NUM_REGS);
1780 if (fi == NULL)
1781 {
1782 LONGEST val;
1783 regcache_cooked_read_signed (current_regcache, regno, &val);
1784 return val;
1785 }
1786 else if ((regno % NUM_REGS) == SP_REGNUM)
1787 /* The SP_REGNUM is special, its value is stored in saved_regs.
1788 In fact, it is so special that it can even only be fetched
1789 using a raw register number! Once this code as been converted
1790 to frame-unwind the problem goes away. */
1791 return frame_unwind_register_signed (fi, regno % NUM_REGS);
1792 else
1793 return frame_unwind_register_signed (fi, regno);
1794
1795 }
1796
1797 /* mips_addr_bits_remove - remove useless address bits */
1798
1799 static CORE_ADDR
1800 mips_addr_bits_remove (CORE_ADDR addr)
1801 {
1802 if (GDB_TARGET_IS_MIPS64)
1803 {
1804 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1805 {
1806 /* This hack is a work-around for existing boards using
1807 PMON, the simulator, and any other 64-bit targets that
1808 doesn't have true 64-bit addressing. On these targets,
1809 the upper 32 bits of addresses are ignored by the
1810 hardware. Thus, the PC or SP are likely to have been
1811 sign extended to all 1s by instruction sequences that
1812 load 32-bit addresses. For example, a typical piece of
1813 code that loads an address is this:
1814 lui $r2, <upper 16 bits>
1815 ori $r2, <lower 16 bits>
1816 But the lui sign-extends the value such that the upper 32
1817 bits may be all 1s. The workaround is simply to mask off
1818 these bits. In the future, gcc may be changed to support
1819 true 64-bit addressing, and this masking will have to be
1820 disabled. */
1821 addr &= (CORE_ADDR) 0xffffffff;
1822 }
1823 }
1824 else if (mips_mask_address_p ())
1825 {
1826 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1827 masking off bits, instead, the actual target should be asking
1828 for the address to be converted to a valid pointer. */
1829 /* Even when GDB is configured for some 32-bit targets
1830 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1831 so CORE_ADDR is 64 bits. So we still have to mask off
1832 useless bits from addresses. */
1833 addr &= (CORE_ADDR) 0xffffffff;
1834 }
1835 return addr;
1836 }
1837
1838 /* mips_software_single_step() is called just before we want to resume
1839 the inferior, if we want to single-step it but there is no hardware
1840 or kernel single-step support (MIPS on GNU/Linux for example). We find
1841 the target of the coming instruction and breakpoint it.
1842
1843 single_step is also called just after the inferior stops. If we had
1844 set up a simulated single-step, we undo our damage. */
1845
1846 void
1847 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1848 {
1849 static CORE_ADDR next_pc;
1850 typedef char binsn_quantum[BREAKPOINT_MAX];
1851 static binsn_quantum break_mem;
1852 CORE_ADDR pc;
1853
1854 if (insert_breakpoints_p)
1855 {
1856 pc = read_register (PC_REGNUM);
1857 next_pc = mips_next_pc (pc);
1858
1859 target_insert_breakpoint (next_pc, break_mem);
1860 }
1861 else
1862 target_remove_breakpoint (next_pc, break_mem);
1863 }
1864
1865 static CORE_ADDR
1866 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1867 {
1868 CORE_ADDR pc, tmp;
1869
1870 pc = ((fromleaf)
1871 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
1872 : get_next_frame (prev)
1873 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1874 : read_pc ());
1875 tmp = SKIP_TRAMPOLINE_CODE (pc);
1876 return tmp ? tmp : pc;
1877 }
1878
1879
1880 static CORE_ADDR
1881 mips_frame_saved_pc (struct frame_info *frame)
1882 {
1883 CORE_ADDR saved_pc;
1884
1885 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1886 {
1887 LONGEST tmp;
1888 /* Always unwind the cooked PC register value. */
1889 frame_unwind_signed_register (frame, NUM_REGS + PC_REGNUM, &tmp);
1890 saved_pc = tmp;
1891 }
1892 else
1893 {
1894 mips_extra_func_info_t proc_desc
1895 = get_frame_extra_info (frame)->proc_desc;
1896 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1897 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1898 else
1899 {
1900 /* We have to get the saved pc from the sigcontext if it is
1901 a signal handler frame. */
1902 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1903 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1904 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1905 }
1906 }
1907 return ADDR_BITS_REMOVE (saved_pc);
1908 }
1909
1910 static struct mips_extra_func_info temp_proc_desc;
1911
1912 /* This hack will go away once the get_prev_frame() code has been
1913 modified to set the frame's type first. That is BEFORE init extra
1914 frame info et.al. is called. This is because it will become
1915 possible to skip the init extra info call for sigtramp and dummy
1916 frames. */
1917 static CORE_ADDR *temp_saved_regs;
1918
1919 /* Set a register's saved stack address in temp_saved_regs. If an
1920 address has already been set for this register, do nothing; this
1921 way we will only recognize the first save of a given register in a
1922 function prologue.
1923
1924 For simplicity, save the address in both [0 .. NUM_REGS) and
1925 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1926 is used as it is only second range (the ABI instead of ISA
1927 registers) that comes into play when finding saved registers in a
1928 frame. */
1929
1930 static void
1931 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1932 {
1933 if (saved_regs[regno] == 0)
1934 {
1935 saved_regs[regno + 0 * NUM_REGS] = offset;
1936 saved_regs[regno + 1 * NUM_REGS] = offset;
1937 }
1938 }
1939
1940
1941 /* Test whether the PC points to the return instruction at the
1942 end of a function. */
1943
1944 static int
1945 mips_about_to_return (CORE_ADDR pc)
1946 {
1947 if (pc_is_mips16 (pc))
1948 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1949 generates a "jr $ra"; other times it generates code to load
1950 the return address from the stack to an accessible register (such
1951 as $a3), then a "jr" using that register. This second case
1952 is almost impossible to distinguish from an indirect jump
1953 used for switch statements, so we don't even try. */
1954 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1955 else
1956 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1957 }
1958
1959
1960 /* This fencepost looks highly suspicious to me. Removing it also
1961 seems suspicious as it could affect remote debugging across serial
1962 lines. */
1963
1964 static CORE_ADDR
1965 heuristic_proc_start (CORE_ADDR pc)
1966 {
1967 CORE_ADDR start_pc;
1968 CORE_ADDR fence;
1969 int instlen;
1970 int seen_adjsp = 0;
1971
1972 pc = ADDR_BITS_REMOVE (pc);
1973 start_pc = pc;
1974 fence = start_pc - heuristic_fence_post;
1975 if (start_pc == 0)
1976 return 0;
1977
1978 if (heuristic_fence_post == UINT_MAX
1979 || fence < VM_MIN_ADDRESS)
1980 fence = VM_MIN_ADDRESS;
1981
1982 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1983
1984 /* search back for previous return */
1985 for (start_pc -= instlen;; start_pc -= instlen)
1986 if (start_pc < fence)
1987 {
1988 /* It's not clear to me why we reach this point when
1989 stop_soon, but with this test, at least we
1990 don't print out warnings for every child forked (eg, on
1991 decstation). 22apr93 rich@cygnus.com. */
1992 if (stop_soon == NO_STOP_QUIETLY)
1993 {
1994 static int blurb_printed = 0;
1995
1996 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1997 paddr_nz (pc));
1998
1999 if (!blurb_printed)
2000 {
2001 /* This actually happens frequently in embedded
2002 development, when you first connect to a board
2003 and your stack pointer and pc are nowhere in
2004 particular. This message needs to give people
2005 in that situation enough information to
2006 determine that it's no big deal. */
2007 printf_filtered ("\n\
2008 GDB is unable to find the start of the function at 0x%s\n\
2009 and thus can't determine the size of that function's stack frame.\n\
2010 This means that GDB may be unable to access that stack frame, or\n\
2011 the frames below it.\n\
2012 This problem is most likely caused by an invalid program counter or\n\
2013 stack pointer.\n\
2014 However, if you think GDB should simply search farther back\n\
2015 from 0x%s for code which looks like the beginning of a\n\
2016 function, you can increase the range of the search using the `set\n\
2017 heuristic-fence-post' command.\n",
2018 paddr_nz (pc), paddr_nz (pc));
2019 blurb_printed = 1;
2020 }
2021 }
2022
2023 return 0;
2024 }
2025 else if (pc_is_mips16 (start_pc))
2026 {
2027 unsigned short inst;
2028
2029 /* On MIPS16, any one of the following is likely to be the
2030 start of a function:
2031 entry
2032 addiu sp,-n
2033 daddiu sp,-n
2034 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2035 inst = mips_fetch_instruction (start_pc);
2036 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2037 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2038 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2039 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2040 break;
2041 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2042 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2043 seen_adjsp = 1;
2044 else
2045 seen_adjsp = 0;
2046 }
2047 else if (mips_about_to_return (start_pc))
2048 {
2049 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
2050 break;
2051 }
2052
2053 return start_pc;
2054 }
2055
2056 /* Fetch the immediate value from a MIPS16 instruction.
2057 If the previous instruction was an EXTEND, use it to extend
2058 the upper bits of the immediate value. This is a helper function
2059 for mips16_heuristic_proc_desc. */
2060
2061 static int
2062 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2063 unsigned short inst, /* current instruction */
2064 int nbits, /* number of bits in imm field */
2065 int scale, /* scale factor to be applied to imm */
2066 int is_signed) /* is the imm field signed? */
2067 {
2068 int offset;
2069
2070 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2071 {
2072 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2073 if (offset & 0x8000) /* check for negative extend */
2074 offset = 0 - (0x10000 - (offset & 0xffff));
2075 return offset | (inst & 0x1f);
2076 }
2077 else
2078 {
2079 int max_imm = 1 << nbits;
2080 int mask = max_imm - 1;
2081 int sign_bit = max_imm >> 1;
2082
2083 offset = inst & mask;
2084 if (is_signed && (offset & sign_bit))
2085 offset = 0 - (max_imm - offset);
2086 return offset * scale;
2087 }
2088 }
2089
2090
2091 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
2092 stream from start_pc to limit_pc. */
2093
2094 static void
2095 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2096 struct frame_info *next_frame, CORE_ADDR sp)
2097 {
2098 CORE_ADDR cur_pc;
2099 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
2100 unsigned short prev_inst = 0; /* saved copy of previous instruction */
2101 unsigned inst = 0; /* current instruction */
2102 unsigned entry_inst = 0; /* the entry instruction */
2103 int reg, offset;
2104
2105 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
2106 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2107
2108 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2109 {
2110 /* Save the previous instruction. If it's an EXTEND, we'll extract
2111 the immediate offset extension from it in mips16_get_imm. */
2112 prev_inst = inst;
2113
2114 /* Fetch and decode the instruction. */
2115 inst = (unsigned short) mips_fetch_instruction (cur_pc);
2116 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2117 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2118 {
2119 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2120 if (offset < 0) /* negative stack adjustment? */
2121 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
2122 else
2123 /* Exit loop if a positive stack adjustment is found, which
2124 usually means that the stack cleanup code in the function
2125 epilogue is reached. */
2126 break;
2127 }
2128 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2129 {
2130 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2131 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
2132 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2133 set_reg_offset (temp_saved_regs, reg, sp + offset);
2134 }
2135 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2136 {
2137 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2138 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2139 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2140 set_reg_offset (temp_saved_regs, reg, sp + offset);
2141 }
2142 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2143 {
2144 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2145 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2146 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2147 }
2148 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2149 {
2150 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2151 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2152 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2153 }
2154 else if (inst == 0x673d) /* move $s1, $sp */
2155 {
2156 frame_addr = sp;
2157 PROC_FRAME_REG (&temp_proc_desc) = 17;
2158 }
2159 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2160 {
2161 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2162 frame_addr = sp + offset;
2163 PROC_FRAME_REG (&temp_proc_desc) = 17;
2164 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2165 }
2166 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2167 {
2168 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2169 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2170 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2171 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2172 }
2173 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2174 {
2175 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2176 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2177 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2178 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2179 }
2180 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2181 entry_inst = inst; /* save for later processing */
2182 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2183 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
2184 }
2185
2186 /* The entry instruction is typically the first instruction in a function,
2187 and it stores registers at offsets relative to the value of the old SP
2188 (before the prologue). But the value of the sp parameter to this
2189 function is the new SP (after the prologue has been executed). So we
2190 can't calculate those offsets until we've seen the entire prologue,
2191 and can calculate what the old SP must have been. */
2192 if (entry_inst != 0)
2193 {
2194 int areg_count = (entry_inst >> 8) & 7;
2195 int sreg_count = (entry_inst >> 6) & 3;
2196
2197 /* The entry instruction always subtracts 32 from the SP. */
2198 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2199
2200 /* Now we can calculate what the SP must have been at the
2201 start of the function prologue. */
2202 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2203
2204 /* Check if a0-a3 were saved in the caller's argument save area. */
2205 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2206 {
2207 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2208 set_reg_offset (temp_saved_regs, reg, sp + offset);
2209 offset += MIPS_SAVED_REGSIZE;
2210 }
2211
2212 /* Check if the ra register was pushed on the stack. */
2213 offset = -4;
2214 if (entry_inst & 0x20)
2215 {
2216 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2217 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2218 offset -= MIPS_SAVED_REGSIZE;
2219 }
2220
2221 /* Check if the s0 and s1 registers were pushed on the stack. */
2222 for (reg = 16; reg < sreg_count + 16; reg++)
2223 {
2224 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2225 set_reg_offset (temp_saved_regs, reg, sp + offset);
2226 offset -= MIPS_SAVED_REGSIZE;
2227 }
2228 }
2229 }
2230
2231 static void
2232 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2233 struct frame_info *next_frame, CORE_ADDR sp)
2234 {
2235 CORE_ADDR cur_pc;
2236 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2237 restart:
2238 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2239 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2240 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2241 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2242 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2243 {
2244 unsigned long inst, high_word, low_word;
2245 int reg;
2246
2247 /* Fetch the instruction. */
2248 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2249
2250 /* Save some code by pre-extracting some useful fields. */
2251 high_word = (inst >> 16) & 0xffff;
2252 low_word = inst & 0xffff;
2253 reg = high_word & 0x1f;
2254
2255 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2256 || high_word == 0x23bd /* addi $sp,$sp,-i */
2257 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2258 {
2259 if (low_word & 0x8000) /* negative stack adjustment? */
2260 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2261 else
2262 /* Exit loop if a positive stack adjustment is found, which
2263 usually means that the stack cleanup code in the function
2264 epilogue is reached. */
2265 break;
2266 }
2267 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2268 {
2269 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2270 set_reg_offset (temp_saved_regs, reg, sp + low_word);
2271 }
2272 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2273 {
2274 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2275 but the register size used is only 32 bits. Make the address
2276 for the saved register point to the lower 32 bits. */
2277 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2278 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
2279 }
2280 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2281 {
2282 /* Old gcc frame, r30 is virtual frame pointer. */
2283 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2284 frame_addr = sp + low_word;
2285 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2286 {
2287 unsigned alloca_adjust;
2288 PROC_FRAME_REG (&temp_proc_desc) = 30;
2289 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2290 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2291 if (alloca_adjust > 0)
2292 {
2293 /* FP > SP + frame_size. This may be because
2294 * of an alloca or somethings similar.
2295 * Fix sp to "pre-alloca" value, and try again.
2296 */
2297 sp += alloca_adjust;
2298 goto restart;
2299 }
2300 }
2301 }
2302 /* move $30,$sp. With different versions of gas this will be either
2303 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2304 Accept any one of these. */
2305 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2306 {
2307 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2308 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2309 {
2310 unsigned alloca_adjust;
2311 PROC_FRAME_REG (&temp_proc_desc) = 30;
2312 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2313 alloca_adjust = (unsigned) (frame_addr - sp);
2314 if (alloca_adjust > 0)
2315 {
2316 /* FP > SP + frame_size. This may be because
2317 * of an alloca or somethings similar.
2318 * Fix sp to "pre-alloca" value, and try again.
2319 */
2320 sp += alloca_adjust;
2321 goto restart;
2322 }
2323 }
2324 }
2325 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2326 {
2327 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2328 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2329 }
2330 }
2331 }
2332
2333 static mips_extra_func_info_t
2334 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2335 struct frame_info *next_frame, int cur_frame)
2336 {
2337 CORE_ADDR sp;
2338
2339 if (cur_frame)
2340 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
2341 else
2342 sp = 0;
2343
2344 if (start_pc == 0)
2345 return NULL;
2346 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2347 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2348 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2349 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2350 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2351 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2352
2353 if (start_pc + 200 < limit_pc)
2354 limit_pc = start_pc + 200;
2355 if (pc_is_mips16 (start_pc))
2356 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2357 else
2358 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2359 return &temp_proc_desc;
2360 }
2361
2362 struct mips_objfile_private
2363 {
2364 bfd_size_type size;
2365 char *contents;
2366 };
2367
2368 /* Global used to communicate between non_heuristic_proc_desc and
2369 compare_pdr_entries within qsort (). */
2370 static bfd *the_bfd;
2371
2372 static int
2373 compare_pdr_entries (const void *a, const void *b)
2374 {
2375 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2376 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2377
2378 if (lhs < rhs)
2379 return -1;
2380 else if (lhs == rhs)
2381 return 0;
2382 else
2383 return 1;
2384 }
2385
2386 static mips_extra_func_info_t
2387 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2388 {
2389 CORE_ADDR startaddr;
2390 mips_extra_func_info_t proc_desc;
2391 struct block *b = block_for_pc (pc);
2392 struct symbol *sym;
2393 struct obj_section *sec;
2394 struct mips_objfile_private *priv;
2395
2396 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2397 return NULL;
2398
2399 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2400 if (addrptr)
2401 *addrptr = startaddr;
2402
2403 priv = NULL;
2404
2405 sec = find_pc_section (pc);
2406 if (sec != NULL)
2407 {
2408 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2409
2410 /* Search the ".pdr" section generated by GAS. This includes most of
2411 the information normally found in ECOFF PDRs. */
2412
2413 the_bfd = sec->objfile->obfd;
2414 if (priv == NULL
2415 && (the_bfd->format == bfd_object
2416 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2417 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2418 {
2419 /* Right now GAS only outputs the address as a four-byte sequence.
2420 This means that we should not bother with this method on 64-bit
2421 targets (until that is fixed). */
2422
2423 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2424 sizeof (struct mips_objfile_private));
2425 priv->size = 0;
2426 sec->objfile->obj_private = priv;
2427 }
2428 else if (priv == NULL)
2429 {
2430 asection *bfdsec;
2431
2432 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2433 sizeof (struct mips_objfile_private));
2434
2435 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2436 if (bfdsec != NULL)
2437 {
2438 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2439 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2440 priv->size);
2441 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2442 priv->contents, 0, priv->size);
2443
2444 /* In general, the .pdr section is sorted. However, in the
2445 presence of multiple code sections (and other corner cases)
2446 it can become unsorted. Sort it so that we can use a faster
2447 binary search. */
2448 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2449 }
2450 else
2451 priv->size = 0;
2452
2453 sec->objfile->obj_private = priv;
2454 }
2455 the_bfd = NULL;
2456
2457 if (priv->size != 0)
2458 {
2459 int low, mid, high;
2460 char *ptr;
2461
2462 low = 0;
2463 high = priv->size / 32;
2464
2465 do
2466 {
2467 CORE_ADDR pdr_pc;
2468
2469 mid = (low + high) / 2;
2470
2471 ptr = priv->contents + mid * 32;
2472 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2473 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2474 SECT_OFF_TEXT (sec->objfile));
2475 if (pdr_pc == startaddr)
2476 break;
2477 if (pdr_pc > startaddr)
2478 high = mid;
2479 else
2480 low = mid + 1;
2481 }
2482 while (low != high);
2483
2484 if (low != high)
2485 {
2486 struct symbol *sym = find_pc_function (pc);
2487
2488 /* Fill in what we need of the proc_desc. */
2489 proc_desc = (mips_extra_func_info_t)
2490 obstack_alloc (&sec->objfile->psymbol_obstack,
2491 sizeof (struct mips_extra_func_info));
2492 PROC_LOW_ADDR (proc_desc) = startaddr;
2493
2494 /* Only used for dummy frames. */
2495 PROC_HIGH_ADDR (proc_desc) = 0;
2496
2497 PROC_FRAME_OFFSET (proc_desc)
2498 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2499 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2500 ptr + 24);
2501 PROC_FRAME_ADJUST (proc_desc) = 0;
2502 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2503 ptr + 4);
2504 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2505 ptr + 12);
2506 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2507 ptr + 8);
2508 PROC_FREG_OFFSET (proc_desc)
2509 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2510 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2511 ptr + 28);
2512 proc_desc->pdr.isym = (long) sym;
2513
2514 return proc_desc;
2515 }
2516 }
2517 }
2518
2519 if (b == NULL)
2520 return NULL;
2521
2522 if (startaddr > BLOCK_START (b))
2523 {
2524 /* This is the "pathological" case referred to in a comment in
2525 print_frame_info. It might be better to move this check into
2526 symbol reading. */
2527 return NULL;
2528 }
2529
2530 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2531
2532 /* If we never found a PDR for this function in symbol reading, then
2533 examine prologues to find the information. */
2534 if (sym)
2535 {
2536 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2537 if (PROC_FRAME_REG (proc_desc) == -1)
2538 return NULL;
2539 else
2540 return proc_desc;
2541 }
2542 else
2543 return NULL;
2544 }
2545
2546
2547 static mips_extra_func_info_t
2548 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2549 {
2550 mips_extra_func_info_t proc_desc;
2551 CORE_ADDR startaddr = 0;
2552
2553 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2554
2555 if (proc_desc)
2556 {
2557 /* IF this is the topmost frame AND
2558 * (this proc does not have debugging information OR
2559 * the PC is in the procedure prologue)
2560 * THEN create a "heuristic" proc_desc (by analyzing
2561 * the actual code) to replace the "official" proc_desc.
2562 */
2563 if (next_frame == NULL)
2564 {
2565 struct symtab_and_line val;
2566 struct symbol *proc_symbol =
2567 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2568
2569 if (proc_symbol)
2570 {
2571 val = find_pc_line (BLOCK_START
2572 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2573 0);
2574 val.pc = val.end ? val.end : pc;
2575 }
2576 if (!proc_symbol || pc < val.pc)
2577 {
2578 mips_extra_func_info_t found_heuristic =
2579 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2580 pc, next_frame, cur_frame);
2581 if (found_heuristic)
2582 proc_desc = found_heuristic;
2583 }
2584 }
2585 }
2586 else
2587 {
2588 /* Is linked_proc_desc_table really necessary? It only seems to be used
2589 by procedure call dummys. However, the procedures being called ought
2590 to have their own proc_descs, and even if they don't,
2591 heuristic_proc_desc knows how to create them! */
2592
2593 register struct linked_proc_info *link;
2594
2595 for (link = linked_proc_desc_table; link; link = link->next)
2596 if (PROC_LOW_ADDR (&link->info) <= pc
2597 && PROC_HIGH_ADDR (&link->info) > pc)
2598 return &link->info;
2599
2600 if (startaddr == 0)
2601 startaddr = heuristic_proc_start (pc);
2602
2603 proc_desc =
2604 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2605 }
2606 return proc_desc;
2607 }
2608
2609 static CORE_ADDR
2610 get_frame_pointer (struct frame_info *frame,
2611 mips_extra_func_info_t proc_desc)
2612 {
2613 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
2614 + PROC_FRAME_OFFSET (proc_desc)
2615 - PROC_FRAME_ADJUST (proc_desc));
2616 }
2617
2618 static mips_extra_func_info_t cached_proc_desc;
2619
2620 static CORE_ADDR
2621 mips_frame_chain (struct frame_info *frame)
2622 {
2623 mips_extra_func_info_t proc_desc;
2624 CORE_ADDR tmp;
2625 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2626
2627 if (saved_pc == 0 || inside_entry_file (saved_pc))
2628 return 0;
2629
2630 /* Check if the PC is inside a call stub. If it is, fetch the
2631 PC of the caller of that stub. */
2632 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2633 saved_pc = tmp;
2634
2635 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2636 {
2637 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2638 is well, frame->frame the bottom of the current frame will
2639 contain that value. */
2640 return get_frame_base (frame);
2641 }
2642
2643 /* Look up the procedure descriptor for this PC. */
2644 proc_desc = find_proc_desc (saved_pc, frame, 1);
2645 if (!proc_desc)
2646 return 0;
2647
2648 cached_proc_desc = proc_desc;
2649
2650 /* If no frame pointer and frame size is zero, we must be at end
2651 of stack (or otherwise hosed). If we don't check frame size,
2652 we loop forever if we see a zero size frame. */
2653 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2654 && PROC_FRAME_OFFSET (proc_desc) == 0
2655 /* The previous frame from a sigtramp frame might be frameless
2656 and have frame size zero. */
2657 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2658 /* For a generic dummy frame, let get_frame_pointer() unwind a
2659 register value saved as part of the dummy frame call. */
2660 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2661 return 0;
2662 else
2663 return get_frame_pointer (frame, proc_desc);
2664 }
2665
2666 static void
2667 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2668 {
2669 int regnum;
2670 mips_extra_func_info_t proc_desc;
2671
2672 if (get_frame_type (fci) == DUMMY_FRAME)
2673 return;
2674
2675 /* Use proc_desc calculated in frame_chain. When there is no
2676 next frame, i.e, get_next_frame (fci) == NULL, we call
2677 find_proc_desc () to calculate it, passing an explicit
2678 NULL as the frame parameter. */
2679 proc_desc =
2680 get_next_frame (fci)
2681 ? cached_proc_desc
2682 : find_proc_desc (get_frame_pc (fci),
2683 NULL /* i.e, get_next_frame (fci) */,
2684 1);
2685
2686 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2687
2688 deprecated_set_frame_saved_regs_hack (fci, NULL);
2689 get_frame_extra_info (fci)->proc_desc =
2690 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2691 if (proc_desc)
2692 {
2693 /* Fixup frame-pointer - only needed for top frame */
2694 /* This may not be quite right, if proc has a real frame register.
2695 Get the value of the frame relative sp, procedure might have been
2696 interrupted by a signal at it's very start. */
2697 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2698 && !PROC_DESC_IS_DUMMY (proc_desc))
2699 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
2700 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2701 /* Do not ``fix'' fci->frame. It will have the value of the
2702 generic dummy frame's top-of-stack (since the draft
2703 fci->frame is obtained by returning the unwound stack
2704 pointer) and that is what we want. That way the fci->frame
2705 value will match the top-of-stack value that was saved as
2706 part of the dummy frames data. */
2707 /* Do nothing. */;
2708 else
2709 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2710
2711 if (proc_desc == &temp_proc_desc)
2712 {
2713 char *name;
2714
2715 /* Do not set the saved registers for a sigtramp frame,
2716 mips_find_saved_registers will do that for us. We can't
2717 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2718 yet set. */
2719 /* FIXME: cagney/2002-11-18: This problem will go away once
2720 frame.c:get_prev_frame() is modified to set the frame's
2721 type before calling functions like this. */
2722 find_pc_partial_function (get_frame_pc (fci), &name,
2723 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2724 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2725 {
2726 frame_saved_regs_zalloc (fci);
2727 /* Set value of previous frame's stack pointer.
2728 Remember that saved_regs[SP_REGNUM] is special in
2729 that it contains the value of the stack pointer
2730 register. The other saved_regs values are addresses
2731 (in the inferior) at which a given register's value
2732 may be found. */
2733 set_reg_offset (temp_saved_regs, SP_REGNUM,
2734 get_frame_base (fci));
2735 set_reg_offset (temp_saved_regs, PC_REGNUM,
2736 temp_saved_regs[RA_REGNUM]);
2737 memcpy (get_frame_saved_regs (fci), temp_saved_regs,
2738 SIZEOF_FRAME_SAVED_REGS);
2739 }
2740 }
2741
2742 /* hack: if argument regs are saved, guess these contain args */
2743 /* assume we can't tell how many args for now */
2744 get_frame_extra_info (fci)->num_args = -1;
2745 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2746 {
2747 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2748 {
2749 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2750 break;
2751 }
2752 }
2753 }
2754 }
2755
2756 /* MIPS stack frames are almost impenetrable. When execution stops,
2757 we basically have to look at symbol information for the function
2758 that we stopped in, which tells us *which* register (if any) is
2759 the base of the frame pointer, and what offset from that register
2760 the frame itself is at.
2761
2762 This presents a problem when trying to examine a stack in memory
2763 (that isn't executing at the moment), using the "frame" command. We
2764 don't have a PC, nor do we have any registers except SP.
2765
2766 This routine takes two arguments, SP and PC, and tries to make the
2767 cached frames look as if these two arguments defined a frame on the
2768 cache. This allows the rest of info frame to extract the important
2769 arguments without difficulty. */
2770
2771 struct frame_info *
2772 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2773 {
2774 if (argc != 2)
2775 error ("MIPS frame specifications require two arguments: sp and pc");
2776
2777 return create_new_frame (argv[0], argv[1]);
2778 }
2779
2780 /* According to the current ABI, should the type be passed in a
2781 floating-point register (assuming that there is space)? When there
2782 is no FPU, FP are not even considered as possibile candidates for
2783 FP registers and, consequently this returns false - forces FP
2784 arguments into integer registers. */
2785
2786 static int
2787 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2788 {
2789 return ((typecode == TYPE_CODE_FLT
2790 || (MIPS_EABI
2791 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2792 && TYPE_NFIELDS (arg_type) == 1
2793 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2794 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2795 }
2796
2797 /* On o32, argument passing in GPRs depends on the alignment of the type being
2798 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2799
2800 static int
2801 mips_type_needs_double_align (struct type *type)
2802 {
2803 enum type_code typecode = TYPE_CODE (type);
2804
2805 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2806 return 1;
2807 else if (typecode == TYPE_CODE_STRUCT)
2808 {
2809 if (TYPE_NFIELDS (type) < 1)
2810 return 0;
2811 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2812 }
2813 else if (typecode == TYPE_CODE_UNION)
2814 {
2815 int i, n;
2816
2817 n = TYPE_NFIELDS (type);
2818 for (i = 0; i < n; i++)
2819 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2820 return 1;
2821 return 0;
2822 }
2823 return 0;
2824 }
2825
2826 /* Macros to round N up or down to the next A boundary;
2827 A must be a power of two. */
2828
2829 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2830 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2831
2832 /* Adjust the address downward (direction of stack growth) so that it
2833 is correctly aligned for a new stack frame. */
2834 static CORE_ADDR
2835 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2836 {
2837 return ROUND_DOWN (addr, 16);
2838 }
2839
2840 static CORE_ADDR
2841 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2842 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2843 struct value **args, CORE_ADDR sp, int struct_return,
2844 CORE_ADDR struct_addr)
2845 {
2846 int argreg;
2847 int float_argreg;
2848 int argnum;
2849 int len = 0;
2850 int stack_offset = 0;
2851
2852 /* For shared libraries, "t9" needs to point at the function
2853 address. */
2854 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2855
2856 /* Set the return address register to point to the entry point of
2857 the program, where a breakpoint lies in wait. */
2858 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2859
2860 /* First ensure that the stack and structure return address (if any)
2861 are properly aligned. The stack has to be at least 64-bit
2862 aligned even on 32-bit machines, because doubles must be 64-bit
2863 aligned. For n32 and n64, stack frames need to be 128-bit
2864 aligned, so we round to this widest known alignment. */
2865
2866 sp = ROUND_DOWN (sp, 16);
2867 struct_addr = ROUND_DOWN (struct_addr, 16);
2868
2869 /* Now make space on the stack for the args. We allocate more
2870 than necessary for EABI, because the first few arguments are
2871 passed in registers, but that's OK. */
2872 for (argnum = 0; argnum < nargs; argnum++)
2873 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2874 MIPS_STACK_ARGSIZE);
2875 sp -= ROUND_UP (len, 16);
2876
2877 if (mips_debug)
2878 fprintf_unfiltered (gdb_stdlog,
2879 "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n",
2880 paddr_nz (sp), ROUND_UP (len, 16));
2881
2882 /* Initialize the integer and float register pointers. */
2883 argreg = A0_REGNUM;
2884 float_argreg = FPA0_REGNUM;
2885
2886 /* The struct_return pointer occupies the first parameter-passing reg. */
2887 if (struct_return)
2888 {
2889 if (mips_debug)
2890 fprintf_unfiltered (gdb_stdlog,
2891 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2892 argreg, paddr_nz (struct_addr));
2893 write_register (argreg++, struct_addr);
2894 }
2895
2896 /* Now load as many as possible of the first arguments into
2897 registers, and push the rest onto the stack. Loop thru args
2898 from first to last. */
2899 for (argnum = 0; argnum < nargs; argnum++)
2900 {
2901 char *val;
2902 char valbuf[MAX_REGISTER_SIZE];
2903 struct value *arg = args[argnum];
2904 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2905 int len = TYPE_LENGTH (arg_type);
2906 enum type_code typecode = TYPE_CODE (arg_type);
2907
2908 if (mips_debug)
2909 fprintf_unfiltered (gdb_stdlog,
2910 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2911 argnum + 1, len, (int) typecode);
2912
2913 /* The EABI passes structures that do not fit in a register by
2914 reference. */
2915 if (len > MIPS_SAVED_REGSIZE
2916 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2917 {
2918 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2919 typecode = TYPE_CODE_PTR;
2920 len = MIPS_SAVED_REGSIZE;
2921 val = valbuf;
2922 if (mips_debug)
2923 fprintf_unfiltered (gdb_stdlog, " push");
2924 }
2925 else
2926 val = (char *) VALUE_CONTENTS (arg);
2927
2928 /* 32-bit ABIs always start floating point arguments in an
2929 even-numbered floating point register. Round the FP register
2930 up before the check to see if there are any FP registers
2931 left. Non MIPS_EABI targets also pass the FP in the integer
2932 registers so also round up normal registers. */
2933 if (!FP_REGISTER_DOUBLE
2934 && fp_register_arg_p (typecode, arg_type))
2935 {
2936 if ((float_argreg & 1))
2937 float_argreg++;
2938 }
2939
2940 /* Floating point arguments passed in registers have to be
2941 treated specially. On 32-bit architectures, doubles
2942 are passed in register pairs; the even register gets
2943 the low word, and the odd register gets the high word.
2944 On non-EABI processors, the first two floating point arguments are
2945 also copied to general registers, because MIPS16 functions
2946 don't use float registers for arguments. This duplication of
2947 arguments in general registers can't hurt non-MIPS16 functions
2948 because those registers are normally skipped. */
2949 /* MIPS_EABI squeezes a struct that contains a single floating
2950 point value into an FP register instead of pushing it onto the
2951 stack. */
2952 if (fp_register_arg_p (typecode, arg_type)
2953 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2954 {
2955 if (!FP_REGISTER_DOUBLE && len == 8)
2956 {
2957 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2958 unsigned long regval;
2959
2960 /* Write the low word of the double to the even register(s). */
2961 regval = extract_unsigned_integer (val + low_offset, 4);
2962 if (mips_debug)
2963 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2964 float_argreg, phex (regval, 4));
2965 write_register (float_argreg++, regval);
2966
2967 /* Write the high word of the double to the odd register(s). */
2968 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2969 if (mips_debug)
2970 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2971 float_argreg, phex (regval, 4));
2972 write_register (float_argreg++, regval);
2973 }
2974 else
2975 {
2976 /* This is a floating point value that fits entirely
2977 in a single register. */
2978 /* On 32 bit ABI's the float_argreg is further adjusted
2979 above to ensure that it is even register aligned. */
2980 LONGEST regval = extract_unsigned_integer (val, len);
2981 if (mips_debug)
2982 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2983 float_argreg, phex (regval, len));
2984 write_register (float_argreg++, regval);
2985 }
2986 }
2987 else
2988 {
2989 /* Copy the argument to general registers or the stack in
2990 register-sized pieces. Large arguments are split between
2991 registers and stack. */
2992 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2993 are treated specially: Irix cc passes them in registers
2994 where gcc sometimes puts them on the stack. For maximum
2995 compatibility, we will put them in both places. */
2996 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2997 (len % MIPS_SAVED_REGSIZE != 0));
2998
2999 /* Note: Floating-point values that didn't fit into an FP
3000 register are only written to memory. */
3001 while (len > 0)
3002 {
3003 /* Remember if the argument was written to the stack. */
3004 int stack_used_p = 0;
3005 int partial_len =
3006 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3007
3008 if (mips_debug)
3009 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3010 partial_len);
3011
3012 /* Write this portion of the argument to the stack. */
3013 if (argreg > MIPS_LAST_ARG_REGNUM
3014 || odd_sized_struct
3015 || fp_register_arg_p (typecode, arg_type))
3016 {
3017 /* Should shorter than int integer values be
3018 promoted to int before being stored? */
3019 int longword_offset = 0;
3020 CORE_ADDR addr;
3021 stack_used_p = 1;
3022 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3023 {
3024 if (MIPS_STACK_ARGSIZE == 8 &&
3025 (typecode == TYPE_CODE_INT ||
3026 typecode == TYPE_CODE_PTR ||
3027 typecode == TYPE_CODE_FLT) && len <= 4)
3028 longword_offset = MIPS_STACK_ARGSIZE - len;
3029 else if ((typecode == TYPE_CODE_STRUCT ||
3030 typecode == TYPE_CODE_UNION) &&
3031 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
3032 longword_offset = MIPS_STACK_ARGSIZE - len;
3033 }
3034
3035 if (mips_debug)
3036 {
3037 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3038 paddr_nz (stack_offset));
3039 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3040 paddr_nz (longword_offset));
3041 }
3042
3043 addr = sp + stack_offset + longword_offset;
3044
3045 if (mips_debug)
3046 {
3047 int i;
3048 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3049 paddr_nz (addr));
3050 for (i = 0; i < partial_len; i++)
3051 {
3052 fprintf_unfiltered (gdb_stdlog, "%02x",
3053 val[i] & 0xff);
3054 }
3055 }
3056 write_memory (addr, val, partial_len);
3057 }
3058
3059 /* Note!!! This is NOT an else clause. Odd sized
3060 structs may go thru BOTH paths. Floating point
3061 arguments will not. */
3062 /* Write this portion of the argument to a general
3063 purpose register. */
3064 if (argreg <= MIPS_LAST_ARG_REGNUM
3065 && !fp_register_arg_p (typecode, arg_type))
3066 {
3067 LONGEST regval = extract_unsigned_integer (val, partial_len);
3068
3069 if (mips_debug)
3070 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3071 argreg,
3072 phex (regval, MIPS_SAVED_REGSIZE));
3073 write_register (argreg, regval);
3074 argreg++;
3075 }
3076
3077 len -= partial_len;
3078 val += partial_len;
3079
3080 /* Compute the the offset into the stack at which we
3081 will copy the next parameter.
3082
3083 In the new EABI (and the NABI32), the stack_offset
3084 only needs to be adjusted when it has been used. */
3085
3086 if (stack_used_p)
3087 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3088 }
3089 }
3090 if (mips_debug)
3091 fprintf_unfiltered (gdb_stdlog, "\n");
3092 }
3093
3094 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3095
3096 /* Return adjusted stack pointer. */
3097 return sp;
3098 }
3099
3100 /* N32/N64 version of push_dummy_call. */
3101
3102 static CORE_ADDR
3103 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3104 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3105 struct value **args, CORE_ADDR sp, int struct_return,
3106 CORE_ADDR struct_addr)
3107 {
3108 int argreg;
3109 int float_argreg;
3110 int argnum;
3111 int len = 0;
3112 int stack_offset = 0;
3113
3114 /* For shared libraries, "t9" needs to point at the function
3115 address. */
3116 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3117
3118 /* Set the return address register to point to the entry point of
3119 the program, where a breakpoint lies in wait. */
3120 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3121
3122 /* First ensure that the stack and structure return address (if any)
3123 are properly aligned. The stack has to be at least 64-bit
3124 aligned even on 32-bit machines, because doubles must be 64-bit
3125 aligned. For n32 and n64, stack frames need to be 128-bit
3126 aligned, so we round to this widest known alignment. */
3127
3128 sp = ROUND_DOWN (sp, 16);
3129 struct_addr = ROUND_DOWN (struct_addr, 16);
3130
3131 /* Now make space on the stack for the args. */
3132 for (argnum = 0; argnum < nargs; argnum++)
3133 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3134 MIPS_STACK_ARGSIZE);
3135 sp -= ROUND_UP (len, 16);
3136
3137 if (mips_debug)
3138 fprintf_unfiltered (gdb_stdlog,
3139 "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n",
3140 paddr_nz (sp), ROUND_UP (len, 16));
3141
3142 /* Initialize the integer and float register pointers. */
3143 argreg = A0_REGNUM;
3144 float_argreg = FPA0_REGNUM;
3145
3146 /* The struct_return pointer occupies the first parameter-passing reg. */
3147 if (struct_return)
3148 {
3149 if (mips_debug)
3150 fprintf_unfiltered (gdb_stdlog,
3151 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3152 argreg, paddr_nz (struct_addr));
3153 write_register (argreg++, struct_addr);
3154 }
3155
3156 /* Now load as many as possible of the first arguments into
3157 registers, and push the rest onto the stack. Loop thru args
3158 from first to last. */
3159 for (argnum = 0; argnum < nargs; argnum++)
3160 {
3161 char *val;
3162 char valbuf[MAX_REGISTER_SIZE];
3163 struct value *arg = args[argnum];
3164 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3165 int len = TYPE_LENGTH (arg_type);
3166 enum type_code typecode = TYPE_CODE (arg_type);
3167
3168 if (mips_debug)
3169 fprintf_unfiltered (gdb_stdlog,
3170 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3171 argnum + 1, len, (int) typecode);
3172
3173 val = (char *) VALUE_CONTENTS (arg);
3174
3175 if (fp_register_arg_p (typecode, arg_type)
3176 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3177 {
3178 /* This is a floating point value that fits entirely
3179 in a single register. */
3180 /* On 32 bit ABI's the float_argreg is further adjusted
3181 above to ensure that it is even register aligned. */
3182 LONGEST regval = extract_unsigned_integer (val, len);
3183 if (mips_debug)
3184 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3185 float_argreg, phex (regval, len));
3186 write_register (float_argreg++, regval);
3187
3188 if (mips_debug)
3189 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3190 argreg, phex (regval, len));
3191 write_register (argreg, regval);
3192 argreg += 1;
3193 }
3194 else
3195 {
3196 /* Copy the argument to general registers or the stack in
3197 register-sized pieces. Large arguments are split between
3198 registers and stack. */
3199 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3200 are treated specially: Irix cc passes them in registers
3201 where gcc sometimes puts them on the stack. For maximum
3202 compatibility, we will put them in both places. */
3203 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3204 (len % MIPS_SAVED_REGSIZE != 0));
3205 /* Note: Floating-point values that didn't fit into an FP
3206 register are only written to memory. */
3207 while (len > 0)
3208 {
3209 /* Rememer if the argument was written to the stack. */
3210 int stack_used_p = 0;
3211 int partial_len = len < MIPS_SAVED_REGSIZE ?
3212 len : MIPS_SAVED_REGSIZE;
3213
3214 if (mips_debug)
3215 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3216 partial_len);
3217
3218 /* Write this portion of the argument to the stack. */
3219 if (argreg > MIPS_LAST_ARG_REGNUM
3220 || odd_sized_struct
3221 || fp_register_arg_p (typecode, arg_type))
3222 {
3223 /* Should shorter than int integer values be
3224 promoted to int before being stored? */
3225 int longword_offset = 0;
3226 CORE_ADDR addr;
3227 stack_used_p = 1;
3228 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3229 {
3230 if (MIPS_STACK_ARGSIZE == 8 &&
3231 (typecode == TYPE_CODE_INT ||
3232 typecode == TYPE_CODE_PTR ||
3233 typecode == TYPE_CODE_FLT) && len <= 4)
3234 longword_offset = MIPS_STACK_ARGSIZE - len;
3235 }
3236
3237 if (mips_debug)
3238 {
3239 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3240 paddr_nz (stack_offset));
3241 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3242 paddr_nz (longword_offset));
3243 }
3244
3245 addr = sp + stack_offset + longword_offset;
3246
3247 if (mips_debug)
3248 {
3249 int i;
3250 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3251 paddr_nz (addr));
3252 for (i = 0; i < partial_len; i++)
3253 {
3254 fprintf_unfiltered (gdb_stdlog, "%02x",
3255 val[i] & 0xff);
3256 }
3257 }
3258 write_memory (addr, val, partial_len);
3259 }
3260
3261 /* Note!!! This is NOT an else clause. Odd sized
3262 structs may go thru BOTH paths. Floating point
3263 arguments will not. */
3264 /* Write this portion of the argument to a general
3265 purpose register. */
3266 if (argreg <= MIPS_LAST_ARG_REGNUM
3267 && !fp_register_arg_p (typecode, arg_type))
3268 {
3269 LONGEST regval = extract_unsigned_integer (val, partial_len);
3270
3271 /* A non-floating-point argument being passed in a
3272 general register. If a struct or union, and if
3273 the remaining length is smaller than the register
3274 size, we have to adjust the register value on
3275 big endian targets.
3276
3277 It does not seem to be necessary to do the
3278 same for integral types.
3279
3280 cagney/2001-07-23: gdb/179: Also, GCC, when
3281 outputting LE O32 with sizeof (struct) <
3282 MIPS_SAVED_REGSIZE, generates a left shift as
3283 part of storing the argument in a register a
3284 register (the left shift isn't generated when
3285 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3286 is quite possible that this is GCC contradicting
3287 the LE/O32 ABI, GDB has not been adjusted to
3288 accommodate this. Either someone needs to
3289 demonstrate that the LE/O32 ABI specifies such a
3290 left shift OR this new ABI gets identified as
3291 such and GDB gets tweaked accordingly. */
3292
3293 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3294 && partial_len < MIPS_SAVED_REGSIZE
3295 && (typecode == TYPE_CODE_STRUCT ||
3296 typecode == TYPE_CODE_UNION))
3297 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3298 TARGET_CHAR_BIT);
3299
3300 if (mips_debug)
3301 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3302 argreg,
3303 phex (regval, MIPS_SAVED_REGSIZE));
3304 write_register (argreg, regval);
3305 argreg++;
3306 }
3307
3308 len -= partial_len;
3309 val += partial_len;
3310
3311 /* Compute the the offset into the stack at which we
3312 will copy the next parameter.
3313
3314 In N32 (N64?), the stack_offset only needs to be
3315 adjusted when it has been used. */
3316
3317 if (stack_used_p)
3318 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3319 }
3320 }
3321 if (mips_debug)
3322 fprintf_unfiltered (gdb_stdlog, "\n");
3323 }
3324
3325 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3326
3327 /* Return adjusted stack pointer. */
3328 return sp;
3329 }
3330
3331 /* O32 version of push_dummy_call. */
3332
3333 static CORE_ADDR
3334 mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3335 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3336 struct value **args, CORE_ADDR sp, int struct_return,
3337 CORE_ADDR struct_addr)
3338 {
3339 int argreg;
3340 int float_argreg;
3341 int argnum;
3342 int len = 0;
3343 int stack_offset = 0;
3344
3345 /* For shared libraries, "t9" needs to point at the function
3346 address. */
3347 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3348
3349 /* Set the return address register to point to the entry point of
3350 the program, where a breakpoint lies in wait. */
3351 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3352
3353 /* First ensure that the stack and structure return address (if any)
3354 are properly aligned. The stack has to be at least 64-bit
3355 aligned even on 32-bit machines, because doubles must be 64-bit
3356 aligned. For n32 and n64, stack frames need to be 128-bit
3357 aligned, so we round to this widest known alignment. */
3358
3359 sp = ROUND_DOWN (sp, 16);
3360 struct_addr = ROUND_DOWN (struct_addr, 16);
3361
3362 /* Now make space on the stack for the args. */
3363 for (argnum = 0; argnum < nargs; argnum++)
3364 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3365 MIPS_STACK_ARGSIZE);
3366 sp -= ROUND_UP (len, 16);
3367
3368 if (mips_debug)
3369 fprintf_unfiltered (gdb_stdlog,
3370 "mips_o32_push_dummy_call: sp=0x%s allocated %d\n",
3371 paddr_nz (sp), ROUND_UP (len, 16));
3372
3373 /* Initialize the integer and float register pointers. */
3374 argreg = A0_REGNUM;
3375 float_argreg = FPA0_REGNUM;
3376
3377 /* The struct_return pointer occupies the first parameter-passing reg. */
3378 if (struct_return)
3379 {
3380 if (mips_debug)
3381 fprintf_unfiltered (gdb_stdlog,
3382 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3383 argreg, paddr_nz (struct_addr));
3384 write_register (argreg++, struct_addr);
3385 stack_offset += MIPS_STACK_ARGSIZE;
3386 }
3387
3388 /* Now load as many as possible of the first arguments into
3389 registers, and push the rest onto the stack. Loop thru args
3390 from first to last. */
3391 for (argnum = 0; argnum < nargs; argnum++)
3392 {
3393 char *val;
3394 char valbuf[MAX_REGISTER_SIZE];
3395 struct value *arg = args[argnum];
3396 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3397 int len = TYPE_LENGTH (arg_type);
3398 enum type_code typecode = TYPE_CODE (arg_type);
3399
3400 if (mips_debug)
3401 fprintf_unfiltered (gdb_stdlog,
3402 "mips_o32_push_dummy_call: %d len=%d type=%d",
3403 argnum + 1, len, (int) typecode);
3404
3405 val = (char *) VALUE_CONTENTS (arg);
3406
3407 /* 32-bit ABIs always start floating point arguments in an
3408 even-numbered floating point register. Round the FP register
3409 up before the check to see if there are any FP registers
3410 left. O32/O64 targets also pass the FP in the integer
3411 registers so also round up normal registers. */
3412 if (!FP_REGISTER_DOUBLE
3413 && fp_register_arg_p (typecode, arg_type))
3414 {
3415 if ((float_argreg & 1))
3416 float_argreg++;
3417 }
3418
3419 /* Floating point arguments passed in registers have to be
3420 treated specially. On 32-bit architectures, doubles
3421 are passed in register pairs; the even register gets
3422 the low word, and the odd register gets the high word.
3423 On O32/O64, the first two floating point arguments are
3424 also copied to general registers, because MIPS16 functions
3425 don't use float registers for arguments. This duplication of
3426 arguments in general registers can't hurt non-MIPS16 functions
3427 because those registers are normally skipped. */
3428
3429 if (fp_register_arg_p (typecode, arg_type)
3430 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3431 {
3432 if (!FP_REGISTER_DOUBLE && len == 8)
3433 {
3434 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3435 unsigned long regval;
3436
3437 /* Write the low word of the double to the even register(s). */
3438 regval = extract_unsigned_integer (val + low_offset, 4);
3439 if (mips_debug)
3440 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3441 float_argreg, phex (regval, 4));
3442 write_register (float_argreg++, regval);
3443 if (mips_debug)
3444 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3445 argreg, phex (regval, 4));
3446 write_register (argreg++, regval);
3447
3448 /* Write the high word of the double to the odd register(s). */
3449 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3450 if (mips_debug)
3451 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3452 float_argreg, phex (regval, 4));
3453 write_register (float_argreg++, regval);
3454
3455 if (mips_debug)
3456 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3457 argreg, phex (regval, 4));
3458 write_register (argreg++, regval);
3459 }
3460 else
3461 {
3462 /* This is a floating point value that fits entirely
3463 in a single register. */
3464 /* On 32 bit ABI's the float_argreg is further adjusted
3465 above to ensure that it is even register aligned. */
3466 LONGEST regval = extract_unsigned_integer (val, len);
3467 if (mips_debug)
3468 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3469 float_argreg, phex (regval, len));
3470 write_register (float_argreg++, regval);
3471 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3472 registers for each argument. The below is (my
3473 guess) to ensure that the corresponding integer
3474 register has reserved the same space. */
3475 if (mips_debug)
3476 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3477 argreg, phex (regval, len));
3478 write_register (argreg, regval);
3479 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3480 }
3481 /* Reserve space for the FP register. */
3482 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3483 }
3484 else
3485 {
3486 /* Copy the argument to general registers or the stack in
3487 register-sized pieces. Large arguments are split between
3488 registers and stack. */
3489 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3490 are treated specially: Irix cc passes them in registers
3491 where gcc sometimes puts them on the stack. For maximum
3492 compatibility, we will put them in both places. */
3493 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3494 (len % MIPS_SAVED_REGSIZE != 0));
3495 /* Structures should be aligned to eight bytes (even arg registers)
3496 on MIPS_ABI_O32, if their first member has double precision. */
3497 if (MIPS_SAVED_REGSIZE < 8
3498 && mips_type_needs_double_align (arg_type))
3499 {
3500 if ((argreg & 1))
3501 argreg++;
3502 }
3503 /* Note: Floating-point values that didn't fit into an FP
3504 register are only written to memory. */
3505 while (len > 0)
3506 {
3507 /* Remember if the argument was written to the stack. */
3508 int stack_used_p = 0;
3509 int partial_len =
3510 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3511
3512 if (mips_debug)
3513 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3514 partial_len);
3515
3516 /* Write this portion of the argument to the stack. */
3517 if (argreg > MIPS_LAST_ARG_REGNUM
3518 || odd_sized_struct
3519 || fp_register_arg_p (typecode, arg_type))
3520 {
3521 /* Should shorter than int integer values be
3522 promoted to int before being stored? */
3523 int longword_offset = 0;
3524 CORE_ADDR addr;
3525 stack_used_p = 1;
3526 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3527 {
3528 if (MIPS_STACK_ARGSIZE == 8 &&
3529 (typecode == TYPE_CODE_INT ||
3530 typecode == TYPE_CODE_PTR ||
3531 typecode == TYPE_CODE_FLT) && len <= 4)
3532 longword_offset = MIPS_STACK_ARGSIZE - len;
3533 }
3534
3535 if (mips_debug)
3536 {
3537 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3538 paddr_nz (stack_offset));
3539 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3540 paddr_nz (longword_offset));
3541 }
3542
3543 addr = sp + stack_offset + longword_offset;
3544
3545 if (mips_debug)
3546 {
3547 int i;
3548 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3549 paddr_nz (addr));
3550 for (i = 0; i < partial_len; i++)
3551 {
3552 fprintf_unfiltered (gdb_stdlog, "%02x",
3553 val[i] & 0xff);
3554 }
3555 }
3556 write_memory (addr, val, partial_len);
3557 }
3558
3559 /* Note!!! This is NOT an else clause. Odd sized
3560 structs may go thru BOTH paths. Floating point
3561 arguments will not. */
3562 /* Write this portion of the argument to a general
3563 purpose register. */
3564 if (argreg <= MIPS_LAST_ARG_REGNUM
3565 && !fp_register_arg_p (typecode, arg_type))
3566 {
3567 LONGEST regval = extract_signed_integer (val, partial_len);
3568 /* Value may need to be sign extended, because
3569 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3570
3571 /* A non-floating-point argument being passed in a
3572 general register. If a struct or union, and if
3573 the remaining length is smaller than the register
3574 size, we have to adjust the register value on
3575 big endian targets.
3576
3577 It does not seem to be necessary to do the
3578 same for integral types.
3579
3580 Also don't do this adjustment on O64 binaries.
3581
3582 cagney/2001-07-23: gdb/179: Also, GCC, when
3583 outputting LE O32 with sizeof (struct) <
3584 MIPS_SAVED_REGSIZE, generates a left shift as
3585 part of storing the argument in a register a
3586 register (the left shift isn't generated when
3587 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3588 is quite possible that this is GCC contradicting
3589 the LE/O32 ABI, GDB has not been adjusted to
3590 accommodate this. Either someone needs to
3591 demonstrate that the LE/O32 ABI specifies such a
3592 left shift OR this new ABI gets identified as
3593 such and GDB gets tweaked accordingly. */
3594
3595 if (MIPS_SAVED_REGSIZE < 8
3596 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3597 && partial_len < MIPS_SAVED_REGSIZE
3598 && (typecode == TYPE_CODE_STRUCT ||
3599 typecode == TYPE_CODE_UNION))
3600 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3601 TARGET_CHAR_BIT);
3602
3603 if (mips_debug)
3604 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3605 argreg,
3606 phex (regval, MIPS_SAVED_REGSIZE));
3607 write_register (argreg, regval);
3608 argreg++;
3609
3610 /* Prevent subsequent floating point arguments from
3611 being passed in floating point registers. */
3612 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3613 }
3614
3615 len -= partial_len;
3616 val += partial_len;
3617
3618 /* Compute the the offset into the stack at which we
3619 will copy the next parameter.
3620
3621 In older ABIs, the caller reserved space for
3622 registers that contained arguments. This was loosely
3623 refered to as their "home". Consequently, space is
3624 always allocated. */
3625
3626 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3627 }
3628 }
3629 if (mips_debug)
3630 fprintf_unfiltered (gdb_stdlog, "\n");
3631 }
3632
3633 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3634
3635 /* Return adjusted stack pointer. */
3636 return sp;
3637 }
3638
3639 /* O64 version of push_dummy_call. */
3640
3641 static CORE_ADDR
3642 mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3643 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3644 struct value **args, CORE_ADDR sp, int struct_return,
3645 CORE_ADDR struct_addr)
3646 {
3647 int argreg;
3648 int float_argreg;
3649 int argnum;
3650 int len = 0;
3651 int stack_offset = 0;
3652
3653 /* For shared libraries, "t9" needs to point at the function
3654 address. */
3655 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3656
3657 /* Set the return address register to point to the entry point of
3658 the program, where a breakpoint lies in wait. */
3659 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3660
3661 /* First ensure that the stack and structure return address (if any)
3662 are properly aligned. The stack has to be at least 64-bit
3663 aligned even on 32-bit machines, because doubles must be 64-bit
3664 aligned. For n32 and n64, stack frames need to be 128-bit
3665 aligned, so we round to this widest known alignment. */
3666
3667 sp = ROUND_DOWN (sp, 16);
3668 struct_addr = ROUND_DOWN (struct_addr, 16);
3669
3670 /* Now make space on the stack for the args. */
3671 for (argnum = 0; argnum < nargs; argnum++)
3672 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3673 MIPS_STACK_ARGSIZE);
3674 sp -= ROUND_UP (len, 16);
3675
3676 if (mips_debug)
3677 fprintf_unfiltered (gdb_stdlog,
3678 "mips_o64_push_dummy_call: sp=0x%s allocated %d\n",
3679 paddr_nz (sp), ROUND_UP (len, 16));
3680
3681 /* Initialize the integer and float register pointers. */
3682 argreg = A0_REGNUM;
3683 float_argreg = FPA0_REGNUM;
3684
3685 /* The struct_return pointer occupies the first parameter-passing reg. */
3686 if (struct_return)
3687 {
3688 if (mips_debug)
3689 fprintf_unfiltered (gdb_stdlog,
3690 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3691 argreg, paddr_nz (struct_addr));
3692 write_register (argreg++, struct_addr);
3693 stack_offset += MIPS_STACK_ARGSIZE;
3694 }
3695
3696 /* Now load as many as possible of the first arguments into
3697 registers, and push the rest onto the stack. Loop thru args
3698 from first to last. */
3699 for (argnum = 0; argnum < nargs; argnum++)
3700 {
3701 char *val;
3702 char valbuf[MAX_REGISTER_SIZE];
3703 struct value *arg = args[argnum];
3704 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3705 int len = TYPE_LENGTH (arg_type);
3706 enum type_code typecode = TYPE_CODE (arg_type);
3707
3708 if (mips_debug)
3709 fprintf_unfiltered (gdb_stdlog,
3710 "mips_o64_push_dummy_call: %d len=%d type=%d",
3711 argnum + 1, len, (int) typecode);
3712
3713 val = (char *) VALUE_CONTENTS (arg);
3714
3715 /* 32-bit ABIs always start floating point arguments in an
3716 even-numbered floating point register. Round the FP register
3717 up before the check to see if there are any FP registers
3718 left. O32/O64 targets also pass the FP in the integer
3719 registers so also round up normal registers. */
3720 if (!FP_REGISTER_DOUBLE
3721 && fp_register_arg_p (typecode, arg_type))
3722 {
3723 if ((float_argreg & 1))
3724 float_argreg++;
3725 }
3726
3727 /* Floating point arguments passed in registers have to be
3728 treated specially. On 32-bit architectures, doubles
3729 are passed in register pairs; the even register gets
3730 the low word, and the odd register gets the high word.
3731 On O32/O64, the first two floating point arguments are
3732 also copied to general registers, because MIPS16 functions
3733 don't use float registers for arguments. This duplication of
3734 arguments in general registers can't hurt non-MIPS16 functions
3735 because those registers are normally skipped. */
3736
3737 if (fp_register_arg_p (typecode, arg_type)
3738 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3739 {
3740 if (!FP_REGISTER_DOUBLE && len == 8)
3741 {
3742 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3743 unsigned long regval;
3744
3745 /* Write the low word of the double to the even register(s). */
3746 regval = extract_unsigned_integer (val + low_offset, 4);
3747 if (mips_debug)
3748 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3749 float_argreg, phex (regval, 4));
3750 write_register (float_argreg++, regval);
3751 if (mips_debug)
3752 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3753 argreg, phex (regval, 4));
3754 write_register (argreg++, regval);
3755
3756 /* Write the high word of the double to the odd register(s). */
3757 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3758 if (mips_debug)
3759 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3760 float_argreg, phex (regval, 4));
3761 write_register (float_argreg++, regval);
3762
3763 if (mips_debug)
3764 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3765 argreg, phex (regval, 4));
3766 write_register (argreg++, regval);
3767 }
3768 else
3769 {
3770 /* This is a floating point value that fits entirely
3771 in a single register. */
3772 /* On 32 bit ABI's the float_argreg is further adjusted
3773 above to ensure that it is even register aligned. */
3774 LONGEST regval = extract_unsigned_integer (val, len);
3775 if (mips_debug)
3776 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3777 float_argreg, phex (regval, len));
3778 write_register (float_argreg++, regval);
3779 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3780 registers for each argument. The below is (my
3781 guess) to ensure that the corresponding integer
3782 register has reserved the same space. */
3783 if (mips_debug)
3784 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3785 argreg, phex (regval, len));
3786 write_register (argreg, regval);
3787 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3788 }
3789 /* Reserve space for the FP register. */
3790 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3791 }
3792 else
3793 {
3794 /* Copy the argument to general registers or the stack in
3795 register-sized pieces. Large arguments are split between
3796 registers and stack. */
3797 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3798 are treated specially: Irix cc passes them in registers
3799 where gcc sometimes puts them on the stack. For maximum
3800 compatibility, we will put them in both places. */
3801 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3802 (len % MIPS_SAVED_REGSIZE != 0));
3803 /* Structures should be aligned to eight bytes (even arg registers)
3804 on MIPS_ABI_O32, if their first member has double precision. */
3805 if (MIPS_SAVED_REGSIZE < 8
3806 && mips_type_needs_double_align (arg_type))
3807 {
3808 if ((argreg & 1))
3809 argreg++;
3810 }
3811 /* Note: Floating-point values that didn't fit into an FP
3812 register are only written to memory. */
3813 while (len > 0)
3814 {
3815 /* Remember if the argument was written to the stack. */
3816 int stack_used_p = 0;
3817 int partial_len =
3818 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3819
3820 if (mips_debug)
3821 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3822 partial_len);
3823
3824 /* Write this portion of the argument to the stack. */
3825 if (argreg > MIPS_LAST_ARG_REGNUM
3826 || odd_sized_struct
3827 || fp_register_arg_p (typecode, arg_type))
3828 {
3829 /* Should shorter than int integer values be
3830 promoted to int before being stored? */
3831 int longword_offset = 0;
3832 CORE_ADDR addr;
3833 stack_used_p = 1;
3834 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3835 {
3836 if (MIPS_STACK_ARGSIZE == 8 &&
3837 (typecode == TYPE_CODE_INT ||
3838 typecode == TYPE_CODE_PTR ||
3839 typecode == TYPE_CODE_FLT) && len <= 4)
3840 longword_offset = MIPS_STACK_ARGSIZE - len;
3841 }
3842
3843 if (mips_debug)
3844 {
3845 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3846 paddr_nz (stack_offset));
3847 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3848 paddr_nz (longword_offset));
3849 }
3850
3851 addr = sp + stack_offset + longword_offset;
3852
3853 if (mips_debug)
3854 {
3855 int i;
3856 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3857 paddr_nz (addr));
3858 for (i = 0; i < partial_len; i++)
3859 {
3860 fprintf_unfiltered (gdb_stdlog, "%02x",
3861 val[i] & 0xff);
3862 }
3863 }
3864 write_memory (addr, val, partial_len);
3865 }
3866
3867 /* Note!!! This is NOT an else clause. Odd sized
3868 structs may go thru BOTH paths. Floating point
3869 arguments will not. */
3870 /* Write this portion of the argument to a general
3871 purpose register. */
3872 if (argreg <= MIPS_LAST_ARG_REGNUM
3873 && !fp_register_arg_p (typecode, arg_type))
3874 {
3875 LONGEST regval = extract_signed_integer (val, partial_len);
3876 /* Value may need to be sign extended, because
3877 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3878
3879 /* A non-floating-point argument being passed in a
3880 general register. If a struct or union, and if
3881 the remaining length is smaller than the register
3882 size, we have to adjust the register value on
3883 big endian targets.
3884
3885 It does not seem to be necessary to do the
3886 same for integral types.
3887
3888 Also don't do this adjustment on O64 binaries.
3889
3890 cagney/2001-07-23: gdb/179: Also, GCC, when
3891 outputting LE O32 with sizeof (struct) <
3892 MIPS_SAVED_REGSIZE, generates a left shift as
3893 part of storing the argument in a register a
3894 register (the left shift isn't generated when
3895 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3896 is quite possible that this is GCC contradicting
3897 the LE/O32 ABI, GDB has not been adjusted to
3898 accommodate this. Either someone needs to
3899 demonstrate that the LE/O32 ABI specifies such a
3900 left shift OR this new ABI gets identified as
3901 such and GDB gets tweaked accordingly. */
3902
3903 if (MIPS_SAVED_REGSIZE < 8
3904 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3905 && partial_len < MIPS_SAVED_REGSIZE
3906 && (typecode == TYPE_CODE_STRUCT ||
3907 typecode == TYPE_CODE_UNION))
3908 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3909 TARGET_CHAR_BIT);
3910
3911 if (mips_debug)
3912 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3913 argreg,
3914 phex (regval, MIPS_SAVED_REGSIZE));
3915 write_register (argreg, regval);
3916 argreg++;
3917
3918 /* Prevent subsequent floating point arguments from
3919 being passed in floating point registers. */
3920 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3921 }
3922
3923 len -= partial_len;
3924 val += partial_len;
3925
3926 /* Compute the the offset into the stack at which we
3927 will copy the next parameter.
3928
3929 In older ABIs, the caller reserved space for
3930 registers that contained arguments. This was loosely
3931 refered to as their "home". Consequently, space is
3932 always allocated. */
3933
3934 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3935 }
3936 }
3937 if (mips_debug)
3938 fprintf_unfiltered (gdb_stdlog, "\n");
3939 }
3940
3941 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3942
3943 /* Return adjusted stack pointer. */
3944 return sp;
3945 }
3946
3947 static void
3948 mips_pop_frame (void)
3949 {
3950 register int regnum;
3951 struct frame_info *frame = get_current_frame ();
3952 CORE_ADDR new_sp = get_frame_base (frame);
3953 mips_extra_func_info_t proc_desc;
3954
3955 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3956 {
3957 generic_pop_dummy_frame ();
3958 flush_cached_frames ();
3959 return;
3960 }
3961
3962 proc_desc = get_frame_extra_info (frame)->proc_desc;
3963 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3964 mips_find_saved_regs (frame);
3965 for (regnum = 0; regnum < NUM_REGS; regnum++)
3966 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3967 && get_frame_saved_regs (frame)[regnum])
3968 {
3969 /* Floating point registers must not be sign extended,
3970 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3971
3972 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3973 write_register (regnum,
3974 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
3975 MIPS_SAVED_REGSIZE));
3976 else
3977 write_register (regnum,
3978 read_memory_integer (get_frame_saved_regs (frame)[regnum],
3979 MIPS_SAVED_REGSIZE));
3980 }
3981
3982 write_register (SP_REGNUM, new_sp);
3983 flush_cached_frames ();
3984
3985 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3986 {
3987 struct linked_proc_info *pi_ptr, *prev_ptr;
3988
3989 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3990 pi_ptr != NULL;
3991 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3992 {
3993 if (&pi_ptr->info == proc_desc)
3994 break;
3995 }
3996
3997 if (pi_ptr == NULL)
3998 error ("Can't locate dummy extra frame info\n");
3999
4000 if (prev_ptr != NULL)
4001 prev_ptr->next = pi_ptr->next;
4002 else
4003 linked_proc_desc_table = pi_ptr->next;
4004
4005 xfree (pi_ptr);
4006
4007 write_register (HI_REGNUM,
4008 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
4009 MIPS_SAVED_REGSIZE));
4010 write_register (LO_REGNUM,
4011 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
4012 MIPS_SAVED_REGSIZE));
4013 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
4014 write_register (FCRCS_REGNUM,
4015 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
4016 MIPS_SAVED_REGSIZE));
4017 }
4018 }
4019
4020 /* Floating point register management.
4021
4022 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4023 64bit operations, these early MIPS cpus treat fp register pairs
4024 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4025 registers and offer a compatibility mode that emulates the MIPS2 fp
4026 model. When operating in MIPS2 fp compat mode, later cpu's split
4027 double precision floats into two 32-bit chunks and store them in
4028 consecutive fp regs. To display 64-bit floats stored in this
4029 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4030 Throw in user-configurable endianness and you have a real mess.
4031
4032 The way this works is:
4033 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4034 double-precision value will be split across two logical registers.
4035 The lower-numbered logical register will hold the low-order bits,
4036 regardless of the processor's endianness.
4037 - If we are on a 64-bit processor, and we are looking for a
4038 single-precision value, it will be in the low ordered bits
4039 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4040 save slot in memory.
4041 - If we are in 64-bit mode, everything is straightforward.
4042
4043 Note that this code only deals with "live" registers at the top of the
4044 stack. We will attempt to deal with saved registers later, when
4045 the raw/cooked register interface is in place. (We need a general
4046 interface that can deal with dynamic saved register sizes -- fp
4047 regs could be 32 bits wide in one frame and 64 on the frame above
4048 and below). */
4049
4050 static struct type *
4051 mips_float_register_type (void)
4052 {
4053 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4054 return builtin_type_ieee_single_big;
4055 else
4056 return builtin_type_ieee_single_little;
4057 }
4058
4059 static struct type *
4060 mips_double_register_type (void)
4061 {
4062 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4063 return builtin_type_ieee_double_big;
4064 else
4065 return builtin_type_ieee_double_little;
4066 }
4067
4068 /* Copy a 32-bit single-precision value from the current frame
4069 into rare_buffer. */
4070
4071 static void
4072 mips_read_fp_register_single (struct frame_info *frame, int regno,
4073 char *rare_buffer)
4074 {
4075 int raw_size = REGISTER_RAW_SIZE (regno);
4076 char *raw_buffer = alloca (raw_size);
4077
4078 if (!frame_register_read (frame, regno, raw_buffer))
4079 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4080 if (raw_size == 8)
4081 {
4082 /* We have a 64-bit value for this register. Find the low-order
4083 32 bits. */
4084 int offset;
4085
4086 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4087 offset = 4;
4088 else
4089 offset = 0;
4090
4091 memcpy (rare_buffer, raw_buffer + offset, 4);
4092 }
4093 else
4094 {
4095 memcpy (rare_buffer, raw_buffer, 4);
4096 }
4097 }
4098
4099 /* Copy a 64-bit double-precision value from the current frame into
4100 rare_buffer. This may include getting half of it from the next
4101 register. */
4102
4103 static void
4104 mips_read_fp_register_double (struct frame_info *frame, int regno,
4105 char *rare_buffer)
4106 {
4107 int raw_size = REGISTER_RAW_SIZE (regno);
4108
4109 if (raw_size == 8 && !mips2_fp_compat ())
4110 {
4111 /* We have a 64-bit value for this register, and we should use
4112 all 64 bits. */
4113 if (!frame_register_read (frame, regno, rare_buffer))
4114 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4115 }
4116 else
4117 {
4118 if ((regno - FP0_REGNUM) & 1)
4119 internal_error (__FILE__, __LINE__,
4120 "mips_read_fp_register_double: bad access to "
4121 "odd-numbered FP register");
4122
4123 /* mips_read_fp_register_single will find the correct 32 bits from
4124 each register. */
4125 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4126 {
4127 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4128 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4129 }
4130 else
4131 {
4132 mips_read_fp_register_single (frame, regno, rare_buffer);
4133 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4134 }
4135 }
4136 }
4137
4138 static void
4139 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4140 int regnum)
4141 { /* do values for FP (float) regs */
4142 char *raw_buffer;
4143 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4144 int inv1, inv2, namelen;
4145
4146 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4147
4148 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4149 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4150 "");
4151
4152 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4153 {
4154 /* 4-byte registers: Print hex and floating. Also print even
4155 numbered registers as doubles. */
4156 mips_read_fp_register_single (frame, regnum, raw_buffer);
4157 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4158
4159 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
4160
4161 fprintf_filtered (file, " flt: ");
4162 if (inv1)
4163 fprintf_filtered (file, " <invalid float> ");
4164 else
4165 fprintf_filtered (file, "%-17.9g", flt1);
4166
4167 if (regnum % 2 == 0)
4168 {
4169 mips_read_fp_register_double (frame, regnum, raw_buffer);
4170 doub = unpack_double (mips_double_register_type (), raw_buffer,
4171 &inv2);
4172
4173 fprintf_filtered (file, " dbl: ");
4174 if (inv2)
4175 fprintf_filtered (file, "<invalid double>");
4176 else
4177 fprintf_filtered (file, "%-24.17g", doub);
4178 }
4179 }
4180 else
4181 {
4182 /* Eight byte registers: print each one as hex, float and double. */
4183 mips_read_fp_register_single (frame, regnum, raw_buffer);
4184 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4185
4186 mips_read_fp_register_double (frame, regnum, raw_buffer);
4187 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4188
4189
4190 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
4191
4192 fprintf_filtered (file, " flt: ");
4193 if (inv1)
4194 fprintf_filtered (file, "<invalid float>");
4195 else
4196 fprintf_filtered (file, "%-17.9g", flt1);
4197
4198 fprintf_filtered (file, " dbl: ");
4199 if (inv2)
4200 fprintf_filtered (file, "<invalid double>");
4201 else
4202 fprintf_filtered (file, "%-24.17g", doub);
4203 }
4204 }
4205
4206 static void
4207 mips_print_register (struct ui_file *file, struct frame_info *frame,
4208 int regnum, int all)
4209 {
4210 struct gdbarch *gdbarch = get_frame_arch (frame);
4211 char raw_buffer[MAX_REGISTER_SIZE];
4212 int offset;
4213
4214 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4215 {
4216 mips_print_fp_register (file, frame, regnum);
4217 return;
4218 }
4219
4220 /* Get the data in raw format. */
4221 if (!frame_register_read (frame, regnum, raw_buffer))
4222 {
4223 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4224 return;
4225 }
4226
4227 fputs_filtered (REGISTER_NAME (regnum), file);
4228
4229 /* The problem with printing numeric register names (r26, etc.) is that
4230 the user can't use them on input. Probably the best solution is to
4231 fix it so that either the numeric or the funky (a2, etc.) names
4232 are accepted on input. */
4233 if (regnum < MIPS_NUMREGS)
4234 fprintf_filtered (file, "(r%d): ", regnum);
4235 else
4236 fprintf_filtered (file, ": ");
4237
4238 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4239 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4240 else
4241 offset = 0;
4242
4243 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
4244 'x', 0, file);
4245 }
4246
4247 /* Replacement for generic do_registers_info.
4248 Print regs in pretty columns. */
4249
4250 static int
4251 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4252 int regnum)
4253 {
4254 fprintf_filtered (file, " ");
4255 mips_print_fp_register (file, frame, regnum);
4256 fprintf_filtered (file, "\n");
4257 return regnum + 1;
4258 }
4259
4260
4261 /* Print a row's worth of GP (int) registers, with name labels above */
4262
4263 static int
4264 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4265 int start_regnum)
4266 {
4267 struct gdbarch *gdbarch = get_frame_arch (frame);
4268 /* do values for GP (int) regs */
4269 char raw_buffer[MAX_REGISTER_SIZE];
4270 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4271 int col, byte;
4272 int regnum;
4273
4274 /* For GP registers, we print a separate row of names above the vals */
4275 fprintf_filtered (file, " ");
4276 for (col = 0, regnum = start_regnum;
4277 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4278 regnum++)
4279 {
4280 if (*REGISTER_NAME (regnum) == '\0')
4281 continue; /* unused register */
4282 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4283 break; /* end the row: reached FP register */
4284 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4285 REGISTER_NAME (regnum));
4286 col++;
4287 }
4288 /* print the R0 to R31 names */
4289 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4290 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4291 else
4292 fprintf_filtered (file, "\n ");
4293
4294 /* now print the values in hex, 4 or 8 to the row */
4295 for (col = 0, regnum = start_regnum;
4296 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4297 regnum++)
4298 {
4299 if (*REGISTER_NAME (regnum) == '\0')
4300 continue; /* unused register */
4301 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4302 break; /* end row: reached FP register */
4303 /* OK: get the data in raw format. */
4304 if (!frame_register_read (frame, regnum, raw_buffer))
4305 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4306 /* pad small registers */
4307 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4308 printf_filtered (" ");
4309 /* Now print the register value in hex, endian order. */
4310 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4311 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4312 byte < REGISTER_RAW_SIZE (regnum);
4313 byte++)
4314 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4315 else
4316 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4317 byte >= 0;
4318 byte--)
4319 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4320 fprintf_filtered (file, " ");
4321 col++;
4322 }
4323 if (col > 0) /* ie. if we actually printed anything... */
4324 fprintf_filtered (file, "\n");
4325
4326 return regnum;
4327 }
4328
4329 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4330
4331 static void
4332 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4333 struct frame_info *frame, int regnum, int all)
4334 {
4335 if (regnum != -1) /* do one specified register */
4336 {
4337 gdb_assert (regnum >= NUM_REGS);
4338 if (*(REGISTER_NAME (regnum)) == '\0')
4339 error ("Not a valid register for the current processor type");
4340
4341 mips_print_register (file, frame, regnum, 0);
4342 fprintf_filtered (file, "\n");
4343 }
4344 else
4345 /* do all (or most) registers */
4346 {
4347 regnum = NUM_REGS;
4348 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4349 {
4350 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4351 {
4352 if (all) /* true for "INFO ALL-REGISTERS" command */
4353 regnum = print_fp_register_row (file, frame, regnum);
4354 else
4355 regnum += MIPS_NUMREGS; /* skip floating point regs */
4356 }
4357 else
4358 regnum = print_gp_register_row (file, frame, regnum);
4359 }
4360 }
4361 }
4362
4363 /* Is this a branch with a delay slot? */
4364
4365 static int is_delayed (unsigned long);
4366
4367 static int
4368 is_delayed (unsigned long insn)
4369 {
4370 int i;
4371 for (i = 0; i < NUMOPCODES; ++i)
4372 if (mips_opcodes[i].pinfo != INSN_MACRO
4373 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4374 break;
4375 return (i < NUMOPCODES
4376 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4377 | INSN_COND_BRANCH_DELAY
4378 | INSN_COND_BRANCH_LIKELY)));
4379 }
4380
4381 int
4382 mips_step_skips_delay (CORE_ADDR pc)
4383 {
4384 char buf[MIPS_INSTLEN];
4385
4386 /* There is no branch delay slot on MIPS16. */
4387 if (pc_is_mips16 (pc))
4388 return 0;
4389
4390 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4391 /* If error reading memory, guess that it is not a delayed branch. */
4392 return 0;
4393 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4394 }
4395
4396
4397 /* Skip the PC past function prologue instructions (32-bit version).
4398 This is a helper function for mips_skip_prologue. */
4399
4400 static CORE_ADDR
4401 mips32_skip_prologue (CORE_ADDR pc)
4402 {
4403 t_inst inst;
4404 CORE_ADDR end_pc;
4405 int seen_sp_adjust = 0;
4406 int load_immediate_bytes = 0;
4407
4408 /* Skip the typical prologue instructions. These are the stack adjustment
4409 instruction and the instructions that save registers on the stack
4410 or in the gcc frame. */
4411 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4412 {
4413 unsigned long high_word;
4414
4415 inst = mips_fetch_instruction (pc);
4416 high_word = (inst >> 16) & 0xffff;
4417
4418 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4419 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4420 seen_sp_adjust = 1;
4421 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4422 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4423 seen_sp_adjust = 1;
4424 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4425 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4426 && (inst & 0x001F0000)) /* reg != $zero */
4427 continue;
4428
4429 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4430 continue;
4431 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4432 /* sx reg,n($s8) */
4433 continue; /* reg != $zero */
4434
4435 /* move $s8,$sp. With different versions of gas this will be either
4436 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4437 Accept any one of these. */
4438 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4439 continue;
4440
4441 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4442 continue;
4443 else if (high_word == 0x3c1c) /* lui $gp,n */
4444 continue;
4445 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4446 continue;
4447 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4448 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4449 continue;
4450 /* The following instructions load $at or $t0 with an immediate
4451 value in preparation for a stack adjustment via
4452 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4453 a local variable, so we accept them only before a stack adjustment
4454 instruction was seen. */
4455 else if (!seen_sp_adjust)
4456 {
4457 if (high_word == 0x3c01 || /* lui $at,n */
4458 high_word == 0x3c08) /* lui $t0,n */
4459 {
4460 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4461 continue;
4462 }
4463 else if (high_word == 0x3421 || /* ori $at,$at,n */
4464 high_word == 0x3508 || /* ori $t0,$t0,n */
4465 high_word == 0x3401 || /* ori $at,$zero,n */
4466 high_word == 0x3408) /* ori $t0,$zero,n */
4467 {
4468 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4469 continue;
4470 }
4471 else
4472 break;
4473 }
4474 else
4475 break;
4476 }
4477
4478 /* In a frameless function, we might have incorrectly
4479 skipped some load immediate instructions. Undo the skipping
4480 if the load immediate was not followed by a stack adjustment. */
4481 if (load_immediate_bytes && !seen_sp_adjust)
4482 pc -= load_immediate_bytes;
4483 return pc;
4484 }
4485
4486 /* Skip the PC past function prologue instructions (16-bit version).
4487 This is a helper function for mips_skip_prologue. */
4488
4489 static CORE_ADDR
4490 mips16_skip_prologue (CORE_ADDR pc)
4491 {
4492 CORE_ADDR end_pc;
4493 int extend_bytes = 0;
4494 int prev_extend_bytes;
4495
4496 /* Table of instructions likely to be found in a function prologue. */
4497 static struct
4498 {
4499 unsigned short inst;
4500 unsigned short mask;
4501 }
4502 table[] =
4503 {
4504 {
4505 0x6300, 0xff00
4506 }
4507 , /* addiu $sp,offset */
4508 {
4509 0xfb00, 0xff00
4510 }
4511 , /* daddiu $sp,offset */
4512 {
4513 0xd000, 0xf800
4514 }
4515 , /* sw reg,n($sp) */
4516 {
4517 0xf900, 0xff00
4518 }
4519 , /* sd reg,n($sp) */
4520 {
4521 0x6200, 0xff00
4522 }
4523 , /* sw $ra,n($sp) */
4524 {
4525 0xfa00, 0xff00
4526 }
4527 , /* sd $ra,n($sp) */
4528 {
4529 0x673d, 0xffff
4530 }
4531 , /* move $s1,sp */
4532 {
4533 0xd980, 0xff80
4534 }
4535 , /* sw $a0-$a3,n($s1) */
4536 {
4537 0x6704, 0xff1c
4538 }
4539 , /* move reg,$a0-$a3 */
4540 {
4541 0xe809, 0xf81f
4542 }
4543 , /* entry pseudo-op */
4544 {
4545 0x0100, 0xff00
4546 }
4547 , /* addiu $s1,$sp,n */
4548 {
4549 0, 0
4550 } /* end of table marker */
4551 };
4552
4553 /* Skip the typical prologue instructions. These are the stack adjustment
4554 instruction and the instructions that save registers on the stack
4555 or in the gcc frame. */
4556 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4557 {
4558 unsigned short inst;
4559 int i;
4560
4561 inst = mips_fetch_instruction (pc);
4562
4563 /* Normally we ignore an extend instruction. However, if it is
4564 not followed by a valid prologue instruction, we must adjust
4565 the pc back over the extend so that it won't be considered
4566 part of the prologue. */
4567 if ((inst & 0xf800) == 0xf000) /* extend */
4568 {
4569 extend_bytes = MIPS16_INSTLEN;
4570 continue;
4571 }
4572 prev_extend_bytes = extend_bytes;
4573 extend_bytes = 0;
4574
4575 /* Check for other valid prologue instructions besides extend. */
4576 for (i = 0; table[i].mask != 0; i++)
4577 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4578 break;
4579 if (table[i].mask != 0) /* it was in table? */
4580 continue; /* ignore it */
4581 else
4582 /* non-prologue */
4583 {
4584 /* Return the current pc, adjusted backwards by 2 if
4585 the previous instruction was an extend. */
4586 return pc - prev_extend_bytes;
4587 }
4588 }
4589 return pc;
4590 }
4591
4592 /* To skip prologues, I use this predicate. Returns either PC itself
4593 if the code at PC does not look like a function prologue; otherwise
4594 returns an address that (if we're lucky) follows the prologue. If
4595 LENIENT, then we must skip everything which is involved in setting
4596 up the frame (it's OK to skip more, just so long as we don't skip
4597 anything which might clobber the registers which are being saved.
4598 We must skip more in the case where part of the prologue is in the
4599 delay slot of a non-prologue instruction). */
4600
4601 static CORE_ADDR
4602 mips_skip_prologue (CORE_ADDR pc)
4603 {
4604 /* See if we can determine the end of the prologue via the symbol table.
4605 If so, then return either PC, or the PC after the prologue, whichever
4606 is greater. */
4607
4608 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4609
4610 if (post_prologue_pc != 0)
4611 return max (pc, post_prologue_pc);
4612
4613 /* Can't determine prologue from the symbol table, need to examine
4614 instructions. */
4615
4616 if (pc_is_mips16 (pc))
4617 return mips16_skip_prologue (pc);
4618 else
4619 return mips32_skip_prologue (pc);
4620 }
4621
4622 /* Determine how a return value is stored within the MIPS register
4623 file, given the return type `valtype'. */
4624
4625 struct return_value_word
4626 {
4627 int len;
4628 int reg;
4629 int reg_offset;
4630 int buf_offset;
4631 };
4632
4633 static void
4634 return_value_location (struct type *valtype,
4635 struct return_value_word *hi,
4636 struct return_value_word *lo)
4637 {
4638 int len = TYPE_LENGTH (valtype);
4639
4640 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4641 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4642 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4643 {
4644 if (!FP_REGISTER_DOUBLE && len == 8)
4645 {
4646 /* We need to break a 64bit float in two 32 bit halves and
4647 spread them across a floating-point register pair. */
4648 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4649 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4650 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4651 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4652 ? 4 : 0);
4653 hi->reg_offset = lo->reg_offset;
4654 lo->reg = FP0_REGNUM + 0;
4655 hi->reg = FP0_REGNUM + 1;
4656 lo->len = 4;
4657 hi->len = 4;
4658 }
4659 else
4660 {
4661 /* The floating point value fits in a single floating-point
4662 register. */
4663 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4664 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4665 && len == 4)
4666 ? 4 : 0);
4667 lo->reg = FP0_REGNUM;
4668 lo->len = len;
4669 lo->buf_offset = 0;
4670 hi->len = 0;
4671 hi->reg_offset = 0;
4672 hi->buf_offset = 0;
4673 hi->reg = 0;
4674 }
4675 }
4676 else
4677 {
4678 /* Locate a result possibly spread across two registers. */
4679 int regnum = 2;
4680 lo->reg = regnum + 0;
4681 hi->reg = regnum + 1;
4682 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4683 && len < MIPS_SAVED_REGSIZE)
4684 {
4685 /* "un-left-justify" the value in the low register */
4686 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4687 lo->len = len;
4688 hi->reg_offset = 0;
4689 hi->len = 0;
4690 }
4691 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4692 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4693 && len < MIPS_SAVED_REGSIZE * 2
4694 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4695 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4696 {
4697 /* "un-left-justify" the value spread across two registers. */
4698 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4699 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4700 hi->reg_offset = 0;
4701 hi->len = len - lo->len;
4702 }
4703 else
4704 {
4705 /* Only perform a partial copy of the second register. */
4706 lo->reg_offset = 0;
4707 hi->reg_offset = 0;
4708 if (len > MIPS_SAVED_REGSIZE)
4709 {
4710 lo->len = MIPS_SAVED_REGSIZE;
4711 hi->len = len - MIPS_SAVED_REGSIZE;
4712 }
4713 else
4714 {
4715 lo->len = len;
4716 hi->len = 0;
4717 }
4718 }
4719 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4720 && REGISTER_RAW_SIZE (regnum) == 8
4721 && MIPS_SAVED_REGSIZE == 4)
4722 {
4723 /* Account for the fact that only the least-signficant part
4724 of the register is being used */
4725 lo->reg_offset += 4;
4726 hi->reg_offset += 4;
4727 }
4728 lo->buf_offset = 0;
4729 hi->buf_offset = lo->len;
4730 }
4731 }
4732
4733 /* Given a return value in `regbuf' with a type `valtype', extract and
4734 copy its value into `valbuf'. */
4735
4736 static void
4737 mips_eabi_extract_return_value (struct type *valtype,
4738 char regbuf[],
4739 char *valbuf)
4740 {
4741 struct return_value_word lo;
4742 struct return_value_word hi;
4743 return_value_location (valtype, &hi, &lo);
4744
4745 memcpy (valbuf + lo.buf_offset,
4746 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4747 lo.len);
4748
4749 if (hi.len > 0)
4750 memcpy (valbuf + hi.buf_offset,
4751 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4752 hi.len);
4753 }
4754
4755 static void
4756 mips_o64_extract_return_value (struct type *valtype,
4757 char regbuf[],
4758 char *valbuf)
4759 {
4760 struct return_value_word lo;
4761 struct return_value_word hi;
4762 return_value_location (valtype, &hi, &lo);
4763
4764 memcpy (valbuf + lo.buf_offset,
4765 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4766 lo.len);
4767
4768 if (hi.len > 0)
4769 memcpy (valbuf + hi.buf_offset,
4770 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4771 hi.len);
4772 }
4773
4774 /* Given a return value in `valbuf' with a type `valtype', write it's
4775 value into the appropriate register. */
4776
4777 static void
4778 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4779 {
4780 char raw_buffer[MAX_REGISTER_SIZE];
4781 struct return_value_word lo;
4782 struct return_value_word hi;
4783 return_value_location (valtype, &hi, &lo);
4784
4785 memset (raw_buffer, 0, sizeof (raw_buffer));
4786 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4787 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4788 REGISTER_RAW_SIZE (lo.reg));
4789
4790 if (hi.len > 0)
4791 {
4792 memset (raw_buffer, 0, sizeof (raw_buffer));
4793 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4794 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4795 REGISTER_RAW_SIZE (hi.reg));
4796 }
4797 }
4798
4799 static void
4800 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4801 {
4802 char raw_buffer[MAX_REGISTER_SIZE];
4803 struct return_value_word lo;
4804 struct return_value_word hi;
4805 return_value_location (valtype, &hi, &lo);
4806
4807 memset (raw_buffer, 0, sizeof (raw_buffer));
4808 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4809 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4810 REGISTER_RAW_SIZE (lo.reg));
4811
4812 if (hi.len > 0)
4813 {
4814 memset (raw_buffer, 0, sizeof (raw_buffer));
4815 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4816 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4817 REGISTER_RAW_SIZE (hi.reg));
4818 }
4819 }
4820
4821 /* O32 ABI stuff. */
4822
4823 static void
4824 mips_o32_xfer_return_value (struct type *type,
4825 struct regcache *regcache,
4826 bfd_byte *in, const bfd_byte *out)
4827 {
4828 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4829 if (TYPE_CODE (type) == TYPE_CODE_FLT
4830 && TYPE_LENGTH (type) == 4
4831 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4832 {
4833 /* A single-precision floating-point value. It fits in the
4834 least significant part of FP0. */
4835 if (mips_debug)
4836 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4837 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
4838 TARGET_BYTE_ORDER, in, out, 0);
4839 }
4840 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4841 && TYPE_LENGTH (type) == 8
4842 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4843 {
4844 /* A double-precision floating-point value. The most
4845 significant part goes in FP1, and the least significant in
4846 FP0. */
4847 if (mips_debug)
4848 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4849 switch (TARGET_BYTE_ORDER)
4850 {
4851 case BFD_ENDIAN_LITTLE:
4852 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
4853 TARGET_BYTE_ORDER, in, out, 0);
4854 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
4855 TARGET_BYTE_ORDER, in, out, 4);
4856 break;
4857 case BFD_ENDIAN_BIG:
4858 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
4859 TARGET_BYTE_ORDER, in, out, 0);
4860 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
4861 TARGET_BYTE_ORDER, in, out, 4);
4862 break;
4863 default:
4864 internal_error (__FILE__, __LINE__, "bad switch");
4865 }
4866 }
4867 #if 0
4868 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4869 && TYPE_NFIELDS (type) <= 2
4870 && TYPE_NFIELDS (type) >= 1
4871 && ((TYPE_NFIELDS (type) == 1
4872 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4873 == TYPE_CODE_FLT))
4874 || (TYPE_NFIELDS (type) == 2
4875 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4876 == TYPE_CODE_FLT)
4877 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4878 == TYPE_CODE_FLT)))
4879 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4880 {
4881 /* A struct that contains one or two floats. Each value is part
4882 in the least significant part of their floating point
4883 register.. */
4884 bfd_byte reg[MAX_REGISTER_SIZE];
4885 int regnum;
4886 int field;
4887 for (field = 0, regnum = FP0_REGNUM;
4888 field < TYPE_NFIELDS (type);
4889 field++, regnum += 2)
4890 {
4891 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4892 / TARGET_CHAR_BIT);
4893 if (mips_debug)
4894 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4895 mips_xfer_register (regcache, NUM_REGS + regnum,
4896 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4897 TARGET_BYTE_ORDER, in, out, offset);
4898 }
4899 }
4900 #endif
4901 #if 0
4902 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4903 || TYPE_CODE (type) == TYPE_CODE_UNION)
4904 {
4905 /* A structure or union. Extract the left justified value,
4906 regardless of the byte order. I.e. DO NOT USE
4907 mips_xfer_lower. */
4908 int offset;
4909 int regnum;
4910 for (offset = 0, regnum = V0_REGNUM;
4911 offset < TYPE_LENGTH (type);
4912 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4913 {
4914 int xfer = REGISTER_RAW_SIZE (regnum);
4915 if (offset + xfer > TYPE_LENGTH (type))
4916 xfer = TYPE_LENGTH (type) - offset;
4917 if (mips_debug)
4918 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4919 offset, xfer, regnum);
4920 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4921 BFD_ENDIAN_UNKNOWN, in, out, offset);
4922 }
4923 }
4924 #endif
4925 else
4926 {
4927 /* A scalar extract each part but least-significant-byte
4928 justified. o32 thinks registers are 4 byte, regardless of
4929 the ISA. mips_stack_argsize controls this. */
4930 int offset;
4931 int regnum;
4932 for (offset = 0, regnum = V0_REGNUM;
4933 offset < TYPE_LENGTH (type);
4934 offset += mips_stack_argsize (), regnum++)
4935 {
4936 int xfer = mips_stack_argsize ();
4937 int pos = 0;
4938 if (offset + xfer > TYPE_LENGTH (type))
4939 xfer = TYPE_LENGTH (type) - offset;
4940 if (mips_debug)
4941 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4942 offset, xfer, regnum);
4943 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4944 TARGET_BYTE_ORDER, in, out, offset);
4945 }
4946 }
4947 }
4948
4949 static void
4950 mips_o32_extract_return_value (struct type *type,
4951 struct regcache *regcache,
4952 void *valbuf)
4953 {
4954 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4955 }
4956
4957 static void
4958 mips_o32_store_return_value (struct type *type, char *valbuf)
4959 {
4960 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4961 }
4962
4963 /* N32/N44 ABI stuff. */
4964
4965 static void
4966 mips_n32n64_xfer_return_value (struct type *type,
4967 struct regcache *regcache,
4968 bfd_byte *in, const bfd_byte *out)
4969 {
4970 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4971 if (TYPE_CODE (type) == TYPE_CODE_FLT
4972 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4973 {
4974 /* A floating-point value belongs in the least significant part
4975 of FP0. */
4976 if (mips_debug)
4977 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4978 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
4979 TARGET_BYTE_ORDER, in, out, 0);
4980 }
4981 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4982 && TYPE_NFIELDS (type) <= 2
4983 && TYPE_NFIELDS (type) >= 1
4984 && ((TYPE_NFIELDS (type) == 1
4985 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4986 == TYPE_CODE_FLT))
4987 || (TYPE_NFIELDS (type) == 2
4988 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4989 == TYPE_CODE_FLT)
4990 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4991 == TYPE_CODE_FLT)))
4992 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4993 {
4994 /* A struct that contains one or two floats. Each value is part
4995 in the least significant part of their floating point
4996 register.. */
4997 bfd_byte reg[MAX_REGISTER_SIZE];
4998 int regnum;
4999 int field;
5000 for (field = 0, regnum = FP0_REGNUM;
5001 field < TYPE_NFIELDS (type);
5002 field++, regnum += 2)
5003 {
5004 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5005 / TARGET_CHAR_BIT);
5006 if (mips_debug)
5007 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
5008 mips_xfer_register (regcache, NUM_REGS + regnum,
5009 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5010 TARGET_BYTE_ORDER, in, out, offset);
5011 }
5012 }
5013 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5014 || TYPE_CODE (type) == TYPE_CODE_UNION)
5015 {
5016 /* A structure or union. Extract the left justified value,
5017 regardless of the byte order. I.e. DO NOT USE
5018 mips_xfer_lower. */
5019 int offset;
5020 int regnum;
5021 for (offset = 0, regnum = V0_REGNUM;
5022 offset < TYPE_LENGTH (type);
5023 offset += REGISTER_RAW_SIZE (regnum), regnum++)
5024 {
5025 int xfer = REGISTER_RAW_SIZE (regnum);
5026 if (offset + xfer > TYPE_LENGTH (type))
5027 xfer = TYPE_LENGTH (type) - offset;
5028 if (mips_debug)
5029 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5030 offset, xfer, regnum);
5031 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5032 BFD_ENDIAN_UNKNOWN, in, out, offset);
5033 }
5034 }
5035 else
5036 {
5037 /* A scalar extract each part but least-significant-byte
5038 justified. */
5039 int offset;
5040 int regnum;
5041 for (offset = 0, regnum = V0_REGNUM;
5042 offset < TYPE_LENGTH (type);
5043 offset += REGISTER_RAW_SIZE (regnum), regnum++)
5044 {
5045 int xfer = REGISTER_RAW_SIZE (regnum);
5046 int pos = 0;
5047 if (offset + xfer > TYPE_LENGTH (type))
5048 xfer = TYPE_LENGTH (type) - offset;
5049 if (mips_debug)
5050 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5051 offset, xfer, regnum);
5052 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5053 TARGET_BYTE_ORDER, in, out, offset);
5054 }
5055 }
5056 }
5057
5058 static void
5059 mips_n32n64_extract_return_value (struct type *type,
5060 struct regcache *regcache,
5061 void *valbuf)
5062 {
5063 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
5064 }
5065
5066 static void
5067 mips_n32n64_store_return_value (struct type *type, char *valbuf)
5068 {
5069 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
5070 }
5071
5072 static CORE_ADDR
5073 mips_extract_struct_value_address (struct regcache *regcache)
5074 {
5075 /* FIXME: This will only work at random. The caller passes the
5076 struct_return address in V0, but it is not preserved. It may
5077 still be there, or this may be a random value. */
5078 LONGEST val;
5079
5080 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
5081 return val;
5082 }
5083
5084 /* Exported procedure: Is PC in the signal trampoline code */
5085
5086 static int
5087 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
5088 {
5089 if (sigtramp_address == 0)
5090 fixup_sigtramp ();
5091 return (pc >= sigtramp_address && pc < sigtramp_end);
5092 }
5093
5094 /* Root of all "set mips "/"show mips " commands. This will eventually be
5095 used for all MIPS-specific commands. */
5096
5097 static void
5098 show_mips_command (char *args, int from_tty)
5099 {
5100 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5101 }
5102
5103 static void
5104 set_mips_command (char *args, int from_tty)
5105 {
5106 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5107 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5108 }
5109
5110 /* Commands to show/set the MIPS FPU type. */
5111
5112 static void
5113 show_mipsfpu_command (char *args, int from_tty)
5114 {
5115 char *fpu;
5116 switch (MIPS_FPU_TYPE)
5117 {
5118 case MIPS_FPU_SINGLE:
5119 fpu = "single-precision";
5120 break;
5121 case MIPS_FPU_DOUBLE:
5122 fpu = "double-precision";
5123 break;
5124 case MIPS_FPU_NONE:
5125 fpu = "absent (none)";
5126 break;
5127 default:
5128 internal_error (__FILE__, __LINE__, "bad switch");
5129 }
5130 if (mips_fpu_type_auto)
5131 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5132 fpu);
5133 else
5134 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5135 fpu);
5136 }
5137
5138
5139 static void
5140 set_mipsfpu_command (char *args, int from_tty)
5141 {
5142 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5143 show_mipsfpu_command (args, from_tty);
5144 }
5145
5146 static void
5147 set_mipsfpu_single_command (char *args, int from_tty)
5148 {
5149 mips_fpu_type = MIPS_FPU_SINGLE;
5150 mips_fpu_type_auto = 0;
5151 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5152 }
5153
5154 static void
5155 set_mipsfpu_double_command (char *args, int from_tty)
5156 {
5157 mips_fpu_type = MIPS_FPU_DOUBLE;
5158 mips_fpu_type_auto = 0;
5159 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5160 }
5161
5162 static void
5163 set_mipsfpu_none_command (char *args, int from_tty)
5164 {
5165 mips_fpu_type = MIPS_FPU_NONE;
5166 mips_fpu_type_auto = 0;
5167 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5168 }
5169
5170 static void
5171 set_mipsfpu_auto_command (char *args, int from_tty)
5172 {
5173 mips_fpu_type_auto = 1;
5174 }
5175
5176 /* Command to set the processor type. */
5177
5178 void
5179 mips_set_processor_type_command (char *args, int from_tty)
5180 {
5181 int i;
5182
5183 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5184 {
5185 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5186 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5187 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5188
5189 /* Restore the value. */
5190 tmp_mips_processor_type = xstrdup (mips_processor_type);
5191
5192 return;
5193 }
5194
5195 if (!mips_set_processor_type (tmp_mips_processor_type))
5196 {
5197 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5198 /* Restore its value. */
5199 tmp_mips_processor_type = xstrdup (mips_processor_type);
5200 }
5201 }
5202
5203 static void
5204 mips_show_processor_type_command (char *args, int from_tty)
5205 {
5206 }
5207
5208 /* Modify the actual processor type. */
5209
5210 static int
5211 mips_set_processor_type (char *str)
5212 {
5213 int i;
5214
5215 if (str == NULL)
5216 return 0;
5217
5218 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5219 {
5220 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5221 {
5222 mips_processor_type = str;
5223 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5224 return 1;
5225 /* FIXME tweak fpu flag too */
5226 }
5227 }
5228
5229 return 0;
5230 }
5231
5232 /* Attempt to identify the particular processor model by reading the
5233 processor id. */
5234
5235 char *
5236 mips_read_processor_type (void)
5237 {
5238 CORE_ADDR prid;
5239
5240 prid = read_register (PRID_REGNUM);
5241
5242 if ((prid & ~0xf) == 0x700)
5243 return savestring ("r3041", strlen ("r3041"));
5244
5245 return NULL;
5246 }
5247
5248 /* Just like reinit_frame_cache, but with the right arguments to be
5249 callable as an sfunc. */
5250
5251 static void
5252 reinit_frame_cache_sfunc (char *args, int from_tty,
5253 struct cmd_list_element *c)
5254 {
5255 reinit_frame_cache ();
5256 }
5257
5258 int
5259 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5260 {
5261 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5262 mips_extra_func_info_t proc_desc;
5263
5264 /* Search for the function containing this address. Set the low bit
5265 of the address when searching, in case we were given an even address
5266 that is the start of a 16-bit function. If we didn't do this,
5267 the search would fail because the symbol table says the function
5268 starts at an odd address, i.e. 1 byte past the given address. */
5269 memaddr = ADDR_BITS_REMOVE (memaddr);
5270 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
5271
5272 /* Make an attempt to determine if this is a 16-bit function. If
5273 the procedure descriptor exists and the address therein is odd,
5274 it's definitely a 16-bit function. Otherwise, we have to just
5275 guess that if the address passed in is odd, it's 16-bits. */
5276 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5277 disassembler needs to be able to locally determine the ISA, and
5278 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5279 work. */
5280 if (proc_desc)
5281 {
5282 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5283 info->mach = bfd_mach_mips16;
5284 }
5285 else
5286 {
5287 if (pc_is_mips16 (memaddr))
5288 info->mach = bfd_mach_mips16;
5289 }
5290
5291 /* Round down the instruction address to the appropriate boundary. */
5292 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5293
5294 /* Set the disassembler options. */
5295 if (tdep->mips_abi == MIPS_ABI_N32
5296 || tdep->mips_abi == MIPS_ABI_N64)
5297 {
5298 /* Set up the disassembler info, so that we get the right
5299 register names from libopcodes. */
5300 if (tdep->mips_abi == MIPS_ABI_N32)
5301 info->disassembler_options = "gpr-names=n32";
5302 else
5303 info->disassembler_options = "gpr-names=64";
5304 info->flavour = bfd_target_elf_flavour;
5305 }
5306 else
5307 /* This string is not recognized explicitly by the disassembler,
5308 but it tells the disassembler to not try to guess the ABI from
5309 the bfd elf headers, such that, if the user overrides the ABI
5310 of a program linked as NewABI, the disassembly will follow the
5311 register naming conventions specified by the user. */
5312 info->disassembler_options = "gpr-names=32";
5313
5314 /* Call the appropriate disassembler based on the target endian-ness. */
5315 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5316 return print_insn_big_mips (memaddr, info);
5317 else
5318 return print_insn_little_mips (memaddr, info);
5319 }
5320
5321 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5322 counter value to determine whether a 16- or 32-bit breakpoint should be
5323 used. It returns a pointer to a string of bytes that encode a breakpoint
5324 instruction, stores the length of the string to *lenptr, and adjusts pc
5325 (if necessary) to point to the actual memory location where the
5326 breakpoint should be inserted. */
5327
5328 static const unsigned char *
5329 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5330 {
5331 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5332 {
5333 if (pc_is_mips16 (*pcptr))
5334 {
5335 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
5336 *pcptr = unmake_mips16_addr (*pcptr);
5337 *lenptr = sizeof (mips16_big_breakpoint);
5338 return mips16_big_breakpoint;
5339 }
5340 else
5341 {
5342 /* The IDT board uses an unusual breakpoint value, and
5343 sometimes gets confused when it sees the usual MIPS
5344 breakpoint instruction. */
5345 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5346 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5347 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
5348
5349 *lenptr = sizeof (big_breakpoint);
5350
5351 if (strcmp (target_shortname, "mips") == 0)
5352 return idt_big_breakpoint;
5353 else if (strcmp (target_shortname, "ddb") == 0
5354 || strcmp (target_shortname, "pmon") == 0
5355 || strcmp (target_shortname, "lsi") == 0)
5356 return pmon_big_breakpoint;
5357 else
5358 return big_breakpoint;
5359 }
5360 }
5361 else
5362 {
5363 if (pc_is_mips16 (*pcptr))
5364 {
5365 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
5366 *pcptr = unmake_mips16_addr (*pcptr);
5367 *lenptr = sizeof (mips16_little_breakpoint);
5368 return mips16_little_breakpoint;
5369 }
5370 else
5371 {
5372 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5373 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5374 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
5375
5376 *lenptr = sizeof (little_breakpoint);
5377
5378 if (strcmp (target_shortname, "mips") == 0)
5379 return idt_little_breakpoint;
5380 else if (strcmp (target_shortname, "ddb") == 0
5381 || strcmp (target_shortname, "pmon") == 0
5382 || strcmp (target_shortname, "lsi") == 0)
5383 return pmon_little_breakpoint;
5384 else
5385 return little_breakpoint;
5386 }
5387 }
5388 }
5389
5390 /* If PC is in a mips16 call or return stub, return the address of the target
5391 PC, which is either the callee or the caller. There are several
5392 cases which must be handled:
5393
5394 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5395 target PC is in $31 ($ra).
5396 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5397 and the target PC is in $2.
5398 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5399 before the jal instruction, this is effectively a call stub
5400 and the the target PC is in $2. Otherwise this is effectively
5401 a return stub and the target PC is in $18.
5402
5403 See the source code for the stubs in gcc/config/mips/mips16.S for
5404 gory details.
5405
5406 This function implements the SKIP_TRAMPOLINE_CODE macro.
5407 */
5408
5409 static CORE_ADDR
5410 mips_skip_stub (CORE_ADDR pc)
5411 {
5412 char *name;
5413 CORE_ADDR start_addr;
5414
5415 /* Find the starting address and name of the function containing the PC. */
5416 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5417 return 0;
5418
5419 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5420 target PC is in $31 ($ra). */
5421 if (strcmp (name, "__mips16_ret_sf") == 0
5422 || strcmp (name, "__mips16_ret_df") == 0)
5423 return read_signed_register (RA_REGNUM);
5424
5425 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5426 {
5427 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5428 and the target PC is in $2. */
5429 if (name[19] >= '0' && name[19] <= '9')
5430 return read_signed_register (2);
5431
5432 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5433 before the jal instruction, this is effectively a call stub
5434 and the the target PC is in $2. Otherwise this is effectively
5435 a return stub and the target PC is in $18. */
5436 else if (name[19] == 's' || name[19] == 'd')
5437 {
5438 if (pc == start_addr)
5439 {
5440 /* Check if the target of the stub is a compiler-generated
5441 stub. Such a stub for a function bar might have a name
5442 like __fn_stub_bar, and might look like this:
5443 mfc1 $4,$f13
5444 mfc1 $5,$f12
5445 mfc1 $6,$f15
5446 mfc1 $7,$f14
5447 la $1,bar (becomes a lui/addiu pair)
5448 jr $1
5449 So scan down to the lui/addi and extract the target
5450 address from those two instructions. */
5451
5452 CORE_ADDR target_pc = read_signed_register (2);
5453 t_inst inst;
5454 int i;
5455
5456 /* See if the name of the target function is __fn_stub_*. */
5457 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5458 return target_pc;
5459 if (strncmp (name, "__fn_stub_", 10) != 0
5460 && strcmp (name, "etext") != 0
5461 && strcmp (name, "_etext") != 0)
5462 return target_pc;
5463
5464 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5465 The limit on the search is arbitrarily set to 20
5466 instructions. FIXME. */
5467 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5468 {
5469 inst = mips_fetch_instruction (target_pc);
5470 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5471 pc = (inst << 16) & 0xffff0000; /* high word */
5472 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5473 return pc | (inst & 0xffff); /* low word */
5474 }
5475
5476 /* Couldn't find the lui/addui pair, so return stub address. */
5477 return target_pc;
5478 }
5479 else
5480 /* This is the 'return' part of a call stub. The return
5481 address is in $r18. */
5482 return read_signed_register (18);
5483 }
5484 }
5485 return 0; /* not a stub */
5486 }
5487
5488
5489 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5490 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5491
5492 static int
5493 mips_in_call_stub (CORE_ADDR pc, char *name)
5494 {
5495 CORE_ADDR start_addr;
5496
5497 /* Find the starting address of the function containing the PC. If the
5498 caller didn't give us a name, look it up at the same time. */
5499 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5500 return 0;
5501
5502 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5503 {
5504 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5505 if (name[19] >= '0' && name[19] <= '9')
5506 return 1;
5507 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5508 before the jal instruction, this is effectively a call stub. */
5509 else if (name[19] == 's' || name[19] == 'd')
5510 return pc == start_addr;
5511 }
5512
5513 return 0; /* not a stub */
5514 }
5515
5516
5517 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5518 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5519
5520 static int
5521 mips_in_return_stub (CORE_ADDR pc, char *name)
5522 {
5523 CORE_ADDR start_addr;
5524
5525 /* Find the starting address of the function containing the PC. */
5526 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5527 return 0;
5528
5529 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5530 if (strcmp (name, "__mips16_ret_sf") == 0
5531 || strcmp (name, "__mips16_ret_df") == 0)
5532 return 1;
5533
5534 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5535 i.e. after the jal instruction, this is effectively a return stub. */
5536 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5537 && (name[19] == 's' || name[19] == 'd')
5538 && pc != start_addr)
5539 return 1;
5540
5541 return 0; /* not a stub */
5542 }
5543
5544
5545 /* Return non-zero if the PC is in a library helper function that should
5546 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5547
5548 int
5549 mips_ignore_helper (CORE_ADDR pc)
5550 {
5551 char *name;
5552
5553 /* Find the starting address and name of the function containing the PC. */
5554 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5555 return 0;
5556
5557 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5558 that we want to ignore. */
5559 return (strcmp (name, "__mips16_ret_sf") == 0
5560 || strcmp (name, "__mips16_ret_df") == 0);
5561 }
5562
5563
5564 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5565 the register stored on the stack (32) is different to its real raw
5566 size (64). The below ensures that registers are fetched from the
5567 stack using their ABI size and then stored into the RAW_BUFFER
5568 using their raw size.
5569
5570 The alternative to adding this function would be to add an ABI
5571 macro - REGISTER_STACK_SIZE(). */
5572
5573 static void
5574 mips_get_saved_register (char *raw_buffer,
5575 int *optimizedp,
5576 CORE_ADDR *addrp,
5577 struct frame_info *frame,
5578 int regnum,
5579 enum lval_type *lvalp)
5580 {
5581 CORE_ADDR addrx;
5582 enum lval_type lvalx;
5583 int optimizedx;
5584 int realnumx;
5585
5586 /* Always a pseudo. */
5587 gdb_assert (regnum >= NUM_REGS);
5588
5589 /* Make certain that all needed parameters are present. */
5590 if (addrp == NULL)
5591 addrp = &addrx;
5592 if (lvalp == NULL)
5593 lvalp = &lvalx;
5594 if (optimizedp == NULL)
5595 optimizedp = &optimizedx;
5596
5597 if ((regnum % NUM_REGS) == SP_REGNUM)
5598 /* The SP_REGNUM is special, its value is stored in saved_regs.
5599 In fact, it is so special that it can even only be fetched
5600 using a raw register number! Once this code as been converted
5601 to frame-unwind the problem goes away. */
5602 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5603 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5604 &realnumx, raw_buffer);
5605 else
5606 /* Get it from the next frame. */
5607 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5608 regnum, optimizedp, lvalp, addrp,
5609 &realnumx, raw_buffer);
5610 }
5611
5612 /* Immediately after a function call, return the saved pc.
5613 Can't always go through the frames for this because on some machines
5614 the new frame is not set up until the new function executes
5615 some instructions. */
5616
5617 static CORE_ADDR
5618 mips_saved_pc_after_call (struct frame_info *frame)
5619 {
5620 return read_signed_register (RA_REGNUM);
5621 }
5622
5623
5624 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5625 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5626
5627 static int
5628 mips_stab_reg_to_regnum (int num)
5629 {
5630 int regnum;
5631 if (num >= 0 && num < 32)
5632 regnum = num;
5633 else if (num >= 38 && num < 70)
5634 regnum = num + FP0_REGNUM - 38;
5635 else if (num == 70)
5636 regnum = HI_REGNUM;
5637 else if (num == 71)
5638 regnum = LO_REGNUM;
5639 else
5640 /* This will hopefully (eventually) provoke a warning. Should
5641 we be calling complaint() here? */
5642 return NUM_REGS + NUM_PSEUDO_REGS;
5643 return NUM_REGS + regnum;
5644 }
5645
5646
5647 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5648 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5649
5650 static int
5651 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5652 {
5653 int regnum;
5654 if (num >= 0 && num < 32)
5655 regnum = num;
5656 else if (num >= 32 && num < 64)
5657 regnum = num + FP0_REGNUM - 32;
5658 else if (num == 64)
5659 regnum = HI_REGNUM;
5660 else if (num == 65)
5661 regnum = LO_REGNUM;
5662 else
5663 /* This will hopefully (eventually) provoke a warning. Should we
5664 be calling complaint() here? */
5665 return NUM_REGS + NUM_PSEUDO_REGS;
5666 return NUM_REGS + regnum;
5667 }
5668
5669 static int
5670 mips_register_sim_regno (int regnum)
5671 {
5672 /* Only makes sense to supply raw registers. */
5673 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5674 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5675 decide if it is valid. Should instead define a standard sim/gdb
5676 register numbering scheme. */
5677 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5678 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5679 return regnum;
5680 else
5681 return LEGACY_SIM_REGNO_IGNORE;
5682 }
5683
5684
5685 /* Convert an integer into an address. By first converting the value
5686 into a pointer and then extracting it signed, the address is
5687 guarenteed to be correctly sign extended. */
5688
5689 static CORE_ADDR
5690 mips_integer_to_address (struct type *type, void *buf)
5691 {
5692 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5693 LONGEST val = unpack_long (type, buf);
5694 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5695 return extract_signed_integer (tmp,
5696 TYPE_LENGTH (builtin_type_void_data_ptr));
5697 }
5698
5699 static void
5700 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5701 {
5702 enum mips_abi *abip = (enum mips_abi *) obj;
5703 const char *name = bfd_get_section_name (abfd, sect);
5704
5705 if (*abip != MIPS_ABI_UNKNOWN)
5706 return;
5707
5708 if (strncmp (name, ".mdebug.", 8) != 0)
5709 return;
5710
5711 if (strcmp (name, ".mdebug.abi32") == 0)
5712 *abip = MIPS_ABI_O32;
5713 else if (strcmp (name, ".mdebug.abiN32") == 0)
5714 *abip = MIPS_ABI_N32;
5715 else if (strcmp (name, ".mdebug.abi64") == 0)
5716 *abip = MIPS_ABI_N64;
5717 else if (strcmp (name, ".mdebug.abiO64") == 0)
5718 *abip = MIPS_ABI_O64;
5719 else if (strcmp (name, ".mdebug.eabi32") == 0)
5720 *abip = MIPS_ABI_EABI32;
5721 else if (strcmp (name, ".mdebug.eabi64") == 0)
5722 *abip = MIPS_ABI_EABI64;
5723 else
5724 warning ("unsupported ABI %s.", name + 8);
5725 }
5726
5727 static enum mips_abi
5728 global_mips_abi (void)
5729 {
5730 int i;
5731
5732 for (i = 0; mips_abi_strings[i] != NULL; i++)
5733 if (mips_abi_strings[i] == mips_abi_string)
5734 return (enum mips_abi) i;
5735
5736 internal_error (__FILE__, __LINE__,
5737 "unknown ABI string");
5738 }
5739
5740 static struct gdbarch *
5741 mips_gdbarch_init (struct gdbarch_info info,
5742 struct gdbarch_list *arches)
5743 {
5744 struct gdbarch *gdbarch;
5745 struct gdbarch_tdep *tdep;
5746 int elf_flags;
5747 enum mips_abi mips_abi, found_abi, wanted_abi;
5748 int num_regs;
5749
5750 elf_flags = 0;
5751
5752 if (info.abfd)
5753 {
5754 /* First of all, extract the elf_flags, if available. */
5755 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5756 elf_flags = elf_elfheader (info.abfd)->e_flags;
5757 }
5758
5759 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5760 switch ((elf_flags & EF_MIPS_ABI))
5761 {
5762 case E_MIPS_ABI_O32:
5763 mips_abi = MIPS_ABI_O32;
5764 break;
5765 case E_MIPS_ABI_O64:
5766 mips_abi = MIPS_ABI_O64;
5767 break;
5768 case E_MIPS_ABI_EABI32:
5769 mips_abi = MIPS_ABI_EABI32;
5770 break;
5771 case E_MIPS_ABI_EABI64:
5772 mips_abi = MIPS_ABI_EABI64;
5773 break;
5774 default:
5775 if ((elf_flags & EF_MIPS_ABI2))
5776 mips_abi = MIPS_ABI_N32;
5777 else
5778 mips_abi = MIPS_ABI_UNKNOWN;
5779 break;
5780 }
5781
5782 /* GCC creates a pseudo-section whose name describes the ABI. */
5783 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5784 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5785
5786 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5787 Use the ABI from the last architecture if there is one. */
5788 if (info.abfd == NULL && arches != NULL)
5789 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5790
5791 /* Try the architecture for any hint of the correct ABI. */
5792 if (mips_abi == MIPS_ABI_UNKNOWN
5793 && info.bfd_arch_info != NULL
5794 && info.bfd_arch_info->arch == bfd_arch_mips)
5795 {
5796 switch (info.bfd_arch_info->mach)
5797 {
5798 case bfd_mach_mips3900:
5799 mips_abi = MIPS_ABI_EABI32;
5800 break;
5801 case bfd_mach_mips4100:
5802 case bfd_mach_mips5000:
5803 mips_abi = MIPS_ABI_EABI64;
5804 break;
5805 case bfd_mach_mips8000:
5806 case bfd_mach_mips10000:
5807 /* On Irix, ELF64 executables use the N64 ABI. The
5808 pseudo-sections which describe the ABI aren't present
5809 on IRIX. (Even for executables created by gcc.) */
5810 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5811 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5812 mips_abi = MIPS_ABI_N64;
5813 else
5814 mips_abi = MIPS_ABI_N32;
5815 break;
5816 }
5817 }
5818
5819 if (mips_abi == MIPS_ABI_UNKNOWN)
5820 mips_abi = MIPS_ABI_O32;
5821
5822 /* Now that we have found what the ABI for this binary would be,
5823 check whether the user is overriding it. */
5824 found_abi = mips_abi;
5825 wanted_abi = global_mips_abi ();
5826 if (wanted_abi != MIPS_ABI_UNKNOWN)
5827 mips_abi = wanted_abi;
5828
5829 if (gdbarch_debug)
5830 {
5831 fprintf_unfiltered (gdb_stdlog,
5832 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5833 elf_flags);
5834 fprintf_unfiltered (gdb_stdlog,
5835 "mips_gdbarch_init: mips_abi = %d\n",
5836 mips_abi);
5837 fprintf_unfiltered (gdb_stdlog,
5838 "mips_gdbarch_init: found_mips_abi = %d\n",
5839 found_abi);
5840 }
5841
5842 /* try to find a pre-existing architecture */
5843 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5844 arches != NULL;
5845 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5846 {
5847 /* MIPS needs to be pedantic about which ABI the object is
5848 using. */
5849 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5850 continue;
5851 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5852 continue;
5853 return arches->gdbarch;
5854 }
5855
5856 /* Need a new architecture. Fill in a target specific vector. */
5857 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5858 gdbarch = gdbarch_alloc (&info, tdep);
5859 tdep->elf_flags = elf_flags;
5860
5861 /* Initially set everything according to the default ABI/ISA. */
5862 set_gdbarch_short_bit (gdbarch, 16);
5863 set_gdbarch_int_bit (gdbarch, 32);
5864 set_gdbarch_float_bit (gdbarch, 32);
5865 set_gdbarch_double_bit (gdbarch, 64);
5866 set_gdbarch_long_double_bit (gdbarch, 64);
5867 set_gdbarch_deprecated_register_raw_size (gdbarch, mips_register_raw_size);
5868 set_gdbarch_deprecated_register_byte (gdbarch, mips_register_byte);
5869 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5870 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5871 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5872 tdep->found_abi = found_abi;
5873 tdep->mips_abi = mips_abi;
5874
5875 set_gdbarch_elf_make_msymbol_special (gdbarch,
5876 mips_elf_make_msymbol_special);
5877
5878
5879 if (info.osabi == GDB_OSABI_IRIX)
5880 num_regs = 71;
5881 else
5882 num_regs = 90;
5883 set_gdbarch_num_regs (gdbarch, num_regs);
5884 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5885
5886 switch (mips_abi)
5887 {
5888 case MIPS_ABI_O32:
5889 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5890 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5891 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5892 tdep->mips_default_saved_regsize = 4;
5893 tdep->mips_default_stack_argsize = 4;
5894 tdep->mips_fp_register_double = 0;
5895 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5896 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5897 tdep->gdb_target_is_mips64 = 0;
5898 tdep->default_mask_address_p = 0;
5899 set_gdbarch_long_bit (gdbarch, 32);
5900 set_gdbarch_ptr_bit (gdbarch, 32);
5901 set_gdbarch_long_long_bit (gdbarch, 64);
5902 set_gdbarch_reg_struct_has_addr (gdbarch,
5903 mips_o32_reg_struct_has_addr);
5904 set_gdbarch_use_struct_convention (gdbarch,
5905 always_use_struct_convention);
5906 break;
5907 case MIPS_ABI_O64:
5908 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5909 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5910 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5911 tdep->mips_default_saved_regsize = 8;
5912 tdep->mips_default_stack_argsize = 8;
5913 tdep->mips_fp_register_double = 1;
5914 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5915 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5916 tdep->gdb_target_is_mips64 = 1;
5917 tdep->default_mask_address_p = 0;
5918 set_gdbarch_long_bit (gdbarch, 32);
5919 set_gdbarch_ptr_bit (gdbarch, 32);
5920 set_gdbarch_long_long_bit (gdbarch, 64);
5921 set_gdbarch_reg_struct_has_addr (gdbarch,
5922 mips_o32_reg_struct_has_addr);
5923 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
5924 break;
5925 case MIPS_ABI_EABI32:
5926 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5927 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5928 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5929 tdep->mips_default_saved_regsize = 4;
5930 tdep->mips_default_stack_argsize = 4;
5931 tdep->mips_fp_register_double = 0;
5932 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5933 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5934 tdep->gdb_target_is_mips64 = 0;
5935 tdep->default_mask_address_p = 0;
5936 set_gdbarch_long_bit (gdbarch, 32);
5937 set_gdbarch_ptr_bit (gdbarch, 32);
5938 set_gdbarch_long_long_bit (gdbarch, 64);
5939 set_gdbarch_reg_struct_has_addr (gdbarch,
5940 mips_eabi_reg_struct_has_addr);
5941 set_gdbarch_use_struct_convention (gdbarch,
5942 mips_eabi_use_struct_convention);
5943 break;
5944 case MIPS_ABI_EABI64:
5945 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5946 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5947 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5948 tdep->mips_default_saved_regsize = 8;
5949 tdep->mips_default_stack_argsize = 8;
5950 tdep->mips_fp_register_double = 1;
5951 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5952 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5953 tdep->gdb_target_is_mips64 = 1;
5954 tdep->default_mask_address_p = 0;
5955 set_gdbarch_long_bit (gdbarch, 64);
5956 set_gdbarch_ptr_bit (gdbarch, 64);
5957 set_gdbarch_long_long_bit (gdbarch, 64);
5958 set_gdbarch_reg_struct_has_addr (gdbarch,
5959 mips_eabi_reg_struct_has_addr);
5960 set_gdbarch_use_struct_convention (gdbarch,
5961 mips_eabi_use_struct_convention);
5962 break;
5963 case MIPS_ABI_N32:
5964 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5965 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5966 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5967 tdep->mips_default_saved_regsize = 8;
5968 tdep->mips_default_stack_argsize = 8;
5969 tdep->mips_fp_register_double = 1;
5970 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5971 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5972 tdep->gdb_target_is_mips64 = 1;
5973 tdep->default_mask_address_p = 0;
5974 set_gdbarch_long_bit (gdbarch, 32);
5975 set_gdbarch_ptr_bit (gdbarch, 32);
5976 set_gdbarch_long_long_bit (gdbarch, 64);
5977 set_gdbarch_use_struct_convention (gdbarch,
5978 mips_n32n64_use_struct_convention);
5979 set_gdbarch_reg_struct_has_addr (gdbarch,
5980 mips_n32n64_reg_struct_has_addr);
5981 break;
5982 case MIPS_ABI_N64:
5983 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5984 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5985 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5986 tdep->mips_default_saved_regsize = 8;
5987 tdep->mips_default_stack_argsize = 8;
5988 tdep->mips_fp_register_double = 1;
5989 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5990 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5991 tdep->gdb_target_is_mips64 = 1;
5992 tdep->default_mask_address_p = 0;
5993 set_gdbarch_long_bit (gdbarch, 64);
5994 set_gdbarch_ptr_bit (gdbarch, 64);
5995 set_gdbarch_long_long_bit (gdbarch, 64);
5996 set_gdbarch_use_struct_convention (gdbarch,
5997 mips_n32n64_use_struct_convention);
5998 set_gdbarch_reg_struct_has_addr (gdbarch,
5999 mips_n32n64_reg_struct_has_addr);
6000 break;
6001 default:
6002 internal_error (__FILE__, __LINE__,
6003 "unknown ABI in switch");
6004 }
6005
6006 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
6007 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
6008 comment:
6009
6010 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
6011 flag in object files because to do so would make it impossible to
6012 link with libraries compiled without "-gp32". This is
6013 unnecessarily restrictive.
6014
6015 We could solve this problem by adding "-gp32" multilibs to gcc,
6016 but to set this flag before gcc is built with such multilibs will
6017 break too many systems.''
6018
6019 But even more unhelpfully, the default linker output target for
6020 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
6021 for 64-bit programs - you need to change the ABI to change this,
6022 and not all gcc targets support that currently. Therefore using
6023 this flag to detect 32-bit mode would do the wrong thing given
6024 the current gcc - it would make GDB treat these 64-bit programs
6025 as 32-bit programs by default. */
6026
6027 /* enable/disable the MIPS FPU */
6028 if (!mips_fpu_type_auto)
6029 tdep->mips_fpu_type = mips_fpu_type;
6030 else if (info.bfd_arch_info != NULL
6031 && info.bfd_arch_info->arch == bfd_arch_mips)
6032 switch (info.bfd_arch_info->mach)
6033 {
6034 case bfd_mach_mips3900:
6035 case bfd_mach_mips4100:
6036 case bfd_mach_mips4111:
6037 tdep->mips_fpu_type = MIPS_FPU_NONE;
6038 break;
6039 case bfd_mach_mips4650:
6040 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
6041 break;
6042 default:
6043 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6044 break;
6045 }
6046 else
6047 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6048
6049 /* MIPS version of register names. NOTE: At present the MIPS
6050 register name management is part way between the old -
6051 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
6052 Further work on it is required. */
6053 /* NOTE: many targets (esp. embedded) do not go thru the
6054 gdbarch_register_name vector at all, instead bypassing it
6055 by defining REGISTER_NAMES. */
6056 set_gdbarch_register_name (gdbarch, mips_register_name);
6057 set_gdbarch_read_pc (gdbarch, mips_read_pc);
6058 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
6059 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
6060 set_gdbarch_read_sp (gdbarch, mips_read_sp);
6061
6062 /* Add/remove bits from an address. The MIPS needs be careful to
6063 ensure that all 32 bit addresses are sign extended to 64 bits. */
6064 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6065
6066 /* There's a mess in stack frame creation. See comments in
6067 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
6068 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
6069 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
6070
6071 /* Map debug register numbers onto internal register numbers. */
6072 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6073 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6074 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6075 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6076 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
6077
6078 /* Initialize a frame */
6079 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
6080 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
6081
6082 /* MIPS version of CALL_DUMMY */
6083
6084 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6085 replaced by a command, and all targets will default to on stack
6086 (regardless of the stack's execute status). */
6087 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
6088 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
6089 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6090 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6091 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
6092 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
6093 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
6094
6095 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
6096 set_gdbarch_frameless_function_invocation (gdbarch,
6097 generic_frameless_function_invocation_not);
6098 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6099 set_gdbarch_frame_args_skip (gdbarch, 0);
6100
6101 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
6102
6103 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6104 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6105 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6106
6107 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6108 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6109
6110 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6111 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6112 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6113
6114 set_gdbarch_function_start_offset (gdbarch, 0);
6115
6116 set_gdbarch_register_type (gdbarch, mips_register_type);
6117
6118 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
6119 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6120
6121 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6122
6123 /* Hook in OS ABI-specific overrides, if they have been registered. */
6124 gdbarch_init_osabi (info, gdbarch);
6125
6126 set_gdbarch_extract_struct_value_address (gdbarch,
6127 mips_extract_struct_value_address);
6128
6129 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6130
6131 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6132 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6133
6134 return gdbarch;
6135 }
6136
6137 static void
6138 mips_abi_update (char *ignore_args, int from_tty,
6139 struct cmd_list_element *c)
6140 {
6141 struct gdbarch_info info;
6142
6143 /* Force the architecture to update, and (if it's a MIPS architecture)
6144 mips_gdbarch_init will take care of the rest. */
6145 gdbarch_info_init (&info);
6146 gdbarch_update_p (info);
6147 }
6148
6149 /* Print out which MIPS ABI is in use. */
6150
6151 static void
6152 show_mips_abi (char *ignore_args, int from_tty)
6153 {
6154 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6155 printf_filtered (
6156 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6157 else
6158 {
6159 enum mips_abi global_abi = global_mips_abi ();
6160 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6161 const char *actual_abi_str = mips_abi_strings[actual_abi];
6162
6163 if (global_abi == MIPS_ABI_UNKNOWN)
6164 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6165 actual_abi_str);
6166 else if (global_abi == actual_abi)
6167 printf_filtered (
6168 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6169 actual_abi_str);
6170 else
6171 {
6172 /* Probably shouldn't happen... */
6173 printf_filtered (
6174 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6175 actual_abi_str,
6176 mips_abi_strings[global_abi]);
6177 }
6178 }
6179 }
6180
6181 static void
6182 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6183 {
6184 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6185 if (tdep != NULL)
6186 {
6187 int ef_mips_arch;
6188 int ef_mips_32bitmode;
6189 /* determine the ISA */
6190 switch (tdep->elf_flags & EF_MIPS_ARCH)
6191 {
6192 case E_MIPS_ARCH_1:
6193 ef_mips_arch = 1;
6194 break;
6195 case E_MIPS_ARCH_2:
6196 ef_mips_arch = 2;
6197 break;
6198 case E_MIPS_ARCH_3:
6199 ef_mips_arch = 3;
6200 break;
6201 case E_MIPS_ARCH_4:
6202 ef_mips_arch = 4;
6203 break;
6204 default:
6205 ef_mips_arch = 0;
6206 break;
6207 }
6208 /* determine the size of a pointer */
6209 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6210 fprintf_unfiltered (file,
6211 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6212 tdep->elf_flags);
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6215 ef_mips_32bitmode);
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: ef_mips_arch = %d\n",
6218 ef_mips_arch);
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6221 tdep->mips_abi,
6222 mips_abi_strings[tdep->mips_abi]);
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6225 mips_mask_address_p (),
6226 tdep->default_mask_address_p);
6227 }
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6230 FP_REGISTER_DOUBLE);
6231 fprintf_unfiltered (file,
6232 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6233 MIPS_DEFAULT_FPU_TYPE,
6234 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6235 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6236 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6237 : "???"));
6238 fprintf_unfiltered (file,
6239 "mips_dump_tdep: MIPS_EABI = %d\n",
6240 MIPS_EABI);
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6243 MIPS_LAST_FP_ARG_REGNUM,
6244 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6247 MIPS_FPU_TYPE,
6248 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6249 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6250 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6251 : "???"));
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6254 MIPS_DEFAULT_SAVED_REGSIZE);
6255 fprintf_unfiltered (file,
6256 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6257 FP_REGISTER_DOUBLE);
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6260 MIPS_DEFAULT_STACK_ARGSIZE);
6261 fprintf_unfiltered (file,
6262 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6263 MIPS_STACK_ARGSIZE);
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6266 MIPS_REGSIZE);
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: A0_REGNUM = %d\n",
6269 A0_REGNUM);
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6272 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6275 XSTRING (ATTACH_DETACH));
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6278 BADVADDR_REGNUM);
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6281 CAUSE_REGNUM);
6282 fprintf_unfiltered (file,
6283 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6284 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6287 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6290 FCRCS_REGNUM);
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6293 FCRIR_REGNUM);
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6296 FIRST_EMBED_REGNUM);
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6299 FPA0_REGNUM);
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6302 GDB_TARGET_IS_MIPS64);
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6305 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6306 fprintf_unfiltered (file,
6307 "mips_dump_tdep: HI_REGNUM = %d\n",
6308 HI_REGNUM);
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6311 XSTRING (IGNORE_HELPER_CALL (PC)));
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6314 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6317 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6318 fprintf_unfiltered (file,
6319 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6320 LAST_EMBED_REGNUM);
6321 fprintf_unfiltered (file,
6322 "mips_dump_tdep: LO_REGNUM = %d\n",
6323 LO_REGNUM);
6324 #ifdef MACHINE_CPROC_FP_OFFSET
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6327 MACHINE_CPROC_FP_OFFSET);
6328 #endif
6329 #ifdef MACHINE_CPROC_PC_OFFSET
6330 fprintf_unfiltered (file,
6331 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6332 MACHINE_CPROC_PC_OFFSET);
6333 #endif
6334 #ifdef MACHINE_CPROC_SP_OFFSET
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6337 MACHINE_CPROC_SP_OFFSET);
6338 #endif
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6341 MIPS16_INSTLEN);
6342 fprintf_unfiltered (file,
6343 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6346 fprintf_unfiltered (file,
6347 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6348 MIPS_INSTLEN);
6349 fprintf_unfiltered (file,
6350 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6351 MIPS_LAST_ARG_REGNUM,
6352 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6353 fprintf_unfiltered (file,
6354 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6355 MIPS_NUMREGS);
6356 fprintf_unfiltered (file,
6357 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6360 MIPS_SAVED_REGSIZE);
6361 fprintf_unfiltered (file,
6362 "mips_dump_tdep: OP_LDFPR = used?\n");
6363 fprintf_unfiltered (file,
6364 "mips_dump_tdep: OP_LDGPR = used?\n");
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: PRID_REGNUM = %d\n",
6367 PRID_REGNUM);
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6370 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6371 fprintf_unfiltered (file,
6372 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6377 fprintf_unfiltered (file,
6378 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6379 fprintf_unfiltered (file,
6380 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6381 fprintf_unfiltered (file,
6382 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6383 fprintf_unfiltered (file,
6384 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6385 fprintf_unfiltered (file,
6386 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: PROC_PC_REG = function?\n");
6389 fprintf_unfiltered (file,
6390 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6391 fprintf_unfiltered (file,
6392 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6393 fprintf_unfiltered (file,
6394 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6395 fprintf_unfiltered (file,
6396 "mips_dump_tdep: PS_REGNUM = %d\n",
6397 PS_REGNUM);
6398 fprintf_unfiltered (file,
6399 "mips_dump_tdep: RA_REGNUM = %d\n",
6400 RA_REGNUM);
6401 fprintf_unfiltered (file,
6402 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6403 fprintf_unfiltered (file,
6404 "mips_dump_tdep: ROUND_DOWN = function?\n");
6405 fprintf_unfiltered (file,
6406 "mips_dump_tdep: ROUND_UP = function?\n");
6407 #ifdef SAVED_BYTES
6408 fprintf_unfiltered (file,
6409 "mips_dump_tdep: SAVED_BYTES = %d\n",
6410 SAVED_BYTES);
6411 #endif
6412 #ifdef SAVED_FP
6413 fprintf_unfiltered (file,
6414 "mips_dump_tdep: SAVED_FP = %d\n",
6415 SAVED_FP);
6416 #endif
6417 #ifdef SAVED_PC
6418 fprintf_unfiltered (file,
6419 "mips_dump_tdep: SAVED_PC = %d\n",
6420 SAVED_PC);
6421 #endif
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6424 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6425 fprintf_unfiltered (file,
6426 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6427 fprintf_unfiltered (file,
6428 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6429 SIGFRAME_BASE);
6430 fprintf_unfiltered (file,
6431 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6432 SIGFRAME_FPREGSAVE_OFF);
6433 fprintf_unfiltered (file,
6434 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6435 SIGFRAME_PC_OFF);
6436 fprintf_unfiltered (file,
6437 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6438 SIGFRAME_REGSAVE_OFF);
6439 fprintf_unfiltered (file,
6440 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6441 SIGFRAME_REG_SIZE);
6442 fprintf_unfiltered (file,
6443 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6444 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6445 fprintf_unfiltered (file,
6446 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6447 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6448 fprintf_unfiltered (file,
6449 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6450 SOFTWARE_SINGLE_STEP_P ());
6451 fprintf_unfiltered (file,
6452 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6453 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6454 #ifdef STACK_END_ADDR
6455 fprintf_unfiltered (file,
6456 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6457 STACK_END_ADDR);
6458 #endif
6459 fprintf_unfiltered (file,
6460 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6461 XSTRING (STEP_SKIPS_DELAY (PC)));
6462 fprintf_unfiltered (file,
6463 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6464 STEP_SKIPS_DELAY_P);
6465 fprintf_unfiltered (file,
6466 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6467 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6468 fprintf_unfiltered (file,
6469 "mips_dump_tdep: T9_REGNUM = %d\n",
6470 T9_REGNUM);
6471 fprintf_unfiltered (file,
6472 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6473 fprintf_unfiltered (file,
6474 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6475 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6476 fprintf_unfiltered (file,
6477 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6478 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6479 #ifdef TRACE_CLEAR
6480 fprintf_unfiltered (file,
6481 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6482 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6483 #endif
6484 #ifdef TRACE_FLAVOR
6485 fprintf_unfiltered (file,
6486 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6487 TRACE_FLAVOR);
6488 #endif
6489 #ifdef TRACE_FLAVOR_SIZE
6490 fprintf_unfiltered (file,
6491 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6492 TRACE_FLAVOR_SIZE);
6493 #endif
6494 #ifdef TRACE_SET
6495 fprintf_unfiltered (file,
6496 "mips_dump_tdep: TRACE_SET # %s\n",
6497 XSTRING (TRACE_SET (X,STATE)));
6498 #endif
6499 #ifdef UNUSED_REGNUM
6500 fprintf_unfiltered (file,
6501 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6502 UNUSED_REGNUM);
6503 #endif
6504 fprintf_unfiltered (file,
6505 "mips_dump_tdep: V0_REGNUM = %d\n",
6506 V0_REGNUM);
6507 fprintf_unfiltered (file,
6508 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6509 (long) VM_MIN_ADDRESS);
6510 #ifdef VX_NUM_REGS
6511 fprintf_unfiltered (file,
6512 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6513 VX_NUM_REGS);
6514 #endif
6515 fprintf_unfiltered (file,
6516 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6517 ZERO_REGNUM);
6518 fprintf_unfiltered (file,
6519 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6520 _PROC_MAGIC_);
6521 }
6522
6523 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6524
6525 void
6526 _initialize_mips_tdep (void)
6527 {
6528 static struct cmd_list_element *mipsfpulist = NULL;
6529 struct cmd_list_element *c;
6530
6531 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6532 if (MIPS_ABI_LAST + 1
6533 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6534 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6535
6536 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6537
6538 /* Add root prefix command for all "set mips"/"show mips" commands */
6539 add_prefix_cmd ("mips", no_class, set_mips_command,
6540 "Various MIPS specific commands.",
6541 &setmipscmdlist, "set mips ", 0, &setlist);
6542
6543 add_prefix_cmd ("mips", no_class, show_mips_command,
6544 "Various MIPS specific commands.",
6545 &showmipscmdlist, "show mips ", 0, &showlist);
6546
6547 /* Allow the user to override the saved register size. */
6548 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6549 class_obscure,
6550 size_enums,
6551 &mips_saved_regsize_string, "\
6552 Set size of general purpose registers saved on the stack.\n\
6553 This option can be set to one of:\n\
6554 32 - Force GDB to treat saved GP registers as 32-bit\n\
6555 64 - Force GDB to treat saved GP registers as 64-bit\n\
6556 auto - Allow GDB to use the target's default setting or autodetect the\n\
6557 saved GP register size from information contained in the executable.\n\
6558 (default: auto)",
6559 &setmipscmdlist),
6560 &showmipscmdlist);
6561
6562 /* Allow the user to override the argument stack size. */
6563 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6564 class_obscure,
6565 size_enums,
6566 &mips_stack_argsize_string, "\
6567 Set the amount of stack space reserved for each argument.\n\
6568 This option can be set to one of:\n\
6569 32 - Force GDB to allocate 32-bit chunks per argument\n\
6570 64 - Force GDB to allocate 64-bit chunks per argument\n\
6571 auto - Allow GDB to determine the correct setting from the current\n\
6572 target and executable (default)",
6573 &setmipscmdlist),
6574 &showmipscmdlist);
6575
6576 /* Allow the user to override the ABI. */
6577 c = add_set_enum_cmd
6578 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6579 "Set the ABI used by this program.\n"
6580 "This option can be set to one of:\n"
6581 " auto - the default ABI associated with the current binary\n"
6582 " o32\n"
6583 " o64\n"
6584 " n32\n"
6585 " n64\n"
6586 " eabi32\n"
6587 " eabi64",
6588 &setmipscmdlist);
6589 set_cmd_sfunc (c, mips_abi_update);
6590 add_cmd ("abi", class_obscure, show_mips_abi,
6591 "Show ABI in use by MIPS target", &showmipscmdlist);
6592
6593 /* Let the user turn off floating point and set the fence post for
6594 heuristic_proc_start. */
6595
6596 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6597 "Set use of MIPS floating-point coprocessor.",
6598 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6599 add_cmd ("single", class_support, set_mipsfpu_single_command,
6600 "Select single-precision MIPS floating-point coprocessor.",
6601 &mipsfpulist);
6602 add_cmd ("double", class_support, set_mipsfpu_double_command,
6603 "Select double-precision MIPS floating-point coprocessor.",
6604 &mipsfpulist);
6605 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6606 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6607 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6608 add_cmd ("none", class_support, set_mipsfpu_none_command,
6609 "Select no MIPS floating-point coprocessor.",
6610 &mipsfpulist);
6611 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6612 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6613 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6614 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6615 "Select MIPS floating-point coprocessor automatically.",
6616 &mipsfpulist);
6617 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6618 "Show current use of MIPS floating-point coprocessor target.",
6619 &showlist);
6620
6621 /* We really would like to have both "0" and "unlimited" work, but
6622 command.c doesn't deal with that. So make it a var_zinteger
6623 because the user can always use "999999" or some such for unlimited. */
6624 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6625 (char *) &heuristic_fence_post,
6626 "\
6627 Set the distance searched for the start of a function.\n\
6628 If you are debugging a stripped executable, GDB needs to search through the\n\
6629 program for the start of a function. This command sets the distance of the\n\
6630 search. The only need to set it is when debugging a stripped executable.",
6631 &setlist);
6632 /* We need to throw away the frame cache when we set this, since it
6633 might change our ability to get backtraces. */
6634 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6635 add_show_from_set (c, &showlist);
6636
6637 /* Allow the user to control whether the upper bits of 64-bit
6638 addresses should be zeroed. */
6639 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6640 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6641 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6642 allow GDB to determine the correct value.\n", "\
6643 Show zeroing of upper 32 bits of 64-bit addresses.",
6644 NULL, show_mask_address,
6645 &setmipscmdlist, &showmipscmdlist);
6646
6647 /* Allow the user to control the size of 32 bit registers within the
6648 raw remote packet. */
6649 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6650 class_obscure,
6651 var_boolean,
6652 (char *)&mips64_transfers_32bit_regs_p, "\
6653 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6654 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6655 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6656 64 bits for others. Use \"off\" to disable compatibility mode",
6657 &setlist),
6658 &showlist);
6659
6660 /* Debug this files internals. */
6661 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6662 &mips_debug, "Set mips debugging.\n\
6663 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6664 &showdebuglist);
6665 }
This page took 0.171111 seconds and 4 git commands to generate.