1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
10 This file is part of GDB.
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
41 #include "arch-utils.h"
44 #include "mips-tdep.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
51 #include "sim-regno.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
57 #include "floatformat.h"
59 static const struct objfile_data
*mips_pdr_data
;
61 static struct type
*mips_register_type (struct gdbarch
*gdbarch
, int regnum
);
63 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
64 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
65 #define ST0_FR (1 << 26)
67 /* The sizes of floating point registers. */
71 MIPS_FPU_SINGLE_REGSIZE
= 4,
72 MIPS_FPU_DOUBLE_REGSIZE
= 8
76 static const char *mips_abi_string
;
78 static const char *mips_abi_strings
[] = {
89 /* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
93 static const char size_auto
[] = "auto";
94 static const char size_32
[] = "32";
95 static const char size_64
[] = "64";
97 static const char *size_enums
[] = {
104 /* Some MIPS boards don't support floating point while others only
105 support single-precision floating-point operations. */
109 MIPS_FPU_DOUBLE
, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE
, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE
/* No floating point. */
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
117 static int mips_fpu_type_auto
= 1;
118 static enum mips_fpu_type mips_fpu_type
= MIPS_DEFAULT_FPU_TYPE
;
120 static int mips_debug
= 0;
122 /* MIPS specific per-architecture information */
125 /* from the elf header */
129 enum mips_abi mips_abi
;
130 enum mips_abi found_abi
;
131 enum mips_fpu_type mips_fpu_type
;
132 int mips_last_arg_regnum
;
133 int mips_last_fp_arg_regnum
;
134 int default_mask_address_p
;
135 /* Is the target using 64-bit raw integer registers but only
136 storing a left-aligned 32-bit value in each? */
137 int mips64_transfers_32bit_regs_p
;
138 /* Indexes for various registers. IRIX and embedded have
139 different values. This contains the "public" fields. Don't
140 add any that do not need to be public. */
141 const struct mips_regnum
*regnum
;
142 /* Register names table for the current register set. */
143 const char **mips_processor_reg_names
;
147 n32n64_floatformat_always_valid (const struct floatformat
*fmt
,
153 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
154 They are implemented as a pair of 64bit doubles where the high
155 part holds the result of the operation rounded to double, and
156 the low double holds the difference between the exact result and
157 the rounded result. So "high" + "low" contains the result with
158 added precision. Unfortunately, the floatformat structure used
159 by GDB is not powerful enough to describe this format. As a temporary
160 measure, we define a 128bit floatformat that only uses the high part.
161 We lose a bit of precision but that's probably the best we can do
162 for now with the current infrastructure. */
164 static const struct floatformat floatformat_n32n64_long_double_big
=
166 floatformat_big
, 128, 0, 1, 11, 1023, 2047, 12, 52,
167 floatformat_intbit_no
,
168 "floatformat_ieee_double_big",
169 n32n64_floatformat_always_valid
172 const struct mips_regnum
*
173 mips_regnum (struct gdbarch
*gdbarch
)
175 return gdbarch_tdep (gdbarch
)->regnum
;
179 mips_fpa0_regnum (struct gdbarch
*gdbarch
)
181 return mips_regnum (gdbarch
)->fp0
+ 12;
184 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
185 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
187 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
189 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
191 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
193 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
197 is_mips16_addr (CORE_ADDR addr
)
203 unmake_mips16_addr (CORE_ADDR addr
)
205 return ((addr
) & ~1);
208 /* Return the contents of register REGNUM as a signed integer. */
211 read_signed_register (int regnum
)
214 regcache_cooked_read_signed (current_regcache
, regnum
, &val
);
219 read_signed_register_pid (int regnum
, ptid_t ptid
)
224 if (ptid_equal (ptid
, inferior_ptid
))
225 return read_signed_register (regnum
);
227 save_ptid
= inferior_ptid
;
229 inferior_ptid
= ptid
;
231 retval
= read_signed_register (regnum
);
233 inferior_ptid
= save_ptid
;
238 /* Return the MIPS ABI associated with GDBARCH. */
240 mips_abi (struct gdbarch
*gdbarch
)
242 return gdbarch_tdep (gdbarch
)->mips_abi
;
246 mips_isa_regsize (struct gdbarch
*gdbarch
)
248 return (gdbarch_bfd_arch_info (gdbarch
)->bits_per_word
249 / gdbarch_bfd_arch_info (gdbarch
)->bits_per_byte
);
252 /* Return the currently configured (or set) saved register size. */
254 static const char *mips_abi_regsize_string
= size_auto
;
257 mips_abi_regsize (struct gdbarch
*gdbarch
)
259 if (mips_abi_regsize_string
== size_auto
)
260 switch (mips_abi (gdbarch
))
262 case MIPS_ABI_EABI32
:
268 case MIPS_ABI_EABI64
:
270 case MIPS_ABI_UNKNOWN
:
273 internal_error (__FILE__
, __LINE__
, _("bad switch"));
275 else if (mips_abi_regsize_string
== size_64
)
277 else /* if (mips_abi_regsize_string == size_32) */
281 /* Functions for setting and testing a bit in a minimal symbol that
282 marks it as 16-bit function. The MSB of the minimal symbol's
283 "info" field is used for this purpose.
285 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
286 i.e. refers to a 16-bit function, and sets a "special" bit in a
287 minimal symbol to mark it as a 16-bit function
289 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
292 mips_elf_make_msymbol_special (asymbol
* sym
, struct minimal_symbol
*msym
)
294 if (((elf_symbol_type
*) (sym
))->internal_elf_sym
.st_other
== STO_MIPS16
)
296 MSYMBOL_INFO (msym
) = (char *)
297 (((long) MSYMBOL_INFO (msym
)) | 0x80000000);
298 SYMBOL_VALUE_ADDRESS (msym
) |= 1;
303 msymbol_is_special (struct minimal_symbol
*msym
)
305 return (((long) MSYMBOL_INFO (msym
) & 0x80000000) != 0);
308 /* XFER a value from the big/little/left end of the register.
309 Depending on the size of the value it might occupy the entire
310 register or just part of it. Make an allowance for this, aligning
311 things accordingly. */
314 mips_xfer_register (struct regcache
*regcache
, int reg_num
, int length
,
315 enum bfd_endian endian
, bfd_byte
* in
,
316 const bfd_byte
* out
, int buf_offset
)
319 gdb_assert (reg_num
>= NUM_REGS
);
320 /* Need to transfer the left or right part of the register, based on
321 the targets byte order. */
325 reg_offset
= register_size (current_gdbarch
, reg_num
) - length
;
327 case BFD_ENDIAN_LITTLE
:
330 case BFD_ENDIAN_UNKNOWN
: /* Indicates no alignment. */
334 internal_error (__FILE__
, __LINE__
, _("bad switch"));
337 fprintf_unfiltered (gdb_stderr
,
338 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
339 reg_num
, reg_offset
, buf_offset
, length
);
340 if (mips_debug
&& out
!= NULL
)
343 fprintf_unfiltered (gdb_stdlog
, "out ");
344 for (i
= 0; i
< length
; i
++)
345 fprintf_unfiltered (gdb_stdlog
, "%02x", out
[buf_offset
+ i
]);
348 regcache_cooked_read_part (regcache
, reg_num
, reg_offset
, length
,
351 regcache_cooked_write_part (regcache
, reg_num
, reg_offset
, length
,
353 if (mips_debug
&& in
!= NULL
)
356 fprintf_unfiltered (gdb_stdlog
, "in ");
357 for (i
= 0; i
< length
; i
++)
358 fprintf_unfiltered (gdb_stdlog
, "%02x", in
[buf_offset
+ i
]);
361 fprintf_unfiltered (gdb_stdlog
, "\n");
364 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
365 compatiblity mode. A return value of 1 means that we have
366 physical 64-bit registers, but should treat them as 32-bit registers. */
369 mips2_fp_compat (void)
371 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
373 if (register_size (current_gdbarch
, mips_regnum (current_gdbarch
)->fp0
) ==
378 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
379 in all the places we deal with FP registers. PR gdb/413. */
380 /* Otherwise check the FR bit in the status register - it controls
381 the FP compatiblity mode. If it is clear we are in compatibility
383 if ((read_register (MIPS_PS_REGNUM
) & ST0_FR
) == 0)
390 /* The amount of space reserved on the stack for registers. This is
391 different to MIPS_ABI_REGSIZE as it determines the alignment of
392 data allocated after the registers have run out. */
394 static const char *mips_stack_argsize_string
= size_auto
;
397 mips_stack_argsize (struct gdbarch
*gdbarch
)
399 if (mips_stack_argsize_string
== size_auto
)
400 return mips_abi_regsize (gdbarch
);
401 else if (mips_stack_argsize_string
== size_64
)
403 else /* if (mips_stack_argsize_string == size_32) */
407 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
409 static CORE_ADDR
heuristic_proc_start (CORE_ADDR
);
411 static CORE_ADDR
read_next_frame_reg (struct frame_info
*, int);
413 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element
*);
415 static struct type
*mips_float_register_type (void);
416 static struct type
*mips_double_register_type (void);
418 /* The list of available "set mips " and "show mips " commands */
420 static struct cmd_list_element
*setmipscmdlist
= NULL
;
421 static struct cmd_list_element
*showmipscmdlist
= NULL
;
423 /* Integer registers 0 thru 31 are handled explicitly by
424 mips_register_name(). Processor specific registers 32 and above
425 are listed in the followign tables. */
428 { NUM_MIPS_PROCESSOR_REGS
= (90 - 32) };
432 static const char *mips_generic_reg_names
[NUM_MIPS_PROCESSOR_REGS
] = {
433 "sr", "lo", "hi", "bad", "cause", "pc",
434 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
435 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
436 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
437 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
438 "fsr", "fir", "" /*"fp" */ , "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
443 /* Names of IDT R3041 registers. */
445 static const char *mips_r3041_reg_names
[] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "", /*"fp" */ "",
452 "", "", "bus", "ccfg", "", "", "", "",
453 "", "", "port", "cmp", "", "", "epc", "prid",
456 /* Names of tx39 registers. */
458 static const char *mips_tx39_reg_names
[NUM_MIPS_PROCESSOR_REGS
] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "", "", "", "", "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 "", "", "", "", "", "", "", "",
463 "", "", "", "", "", "", "", "",
465 "", "", "", "", "", "", "", "",
466 "", "", "config", "cache", "debug", "depc", "epc", ""
469 /* Names of IRIX registers. */
470 static const char *mips_irix_reg_names
[NUM_MIPS_PROCESSOR_REGS
] = {
471 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
472 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
473 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
474 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
475 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
479 /* Return the name of the register corresponding to REGNO. */
481 mips_register_name (int regno
)
483 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
484 /* GPR names for all ABIs other than n32/n64. */
485 static char *mips_gpr_names
[] = {
486 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
487 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
488 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
489 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
492 /* GPR names for n32 and n64 ABIs. */
493 static char *mips_n32_n64_gpr_names
[] = {
494 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
495 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
496 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
497 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
500 enum mips_abi abi
= mips_abi (current_gdbarch
);
502 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
503 don't make the raw register names visible. */
504 int rawnum
= regno
% NUM_REGS
;
505 if (regno
< NUM_REGS
)
508 /* The MIPS integer registers are always mapped from 0 to 31. The
509 names of the registers (which reflects the conventions regarding
510 register use) vary depending on the ABI. */
511 if (0 <= rawnum
&& rawnum
< 32)
513 if (abi
== MIPS_ABI_N32
|| abi
== MIPS_ABI_N64
)
514 return mips_n32_n64_gpr_names
[rawnum
];
516 return mips_gpr_names
[rawnum
];
518 else if (32 <= rawnum
&& rawnum
< NUM_REGS
)
520 gdb_assert (rawnum
- 32 < NUM_MIPS_PROCESSOR_REGS
);
521 return tdep
->mips_processor_reg_names
[rawnum
- 32];
524 internal_error (__FILE__
, __LINE__
,
525 _("mips_register_name: bad register number %d"), rawnum
);
528 /* Return the groups that a MIPS register can be categorised into. */
531 mips_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
532 struct reggroup
*reggroup
)
537 int rawnum
= regnum
% NUM_REGS
;
538 int pseudo
= regnum
/ NUM_REGS
;
539 if (reggroup
== all_reggroup
)
541 vector_p
= TYPE_VECTOR (register_type (gdbarch
, regnum
));
542 float_p
= TYPE_CODE (register_type (gdbarch
, regnum
)) == TYPE_CODE_FLT
;
543 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
544 (gdbarch), as not all architectures are multi-arch. */
545 raw_p
= rawnum
< NUM_REGS
;
546 if (REGISTER_NAME (regnum
) == NULL
|| REGISTER_NAME (regnum
)[0] == '\0')
548 if (reggroup
== float_reggroup
)
549 return float_p
&& pseudo
;
550 if (reggroup
== vector_reggroup
)
551 return vector_p
&& pseudo
;
552 if (reggroup
== general_reggroup
)
553 return (!vector_p
&& !float_p
) && pseudo
;
554 /* Save the pseudo registers. Need to make certain that any code
555 extracting register values from a saved register cache also uses
557 if (reggroup
== save_reggroup
)
558 return raw_p
&& pseudo
;
559 /* Restore the same pseudo register. */
560 if (reggroup
== restore_reggroup
)
561 return raw_p
&& pseudo
;
565 /* Map the symbol table registers which live in the range [1 *
566 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
567 registers. Take care of alignment and size problems. */
570 mips_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
571 int cookednum
, void *buf
)
573 int rawnum
= cookednum
% NUM_REGS
;
574 gdb_assert (cookednum
>= NUM_REGS
&& cookednum
< 2 * NUM_REGS
);
575 if (register_size (gdbarch
, rawnum
) == register_size (gdbarch
, cookednum
))
576 regcache_raw_read (regcache
, rawnum
, buf
);
577 else if (register_size (gdbarch
, rawnum
) >
578 register_size (gdbarch
, cookednum
))
580 if (gdbarch_tdep (gdbarch
)->mips64_transfers_32bit_regs_p
581 || TARGET_BYTE_ORDER
== BFD_ENDIAN_LITTLE
)
582 regcache_raw_read_part (regcache
, rawnum
, 0, 4, buf
);
584 regcache_raw_read_part (regcache
, rawnum
, 4, 4, buf
);
587 internal_error (__FILE__
, __LINE__
, _("bad register size"));
591 mips_pseudo_register_write (struct gdbarch
*gdbarch
,
592 struct regcache
*regcache
, int cookednum
,
595 int rawnum
= cookednum
% NUM_REGS
;
596 gdb_assert (cookednum
>= NUM_REGS
&& cookednum
< 2 * NUM_REGS
);
597 if (register_size (gdbarch
, rawnum
) == register_size (gdbarch
, cookednum
))
598 regcache_raw_write (regcache
, rawnum
, buf
);
599 else if (register_size (gdbarch
, rawnum
) >
600 register_size (gdbarch
, cookednum
))
602 if (gdbarch_tdep (gdbarch
)->mips64_transfers_32bit_regs_p
603 || TARGET_BYTE_ORDER
== BFD_ENDIAN_LITTLE
)
604 regcache_raw_write_part (regcache
, rawnum
, 0, 4, buf
);
606 regcache_raw_write_part (regcache
, rawnum
, 4, 4, buf
);
609 internal_error (__FILE__
, __LINE__
, _("bad register size"));
612 /* Table to translate MIPS16 register field to actual register number. */
613 static int mips16_to_32_reg
[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
615 /* Heuristic_proc_start may hunt through the text section for a long
616 time across a 2400 baud serial line. Allows the user to limit this
619 static unsigned int heuristic_fence_post
= 0;
621 /* Number of bytes of storage in the actual machine representation for
622 register N. NOTE: This defines the pseudo register type so need to
623 rebuild the architecture vector. */
625 static int mips64_transfers_32bit_regs_p
= 0;
628 set_mips64_transfers_32bit_regs (char *args
, int from_tty
,
629 struct cmd_list_element
*c
)
631 struct gdbarch_info info
;
632 gdbarch_info_init (&info
);
633 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
634 instead of relying on globals. Doing that would let generic code
635 handle the search for this specific architecture. */
636 if (!gdbarch_update_p (info
))
638 mips64_transfers_32bit_regs_p
= 0;
639 error (_("32-bit compatibility mode not supported"));
643 /* Convert to/from a register and the corresponding memory value. */
646 mips_convert_register_p (int regnum
, struct type
*type
)
648 return (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
649 && register_size (current_gdbarch
, regnum
) == 4
650 && (regnum
% NUM_REGS
) >= mips_regnum (current_gdbarch
)->fp0
651 && (regnum
% NUM_REGS
) < mips_regnum (current_gdbarch
)->fp0
+ 32
652 && TYPE_CODE (type
) == TYPE_CODE_FLT
&& TYPE_LENGTH (type
) == 8);
656 mips_register_to_value (struct frame_info
*frame
, int regnum
,
657 struct type
*type
, void *to
)
659 get_frame_register (frame
, regnum
+ 0, (char *) to
+ 4);
660 get_frame_register (frame
, regnum
+ 1, (char *) to
+ 0);
664 mips_value_to_register (struct frame_info
*frame
, int regnum
,
665 struct type
*type
, const void *from
)
667 put_frame_register (frame
, regnum
+ 0, (const char *) from
+ 4);
668 put_frame_register (frame
, regnum
+ 1, (const char *) from
+ 0);
671 /* Return the GDB type object for the "standard" data type of data in
675 mips_register_type (struct gdbarch
*gdbarch
, int regnum
)
677 gdb_assert (regnum
>= 0 && regnum
< 2 * NUM_REGS
);
678 if ((regnum
% NUM_REGS
) >= mips_regnum (current_gdbarch
)->fp0
679 && (regnum
% NUM_REGS
) < mips_regnum (current_gdbarch
)->fp0
+ 32)
681 /* The floating-point registers raw, or cooked, always match
682 mips_isa_regsize(), and also map 1:1, byte for byte. */
683 switch (gdbarch_byte_order (gdbarch
))
686 if (mips_isa_regsize (gdbarch
) == 4)
687 return builtin_type_ieee_single_big
;
689 return builtin_type_ieee_double_big
;
690 case BFD_ENDIAN_LITTLE
:
691 if (mips_isa_regsize (gdbarch
) == 4)
692 return builtin_type_ieee_single_little
;
694 return builtin_type_ieee_double_little
;
695 case BFD_ENDIAN_UNKNOWN
:
697 internal_error (__FILE__
, __LINE__
, _("bad switch"));
700 else if (regnum
< NUM_REGS
)
702 /* The raw or ISA registers. These are all sized according to
704 if (mips_isa_regsize (gdbarch
) == 4)
705 return builtin_type_int32
;
707 return builtin_type_int64
;
711 /* The cooked or ABI registers. These are sized according to
712 the ABI (with a few complications). */
713 if (regnum
>= (NUM_REGS
714 + mips_regnum (current_gdbarch
)->fp_control_status
)
715 && regnum
<= NUM_REGS
+ MIPS_LAST_EMBED_REGNUM
)
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32
;
719 else if (gdbarch_tdep (gdbarch
)->mips64_transfers_32bit_regs_p
)
720 /* The target, while possibly using a 64-bit register buffer,
721 is only transfering 32-bits of each integer register.
722 Reflect this in the cooked/pseudo (ABI) register value. */
723 return builtin_type_int32
;
724 else if (mips_abi_regsize (gdbarch
) == 4)
725 /* The ABI is restricted to 32-bit registers (the ISA could be
727 return builtin_type_int32
;
730 return builtin_type_int64
;
734 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
739 return read_signed_register (MIPS_SP_REGNUM
);
742 /* Should the upper word of 64-bit addresses be zeroed? */
743 enum auto_boolean mask_address_var
= AUTO_BOOLEAN_AUTO
;
746 mips_mask_address_p (struct gdbarch_tdep
*tdep
)
748 switch (mask_address_var
)
750 case AUTO_BOOLEAN_TRUE
:
752 case AUTO_BOOLEAN_FALSE
:
755 case AUTO_BOOLEAN_AUTO
:
756 return tdep
->default_mask_address_p
;
758 internal_error (__FILE__
, __LINE__
, _("mips_mask_address_p: bad switch"));
764 show_mask_address (struct ui_file
*file
, int from_tty
,
765 struct cmd_list_element
*c
, const char *value
)
767 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
769 deprecated_show_value_hack (file
, from_tty
, c
, value
);
770 switch (mask_address_var
)
772 case AUTO_BOOLEAN_TRUE
:
773 printf_filtered ("The 32 bit mips address mask is enabled\n");
775 case AUTO_BOOLEAN_FALSE
:
776 printf_filtered ("The 32 bit mips address mask is disabled\n");
778 case AUTO_BOOLEAN_AUTO
:
780 ("The 32 bit address mask is set automatically. Currently %s\n",
781 mips_mask_address_p (tdep
) ? "enabled" : "disabled");
784 internal_error (__FILE__
, __LINE__
, _("show_mask_address: bad switch"));
789 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
792 mips_pc_is_mips16 (CORE_ADDR memaddr
)
794 struct minimal_symbol
*sym
;
796 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
797 if (is_mips16_addr (memaddr
))
800 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
801 the high bit of the info field. Use this to decide if the function is
802 MIPS16 or normal MIPS. */
803 sym
= lookup_minimal_symbol_by_pc (memaddr
);
805 return msymbol_is_special (sym
);
810 /* MIPS believes that the PC has a sign extended value. Perhaps the
811 all registers should be sign extended for simplicity? */
814 mips_read_pc (ptid_t ptid
)
816 return read_signed_register_pid (mips_regnum (current_gdbarch
)->pc
, ptid
);
820 mips_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
822 return frame_unwind_register_signed (next_frame
,
823 NUM_REGS
+ mips_regnum (gdbarch
)->pc
);
826 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
827 dummy frame. The frame ID's base needs to match the TOS value
828 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
831 static struct frame_id
832 mips_unwind_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
834 return frame_id_build (frame_unwind_register_signed (next_frame
, NUM_REGS
+ MIPS_SP_REGNUM
),
835 frame_pc_unwind (next_frame
));
839 mips_write_pc (CORE_ADDR pc
, ptid_t ptid
)
841 write_register_pid (mips_regnum (current_gdbarch
)->pc
, pc
, ptid
);
844 /* Fetch and return instruction from the specified location. If the PC
845 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
848 mips_fetch_instruction (CORE_ADDR addr
)
850 char buf
[MIPS_INSN32_SIZE
];
854 if (mips_pc_is_mips16 (addr
))
856 instlen
= MIPS_INSN16_SIZE
;
857 addr
= unmake_mips16_addr (addr
);
860 instlen
= MIPS_INSN32_SIZE
;
861 status
= deprecated_read_memory_nobpt (addr
, buf
, instlen
);
863 memory_error (status
, addr
);
864 return extract_unsigned_integer (buf
, instlen
);
867 /* These the fields of 32 bit mips instructions */
868 #define mips32_op(x) (x >> 26)
869 #define itype_op(x) (x >> 26)
870 #define itype_rs(x) ((x >> 21) & 0x1f)
871 #define itype_rt(x) ((x >> 16) & 0x1f)
872 #define itype_immediate(x) (x & 0xffff)
874 #define jtype_op(x) (x >> 26)
875 #define jtype_target(x) (x & 0x03ffffff)
877 #define rtype_op(x) (x >> 26)
878 #define rtype_rs(x) ((x >> 21) & 0x1f)
879 #define rtype_rt(x) ((x >> 16) & 0x1f)
880 #define rtype_rd(x) ((x >> 11) & 0x1f)
881 #define rtype_shamt(x) ((x >> 6) & 0x1f)
882 #define rtype_funct(x) (x & 0x3f)
885 mips32_relative_offset (ULONGEST inst
)
887 return ((itype_immediate (inst
) ^ 0x8000) - 0x8000) << 2;
890 /* Determine whate to set a single step breakpoint while considering
893 mips32_next_pc (CORE_ADDR pc
)
897 inst
= mips_fetch_instruction (pc
);
898 if ((inst
& 0xe0000000) != 0) /* Not a special, jump or branch instruction */
900 if (itype_op (inst
) >> 2 == 5)
901 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
903 op
= (itype_op (inst
) & 0x03);
918 else if (itype_op (inst
) == 17 && itype_rs (inst
) == 8)
919 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
921 int tf
= itype_rt (inst
) & 0x01;
922 int cnum
= itype_rt (inst
) >> 2;
924 read_signed_register (mips_regnum (current_gdbarch
)->
926 int cond
= ((fcrcs
>> 24) & 0x0e) | ((fcrcs
>> 23) & 0x01);
928 if (((cond
>> cnum
) & 0x01) == tf
)
929 pc
+= mips32_relative_offset (inst
) + 4;
934 pc
+= 4; /* Not a branch, next instruction is easy */
937 { /* This gets way messy */
939 /* Further subdivide into SPECIAL, REGIMM and other */
940 switch (op
= itype_op (inst
) & 0x07) /* extract bits 28,27,26 */
942 case 0: /* SPECIAL */
943 op
= rtype_funct (inst
);
948 /* Set PC to that address */
949 pc
= read_signed_register (rtype_rs (inst
));
955 break; /* end SPECIAL */
958 op
= itype_rt (inst
); /* branch condition */
963 case 16: /* BLTZAL */
964 case 18: /* BLTZALL */
966 if (read_signed_register (itype_rs (inst
)) < 0)
967 pc
+= mips32_relative_offset (inst
) + 4;
969 pc
+= 8; /* after the delay slot */
973 case 17: /* BGEZAL */
974 case 19: /* BGEZALL */
975 if (read_signed_register (itype_rs (inst
)) >= 0)
976 pc
+= mips32_relative_offset (inst
) + 4;
978 pc
+= 8; /* after the delay slot */
980 /* All of the other instructions in the REGIMM category */
985 break; /* end REGIMM */
990 reg
= jtype_target (inst
) << 2;
991 /* Upper four bits get never changed... */
992 pc
= reg
+ ((pc
+ 4) & 0xf0000000);
995 /* FIXME case JALX : */
998 reg
= jtype_target (inst
) << 2;
999 pc
= reg
+ ((pc
+ 4) & 0xf0000000) + 1; /* yes, +1 */
1000 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1002 break; /* The new PC will be alternate mode */
1003 case 4: /* BEQ, BEQL */
1005 if (read_signed_register (itype_rs (inst
)) ==
1006 read_signed_register (itype_rt (inst
)))
1007 pc
+= mips32_relative_offset (inst
) + 4;
1011 case 5: /* BNE, BNEL */
1013 if (read_signed_register (itype_rs (inst
)) !=
1014 read_signed_register (itype_rt (inst
)))
1015 pc
+= mips32_relative_offset (inst
) + 4;
1019 case 6: /* BLEZ, BLEZL */
1020 if (read_signed_register (itype_rs (inst
)) <= 0)
1021 pc
+= mips32_relative_offset (inst
) + 4;
1027 greater_branch
: /* BGTZ, BGTZL */
1028 if (read_signed_register (itype_rs (inst
)) > 0)
1029 pc
+= mips32_relative_offset (inst
) + 4;
1036 } /* mips32_next_pc */
1038 /* Decoding the next place to set a breakpoint is irregular for the
1039 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1040 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1041 We dont want to set a single step instruction on the extend instruction
1045 /* Lots of mips16 instruction formats */
1046 /* Predicting jumps requires itype,ritype,i8type
1047 and their extensions extItype,extritype,extI8type
1049 enum mips16_inst_fmts
1051 itype
, /* 0 immediate 5,10 */
1052 ritype
, /* 1 5,3,8 */
1053 rrtype
, /* 2 5,3,3,5 */
1054 rritype
, /* 3 5,3,3,5 */
1055 rrrtype
, /* 4 5,3,3,3,2 */
1056 rriatype
, /* 5 5,3,3,1,4 */
1057 shifttype
, /* 6 5,3,3,3,2 */
1058 i8type
, /* 7 5,3,8 */
1059 i8movtype
, /* 8 5,3,3,5 */
1060 i8mov32rtype
, /* 9 5,3,5,3 */
1061 i64type
, /* 10 5,3,8 */
1062 ri64type
, /* 11 5,3,3,5 */
1063 jalxtype
, /* 12 5,1,5,5,16 - a 32 bit instruction */
1064 exiItype
, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1065 extRitype
, /* 14 5,6,5,5,3,1,1,1,5 */
1066 extRRItype
, /* 15 5,5,5,5,3,3,5 */
1067 extRRIAtype
, /* 16 5,7,4,5,3,3,1,4 */
1068 EXTshifttype
, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1069 extI8type
, /* 18 5,6,5,5,3,1,1,1,5 */
1070 extI64type
, /* 19 5,6,5,5,3,1,1,1,5 */
1071 extRi64type
, /* 20 5,6,5,5,3,3,5 */
1072 extshift64type
/* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1074 /* I am heaping all the fields of the formats into one structure and
1075 then, only the fields which are involved in instruction extension */
1079 unsigned int regx
; /* Function in i8 type */
1084 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1085 for the bits which make up the immediatate extension. */
1088 extended_offset (unsigned int extension
)
1091 value
= (extension
>> 21) & 0x3f; /* * extract 15:11 */
1093 value
|= (extension
>> 16) & 0x1f; /* extrace 10:5 */
1095 value
|= extension
& 0x01f; /* extract 4:0 */
1099 /* Only call this function if you know that this is an extendable
1100 instruction, It wont malfunction, but why make excess remote memory references?
1101 If the immediate operands get sign extended or somthing, do it after
1102 the extension is performed.
1104 /* FIXME: Every one of these cases needs to worry about sign extension
1105 when the offset is to be used in relative addressing */
1109 fetch_mips_16 (CORE_ADDR pc
)
1112 pc
&= 0xfffffffe; /* clear the low order bit */
1113 target_read_memory (pc
, buf
, 2);
1114 return extract_unsigned_integer (buf
, 2);
1118 unpack_mips16 (CORE_ADDR pc
,
1119 unsigned int extension
,
1121 enum mips16_inst_fmts insn_format
, struct upk_mips16
*upk
)
1126 switch (insn_format
)
1133 value
= extended_offset (extension
);
1134 value
= value
<< 11; /* rom for the original value */
1135 value
|= inst
& 0x7ff; /* eleven bits from instruction */
1139 value
= inst
& 0x7ff;
1140 /* FIXME : Consider sign extension */
1149 { /* A register identifier and an offset */
1150 /* Most of the fields are the same as I type but the
1151 immediate value is of a different length */
1155 value
= extended_offset (extension
);
1156 value
= value
<< 8; /* from the original instruction */
1157 value
|= inst
& 0xff; /* eleven bits from instruction */
1158 regx
= (extension
>> 8) & 0x07; /* or i8 funct */
1159 if (value
& 0x4000) /* test the sign bit , bit 26 */
1161 value
&= ~0x3fff; /* remove the sign bit */
1167 value
= inst
& 0xff; /* 8 bits */
1168 regx
= (inst
>> 8) & 0x07; /* or i8 funct */
1169 /* FIXME: Do sign extension , this format needs it */
1170 if (value
& 0x80) /* THIS CONFUSES ME */
1172 value
&= 0xef; /* remove the sign bit */
1182 unsigned long value
;
1183 unsigned int nexthalf
;
1184 value
= ((inst
& 0x1f) << 5) | ((inst
>> 5) & 0x1f);
1185 value
= value
<< 16;
1186 nexthalf
= mips_fetch_instruction (pc
+ 2); /* low bit still set */
1194 internal_error (__FILE__
, __LINE__
, _("bad switch"));
1196 upk
->offset
= offset
;
1203 add_offset_16 (CORE_ADDR pc
, int offset
)
1205 return ((offset
<< 2) | ((pc
+ 2) & (0xf0000000)));
1209 extended_mips16_next_pc (CORE_ADDR pc
,
1210 unsigned int extension
, unsigned int insn
)
1212 int op
= (insn
>> 11);
1215 case 2: /* Branch */
1218 struct upk_mips16 upk
;
1219 unpack_mips16 (pc
, extension
, insn
, itype
, &upk
);
1220 offset
= upk
.offset
;
1226 pc
+= (offset
<< 1) + 2;
1229 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1231 struct upk_mips16 upk
;
1232 unpack_mips16 (pc
, extension
, insn
, jalxtype
, &upk
);
1233 pc
= add_offset_16 (pc
, upk
.offset
);
1234 if ((insn
>> 10) & 0x01) /* Exchange mode */
1235 pc
= pc
& ~0x01; /* Clear low bit, indicate 32 bit mode */
1242 struct upk_mips16 upk
;
1244 unpack_mips16 (pc
, extension
, insn
, ritype
, &upk
);
1245 reg
= read_signed_register (upk
.regx
);
1247 pc
+= (upk
.offset
<< 1) + 2;
1254 struct upk_mips16 upk
;
1256 unpack_mips16 (pc
, extension
, insn
, ritype
, &upk
);
1257 reg
= read_signed_register (upk
.regx
);
1259 pc
+= (upk
.offset
<< 1) + 2;
1264 case 12: /* I8 Formats btez btnez */
1266 struct upk_mips16 upk
;
1268 unpack_mips16 (pc
, extension
, insn
, i8type
, &upk
);
1269 /* upk.regx contains the opcode */
1270 reg
= read_signed_register (24); /* Test register is 24 */
1271 if (((upk
.regx
== 0) && (reg
== 0)) /* BTEZ */
1272 || ((upk
.regx
== 1) && (reg
!= 0))) /* BTNEZ */
1273 /* pc = add_offset_16(pc,upk.offset) ; */
1274 pc
+= (upk
.offset
<< 1) + 2;
1279 case 29: /* RR Formats JR, JALR, JALR-RA */
1281 struct upk_mips16 upk
;
1282 /* upk.fmt = rrtype; */
1287 upk
.regx
= (insn
>> 8) & 0x07;
1288 upk
.regy
= (insn
>> 5) & 0x07;
1296 break; /* Function return instruction */
1302 break; /* BOGUS Guess */
1304 pc
= read_signed_register (reg
);
1311 /* This is an instruction extension. Fetch the real instruction
1312 (which follows the extension) and decode things based on
1316 pc
= extended_mips16_next_pc (pc
, insn
, fetch_mips_16 (pc
));
1329 mips16_next_pc (CORE_ADDR pc
)
1331 unsigned int insn
= fetch_mips_16 (pc
);
1332 return extended_mips16_next_pc (pc
, 0, insn
);
1335 /* The mips_next_pc function supports single_step when the remote
1336 target monitor or stub is not developed enough to do a single_step.
1337 It works by decoding the current instruction and predicting where a
1338 branch will go. This isnt hard because all the data is available.
1339 The MIPS32 and MIPS16 variants are quite different */
1341 mips_next_pc (CORE_ADDR pc
)
1344 return mips16_next_pc (pc
);
1346 return mips32_next_pc (pc
);
1349 struct mips_frame_cache
1352 struct trad_frame_saved_reg
*saved_regs
;
1355 /* Set a register's saved stack address in temp_saved_regs. If an
1356 address has already been set for this register, do nothing; this
1357 way we will only recognize the first save of a given register in a
1360 For simplicity, save the address in both [0 .. NUM_REGS) and
1361 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1362 is used as it is only second range (the ABI instead of ISA
1363 registers) that comes into play when finding saved registers in a
1367 set_reg_offset (struct mips_frame_cache
*this_cache
, int regnum
,
1370 if (this_cache
!= NULL
1371 && this_cache
->saved_regs
[regnum
].addr
== -1)
1373 this_cache
->saved_regs
[regnum
+ 0 * NUM_REGS
].addr
= offset
;
1374 this_cache
->saved_regs
[regnum
+ 1 * NUM_REGS
].addr
= offset
;
1379 /* Fetch the immediate value from a MIPS16 instruction.
1380 If the previous instruction was an EXTEND, use it to extend
1381 the upper bits of the immediate value. This is a helper function
1382 for mips16_scan_prologue. */
1385 mips16_get_imm (unsigned short prev_inst
, /* previous instruction */
1386 unsigned short inst
, /* current instruction */
1387 int nbits
, /* number of bits in imm field */
1388 int scale
, /* scale factor to be applied to imm */
1389 int is_signed
) /* is the imm field signed? */
1393 if ((prev_inst
& 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1395 offset
= ((prev_inst
& 0x1f) << 11) | (prev_inst
& 0x7e0);
1396 if (offset
& 0x8000) /* check for negative extend */
1397 offset
= 0 - (0x10000 - (offset
& 0xffff));
1398 return offset
| (inst
& 0x1f);
1402 int max_imm
= 1 << nbits
;
1403 int mask
= max_imm
- 1;
1404 int sign_bit
= max_imm
>> 1;
1406 offset
= inst
& mask
;
1407 if (is_signed
&& (offset
& sign_bit
))
1408 offset
= 0 - (max_imm
- offset
);
1409 return offset
* scale
;
1414 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1415 the associated FRAME_CACHE if not null.
1416 Return the address of the first instruction past the prologue. */
1419 mips16_scan_prologue (CORE_ADDR start_pc
, CORE_ADDR limit_pc
,
1420 struct frame_info
*next_frame
,
1421 struct mips_frame_cache
*this_cache
)
1424 CORE_ADDR frame_addr
= 0; /* Value of $r17, used as frame pointer */
1426 long frame_offset
= 0; /* Size of stack frame. */
1427 long frame_adjust
= 0; /* Offset of FP from SP. */
1428 int frame_reg
= MIPS_SP_REGNUM
;
1429 unsigned short prev_inst
= 0; /* saved copy of previous instruction */
1430 unsigned inst
= 0; /* current instruction */
1431 unsigned entry_inst
= 0; /* the entry instruction */
1434 int extend_bytes
= 0;
1435 int prev_extend_bytes
;
1436 CORE_ADDR end_prologue_addr
= 0;
1438 /* Can be called when there's no process, and hence when there's no
1440 if (next_frame
!= NULL
)
1441 sp
= read_next_frame_reg (next_frame
, NUM_REGS
+ MIPS_SP_REGNUM
);
1445 if (limit_pc
> start_pc
+ 200)
1446 limit_pc
= start_pc
+ 200;
1448 for (cur_pc
= start_pc
; cur_pc
< limit_pc
; cur_pc
+= MIPS_INSN16_SIZE
)
1450 /* Save the previous instruction. If it's an EXTEND, we'll extract
1451 the immediate offset extension from it in mips16_get_imm. */
1454 /* Fetch and decode the instruction. */
1455 inst
= (unsigned short) mips_fetch_instruction (cur_pc
);
1457 /* Normally we ignore extend instructions. However, if it is
1458 not followed by a valid prologue instruction, then this
1459 instruction is not part of the prologue either. We must
1460 remember in this case to adjust the end_prologue_addr back
1462 if ((inst
& 0xf800) == 0xf000) /* extend */
1464 extend_bytes
= MIPS_INSN16_SIZE
;
1468 prev_extend_bytes
= extend_bytes
;
1471 if ((inst
& 0xff00) == 0x6300 /* addiu sp */
1472 || (inst
& 0xff00) == 0xfb00) /* daddiu sp */
1474 offset
= mips16_get_imm (prev_inst
, inst
, 8, 8, 1);
1475 if (offset
< 0) /* negative stack adjustment? */
1476 frame_offset
-= offset
;
1478 /* Exit loop if a positive stack adjustment is found, which
1479 usually means that the stack cleanup code in the function
1480 epilogue is reached. */
1483 else if ((inst
& 0xf800) == 0xd000) /* sw reg,n($sp) */
1485 offset
= mips16_get_imm (prev_inst
, inst
, 8, 4, 0);
1486 reg
= mips16_to_32_reg
[(inst
& 0x700) >> 8];
1487 set_reg_offset (this_cache
, reg
, sp
+ offset
);
1489 else if ((inst
& 0xff00) == 0xf900) /* sd reg,n($sp) */
1491 offset
= mips16_get_imm (prev_inst
, inst
, 5, 8, 0);
1492 reg
= mips16_to_32_reg
[(inst
& 0xe0) >> 5];
1493 set_reg_offset (this_cache
, reg
, sp
+ offset
);
1495 else if ((inst
& 0xff00) == 0x6200) /* sw $ra,n($sp) */
1497 offset
= mips16_get_imm (prev_inst
, inst
, 8, 4, 0);
1498 set_reg_offset (this_cache
, MIPS_RA_REGNUM
, sp
+ offset
);
1500 else if ((inst
& 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1502 offset
= mips16_get_imm (prev_inst
, inst
, 8, 8, 0);
1503 set_reg_offset (this_cache
, MIPS_RA_REGNUM
, sp
+ offset
);
1505 else if (inst
== 0x673d) /* move $s1, $sp */
1510 else if ((inst
& 0xff00) == 0x0100) /* addiu $s1,sp,n */
1512 offset
= mips16_get_imm (prev_inst
, inst
, 8, 4, 0);
1513 frame_addr
= sp
+ offset
;
1515 frame_adjust
= offset
;
1517 else if ((inst
& 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1519 offset
= mips16_get_imm (prev_inst
, inst
, 5, 4, 0);
1520 reg
= mips16_to_32_reg
[(inst
& 0xe0) >> 5];
1521 set_reg_offset (this_cache
, reg
, frame_addr
+ offset
);
1523 else if ((inst
& 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1525 offset
= mips16_get_imm (prev_inst
, inst
, 5, 8, 0);
1526 reg
= mips16_to_32_reg
[(inst
& 0xe0) >> 5];
1527 set_reg_offset (this_cache
, reg
, frame_addr
+ offset
);
1529 else if ((inst
& 0xf81f) == 0xe809
1530 && (inst
& 0x700) != 0x700) /* entry */
1531 entry_inst
= inst
; /* save for later processing */
1532 else if ((inst
& 0xf800) == 0x1800) /* jal(x) */
1533 cur_pc
+= MIPS_INSN16_SIZE
; /* 32-bit instruction */
1534 else if ((inst
& 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1536 /* This instruction is part of the prologue, but we don't
1537 need to do anything special to handle it. */
1541 /* This instruction is not an instruction typically found
1542 in a prologue, so we must have reached the end of the
1544 if (end_prologue_addr
== 0)
1545 end_prologue_addr
= cur_pc
- prev_extend_bytes
;
1549 /* The entry instruction is typically the first instruction in a function,
1550 and it stores registers at offsets relative to the value of the old SP
1551 (before the prologue). But the value of the sp parameter to this
1552 function is the new SP (after the prologue has been executed). So we
1553 can't calculate those offsets until we've seen the entire prologue,
1554 and can calculate what the old SP must have been. */
1555 if (entry_inst
!= 0)
1557 int areg_count
= (entry_inst
>> 8) & 7;
1558 int sreg_count
= (entry_inst
>> 6) & 3;
1560 /* The entry instruction always subtracts 32 from the SP. */
1563 /* Now we can calculate what the SP must have been at the
1564 start of the function prologue. */
1567 /* Check if a0-a3 were saved in the caller's argument save area. */
1568 for (reg
= 4, offset
= 0; reg
< areg_count
+ 4; reg
++)
1570 set_reg_offset (this_cache
, reg
, sp
+ offset
);
1571 offset
+= mips_abi_regsize (current_gdbarch
);
1574 /* Check if the ra register was pushed on the stack. */
1576 if (entry_inst
& 0x20)
1578 set_reg_offset (this_cache
, MIPS_RA_REGNUM
, sp
+ offset
);
1579 offset
-= mips_abi_regsize (current_gdbarch
);
1582 /* Check if the s0 and s1 registers were pushed on the stack. */
1583 for (reg
= 16; reg
< sreg_count
+ 16; reg
++)
1585 set_reg_offset (this_cache
, reg
, sp
+ offset
);
1586 offset
-= mips_abi_regsize (current_gdbarch
);
1590 if (this_cache
!= NULL
)
1593 (frame_unwind_register_signed (next_frame
, NUM_REGS
+ frame_reg
)
1594 + frame_offset
- frame_adjust
);
1595 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1596 be able to get rid of the assignment below, evetually. But it's
1597 still needed for now. */
1598 this_cache
->saved_regs
[NUM_REGS
+ mips_regnum (current_gdbarch
)->pc
]
1599 = this_cache
->saved_regs
[NUM_REGS
+ MIPS_RA_REGNUM
];
1602 /* If we didn't reach the end of the prologue when scanning the function
1603 instructions, then set end_prologue_addr to the address of the
1604 instruction immediately after the last one we scanned. */
1605 if (end_prologue_addr
== 0)
1606 end_prologue_addr
= cur_pc
;
1608 return end_prologue_addr
;
1611 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1612 Procedures that use the 32-bit instruction set are handled by the
1613 mips_insn32 unwinder. */
1615 static struct mips_frame_cache
*
1616 mips_insn16_frame_cache (struct frame_info
*next_frame
, void **this_cache
)
1618 struct mips_frame_cache
*cache
;
1620 if ((*this_cache
) != NULL
)
1621 return (*this_cache
);
1622 cache
= FRAME_OBSTACK_ZALLOC (struct mips_frame_cache
);
1623 (*this_cache
) = cache
;
1624 cache
->saved_regs
= trad_frame_alloc_saved_regs (next_frame
);
1626 /* Analyze the function prologue. */
1628 const CORE_ADDR pc
= frame_pc_unwind (next_frame
);
1629 CORE_ADDR start_addr
;
1631 find_pc_partial_function (pc
, NULL
, &start_addr
, NULL
);
1632 if (start_addr
== 0)
1633 start_addr
= heuristic_proc_start (pc
);
1634 /* We can't analyze the prologue if we couldn't find the begining
1636 if (start_addr
== 0)
1639 mips16_scan_prologue (start_addr
, pc
, next_frame
, *this_cache
);
1642 /* SP_REGNUM, contains the value and not the address. */
1643 trad_frame_set_value (cache
->saved_regs
, NUM_REGS
+ MIPS_SP_REGNUM
, cache
->base
);
1645 return (*this_cache
);
1649 mips_insn16_frame_this_id (struct frame_info
*next_frame
, void **this_cache
,
1650 struct frame_id
*this_id
)
1652 struct mips_frame_cache
*info
= mips_insn16_frame_cache (next_frame
,
1654 (*this_id
) = frame_id_build (info
->base
, frame_func_unwind (next_frame
));
1658 mips_insn16_frame_prev_register (struct frame_info
*next_frame
,
1660 int regnum
, int *optimizedp
,
1661 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
1662 int *realnump
, void *valuep
)
1664 struct mips_frame_cache
*info
= mips_insn16_frame_cache (next_frame
,
1666 trad_frame_get_prev_register (next_frame
, info
->saved_regs
, regnum
,
1667 optimizedp
, lvalp
, addrp
, realnump
, valuep
);
1670 static const struct frame_unwind mips_insn16_frame_unwind
=
1673 mips_insn16_frame_this_id
,
1674 mips_insn16_frame_prev_register
1677 static const struct frame_unwind
*
1678 mips_insn16_frame_sniffer (struct frame_info
*next_frame
)
1680 CORE_ADDR pc
= frame_pc_unwind (next_frame
);
1681 if (mips_pc_is_mips16 (pc
))
1682 return &mips_insn16_frame_unwind
;
1687 mips_insn16_frame_base_address (struct frame_info
*next_frame
,
1690 struct mips_frame_cache
*info
= mips_insn16_frame_cache (next_frame
,
1695 static const struct frame_base mips_insn16_frame_base
=
1697 &mips_insn16_frame_unwind
,
1698 mips_insn16_frame_base_address
,
1699 mips_insn16_frame_base_address
,
1700 mips_insn16_frame_base_address
1703 static const struct frame_base
*
1704 mips_insn16_frame_base_sniffer (struct frame_info
*next_frame
)
1706 if (mips_insn16_frame_sniffer (next_frame
) != NULL
)
1707 return &mips_insn16_frame_base
;
1712 /* Mark all the registers as unset in the saved_regs array
1713 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1716 reset_saved_regs (struct mips_frame_cache
*this_cache
)
1718 if (this_cache
== NULL
|| this_cache
->saved_regs
== NULL
)
1722 const int num_regs
= NUM_REGS
;
1725 for (i
= 0; i
< num_regs
; i
++)
1727 this_cache
->saved_regs
[i
].addr
= -1;
1732 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1733 the associated FRAME_CACHE if not null.
1734 Return the address of the first instruction past the prologue. */
1737 mips32_scan_prologue (CORE_ADDR start_pc
, CORE_ADDR limit_pc
,
1738 struct frame_info
*next_frame
,
1739 struct mips_frame_cache
*this_cache
)
1742 CORE_ADDR frame_addr
= 0; /* Value of $r30. Used by gcc for frame-pointer */
1745 int frame_reg
= MIPS_SP_REGNUM
;
1747 CORE_ADDR end_prologue_addr
= 0;
1748 int seen_sp_adjust
= 0;
1749 int load_immediate_bytes
= 0;
1751 /* Can be called when there's no process, and hence when there's no
1753 if (next_frame
!= NULL
)
1754 sp
= read_next_frame_reg (next_frame
, NUM_REGS
+ MIPS_SP_REGNUM
);
1758 if (limit_pc
> start_pc
+ 200)
1759 limit_pc
= start_pc
+ 200;
1764 for (cur_pc
= start_pc
; cur_pc
< limit_pc
; cur_pc
+= MIPS_INSN32_SIZE
)
1766 unsigned long inst
, high_word
, low_word
;
1769 /* Fetch the instruction. */
1770 inst
= (unsigned long) mips_fetch_instruction (cur_pc
);
1772 /* Save some code by pre-extracting some useful fields. */
1773 high_word
= (inst
>> 16) & 0xffff;
1774 low_word
= inst
& 0xffff;
1775 reg
= high_word
& 0x1f;
1777 if (high_word
== 0x27bd /* addiu $sp,$sp,-i */
1778 || high_word
== 0x23bd /* addi $sp,$sp,-i */
1779 || high_word
== 0x67bd) /* daddiu $sp,$sp,-i */
1781 if (low_word
& 0x8000) /* negative stack adjustment? */
1782 frame_offset
+= 0x10000 - low_word
;
1784 /* Exit loop if a positive stack adjustment is found, which
1785 usually means that the stack cleanup code in the function
1786 epilogue is reached. */
1790 else if ((high_word
& 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1792 set_reg_offset (this_cache
, reg
, sp
+ low_word
);
1794 else if ((high_word
& 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1796 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1797 set_reg_offset (this_cache
, reg
, sp
+ low_word
);
1799 else if (high_word
== 0x27be) /* addiu $30,$sp,size */
1801 /* Old gcc frame, r30 is virtual frame pointer. */
1802 if ((long) low_word
!= frame_offset
)
1803 frame_addr
= sp
+ low_word
;
1804 else if (frame_reg
== MIPS_SP_REGNUM
)
1806 unsigned alloca_adjust
;
1809 frame_addr
= read_next_frame_reg (next_frame
, NUM_REGS
+ 30);
1810 alloca_adjust
= (unsigned) (frame_addr
- (sp
+ low_word
));
1811 if (alloca_adjust
> 0)
1813 /* FP > SP + frame_size. This may be because of
1814 an alloca or somethings similar. Fix sp to
1815 "pre-alloca" value, and try again. */
1816 sp
+= alloca_adjust
;
1817 /* Need to reset the status of all registers. Otherwise,
1818 we will hit a guard that prevents the new address
1819 for each register to be recomputed during the second
1821 reset_saved_regs (this_cache
);
1826 /* move $30,$sp. With different versions of gas this will be either
1827 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1828 Accept any one of these. */
1829 else if (inst
== 0x03A0F021 || inst
== 0x03a0f025 || inst
== 0x03a0f02d)
1831 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1832 if (frame_reg
== MIPS_SP_REGNUM
)
1834 unsigned alloca_adjust
;
1837 frame_addr
= read_next_frame_reg (next_frame
, NUM_REGS
+ 30);
1838 alloca_adjust
= (unsigned) (frame_addr
- sp
);
1839 if (alloca_adjust
> 0)
1841 /* FP > SP + frame_size. This may be because of
1842 an alloca or somethings similar. Fix sp to
1843 "pre-alloca" value, and try again. */
1845 /* Need to reset the status of all registers. Otherwise,
1846 we will hit a guard that prevents the new address
1847 for each register to be recomputed during the second
1849 reset_saved_regs (this_cache
);
1854 else if ((high_word
& 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1856 set_reg_offset (this_cache
, reg
, frame_addr
+ low_word
);
1858 else if ((high_word
& 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1859 || (high_word
& 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1860 || (inst
& 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1861 || high_word
== 0x3c1c /* lui $gp,n */
1862 || high_word
== 0x279c /* addiu $gp,$gp,n */
1863 || inst
== 0x0399e021 /* addu $gp,$gp,$t9 */
1864 || inst
== 0x033ce021 /* addu $gp,$t9,$gp */
1867 /* These instructions are part of the prologue, but we don't
1868 need to do anything special to handle them. */
1870 /* The instructions below load $at or $t0 with an immediate
1871 value in preparation for a stack adjustment via
1872 subu $sp,$sp,[$at,$t0]. These instructions could also
1873 initialize a local variable, so we accept them only before
1874 a stack adjustment instruction was seen. */
1875 else if (!seen_sp_adjust
1876 && (high_word
== 0x3c01 /* lui $at,n */
1877 || high_word
== 0x3c08 /* lui $t0,n */
1878 || high_word
== 0x3421 /* ori $at,$at,n */
1879 || high_word
== 0x3508 /* ori $t0,$t0,n */
1880 || high_word
== 0x3401 /* ori $at,$zero,n */
1881 || high_word
== 0x3408 /* ori $t0,$zero,n */
1884 load_immediate_bytes
+= MIPS_INSN32_SIZE
; /* FIXME! */
1888 /* This instruction is not an instruction typically found
1889 in a prologue, so we must have reached the end of the
1891 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1892 loop now? Why would we need to continue scanning the function
1894 if (end_prologue_addr
== 0)
1895 end_prologue_addr
= cur_pc
;
1899 if (this_cache
!= NULL
)
1902 (frame_unwind_register_signed (next_frame
, NUM_REGS
+ frame_reg
)
1904 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1905 this assignment below, eventually. But it's still needed
1907 this_cache
->saved_regs
[NUM_REGS
+ mips_regnum (current_gdbarch
)->pc
]
1908 = this_cache
->saved_regs
[NUM_REGS
+ MIPS_RA_REGNUM
];
1911 /* If we didn't reach the end of the prologue when scanning the function
1912 instructions, then set end_prologue_addr to the address of the
1913 instruction immediately after the last one we scanned. */
1914 /* brobecker/2004-10-10: I don't think this would ever happen, but
1915 we may as well be careful and do our best if we have a null
1916 end_prologue_addr. */
1917 if (end_prologue_addr
== 0)
1918 end_prologue_addr
= cur_pc
;
1920 /* In a frameless function, we might have incorrectly
1921 skipped some load immediate instructions. Undo the skipping
1922 if the load immediate was not followed by a stack adjustment. */
1923 if (load_immediate_bytes
&& !seen_sp_adjust
)
1924 end_prologue_addr
-= load_immediate_bytes
;
1926 return end_prologue_addr
;
1929 /* Heuristic unwinder for procedures using 32-bit instructions (covers
1930 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1931 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1934 static struct mips_frame_cache
*
1935 mips_insn32_frame_cache (struct frame_info
*next_frame
, void **this_cache
)
1937 struct mips_frame_cache
*cache
;
1939 if ((*this_cache
) != NULL
)
1940 return (*this_cache
);
1942 cache
= FRAME_OBSTACK_ZALLOC (struct mips_frame_cache
);
1943 (*this_cache
) = cache
;
1944 cache
->saved_regs
= trad_frame_alloc_saved_regs (next_frame
);
1946 /* Analyze the function prologue. */
1948 const CORE_ADDR pc
= frame_pc_unwind (next_frame
);
1949 CORE_ADDR start_addr
;
1951 find_pc_partial_function (pc
, NULL
, &start_addr
, NULL
);
1952 if (start_addr
== 0)
1953 start_addr
= heuristic_proc_start (pc
);
1954 /* We can't analyze the prologue if we couldn't find the begining
1956 if (start_addr
== 0)
1959 mips32_scan_prologue (start_addr
, pc
, next_frame
, *this_cache
);
1962 /* SP_REGNUM, contains the value and not the address. */
1963 trad_frame_set_value (cache
->saved_regs
, NUM_REGS
+ MIPS_SP_REGNUM
, cache
->base
);
1965 return (*this_cache
);
1969 mips_insn32_frame_this_id (struct frame_info
*next_frame
, void **this_cache
,
1970 struct frame_id
*this_id
)
1972 struct mips_frame_cache
*info
= mips_insn32_frame_cache (next_frame
,
1974 (*this_id
) = frame_id_build (info
->base
, frame_func_unwind (next_frame
));
1978 mips_insn32_frame_prev_register (struct frame_info
*next_frame
,
1980 int regnum
, int *optimizedp
,
1981 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
1982 int *realnump
, void *valuep
)
1984 struct mips_frame_cache
*info
= mips_insn32_frame_cache (next_frame
,
1986 trad_frame_get_prev_register (next_frame
, info
->saved_regs
, regnum
,
1987 optimizedp
, lvalp
, addrp
, realnump
, valuep
);
1990 static const struct frame_unwind mips_insn32_frame_unwind
=
1993 mips_insn32_frame_this_id
,
1994 mips_insn32_frame_prev_register
1997 static const struct frame_unwind
*
1998 mips_insn32_frame_sniffer (struct frame_info
*next_frame
)
2000 CORE_ADDR pc
= frame_pc_unwind (next_frame
);
2001 if (! mips_pc_is_mips16 (pc
))
2002 return &mips_insn32_frame_unwind
;
2007 mips_insn32_frame_base_address (struct frame_info
*next_frame
,
2010 struct mips_frame_cache
*info
= mips_insn32_frame_cache (next_frame
,
2015 static const struct frame_base mips_insn32_frame_base
=
2017 &mips_insn32_frame_unwind
,
2018 mips_insn32_frame_base_address
,
2019 mips_insn32_frame_base_address
,
2020 mips_insn32_frame_base_address
2023 static const struct frame_base
*
2024 mips_insn32_frame_base_sniffer (struct frame_info
*next_frame
)
2026 if (mips_insn32_frame_sniffer (next_frame
) != NULL
)
2027 return &mips_insn32_frame_base
;
2032 static struct trad_frame_cache
*
2033 mips_stub_frame_cache (struct frame_info
*next_frame
, void **this_cache
)
2036 CORE_ADDR start_addr
;
2037 CORE_ADDR stack_addr
;
2038 struct trad_frame_cache
*this_trad_cache
;
2040 if ((*this_cache
) != NULL
)
2041 return (*this_cache
);
2042 this_trad_cache
= trad_frame_cache_zalloc (next_frame
);
2043 (*this_cache
) = this_trad_cache
;
2045 /* The return address is in the link register. */
2046 trad_frame_set_reg_realreg (this_trad_cache
, PC_REGNUM
, MIPS_RA_REGNUM
);
2048 /* Frame ID, since it's a frameless / stackless function, no stack
2049 space is allocated and SP on entry is the current SP. */
2050 pc
= frame_pc_unwind (next_frame
);
2051 find_pc_partial_function (pc
, NULL
, &start_addr
, NULL
);
2052 stack_addr
= frame_unwind_register_signed (next_frame
, MIPS_SP_REGNUM
);
2053 trad_frame_set_id (this_trad_cache
, frame_id_build (start_addr
, stack_addr
));
2055 /* Assume that the frame's base is the same as the
2057 trad_frame_set_this_base (this_trad_cache
, stack_addr
);
2059 return this_trad_cache
;
2063 mips_stub_frame_this_id (struct frame_info
*next_frame
, void **this_cache
,
2064 struct frame_id
*this_id
)
2066 struct trad_frame_cache
*this_trad_cache
2067 = mips_stub_frame_cache (next_frame
, this_cache
);
2068 trad_frame_get_id (this_trad_cache
, this_id
);
2072 mips_stub_frame_prev_register (struct frame_info
*next_frame
,
2074 int regnum
, int *optimizedp
,
2075 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
2076 int *realnump
, void *valuep
)
2078 struct trad_frame_cache
*this_trad_cache
2079 = mips_stub_frame_cache (next_frame
, this_cache
);
2080 trad_frame_get_register (this_trad_cache
, next_frame
, regnum
, optimizedp
,
2081 lvalp
, addrp
, realnump
, valuep
);
2084 static const struct frame_unwind mips_stub_frame_unwind
=
2087 mips_stub_frame_this_id
,
2088 mips_stub_frame_prev_register
2091 static const struct frame_unwind
*
2092 mips_stub_frame_sniffer (struct frame_info
*next_frame
)
2094 CORE_ADDR pc
= frame_pc_unwind (next_frame
);
2095 if (in_plt_section (pc
, NULL
))
2096 return &mips_stub_frame_unwind
;
2102 mips_stub_frame_base_address (struct frame_info
*next_frame
,
2105 struct trad_frame_cache
*this_trad_cache
2106 = mips_stub_frame_cache (next_frame
, this_cache
);
2107 return trad_frame_get_this_base (this_trad_cache
);
2110 static const struct frame_base mips_stub_frame_base
=
2112 &mips_stub_frame_unwind
,
2113 mips_stub_frame_base_address
,
2114 mips_stub_frame_base_address
,
2115 mips_stub_frame_base_address
2118 static const struct frame_base
*
2119 mips_stub_frame_base_sniffer (struct frame_info
*next_frame
)
2121 if (mips_stub_frame_sniffer (next_frame
) != NULL
)
2122 return &mips_stub_frame_base
;
2128 read_next_frame_reg (struct frame_info
*fi
, int regno
)
2130 /* Always a pseudo. */
2131 gdb_assert (regno
>= NUM_REGS
);
2135 regcache_cooked_read_signed (current_regcache
, regno
, &val
);
2139 return frame_unwind_register_signed (fi
, regno
);
2143 /* mips_addr_bits_remove - remove useless address bits */
2146 mips_addr_bits_remove (CORE_ADDR addr
)
2148 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
2149 if (mips_mask_address_p (tdep
) && (((ULONGEST
) addr
) >> 32 == 0xffffffffUL
))
2150 /* This hack is a work-around for existing boards using PMON, the
2151 simulator, and any other 64-bit targets that doesn't have true
2152 64-bit addressing. On these targets, the upper 32 bits of
2153 addresses are ignored by the hardware. Thus, the PC or SP are
2154 likely to have been sign extended to all 1s by instruction
2155 sequences that load 32-bit addresses. For example, a typical
2156 piece of code that loads an address is this:
2158 lui $r2, <upper 16 bits>
2159 ori $r2, <lower 16 bits>
2161 But the lui sign-extends the value such that the upper 32 bits
2162 may be all 1s. The workaround is simply to mask off these
2163 bits. In the future, gcc may be changed to support true 64-bit
2164 addressing, and this masking will have to be disabled. */
2165 return addr
&= 0xffffffffUL
;
2170 /* mips_software_single_step() is called just before we want to resume
2171 the inferior, if we want to single-step it but there is no hardware
2172 or kernel single-step support (MIPS on GNU/Linux for example). We find
2173 the target of the coming instruction and breakpoint it.
2175 single_step is also called just after the inferior stops. If we had
2176 set up a simulated single-step, we undo our damage. */
2179 mips_software_single_step (enum target_signal sig
, int insert_breakpoints_p
)
2181 static CORE_ADDR next_pc
;
2182 typedef char binsn_quantum
[BREAKPOINT_MAX
];
2183 static binsn_quantum break_mem
;
2186 if (insert_breakpoints_p
)
2188 pc
= read_register (mips_regnum (current_gdbarch
)->pc
);
2189 next_pc
= mips_next_pc (pc
);
2191 target_insert_breakpoint (next_pc
, break_mem
);
2194 target_remove_breakpoint (next_pc
, break_mem
);
2197 /* Test whether the PC points to the return instruction at the
2198 end of a function. */
2201 mips_about_to_return (CORE_ADDR pc
)
2203 if (mips_pc_is_mips16 (pc
))
2204 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2205 generates a "jr $ra"; other times it generates code to load
2206 the return address from the stack to an accessible register (such
2207 as $a3), then a "jr" using that register. This second case
2208 is almost impossible to distinguish from an indirect jump
2209 used for switch statements, so we don't even try. */
2210 return mips_fetch_instruction (pc
) == 0xe820; /* jr $ra */
2212 return mips_fetch_instruction (pc
) == 0x3e00008; /* jr $ra */
2216 /* This fencepost looks highly suspicious to me. Removing it also
2217 seems suspicious as it could affect remote debugging across serial
2221 heuristic_proc_start (CORE_ADDR pc
)
2228 pc
= ADDR_BITS_REMOVE (pc
);
2230 fence
= start_pc
- heuristic_fence_post
;
2234 if (heuristic_fence_post
== UINT_MAX
|| fence
< VM_MIN_ADDRESS
)
2235 fence
= VM_MIN_ADDRESS
;
2237 instlen
= mips_pc_is_mips16 (pc
) ? MIPS_INSN16_SIZE
: MIPS_INSN32_SIZE
;
2239 /* search back for previous return */
2240 for (start_pc
-= instlen
;; start_pc
-= instlen
)
2241 if (start_pc
< fence
)
2243 /* It's not clear to me why we reach this point when
2244 stop_soon, but with this test, at least we
2245 don't print out warnings for every child forked (eg, on
2246 decstation). 22apr93 rich@cygnus.com. */
2247 if (stop_soon
== NO_STOP_QUIETLY
)
2249 static int blurb_printed
= 0;
2251 warning (_("GDB can't find the start of the function at 0x%s."),
2256 /* This actually happens frequently in embedded
2257 development, when you first connect to a board
2258 and your stack pointer and pc are nowhere in
2259 particular. This message needs to give people
2260 in that situation enough information to
2261 determine that it's no big deal. */
2262 printf_filtered ("\n\
2263 GDB is unable to find the start of the function at 0x%s\n\
2264 and thus can't determine the size of that function's stack frame.\n\
2265 This means that GDB may be unable to access that stack frame, or\n\
2266 the frames below it.\n\
2267 This problem is most likely caused by an invalid program counter or\n\
2269 However, if you think GDB should simply search farther back\n\
2270 from 0x%s for code which looks like the beginning of a\n\
2271 function, you can increase the range of the search using the `set\n\
2272 heuristic-fence-post' command.\n", paddr_nz (pc
), paddr_nz (pc
));
2279 else if (mips_pc_is_mips16 (start_pc
))
2281 unsigned short inst
;
2283 /* On MIPS16, any one of the following is likely to be the
2284 start of a function:
2288 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2289 inst
= mips_fetch_instruction (start_pc
);
2290 if (((inst
& 0xf81f) == 0xe809 && (inst
& 0x700) != 0x700) /* entry */
2291 || (inst
& 0xff80) == 0x6380 /* addiu sp,-n */
2292 || (inst
& 0xff80) == 0xfb80 /* daddiu sp,-n */
2293 || ((inst
& 0xf810) == 0xf010 && seen_adjsp
)) /* extend -n */
2295 else if ((inst
& 0xff00) == 0x6300 /* addiu sp */
2296 || (inst
& 0xff00) == 0xfb00) /* daddiu sp */
2301 else if (mips_about_to_return (start_pc
))
2303 /* Skip return and its delay slot. */
2304 start_pc
+= 2 * MIPS_INSN32_SIZE
;
2311 struct mips_objfile_private
2317 /* According to the current ABI, should the type be passed in a
2318 floating-point register (assuming that there is space)? When there
2319 is no FPU, FP are not even considered as possibile candidates for
2320 FP registers and, consequently this returns false - forces FP
2321 arguments into integer registers. */
2324 fp_register_arg_p (enum type_code typecode
, struct type
*arg_type
)
2326 return ((typecode
== TYPE_CODE_FLT
2328 && (typecode
== TYPE_CODE_STRUCT
2329 || typecode
== TYPE_CODE_UNION
)
2330 && TYPE_NFIELDS (arg_type
) == 1
2331 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type
, 0)) == TYPE_CODE_FLT
))
2332 && MIPS_FPU_TYPE
!= MIPS_FPU_NONE
);
2335 /* On o32, argument passing in GPRs depends on the alignment of the type being
2336 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2339 mips_type_needs_double_align (struct type
*type
)
2341 enum type_code typecode
= TYPE_CODE (type
);
2343 if (typecode
== TYPE_CODE_FLT
&& TYPE_LENGTH (type
) == 8)
2345 else if (typecode
== TYPE_CODE_STRUCT
)
2347 if (TYPE_NFIELDS (type
) < 1)
2349 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type
, 0));
2351 else if (typecode
== TYPE_CODE_UNION
)
2355 n
= TYPE_NFIELDS (type
);
2356 for (i
= 0; i
< n
; i
++)
2357 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type
, i
)))
2364 /* Adjust the address downward (direction of stack growth) so that it
2365 is correctly aligned for a new stack frame. */
2367 mips_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
2369 return align_down (addr
, 16);
2373 mips_eabi_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2374 struct regcache
*regcache
, CORE_ADDR bp_addr
,
2375 int nargs
, struct value
**args
, CORE_ADDR sp
,
2376 int struct_return
, CORE_ADDR struct_addr
)
2382 int stack_offset
= 0;
2383 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2384 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
2386 /* For shared libraries, "t9" needs to point at the function
2388 regcache_cooked_write_signed (regcache
, MIPS_T9_REGNUM
, func_addr
);
2390 /* Set the return address register to point to the entry point of
2391 the program, where a breakpoint lies in wait. */
2392 regcache_cooked_write_signed (regcache
, MIPS_RA_REGNUM
, bp_addr
);
2394 /* First ensure that the stack and structure return address (if any)
2395 are properly aligned. The stack has to be at least 64-bit
2396 aligned even on 32-bit machines, because doubles must be 64-bit
2397 aligned. For n32 and n64, stack frames need to be 128-bit
2398 aligned, so we round to this widest known alignment. */
2400 sp
= align_down (sp
, 16);
2401 struct_addr
= align_down (struct_addr
, 16);
2403 /* Now make space on the stack for the args. We allocate more
2404 than necessary for EABI, because the first few arguments are
2405 passed in registers, but that's OK. */
2406 for (argnum
= 0; argnum
< nargs
; argnum
++)
2407 len
+= align_up (TYPE_LENGTH (value_type (args
[argnum
])),
2408 mips_stack_argsize (gdbarch
));
2409 sp
-= align_up (len
, 16);
2412 fprintf_unfiltered (gdb_stdlog
,
2413 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2414 paddr_nz (sp
), (long) align_up (len
, 16));
2416 /* Initialize the integer and float register pointers. */
2417 argreg
= MIPS_A0_REGNUM
;
2418 float_argreg
= mips_fpa0_regnum (current_gdbarch
);
2420 /* The struct_return pointer occupies the first parameter-passing reg. */
2424 fprintf_unfiltered (gdb_stdlog
,
2425 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2426 argreg
, paddr_nz (struct_addr
));
2427 write_register (argreg
++, struct_addr
);
2430 /* Now load as many as possible of the first arguments into
2431 registers, and push the rest onto the stack. Loop thru args
2432 from first to last. */
2433 for (argnum
= 0; argnum
< nargs
; argnum
++)
2436 char valbuf
[MAX_REGISTER_SIZE
];
2437 struct value
*arg
= args
[argnum
];
2438 struct type
*arg_type
= check_typedef (value_type (arg
));
2439 int len
= TYPE_LENGTH (arg_type
);
2440 enum type_code typecode
= TYPE_CODE (arg_type
);
2443 fprintf_unfiltered (gdb_stdlog
,
2444 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2445 argnum
+ 1, len
, (int) typecode
);
2447 /* The EABI passes structures that do not fit in a register by
2449 if (len
> mips_abi_regsize (gdbarch
)
2450 && (typecode
== TYPE_CODE_STRUCT
|| typecode
== TYPE_CODE_UNION
))
2452 store_unsigned_integer (valbuf
, mips_abi_regsize (gdbarch
),
2453 VALUE_ADDRESS (arg
));
2454 typecode
= TYPE_CODE_PTR
;
2455 len
= mips_abi_regsize (gdbarch
);
2458 fprintf_unfiltered (gdb_stdlog
, " push");
2461 val
= (char *) value_contents (arg
);
2463 /* 32-bit ABIs always start floating point arguments in an
2464 even-numbered floating point register. Round the FP register
2465 up before the check to see if there are any FP registers
2466 left. Non MIPS_EABI targets also pass the FP in the integer
2467 registers so also round up normal registers. */
2468 if (mips_abi_regsize (gdbarch
) < 8
2469 && fp_register_arg_p (typecode
, arg_type
))
2471 if ((float_argreg
& 1))
2475 /* Floating point arguments passed in registers have to be
2476 treated specially. On 32-bit architectures, doubles
2477 are passed in register pairs; the even register gets
2478 the low word, and the odd register gets the high word.
2479 On non-EABI processors, the first two floating point arguments are
2480 also copied to general registers, because MIPS16 functions
2481 don't use float registers for arguments. This duplication of
2482 arguments in general registers can't hurt non-MIPS16 functions
2483 because those registers are normally skipped. */
2484 /* MIPS_EABI squeezes a struct that contains a single floating
2485 point value into an FP register instead of pushing it onto the
2487 if (fp_register_arg_p (typecode
, arg_type
)
2488 && float_argreg
<= MIPS_LAST_FP_ARG_REGNUM
)
2490 if (mips_abi_regsize (gdbarch
) < 8 && len
== 8)
2492 int low_offset
= TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
? 4 : 0;
2493 unsigned long regval
;
2495 /* Write the low word of the double to the even register(s). */
2496 regval
= extract_unsigned_integer (val
+ low_offset
, 4);
2498 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
2499 float_argreg
, phex (regval
, 4));
2500 write_register (float_argreg
++, regval
);
2502 /* Write the high word of the double to the odd register(s). */
2503 regval
= extract_unsigned_integer (val
+ 4 - low_offset
, 4);
2505 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
2506 float_argreg
, phex (regval
, 4));
2507 write_register (float_argreg
++, regval
);
2511 /* This is a floating point value that fits entirely
2512 in a single register. */
2513 /* On 32 bit ABI's the float_argreg is further adjusted
2514 above to ensure that it is even register aligned. */
2515 LONGEST regval
= extract_unsigned_integer (val
, len
);
2517 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
2518 float_argreg
, phex (regval
, len
));
2519 write_register (float_argreg
++, regval
);
2524 /* Copy the argument to general registers or the stack in
2525 register-sized pieces. Large arguments are split between
2526 registers and stack. */
2527 /* Note: structs whose size is not a multiple of
2528 mips_abi_regsize() are treated specially: Irix cc passes
2529 them in registers where gcc sometimes puts them on the
2530 stack. For maximum compatibility, we will put them in
2532 int odd_sized_struct
= ((len
> mips_abi_regsize (gdbarch
))
2533 && (len
% mips_abi_regsize (gdbarch
) != 0));
2535 /* Note: Floating-point values that didn't fit into an FP
2536 register are only written to memory. */
2539 /* Remember if the argument was written to the stack. */
2540 int stack_used_p
= 0;
2541 int partial_len
= (len
< mips_abi_regsize (gdbarch
)
2542 ? len
: mips_abi_regsize (gdbarch
));
2545 fprintf_unfiltered (gdb_stdlog
, " -- partial=%d",
2548 /* Write this portion of the argument to the stack. */
2549 if (argreg
> MIPS_LAST_ARG_REGNUM
2551 || fp_register_arg_p (typecode
, arg_type
))
2553 /* Should shorter than int integer values be
2554 promoted to int before being stored? */
2555 int longword_offset
= 0;
2558 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
2560 if (mips_stack_argsize (gdbarch
) == 8
2561 && (typecode
== TYPE_CODE_INT
2562 || typecode
== TYPE_CODE_PTR
2563 || typecode
== TYPE_CODE_FLT
) && len
<= 4)
2564 longword_offset
= mips_stack_argsize (gdbarch
) - len
;
2565 else if ((typecode
== TYPE_CODE_STRUCT
2566 || typecode
== TYPE_CODE_UNION
)
2567 && (TYPE_LENGTH (arg_type
)
2568 < mips_stack_argsize (gdbarch
)))
2569 longword_offset
= mips_stack_argsize (gdbarch
) - len
;
2574 fprintf_unfiltered (gdb_stdlog
, " - stack_offset=0x%s",
2575 paddr_nz (stack_offset
));
2576 fprintf_unfiltered (gdb_stdlog
, " longword_offset=0x%s",
2577 paddr_nz (longword_offset
));
2580 addr
= sp
+ stack_offset
+ longword_offset
;
2585 fprintf_unfiltered (gdb_stdlog
, " @0x%s ",
2587 for (i
= 0; i
< partial_len
; i
++)
2589 fprintf_unfiltered (gdb_stdlog
, "%02x",
2593 write_memory (addr
, val
, partial_len
);
2596 /* Note!!! This is NOT an else clause. Odd sized
2597 structs may go thru BOTH paths. Floating point
2598 arguments will not. */
2599 /* Write this portion of the argument to a general
2600 purpose register. */
2601 if (argreg
<= MIPS_LAST_ARG_REGNUM
2602 && !fp_register_arg_p (typecode
, arg_type
))
2605 extract_unsigned_integer (val
, partial_len
);
2608 fprintf_filtered (gdb_stdlog
, " - reg=%d val=%s",
2611 mips_abi_regsize (gdbarch
)));
2612 write_register (argreg
, regval
);
2619 /* Compute the the offset into the stack at which we
2620 will copy the next parameter.
2622 In the new EABI (and the NABI32), the stack_offset
2623 only needs to be adjusted when it has been used. */
2626 stack_offset
+= align_up (partial_len
,
2627 mips_stack_argsize (gdbarch
));
2631 fprintf_unfiltered (gdb_stdlog
, "\n");
2634 regcache_cooked_write_signed (regcache
, MIPS_SP_REGNUM
, sp
);
2636 /* Return adjusted stack pointer. */
2640 /* Determin the return value convention being used. */
2642 static enum return_value_convention
2643 mips_eabi_return_value (struct gdbarch
*gdbarch
,
2644 struct type
*type
, struct regcache
*regcache
,
2645 void *readbuf
, const void *writebuf
)
2647 if (TYPE_LENGTH (type
) > 2 * mips_abi_regsize (gdbarch
))
2648 return RETURN_VALUE_STRUCT_CONVENTION
;
2650 memset (readbuf
, 0, TYPE_LENGTH (type
));
2651 return RETURN_VALUE_REGISTER_CONVENTION
;
2655 /* N32/N64 ABI stuff. */
2658 mips_n32n64_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2659 struct regcache
*regcache
, CORE_ADDR bp_addr
,
2660 int nargs
, struct value
**args
, CORE_ADDR sp
,
2661 int struct_return
, CORE_ADDR struct_addr
)
2667 int stack_offset
= 0;
2668 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2669 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
2671 /* For shared libraries, "t9" needs to point at the function
2673 regcache_cooked_write_signed (regcache
, MIPS_T9_REGNUM
, func_addr
);
2675 /* Set the return address register to point to the entry point of
2676 the program, where a breakpoint lies in wait. */
2677 regcache_cooked_write_signed (regcache
, MIPS_RA_REGNUM
, bp_addr
);
2679 /* First ensure that the stack and structure return address (if any)
2680 are properly aligned. The stack has to be at least 64-bit
2681 aligned even on 32-bit machines, because doubles must be 64-bit
2682 aligned. For n32 and n64, stack frames need to be 128-bit
2683 aligned, so we round to this widest known alignment. */
2685 sp
= align_down (sp
, 16);
2686 struct_addr
= align_down (struct_addr
, 16);
2688 /* Now make space on the stack for the args. */
2689 for (argnum
= 0; argnum
< nargs
; argnum
++)
2690 len
+= align_up (TYPE_LENGTH (value_type (args
[argnum
])),
2691 mips_stack_argsize (gdbarch
));
2692 sp
-= align_up (len
, 16);
2695 fprintf_unfiltered (gdb_stdlog
,
2696 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2697 paddr_nz (sp
), (long) align_up (len
, 16));
2699 /* Initialize the integer and float register pointers. */
2700 argreg
= MIPS_A0_REGNUM
;
2701 float_argreg
= mips_fpa0_regnum (current_gdbarch
);
2703 /* The struct_return pointer occupies the first parameter-passing reg. */
2707 fprintf_unfiltered (gdb_stdlog
,
2708 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2709 argreg
, paddr_nz (struct_addr
));
2710 write_register (argreg
++, struct_addr
);
2713 /* Now load as many as possible of the first arguments into
2714 registers, and push the rest onto the stack. Loop thru args
2715 from first to last. */
2716 for (argnum
= 0; argnum
< nargs
; argnum
++)
2719 struct value
*arg
= args
[argnum
];
2720 struct type
*arg_type
= check_typedef (value_type (arg
));
2721 int len
= TYPE_LENGTH (arg_type
);
2722 enum type_code typecode
= TYPE_CODE (arg_type
);
2725 fprintf_unfiltered (gdb_stdlog
,
2726 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2727 argnum
+ 1, len
, (int) typecode
);
2729 val
= (char *) value_contents (arg
);
2731 if (fp_register_arg_p (typecode
, arg_type
)
2732 && float_argreg
<= MIPS_LAST_FP_ARG_REGNUM
)
2734 /* This is a floating point value that fits entirely
2735 in a single register. */
2736 /* On 32 bit ABI's the float_argreg is further adjusted
2737 above to ensure that it is even register aligned. */
2738 LONGEST regval
= extract_unsigned_integer (val
, len
);
2740 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
2741 float_argreg
, phex (regval
, len
));
2742 write_register (float_argreg
++, regval
);
2745 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
2746 argreg
, phex (regval
, len
));
2747 write_register (argreg
, regval
);
2752 /* Copy the argument to general registers or the stack in
2753 register-sized pieces. Large arguments are split between
2754 registers and stack. */
2755 /* Note: structs whose size is not a multiple of
2756 mips_abi_regsize() are treated specially: Irix cc passes
2757 them in registers where gcc sometimes puts them on the
2758 stack. For maximum compatibility, we will put them in
2760 int odd_sized_struct
= ((len
> mips_abi_regsize (gdbarch
))
2761 && (len
% mips_abi_regsize (gdbarch
) != 0));
2762 /* Note: Floating-point values that didn't fit into an FP
2763 register are only written to memory. */
2766 /* Rememer if the argument was written to the stack. */
2767 int stack_used_p
= 0;
2768 int partial_len
= (len
< mips_abi_regsize (gdbarch
)
2769 ? len
: mips_abi_regsize (gdbarch
));
2772 fprintf_unfiltered (gdb_stdlog
, " -- partial=%d",
2775 /* Write this portion of the argument to the stack. */
2776 if (argreg
> MIPS_LAST_ARG_REGNUM
2778 || fp_register_arg_p (typecode
, arg_type
))
2780 /* Should shorter than int integer values be
2781 promoted to int before being stored? */
2782 int longword_offset
= 0;
2785 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
2787 if (mips_stack_argsize (gdbarch
) == 8
2788 && (typecode
== TYPE_CODE_INT
2789 || typecode
== TYPE_CODE_PTR
2790 || typecode
== TYPE_CODE_FLT
) && len
<= 4)
2791 longword_offset
= mips_stack_argsize (gdbarch
) - len
;
2796 fprintf_unfiltered (gdb_stdlog
, " - stack_offset=0x%s",
2797 paddr_nz (stack_offset
));
2798 fprintf_unfiltered (gdb_stdlog
, " longword_offset=0x%s",
2799 paddr_nz (longword_offset
));
2802 addr
= sp
+ stack_offset
+ longword_offset
;
2807 fprintf_unfiltered (gdb_stdlog
, " @0x%s ",
2809 for (i
= 0; i
< partial_len
; i
++)
2811 fprintf_unfiltered (gdb_stdlog
, "%02x",
2815 write_memory (addr
, val
, partial_len
);
2818 /* Note!!! This is NOT an else clause. Odd sized
2819 structs may go thru BOTH paths. Floating point
2820 arguments will not. */
2821 /* Write this portion of the argument to a general
2822 purpose register. */
2823 if (argreg
<= MIPS_LAST_ARG_REGNUM
2824 && !fp_register_arg_p (typecode
, arg_type
))
2827 extract_unsigned_integer (val
, partial_len
);
2829 /* A non-floating-point argument being passed in a
2830 general register. If a struct or union, and if
2831 the remaining length is smaller than the register
2832 size, we have to adjust the register value on
2835 It does not seem to be necessary to do the
2836 same for integral types.
2838 cagney/2001-07-23: gdb/179: Also, GCC, when
2839 outputting LE O32 with sizeof (struct) <
2840 mips_abi_regsize(), generates a left shift as
2841 part of storing the argument in a register a
2842 register (the left shift isn't generated when
2843 sizeof (struct) >= mips_abi_regsize()). Since
2844 it is quite possible that this is GCC
2845 contradicting the LE/O32 ABI, GDB has not been
2846 adjusted to accommodate this. Either someone
2847 needs to demonstrate that the LE/O32 ABI
2848 specifies such a left shift OR this new ABI gets
2849 identified as such and GDB gets tweaked
2852 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
2853 && partial_len
< mips_abi_regsize (gdbarch
)
2854 && (typecode
== TYPE_CODE_STRUCT
||
2855 typecode
== TYPE_CODE_UNION
))
2856 regval
<<= ((mips_abi_regsize (gdbarch
) - partial_len
) *
2860 fprintf_filtered (gdb_stdlog
, " - reg=%d val=%s",
2863 mips_abi_regsize (gdbarch
)));
2864 write_register (argreg
, regval
);
2871 /* Compute the the offset into the stack at which we
2872 will copy the next parameter.
2874 In N32 (N64?), the stack_offset only needs to be
2875 adjusted when it has been used. */
2878 stack_offset
+= align_up (partial_len
,
2879 mips_stack_argsize (gdbarch
));
2883 fprintf_unfiltered (gdb_stdlog
, "\n");
2886 regcache_cooked_write_signed (regcache
, MIPS_SP_REGNUM
, sp
);
2888 /* Return adjusted stack pointer. */
2892 static enum return_value_convention
2893 mips_n32n64_return_value (struct gdbarch
*gdbarch
,
2894 struct type
*type
, struct regcache
*regcache
,
2895 void *readbuf
, const void *writebuf
)
2897 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
2898 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
2899 || TYPE_CODE (type
) == TYPE_CODE_UNION
2900 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
2901 || TYPE_LENGTH (type
) > 2 * mips_abi_regsize (gdbarch
))
2902 return RETURN_VALUE_STRUCT_CONVENTION
;
2903 else if (TYPE_CODE (type
) == TYPE_CODE_FLT
2904 && tdep
->mips_fpu_type
!= MIPS_FPU_NONE
)
2906 /* A floating-point value belongs in the least significant part
2909 fprintf_unfiltered (gdb_stderr
, "Return float in $fp0\n");
2910 mips_xfer_register (regcache
,
2911 NUM_REGS
+ mips_regnum (current_gdbarch
)->fp0
,
2913 TARGET_BYTE_ORDER
, readbuf
, writebuf
, 0);
2914 return RETURN_VALUE_REGISTER_CONVENTION
;
2916 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
2917 && TYPE_NFIELDS (type
) <= 2
2918 && TYPE_NFIELDS (type
) >= 1
2919 && ((TYPE_NFIELDS (type
) == 1
2920 && (TYPE_CODE (TYPE_FIELD_TYPE (type
, 0))
2922 || (TYPE_NFIELDS (type
) == 2
2923 && (TYPE_CODE (TYPE_FIELD_TYPE (type
, 0))
2925 && (TYPE_CODE (TYPE_FIELD_TYPE (type
, 1))
2927 && tdep
->mips_fpu_type
!= MIPS_FPU_NONE
)
2929 /* A struct that contains one or two floats. Each value is part
2930 in the least significant part of their floating point
2934 for (field
= 0, regnum
= mips_regnum (current_gdbarch
)->fp0
;
2935 field
< TYPE_NFIELDS (type
); field
++, regnum
+= 2)
2937 int offset
= (FIELD_BITPOS (TYPE_FIELDS (type
)[field
])
2940 fprintf_unfiltered (gdb_stderr
, "Return float struct+%d\n",
2942 mips_xfer_register (regcache
, NUM_REGS
+ regnum
,
2943 TYPE_LENGTH (TYPE_FIELD_TYPE (type
, field
)),
2944 TARGET_BYTE_ORDER
, readbuf
, writebuf
, offset
);
2946 return RETURN_VALUE_REGISTER_CONVENTION
;
2948 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
2949 || TYPE_CODE (type
) == TYPE_CODE_UNION
)
2951 /* A structure or union. Extract the left justified value,
2952 regardless of the byte order. I.e. DO NOT USE
2956 for (offset
= 0, regnum
= MIPS_V0_REGNUM
;
2957 offset
< TYPE_LENGTH (type
);
2958 offset
+= register_size (current_gdbarch
, regnum
), regnum
++)
2960 int xfer
= register_size (current_gdbarch
, regnum
);
2961 if (offset
+ xfer
> TYPE_LENGTH (type
))
2962 xfer
= TYPE_LENGTH (type
) - offset
;
2964 fprintf_unfiltered (gdb_stderr
, "Return struct+%d:%d in $%d\n",
2965 offset
, xfer
, regnum
);
2966 mips_xfer_register (regcache
, NUM_REGS
+ regnum
, xfer
,
2967 BFD_ENDIAN_UNKNOWN
, readbuf
, writebuf
, offset
);
2969 return RETURN_VALUE_REGISTER_CONVENTION
;
2973 /* A scalar extract each part but least-significant-byte
2977 for (offset
= 0, regnum
= MIPS_V0_REGNUM
;
2978 offset
< TYPE_LENGTH (type
);
2979 offset
+= register_size (current_gdbarch
, regnum
), regnum
++)
2981 int xfer
= register_size (current_gdbarch
, regnum
);
2982 if (offset
+ xfer
> TYPE_LENGTH (type
))
2983 xfer
= TYPE_LENGTH (type
) - offset
;
2985 fprintf_unfiltered (gdb_stderr
, "Return scalar+%d:%d in $%d\n",
2986 offset
, xfer
, regnum
);
2987 mips_xfer_register (regcache
, NUM_REGS
+ regnum
, xfer
,
2988 TARGET_BYTE_ORDER
, readbuf
, writebuf
, offset
);
2990 return RETURN_VALUE_REGISTER_CONVENTION
;
2994 /* O32 ABI stuff. */
2997 mips_o32_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2998 struct regcache
*regcache
, CORE_ADDR bp_addr
,
2999 int nargs
, struct value
**args
, CORE_ADDR sp
,
3000 int struct_return
, CORE_ADDR struct_addr
)
3006 int stack_offset
= 0;
3007 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3008 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
3010 /* For shared libraries, "t9" needs to point at the function
3012 regcache_cooked_write_signed (regcache
, MIPS_T9_REGNUM
, func_addr
);
3014 /* Set the return address register to point to the entry point of
3015 the program, where a breakpoint lies in wait. */
3016 regcache_cooked_write_signed (regcache
, MIPS_RA_REGNUM
, bp_addr
);
3018 /* First ensure that the stack and structure return address (if any)
3019 are properly aligned. The stack has to be at least 64-bit
3020 aligned even on 32-bit machines, because doubles must be 64-bit
3021 aligned. For n32 and n64, stack frames need to be 128-bit
3022 aligned, so we round to this widest known alignment. */
3024 sp
= align_down (sp
, 16);
3025 struct_addr
= align_down (struct_addr
, 16);
3027 /* Now make space on the stack for the args. */
3028 for (argnum
= 0; argnum
< nargs
; argnum
++)
3029 len
+= align_up (TYPE_LENGTH (value_type (args
[argnum
])),
3030 mips_stack_argsize (gdbarch
));
3031 sp
-= align_up (len
, 16);
3034 fprintf_unfiltered (gdb_stdlog
,
3035 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3036 paddr_nz (sp
), (long) align_up (len
, 16));
3038 /* Initialize the integer and float register pointers. */
3039 argreg
= MIPS_A0_REGNUM
;
3040 float_argreg
= mips_fpa0_regnum (current_gdbarch
);
3042 /* The struct_return pointer occupies the first parameter-passing reg. */
3046 fprintf_unfiltered (gdb_stdlog
,
3047 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3048 argreg
, paddr_nz (struct_addr
));
3049 write_register (argreg
++, struct_addr
);
3050 stack_offset
+= mips_stack_argsize (gdbarch
);
3053 /* Now load as many as possible of the first arguments into
3054 registers, and push the rest onto the stack. Loop thru args
3055 from first to last. */
3056 for (argnum
= 0; argnum
< nargs
; argnum
++)
3059 struct value
*arg
= args
[argnum
];
3060 struct type
*arg_type
= check_typedef (value_type (arg
));
3061 int len
= TYPE_LENGTH (arg_type
);
3062 enum type_code typecode
= TYPE_CODE (arg_type
);
3065 fprintf_unfiltered (gdb_stdlog
,
3066 "mips_o32_push_dummy_call: %d len=%d type=%d",
3067 argnum
+ 1, len
, (int) typecode
);
3069 val
= (char *) value_contents (arg
);
3071 /* 32-bit ABIs always start floating point arguments in an
3072 even-numbered floating point register. Round the FP register
3073 up before the check to see if there are any FP registers
3074 left. O32/O64 targets also pass the FP in the integer
3075 registers so also round up normal registers. */
3076 if (mips_abi_regsize (gdbarch
) < 8
3077 && fp_register_arg_p (typecode
, arg_type
))
3079 if ((float_argreg
& 1))
3083 /* Floating point arguments passed in registers have to be
3084 treated specially. On 32-bit architectures, doubles
3085 are passed in register pairs; the even register gets
3086 the low word, and the odd register gets the high word.
3087 On O32/O64, the first two floating point arguments are
3088 also copied to general registers, because MIPS16 functions
3089 don't use float registers for arguments. This duplication of
3090 arguments in general registers can't hurt non-MIPS16 functions
3091 because those registers are normally skipped. */
3093 if (fp_register_arg_p (typecode
, arg_type
)
3094 && float_argreg
<= MIPS_LAST_FP_ARG_REGNUM
)
3096 if (mips_abi_regsize (gdbarch
) < 8 && len
== 8)
3098 int low_offset
= TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
? 4 : 0;
3099 unsigned long regval
;
3101 /* Write the low word of the double to the even register(s). */
3102 regval
= extract_unsigned_integer (val
+ low_offset
, 4);
3104 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
3105 float_argreg
, phex (regval
, 4));
3106 write_register (float_argreg
++, regval
);
3108 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
3109 argreg
, phex (regval
, 4));
3110 write_register (argreg
++, regval
);
3112 /* Write the high word of the double to the odd register(s). */
3113 regval
= extract_unsigned_integer (val
+ 4 - low_offset
, 4);
3115 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
3116 float_argreg
, phex (regval
, 4));
3117 write_register (float_argreg
++, regval
);
3120 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
3121 argreg
, phex (regval
, 4));
3122 write_register (argreg
++, regval
);
3126 /* This is a floating point value that fits entirely
3127 in a single register. */
3128 /* On 32 bit ABI's the float_argreg is further adjusted
3129 above to ensure that it is even register aligned. */
3130 LONGEST regval
= extract_unsigned_integer (val
, len
);
3132 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
3133 float_argreg
, phex (regval
, len
));
3134 write_register (float_argreg
++, regval
);
3135 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3136 registers for each argument. The below is (my
3137 guess) to ensure that the corresponding integer
3138 register has reserved the same space. */
3140 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
3141 argreg
, phex (regval
, len
));
3142 write_register (argreg
, regval
);
3143 argreg
+= (mips_abi_regsize (gdbarch
) == 8) ? 1 : 2;
3145 /* Reserve space for the FP register. */
3146 stack_offset
+= align_up (len
, mips_stack_argsize (gdbarch
));
3150 /* Copy the argument to general registers or the stack in
3151 register-sized pieces. Large arguments are split between
3152 registers and stack. */
3153 /* Note: structs whose size is not a multiple of
3154 mips_abi_regsize() are treated specially: Irix cc passes
3155 them in registers where gcc sometimes puts them on the
3156 stack. For maximum compatibility, we will put them in
3158 int odd_sized_struct
= ((len
> mips_abi_regsize (gdbarch
))
3159 && (len
% mips_abi_regsize (gdbarch
) != 0));
3160 /* Structures should be aligned to eight bytes (even arg registers)
3161 on MIPS_ABI_O32, if their first member has double precision. */
3162 if (mips_abi_regsize (gdbarch
) < 8
3163 && mips_type_needs_double_align (arg_type
))
3168 /* Note: Floating-point values that didn't fit into an FP
3169 register are only written to memory. */
3172 /* Remember if the argument was written to the stack. */
3173 int stack_used_p
= 0;
3174 int partial_len
= (len
< mips_abi_regsize (gdbarch
)
3175 ? len
: mips_abi_regsize (gdbarch
));
3178 fprintf_unfiltered (gdb_stdlog
, " -- partial=%d",
3181 /* Write this portion of the argument to the stack. */
3182 if (argreg
> MIPS_LAST_ARG_REGNUM
3184 || fp_register_arg_p (typecode
, arg_type
))
3186 /* Should shorter than int integer values be
3187 promoted to int before being stored? */
3188 int longword_offset
= 0;
3191 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
3193 if (mips_stack_argsize (gdbarch
) == 8
3194 && (typecode
== TYPE_CODE_INT
3195 || typecode
== TYPE_CODE_PTR
3196 || typecode
== TYPE_CODE_FLT
) && len
<= 4)
3197 longword_offset
= mips_stack_argsize (gdbarch
) - len
;
3202 fprintf_unfiltered (gdb_stdlog
, " - stack_offset=0x%s",
3203 paddr_nz (stack_offset
));
3204 fprintf_unfiltered (gdb_stdlog
, " longword_offset=0x%s",
3205 paddr_nz (longword_offset
));
3208 addr
= sp
+ stack_offset
+ longword_offset
;
3213 fprintf_unfiltered (gdb_stdlog
, " @0x%s ",
3215 for (i
= 0; i
< partial_len
; i
++)
3217 fprintf_unfiltered (gdb_stdlog
, "%02x",
3221 write_memory (addr
, val
, partial_len
);
3224 /* Note!!! This is NOT an else clause. Odd sized
3225 structs may go thru BOTH paths. Floating point
3226 arguments will not. */
3227 /* Write this portion of the argument to a general
3228 purpose register. */
3229 if (argreg
<= MIPS_LAST_ARG_REGNUM
3230 && !fp_register_arg_p (typecode
, arg_type
))
3232 LONGEST regval
= extract_signed_integer (val
, partial_len
);
3233 /* Value may need to be sign extended, because
3234 mips_isa_regsize() != mips_abi_regsize(). */
3236 /* A non-floating-point argument being passed in a
3237 general register. If a struct or union, and if
3238 the remaining length is smaller than the register
3239 size, we have to adjust the register value on
3242 It does not seem to be necessary to do the
3243 same for integral types.
3245 Also don't do this adjustment on O64 binaries.
3247 cagney/2001-07-23: gdb/179: Also, GCC, when
3248 outputting LE O32 with sizeof (struct) <
3249 mips_abi_regsize(), generates a left shift as
3250 part of storing the argument in a register a
3251 register (the left shift isn't generated when
3252 sizeof (struct) >= mips_abi_regsize()). Since
3253 it is quite possible that this is GCC
3254 contradicting the LE/O32 ABI, GDB has not been
3255 adjusted to accommodate this. Either someone
3256 needs to demonstrate that the LE/O32 ABI
3257 specifies such a left shift OR this new ABI gets
3258 identified as such and GDB gets tweaked
3261 if (mips_abi_regsize (gdbarch
) < 8
3262 && TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
3263 && partial_len
< mips_abi_regsize (gdbarch
)
3264 && (typecode
== TYPE_CODE_STRUCT
||
3265 typecode
== TYPE_CODE_UNION
))
3266 regval
<<= ((mips_abi_regsize (gdbarch
) - partial_len
) *
3270 fprintf_filtered (gdb_stdlog
, " - reg=%d val=%s",
3273 mips_abi_regsize (gdbarch
)));
3274 write_register (argreg
, regval
);
3277 /* Prevent subsequent floating point arguments from
3278 being passed in floating point registers. */
3279 float_argreg
= MIPS_LAST_FP_ARG_REGNUM
+ 1;
3285 /* Compute the the offset into the stack at which we
3286 will copy the next parameter.
3288 In older ABIs, the caller reserved space for
3289 registers that contained arguments. This was loosely
3290 refered to as their "home". Consequently, space is
3291 always allocated. */
3293 stack_offset
+= align_up (partial_len
,
3294 mips_stack_argsize (gdbarch
));
3298 fprintf_unfiltered (gdb_stdlog
, "\n");
3301 regcache_cooked_write_signed (regcache
, MIPS_SP_REGNUM
, sp
);
3303 /* Return adjusted stack pointer. */
3307 static enum return_value_convention
3308 mips_o32_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
3309 struct regcache
*regcache
,
3310 void *readbuf
, const void *writebuf
)
3312 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
3314 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
3315 || TYPE_CODE (type
) == TYPE_CODE_UNION
3316 || TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
3317 return RETURN_VALUE_STRUCT_CONVENTION
;
3318 else if (TYPE_CODE (type
) == TYPE_CODE_FLT
3319 && TYPE_LENGTH (type
) == 4 && tdep
->mips_fpu_type
!= MIPS_FPU_NONE
)
3321 /* A single-precision floating-point value. It fits in the
3322 least significant part of FP0. */
3324 fprintf_unfiltered (gdb_stderr
, "Return float in $fp0\n");
3325 mips_xfer_register (regcache
,
3326 NUM_REGS
+ mips_regnum (current_gdbarch
)->fp0
,
3328 TARGET_BYTE_ORDER
, readbuf
, writebuf
, 0);
3329 return RETURN_VALUE_REGISTER_CONVENTION
;
3331 else if (TYPE_CODE (type
) == TYPE_CODE_FLT
3332 && TYPE_LENGTH (type
) == 8 && tdep
->mips_fpu_type
!= MIPS_FPU_NONE
)
3334 /* A double-precision floating-point value. The most
3335 significant part goes in FP1, and the least significant in
3338 fprintf_unfiltered (gdb_stderr
, "Return float in $fp1/$fp0\n");
3339 switch (TARGET_BYTE_ORDER
)
3341 case BFD_ENDIAN_LITTLE
:
3342 mips_xfer_register (regcache
,
3343 NUM_REGS
+ mips_regnum (current_gdbarch
)->fp0
+
3344 0, 4, TARGET_BYTE_ORDER
, readbuf
, writebuf
, 0);
3345 mips_xfer_register (regcache
,
3346 NUM_REGS
+ mips_regnum (current_gdbarch
)->fp0
+
3347 1, 4, TARGET_BYTE_ORDER
, readbuf
, writebuf
, 4);
3349 case BFD_ENDIAN_BIG
:
3350 mips_xfer_register (regcache
,
3351 NUM_REGS
+ mips_regnum (current_gdbarch
)->fp0
+
3352 1, 4, TARGET_BYTE_ORDER
, readbuf
, writebuf
, 0);
3353 mips_xfer_register (regcache
,
3354 NUM_REGS
+ mips_regnum (current_gdbarch
)->fp0
+
3355 0, 4, TARGET_BYTE_ORDER
, readbuf
, writebuf
, 4);
3358 internal_error (__FILE__
, __LINE__
, _("bad switch"));
3360 return RETURN_VALUE_REGISTER_CONVENTION
;
3363 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
3364 && TYPE_NFIELDS (type
) <= 2
3365 && TYPE_NFIELDS (type
) >= 1
3366 && ((TYPE_NFIELDS (type
) == 1
3367 && (TYPE_CODE (TYPE_FIELD_TYPE (type
, 0))
3369 || (TYPE_NFIELDS (type
) == 2
3370 && (TYPE_CODE (TYPE_FIELD_TYPE (type
, 0))
3372 && (TYPE_CODE (TYPE_FIELD_TYPE (type
, 1))
3374 && tdep
->mips_fpu_type
!= MIPS_FPU_NONE
)
3376 /* A struct that contains one or two floats. Each value is part
3377 in the least significant part of their floating point
3379 bfd_byte reg
[MAX_REGISTER_SIZE
];
3382 for (field
= 0, regnum
= mips_regnum (current_gdbarch
)->fp0
;
3383 field
< TYPE_NFIELDS (type
); field
++, regnum
+= 2)
3385 int offset
= (FIELD_BITPOS (TYPE_FIELDS (type
)[field
])
3388 fprintf_unfiltered (gdb_stderr
, "Return float struct+%d\n",
3390 mips_xfer_register (regcache
, NUM_REGS
+ regnum
,
3391 TYPE_LENGTH (TYPE_FIELD_TYPE (type
, field
)),
3392 TARGET_BYTE_ORDER
, readbuf
, writebuf
, offset
);
3394 return RETURN_VALUE_REGISTER_CONVENTION
;
3398 else if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
3399 || TYPE_CODE (type
) == TYPE_CODE_UNION
)
3401 /* A structure or union. Extract the left justified value,
3402 regardless of the byte order. I.e. DO NOT USE
3406 for (offset
= 0, regnum
= MIPS_V0_REGNUM
;
3407 offset
< TYPE_LENGTH (type
);
3408 offset
+= register_size (current_gdbarch
, regnum
), regnum
++)
3410 int xfer
= register_size (current_gdbarch
, regnum
);
3411 if (offset
+ xfer
> TYPE_LENGTH (type
))
3412 xfer
= TYPE_LENGTH (type
) - offset
;
3414 fprintf_unfiltered (gdb_stderr
, "Return struct+%d:%d in $%d\n",
3415 offset
, xfer
, regnum
);
3416 mips_xfer_register (regcache
, NUM_REGS
+ regnum
, xfer
,
3417 BFD_ENDIAN_UNKNOWN
, readbuf
, writebuf
, offset
);
3419 return RETURN_VALUE_REGISTER_CONVENTION
;
3424 /* A scalar extract each part but least-significant-byte
3425 justified. o32 thinks registers are 4 byte, regardless of
3426 the ISA. mips_stack_argsize controls this. */
3429 for (offset
= 0, regnum
= MIPS_V0_REGNUM
;
3430 offset
< TYPE_LENGTH (type
);
3431 offset
+= mips_stack_argsize (gdbarch
), regnum
++)
3433 int xfer
= mips_stack_argsize (gdbarch
);
3434 if (offset
+ xfer
> TYPE_LENGTH (type
))
3435 xfer
= TYPE_LENGTH (type
) - offset
;
3437 fprintf_unfiltered (gdb_stderr
, "Return scalar+%d:%d in $%d\n",
3438 offset
, xfer
, regnum
);
3439 mips_xfer_register (regcache
, NUM_REGS
+ regnum
, xfer
,
3440 TARGET_BYTE_ORDER
, readbuf
, writebuf
, offset
);
3442 return RETURN_VALUE_REGISTER_CONVENTION
;
3446 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3450 mips_o64_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
3451 struct regcache
*regcache
, CORE_ADDR bp_addr
,
3453 struct value
**args
, CORE_ADDR sp
,
3454 int struct_return
, CORE_ADDR struct_addr
)
3460 int stack_offset
= 0;
3461 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3462 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
3464 /* For shared libraries, "t9" needs to point at the function
3466 regcache_cooked_write_signed (regcache
, MIPS_T9_REGNUM
, func_addr
);
3468 /* Set the return address register to point to the entry point of
3469 the program, where a breakpoint lies in wait. */
3470 regcache_cooked_write_signed (regcache
, MIPS_RA_REGNUM
, bp_addr
);
3472 /* First ensure that the stack and structure return address (if any)
3473 are properly aligned. The stack has to be at least 64-bit
3474 aligned even on 32-bit machines, because doubles must be 64-bit
3475 aligned. For n32 and n64, stack frames need to be 128-bit
3476 aligned, so we round to this widest known alignment. */
3478 sp
= align_down (sp
, 16);
3479 struct_addr
= align_down (struct_addr
, 16);
3481 /* Now make space on the stack for the args. */
3482 for (argnum
= 0; argnum
< nargs
; argnum
++)
3483 len
+= align_up (TYPE_LENGTH (value_type (args
[argnum
])),
3484 mips_stack_argsize (gdbarch
));
3485 sp
-= align_up (len
, 16);
3488 fprintf_unfiltered (gdb_stdlog
,
3489 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3490 paddr_nz (sp
), (long) align_up (len
, 16));
3492 /* Initialize the integer and float register pointers. */
3493 argreg
= MIPS_A0_REGNUM
;
3494 float_argreg
= mips_fpa0_regnum (current_gdbarch
);
3496 /* The struct_return pointer occupies the first parameter-passing reg. */
3500 fprintf_unfiltered (gdb_stdlog
,
3501 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3502 argreg
, paddr_nz (struct_addr
));
3503 write_register (argreg
++, struct_addr
);
3504 stack_offset
+= mips_stack_argsize (gdbarch
);
3507 /* Now load as many as possible of the first arguments into
3508 registers, and push the rest onto the stack. Loop thru args
3509 from first to last. */
3510 for (argnum
= 0; argnum
< nargs
; argnum
++)
3513 struct value
*arg
= args
[argnum
];
3514 struct type
*arg_type
= check_typedef (value_type (arg
));
3515 int len
= TYPE_LENGTH (arg_type
);
3516 enum type_code typecode
= TYPE_CODE (arg_type
);
3519 fprintf_unfiltered (gdb_stdlog
,
3520 "mips_o64_push_dummy_call: %d len=%d type=%d",
3521 argnum
+ 1, len
, (int) typecode
);
3523 val
= (char *) value_contents (arg
);
3525 /* 32-bit ABIs always start floating point arguments in an
3526 even-numbered floating point register. Round the FP register
3527 up before the check to see if there are any FP registers
3528 left. O32/O64 targets also pass the FP in the integer
3529 registers so also round up normal registers. */
3530 if (mips_abi_regsize (gdbarch
) < 8
3531 && fp_register_arg_p (typecode
, arg_type
))
3533 if ((float_argreg
& 1))
3537 /* Floating point arguments passed in registers have to be
3538 treated specially. On 32-bit architectures, doubles
3539 are passed in register pairs; the even register gets
3540 the low word, and the odd register gets the high word.
3541 On O32/O64, the first two floating point arguments are
3542 also copied to general registers, because MIPS16 functions
3543 don't use float registers for arguments. This duplication of
3544 arguments in general registers can't hurt non-MIPS16 functions
3545 because those registers are normally skipped. */
3547 if (fp_register_arg_p (typecode
, arg_type
)
3548 && float_argreg
<= MIPS_LAST_FP_ARG_REGNUM
)
3550 if (mips_abi_regsize (gdbarch
) < 8 && len
== 8)
3552 int low_offset
= TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
? 4 : 0;
3553 unsigned long regval
;
3555 /* Write the low word of the double to the even register(s). */
3556 regval
= extract_unsigned_integer (val
+ low_offset
, 4);
3558 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
3559 float_argreg
, phex (regval
, 4));
3560 write_register (float_argreg
++, regval
);
3562 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
3563 argreg
, phex (regval
, 4));
3564 write_register (argreg
++, regval
);
3566 /* Write the high word of the double to the odd register(s). */
3567 regval
= extract_unsigned_integer (val
+ 4 - low_offset
, 4);
3569 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
3570 float_argreg
, phex (regval
, 4));
3571 write_register (float_argreg
++, regval
);
3574 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
3575 argreg
, phex (regval
, 4));
3576 write_register (argreg
++, regval
);
3580 /* This is a floating point value that fits entirely
3581 in a single register. */
3582 /* On 32 bit ABI's the float_argreg is further adjusted
3583 above to ensure that it is even register aligned. */
3584 LONGEST regval
= extract_unsigned_integer (val
, len
);
3586 fprintf_unfiltered (gdb_stdlog
, " - fpreg=%d val=%s",
3587 float_argreg
, phex (regval
, len
));
3588 write_register (float_argreg
++, regval
);
3589 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3590 registers for each argument. The below is (my
3591 guess) to ensure that the corresponding integer
3592 register has reserved the same space. */
3594 fprintf_unfiltered (gdb_stdlog
, " - reg=%d val=%s",
3595 argreg
, phex (regval
, len
));
3596 write_register (argreg
, regval
);
3597 argreg
+= (mips_abi_regsize (gdbarch
) == 8) ? 1 : 2;
3599 /* Reserve space for the FP register. */
3600 stack_offset
+= align_up (len
, mips_stack_argsize (gdbarch
));
3604 /* Copy the argument to general registers or the stack in
3605 register-sized pieces. Large arguments are split between
3606 registers and stack. */
3607 /* Note: structs whose size is not a multiple of
3608 mips_abi_regsize() are treated specially: Irix cc passes
3609 them in registers where gcc sometimes puts them on the
3610 stack. For maximum compatibility, we will put them in
3612 int odd_sized_struct
= ((len
> mips_abi_regsize (gdbarch
))
3613 && (len
% mips_abi_regsize (gdbarch
) != 0));
3614 /* Structures should be aligned to eight bytes (even arg registers)
3615 on MIPS_ABI_O32, if their first member has double precision. */
3616 if (mips_abi_regsize (gdbarch
) < 8
3617 && mips_type_needs_double_align (arg_type
))
3622 /* Note: Floating-point values that didn't fit into an FP
3623 register are only written to memory. */
3626 /* Remember if the argument was written to the stack. */
3627 int stack_used_p
= 0;
3628 int partial_len
= (len
< mips_abi_regsize (gdbarch
)
3629 ? len
: mips_abi_regsize (gdbarch
));
3632 fprintf_unfiltered (gdb_stdlog
, " -- partial=%d",
3635 /* Write this portion of the argument to the stack. */
3636 if (argreg
> MIPS_LAST_ARG_REGNUM
3638 || fp_register_arg_p (typecode
, arg_type
))
3640 /* Should shorter than int integer values be
3641 promoted to int before being stored? */
3642 int longword_offset
= 0;
3645 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
3647 if (mips_stack_argsize (gdbarch
) == 8
3648 && (typecode
== TYPE_CODE_INT
3649 || typecode
== TYPE_CODE_PTR
3650 || typecode
== TYPE_CODE_FLT
) && len
<= 4)
3651 longword_offset
= mips_stack_argsize (gdbarch
) - len
;
3656 fprintf_unfiltered (gdb_stdlog
, " - stack_offset=0x%s",
3657 paddr_nz (stack_offset
));
3658 fprintf_unfiltered (gdb_stdlog
, " longword_offset=0x%s",
3659 paddr_nz (longword_offset
));
3662 addr
= sp
+ stack_offset
+ longword_offset
;
3667 fprintf_unfiltered (gdb_stdlog
, " @0x%s ",
3669 for (i
= 0; i
< partial_len
; i
++)
3671 fprintf_unfiltered (gdb_stdlog
, "%02x",
3675 write_memory (addr
, val
, partial_len
);
3678 /* Note!!! This is NOT an else clause. Odd sized
3679 structs may go thru BOTH paths. Floating point
3680 arguments will not. */
3681 /* Write this portion of the argument to a general
3682 purpose register. */
3683 if (argreg
<= MIPS_LAST_ARG_REGNUM
3684 && !fp_register_arg_p (typecode
, arg_type
))
3686 LONGEST regval
= extract_signed_integer (val
, partial_len
);
3687 /* Value may need to be sign extended, because
3688 mips_isa_regsize() != mips_abi_regsize(). */
3690 /* A non-floating-point argument being passed in a
3691 general register. If a struct or union, and if
3692 the remaining length is smaller than the register
3693 size, we have to adjust the register value on
3696 It does not seem to be necessary to do the
3697 same for integral types.
3699 Also don't do this adjustment on O64 binaries.
3701 cagney/2001-07-23: gdb/179: Also, GCC, when
3702 outputting LE O32 with sizeof (struct) <
3703 mips_abi_regsize(), generates a left shift as
3704 part of storing the argument in a register a
3705 register (the left shift isn't generated when
3706 sizeof (struct) >= mips_abi_regsize()). Since
3707 it is quite possible that this is GCC
3708 contradicting the LE/O32 ABI, GDB has not been
3709 adjusted to accommodate this. Either someone
3710 needs to demonstrate that the LE/O32 ABI
3711 specifies such a left shift OR this new ABI gets
3712 identified as such and GDB gets tweaked
3715 if (mips_abi_regsize (gdbarch
) < 8
3716 && TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
3717 && partial_len
< mips_abi_regsize (gdbarch
)
3718 && (typecode
== TYPE_CODE_STRUCT
||
3719 typecode
== TYPE_CODE_UNION
))
3720 regval
<<= ((mips_abi_regsize (gdbarch
) - partial_len
) *
3724 fprintf_filtered (gdb_stdlog
, " - reg=%d val=%s",
3727 mips_abi_regsize (gdbarch
)));
3728 write_register (argreg
, regval
);
3731 /* Prevent subsequent floating point arguments from
3732 being passed in floating point registers. */
3733 float_argreg
= MIPS_LAST_FP_ARG_REGNUM
+ 1;
3739 /* Compute the the offset into the stack at which we
3740 will copy the next parameter.
3742 In older ABIs, the caller reserved space for
3743 registers that contained arguments. This was loosely
3744 refered to as their "home". Consequently, space is
3745 always allocated. */
3747 stack_offset
+= align_up (partial_len
,
3748 mips_stack_argsize (gdbarch
));
3752 fprintf_unfiltered (gdb_stdlog
, "\n");
3755 regcache_cooked_write_signed (regcache
, MIPS_SP_REGNUM
, sp
);
3757 /* Return adjusted stack pointer. */
3761 static enum return_value_convention
3762 mips_o64_return_value (struct gdbarch
*gdbarch
,
3763 struct type
*type
, struct regcache
*regcache
,
3764 void *readbuf
, const void *writebuf
)
3766 return RETURN_VALUE_STRUCT_CONVENTION
;
3769 /* Floating point register management.
3771 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3772 64bit operations, these early MIPS cpus treat fp register pairs
3773 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3774 registers and offer a compatibility mode that emulates the MIPS2 fp
3775 model. When operating in MIPS2 fp compat mode, later cpu's split
3776 double precision floats into two 32-bit chunks and store them in
3777 consecutive fp regs. To display 64-bit floats stored in this
3778 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3779 Throw in user-configurable endianness and you have a real mess.
3781 The way this works is:
3782 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3783 double-precision value will be split across two logical registers.
3784 The lower-numbered logical register will hold the low-order bits,
3785 regardless of the processor's endianness.
3786 - If we are on a 64-bit processor, and we are looking for a
3787 single-precision value, it will be in the low ordered bits
3788 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3789 save slot in memory.
3790 - If we are in 64-bit mode, everything is straightforward.
3792 Note that this code only deals with "live" registers at the top of the
3793 stack. We will attempt to deal with saved registers later, when
3794 the raw/cooked register interface is in place. (We need a general
3795 interface that can deal with dynamic saved register sizes -- fp
3796 regs could be 32 bits wide in one frame and 64 on the frame above
3799 static struct type
*
3800 mips_float_register_type (void)
3802 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
3803 return builtin_type_ieee_single_big
;
3805 return builtin_type_ieee_single_little
;
3808 static struct type
*
3809 mips_double_register_type (void)
3811 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
3812 return builtin_type_ieee_double_big
;
3814 return builtin_type_ieee_double_little
;
3817 /* Copy a 32-bit single-precision value from the current frame
3818 into rare_buffer. */
3821 mips_read_fp_register_single (struct frame_info
*frame
, int regno
,
3824 int raw_size
= register_size (current_gdbarch
, regno
);
3825 char *raw_buffer
= alloca (raw_size
);
3827 if (!frame_register_read (frame
, regno
, raw_buffer
))
3828 error (_("can't read register %d (%s)"), regno
, REGISTER_NAME (regno
));
3831 /* We have a 64-bit value for this register. Find the low-order
3835 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
3840 memcpy (rare_buffer
, raw_buffer
+ offset
, 4);
3844 memcpy (rare_buffer
, raw_buffer
, 4);
3848 /* Copy a 64-bit double-precision value from the current frame into
3849 rare_buffer. This may include getting half of it from the next
3853 mips_read_fp_register_double (struct frame_info
*frame
, int regno
,
3856 int raw_size
= register_size (current_gdbarch
, regno
);
3858 if (raw_size
== 8 && !mips2_fp_compat ())
3860 /* We have a 64-bit value for this register, and we should use
3862 if (!frame_register_read (frame
, regno
, rare_buffer
))
3863 error (_("can't read register %d (%s)"), regno
, REGISTER_NAME (regno
));
3867 if ((regno
- mips_regnum (current_gdbarch
)->fp0
) & 1)
3868 internal_error (__FILE__
, __LINE__
,
3869 _("mips_read_fp_register_double: bad access to "
3870 "odd-numbered FP register"));
3872 /* mips_read_fp_register_single will find the correct 32 bits from
3874 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
3876 mips_read_fp_register_single (frame
, regno
, rare_buffer
+ 4);
3877 mips_read_fp_register_single (frame
, regno
+ 1, rare_buffer
);
3881 mips_read_fp_register_single (frame
, regno
, rare_buffer
);
3882 mips_read_fp_register_single (frame
, regno
+ 1, rare_buffer
+ 4);
3888 mips_print_fp_register (struct ui_file
*file
, struct frame_info
*frame
,
3890 { /* do values for FP (float) regs */
3892 double doub
, flt1
; /* doubles extracted from raw hex data */
3896 (char *) alloca (2 *
3897 register_size (current_gdbarch
,
3898 mips_regnum (current_gdbarch
)->fp0
));
3900 fprintf_filtered (file
, "%s:", REGISTER_NAME (regnum
));
3901 fprintf_filtered (file
, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum
)),
3904 if (register_size (current_gdbarch
, regnum
) == 4 || mips2_fp_compat ())
3906 /* 4-byte registers: Print hex and floating. Also print even
3907 numbered registers as doubles. */
3908 mips_read_fp_register_single (frame
, regnum
, raw_buffer
);
3909 flt1
= unpack_double (mips_float_register_type (), raw_buffer
, &inv1
);
3911 print_scalar_formatted (raw_buffer
, builtin_type_uint32
, 'x', 'w',
3914 fprintf_filtered (file
, " flt: ");
3916 fprintf_filtered (file
, " <invalid float> ");
3918 fprintf_filtered (file
, "%-17.9g", flt1
);
3920 if (regnum
% 2 == 0)
3922 mips_read_fp_register_double (frame
, regnum
, raw_buffer
);
3923 doub
= unpack_double (mips_double_register_type (), raw_buffer
,
3926 fprintf_filtered (file
, " dbl: ");
3928 fprintf_filtered (file
, "<invalid double>");
3930 fprintf_filtered (file
, "%-24.17g", doub
);
3935 /* Eight byte registers: print each one as hex, float and double. */
3936 mips_read_fp_register_single (frame
, regnum
, raw_buffer
);
3937 flt1
= unpack_double (mips_float_register_type (), raw_buffer
, &inv1
);
3939 mips_read_fp_register_double (frame
, regnum
, raw_buffer
);
3940 doub
= unpack_double (mips_double_register_type (), raw_buffer
, &inv2
);
3943 print_scalar_formatted (raw_buffer
, builtin_type_uint64
, 'x', 'g',
3946 fprintf_filtered (file
, " flt: ");
3948 fprintf_filtered (file
, "<invalid float>");
3950 fprintf_filtered (file
, "%-17.9g", flt1
);
3952 fprintf_filtered (file
, " dbl: ");
3954 fprintf_filtered (file
, "<invalid double>");
3956 fprintf_filtered (file
, "%-24.17g", doub
);
3961 mips_print_register (struct ui_file
*file
, struct frame_info
*frame
,
3962 int regnum
, int all
)
3964 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
3965 char raw_buffer
[MAX_REGISTER_SIZE
];
3968 if (TYPE_CODE (gdbarch_register_type (gdbarch
, regnum
)) == TYPE_CODE_FLT
)
3970 mips_print_fp_register (file
, frame
, regnum
);
3974 /* Get the data in raw format. */
3975 if (!frame_register_read (frame
, regnum
, raw_buffer
))
3977 fprintf_filtered (file
, "%s: [Invalid]", REGISTER_NAME (regnum
));
3981 fputs_filtered (REGISTER_NAME (regnum
), file
);
3983 /* The problem with printing numeric register names (r26, etc.) is that
3984 the user can't use them on input. Probably the best solution is to
3985 fix it so that either the numeric or the funky (a2, etc.) names
3986 are accepted on input. */
3987 if (regnum
< MIPS_NUMREGS
)
3988 fprintf_filtered (file
, "(r%d): ", regnum
);
3990 fprintf_filtered (file
, ": ");
3992 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
3994 register_size (current_gdbarch
,
3995 regnum
) - register_size (current_gdbarch
, regnum
);
3999 print_scalar_formatted (raw_buffer
+ offset
,
4000 gdbarch_register_type (gdbarch
, regnum
), 'x', 0,
4004 /* Replacement for generic do_registers_info.
4005 Print regs in pretty columns. */
4008 print_fp_register_row (struct ui_file
*file
, struct frame_info
*frame
,
4011 fprintf_filtered (file
, " ");
4012 mips_print_fp_register (file
, frame
, regnum
);
4013 fprintf_filtered (file
, "\n");
4018 /* Print a row's worth of GP (int) registers, with name labels above */
4021 print_gp_register_row (struct ui_file
*file
, struct frame_info
*frame
,
4024 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
4025 /* do values for GP (int) regs */
4026 char raw_buffer
[MAX_REGISTER_SIZE
];
4027 int ncols
= (mips_abi_regsize (gdbarch
) == 8 ? 4 : 8); /* display cols per row */
4031 /* For GP registers, we print a separate row of names above the vals */
4032 fprintf_filtered (file
, " ");
4033 for (col
= 0, regnum
= start_regnum
;
4034 col
< ncols
&& regnum
< NUM_REGS
+ NUM_PSEUDO_REGS
; regnum
++)
4036 if (*REGISTER_NAME (regnum
) == '\0')
4037 continue; /* unused register */
4038 if (TYPE_CODE (gdbarch_register_type (gdbarch
, regnum
)) ==
4040 break; /* end the row: reached FP register */
4041 fprintf_filtered (file
,
4042 mips_abi_regsize (current_gdbarch
) == 8 ? "%17s" : "%9s",
4043 REGISTER_NAME (regnum
));
4046 /* print the R0 to R31 names */
4047 if ((start_regnum
% NUM_REGS
) < MIPS_NUMREGS
)
4048 fprintf_filtered (file
, "\n R%-4d", start_regnum
% NUM_REGS
);
4050 fprintf_filtered (file
, "\n ");
4052 /* now print the values in hex, 4 or 8 to the row */
4053 for (col
= 0, regnum
= start_regnum
;
4054 col
< ncols
&& regnum
< NUM_REGS
+ NUM_PSEUDO_REGS
; regnum
++)
4056 if (*REGISTER_NAME (regnum
) == '\0')
4057 continue; /* unused register */
4058 if (TYPE_CODE (gdbarch_register_type (gdbarch
, regnum
)) ==
4060 break; /* end row: reached FP register */
4061 /* OK: get the data in raw format. */
4062 if (!frame_register_read (frame
, regnum
, raw_buffer
))
4063 error (_("can't read register %d (%s)"), regnum
, REGISTER_NAME (regnum
));
4064 /* pad small registers */
4066 byte
< (mips_abi_regsize (current_gdbarch
)
4067 - register_size (current_gdbarch
, regnum
)); byte
++)
4068 printf_filtered (" ");
4069 /* Now print the register value in hex, endian order. */
4070 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
4072 register_size (current_gdbarch
,
4073 regnum
) - register_size (current_gdbarch
, regnum
);
4074 byte
< register_size (current_gdbarch
, regnum
); byte
++)
4075 fprintf_filtered (file
, "%02x", (unsigned char) raw_buffer
[byte
]);
4077 for (byte
= register_size (current_gdbarch
, regnum
) - 1;
4079 fprintf_filtered (file
, "%02x", (unsigned char) raw_buffer
[byte
]);
4080 fprintf_filtered (file
, " ");
4083 if (col
> 0) /* ie. if we actually printed anything... */
4084 fprintf_filtered (file
, "\n");
4089 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4092 mips_print_registers_info (struct gdbarch
*gdbarch
, struct ui_file
*file
,
4093 struct frame_info
*frame
, int regnum
, int all
)
4095 if (regnum
!= -1) /* do one specified register */
4097 gdb_assert (regnum
>= NUM_REGS
);
4098 if (*(REGISTER_NAME (regnum
)) == '\0')
4099 error (_("Not a valid register for the current processor type"));
4101 mips_print_register (file
, frame
, regnum
, 0);
4102 fprintf_filtered (file
, "\n");
4105 /* do all (or most) registers */
4108 while (regnum
< NUM_REGS
+ NUM_PSEUDO_REGS
)
4110 if (TYPE_CODE (gdbarch_register_type (gdbarch
, regnum
)) ==
4113 if (all
) /* true for "INFO ALL-REGISTERS" command */
4114 regnum
= print_fp_register_row (file
, frame
, regnum
);
4116 regnum
+= MIPS_NUMREGS
; /* skip floating point regs */
4119 regnum
= print_gp_register_row (file
, frame
, regnum
);
4124 /* Is this a branch with a delay slot? */
4127 is_delayed (unsigned long insn
)
4130 for (i
= 0; i
< NUMOPCODES
; ++i
)
4131 if (mips_opcodes
[i
].pinfo
!= INSN_MACRO
4132 && (insn
& mips_opcodes
[i
].mask
) == mips_opcodes
[i
].match
)
4134 return (i
< NUMOPCODES
4135 && (mips_opcodes
[i
].pinfo
& (INSN_UNCOND_BRANCH_DELAY
4136 | INSN_COND_BRANCH_DELAY
4137 | INSN_COND_BRANCH_LIKELY
)));
4141 mips_single_step_through_delay (struct gdbarch
*gdbarch
,
4142 struct frame_info
*frame
)
4144 CORE_ADDR pc
= get_frame_pc (frame
);
4145 char buf
[MIPS_INSN32_SIZE
];
4147 /* There is no branch delay slot on MIPS16. */
4148 if (mips_pc_is_mips16 (pc
))
4151 if (!breakpoint_here_p (pc
+ 4))
4154 if (!safe_frame_unwind_memory (frame
, pc
, buf
, sizeof buf
))
4155 /* If error reading memory, guess that it is not a delayed
4158 return is_delayed (extract_unsigned_integer (buf
, sizeof buf
));
4161 /* To skip prologues, I use this predicate. Returns either PC itself
4162 if the code at PC does not look like a function prologue; otherwise
4163 returns an address that (if we're lucky) follows the prologue. If
4164 LENIENT, then we must skip everything which is involved in setting
4165 up the frame (it's OK to skip more, just so long as we don't skip
4166 anything which might clobber the registers which are being saved.
4167 We must skip more in the case where part of the prologue is in the
4168 delay slot of a non-prologue instruction). */
4171 mips_skip_prologue (CORE_ADDR pc
)
4174 CORE_ADDR func_addr
;
4176 /* See if we can determine the end of the prologue via the symbol table.
4177 If so, then return either PC, or the PC after the prologue, whichever
4179 if (find_pc_partial_function (pc
, NULL
, &func_addr
, NULL
))
4181 CORE_ADDR post_prologue_pc
= skip_prologue_using_sal (func_addr
);
4182 if (post_prologue_pc
!= 0)
4183 return max (pc
, post_prologue_pc
);
4186 /* Can't determine prologue from the symbol table, need to examine
4189 /* Find an upper limit on the function prologue using the debug
4190 information. If the debug information could not be used to provide
4191 that bound, then use an arbitrary large number as the upper bound. */
4192 limit_pc
= skip_prologue_using_sal (pc
);
4194 limit_pc
= pc
+ 100; /* Magic. */
4196 if (mips_pc_is_mips16 (pc
))
4197 return mips16_scan_prologue (pc
, limit_pc
, NULL
, NULL
);
4199 return mips32_scan_prologue (pc
, limit_pc
, NULL
, NULL
);
4202 /* Root of all "set mips "/"show mips " commands. This will eventually be
4203 used for all MIPS-specific commands. */
4206 show_mips_command (char *args
, int from_tty
)
4208 help_list (showmipscmdlist
, "show mips ", all_commands
, gdb_stdout
);
4212 set_mips_command (char *args
, int from_tty
)
4215 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4216 help_list (setmipscmdlist
, "set mips ", all_commands
, gdb_stdout
);
4219 /* Commands to show/set the MIPS FPU type. */
4222 show_mipsfpu_command (char *args
, int from_tty
)
4225 switch (MIPS_FPU_TYPE
)
4227 case MIPS_FPU_SINGLE
:
4228 fpu
= "single-precision";
4230 case MIPS_FPU_DOUBLE
:
4231 fpu
= "double-precision";
4234 fpu
= "absent (none)";
4237 internal_error (__FILE__
, __LINE__
, _("bad switch"));
4239 if (mips_fpu_type_auto
)
4241 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4245 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu
);
4250 set_mipsfpu_command (char *args
, int from_tty
)
4253 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4254 show_mipsfpu_command (args
, from_tty
);
4258 set_mipsfpu_single_command (char *args
, int from_tty
)
4260 struct gdbarch_info info
;
4261 gdbarch_info_init (&info
);
4262 mips_fpu_type
= MIPS_FPU_SINGLE
;
4263 mips_fpu_type_auto
= 0;
4264 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4265 instead of relying on globals. Doing that would let generic code
4266 handle the search for this specific architecture. */
4267 if (!gdbarch_update_p (info
))
4268 internal_error (__FILE__
, __LINE__
, _("set mipsfpu failed"));
4272 set_mipsfpu_double_command (char *args
, int from_tty
)
4274 struct gdbarch_info info
;
4275 gdbarch_info_init (&info
);
4276 mips_fpu_type
= MIPS_FPU_DOUBLE
;
4277 mips_fpu_type_auto
= 0;
4278 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4279 instead of relying on globals. Doing that would let generic code
4280 handle the search for this specific architecture. */
4281 if (!gdbarch_update_p (info
))
4282 internal_error (__FILE__
, __LINE__
, _("set mipsfpu failed"));
4286 set_mipsfpu_none_command (char *args
, int from_tty
)
4288 struct gdbarch_info info
;
4289 gdbarch_info_init (&info
);
4290 mips_fpu_type
= MIPS_FPU_NONE
;
4291 mips_fpu_type_auto
= 0;
4292 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4293 instead of relying on globals. Doing that would let generic code
4294 handle the search for this specific architecture. */
4295 if (!gdbarch_update_p (info
))
4296 internal_error (__FILE__
, __LINE__
, _("set mipsfpu failed"));
4300 set_mipsfpu_auto_command (char *args
, int from_tty
)
4302 mips_fpu_type_auto
= 1;
4305 /* Attempt to identify the particular processor model by reading the
4306 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4307 the relevant processor still exists (it dates back to '94) and
4308 secondly this is not the way to do this. The processor type should
4309 be set by forcing an architecture change. */
4312 deprecated_mips_set_processor_regs_hack (void)
4314 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
4317 prid
= read_register (MIPS_PRID_REGNUM
);
4319 if ((prid
& ~0xf) == 0x700)
4320 tdep
->mips_processor_reg_names
= mips_r3041_reg_names
;
4323 /* Just like reinit_frame_cache, but with the right arguments to be
4324 callable as an sfunc. */
4327 reinit_frame_cache_sfunc (char *args
, int from_tty
,
4328 struct cmd_list_element
*c
)
4330 reinit_frame_cache ();
4334 gdb_print_insn_mips (bfd_vma memaddr
, struct disassemble_info
*info
)
4336 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
4338 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4339 disassembler needs to be able to locally determine the ISA, and
4340 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4342 if (mips_pc_is_mips16 (memaddr
))
4343 info
->mach
= bfd_mach_mips16
;
4345 /* Round down the instruction address to the appropriate boundary. */
4346 memaddr
&= (info
->mach
== bfd_mach_mips16
? ~1 : ~3);
4348 /* Set the disassembler options. */
4349 if (tdep
->mips_abi
== MIPS_ABI_N32
|| tdep
->mips_abi
== MIPS_ABI_N64
)
4351 /* Set up the disassembler info, so that we get the right
4352 register names from libopcodes. */
4353 if (tdep
->mips_abi
== MIPS_ABI_N32
)
4354 info
->disassembler_options
= "gpr-names=n32";
4356 info
->disassembler_options
= "gpr-names=64";
4357 info
->flavour
= bfd_target_elf_flavour
;
4360 /* This string is not recognized explicitly by the disassembler,
4361 but it tells the disassembler to not try to guess the ABI from
4362 the bfd elf headers, such that, if the user overrides the ABI
4363 of a program linked as NewABI, the disassembly will follow the
4364 register naming conventions specified by the user. */
4365 info
->disassembler_options
= "gpr-names=32";
4367 /* Call the appropriate disassembler based on the target endian-ness. */
4368 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
4369 return print_insn_big_mips (memaddr
, info
);
4371 return print_insn_little_mips (memaddr
, info
);
4374 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4375 counter value to determine whether a 16- or 32-bit breakpoint should be
4376 used. It returns a pointer to a string of bytes that encode a breakpoint
4377 instruction, stores the length of the string to *lenptr, and adjusts pc
4378 (if necessary) to point to the actual memory location where the
4379 breakpoint should be inserted. */
4381 static const unsigned char *
4382 mips_breakpoint_from_pc (CORE_ADDR
*pcptr
, int *lenptr
)
4384 if (TARGET_BYTE_ORDER
== BFD_ENDIAN_BIG
)
4386 if (mips_pc_is_mips16 (*pcptr
))
4388 static unsigned char mips16_big_breakpoint
[] = { 0xe8, 0xa5 };
4389 *pcptr
= unmake_mips16_addr (*pcptr
);
4390 *lenptr
= sizeof (mips16_big_breakpoint
);
4391 return mips16_big_breakpoint
;
4395 /* The IDT board uses an unusual breakpoint value, and
4396 sometimes gets confused when it sees the usual MIPS
4397 breakpoint instruction. */
4398 static unsigned char big_breakpoint
[] = { 0, 0x5, 0, 0xd };
4399 static unsigned char pmon_big_breakpoint
[] = { 0, 0, 0, 0xd };
4400 static unsigned char idt_big_breakpoint
[] = { 0, 0, 0x0a, 0xd };
4402 *lenptr
= sizeof (big_breakpoint
);
4404 if (strcmp (target_shortname
, "mips") == 0)
4405 return idt_big_breakpoint
;
4406 else if (strcmp (target_shortname
, "ddb") == 0
4407 || strcmp (target_shortname
, "pmon") == 0
4408 || strcmp (target_shortname
, "lsi") == 0)
4409 return pmon_big_breakpoint
;
4411 return big_breakpoint
;
4416 if (mips_pc_is_mips16 (*pcptr
))
4418 static unsigned char mips16_little_breakpoint
[] = { 0xa5, 0xe8 };
4419 *pcptr
= unmake_mips16_addr (*pcptr
);
4420 *lenptr
= sizeof (mips16_little_breakpoint
);
4421 return mips16_little_breakpoint
;
4425 static unsigned char little_breakpoint
[] = { 0xd, 0, 0x5, 0 };
4426 static unsigned char pmon_little_breakpoint
[] = { 0xd, 0, 0, 0 };
4427 static unsigned char idt_little_breakpoint
[] = { 0xd, 0x0a, 0, 0 };
4429 *lenptr
= sizeof (little_breakpoint
);
4431 if (strcmp (target_shortname
, "mips") == 0)
4432 return idt_little_breakpoint
;
4433 else if (strcmp (target_shortname
, "ddb") == 0
4434 || strcmp (target_shortname
, "pmon") == 0
4435 || strcmp (target_shortname
, "lsi") == 0)
4436 return pmon_little_breakpoint
;
4438 return little_breakpoint
;
4443 /* If PC is in a mips16 call or return stub, return the address of the target
4444 PC, which is either the callee or the caller. There are several
4445 cases which must be handled:
4447 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4448 target PC is in $31 ($ra).
4449 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4450 and the target PC is in $2.
4451 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4452 before the jal instruction, this is effectively a call stub
4453 and the the target PC is in $2. Otherwise this is effectively
4454 a return stub and the target PC is in $18.
4456 See the source code for the stubs in gcc/config/mips/mips16.S for
4460 mips_skip_trampoline_code (CORE_ADDR pc
)
4463 CORE_ADDR start_addr
;
4465 /* Find the starting address and name of the function containing the PC. */
4466 if (find_pc_partial_function (pc
, &name
, &start_addr
, NULL
) == 0)
4469 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4470 target PC is in $31 ($ra). */
4471 if (strcmp (name
, "__mips16_ret_sf") == 0
4472 || strcmp (name
, "__mips16_ret_df") == 0)
4473 return read_signed_register (MIPS_RA_REGNUM
);
4475 if (strncmp (name
, "__mips16_call_stub_", 19) == 0)
4477 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4478 and the target PC is in $2. */
4479 if (name
[19] >= '0' && name
[19] <= '9')
4480 return read_signed_register (2);
4482 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4483 before the jal instruction, this is effectively a call stub
4484 and the the target PC is in $2. Otherwise this is effectively
4485 a return stub and the target PC is in $18. */
4486 else if (name
[19] == 's' || name
[19] == 'd')
4488 if (pc
== start_addr
)
4490 /* Check if the target of the stub is a compiler-generated
4491 stub. Such a stub for a function bar might have a name
4492 like __fn_stub_bar, and might look like this:
4497 la $1,bar (becomes a lui/addiu pair)
4499 So scan down to the lui/addi and extract the target
4500 address from those two instructions. */
4502 CORE_ADDR target_pc
= read_signed_register (2);
4506 /* See if the name of the target function is __fn_stub_*. */
4507 if (find_pc_partial_function (target_pc
, &name
, NULL
, NULL
) ==
4510 if (strncmp (name
, "__fn_stub_", 10) != 0
4511 && strcmp (name
, "etext") != 0
4512 && strcmp (name
, "_etext") != 0)
4515 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4516 The limit on the search is arbitrarily set to 20
4517 instructions. FIXME. */
4518 for (i
= 0, pc
= 0; i
< 20; i
++, target_pc
+= MIPS_INSN32_SIZE
)
4520 inst
= mips_fetch_instruction (target_pc
);
4521 if ((inst
& 0xffff0000) == 0x3c010000) /* lui $at */
4522 pc
= (inst
<< 16) & 0xffff0000; /* high word */
4523 else if ((inst
& 0xffff0000) == 0x24210000) /* addiu $at */
4524 return pc
| (inst
& 0xffff); /* low word */
4527 /* Couldn't find the lui/addui pair, so return stub address. */
4531 /* This is the 'return' part of a call stub. The return
4532 address is in $r18. */
4533 return read_signed_register (18);
4536 return 0; /* not a stub */
4539 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4540 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4543 mips_stab_reg_to_regnum (int num
)
4546 if (num
>= 0 && num
< 32)
4548 else if (num
>= 38 && num
< 70)
4549 regnum
= num
+ mips_regnum (current_gdbarch
)->fp0
- 38;
4551 regnum
= mips_regnum (current_gdbarch
)->hi
;
4553 regnum
= mips_regnum (current_gdbarch
)->lo
;
4555 /* This will hopefully (eventually) provoke a warning. Should
4556 we be calling complaint() here? */
4557 return NUM_REGS
+ NUM_PSEUDO_REGS
;
4558 return NUM_REGS
+ regnum
;
4562 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4563 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4566 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num
)
4569 if (num
>= 0 && num
< 32)
4571 else if (num
>= 32 && num
< 64)
4572 regnum
= num
+ mips_regnum (current_gdbarch
)->fp0
- 32;
4574 regnum
= mips_regnum (current_gdbarch
)->hi
;
4576 regnum
= mips_regnum (current_gdbarch
)->lo
;
4578 /* This will hopefully (eventually) provoke a warning. Should we
4579 be calling complaint() here? */
4580 return NUM_REGS
+ NUM_PSEUDO_REGS
;
4581 return NUM_REGS
+ regnum
;
4585 mips_register_sim_regno (int regnum
)
4587 /* Only makes sense to supply raw registers. */
4588 gdb_assert (regnum
>= 0 && regnum
< NUM_REGS
);
4589 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4590 decide if it is valid. Should instead define a standard sim/gdb
4591 register numbering scheme. */
4592 if (REGISTER_NAME (NUM_REGS
+ regnum
) != NULL
4593 && REGISTER_NAME (NUM_REGS
+ regnum
)[0] != '\0')
4596 return LEGACY_SIM_REGNO_IGNORE
;
4600 /* Convert an integer into an address. By first converting the value
4601 into a pointer and then extracting it signed, the address is
4602 guarenteed to be correctly sign extended. */
4605 mips_integer_to_address (struct gdbarch
*gdbarch
,
4606 struct type
*type
, const bfd_byte
*buf
)
4608 char *tmp
= alloca (TYPE_LENGTH (builtin_type_void_data_ptr
));
4609 LONGEST val
= unpack_long (type
, buf
);
4610 store_signed_integer (tmp
, TYPE_LENGTH (builtin_type_void_data_ptr
), val
);
4611 return extract_signed_integer (tmp
,
4612 TYPE_LENGTH (builtin_type_void_data_ptr
));
4616 mips_find_abi_section (bfd
*abfd
, asection
*sect
, void *obj
)
4618 enum mips_abi
*abip
= (enum mips_abi
*) obj
;
4619 const char *name
= bfd_get_section_name (abfd
, sect
);
4621 if (*abip
!= MIPS_ABI_UNKNOWN
)
4624 if (strncmp (name
, ".mdebug.", 8) != 0)
4627 if (strcmp (name
, ".mdebug.abi32") == 0)
4628 *abip
= MIPS_ABI_O32
;
4629 else if (strcmp (name
, ".mdebug.abiN32") == 0)
4630 *abip
= MIPS_ABI_N32
;
4631 else if (strcmp (name
, ".mdebug.abi64") == 0)
4632 *abip
= MIPS_ABI_N64
;
4633 else if (strcmp (name
, ".mdebug.abiO64") == 0)
4634 *abip
= MIPS_ABI_O64
;
4635 else if (strcmp (name
, ".mdebug.eabi32") == 0)
4636 *abip
= MIPS_ABI_EABI32
;
4637 else if (strcmp (name
, ".mdebug.eabi64") == 0)
4638 *abip
= MIPS_ABI_EABI64
;
4640 warning (_("unsupported ABI %s."), name
+ 8);
4643 static enum mips_abi
4644 global_mips_abi (void)
4648 for (i
= 0; mips_abi_strings
[i
] != NULL
; i
++)
4649 if (mips_abi_strings
[i
] == mips_abi_string
)
4650 return (enum mips_abi
) i
;
4652 internal_error (__FILE__
, __LINE__
, _("unknown ABI string"));
4655 static struct gdbarch
*
4656 mips_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
4658 struct gdbarch
*gdbarch
;
4659 struct gdbarch_tdep
*tdep
;
4661 enum mips_abi mips_abi
, found_abi
, wanted_abi
;
4663 enum mips_fpu_type fpu_type
;
4665 /* First of all, extract the elf_flags, if available. */
4666 if (info
.abfd
&& bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
)
4667 elf_flags
= elf_elfheader (info
.abfd
)->e_flags
;
4668 else if (arches
!= NULL
)
4669 elf_flags
= gdbarch_tdep (arches
->gdbarch
)->elf_flags
;
4673 fprintf_unfiltered (gdb_stdlog
,
4674 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags
);
4676 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4677 switch ((elf_flags
& EF_MIPS_ABI
))
4679 case E_MIPS_ABI_O32
:
4680 found_abi
= MIPS_ABI_O32
;
4682 case E_MIPS_ABI_O64
:
4683 found_abi
= MIPS_ABI_O64
;
4685 case E_MIPS_ABI_EABI32
:
4686 found_abi
= MIPS_ABI_EABI32
;
4688 case E_MIPS_ABI_EABI64
:
4689 found_abi
= MIPS_ABI_EABI64
;
4692 if ((elf_flags
& EF_MIPS_ABI2
))
4693 found_abi
= MIPS_ABI_N32
;
4695 found_abi
= MIPS_ABI_UNKNOWN
;
4699 /* GCC creates a pseudo-section whose name describes the ABI. */
4700 if (found_abi
== MIPS_ABI_UNKNOWN
&& info
.abfd
!= NULL
)
4701 bfd_map_over_sections (info
.abfd
, mips_find_abi_section
, &found_abi
);
4703 /* If we have no useful BFD information, use the ABI from the last
4704 MIPS architecture (if there is one). */
4705 if (found_abi
== MIPS_ABI_UNKNOWN
&& info
.abfd
== NULL
&& arches
!= NULL
)
4706 found_abi
= gdbarch_tdep (arches
->gdbarch
)->found_abi
;
4708 /* Try the architecture for any hint of the correct ABI. */
4709 if (found_abi
== MIPS_ABI_UNKNOWN
4710 && info
.bfd_arch_info
!= NULL
4711 && info
.bfd_arch_info
->arch
== bfd_arch_mips
)
4713 switch (info
.bfd_arch_info
->mach
)
4715 case bfd_mach_mips3900
:
4716 found_abi
= MIPS_ABI_EABI32
;
4718 case bfd_mach_mips4100
:
4719 case bfd_mach_mips5000
:
4720 found_abi
= MIPS_ABI_EABI64
;
4722 case bfd_mach_mips8000
:
4723 case bfd_mach_mips10000
:
4724 /* On Irix, ELF64 executables use the N64 ABI. The
4725 pseudo-sections which describe the ABI aren't present
4726 on IRIX. (Even for executables created by gcc.) */
4727 if (bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
4728 && elf_elfheader (info
.abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
4729 found_abi
= MIPS_ABI_N64
;
4731 found_abi
= MIPS_ABI_N32
;
4737 fprintf_unfiltered (gdb_stdlog
, "mips_gdbarch_init: found_abi = %d\n",
4740 /* What has the user specified from the command line? */
4741 wanted_abi
= global_mips_abi ();
4743 fprintf_unfiltered (gdb_stdlog
, "mips_gdbarch_init: wanted_abi = %d\n",
4746 /* Now that we have found what the ABI for this binary would be,
4747 check whether the user is overriding it. */
4748 if (wanted_abi
!= MIPS_ABI_UNKNOWN
)
4749 mips_abi
= wanted_abi
;
4750 else if (found_abi
!= MIPS_ABI_UNKNOWN
)
4751 mips_abi
= found_abi
;
4753 mips_abi
= MIPS_ABI_O32
;
4755 fprintf_unfiltered (gdb_stdlog
, "mips_gdbarch_init: mips_abi = %d\n",
4758 /* Also used when doing an architecture lookup. */
4760 fprintf_unfiltered (gdb_stdlog
,
4761 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4762 mips64_transfers_32bit_regs_p
);
4764 /* Determine the MIPS FPU type. */
4765 if (!mips_fpu_type_auto
)
4766 fpu_type
= mips_fpu_type
;
4767 else if (info
.bfd_arch_info
!= NULL
4768 && info
.bfd_arch_info
->arch
== bfd_arch_mips
)
4769 switch (info
.bfd_arch_info
->mach
)
4771 case bfd_mach_mips3900
:
4772 case bfd_mach_mips4100
:
4773 case bfd_mach_mips4111
:
4774 case bfd_mach_mips4120
:
4775 fpu_type
= MIPS_FPU_NONE
;
4777 case bfd_mach_mips4650
:
4778 fpu_type
= MIPS_FPU_SINGLE
;
4781 fpu_type
= MIPS_FPU_DOUBLE
;
4784 else if (arches
!= NULL
)
4785 fpu_type
= gdbarch_tdep (arches
->gdbarch
)->mips_fpu_type
;
4787 fpu_type
= MIPS_FPU_DOUBLE
;
4789 fprintf_unfiltered (gdb_stdlog
,
4790 "mips_gdbarch_init: fpu_type = %d\n", fpu_type
);
4792 /* try to find a pre-existing architecture */
4793 for (arches
= gdbarch_list_lookup_by_info (arches
, &info
);
4795 arches
= gdbarch_list_lookup_by_info (arches
->next
, &info
))
4797 /* MIPS needs to be pedantic about which ABI the object is
4799 if (gdbarch_tdep (arches
->gdbarch
)->elf_flags
!= elf_flags
)
4801 if (gdbarch_tdep (arches
->gdbarch
)->mips_abi
!= mips_abi
)
4803 /* Need to be pedantic about which register virtual size is
4805 if (gdbarch_tdep (arches
->gdbarch
)->mips64_transfers_32bit_regs_p
4806 != mips64_transfers_32bit_regs_p
)
4808 /* Be pedantic about which FPU is selected. */
4809 if (gdbarch_tdep (arches
->gdbarch
)->mips_fpu_type
!= fpu_type
)
4811 return arches
->gdbarch
;
4814 /* Need a new architecture. Fill in a target specific vector. */
4815 tdep
= (struct gdbarch_tdep
*) xmalloc (sizeof (struct gdbarch_tdep
));
4816 gdbarch
= gdbarch_alloc (&info
, tdep
);
4817 tdep
->elf_flags
= elf_flags
;
4818 tdep
->mips64_transfers_32bit_regs_p
= mips64_transfers_32bit_regs_p
;
4819 tdep
->found_abi
= found_abi
;
4820 tdep
->mips_abi
= mips_abi
;
4821 tdep
->mips_fpu_type
= fpu_type
;
4823 /* Initially set everything according to the default ABI/ISA. */
4824 set_gdbarch_short_bit (gdbarch
, 16);
4825 set_gdbarch_int_bit (gdbarch
, 32);
4826 set_gdbarch_float_bit (gdbarch
, 32);
4827 set_gdbarch_double_bit (gdbarch
, 64);
4828 set_gdbarch_long_double_bit (gdbarch
, 64);
4829 set_gdbarch_register_reggroup_p (gdbarch
, mips_register_reggroup_p
);
4830 set_gdbarch_pseudo_register_read (gdbarch
, mips_pseudo_register_read
);
4831 set_gdbarch_pseudo_register_write (gdbarch
, mips_pseudo_register_write
);
4833 set_gdbarch_elf_make_msymbol_special (gdbarch
,
4834 mips_elf_make_msymbol_special
);
4836 /* Fill in the OS dependant register numbers and names. */
4838 const char **reg_names
;
4839 struct mips_regnum
*regnum
= GDBARCH_OBSTACK_ZALLOC (gdbarch
,
4840 struct mips_regnum
);
4841 if (info
.osabi
== GDB_OSABI_IRIX
)
4846 regnum
->badvaddr
= 66;
4849 regnum
->fp_control_status
= 69;
4850 regnum
->fp_implementation_revision
= 70;
4852 reg_names
= mips_irix_reg_names
;
4856 regnum
->lo
= MIPS_EMBED_LO_REGNUM
;
4857 regnum
->hi
= MIPS_EMBED_HI_REGNUM
;
4858 regnum
->badvaddr
= MIPS_EMBED_BADVADDR_REGNUM
;
4859 regnum
->cause
= MIPS_EMBED_CAUSE_REGNUM
;
4860 regnum
->pc
= MIPS_EMBED_PC_REGNUM
;
4861 regnum
->fp0
= MIPS_EMBED_FP0_REGNUM
;
4862 regnum
->fp_control_status
= 70;
4863 regnum
->fp_implementation_revision
= 71;
4865 if (info
.bfd_arch_info
!= NULL
4866 && info
.bfd_arch_info
->mach
== bfd_mach_mips3900
)
4867 reg_names
= mips_tx39_reg_names
;
4869 reg_names
= mips_generic_reg_names
;
4871 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4872 replaced by read_pc? */
4873 set_gdbarch_pc_regnum (gdbarch
, regnum
->pc
+ num_regs
);
4874 set_gdbarch_sp_regnum (gdbarch
, MIPS_SP_REGNUM
+ num_regs
);
4875 set_gdbarch_fp0_regnum (gdbarch
, regnum
->fp0
);
4876 set_gdbarch_num_regs (gdbarch
, num_regs
);
4877 set_gdbarch_num_pseudo_regs (gdbarch
, num_regs
);
4878 set_gdbarch_register_name (gdbarch
, mips_register_name
);
4879 tdep
->mips_processor_reg_names
= reg_names
;
4880 tdep
->regnum
= regnum
;
4886 set_gdbarch_push_dummy_call (gdbarch
, mips_o32_push_dummy_call
);
4887 set_gdbarch_return_value (gdbarch
, mips_o32_return_value
);
4888 tdep
->mips_last_arg_regnum
= MIPS_A0_REGNUM
+ 4 - 1;
4889 tdep
->mips_last_fp_arg_regnum
= tdep
->regnum
->fp0
+ 12 + 4 - 1;
4890 tdep
->default_mask_address_p
= 0;
4891 set_gdbarch_long_bit (gdbarch
, 32);
4892 set_gdbarch_ptr_bit (gdbarch
, 32);
4893 set_gdbarch_long_long_bit (gdbarch
, 64);
4896 set_gdbarch_push_dummy_call (gdbarch
, mips_o64_push_dummy_call
);
4897 set_gdbarch_return_value (gdbarch
, mips_o64_return_value
);
4898 tdep
->mips_last_arg_regnum
= MIPS_A0_REGNUM
+ 4 - 1;
4899 tdep
->mips_last_fp_arg_regnum
= tdep
->regnum
->fp0
+ 12 + 4 - 1;
4900 tdep
->default_mask_address_p
= 0;
4901 set_gdbarch_long_bit (gdbarch
, 32);
4902 set_gdbarch_ptr_bit (gdbarch
, 32);
4903 set_gdbarch_long_long_bit (gdbarch
, 64);
4905 case MIPS_ABI_EABI32
:
4906 set_gdbarch_push_dummy_call (gdbarch
, mips_eabi_push_dummy_call
);
4907 set_gdbarch_return_value (gdbarch
, mips_eabi_return_value
);
4908 tdep
->mips_last_arg_regnum
= MIPS_A0_REGNUM
+ 8 - 1;
4909 tdep
->mips_last_fp_arg_regnum
= tdep
->regnum
->fp0
+ 12 + 8 - 1;
4910 tdep
->default_mask_address_p
= 0;
4911 set_gdbarch_long_bit (gdbarch
, 32);
4912 set_gdbarch_ptr_bit (gdbarch
, 32);
4913 set_gdbarch_long_long_bit (gdbarch
, 64);
4915 case MIPS_ABI_EABI64
:
4916 set_gdbarch_push_dummy_call (gdbarch
, mips_eabi_push_dummy_call
);
4917 set_gdbarch_return_value (gdbarch
, mips_eabi_return_value
);
4918 tdep
->mips_last_arg_regnum
= MIPS_A0_REGNUM
+ 8 - 1;
4919 tdep
->mips_last_fp_arg_regnum
= tdep
->regnum
->fp0
+ 12 + 8 - 1;
4920 tdep
->default_mask_address_p
= 0;
4921 set_gdbarch_long_bit (gdbarch
, 64);
4922 set_gdbarch_ptr_bit (gdbarch
, 64);
4923 set_gdbarch_long_long_bit (gdbarch
, 64);
4926 set_gdbarch_push_dummy_call (gdbarch
, mips_n32n64_push_dummy_call
);
4927 set_gdbarch_return_value (gdbarch
, mips_n32n64_return_value
);
4928 tdep
->mips_last_arg_regnum
= MIPS_A0_REGNUM
+ 8 - 1;
4929 tdep
->mips_last_fp_arg_regnum
= tdep
->regnum
->fp0
+ 12 + 8 - 1;
4930 tdep
->default_mask_address_p
= 0;
4931 set_gdbarch_long_bit (gdbarch
, 32);
4932 set_gdbarch_ptr_bit (gdbarch
, 32);
4933 set_gdbarch_long_long_bit (gdbarch
, 64);
4934 set_gdbarch_long_double_bit (gdbarch
, 128);
4935 set_gdbarch_long_double_format (gdbarch
,
4936 &floatformat_n32n64_long_double_big
);
4939 set_gdbarch_push_dummy_call (gdbarch
, mips_n32n64_push_dummy_call
);
4940 set_gdbarch_return_value (gdbarch
, mips_n32n64_return_value
);
4941 tdep
->mips_last_arg_regnum
= MIPS_A0_REGNUM
+ 8 - 1;
4942 tdep
->mips_last_fp_arg_regnum
= tdep
->regnum
->fp0
+ 12 + 8 - 1;
4943 tdep
->default_mask_address_p
= 0;
4944 set_gdbarch_long_bit (gdbarch
, 64);
4945 set_gdbarch_ptr_bit (gdbarch
, 64);
4946 set_gdbarch_long_long_bit (gdbarch
, 64);
4947 set_gdbarch_long_double_bit (gdbarch
, 128);
4948 set_gdbarch_long_double_format (gdbarch
,
4949 &floatformat_n32n64_long_double_big
);
4952 internal_error (__FILE__
, __LINE__
, _("unknown ABI in switch"));
4955 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4956 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4959 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4960 flag in object files because to do so would make it impossible to
4961 link with libraries compiled without "-gp32". This is
4962 unnecessarily restrictive.
4964 We could solve this problem by adding "-gp32" multilibs to gcc,
4965 but to set this flag before gcc is built with such multilibs will
4966 break too many systems.''
4968 But even more unhelpfully, the default linker output target for
4969 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4970 for 64-bit programs - you need to change the ABI to change this,
4971 and not all gcc targets support that currently. Therefore using
4972 this flag to detect 32-bit mode would do the wrong thing given
4973 the current gcc - it would make GDB treat these 64-bit programs
4974 as 32-bit programs by default. */
4976 set_gdbarch_read_pc (gdbarch
, mips_read_pc
);
4977 set_gdbarch_write_pc (gdbarch
, mips_write_pc
);
4978 set_gdbarch_read_sp (gdbarch
, mips_read_sp
);
4980 /* Add/remove bits from an address. The MIPS needs be careful to
4981 ensure that all 32 bit addresses are sign extended to 64 bits. */
4982 set_gdbarch_addr_bits_remove (gdbarch
, mips_addr_bits_remove
);
4984 /* Unwind the frame. */
4985 set_gdbarch_unwind_pc (gdbarch
, mips_unwind_pc
);
4986 set_gdbarch_unwind_dummy_id (gdbarch
, mips_unwind_dummy_id
);
4988 /* Map debug register numbers onto internal register numbers. */
4989 set_gdbarch_stab_reg_to_regnum (gdbarch
, mips_stab_reg_to_regnum
);
4990 set_gdbarch_ecoff_reg_to_regnum (gdbarch
,
4991 mips_dwarf_dwarf2_ecoff_reg_to_regnum
);
4992 set_gdbarch_dwarf_reg_to_regnum (gdbarch
,
4993 mips_dwarf_dwarf2_ecoff_reg_to_regnum
);
4994 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
,
4995 mips_dwarf_dwarf2_ecoff_reg_to_regnum
);
4996 set_gdbarch_register_sim_regno (gdbarch
, mips_register_sim_regno
);
4998 /* MIPS version of CALL_DUMMY */
5000 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5001 replaced by a command, and all targets will default to on stack
5002 (regardless of the stack's execute status). */
5003 set_gdbarch_call_dummy_location (gdbarch
, AT_SYMBOL
);
5004 set_gdbarch_frame_align (gdbarch
, mips_frame_align
);
5006 set_gdbarch_convert_register_p (gdbarch
, mips_convert_register_p
);
5007 set_gdbarch_register_to_value (gdbarch
, mips_register_to_value
);
5008 set_gdbarch_value_to_register (gdbarch
, mips_value_to_register
);
5010 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
5011 set_gdbarch_breakpoint_from_pc (gdbarch
, mips_breakpoint_from_pc
);
5013 set_gdbarch_skip_prologue (gdbarch
, mips_skip_prologue
);
5015 set_gdbarch_pointer_to_address (gdbarch
, signed_pointer_to_address
);
5016 set_gdbarch_address_to_pointer (gdbarch
, address_to_signed_pointer
);
5017 set_gdbarch_integer_to_address (gdbarch
, mips_integer_to_address
);
5019 set_gdbarch_register_type (gdbarch
, mips_register_type
);
5021 set_gdbarch_print_registers_info (gdbarch
, mips_print_registers_info
);
5023 set_gdbarch_print_insn (gdbarch
, gdb_print_insn_mips
);
5025 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5026 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5027 need to all be folded into the target vector. Since they are
5028 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5029 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5031 set_gdbarch_have_nonsteppable_watchpoint (gdbarch
, 1);
5033 set_gdbarch_skip_trampoline_code (gdbarch
, mips_skip_trampoline_code
);
5035 set_gdbarch_single_step_through_delay (gdbarch
, mips_single_step_through_delay
);
5037 /* Hook in OS ABI-specific overrides, if they have been registered. */
5038 gdbarch_init_osabi (info
, gdbarch
);
5040 /* Unwind the frame. */
5041 frame_unwind_append_sniffer (gdbarch
, mips_stub_frame_sniffer
);
5042 frame_unwind_append_sniffer (gdbarch
, mips_insn16_frame_sniffer
);
5043 frame_unwind_append_sniffer (gdbarch
, mips_insn32_frame_sniffer
);
5044 frame_base_append_sniffer (gdbarch
, mips_stub_frame_base_sniffer
);
5045 frame_base_append_sniffer (gdbarch
, mips_insn16_frame_base_sniffer
);
5046 frame_base_append_sniffer (gdbarch
, mips_insn32_frame_base_sniffer
);
5052 mips_abi_update (char *ignore_args
, int from_tty
, struct cmd_list_element
*c
)
5054 struct gdbarch_info info
;
5056 /* Force the architecture to update, and (if it's a MIPS architecture)
5057 mips_gdbarch_init will take care of the rest. */
5058 gdbarch_info_init (&info
);
5059 gdbarch_update_p (info
);
5062 /* Print out which MIPS ABI is in use. */
5065 show_mips_abi (struct ui_file
*file
,
5067 struct cmd_list_element
*ignored_cmd
,
5068 const char *ignored_value
)
5070 if (gdbarch_bfd_arch_info (current_gdbarch
)->arch
!= bfd_arch_mips
)
5073 "The MIPS ABI is unknown because the current architecture "
5077 enum mips_abi global_abi
= global_mips_abi ();
5078 enum mips_abi actual_abi
= mips_abi (current_gdbarch
);
5079 const char *actual_abi_str
= mips_abi_strings
[actual_abi
];
5081 if (global_abi
== MIPS_ABI_UNKNOWN
)
5084 "The MIPS ABI is set automatically (currently \"%s\").\n",
5086 else if (global_abi
== actual_abi
)
5089 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5093 /* Probably shouldn't happen... */
5096 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5097 actual_abi_str
, mips_abi_strings
[global_abi
]);
5103 mips_dump_tdep (struct gdbarch
*current_gdbarch
, struct ui_file
*file
)
5105 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
5109 int ef_mips_32bitmode
;
5110 /* determine the ISA */
5111 switch (tdep
->elf_flags
& EF_MIPS_ARCH
)
5129 /* determine the size of a pointer */
5130 ef_mips_32bitmode
= (tdep
->elf_flags
& EF_MIPS_32BITMODE
);
5131 fprintf_unfiltered (file
,
5132 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5134 fprintf_unfiltered (file
,
5135 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5137 fprintf_unfiltered (file
,
5138 "mips_dump_tdep: ef_mips_arch = %d\n",
5140 fprintf_unfiltered (file
,
5141 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5142 tdep
->mips_abi
, mips_abi_strings
[tdep
->mips_abi
]);
5143 fprintf_unfiltered (file
,
5144 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5145 mips_mask_address_p (tdep
),
5146 tdep
->default_mask_address_p
);
5148 fprintf_unfiltered (file
,
5149 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5150 MIPS_DEFAULT_FPU_TYPE
,
5151 (MIPS_DEFAULT_FPU_TYPE
== MIPS_FPU_NONE
? "none"
5152 : MIPS_DEFAULT_FPU_TYPE
== MIPS_FPU_SINGLE
? "single"
5153 : MIPS_DEFAULT_FPU_TYPE
== MIPS_FPU_DOUBLE
? "double"
5155 fprintf_unfiltered (file
, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI
);
5156 fprintf_unfiltered (file
,
5157 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5159 (MIPS_FPU_TYPE
== MIPS_FPU_NONE
? "none"
5160 : MIPS_FPU_TYPE
== MIPS_FPU_SINGLE
? "single"
5161 : MIPS_FPU_TYPE
== MIPS_FPU_DOUBLE
? "double"
5163 fprintf_unfiltered (file
,
5164 "mips_dump_tdep: mips_stack_argsize() = %d\n",
5165 mips_stack_argsize (current_gdbarch
));
5168 extern initialize_file_ftype _initialize_mips_tdep
; /* -Wmissing-prototypes */
5171 _initialize_mips_tdep (void)
5173 static struct cmd_list_element
*mipsfpulist
= NULL
;
5174 struct cmd_list_element
*c
;
5176 mips_abi_string
= mips_abi_strings
[MIPS_ABI_UNKNOWN
];
5177 if (MIPS_ABI_LAST
+ 1
5178 != sizeof (mips_abi_strings
) / sizeof (mips_abi_strings
[0]))
5179 internal_error (__FILE__
, __LINE__
, _("mips_abi_strings out of sync"));
5181 gdbarch_register (bfd_arch_mips
, mips_gdbarch_init
, mips_dump_tdep
);
5183 mips_pdr_data
= register_objfile_data ();
5185 /* Add root prefix command for all "set mips"/"show mips" commands */
5186 add_prefix_cmd ("mips", no_class
, set_mips_command
,
5187 _("Various MIPS specific commands."),
5188 &setmipscmdlist
, "set mips ", 0, &setlist
);
5190 add_prefix_cmd ("mips", no_class
, show_mips_command
,
5191 _("Various MIPS specific commands."),
5192 &showmipscmdlist
, "show mips ", 0, &showlist
);
5194 /* Allow the user to override the saved register size. */
5195 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure
,
5196 size_enums
, &mips_abi_regsize_string
, _("\
5197 Set size of general purpose registers saved on the stack."), _("\
5198 Show size of general purpose registers saved on the stack."), _("\
5199 This option can be set to one of:\n\
5200 32 - Force GDB to treat saved GP registers as 32-bit\n\
5201 64 - Force GDB to treat saved GP registers as 64-bit\n\
5202 auto - Allow GDB to use the target's default setting or autodetect the\n\
5203 saved GP register size from information contained in the\n\
5204 executable (default)."),
5206 NULL
, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
5207 &setmipscmdlist
, &showmipscmdlist
);
5209 /* Allow the user to override the argument stack size. */
5210 add_setshow_enum_cmd ("stack-arg-size", class_obscure
,
5211 size_enums
, &mips_stack_argsize_string
, _("\
5212 Set the amount of stack space reserved for each argument."), _("\
5213 Show the amount of stack space reserved for each argument."), _("\
5214 This option can be set to one of:\n\
5215 32 - Force GDB to allocate 32-bit chunks per argument\n\
5216 64 - Force GDB to allocate 64-bit chunks per argument\n\
5217 auto - Allow GDB to determine the correct setting from the current\n\
5218 target and executable (default)"),
5220 NULL
, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
5221 &setmipscmdlist
, &showmipscmdlist
);
5223 /* Allow the user to override the ABI. */
5224 add_setshow_enum_cmd ("abi", class_obscure
, mips_abi_strings
,
5225 &mips_abi_string
, _("\
5226 Set the MIPS ABI used by this program."), _("\
5227 Show the MIPS ABI used by this program."), _("\
5228 This option can be set to one of:\n\
5229 auto - the default ABI associated with the current binary\n\
5238 &setmipscmdlist
, &showmipscmdlist
);
5240 /* Let the user turn off floating point and set the fence post for
5241 heuristic_proc_start. */
5243 add_prefix_cmd ("mipsfpu", class_support
, set_mipsfpu_command
,
5244 _("Set use of MIPS floating-point coprocessor."),
5245 &mipsfpulist
, "set mipsfpu ", 0, &setlist
);
5246 add_cmd ("single", class_support
, set_mipsfpu_single_command
,
5247 _("Select single-precision MIPS floating-point coprocessor."),
5249 add_cmd ("double", class_support
, set_mipsfpu_double_command
,
5250 _("Select double-precision MIPS floating-point coprocessor."),
5252 add_alias_cmd ("on", "double", class_support
, 1, &mipsfpulist
);
5253 add_alias_cmd ("yes", "double", class_support
, 1, &mipsfpulist
);
5254 add_alias_cmd ("1", "double", class_support
, 1, &mipsfpulist
);
5255 add_cmd ("none", class_support
, set_mipsfpu_none_command
,
5256 _("Select no MIPS floating-point coprocessor."), &mipsfpulist
);
5257 add_alias_cmd ("off", "none", class_support
, 1, &mipsfpulist
);
5258 add_alias_cmd ("no", "none", class_support
, 1, &mipsfpulist
);
5259 add_alias_cmd ("0", "none", class_support
, 1, &mipsfpulist
);
5260 add_cmd ("auto", class_support
, set_mipsfpu_auto_command
,
5261 _("Select MIPS floating-point coprocessor automatically."),
5263 add_cmd ("mipsfpu", class_support
, show_mipsfpu_command
,
5264 _("Show current use of MIPS floating-point coprocessor target."),
5267 /* We really would like to have both "0" and "unlimited" work, but
5268 command.c doesn't deal with that. So make it a var_zinteger
5269 because the user can always use "999999" or some such for unlimited. */
5270 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support
,
5271 &heuristic_fence_post
, _("\
5272 Set the distance searched for the start of a function."), _("\
5273 Show the distance searched for the start of a function."), _("\
5274 If you are debugging a stripped executable, GDB needs to search through the\n\
5275 program for the start of a function. This command sets the distance of the\n\
5276 search. The only need to set it is when debugging a stripped executable."),
5277 reinit_frame_cache_sfunc
,
5278 NULL
, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5279 &setlist
, &showlist
);
5281 /* Allow the user to control whether the upper bits of 64-bit
5282 addresses should be zeroed. */
5283 add_setshow_auto_boolean_cmd ("mask-address", no_class
,
5284 &mask_address_var
, _("\
5285 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5286 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5287 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5288 allow GDB to determine the correct value."),
5289 NULL
, show_mask_address
,
5290 &setmipscmdlist
, &showmipscmdlist
);
5292 /* Allow the user to control the size of 32 bit registers within the
5293 raw remote packet. */
5294 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure
,
5295 &mips64_transfers_32bit_regs_p
, _("\
5296 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5298 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5300 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5301 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5302 64 bits for others. Use \"off\" to disable compatibility mode"),
5303 set_mips64_transfers_32bit_regs
,
5304 NULL
, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5305 &setlist
, &showlist
);
5307 /* Debug this files internals. */
5308 add_setshow_zinteger_cmd ("mips", class_maintenance
,
5310 Set mips debugging."), _("\
5311 Show mips debugging."), _("\
5312 When non-zero, mips specific debugging is enabled."),
5314 NULL
, /* FIXME: i18n: Mips debugging is currently %s. */
5315 &setdebuglist
, &showdebuglist
);