2010-12-28 Hui Zhu <teawater@gmail.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43 #include "block.h"
44 #include "reggroups.h"
45 #include "opcode/mips.h"
46 #include "elf/mips.h"
47 #include "elf-bfd.h"
48 #include "symcat.h"
49 #include "sim-regno.h"
50 #include "dis-asm.h"
51 #include "frame-unwind.h"
52 #include "frame-base.h"
53 #include "trad-frame.h"
54 #include "infcall.h"
55 #include "floatformat.h"
56 #include "remote.h"
57 #include "target-descriptions.h"
58 #include "dwarf2-frame.h"
59 #include "user-regs.h"
60 #include "valprint.h"
61 #include "ax.h"
62
63 static const struct objfile_data *mips_pdr_data;
64
65 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
66
67 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
68 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
69 #define ST0_FR (1 << 26)
70
71 /* The sizes of floating point registers. */
72
73 enum
74 {
75 MIPS_FPU_SINGLE_REGSIZE = 4,
76 MIPS_FPU_DOUBLE_REGSIZE = 8
77 };
78
79 enum
80 {
81 MIPS32_REGSIZE = 4,
82 MIPS64_REGSIZE = 8
83 };
84
85 static const char *mips_abi_string;
86
87 static const char *mips_abi_strings[] = {
88 "auto",
89 "n32",
90 "o32",
91 "n64",
92 "o64",
93 "eabi32",
94 "eabi64",
95 NULL
96 };
97
98 /* The standard register names, and all the valid aliases for them. */
99 struct register_alias
100 {
101 const char *name;
102 int regnum;
103 };
104
105 /* Aliases for o32 and most other ABIs. */
106 const struct register_alias mips_o32_aliases[] = {
107 { "ta0", 12 },
108 { "ta1", 13 },
109 { "ta2", 14 },
110 { "ta3", 15 }
111 };
112
113 /* Aliases for n32 and n64. */
114 const struct register_alias mips_n32_n64_aliases[] = {
115 { "ta0", 8 },
116 { "ta1", 9 },
117 { "ta2", 10 },
118 { "ta3", 11 }
119 };
120
121 /* Aliases for ABI-independent registers. */
122 const struct register_alias mips_register_aliases[] = {
123 /* The architecture manuals specify these ABI-independent names for
124 the GPRs. */
125 #define R(n) { "r" #n, n }
126 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
127 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
128 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
129 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
130 #undef R
131
132 /* k0 and k1 are sometimes called these instead (for "kernel
133 temp"). */
134 { "kt0", 26 },
135 { "kt1", 27 },
136
137 /* This is the traditional GDB name for the CP0 status register. */
138 { "sr", MIPS_PS_REGNUM },
139
140 /* This is the traditional GDB name for the CP0 BadVAddr register. */
141 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
142
143 /* This is the traditional GDB name for the FCSR. */
144 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
145 };
146
147 const struct register_alias mips_numeric_register_aliases[] = {
148 #define R(n) { #n, n }
149 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
150 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
151 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
152 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
153 #undef R
154 };
155
156 #ifndef MIPS_DEFAULT_FPU_TYPE
157 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
158 #endif
159 static int mips_fpu_type_auto = 1;
160 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
161
162 static int mips_debug = 0;
163
164 /* Properties (for struct target_desc) describing the g/G packet
165 layout. */
166 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
167 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
168
169 struct target_desc *mips_tdesc_gp32;
170 struct target_desc *mips_tdesc_gp64;
171
172 const struct mips_regnum *
173 mips_regnum (struct gdbarch *gdbarch)
174 {
175 return gdbarch_tdep (gdbarch)->regnum;
176 }
177
178 static int
179 mips_fpa0_regnum (struct gdbarch *gdbarch)
180 {
181 return mips_regnum (gdbarch)->fp0 + 12;
182 }
183
184 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
185 == MIPS_ABI_EABI32 \
186 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
187
188 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
189
190 #define MIPS_LAST_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
191
192 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
193
194 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
195 functions to test, set, or clear bit 0 of addresses. */
196
197 static CORE_ADDR
198 is_mips16_addr (CORE_ADDR addr)
199 {
200 return ((addr) & 1);
201 }
202
203 static CORE_ADDR
204 unmake_mips16_addr (CORE_ADDR addr)
205 {
206 return ((addr) & ~(CORE_ADDR) 1);
207 }
208
209 static CORE_ADDR
210 make_mips16_addr (CORE_ADDR addr)
211 {
212 return ((addr) | (CORE_ADDR) 1);
213 }
214
215 /* Return the MIPS ABI associated with GDBARCH. */
216 enum mips_abi
217 mips_abi (struct gdbarch *gdbarch)
218 {
219 return gdbarch_tdep (gdbarch)->mips_abi;
220 }
221
222 int
223 mips_isa_regsize (struct gdbarch *gdbarch)
224 {
225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
226
227 /* If we know how big the registers are, use that size. */
228 if (tdep->register_size_valid_p)
229 return tdep->register_size;
230
231 /* Fall back to the previous behavior. */
232 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
233 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
234 }
235
236 /* Return the currently configured (or set) saved register size. */
237
238 unsigned int
239 mips_abi_regsize (struct gdbarch *gdbarch)
240 {
241 switch (mips_abi (gdbarch))
242 {
243 case MIPS_ABI_EABI32:
244 case MIPS_ABI_O32:
245 return 4;
246 case MIPS_ABI_N32:
247 case MIPS_ABI_N64:
248 case MIPS_ABI_O64:
249 case MIPS_ABI_EABI64:
250 return 8;
251 case MIPS_ABI_UNKNOWN:
252 case MIPS_ABI_LAST:
253 default:
254 internal_error (__FILE__, __LINE__, _("bad switch"));
255 }
256 }
257
258 /* Functions for setting and testing a bit in a minimal symbol that
259 marks it as 16-bit function. The MSB of the minimal symbol's
260 "info" field is used for this purpose.
261
262 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
263 i.e. refers to a 16-bit function, and sets a "special" bit in a
264 minimal symbol to mark it as a 16-bit function
265
266 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
267
268 static void
269 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
270 {
271 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
272 {
273 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
274 }
275 }
276
277 static int
278 msymbol_is_special (struct minimal_symbol *msym)
279 {
280 return MSYMBOL_TARGET_FLAG_1 (msym);
281 }
282
283 /* XFER a value from the big/little/left end of the register.
284 Depending on the size of the value it might occupy the entire
285 register or just part of it. Make an allowance for this, aligning
286 things accordingly. */
287
288 static void
289 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
290 int reg_num, int length,
291 enum bfd_endian endian, gdb_byte *in,
292 const gdb_byte *out, int buf_offset)
293 {
294 int reg_offset = 0;
295
296 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
297 /* Need to transfer the left or right part of the register, based on
298 the targets byte order. */
299 switch (endian)
300 {
301 case BFD_ENDIAN_BIG:
302 reg_offset = register_size (gdbarch, reg_num) - length;
303 break;
304 case BFD_ENDIAN_LITTLE:
305 reg_offset = 0;
306 break;
307 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
308 reg_offset = 0;
309 break;
310 default:
311 internal_error (__FILE__, __LINE__, _("bad switch"));
312 }
313 if (mips_debug)
314 fprintf_unfiltered (gdb_stderr,
315 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
316 reg_num, reg_offset, buf_offset, length);
317 if (mips_debug && out != NULL)
318 {
319 int i;
320 fprintf_unfiltered (gdb_stdlog, "out ");
321 for (i = 0; i < length; i++)
322 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
323 }
324 if (in != NULL)
325 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
326 in + buf_offset);
327 if (out != NULL)
328 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
329 out + buf_offset);
330 if (mips_debug && in != NULL)
331 {
332 int i;
333 fprintf_unfiltered (gdb_stdlog, "in ");
334 for (i = 0; i < length; i++)
335 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
336 }
337 if (mips_debug)
338 fprintf_unfiltered (gdb_stdlog, "\n");
339 }
340
341 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
342 compatiblity mode. A return value of 1 means that we have
343 physical 64-bit registers, but should treat them as 32-bit registers. */
344
345 static int
346 mips2_fp_compat (struct frame_info *frame)
347 {
348 struct gdbarch *gdbarch = get_frame_arch (frame);
349 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
350 meaningful. */
351 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
352 return 0;
353
354 #if 0
355 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
356 in all the places we deal with FP registers. PR gdb/413. */
357 /* Otherwise check the FR bit in the status register - it controls
358 the FP compatiblity mode. If it is clear we are in compatibility
359 mode. */
360 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
361 return 1;
362 #endif
363
364 return 0;
365 }
366
367 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
368
369 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
370
371 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
372
373 /* The list of available "set mips " and "show mips " commands */
374
375 static struct cmd_list_element *setmipscmdlist = NULL;
376 static struct cmd_list_element *showmipscmdlist = NULL;
377
378 /* Integer registers 0 thru 31 are handled explicitly by
379 mips_register_name(). Processor specific registers 32 and above
380 are listed in the following tables. */
381
382 enum
383 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
384
385 /* Generic MIPS. */
386
387 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
388 "sr", "lo", "hi", "bad", "cause", "pc",
389 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
390 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
391 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
392 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
393 "fsr", "fir", "" /*"fp" */ , "",
394 "", "", "", "", "", "", "", "",
395 "", "", "", "", "", "", "", "",
396 };
397
398 /* Names of IDT R3041 registers. */
399
400 static const char *mips_r3041_reg_names[] = {
401 "sr", "lo", "hi", "bad", "cause", "pc",
402 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
403 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
404 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
405 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
406 "fsr", "fir", "", /*"fp" */ "",
407 "", "", "bus", "ccfg", "", "", "", "",
408 "", "", "port", "cmp", "", "", "epc", "prid",
409 };
410
411 /* Names of tx39 registers. */
412
413 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
414 "sr", "lo", "hi", "bad", "cause", "pc",
415 "", "", "", "", "", "", "", "",
416 "", "", "", "", "", "", "", "",
417 "", "", "", "", "", "", "", "",
418 "", "", "", "", "", "", "", "",
419 "", "", "", "",
420 "", "", "", "", "", "", "", "",
421 "", "", "config", "cache", "debug", "depc", "epc", ""
422 };
423
424 /* Names of IRIX registers. */
425 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
426 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
427 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
428 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
429 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
430 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
431 };
432
433
434 /* Return the name of the register corresponding to REGNO. */
435 static const char *
436 mips_register_name (struct gdbarch *gdbarch, int regno)
437 {
438 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
439 /* GPR names for all ABIs other than n32/n64. */
440 static char *mips_gpr_names[] = {
441 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
442 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
443 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
444 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
445 };
446
447 /* GPR names for n32 and n64 ABIs. */
448 static char *mips_n32_n64_gpr_names[] = {
449 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
450 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
451 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
452 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
453 };
454
455 enum mips_abi abi = mips_abi (gdbarch);
456
457 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
458 but then don't make the raw register names visible. This (upper)
459 range of user visible register numbers are the pseudo-registers.
460
461 This approach was adopted accommodate the following scenario:
462 It is possible to debug a 64-bit device using a 32-bit
463 programming model. In such instances, the raw registers are
464 configured to be 64-bits wide, while the pseudo registers are
465 configured to be 32-bits wide. The registers that the user
466 sees - the pseudo registers - match the users expectations
467 given the programming model being used. */
468 int rawnum = regno % gdbarch_num_regs (gdbarch);
469 if (regno < gdbarch_num_regs (gdbarch))
470 return "";
471
472 /* The MIPS integer registers are always mapped from 0 to 31. The
473 names of the registers (which reflects the conventions regarding
474 register use) vary depending on the ABI. */
475 if (0 <= rawnum && rawnum < 32)
476 {
477 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
478 return mips_n32_n64_gpr_names[rawnum];
479 else
480 return mips_gpr_names[rawnum];
481 }
482 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
483 return tdesc_register_name (gdbarch, rawnum);
484 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
485 {
486 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
487 return tdep->mips_processor_reg_names[rawnum - 32];
488 }
489 else
490 internal_error (__FILE__, __LINE__,
491 _("mips_register_name: bad register number %d"), rawnum);
492 }
493
494 /* Return the groups that a MIPS register can be categorised into. */
495
496 static int
497 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
498 struct reggroup *reggroup)
499 {
500 int vector_p;
501 int float_p;
502 int raw_p;
503 int rawnum = regnum % gdbarch_num_regs (gdbarch);
504 int pseudo = regnum / gdbarch_num_regs (gdbarch);
505 if (reggroup == all_reggroup)
506 return pseudo;
507 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
508 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
509 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
510 (gdbarch), as not all architectures are multi-arch. */
511 raw_p = rawnum < gdbarch_num_regs (gdbarch);
512 if (gdbarch_register_name (gdbarch, regnum) == NULL
513 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
514 return 0;
515 if (reggroup == float_reggroup)
516 return float_p && pseudo;
517 if (reggroup == vector_reggroup)
518 return vector_p && pseudo;
519 if (reggroup == general_reggroup)
520 return (!vector_p && !float_p) && pseudo;
521 /* Save the pseudo registers. Need to make certain that any code
522 extracting register values from a saved register cache also uses
523 pseudo registers. */
524 if (reggroup == save_reggroup)
525 return raw_p && pseudo;
526 /* Restore the same pseudo register. */
527 if (reggroup == restore_reggroup)
528 return raw_p && pseudo;
529 return 0;
530 }
531
532 /* Return the groups that a MIPS register can be categorised into.
533 This version is only used if we have a target description which
534 describes real registers (and their groups). */
535
536 static int
537 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
538 struct reggroup *reggroup)
539 {
540 int rawnum = regnum % gdbarch_num_regs (gdbarch);
541 int pseudo = regnum / gdbarch_num_regs (gdbarch);
542 int ret;
543
544 /* Only save, restore, and display the pseudo registers. Need to
545 make certain that any code extracting register values from a
546 saved register cache also uses pseudo registers.
547
548 Note: saving and restoring the pseudo registers is slightly
549 strange; if we have 64 bits, we should save and restore all
550 64 bits. But this is hard and has little benefit. */
551 if (!pseudo)
552 return 0;
553
554 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
555 if (ret != -1)
556 return ret;
557
558 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
559 }
560
561 /* Map the symbol table registers which live in the range [1 *
562 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
563 registers. Take care of alignment and size problems. */
564
565 static void
566 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
567 int cookednum, gdb_byte *buf)
568 {
569 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
570 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
571 && cookednum < 2 * gdbarch_num_regs (gdbarch));
572 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
573 regcache_raw_read (regcache, rawnum, buf);
574 else if (register_size (gdbarch, rawnum) >
575 register_size (gdbarch, cookednum))
576 {
577 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
578 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
579 else
580 {
581 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
582 LONGEST regval;
583 regcache_raw_read_signed (regcache, rawnum, &regval);
584 store_signed_integer (buf, 4, byte_order, regval);
585 }
586 }
587 else
588 internal_error (__FILE__, __LINE__, _("bad register size"));
589 }
590
591 static void
592 mips_pseudo_register_write (struct gdbarch *gdbarch,
593 struct regcache *regcache, int cookednum,
594 const gdb_byte *buf)
595 {
596 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
597 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
598 && cookednum < 2 * gdbarch_num_regs (gdbarch));
599 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
600 regcache_raw_write (regcache, rawnum, buf);
601 else if (register_size (gdbarch, rawnum) >
602 register_size (gdbarch, cookednum))
603 {
604 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
605 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
606 else
607 {
608 /* Sign extend the shortened version of the register prior
609 to placing it in the raw register. This is required for
610 some mips64 parts in order to avoid unpredictable behavior. */
611 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
612 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
613 regcache_raw_write_signed (regcache, rawnum, regval);
614 }
615 }
616 else
617 internal_error (__FILE__, __LINE__, _("bad register size"));
618 }
619
620 static int
621 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
622 struct agent_expr *ax, int reg)
623 {
624 int rawnum = reg % gdbarch_num_regs (gdbarch);
625 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
626 && reg < 2 * gdbarch_num_regs (gdbarch));
627
628 ax_reg_mask (ax, rawnum);
629
630 return 0;
631 }
632
633 static int
634 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
635 struct agent_expr *ax, int reg)
636 {
637 int rawnum = reg % gdbarch_num_regs (gdbarch);
638 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
639 && reg < 2 * gdbarch_num_regs (gdbarch));
640 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
641 {
642 ax_reg (ax, rawnum);
643
644 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
645 {
646 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
647 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
648 {
649 ax_const_l (ax, 32);
650 ax_simple (ax, aop_lsh);
651 }
652 ax_const_l (ax, 32);
653 ax_simple (ax, aop_rsh_signed);
654 }
655 }
656 else
657 internal_error (__FILE__, __LINE__, _("bad register size"));
658
659 return 0;
660 }
661
662 /* Table to translate MIPS16 register field to actual register number. */
663 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
664
665 /* Heuristic_proc_start may hunt through the text section for a long
666 time across a 2400 baud serial line. Allows the user to limit this
667 search. */
668
669 static unsigned int heuristic_fence_post = 0;
670
671 /* Number of bytes of storage in the actual machine representation for
672 register N. NOTE: This defines the pseudo register type so need to
673 rebuild the architecture vector. */
674
675 static int mips64_transfers_32bit_regs_p = 0;
676
677 static void
678 set_mips64_transfers_32bit_regs (char *args, int from_tty,
679 struct cmd_list_element *c)
680 {
681 struct gdbarch_info info;
682 gdbarch_info_init (&info);
683 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
684 instead of relying on globals. Doing that would let generic code
685 handle the search for this specific architecture. */
686 if (!gdbarch_update_p (info))
687 {
688 mips64_transfers_32bit_regs_p = 0;
689 error (_("32-bit compatibility mode not supported"));
690 }
691 }
692
693 /* Convert to/from a register and the corresponding memory value. */
694
695 /* This predicate tests for the case of an 8 byte floating point
696 value that is being transferred to or from a pair of floating point
697 registers each of which are (or are considered to be) only 4 bytes
698 wide. */
699 static int
700 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
701 struct type *type)
702 {
703 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
704 && register_size (gdbarch, regnum) == 4
705 && (regnum % gdbarch_num_regs (gdbarch))
706 >= mips_regnum (gdbarch)->fp0
707 && (regnum % gdbarch_num_regs (gdbarch))
708 < mips_regnum (gdbarch)->fp0 + 32
709 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
710 }
711
712 /* This predicate tests for the case of a value of less than 8
713 bytes in width that is being transfered to or from an 8 byte
714 general purpose register. */
715 static int
716 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
717 struct type *type)
718 {
719 int num_regs = gdbarch_num_regs (gdbarch);
720
721 return (register_size (gdbarch, regnum) == 8
722 && regnum % num_regs > 0 && regnum % num_regs < 32
723 && TYPE_LENGTH (type) < 8);
724 }
725
726 static int
727 mips_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
728 {
729 return mips_convert_register_float_case_p (gdbarch, regnum, type)
730 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type);
731 }
732
733 static void
734 mips_register_to_value (struct frame_info *frame, int regnum,
735 struct type *type, gdb_byte *to)
736 {
737 struct gdbarch *gdbarch = get_frame_arch (frame);
738
739 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
740 {
741 get_frame_register (frame, regnum + 0, to + 4);
742 get_frame_register (frame, regnum + 1, to + 0);
743 }
744 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
745 {
746 int len = TYPE_LENGTH (type);
747 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
748 get_frame_register_bytes (frame, regnum, 8 - len, len, to);
749 else
750 get_frame_register_bytes (frame, regnum, 0, len, to);
751 }
752 else
753 {
754 internal_error (__FILE__, __LINE__,
755 _("mips_register_to_value: unrecognized case"));
756 }
757 }
758
759 static void
760 mips_value_to_register (struct frame_info *frame, int regnum,
761 struct type *type, const gdb_byte *from)
762 {
763 struct gdbarch *gdbarch = get_frame_arch (frame);
764
765 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
766 {
767 put_frame_register (frame, regnum + 0, from + 4);
768 put_frame_register (frame, regnum + 1, from + 0);
769 }
770 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
771 {
772 gdb_byte fill[8];
773 int len = TYPE_LENGTH (type);
774
775 /* Sign extend values, irrespective of type, that are stored to
776 a 64-bit general purpose register. (32-bit unsigned values
777 are stored as signed quantities within a 64-bit register.
778 When performing an operation, in compiled code, that combines
779 a 32-bit unsigned value with a signed 64-bit value, a type
780 conversion is first performed that zeroes out the high 32 bits.) */
781 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
782 {
783 if (from[0] & 0x80)
784 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
785 else
786 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
787 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
788 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
789 }
790 else
791 {
792 if (from[len-1] & 0x80)
793 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
794 else
795 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
796 put_frame_register_bytes (frame, regnum, 0, len, from);
797 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
798 }
799 }
800 else
801 {
802 internal_error (__FILE__, __LINE__,
803 _("mips_value_to_register: unrecognized case"));
804 }
805 }
806
807 /* Return the GDB type object for the "standard" data type of data in
808 register REG. */
809
810 static struct type *
811 mips_register_type (struct gdbarch *gdbarch, int regnum)
812 {
813 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
814 if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
815 && (regnum % gdbarch_num_regs (gdbarch))
816 < mips_regnum (gdbarch)->fp0 + 32)
817 {
818 /* The floating-point registers raw, or cooked, always match
819 mips_isa_regsize(), and also map 1:1, byte for byte. */
820 if (mips_isa_regsize (gdbarch) == 4)
821 return builtin_type (gdbarch)->builtin_float;
822 else
823 return builtin_type (gdbarch)->builtin_double;
824 }
825 else if (regnum < gdbarch_num_regs (gdbarch))
826 {
827 /* The raw or ISA registers. These are all sized according to
828 the ISA regsize. */
829 if (mips_isa_regsize (gdbarch) == 4)
830 return builtin_type (gdbarch)->builtin_int32;
831 else
832 return builtin_type (gdbarch)->builtin_int64;
833 }
834 else
835 {
836 /* The cooked or ABI registers. These are sized according to
837 the ABI (with a few complications). */
838 if (regnum >= (gdbarch_num_regs (gdbarch)
839 + mips_regnum (gdbarch)->fp_control_status)
840 && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
841 /* The pseudo/cooked view of the embedded registers is always
842 32-bit. The raw view is handled below. */
843 return builtin_type (gdbarch)->builtin_int32;
844 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
845 /* The target, while possibly using a 64-bit register buffer,
846 is only transfering 32-bits of each integer register.
847 Reflect this in the cooked/pseudo (ABI) register value. */
848 return builtin_type (gdbarch)->builtin_int32;
849 else if (mips_abi_regsize (gdbarch) == 4)
850 /* The ABI is restricted to 32-bit registers (the ISA could be
851 32- or 64-bit). */
852 return builtin_type (gdbarch)->builtin_int32;
853 else
854 /* 64-bit ABI. */
855 return builtin_type (gdbarch)->builtin_int64;
856 }
857 }
858
859 /* Return the GDB type for the pseudo register REGNUM, which is the
860 ABI-level view. This function is only called if there is a target
861 description which includes registers, so we know precisely the
862 types of hardware registers. */
863
864 static struct type *
865 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
866 {
867 const int num_regs = gdbarch_num_regs (gdbarch);
868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
869 int rawnum = regnum % num_regs;
870 struct type *rawtype;
871
872 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
873
874 /* Absent registers are still absent. */
875 rawtype = gdbarch_register_type (gdbarch, rawnum);
876 if (TYPE_LENGTH (rawtype) == 0)
877 return rawtype;
878
879 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
880 /* Present the floating point registers however the hardware did;
881 do not try to convert between FPU layouts. */
882 return rawtype;
883
884 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
885 {
886 /* The pseudo/cooked view of embedded registers is always
887 32-bit, even if the target transfers 64-bit values for them.
888 New targets relying on XML descriptions should only transfer
889 the necessary 32 bits, but older versions of GDB expected 64,
890 so allow the target to provide 64 bits without interfering
891 with the displayed type. */
892 return builtin_type (gdbarch)->builtin_int32;
893 }
894
895 /* Use pointer types for registers if we can. For n32 we can not,
896 since we do not have a 64-bit pointer type. */
897 if (mips_abi_regsize (gdbarch)
898 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
899 {
900 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
901 return builtin_type (gdbarch)->builtin_data_ptr;
902 else if (rawnum == MIPS_EMBED_PC_REGNUM)
903 return builtin_type (gdbarch)->builtin_func_ptr;
904 }
905
906 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
907 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
908 return builtin_type (gdbarch)->builtin_int32;
909
910 /* For all other registers, pass through the hardware type. */
911 return rawtype;
912 }
913
914 /* Should the upper word of 64-bit addresses be zeroed? */
915 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
916
917 static int
918 mips_mask_address_p (struct gdbarch_tdep *tdep)
919 {
920 switch (mask_address_var)
921 {
922 case AUTO_BOOLEAN_TRUE:
923 return 1;
924 case AUTO_BOOLEAN_FALSE:
925 return 0;
926 break;
927 case AUTO_BOOLEAN_AUTO:
928 return tdep->default_mask_address_p;
929 default:
930 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
931 return -1;
932 }
933 }
934
935 static void
936 show_mask_address (struct ui_file *file, int from_tty,
937 struct cmd_list_element *c, const char *value)
938 {
939 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
940
941 deprecated_show_value_hack (file, from_tty, c, value);
942 switch (mask_address_var)
943 {
944 case AUTO_BOOLEAN_TRUE:
945 printf_filtered ("The 32 bit mips address mask is enabled\n");
946 break;
947 case AUTO_BOOLEAN_FALSE:
948 printf_filtered ("The 32 bit mips address mask is disabled\n");
949 break;
950 case AUTO_BOOLEAN_AUTO:
951 printf_filtered
952 ("The 32 bit address mask is set automatically. Currently %s\n",
953 mips_mask_address_p (tdep) ? "enabled" : "disabled");
954 break;
955 default:
956 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
957 break;
958 }
959 }
960
961 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
962
963 int
964 mips_pc_is_mips16 (CORE_ADDR memaddr)
965 {
966 struct minimal_symbol *sym;
967
968 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
969 if (is_mips16_addr (memaddr))
970 return 1;
971
972 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
973 the high bit of the info field. Use this to decide if the function is
974 MIPS16 or normal MIPS. */
975 sym = lookup_minimal_symbol_by_pc (memaddr);
976 if (sym)
977 return msymbol_is_special (sym);
978 else
979 return 0;
980 }
981
982 /* MIPS believes that the PC has a sign extended value. Perhaps the
983 all registers should be sign extended for simplicity? */
984
985 static CORE_ADDR
986 mips_read_pc (struct regcache *regcache)
987 {
988 ULONGEST pc;
989 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
990 regcache_cooked_read_signed (regcache, regnum, &pc);
991 if (is_mips16_addr (pc))
992 pc = unmake_mips16_addr (pc);
993 return pc;
994 }
995
996 static CORE_ADDR
997 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
998 {
999 ULONGEST pc;
1000
1001 pc = frame_unwind_register_signed
1002 (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
1003 if (is_mips16_addr (pc))
1004 pc = unmake_mips16_addr (pc);
1005 return pc;
1006 }
1007
1008 static CORE_ADDR
1009 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1010 {
1011 return frame_unwind_register_signed
1012 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1013 }
1014
1015 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1016 dummy frame. The frame ID's base needs to match the TOS value
1017 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1018 breakpoint. */
1019
1020 static struct frame_id
1021 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1022 {
1023 return frame_id_build
1024 (get_frame_register_signed (this_frame,
1025 gdbarch_num_regs (gdbarch)
1026 + MIPS_SP_REGNUM),
1027 get_frame_pc (this_frame));
1028 }
1029
1030 static void
1031 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1032 {
1033 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
1034 if (mips_pc_is_mips16 (pc))
1035 regcache_cooked_write_unsigned (regcache, regnum, make_mips16_addr (pc));
1036 else
1037 regcache_cooked_write_unsigned (regcache, regnum, pc);
1038 }
1039
1040 /* Fetch and return instruction from the specified location. If the PC
1041 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
1042
1043 static ULONGEST
1044 mips_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
1045 {
1046 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1047 gdb_byte buf[MIPS_INSN32_SIZE];
1048 int instlen;
1049 int status;
1050
1051 if (mips_pc_is_mips16 (addr))
1052 {
1053 instlen = MIPS_INSN16_SIZE;
1054 addr = unmake_mips16_addr (addr);
1055 }
1056 else
1057 instlen = MIPS_INSN32_SIZE;
1058 status = target_read_memory (addr, buf, instlen);
1059 if (status)
1060 memory_error (status, addr);
1061 return extract_unsigned_integer (buf, instlen, byte_order);
1062 }
1063
1064 /* These the fields of 32 bit mips instructions */
1065 #define mips32_op(x) (x >> 26)
1066 #define itype_op(x) (x >> 26)
1067 #define itype_rs(x) ((x >> 21) & 0x1f)
1068 #define itype_rt(x) ((x >> 16) & 0x1f)
1069 #define itype_immediate(x) (x & 0xffff)
1070
1071 #define jtype_op(x) (x >> 26)
1072 #define jtype_target(x) (x & 0x03ffffff)
1073
1074 #define rtype_op(x) (x >> 26)
1075 #define rtype_rs(x) ((x >> 21) & 0x1f)
1076 #define rtype_rt(x) ((x >> 16) & 0x1f)
1077 #define rtype_rd(x) ((x >> 11) & 0x1f)
1078 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1079 #define rtype_funct(x) (x & 0x3f)
1080
1081 static LONGEST
1082 mips32_relative_offset (ULONGEST inst)
1083 {
1084 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1085 }
1086
1087 /* Determine where to set a single step breakpoint while considering
1088 branch prediction. */
1089 static CORE_ADDR
1090 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
1091 {
1092 struct gdbarch *gdbarch = get_frame_arch (frame);
1093 unsigned long inst;
1094 int op;
1095 inst = mips_fetch_instruction (gdbarch, pc);
1096 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1097 {
1098 if (itype_op (inst) >> 2 == 5)
1099 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1100 {
1101 op = (itype_op (inst) & 0x03);
1102 switch (op)
1103 {
1104 case 0: /* BEQL */
1105 goto equal_branch;
1106 case 1: /* BNEL */
1107 goto neq_branch;
1108 case 2: /* BLEZL */
1109 goto less_branch;
1110 case 3: /* BGTZL */
1111 goto greater_branch;
1112 default:
1113 pc += 4;
1114 }
1115 }
1116 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1117 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1118 {
1119 int tf = itype_rt (inst) & 0x01;
1120 int cnum = itype_rt (inst) >> 2;
1121 int fcrcs =
1122 get_frame_register_signed (frame,
1123 mips_regnum (get_frame_arch (frame))->
1124 fp_control_status);
1125 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1126
1127 if (((cond >> cnum) & 0x01) == tf)
1128 pc += mips32_relative_offset (inst) + 4;
1129 else
1130 pc += 8;
1131 }
1132 else
1133 pc += 4; /* Not a branch, next instruction is easy */
1134 }
1135 else
1136 { /* This gets way messy */
1137
1138 /* Further subdivide into SPECIAL, REGIMM and other */
1139 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1140 {
1141 case 0: /* SPECIAL */
1142 op = rtype_funct (inst);
1143 switch (op)
1144 {
1145 case 8: /* JR */
1146 case 9: /* JALR */
1147 /* Set PC to that address */
1148 pc = get_frame_register_signed (frame, rtype_rs (inst));
1149 break;
1150 case 12: /* SYSCALL */
1151 {
1152 struct gdbarch_tdep *tdep;
1153
1154 tdep = gdbarch_tdep (get_frame_arch (frame));
1155 if (tdep->syscall_next_pc != NULL)
1156 pc = tdep->syscall_next_pc (frame);
1157 else
1158 pc += 4;
1159 }
1160 break;
1161 default:
1162 pc += 4;
1163 }
1164
1165 break; /* end SPECIAL */
1166 case 1: /* REGIMM */
1167 {
1168 op = itype_rt (inst); /* branch condition */
1169 switch (op)
1170 {
1171 case 0: /* BLTZ */
1172 case 2: /* BLTZL */
1173 case 16: /* BLTZAL */
1174 case 18: /* BLTZALL */
1175 less_branch:
1176 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1177 pc += mips32_relative_offset (inst) + 4;
1178 else
1179 pc += 8; /* after the delay slot */
1180 break;
1181 case 1: /* BGEZ */
1182 case 3: /* BGEZL */
1183 case 17: /* BGEZAL */
1184 case 19: /* BGEZALL */
1185 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1186 pc += mips32_relative_offset (inst) + 4;
1187 else
1188 pc += 8; /* after the delay slot */
1189 break;
1190 /* All of the other instructions in the REGIMM category */
1191 default:
1192 pc += 4;
1193 }
1194 }
1195 break; /* end REGIMM */
1196 case 2: /* J */
1197 case 3: /* JAL */
1198 {
1199 unsigned long reg;
1200 reg = jtype_target (inst) << 2;
1201 /* Upper four bits get never changed... */
1202 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1203 }
1204 break;
1205 /* FIXME case JALX : */
1206 {
1207 unsigned long reg;
1208 reg = jtype_target (inst) << 2;
1209 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1210 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1211 }
1212 break; /* The new PC will be alternate mode */
1213 case 4: /* BEQ, BEQL */
1214 equal_branch:
1215 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1216 get_frame_register_signed (frame, itype_rt (inst)))
1217 pc += mips32_relative_offset (inst) + 4;
1218 else
1219 pc += 8;
1220 break;
1221 case 5: /* BNE, BNEL */
1222 neq_branch:
1223 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1224 get_frame_register_signed (frame, itype_rt (inst)))
1225 pc += mips32_relative_offset (inst) + 4;
1226 else
1227 pc += 8;
1228 break;
1229 case 6: /* BLEZ, BLEZL */
1230 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1231 pc += mips32_relative_offset (inst) + 4;
1232 else
1233 pc += 8;
1234 break;
1235 case 7:
1236 default:
1237 greater_branch: /* BGTZ, BGTZL */
1238 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1239 pc += mips32_relative_offset (inst) + 4;
1240 else
1241 pc += 8;
1242 break;
1243 } /* switch */
1244 } /* else */
1245 return pc;
1246 } /* mips32_next_pc */
1247
1248 /* Decoding the next place to set a breakpoint is irregular for the
1249 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1250 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1251 We dont want to set a single step instruction on the extend instruction
1252 either.
1253 */
1254
1255 /* Lots of mips16 instruction formats */
1256 /* Predicting jumps requires itype,ritype,i8type
1257 and their extensions extItype,extritype,extI8type
1258 */
1259 enum mips16_inst_fmts
1260 {
1261 itype, /* 0 immediate 5,10 */
1262 ritype, /* 1 5,3,8 */
1263 rrtype, /* 2 5,3,3,5 */
1264 rritype, /* 3 5,3,3,5 */
1265 rrrtype, /* 4 5,3,3,3,2 */
1266 rriatype, /* 5 5,3,3,1,4 */
1267 shifttype, /* 6 5,3,3,3,2 */
1268 i8type, /* 7 5,3,8 */
1269 i8movtype, /* 8 5,3,3,5 */
1270 i8mov32rtype, /* 9 5,3,5,3 */
1271 i64type, /* 10 5,3,8 */
1272 ri64type, /* 11 5,3,3,5 */
1273 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1274 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1275 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1276 extRRItype, /* 15 5,5,5,5,3,3,5 */
1277 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1278 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1279 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1280 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1281 extRi64type, /* 20 5,6,5,5,3,3,5 */
1282 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1283 };
1284 /* I am heaping all the fields of the formats into one structure and
1285 then, only the fields which are involved in instruction extension */
1286 struct upk_mips16
1287 {
1288 CORE_ADDR offset;
1289 unsigned int regx; /* Function in i8 type */
1290 unsigned int regy;
1291 };
1292
1293
1294 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1295 for the bits which make up the immediate extension. */
1296
1297 static CORE_ADDR
1298 extended_offset (unsigned int extension)
1299 {
1300 CORE_ADDR value;
1301 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1302 value = value << 6;
1303 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1304 value = value << 5;
1305 value |= extension & 0x01f; /* extract 4:0 */
1306 return value;
1307 }
1308
1309 /* Only call this function if you know that this is an extendable
1310 instruction. It won't malfunction, but why make excess remote memory
1311 references? If the immediate operands get sign extended or something,
1312 do it after the extension is performed. */
1313 /* FIXME: Every one of these cases needs to worry about sign extension
1314 when the offset is to be used in relative addressing. */
1315
1316 static unsigned int
1317 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
1318 {
1319 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1320 gdb_byte buf[8];
1321 pc &= 0xfffffffe; /* clear the low order bit */
1322 target_read_memory (pc, buf, 2);
1323 return extract_unsigned_integer (buf, 2, byte_order);
1324 }
1325
1326 static void
1327 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
1328 unsigned int extension,
1329 unsigned int inst,
1330 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1331 {
1332 CORE_ADDR offset;
1333 int regx;
1334 int regy;
1335 switch (insn_format)
1336 {
1337 case itype:
1338 {
1339 CORE_ADDR value;
1340 if (extension)
1341 {
1342 value = extended_offset (extension);
1343 value = value << 11; /* rom for the original value */
1344 value |= inst & 0x7ff; /* eleven bits from instruction */
1345 }
1346 else
1347 {
1348 value = inst & 0x7ff;
1349 /* FIXME : Consider sign extension */
1350 }
1351 offset = value;
1352 regx = -1;
1353 regy = -1;
1354 }
1355 break;
1356 case ritype:
1357 case i8type:
1358 { /* A register identifier and an offset */
1359 /* Most of the fields are the same as I type but the
1360 immediate value is of a different length */
1361 CORE_ADDR value;
1362 if (extension)
1363 {
1364 value = extended_offset (extension);
1365 value = value << 8; /* from the original instruction */
1366 value |= inst & 0xff; /* eleven bits from instruction */
1367 regx = (extension >> 8) & 0x07; /* or i8 funct */
1368 if (value & 0x4000) /* test the sign bit , bit 26 */
1369 {
1370 value &= ~0x3fff; /* remove the sign bit */
1371 value = -value;
1372 }
1373 }
1374 else
1375 {
1376 value = inst & 0xff; /* 8 bits */
1377 regx = (inst >> 8) & 0x07; /* or i8 funct */
1378 /* FIXME: Do sign extension , this format needs it */
1379 if (value & 0x80) /* THIS CONFUSES ME */
1380 {
1381 value &= 0xef; /* remove the sign bit */
1382 value = -value;
1383 }
1384 }
1385 offset = value;
1386 regy = -1;
1387 break;
1388 }
1389 case jalxtype:
1390 {
1391 unsigned long value;
1392 unsigned int nexthalf;
1393 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1394 value = value << 16;
1395 nexthalf = mips_fetch_instruction (gdbarch, pc + 2); /* low bit still set */
1396 value |= nexthalf;
1397 offset = value;
1398 regx = -1;
1399 regy = -1;
1400 break;
1401 }
1402 default:
1403 internal_error (__FILE__, __LINE__, _("bad switch"));
1404 }
1405 upk->offset = offset;
1406 upk->regx = regx;
1407 upk->regy = regy;
1408 }
1409
1410
1411 static CORE_ADDR
1412 add_offset_16 (CORE_ADDR pc, int offset)
1413 {
1414 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1415 }
1416
1417 static CORE_ADDR
1418 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1419 unsigned int extension, unsigned int insn)
1420 {
1421 struct gdbarch *gdbarch = get_frame_arch (frame);
1422 int op = (insn >> 11);
1423 switch (op)
1424 {
1425 case 2: /* Branch */
1426 {
1427 CORE_ADDR offset;
1428 struct upk_mips16 upk;
1429 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
1430 offset = upk.offset;
1431 if (offset & 0x800)
1432 {
1433 offset &= 0xeff;
1434 offset = -offset;
1435 }
1436 pc += (offset << 1) + 2;
1437 break;
1438 }
1439 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1440 {
1441 struct upk_mips16 upk;
1442 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
1443 pc = add_offset_16 (pc, upk.offset);
1444 if ((insn >> 10) & 0x01) /* Exchange mode */
1445 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1446 else
1447 pc |= 0x01;
1448 break;
1449 }
1450 case 4: /* beqz */
1451 {
1452 struct upk_mips16 upk;
1453 int reg;
1454 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
1455 reg = get_frame_register_signed (frame, upk.regx);
1456 if (reg == 0)
1457 pc += (upk.offset << 1) + 2;
1458 else
1459 pc += 2;
1460 break;
1461 }
1462 case 5: /* bnez */
1463 {
1464 struct upk_mips16 upk;
1465 int reg;
1466 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
1467 reg = get_frame_register_signed (frame, upk.regx);
1468 if (reg != 0)
1469 pc += (upk.offset << 1) + 2;
1470 else
1471 pc += 2;
1472 break;
1473 }
1474 case 12: /* I8 Formats btez btnez */
1475 {
1476 struct upk_mips16 upk;
1477 int reg;
1478 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
1479 /* upk.regx contains the opcode */
1480 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1481 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1482 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1483 /* pc = add_offset_16(pc,upk.offset) ; */
1484 pc += (upk.offset << 1) + 2;
1485 else
1486 pc += 2;
1487 break;
1488 }
1489 case 29: /* RR Formats JR, JALR, JALR-RA */
1490 {
1491 struct upk_mips16 upk;
1492 /* upk.fmt = rrtype; */
1493 op = insn & 0x1f;
1494 if (op == 0)
1495 {
1496 int reg;
1497 upk.regx = (insn >> 8) & 0x07;
1498 upk.regy = (insn >> 5) & 0x07;
1499 switch (upk.regy)
1500 {
1501 case 0:
1502 reg = upk.regx;
1503 break;
1504 case 1:
1505 reg = 31;
1506 break; /* Function return instruction */
1507 case 2:
1508 reg = upk.regx;
1509 break;
1510 default:
1511 reg = 31;
1512 break; /* BOGUS Guess */
1513 }
1514 pc = get_frame_register_signed (frame, reg);
1515 }
1516 else
1517 pc += 2;
1518 break;
1519 }
1520 case 30:
1521 /* This is an instruction extension. Fetch the real instruction
1522 (which follows the extension) and decode things based on
1523 that. */
1524 {
1525 pc += 2;
1526 pc = extended_mips16_next_pc (frame, pc, insn,
1527 fetch_mips_16 (gdbarch, pc));
1528 break;
1529 }
1530 default:
1531 {
1532 pc += 2;
1533 break;
1534 }
1535 }
1536 return pc;
1537 }
1538
1539 static CORE_ADDR
1540 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1541 {
1542 struct gdbarch *gdbarch = get_frame_arch (frame);
1543 unsigned int insn = fetch_mips_16 (gdbarch, pc);
1544 return extended_mips16_next_pc (frame, pc, 0, insn);
1545 }
1546
1547 /* The mips_next_pc function supports single_step when the remote
1548 target monitor or stub is not developed enough to do a single_step.
1549 It works by decoding the current instruction and predicting where a
1550 branch will go. This isnt hard because all the data is available.
1551 The MIPS32 and MIPS16 variants are quite different. */
1552 static CORE_ADDR
1553 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1554 {
1555 if (is_mips16_addr (pc))
1556 return mips16_next_pc (frame, pc);
1557 else
1558 return mips32_next_pc (frame, pc);
1559 }
1560
1561 struct mips_frame_cache
1562 {
1563 CORE_ADDR base;
1564 struct trad_frame_saved_reg *saved_regs;
1565 };
1566
1567 /* Set a register's saved stack address in temp_saved_regs. If an
1568 address has already been set for this register, do nothing; this
1569 way we will only recognize the first save of a given register in a
1570 function prologue.
1571
1572 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1573 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1574 Strictly speaking, only the second range is used as it is only second
1575 range (the ABI instead of ISA registers) that comes into play when finding
1576 saved registers in a frame. */
1577
1578 static void
1579 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
1580 int regnum, CORE_ADDR offset)
1581 {
1582 if (this_cache != NULL
1583 && this_cache->saved_regs[regnum].addr == -1)
1584 {
1585 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
1586 = offset;
1587 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
1588 = offset;
1589 }
1590 }
1591
1592
1593 /* Fetch the immediate value from a MIPS16 instruction.
1594 If the previous instruction was an EXTEND, use it to extend
1595 the upper bits of the immediate value. This is a helper function
1596 for mips16_scan_prologue. */
1597
1598 static int
1599 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1600 unsigned short inst, /* current instruction */
1601 int nbits, /* number of bits in imm field */
1602 int scale, /* scale factor to be applied to imm */
1603 int is_signed) /* is the imm field signed? */
1604 {
1605 int offset;
1606
1607 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1608 {
1609 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1610 if (offset & 0x8000) /* check for negative extend */
1611 offset = 0 - (0x10000 - (offset & 0xffff));
1612 return offset | (inst & 0x1f);
1613 }
1614 else
1615 {
1616 int max_imm = 1 << nbits;
1617 int mask = max_imm - 1;
1618 int sign_bit = max_imm >> 1;
1619
1620 offset = inst & mask;
1621 if (is_signed && (offset & sign_bit))
1622 offset = 0 - (max_imm - offset);
1623 return offset * scale;
1624 }
1625 }
1626
1627
1628 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1629 the associated FRAME_CACHE if not null.
1630 Return the address of the first instruction past the prologue. */
1631
1632 static CORE_ADDR
1633 mips16_scan_prologue (struct gdbarch *gdbarch,
1634 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1635 struct frame_info *this_frame,
1636 struct mips_frame_cache *this_cache)
1637 {
1638 CORE_ADDR cur_pc;
1639 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1640 CORE_ADDR sp;
1641 long frame_offset = 0; /* Size of stack frame. */
1642 long frame_adjust = 0; /* Offset of FP from SP. */
1643 int frame_reg = MIPS_SP_REGNUM;
1644 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1645 unsigned inst = 0; /* current instruction */
1646 unsigned entry_inst = 0; /* the entry instruction */
1647 unsigned save_inst = 0; /* the save instruction */
1648 int reg, offset;
1649
1650 int extend_bytes = 0;
1651 int prev_extend_bytes;
1652 CORE_ADDR end_prologue_addr = 0;
1653
1654 /* Can be called when there's no process, and hence when there's no
1655 THIS_FRAME. */
1656 if (this_frame != NULL)
1657 sp = get_frame_register_signed (this_frame,
1658 gdbarch_num_regs (gdbarch)
1659 + MIPS_SP_REGNUM);
1660 else
1661 sp = 0;
1662
1663 if (limit_pc > start_pc + 200)
1664 limit_pc = start_pc + 200;
1665
1666 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1667 {
1668 /* Save the previous instruction. If it's an EXTEND, we'll extract
1669 the immediate offset extension from it in mips16_get_imm. */
1670 prev_inst = inst;
1671
1672 /* Fetch and decode the instruction. */
1673 inst = (unsigned short) mips_fetch_instruction (gdbarch, cur_pc);
1674
1675 /* Normally we ignore extend instructions. However, if it is
1676 not followed by a valid prologue instruction, then this
1677 instruction is not part of the prologue either. We must
1678 remember in this case to adjust the end_prologue_addr back
1679 over the extend. */
1680 if ((inst & 0xf800) == 0xf000) /* extend */
1681 {
1682 extend_bytes = MIPS_INSN16_SIZE;
1683 continue;
1684 }
1685
1686 prev_extend_bytes = extend_bytes;
1687 extend_bytes = 0;
1688
1689 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1690 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1691 {
1692 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1693 if (offset < 0) /* negative stack adjustment? */
1694 frame_offset -= offset;
1695 else
1696 /* Exit loop if a positive stack adjustment is found, which
1697 usually means that the stack cleanup code in the function
1698 epilogue is reached. */
1699 break;
1700 }
1701 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1702 {
1703 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1704 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1705 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1706 }
1707 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1708 {
1709 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1710 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1711 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1712 }
1713 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1714 {
1715 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1716 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1717 }
1718 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1719 {
1720 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1721 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1722 }
1723 else if (inst == 0x673d) /* move $s1, $sp */
1724 {
1725 frame_addr = sp;
1726 frame_reg = 17;
1727 }
1728 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1729 {
1730 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1731 frame_addr = sp + offset;
1732 frame_reg = 17;
1733 frame_adjust = offset;
1734 }
1735 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1736 {
1737 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1738 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1739 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
1740 }
1741 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1742 {
1743 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1744 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1745 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
1746 }
1747 else if ((inst & 0xf81f) == 0xe809
1748 && (inst & 0x700) != 0x700) /* entry */
1749 entry_inst = inst; /* save for later processing */
1750 else if ((inst & 0xff80) == 0x6480) /* save */
1751 {
1752 save_inst = inst; /* save for later processing */
1753 if (prev_extend_bytes) /* extend */
1754 save_inst |= prev_inst << 16;
1755 }
1756 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1757 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1758 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1759 {
1760 /* This instruction is part of the prologue, but we don't
1761 need to do anything special to handle it. */
1762 }
1763 else
1764 {
1765 /* This instruction is not an instruction typically found
1766 in a prologue, so we must have reached the end of the
1767 prologue. */
1768 if (end_prologue_addr == 0)
1769 end_prologue_addr = cur_pc - prev_extend_bytes;
1770 }
1771 }
1772
1773 /* The entry instruction is typically the first instruction in a function,
1774 and it stores registers at offsets relative to the value of the old SP
1775 (before the prologue). But the value of the sp parameter to this
1776 function is the new SP (after the prologue has been executed). So we
1777 can't calculate those offsets until we've seen the entire prologue,
1778 and can calculate what the old SP must have been. */
1779 if (entry_inst != 0)
1780 {
1781 int areg_count = (entry_inst >> 8) & 7;
1782 int sreg_count = (entry_inst >> 6) & 3;
1783
1784 /* The entry instruction always subtracts 32 from the SP. */
1785 frame_offset += 32;
1786
1787 /* Now we can calculate what the SP must have been at the
1788 start of the function prologue. */
1789 sp += frame_offset;
1790
1791 /* Check if a0-a3 were saved in the caller's argument save area. */
1792 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1793 {
1794 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1795 offset += mips_abi_regsize (gdbarch);
1796 }
1797
1798 /* Check if the ra register was pushed on the stack. */
1799 offset = -4;
1800 if (entry_inst & 0x20)
1801 {
1802 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1803 offset -= mips_abi_regsize (gdbarch);
1804 }
1805
1806 /* Check if the s0 and s1 registers were pushed on the stack. */
1807 for (reg = 16; reg < sreg_count + 16; reg++)
1808 {
1809 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1810 offset -= mips_abi_regsize (gdbarch);
1811 }
1812 }
1813
1814 /* The SAVE instruction is similar to ENTRY, except that defined by the
1815 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
1816 size of the frame is specified as an immediate field of instruction
1817 and an extended variation exists which lets additional registers and
1818 frame space to be specified. The instruction always treats registers
1819 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
1820 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
1821 {
1822 static int args_table[16] = {
1823 0, 0, 0, 0, 1, 1, 1, 1,
1824 2, 2, 2, 0, 3, 3, 4, -1,
1825 };
1826 static int astatic_table[16] = {
1827 0, 1, 2, 3, 0, 1, 2, 3,
1828 0, 1, 2, 4, 0, 1, 0, -1,
1829 };
1830 int aregs = (save_inst >> 16) & 0xf;
1831 int xsregs = (save_inst >> 24) & 0x7;
1832 int args = args_table[aregs];
1833 int astatic = astatic_table[aregs];
1834 long frame_size;
1835
1836 if (args < 0)
1837 {
1838 warning (_("Invalid number of argument registers encoded in SAVE."));
1839 args = 0;
1840 }
1841 if (astatic < 0)
1842 {
1843 warning (_("Invalid number of static registers encoded in SAVE."));
1844 astatic = 0;
1845 }
1846
1847 /* For standard SAVE the frame size of 0 means 128. */
1848 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
1849 if (frame_size == 0 && (save_inst >> 16) == 0)
1850 frame_size = 16;
1851 frame_size *= 8;
1852 frame_offset += frame_size;
1853
1854 /* Now we can calculate what the SP must have been at the
1855 start of the function prologue. */
1856 sp += frame_offset;
1857
1858 /* Check if A0-A3 were saved in the caller's argument save area. */
1859 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
1860 {
1861 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1862 offset += mips_abi_regsize (gdbarch);
1863 }
1864
1865 offset = -4;
1866
1867 /* Check if the RA register was pushed on the stack. */
1868 if (save_inst & 0x40)
1869 {
1870 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1871 offset -= mips_abi_regsize (gdbarch);
1872 }
1873
1874 /* Check if the S8 register was pushed on the stack. */
1875 if (xsregs > 6)
1876 {
1877 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
1878 offset -= mips_abi_regsize (gdbarch);
1879 xsregs--;
1880 }
1881 /* Check if S2-S7 were pushed on the stack. */
1882 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
1883 {
1884 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1885 offset -= mips_abi_regsize (gdbarch);
1886 }
1887
1888 /* Check if the S1 register was pushed on the stack. */
1889 if (save_inst & 0x10)
1890 {
1891 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
1892 offset -= mips_abi_regsize (gdbarch);
1893 }
1894 /* Check if the S0 register was pushed on the stack. */
1895 if (save_inst & 0x20)
1896 {
1897 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
1898 offset -= mips_abi_regsize (gdbarch);
1899 }
1900
1901 /* Check if A0-A3 were pushed on the stack. */
1902 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
1903 {
1904 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1905 offset -= mips_abi_regsize (gdbarch);
1906 }
1907 }
1908
1909 if (this_cache != NULL)
1910 {
1911 this_cache->base =
1912 (get_frame_register_signed (this_frame,
1913 gdbarch_num_regs (gdbarch) + frame_reg)
1914 + frame_offset - frame_adjust);
1915 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1916 be able to get rid of the assignment below, evetually. But it's
1917 still needed for now. */
1918 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1919 + mips_regnum (gdbarch)->pc]
1920 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
1921 }
1922
1923 /* If we didn't reach the end of the prologue when scanning the function
1924 instructions, then set end_prologue_addr to the address of the
1925 instruction immediately after the last one we scanned. */
1926 if (end_prologue_addr == 0)
1927 end_prologue_addr = cur_pc;
1928
1929 return end_prologue_addr;
1930 }
1931
1932 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1933 Procedures that use the 32-bit instruction set are handled by the
1934 mips_insn32 unwinder. */
1935
1936 static struct mips_frame_cache *
1937 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
1938 {
1939 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1940 struct mips_frame_cache *cache;
1941
1942 if ((*this_cache) != NULL)
1943 return (*this_cache);
1944 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1945 (*this_cache) = cache;
1946 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1947
1948 /* Analyze the function prologue. */
1949 {
1950 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
1951 CORE_ADDR start_addr;
1952
1953 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1954 if (start_addr == 0)
1955 start_addr = heuristic_proc_start (gdbarch, pc);
1956 /* We can't analyze the prologue if we couldn't find the begining
1957 of the function. */
1958 if (start_addr == 0)
1959 return cache;
1960
1961 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
1962 }
1963
1964 /* gdbarch_sp_regnum contains the value and not the address. */
1965 trad_frame_set_value (cache->saved_regs,
1966 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
1967 cache->base);
1968
1969 return (*this_cache);
1970 }
1971
1972 static void
1973 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
1974 struct frame_id *this_id)
1975 {
1976 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1977 this_cache);
1978 /* This marks the outermost frame. */
1979 if (info->base == 0)
1980 return;
1981 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
1982 }
1983
1984 static struct value *
1985 mips_insn16_frame_prev_register (struct frame_info *this_frame,
1986 void **this_cache, int regnum)
1987 {
1988 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1989 this_cache);
1990 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1991 }
1992
1993 static int
1994 mips_insn16_frame_sniffer (const struct frame_unwind *self,
1995 struct frame_info *this_frame, void **this_cache)
1996 {
1997 CORE_ADDR pc = get_frame_pc (this_frame);
1998 if (mips_pc_is_mips16 (pc))
1999 return 1;
2000 return 0;
2001 }
2002
2003 static const struct frame_unwind mips_insn16_frame_unwind =
2004 {
2005 NORMAL_FRAME,
2006 mips_insn16_frame_this_id,
2007 mips_insn16_frame_prev_register,
2008 NULL,
2009 mips_insn16_frame_sniffer
2010 };
2011
2012 static CORE_ADDR
2013 mips_insn16_frame_base_address (struct frame_info *this_frame,
2014 void **this_cache)
2015 {
2016 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2017 this_cache);
2018 return info->base;
2019 }
2020
2021 static const struct frame_base mips_insn16_frame_base =
2022 {
2023 &mips_insn16_frame_unwind,
2024 mips_insn16_frame_base_address,
2025 mips_insn16_frame_base_address,
2026 mips_insn16_frame_base_address
2027 };
2028
2029 static const struct frame_base *
2030 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2031 {
2032 CORE_ADDR pc = get_frame_pc (this_frame);
2033 if (mips_pc_is_mips16 (pc))
2034 return &mips_insn16_frame_base;
2035 else
2036 return NULL;
2037 }
2038
2039 /* Mark all the registers as unset in the saved_regs array
2040 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
2041
2042 static void
2043 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
2044 {
2045 if (this_cache == NULL || this_cache->saved_regs == NULL)
2046 return;
2047
2048 {
2049 const int num_regs = gdbarch_num_regs (gdbarch);
2050 int i;
2051
2052 for (i = 0; i < num_regs; i++)
2053 {
2054 this_cache->saved_regs[i].addr = -1;
2055 }
2056 }
2057 }
2058
2059 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2060 the associated FRAME_CACHE if not null.
2061 Return the address of the first instruction past the prologue. */
2062
2063 static CORE_ADDR
2064 mips32_scan_prologue (struct gdbarch *gdbarch,
2065 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2066 struct frame_info *this_frame,
2067 struct mips_frame_cache *this_cache)
2068 {
2069 CORE_ADDR cur_pc;
2070 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2071 CORE_ADDR sp;
2072 long frame_offset;
2073 int frame_reg = MIPS_SP_REGNUM;
2074
2075 CORE_ADDR end_prologue_addr = 0;
2076 int seen_sp_adjust = 0;
2077 int load_immediate_bytes = 0;
2078 int in_delay_slot = 0;
2079 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
2080
2081 /* Can be called when there's no process, and hence when there's no
2082 THIS_FRAME. */
2083 if (this_frame != NULL)
2084 sp = get_frame_register_signed (this_frame,
2085 gdbarch_num_regs (gdbarch)
2086 + MIPS_SP_REGNUM);
2087 else
2088 sp = 0;
2089
2090 if (limit_pc > start_pc + 200)
2091 limit_pc = start_pc + 200;
2092
2093 restart:
2094
2095 frame_offset = 0;
2096 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
2097 {
2098 unsigned long inst, high_word, low_word;
2099 int reg;
2100
2101 /* Fetch the instruction. */
2102 inst = (unsigned long) mips_fetch_instruction (gdbarch, cur_pc);
2103
2104 /* Save some code by pre-extracting some useful fields. */
2105 high_word = (inst >> 16) & 0xffff;
2106 low_word = inst & 0xffff;
2107 reg = high_word & 0x1f;
2108
2109 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2110 || high_word == 0x23bd /* addi $sp,$sp,-i */
2111 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2112 {
2113 if (low_word & 0x8000) /* negative stack adjustment? */
2114 frame_offset += 0x10000 - low_word;
2115 else
2116 /* Exit loop if a positive stack adjustment is found, which
2117 usually means that the stack cleanup code in the function
2118 epilogue is reached. */
2119 break;
2120 seen_sp_adjust = 1;
2121 }
2122 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2123 && !regsize_is_64_bits)
2124 {
2125 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
2126 }
2127 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2128 && regsize_is_64_bits)
2129 {
2130 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
2131 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
2132 }
2133 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2134 {
2135 /* Old gcc frame, r30 is virtual frame pointer. */
2136 if ((long) low_word != frame_offset)
2137 frame_addr = sp + low_word;
2138 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
2139 {
2140 unsigned alloca_adjust;
2141
2142 frame_reg = 30;
2143 frame_addr = get_frame_register_signed
2144 (this_frame, gdbarch_num_regs (gdbarch) + 30);
2145
2146 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2147 if (alloca_adjust > 0)
2148 {
2149 /* FP > SP + frame_size. This may be because of
2150 an alloca or somethings similar. Fix sp to
2151 "pre-alloca" value, and try again. */
2152 sp += alloca_adjust;
2153 /* Need to reset the status of all registers. Otherwise,
2154 we will hit a guard that prevents the new address
2155 for each register to be recomputed during the second
2156 pass. */
2157 reset_saved_regs (gdbarch, this_cache);
2158 goto restart;
2159 }
2160 }
2161 }
2162 /* move $30,$sp. With different versions of gas this will be either
2163 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2164 Accept any one of these. */
2165 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2166 {
2167 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2168 if (this_frame && frame_reg == MIPS_SP_REGNUM)
2169 {
2170 unsigned alloca_adjust;
2171
2172 frame_reg = 30;
2173 frame_addr = get_frame_register_signed
2174 (this_frame, gdbarch_num_regs (gdbarch) + 30);
2175
2176 alloca_adjust = (unsigned) (frame_addr - sp);
2177 if (alloca_adjust > 0)
2178 {
2179 /* FP > SP + frame_size. This may be because of
2180 an alloca or somethings similar. Fix sp to
2181 "pre-alloca" value, and try again. */
2182 sp = frame_addr;
2183 /* Need to reset the status of all registers. Otherwise,
2184 we will hit a guard that prevents the new address
2185 for each register to be recomputed during the second
2186 pass. */
2187 reset_saved_regs (gdbarch, this_cache);
2188 goto restart;
2189 }
2190 }
2191 }
2192 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
2193 && !regsize_is_64_bits)
2194 {
2195 set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
2196 }
2197 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
2198 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
2199 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
2200 || high_word == 0x3c1c /* lui $gp,n */
2201 || high_word == 0x279c /* addiu $gp,$gp,n */
2202 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2203 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
2204 )
2205 {
2206 /* These instructions are part of the prologue, but we don't
2207 need to do anything special to handle them. */
2208 }
2209 /* The instructions below load $at or $t0 with an immediate
2210 value in preparation for a stack adjustment via
2211 subu $sp,$sp,[$at,$t0]. These instructions could also
2212 initialize a local variable, so we accept them only before
2213 a stack adjustment instruction was seen. */
2214 else if (!seen_sp_adjust
2215 && (high_word == 0x3c01 /* lui $at,n */
2216 || high_word == 0x3c08 /* lui $t0,n */
2217 || high_word == 0x3421 /* ori $at,$at,n */
2218 || high_word == 0x3508 /* ori $t0,$t0,n */
2219 || high_word == 0x3401 /* ori $at,$zero,n */
2220 || high_word == 0x3408 /* ori $t0,$zero,n */
2221 ))
2222 {
2223 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
2224 }
2225 else
2226 {
2227 /* This instruction is not an instruction typically found
2228 in a prologue, so we must have reached the end of the
2229 prologue. */
2230 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2231 loop now? Why would we need to continue scanning the function
2232 instructions? */
2233 if (end_prologue_addr == 0)
2234 end_prologue_addr = cur_pc;
2235
2236 /* Check for branches and jumps. For now, only jump to
2237 register are caught (i.e. returns). */
2238 if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
2239 in_delay_slot = 1;
2240 }
2241
2242 /* If the previous instruction was a jump, we must have reached
2243 the end of the prologue by now. Stop scanning so that we do
2244 not go past the function return. */
2245 if (in_delay_slot)
2246 break;
2247 }
2248
2249 if (this_cache != NULL)
2250 {
2251 this_cache->base =
2252 (get_frame_register_signed (this_frame,
2253 gdbarch_num_regs (gdbarch) + frame_reg)
2254 + frame_offset);
2255 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2256 this assignment below, eventually. But it's still needed
2257 for now. */
2258 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2259 + mips_regnum (gdbarch)->pc]
2260 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2261 + MIPS_RA_REGNUM];
2262 }
2263
2264 /* If we didn't reach the end of the prologue when scanning the function
2265 instructions, then set end_prologue_addr to the address of the
2266 instruction immediately after the last one we scanned. */
2267 /* brobecker/2004-10-10: I don't think this would ever happen, but
2268 we may as well be careful and do our best if we have a null
2269 end_prologue_addr. */
2270 if (end_prologue_addr == 0)
2271 end_prologue_addr = cur_pc;
2272
2273 /* In a frameless function, we might have incorrectly
2274 skipped some load immediate instructions. Undo the skipping
2275 if the load immediate was not followed by a stack adjustment. */
2276 if (load_immediate_bytes && !seen_sp_adjust)
2277 end_prologue_addr -= load_immediate_bytes;
2278
2279 return end_prologue_addr;
2280 }
2281
2282 /* Heuristic unwinder for procedures using 32-bit instructions (covers
2283 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2284 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2285 unwinder. */
2286
2287 static struct mips_frame_cache *
2288 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
2289 {
2290 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2291 struct mips_frame_cache *cache;
2292
2293 if ((*this_cache) != NULL)
2294 return (*this_cache);
2295
2296 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2297 (*this_cache) = cache;
2298 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2299
2300 /* Analyze the function prologue. */
2301 {
2302 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2303 CORE_ADDR start_addr;
2304
2305 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2306 if (start_addr == 0)
2307 start_addr = heuristic_proc_start (gdbarch, pc);
2308 /* We can't analyze the prologue if we couldn't find the begining
2309 of the function. */
2310 if (start_addr == 0)
2311 return cache;
2312
2313 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
2314 }
2315
2316 /* gdbarch_sp_regnum contains the value and not the address. */
2317 trad_frame_set_value (cache->saved_regs,
2318 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2319 cache->base);
2320
2321 return (*this_cache);
2322 }
2323
2324 static void
2325 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
2326 struct frame_id *this_id)
2327 {
2328 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2329 this_cache);
2330 /* This marks the outermost frame. */
2331 if (info->base == 0)
2332 return;
2333 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2334 }
2335
2336 static struct value *
2337 mips_insn32_frame_prev_register (struct frame_info *this_frame,
2338 void **this_cache, int regnum)
2339 {
2340 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2341 this_cache);
2342 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2343 }
2344
2345 static int
2346 mips_insn32_frame_sniffer (const struct frame_unwind *self,
2347 struct frame_info *this_frame, void **this_cache)
2348 {
2349 CORE_ADDR pc = get_frame_pc (this_frame);
2350 if (! mips_pc_is_mips16 (pc))
2351 return 1;
2352 return 0;
2353 }
2354
2355 static const struct frame_unwind mips_insn32_frame_unwind =
2356 {
2357 NORMAL_FRAME,
2358 mips_insn32_frame_this_id,
2359 mips_insn32_frame_prev_register,
2360 NULL,
2361 mips_insn32_frame_sniffer
2362 };
2363
2364 static CORE_ADDR
2365 mips_insn32_frame_base_address (struct frame_info *this_frame,
2366 void **this_cache)
2367 {
2368 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2369 this_cache);
2370 return info->base;
2371 }
2372
2373 static const struct frame_base mips_insn32_frame_base =
2374 {
2375 &mips_insn32_frame_unwind,
2376 mips_insn32_frame_base_address,
2377 mips_insn32_frame_base_address,
2378 mips_insn32_frame_base_address
2379 };
2380
2381 static const struct frame_base *
2382 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
2383 {
2384 CORE_ADDR pc = get_frame_pc (this_frame);
2385 if (! mips_pc_is_mips16 (pc))
2386 return &mips_insn32_frame_base;
2387 else
2388 return NULL;
2389 }
2390
2391 static struct trad_frame_cache *
2392 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2393 {
2394 CORE_ADDR pc;
2395 CORE_ADDR start_addr;
2396 CORE_ADDR stack_addr;
2397 struct trad_frame_cache *this_trad_cache;
2398 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2399 int num_regs = gdbarch_num_regs (gdbarch);
2400
2401 if ((*this_cache) != NULL)
2402 return (*this_cache);
2403 this_trad_cache = trad_frame_cache_zalloc (this_frame);
2404 (*this_cache) = this_trad_cache;
2405
2406 /* The return address is in the link register. */
2407 trad_frame_set_reg_realreg (this_trad_cache,
2408 gdbarch_pc_regnum (gdbarch),
2409 num_regs + MIPS_RA_REGNUM);
2410
2411 /* Frame ID, since it's a frameless / stackless function, no stack
2412 space is allocated and SP on entry is the current SP. */
2413 pc = get_frame_pc (this_frame);
2414 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2415 stack_addr = get_frame_register_signed (this_frame,
2416 num_regs + MIPS_SP_REGNUM);
2417 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2418
2419 /* Assume that the frame's base is the same as the
2420 stack-pointer. */
2421 trad_frame_set_this_base (this_trad_cache, stack_addr);
2422
2423 return this_trad_cache;
2424 }
2425
2426 static void
2427 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2428 struct frame_id *this_id)
2429 {
2430 struct trad_frame_cache *this_trad_cache
2431 = mips_stub_frame_cache (this_frame, this_cache);
2432 trad_frame_get_id (this_trad_cache, this_id);
2433 }
2434
2435 static struct value *
2436 mips_stub_frame_prev_register (struct frame_info *this_frame,
2437 void **this_cache, int regnum)
2438 {
2439 struct trad_frame_cache *this_trad_cache
2440 = mips_stub_frame_cache (this_frame, this_cache);
2441 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2442 }
2443
2444 static int
2445 mips_stub_frame_sniffer (const struct frame_unwind *self,
2446 struct frame_info *this_frame, void **this_cache)
2447 {
2448 gdb_byte dummy[4];
2449 struct obj_section *s;
2450 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2451 struct minimal_symbol *msym;
2452
2453 /* Use the stub unwinder for unreadable code. */
2454 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2455 return 1;
2456
2457 if (in_plt_section (pc, NULL))
2458 return 1;
2459
2460 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2461 s = find_pc_section (pc);
2462
2463 if (s != NULL
2464 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2465 ".MIPS.stubs") == 0)
2466 return 1;
2467
2468 /* Calling a PIC function from a non-PIC function passes through a
2469 stub. The stub for foo is named ".pic.foo". */
2470 msym = lookup_minimal_symbol_by_pc (pc);
2471 if (msym != NULL
2472 && SYMBOL_LINKAGE_NAME (msym) != NULL
2473 && strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) == 0)
2474 return 1;
2475
2476 return 0;
2477 }
2478
2479 static const struct frame_unwind mips_stub_frame_unwind =
2480 {
2481 NORMAL_FRAME,
2482 mips_stub_frame_this_id,
2483 mips_stub_frame_prev_register,
2484 NULL,
2485 mips_stub_frame_sniffer
2486 };
2487
2488 static CORE_ADDR
2489 mips_stub_frame_base_address (struct frame_info *this_frame,
2490 void **this_cache)
2491 {
2492 struct trad_frame_cache *this_trad_cache
2493 = mips_stub_frame_cache (this_frame, this_cache);
2494 return trad_frame_get_this_base (this_trad_cache);
2495 }
2496
2497 static const struct frame_base mips_stub_frame_base =
2498 {
2499 &mips_stub_frame_unwind,
2500 mips_stub_frame_base_address,
2501 mips_stub_frame_base_address,
2502 mips_stub_frame_base_address
2503 };
2504
2505 static const struct frame_base *
2506 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
2507 {
2508 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
2509 return &mips_stub_frame_base;
2510 else
2511 return NULL;
2512 }
2513
2514 /* mips_addr_bits_remove - remove useless address bits */
2515
2516 static CORE_ADDR
2517 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2518 {
2519 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2520
2521 if (is_mips16_addr (addr))
2522 addr = unmake_mips16_addr (addr);
2523
2524 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2525 /* This hack is a work-around for existing boards using PMON, the
2526 simulator, and any other 64-bit targets that doesn't have true
2527 64-bit addressing. On these targets, the upper 32 bits of
2528 addresses are ignored by the hardware. Thus, the PC or SP are
2529 likely to have been sign extended to all 1s by instruction
2530 sequences that load 32-bit addresses. For example, a typical
2531 piece of code that loads an address is this:
2532
2533 lui $r2, <upper 16 bits>
2534 ori $r2, <lower 16 bits>
2535
2536 But the lui sign-extends the value such that the upper 32 bits
2537 may be all 1s. The workaround is simply to mask off these
2538 bits. In the future, gcc may be changed to support true 64-bit
2539 addressing, and this masking will have to be disabled. */
2540 return addr &= 0xffffffffUL;
2541 else
2542 return addr;
2543 }
2544
2545 /* Instructions used during single-stepping of atomic sequences. */
2546 #define LL_OPCODE 0x30
2547 #define LLD_OPCODE 0x34
2548 #define SC_OPCODE 0x38
2549 #define SCD_OPCODE 0x3c
2550
2551 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
2552 instruction and ending with a SC/SCD instruction. If such a sequence
2553 is found, attempt to step through it. A breakpoint is placed at the end of
2554 the sequence. */
2555
2556 static int
2557 deal_with_atomic_sequence (struct gdbarch *gdbarch,
2558 struct address_space *aspace, CORE_ADDR pc)
2559 {
2560 CORE_ADDR breaks[2] = {-1, -1};
2561 CORE_ADDR loc = pc;
2562 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
2563 unsigned long insn;
2564 int insn_count;
2565 int index;
2566 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2567 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2568
2569 if (pc & 0x01)
2570 return 0;
2571
2572 insn = mips_fetch_instruction (gdbarch, loc);
2573 /* Assume all atomic sequences start with a ll/lld instruction. */
2574 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
2575 return 0;
2576
2577 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
2578 instructions. */
2579 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2580 {
2581 int is_branch = 0;
2582 loc += MIPS_INSN32_SIZE;
2583 insn = mips_fetch_instruction (gdbarch, loc);
2584
2585 /* Assume that there is at most one branch in the atomic
2586 sequence. If a branch is found, put a breakpoint in its
2587 destination address. */
2588 switch (itype_op (insn))
2589 {
2590 case 0: /* SPECIAL */
2591 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
2592 return 0; /* fallback to the standard single-step code. */
2593 break;
2594 case 1: /* REGIMM */
2595 is_branch = ((itype_rt (insn) & 0xc0) == 0); /* B{LT,GE}Z* */
2596 break;
2597 case 2: /* J */
2598 case 3: /* JAL */
2599 return 0; /* fallback to the standard single-step code. */
2600 case 4: /* BEQ */
2601 case 5: /* BNE */
2602 case 6: /* BLEZ */
2603 case 7: /* BGTZ */
2604 case 20: /* BEQL */
2605 case 21: /* BNEL */
2606 case 22: /* BLEZL */
2607 case 23: /* BGTTL */
2608 is_branch = 1;
2609 break;
2610 case 17: /* COP1 */
2611 case 18: /* COP2 */
2612 case 19: /* COP3 */
2613 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
2614 break;
2615 }
2616 if (is_branch)
2617 {
2618 branch_bp = loc + mips32_relative_offset (insn) + 4;
2619 if (last_breakpoint >= 1)
2620 return 0; /* More than one branch found, fallback to the
2621 standard single-step code. */
2622 breaks[1] = branch_bp;
2623 last_breakpoint++;
2624 }
2625
2626 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
2627 break;
2628 }
2629
2630 /* Assume that the atomic sequence ends with a sc/scd instruction. */
2631 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
2632 return 0;
2633
2634 loc += MIPS_INSN32_SIZE;
2635
2636 /* Insert a breakpoint right after the end of the atomic sequence. */
2637 breaks[0] = loc;
2638
2639 /* Check for duplicated breakpoints. Check also for a breakpoint
2640 placed (branch instruction's destination) in the atomic sequence */
2641 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
2642 last_breakpoint = 0;
2643
2644 /* Effectively inserts the breakpoints. */
2645 for (index = 0; index <= last_breakpoint; index++)
2646 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
2647
2648 return 1;
2649 }
2650
2651 /* mips_software_single_step() is called just before we want to resume
2652 the inferior, if we want to single-step it but there is no hardware
2653 or kernel single-step support (MIPS on GNU/Linux for example). We find
2654 the target of the coming instruction and breakpoint it. */
2655
2656 int
2657 mips_software_single_step (struct frame_info *frame)
2658 {
2659 struct gdbarch *gdbarch = get_frame_arch (frame);
2660 struct address_space *aspace = get_frame_address_space (frame);
2661 CORE_ADDR pc, next_pc;
2662
2663 pc = get_frame_pc (frame);
2664 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
2665 return 1;
2666
2667 next_pc = mips_next_pc (frame, pc);
2668
2669 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2670 return 1;
2671 }
2672
2673 /* Test whether the PC points to the return instruction at the
2674 end of a function. */
2675
2676 static int
2677 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
2678 {
2679 if (mips_pc_is_mips16 (pc))
2680 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2681 generates a "jr $ra"; other times it generates code to load
2682 the return address from the stack to an accessible register (such
2683 as $a3), then a "jr" using that register. This second case
2684 is almost impossible to distinguish from an indirect jump
2685 used for switch statements, so we don't even try. */
2686 return mips_fetch_instruction (gdbarch, pc) == 0xe820; /* jr $ra */
2687 else
2688 return mips_fetch_instruction (gdbarch, pc) == 0x3e00008; /* jr $ra */
2689 }
2690
2691
2692 /* This fencepost looks highly suspicious to me. Removing it also
2693 seems suspicious as it could affect remote debugging across serial
2694 lines. */
2695
2696 static CORE_ADDR
2697 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
2698 {
2699 CORE_ADDR start_pc;
2700 CORE_ADDR fence;
2701 int instlen;
2702 int seen_adjsp = 0;
2703 struct inferior *inf;
2704
2705 pc = gdbarch_addr_bits_remove (gdbarch, pc);
2706 start_pc = pc;
2707 fence = start_pc - heuristic_fence_post;
2708 if (start_pc == 0)
2709 return 0;
2710
2711 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2712 fence = VM_MIN_ADDRESS;
2713
2714 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2715
2716 inf = current_inferior ();
2717
2718 /* search back for previous return */
2719 for (start_pc -= instlen;; start_pc -= instlen)
2720 if (start_pc < fence)
2721 {
2722 /* It's not clear to me why we reach this point when
2723 stop_soon, but with this test, at least we
2724 don't print out warnings for every child forked (eg, on
2725 decstation). 22apr93 rich@cygnus.com. */
2726 if (inf->control.stop_soon == NO_STOP_QUIETLY)
2727 {
2728 static int blurb_printed = 0;
2729
2730 warning (_("GDB can't find the start of the function at %s."),
2731 paddress (gdbarch, pc));
2732
2733 if (!blurb_printed)
2734 {
2735 /* This actually happens frequently in embedded
2736 development, when you first connect to a board
2737 and your stack pointer and pc are nowhere in
2738 particular. This message needs to give people
2739 in that situation enough information to
2740 determine that it's no big deal. */
2741 printf_filtered ("\n\
2742 GDB is unable to find the start of the function at %s\n\
2743 and thus can't determine the size of that function's stack frame.\n\
2744 This means that GDB may be unable to access that stack frame, or\n\
2745 the frames below it.\n\
2746 This problem is most likely caused by an invalid program counter or\n\
2747 stack pointer.\n\
2748 However, if you think GDB should simply search farther back\n\
2749 from %s for code which looks like the beginning of a\n\
2750 function, you can increase the range of the search using the `set\n\
2751 heuristic-fence-post' command.\n",
2752 paddress (gdbarch, pc), paddress (gdbarch, pc));
2753 blurb_printed = 1;
2754 }
2755 }
2756
2757 return 0;
2758 }
2759 else if (mips_pc_is_mips16 (start_pc))
2760 {
2761 unsigned short inst;
2762
2763 /* On MIPS16, any one of the following is likely to be the
2764 start of a function:
2765 extend save
2766 save
2767 entry
2768 addiu sp,-n
2769 daddiu sp,-n
2770 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2771 inst = mips_fetch_instruction (gdbarch, start_pc);
2772 if ((inst & 0xff80) == 0x6480) /* save */
2773 {
2774 if (start_pc - instlen >= fence)
2775 {
2776 inst = mips_fetch_instruction (gdbarch, start_pc - instlen);
2777 if ((inst & 0xf800) == 0xf000) /* extend */
2778 start_pc -= instlen;
2779 }
2780 break;
2781 }
2782 else if (((inst & 0xf81f) == 0xe809
2783 && (inst & 0x700) != 0x700) /* entry */
2784 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2785 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2786 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2787 break;
2788 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2789 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2790 seen_adjsp = 1;
2791 else
2792 seen_adjsp = 0;
2793 }
2794 else if (mips_about_to_return (gdbarch, start_pc))
2795 {
2796 /* Skip return and its delay slot. */
2797 start_pc += 2 * MIPS_INSN32_SIZE;
2798 break;
2799 }
2800
2801 return start_pc;
2802 }
2803
2804 struct mips_objfile_private
2805 {
2806 bfd_size_type size;
2807 char *contents;
2808 };
2809
2810 /* According to the current ABI, should the type be passed in a
2811 floating-point register (assuming that there is space)? When there
2812 is no FPU, FP are not even considered as possible candidates for
2813 FP registers and, consequently this returns false - forces FP
2814 arguments into integer registers. */
2815
2816 static int
2817 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
2818 struct type *arg_type)
2819 {
2820 return ((typecode == TYPE_CODE_FLT
2821 || (MIPS_EABI (gdbarch)
2822 && (typecode == TYPE_CODE_STRUCT
2823 || typecode == TYPE_CODE_UNION)
2824 && TYPE_NFIELDS (arg_type) == 1
2825 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2826 == TYPE_CODE_FLT))
2827 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
2828 }
2829
2830 /* On o32, argument passing in GPRs depends on the alignment of the type being
2831 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2832
2833 static int
2834 mips_type_needs_double_align (struct type *type)
2835 {
2836 enum type_code typecode = TYPE_CODE (type);
2837
2838 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2839 return 1;
2840 else if (typecode == TYPE_CODE_STRUCT)
2841 {
2842 if (TYPE_NFIELDS (type) < 1)
2843 return 0;
2844 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2845 }
2846 else if (typecode == TYPE_CODE_UNION)
2847 {
2848 int i, n;
2849
2850 n = TYPE_NFIELDS (type);
2851 for (i = 0; i < n; i++)
2852 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2853 return 1;
2854 return 0;
2855 }
2856 return 0;
2857 }
2858
2859 /* Adjust the address downward (direction of stack growth) so that it
2860 is correctly aligned for a new stack frame. */
2861 static CORE_ADDR
2862 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2863 {
2864 return align_down (addr, 16);
2865 }
2866
2867 static CORE_ADDR
2868 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2869 struct regcache *regcache, CORE_ADDR bp_addr,
2870 int nargs, struct value **args, CORE_ADDR sp,
2871 int struct_return, CORE_ADDR struct_addr)
2872 {
2873 int argreg;
2874 int float_argreg;
2875 int argnum;
2876 int len = 0;
2877 int stack_offset = 0;
2878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2880 CORE_ADDR func_addr = find_function_addr (function, NULL);
2881 int regsize = mips_abi_regsize (gdbarch);
2882
2883 /* For shared libraries, "t9" needs to point at the function
2884 address. */
2885 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2886
2887 /* Set the return address register to point to the entry point of
2888 the program, where a breakpoint lies in wait. */
2889 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2890
2891 /* First ensure that the stack and structure return address (if any)
2892 are properly aligned. The stack has to be at least 64-bit
2893 aligned even on 32-bit machines, because doubles must be 64-bit
2894 aligned. For n32 and n64, stack frames need to be 128-bit
2895 aligned, so we round to this widest known alignment. */
2896
2897 sp = align_down (sp, 16);
2898 struct_addr = align_down (struct_addr, 16);
2899
2900 /* Now make space on the stack for the args. We allocate more
2901 than necessary for EABI, because the first few arguments are
2902 passed in registers, but that's OK. */
2903 for (argnum = 0; argnum < nargs; argnum++)
2904 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2905 sp -= align_up (len, 16);
2906
2907 if (mips_debug)
2908 fprintf_unfiltered (gdb_stdlog,
2909 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
2910 paddress (gdbarch, sp), (long) align_up (len, 16));
2911
2912 /* Initialize the integer and float register pointers. */
2913 argreg = MIPS_A0_REGNUM;
2914 float_argreg = mips_fpa0_regnum (gdbarch);
2915
2916 /* The struct_return pointer occupies the first parameter-passing reg. */
2917 if (struct_return)
2918 {
2919 if (mips_debug)
2920 fprintf_unfiltered (gdb_stdlog,
2921 "mips_eabi_push_dummy_call: struct_return reg=%d %s\n",
2922 argreg, paddress (gdbarch, struct_addr));
2923 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2924 }
2925
2926 /* Now load as many as possible of the first arguments into
2927 registers, and push the rest onto the stack. Loop thru args
2928 from first to last. */
2929 for (argnum = 0; argnum < nargs; argnum++)
2930 {
2931 const gdb_byte *val;
2932 gdb_byte valbuf[MAX_REGISTER_SIZE];
2933 struct value *arg = args[argnum];
2934 struct type *arg_type = check_typedef (value_type (arg));
2935 int len = TYPE_LENGTH (arg_type);
2936 enum type_code typecode = TYPE_CODE (arg_type);
2937
2938 if (mips_debug)
2939 fprintf_unfiltered (gdb_stdlog,
2940 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2941 argnum + 1, len, (int) typecode);
2942
2943 /* Function pointer arguments to mips16 code need to be made into
2944 mips16 pointers. */
2945 if (typecode == TYPE_CODE_PTR
2946 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
2947 {
2948 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
2949 len, byte_order);
2950 if (mips_pc_is_mips16 (addr))
2951 {
2952 store_signed_integer (valbuf, len, byte_order,
2953 make_mips16_addr (addr));
2954 val = valbuf;
2955 }
2956 else
2957 val = value_contents (arg);
2958 }
2959 /* The EABI passes structures that do not fit in a register by
2960 reference. */
2961 else if (len > regsize
2962 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2963 {
2964 store_unsigned_integer (valbuf, regsize, byte_order,
2965 value_address (arg));
2966 typecode = TYPE_CODE_PTR;
2967 len = regsize;
2968 val = valbuf;
2969 if (mips_debug)
2970 fprintf_unfiltered (gdb_stdlog, " push");
2971 }
2972 else
2973 val = value_contents (arg);
2974
2975 /* 32-bit ABIs always start floating point arguments in an
2976 even-numbered floating point register. Round the FP register
2977 up before the check to see if there are any FP registers
2978 left. Non MIPS_EABI targets also pass the FP in the integer
2979 registers so also round up normal registers. */
2980 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
2981 {
2982 if ((float_argreg & 1))
2983 float_argreg++;
2984 }
2985
2986 /* Floating point arguments passed in registers have to be
2987 treated specially. On 32-bit architectures, doubles
2988 are passed in register pairs; the even register gets
2989 the low word, and the odd register gets the high word.
2990 On non-EABI processors, the first two floating point arguments are
2991 also copied to general registers, because MIPS16 functions
2992 don't use float registers for arguments. This duplication of
2993 arguments in general registers can't hurt non-MIPS16 functions
2994 because those registers are normally skipped. */
2995 /* MIPS_EABI squeezes a struct that contains a single floating
2996 point value into an FP register instead of pushing it onto the
2997 stack. */
2998 if (fp_register_arg_p (gdbarch, typecode, arg_type)
2999 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
3000 {
3001 /* EABI32 will pass doubles in consecutive registers, even on
3002 64-bit cores. At one time, we used to check the size of
3003 `float_argreg' to determine whether or not to pass doubles
3004 in consecutive registers, but this is not sufficient for
3005 making the ABI determination. */
3006 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
3007 {
3008 int low_offset = gdbarch_byte_order (gdbarch)
3009 == BFD_ENDIAN_BIG ? 4 : 0;
3010 long regval;
3011
3012 /* Write the low word of the double to the even register(s). */
3013 regval = extract_signed_integer (val + low_offset,
3014 4, byte_order);
3015 if (mips_debug)
3016 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3017 float_argreg, phex (regval, 4));
3018 regcache_cooked_write_signed (regcache, float_argreg++, regval);
3019
3020 /* Write the high word of the double to the odd register(s). */
3021 regval = extract_signed_integer (val + 4 - low_offset,
3022 4, byte_order);
3023 if (mips_debug)
3024 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3025 float_argreg, phex (regval, 4));
3026 regcache_cooked_write_signed (regcache, float_argreg++, regval);
3027 }
3028 else
3029 {
3030 /* This is a floating point value that fits entirely
3031 in a single register. */
3032 /* On 32 bit ABI's the float_argreg is further adjusted
3033 above to ensure that it is even register aligned. */
3034 LONGEST regval = extract_signed_integer (val, len, byte_order);
3035 if (mips_debug)
3036 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3037 float_argreg, phex (regval, len));
3038 regcache_cooked_write_signed (regcache, float_argreg++, regval);
3039 }
3040 }
3041 else
3042 {
3043 /* Copy the argument to general registers or the stack in
3044 register-sized pieces. Large arguments are split between
3045 registers and stack. */
3046 /* Note: structs whose size is not a multiple of regsize
3047 are treated specially: Irix cc passes
3048 them in registers where gcc sometimes puts them on the
3049 stack. For maximum compatibility, we will put them in
3050 both places. */
3051 int odd_sized_struct = (len > regsize && len % regsize != 0);
3052
3053 /* Note: Floating-point values that didn't fit into an FP
3054 register are only written to memory. */
3055 while (len > 0)
3056 {
3057 /* Remember if the argument was written to the stack. */
3058 int stack_used_p = 0;
3059 int partial_len = (len < regsize ? len : regsize);
3060
3061 if (mips_debug)
3062 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3063 partial_len);
3064
3065 /* Write this portion of the argument to the stack. */
3066 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
3067 || odd_sized_struct
3068 || fp_register_arg_p (gdbarch, typecode, arg_type))
3069 {
3070 /* Should shorter than int integer values be
3071 promoted to int before being stored? */
3072 int longword_offset = 0;
3073 CORE_ADDR addr;
3074 stack_used_p = 1;
3075 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3076 {
3077 if (regsize == 8
3078 && (typecode == TYPE_CODE_INT
3079 || typecode == TYPE_CODE_PTR
3080 || typecode == TYPE_CODE_FLT) && len <= 4)
3081 longword_offset = regsize - len;
3082 else if ((typecode == TYPE_CODE_STRUCT
3083 || typecode == TYPE_CODE_UNION)
3084 && TYPE_LENGTH (arg_type) < regsize)
3085 longword_offset = regsize - len;
3086 }
3087
3088 if (mips_debug)
3089 {
3090 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
3091 paddress (gdbarch, stack_offset));
3092 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
3093 paddress (gdbarch, longword_offset));
3094 }
3095
3096 addr = sp + stack_offset + longword_offset;
3097
3098 if (mips_debug)
3099 {
3100 int i;
3101 fprintf_unfiltered (gdb_stdlog, " @%s ",
3102 paddress (gdbarch, addr));
3103 for (i = 0; i < partial_len; i++)
3104 {
3105 fprintf_unfiltered (gdb_stdlog, "%02x",
3106 val[i] & 0xff);
3107 }
3108 }
3109 write_memory (addr, val, partial_len);
3110 }
3111
3112 /* Note!!! This is NOT an else clause. Odd sized
3113 structs may go thru BOTH paths. Floating point
3114 arguments will not. */
3115 /* Write this portion of the argument to a general
3116 purpose register. */
3117 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
3118 && !fp_register_arg_p (gdbarch, typecode, arg_type))
3119 {
3120 LONGEST regval =
3121 extract_signed_integer (val, partial_len, byte_order);
3122
3123 if (mips_debug)
3124 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3125 argreg,
3126 phex (regval, regsize));
3127 regcache_cooked_write_signed (regcache, argreg, regval);
3128 argreg++;
3129 }
3130
3131 len -= partial_len;
3132 val += partial_len;
3133
3134 /* Compute the the offset into the stack at which we
3135 will copy the next parameter.
3136
3137 In the new EABI (and the NABI32), the stack_offset
3138 only needs to be adjusted when it has been used. */
3139
3140 if (stack_used_p)
3141 stack_offset += align_up (partial_len, regsize);
3142 }
3143 }
3144 if (mips_debug)
3145 fprintf_unfiltered (gdb_stdlog, "\n");
3146 }
3147
3148 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3149
3150 /* Return adjusted stack pointer. */
3151 return sp;
3152 }
3153
3154 /* Determine the return value convention being used. */
3155
3156 static enum return_value_convention
3157 mips_eabi_return_value (struct gdbarch *gdbarch, struct type *func_type,
3158 struct type *type, struct regcache *regcache,
3159 gdb_byte *readbuf, const gdb_byte *writebuf)
3160 {
3161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3162 int fp_return_type = 0;
3163 int offset, regnum, xfer;
3164
3165 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
3166 return RETURN_VALUE_STRUCT_CONVENTION;
3167
3168 /* Floating point type? */
3169 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
3170 {
3171 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3172 fp_return_type = 1;
3173 /* Structs with a single field of float type
3174 are returned in a floating point register. */
3175 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
3176 || TYPE_CODE (type) == TYPE_CODE_UNION)
3177 && TYPE_NFIELDS (type) == 1)
3178 {
3179 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
3180
3181 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
3182 fp_return_type = 1;
3183 }
3184 }
3185
3186 if (fp_return_type)
3187 {
3188 /* A floating-point value belongs in the least significant part
3189 of FP0/FP1. */
3190 if (mips_debug)
3191 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3192 regnum = mips_regnum (gdbarch)->fp0;
3193 }
3194 else
3195 {
3196 /* An integer value goes in V0/V1. */
3197 if (mips_debug)
3198 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
3199 regnum = MIPS_V0_REGNUM;
3200 }
3201 for (offset = 0;
3202 offset < TYPE_LENGTH (type);
3203 offset += mips_abi_regsize (gdbarch), regnum++)
3204 {
3205 xfer = mips_abi_regsize (gdbarch);
3206 if (offset + xfer > TYPE_LENGTH (type))
3207 xfer = TYPE_LENGTH (type) - offset;
3208 mips_xfer_register (gdbarch, regcache,
3209 gdbarch_num_regs (gdbarch) + regnum, xfer,
3210 gdbarch_byte_order (gdbarch), readbuf, writebuf,
3211 offset);
3212 }
3213
3214 return RETURN_VALUE_REGISTER_CONVENTION;
3215 }
3216
3217
3218 /* N32/N64 ABI stuff. */
3219
3220 /* Search for a naturally aligned double at OFFSET inside a struct
3221 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
3222 registers. */
3223
3224 static int
3225 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
3226 int offset)
3227 {
3228 int i;
3229
3230 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
3231 return 0;
3232
3233 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
3234 return 0;
3235
3236 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
3237 return 0;
3238
3239 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
3240 {
3241 int pos;
3242 struct type *field_type;
3243
3244 /* We're only looking at normal fields. */
3245 if (field_is_static (&TYPE_FIELD (arg_type, i))
3246 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
3247 continue;
3248
3249 /* If we have gone past the offset, there is no double to pass. */
3250 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
3251 if (pos > offset)
3252 return 0;
3253
3254 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
3255
3256 /* If this field is entirely before the requested offset, go
3257 on to the next one. */
3258 if (pos + TYPE_LENGTH (field_type) <= offset)
3259 continue;
3260
3261 /* If this is our special aligned double, we can stop. */
3262 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
3263 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
3264 return 1;
3265
3266 /* This field starts at or before the requested offset, and
3267 overlaps it. If it is a structure, recurse inwards. */
3268 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
3269 }
3270
3271 return 0;
3272 }
3273
3274 static CORE_ADDR
3275 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3276 struct regcache *regcache, CORE_ADDR bp_addr,
3277 int nargs, struct value **args, CORE_ADDR sp,
3278 int struct_return, CORE_ADDR struct_addr)
3279 {
3280 int argreg;
3281 int float_argreg;
3282 int argnum;
3283 int len = 0;
3284 int stack_offset = 0;
3285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3287 CORE_ADDR func_addr = find_function_addr (function, NULL);
3288
3289 /* For shared libraries, "t9" needs to point at the function
3290 address. */
3291 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3292
3293 /* Set the return address register to point to the entry point of
3294 the program, where a breakpoint lies in wait. */
3295 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3296
3297 /* First ensure that the stack and structure return address (if any)
3298 are properly aligned. The stack has to be at least 64-bit
3299 aligned even on 32-bit machines, because doubles must be 64-bit
3300 aligned. For n32 and n64, stack frames need to be 128-bit
3301 aligned, so we round to this widest known alignment. */
3302
3303 sp = align_down (sp, 16);
3304 struct_addr = align_down (struct_addr, 16);
3305
3306 /* Now make space on the stack for the args. */
3307 for (argnum = 0; argnum < nargs; argnum++)
3308 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
3309 sp -= align_up (len, 16);
3310
3311 if (mips_debug)
3312 fprintf_unfiltered (gdb_stdlog,
3313 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
3314 paddress (gdbarch, sp), (long) align_up (len, 16));
3315
3316 /* Initialize the integer and float register pointers. */
3317 argreg = MIPS_A0_REGNUM;
3318 float_argreg = mips_fpa0_regnum (gdbarch);
3319
3320 /* The struct_return pointer occupies the first parameter-passing reg. */
3321 if (struct_return)
3322 {
3323 if (mips_debug)
3324 fprintf_unfiltered (gdb_stdlog,
3325 "mips_n32n64_push_dummy_call: struct_return reg=%d %s\n",
3326 argreg, paddress (gdbarch, struct_addr));
3327 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3328 }
3329
3330 /* Now load as many as possible of the first arguments into
3331 registers, and push the rest onto the stack. Loop thru args
3332 from first to last. */
3333 for (argnum = 0; argnum < nargs; argnum++)
3334 {
3335 const gdb_byte *val;
3336 struct value *arg = args[argnum];
3337 struct type *arg_type = check_typedef (value_type (arg));
3338 int len = TYPE_LENGTH (arg_type);
3339 enum type_code typecode = TYPE_CODE (arg_type);
3340
3341 if (mips_debug)
3342 fprintf_unfiltered (gdb_stdlog,
3343 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3344 argnum + 1, len, (int) typecode);
3345
3346 val = value_contents (arg);
3347
3348 /* A 128-bit long double value requires an even-odd pair of
3349 floating-point registers. */
3350 if (len == 16
3351 && fp_register_arg_p (gdbarch, typecode, arg_type)
3352 && (float_argreg & 1))
3353 {
3354 float_argreg++;
3355 argreg++;
3356 }
3357
3358 if (fp_register_arg_p (gdbarch, typecode, arg_type)
3359 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3360 {
3361 /* This is a floating point value that fits entirely
3362 in a single register or a pair of registers. */
3363 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3364 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
3365 if (mips_debug)
3366 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3367 float_argreg, phex (regval, reglen));
3368 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
3369
3370 if (mips_debug)
3371 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3372 argreg, phex (regval, reglen));
3373 regcache_cooked_write_unsigned (regcache, argreg, regval);
3374 float_argreg++;
3375 argreg++;
3376 if (len == 16)
3377 {
3378 regval = extract_unsigned_integer (val + reglen,
3379 reglen, byte_order);
3380 if (mips_debug)
3381 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3382 float_argreg, phex (regval, reglen));
3383 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
3384
3385 if (mips_debug)
3386 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3387 argreg, phex (regval, reglen));
3388 regcache_cooked_write_unsigned (regcache, argreg, regval);
3389 float_argreg++;
3390 argreg++;
3391 }
3392 }
3393 else
3394 {
3395 /* Copy the argument to general registers or the stack in
3396 register-sized pieces. Large arguments are split between
3397 registers and stack. */
3398 /* For N32/N64, structs, unions, or other composite types are
3399 treated as a sequence of doublewords, and are passed in integer
3400 or floating point registers as though they were simple scalar
3401 parameters to the extent that they fit, with any excess on the
3402 stack packed according to the normal memory layout of the
3403 object.
3404 The caller does not reserve space for the register arguments;
3405 the callee is responsible for reserving it if required. */
3406 /* Note: Floating-point values that didn't fit into an FP
3407 register are only written to memory. */
3408 while (len > 0)
3409 {
3410 /* Remember if the argument was written to the stack. */
3411 int stack_used_p = 0;
3412 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3413
3414 if (mips_debug)
3415 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3416 partial_len);
3417
3418 if (fp_register_arg_p (gdbarch, typecode, arg_type))
3419 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
3420
3421 /* Write this portion of the argument to the stack. */
3422 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
3423 {
3424 /* Should shorter than int integer values be
3425 promoted to int before being stored? */
3426 int longword_offset = 0;
3427 CORE_ADDR addr;
3428 stack_used_p = 1;
3429 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3430 {
3431 if ((typecode == TYPE_CODE_INT
3432 || typecode == TYPE_CODE_PTR)
3433 && len <= 4)
3434 longword_offset = MIPS64_REGSIZE - len;
3435 }
3436
3437 if (mips_debug)
3438 {
3439 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
3440 paddress (gdbarch, stack_offset));
3441 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
3442 paddress (gdbarch, longword_offset));
3443 }
3444
3445 addr = sp + stack_offset + longword_offset;
3446
3447 if (mips_debug)
3448 {
3449 int i;
3450 fprintf_unfiltered (gdb_stdlog, " @%s ",
3451 paddress (gdbarch, addr));
3452 for (i = 0; i < partial_len; i++)
3453 {
3454 fprintf_unfiltered (gdb_stdlog, "%02x",
3455 val[i] & 0xff);
3456 }
3457 }
3458 write_memory (addr, val, partial_len);
3459 }
3460
3461 /* Note!!! This is NOT an else clause. Odd sized
3462 structs may go thru BOTH paths. */
3463 /* Write this portion of the argument to a general
3464 purpose register. */
3465 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3466 {
3467 LONGEST regval;
3468
3469 /* Sign extend pointers, 32-bit integers and signed
3470 16-bit and 8-bit integers; everything else is taken
3471 as is. */
3472
3473 if ((partial_len == 4
3474 && (typecode == TYPE_CODE_PTR
3475 || typecode == TYPE_CODE_INT))
3476 || (partial_len < 4
3477 && typecode == TYPE_CODE_INT
3478 && !TYPE_UNSIGNED (arg_type)))
3479 regval = extract_signed_integer (val, partial_len,
3480 byte_order);
3481 else
3482 regval = extract_unsigned_integer (val, partial_len,
3483 byte_order);
3484
3485 /* A non-floating-point argument being passed in a
3486 general register. If a struct or union, and if
3487 the remaining length is smaller than the register
3488 size, we have to adjust the register value on
3489 big endian targets.
3490
3491 It does not seem to be necessary to do the
3492 same for integral types. */
3493
3494 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3495 && partial_len < MIPS64_REGSIZE
3496 && (typecode == TYPE_CODE_STRUCT
3497 || typecode == TYPE_CODE_UNION))
3498 regval <<= ((MIPS64_REGSIZE - partial_len)
3499 * TARGET_CHAR_BIT);
3500
3501 if (mips_debug)
3502 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3503 argreg,
3504 phex (regval, MIPS64_REGSIZE));
3505 regcache_cooked_write_unsigned (regcache, argreg, regval);
3506
3507 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
3508 TYPE_LENGTH (arg_type) - len))
3509 {
3510 if (mips_debug)
3511 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3512 float_argreg,
3513 phex (regval, MIPS64_REGSIZE));
3514 regcache_cooked_write_unsigned (regcache, float_argreg,
3515 regval);
3516 }
3517
3518 float_argreg++;
3519 argreg++;
3520 }
3521
3522 len -= partial_len;
3523 val += partial_len;
3524
3525 /* Compute the the offset into the stack at which we
3526 will copy the next parameter.
3527
3528 In N32 (N64?), the stack_offset only needs to be
3529 adjusted when it has been used. */
3530
3531 if (stack_used_p)
3532 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3533 }
3534 }
3535 if (mips_debug)
3536 fprintf_unfiltered (gdb_stdlog, "\n");
3537 }
3538
3539 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3540
3541 /* Return adjusted stack pointer. */
3542 return sp;
3543 }
3544
3545 static enum return_value_convention
3546 mips_n32n64_return_value (struct gdbarch *gdbarch, struct type *func_type,
3547 struct type *type, struct regcache *regcache,
3548 gdb_byte *readbuf, const gdb_byte *writebuf)
3549 {
3550 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3551
3552 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3553
3554 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3555 if needed), as appropriate for the type. Composite results (struct,
3556 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3557 following rules:
3558
3559 * A struct with only one or two floating point fields is returned in $f0
3560 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3561 case.
3562
3563 * Any other composite results of at most 128 bits are returned in
3564 $2 (first 64 bits) and $3 (remainder, if necessary).
3565
3566 * Larger composite results are handled by converting the function to a
3567 procedure with an implicit first parameter, which is a pointer to an area
3568 reserved by the caller to receive the result. [The o32-bit ABI requires
3569 that all composite results be handled by conversion to implicit first
3570 parameters. The MIPS/SGI Fortran implementation has always made a
3571 specific exception to return COMPLEX results in the floating point
3572 registers.] */
3573
3574 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3575 return RETURN_VALUE_STRUCT_CONVENTION;
3576 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3577 && TYPE_LENGTH (type) == 16
3578 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3579 {
3580 /* A 128-bit floating-point value fills both $f0 and $f2. The
3581 two registers are used in the same as memory order, so the
3582 eight bytes with the lower memory address are in $f0. */
3583 if (mips_debug)
3584 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3585 mips_xfer_register (gdbarch, regcache,
3586 gdbarch_num_regs (gdbarch)
3587 + mips_regnum (gdbarch)->fp0,
3588 8, gdbarch_byte_order (gdbarch),
3589 readbuf, writebuf, 0);
3590 mips_xfer_register (gdbarch, regcache,
3591 gdbarch_num_regs (gdbarch)
3592 + mips_regnum (gdbarch)->fp0 + 2,
3593 8, gdbarch_byte_order (gdbarch),
3594 readbuf ? readbuf + 8 : readbuf,
3595 writebuf ? writebuf + 8 : writebuf, 0);
3596 return RETURN_VALUE_REGISTER_CONVENTION;
3597 }
3598 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3599 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3600 {
3601 /* A single or double floating-point value that fits in FP0. */
3602 if (mips_debug)
3603 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3604 mips_xfer_register (gdbarch, regcache,
3605 gdbarch_num_regs (gdbarch)
3606 + mips_regnum (gdbarch)->fp0,
3607 TYPE_LENGTH (type),
3608 gdbarch_byte_order (gdbarch),
3609 readbuf, writebuf, 0);
3610 return RETURN_VALUE_REGISTER_CONVENTION;
3611 }
3612 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3613 && TYPE_NFIELDS (type) <= 2
3614 && TYPE_NFIELDS (type) >= 1
3615 && ((TYPE_NFIELDS (type) == 1
3616 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3617 == TYPE_CODE_FLT))
3618 || (TYPE_NFIELDS (type) == 2
3619 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3620 == TYPE_CODE_FLT)
3621 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
3622 == TYPE_CODE_FLT))))
3623 {
3624 /* A struct that contains one or two floats. Each value is part
3625 in the least significant part of their floating point
3626 register (or GPR, for soft float). */
3627 int regnum;
3628 int field;
3629 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
3630 ? mips_regnum (gdbarch)->fp0
3631 : MIPS_V0_REGNUM);
3632 field < TYPE_NFIELDS (type); field++, regnum += 2)
3633 {
3634 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3635 / TARGET_CHAR_BIT);
3636 if (mips_debug)
3637 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3638 offset);
3639 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
3640 {
3641 /* A 16-byte long double field goes in two consecutive
3642 registers. */
3643 mips_xfer_register (gdbarch, regcache,
3644 gdbarch_num_regs (gdbarch) + regnum,
3645 8,
3646 gdbarch_byte_order (gdbarch),
3647 readbuf, writebuf, offset);
3648 mips_xfer_register (gdbarch, regcache,
3649 gdbarch_num_regs (gdbarch) + regnum + 1,
3650 8,
3651 gdbarch_byte_order (gdbarch),
3652 readbuf, writebuf, offset + 8);
3653 }
3654 else
3655 mips_xfer_register (gdbarch, regcache,
3656 gdbarch_num_regs (gdbarch) + regnum,
3657 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3658 gdbarch_byte_order (gdbarch),
3659 readbuf, writebuf, offset);
3660 }
3661 return RETURN_VALUE_REGISTER_CONVENTION;
3662 }
3663 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3664 || TYPE_CODE (type) == TYPE_CODE_UNION
3665 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3666 {
3667 /* A composite type. Extract the left justified value,
3668 regardless of the byte order. I.e. DO NOT USE
3669 mips_xfer_lower. */
3670 int offset;
3671 int regnum;
3672 for (offset = 0, regnum = MIPS_V0_REGNUM;
3673 offset < TYPE_LENGTH (type);
3674 offset += register_size (gdbarch, regnum), regnum++)
3675 {
3676 int xfer = register_size (gdbarch, regnum);
3677 if (offset + xfer > TYPE_LENGTH (type))
3678 xfer = TYPE_LENGTH (type) - offset;
3679 if (mips_debug)
3680 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3681 offset, xfer, regnum);
3682 mips_xfer_register (gdbarch, regcache,
3683 gdbarch_num_regs (gdbarch) + regnum,
3684 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
3685 offset);
3686 }
3687 return RETURN_VALUE_REGISTER_CONVENTION;
3688 }
3689 else
3690 {
3691 /* A scalar extract each part but least-significant-byte
3692 justified. */
3693 int offset;
3694 int regnum;
3695 for (offset = 0, regnum = MIPS_V0_REGNUM;
3696 offset < TYPE_LENGTH (type);
3697 offset += register_size (gdbarch, regnum), regnum++)
3698 {
3699 int xfer = register_size (gdbarch, regnum);
3700 if (offset + xfer > TYPE_LENGTH (type))
3701 xfer = TYPE_LENGTH (type) - offset;
3702 if (mips_debug)
3703 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3704 offset, xfer, regnum);
3705 mips_xfer_register (gdbarch, regcache,
3706 gdbarch_num_regs (gdbarch) + regnum,
3707 xfer, gdbarch_byte_order (gdbarch),
3708 readbuf, writebuf, offset);
3709 }
3710 return RETURN_VALUE_REGISTER_CONVENTION;
3711 }
3712 }
3713
3714 /* O32 ABI stuff. */
3715
3716 static CORE_ADDR
3717 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3718 struct regcache *regcache, CORE_ADDR bp_addr,
3719 int nargs, struct value **args, CORE_ADDR sp,
3720 int struct_return, CORE_ADDR struct_addr)
3721 {
3722 int argreg;
3723 int float_argreg;
3724 int argnum;
3725 int len = 0;
3726 int stack_offset = 0;
3727 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3729 CORE_ADDR func_addr = find_function_addr (function, NULL);
3730
3731 /* For shared libraries, "t9" needs to point at the function
3732 address. */
3733 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3734
3735 /* Set the return address register to point to the entry point of
3736 the program, where a breakpoint lies in wait. */
3737 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3738
3739 /* First ensure that the stack and structure return address (if any)
3740 are properly aligned. The stack has to be at least 64-bit
3741 aligned even on 32-bit machines, because doubles must be 64-bit
3742 aligned. For n32 and n64, stack frames need to be 128-bit
3743 aligned, so we round to this widest known alignment. */
3744
3745 sp = align_down (sp, 16);
3746 struct_addr = align_down (struct_addr, 16);
3747
3748 /* Now make space on the stack for the args. */
3749 for (argnum = 0; argnum < nargs; argnum++)
3750 {
3751 struct type *arg_type = check_typedef (value_type (args[argnum]));
3752 int arglen = TYPE_LENGTH (arg_type);
3753
3754 /* Align to double-word if necessary. */
3755 if (mips_type_needs_double_align (arg_type))
3756 len = align_up (len, MIPS32_REGSIZE * 2);
3757 /* Allocate space on the stack. */
3758 len += align_up (arglen, MIPS32_REGSIZE);
3759 }
3760 sp -= align_up (len, 16);
3761
3762 if (mips_debug)
3763 fprintf_unfiltered (gdb_stdlog,
3764 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
3765 paddress (gdbarch, sp), (long) align_up (len, 16));
3766
3767 /* Initialize the integer and float register pointers. */
3768 argreg = MIPS_A0_REGNUM;
3769 float_argreg = mips_fpa0_regnum (gdbarch);
3770
3771 /* The struct_return pointer occupies the first parameter-passing reg. */
3772 if (struct_return)
3773 {
3774 if (mips_debug)
3775 fprintf_unfiltered (gdb_stdlog,
3776 "mips_o32_push_dummy_call: struct_return reg=%d %s\n",
3777 argreg, paddress (gdbarch, struct_addr));
3778 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3779 stack_offset += MIPS32_REGSIZE;
3780 }
3781
3782 /* Now load as many as possible of the first arguments into
3783 registers, and push the rest onto the stack. Loop thru args
3784 from first to last. */
3785 for (argnum = 0; argnum < nargs; argnum++)
3786 {
3787 const gdb_byte *val;
3788 struct value *arg = args[argnum];
3789 struct type *arg_type = check_typedef (value_type (arg));
3790 int len = TYPE_LENGTH (arg_type);
3791 enum type_code typecode = TYPE_CODE (arg_type);
3792
3793 if (mips_debug)
3794 fprintf_unfiltered (gdb_stdlog,
3795 "mips_o32_push_dummy_call: %d len=%d type=%d",
3796 argnum + 1, len, (int) typecode);
3797
3798 val = value_contents (arg);
3799
3800 /* 32-bit ABIs always start floating point arguments in an
3801 even-numbered floating point register. Round the FP register
3802 up before the check to see if there are any FP registers
3803 left. O32/O64 targets also pass the FP in the integer
3804 registers so also round up normal registers. */
3805 if (fp_register_arg_p (gdbarch, typecode, arg_type))
3806 {
3807 if ((float_argreg & 1))
3808 float_argreg++;
3809 }
3810
3811 /* Floating point arguments passed in registers have to be
3812 treated specially. On 32-bit architectures, doubles
3813 are passed in register pairs; the even register gets
3814 the low word, and the odd register gets the high word.
3815 On O32/O64, the first two floating point arguments are
3816 also copied to general registers, because MIPS16 functions
3817 don't use float registers for arguments. This duplication of
3818 arguments in general registers can't hurt non-MIPS16 functions
3819 because those registers are normally skipped. */
3820
3821 if (fp_register_arg_p (gdbarch, typecode, arg_type)
3822 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
3823 {
3824 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3825 {
3826 int low_offset = gdbarch_byte_order (gdbarch)
3827 == BFD_ENDIAN_BIG ? 4 : 0;
3828 unsigned long regval;
3829
3830 /* Write the low word of the double to the even register(s). */
3831 regval = extract_unsigned_integer (val + low_offset,
3832 4, byte_order);
3833 if (mips_debug)
3834 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3835 float_argreg, phex (regval, 4));
3836 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3837 if (mips_debug)
3838 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3839 argreg, phex (regval, 4));
3840 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3841
3842 /* Write the high word of the double to the odd register(s). */
3843 regval = extract_unsigned_integer (val + 4 - low_offset,
3844 4, byte_order);
3845 if (mips_debug)
3846 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3847 float_argreg, phex (regval, 4));
3848 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3849
3850 if (mips_debug)
3851 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3852 argreg, phex (regval, 4));
3853 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3854 }
3855 else
3856 {
3857 /* This is a floating point value that fits entirely
3858 in a single register. */
3859 /* On 32 bit ABI's the float_argreg is further adjusted
3860 above to ensure that it is even register aligned. */
3861 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
3862 if (mips_debug)
3863 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3864 float_argreg, phex (regval, len));
3865 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3866 /* Although two FP registers are reserved for each
3867 argument, only one corresponding integer register is
3868 reserved. */
3869 if (mips_debug)
3870 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3871 argreg, phex (regval, len));
3872 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3873 }
3874 /* Reserve space for the FP register. */
3875 stack_offset += align_up (len, MIPS32_REGSIZE);
3876 }
3877 else
3878 {
3879 /* Copy the argument to general registers or the stack in
3880 register-sized pieces. Large arguments are split between
3881 registers and stack. */
3882 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3883 are treated specially: Irix cc passes
3884 them in registers where gcc sometimes puts them on the
3885 stack. For maximum compatibility, we will put them in
3886 both places. */
3887 int odd_sized_struct = (len > MIPS32_REGSIZE
3888 && len % MIPS32_REGSIZE != 0);
3889 /* Structures should be aligned to eight bytes (even arg registers)
3890 on MIPS_ABI_O32, if their first member has double precision. */
3891 if (mips_type_needs_double_align (arg_type))
3892 {
3893 if ((argreg & 1))
3894 {
3895 argreg++;
3896 stack_offset += MIPS32_REGSIZE;
3897 }
3898 }
3899 while (len > 0)
3900 {
3901 /* Remember if the argument was written to the stack. */
3902 int stack_used_p = 0;
3903 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3904
3905 if (mips_debug)
3906 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3907 partial_len);
3908
3909 /* Write this portion of the argument to the stack. */
3910 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
3911 || odd_sized_struct)
3912 {
3913 /* Should shorter than int integer values be
3914 promoted to int before being stored? */
3915 int longword_offset = 0;
3916 CORE_ADDR addr;
3917 stack_used_p = 1;
3918
3919 if (mips_debug)
3920 {
3921 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
3922 paddress (gdbarch, stack_offset));
3923 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
3924 paddress (gdbarch, longword_offset));
3925 }
3926
3927 addr = sp + stack_offset + longword_offset;
3928
3929 if (mips_debug)
3930 {
3931 int i;
3932 fprintf_unfiltered (gdb_stdlog, " @%s ",
3933 paddress (gdbarch, addr));
3934 for (i = 0; i < partial_len; i++)
3935 {
3936 fprintf_unfiltered (gdb_stdlog, "%02x",
3937 val[i] & 0xff);
3938 }
3939 }
3940 write_memory (addr, val, partial_len);
3941 }
3942
3943 /* Note!!! This is NOT an else clause. Odd sized
3944 structs may go thru BOTH paths. */
3945 /* Write this portion of the argument to a general
3946 purpose register. */
3947 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3948 {
3949 LONGEST regval = extract_signed_integer (val, partial_len,
3950 byte_order);
3951 /* Value may need to be sign extended, because
3952 mips_isa_regsize() != mips_abi_regsize(). */
3953
3954 /* A non-floating-point argument being passed in a
3955 general register. If a struct or union, and if
3956 the remaining length is smaller than the register
3957 size, we have to adjust the register value on
3958 big endian targets.
3959
3960 It does not seem to be necessary to do the
3961 same for integral types.
3962
3963 Also don't do this adjustment on O64 binaries.
3964
3965 cagney/2001-07-23: gdb/179: Also, GCC, when
3966 outputting LE O32 with sizeof (struct) <
3967 mips_abi_regsize(), generates a left shift
3968 as part of storing the argument in a register
3969 (the left shift isn't generated when
3970 sizeof (struct) >= mips_abi_regsize()). Since
3971 it is quite possible that this is GCC
3972 contradicting the LE/O32 ABI, GDB has not been
3973 adjusted to accommodate this. Either someone
3974 needs to demonstrate that the LE/O32 ABI
3975 specifies such a left shift OR this new ABI gets
3976 identified as such and GDB gets tweaked
3977 accordingly. */
3978
3979 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3980 && partial_len < MIPS32_REGSIZE
3981 && (typecode == TYPE_CODE_STRUCT
3982 || typecode == TYPE_CODE_UNION))
3983 regval <<= ((MIPS32_REGSIZE - partial_len)
3984 * TARGET_CHAR_BIT);
3985
3986 if (mips_debug)
3987 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3988 argreg,
3989 phex (regval, MIPS32_REGSIZE));
3990 regcache_cooked_write_unsigned (regcache, argreg, regval);
3991 argreg++;
3992
3993 /* Prevent subsequent floating point arguments from
3994 being passed in floating point registers. */
3995 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
3996 }
3997
3998 len -= partial_len;
3999 val += partial_len;
4000
4001 /* Compute the the offset into the stack at which we
4002 will copy the next parameter.
4003
4004 In older ABIs, the caller reserved space for
4005 registers that contained arguments. This was loosely
4006 refered to as their "home". Consequently, space is
4007 always allocated. */
4008
4009 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
4010 }
4011 }
4012 if (mips_debug)
4013 fprintf_unfiltered (gdb_stdlog, "\n");
4014 }
4015
4016 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4017
4018 /* Return adjusted stack pointer. */
4019 return sp;
4020 }
4021
4022 static enum return_value_convention
4023 mips_o32_return_value (struct gdbarch *gdbarch, struct type *func_type,
4024 struct type *type, struct regcache *regcache,
4025 gdb_byte *readbuf, const gdb_byte *writebuf)
4026 {
4027 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4028
4029 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4030 || TYPE_CODE (type) == TYPE_CODE_UNION
4031 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
4032 return RETURN_VALUE_STRUCT_CONVENTION;
4033 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4034 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4035 {
4036 /* A single-precision floating-point value. It fits in the
4037 least significant part of FP0. */
4038 if (mips_debug)
4039 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4040 mips_xfer_register (gdbarch, regcache,
4041 gdbarch_num_regs (gdbarch)
4042 + mips_regnum (gdbarch)->fp0,
4043 TYPE_LENGTH (type),
4044 gdbarch_byte_order (gdbarch),
4045 readbuf, writebuf, 0);
4046 return RETURN_VALUE_REGISTER_CONVENTION;
4047 }
4048 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4049 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4050 {
4051 /* A double-precision floating-point value. The most
4052 significant part goes in FP1, and the least significant in
4053 FP0. */
4054 if (mips_debug)
4055 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4056 switch (gdbarch_byte_order (gdbarch))
4057 {
4058 case BFD_ENDIAN_LITTLE:
4059 mips_xfer_register (gdbarch, regcache,
4060 gdbarch_num_regs (gdbarch)
4061 + mips_regnum (gdbarch)->fp0 +
4062 0, 4, gdbarch_byte_order (gdbarch),
4063 readbuf, writebuf, 0);
4064 mips_xfer_register (gdbarch, regcache,
4065 gdbarch_num_regs (gdbarch)
4066 + mips_regnum (gdbarch)->fp0 + 1,
4067 4, gdbarch_byte_order (gdbarch),
4068 readbuf, writebuf, 4);
4069 break;
4070 case BFD_ENDIAN_BIG:
4071 mips_xfer_register (gdbarch, regcache,
4072 gdbarch_num_regs (gdbarch)
4073 + mips_regnum (gdbarch)->fp0 + 1,
4074 4, gdbarch_byte_order (gdbarch),
4075 readbuf, writebuf, 0);
4076 mips_xfer_register (gdbarch, regcache,
4077 gdbarch_num_regs (gdbarch)
4078 + mips_regnum (gdbarch)->fp0 + 0,
4079 4, gdbarch_byte_order (gdbarch),
4080 readbuf, writebuf, 4);
4081 break;
4082 default:
4083 internal_error (__FILE__, __LINE__, _("bad switch"));
4084 }
4085 return RETURN_VALUE_REGISTER_CONVENTION;
4086 }
4087 #if 0
4088 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4089 && TYPE_NFIELDS (type) <= 2
4090 && TYPE_NFIELDS (type) >= 1
4091 && ((TYPE_NFIELDS (type) == 1
4092 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4093 == TYPE_CODE_FLT))
4094 || (TYPE_NFIELDS (type) == 2
4095 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4096 == TYPE_CODE_FLT)
4097 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4098 == TYPE_CODE_FLT)))
4099 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4100 {
4101 /* A struct that contains one or two floats. Each value is part
4102 in the least significant part of their floating point
4103 register.. */
4104 gdb_byte reg[MAX_REGISTER_SIZE];
4105 int regnum;
4106 int field;
4107 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
4108 field < TYPE_NFIELDS (type); field++, regnum += 2)
4109 {
4110 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4111 / TARGET_CHAR_BIT);
4112 if (mips_debug)
4113 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
4114 offset);
4115 mips_xfer_register (gdbarch, regcache,
4116 gdbarch_num_regs (gdbarch) + regnum,
4117 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4118 gdbarch_byte_order (gdbarch),
4119 readbuf, writebuf, offset);
4120 }
4121 return RETURN_VALUE_REGISTER_CONVENTION;
4122 }
4123 #endif
4124 #if 0
4125 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4126 || TYPE_CODE (type) == TYPE_CODE_UNION)
4127 {
4128 /* A structure or union. Extract the left justified value,
4129 regardless of the byte order. I.e. DO NOT USE
4130 mips_xfer_lower. */
4131 int offset;
4132 int regnum;
4133 for (offset = 0, regnum = MIPS_V0_REGNUM;
4134 offset < TYPE_LENGTH (type);
4135 offset += register_size (gdbarch, regnum), regnum++)
4136 {
4137 int xfer = register_size (gdbarch, regnum);
4138 if (offset + xfer > TYPE_LENGTH (type))
4139 xfer = TYPE_LENGTH (type) - offset;
4140 if (mips_debug)
4141 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4142 offset, xfer, regnum);
4143 mips_xfer_register (gdbarch, regcache,
4144 gdbarch_num_regs (gdbarch) + regnum, xfer,
4145 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
4146 }
4147 return RETURN_VALUE_REGISTER_CONVENTION;
4148 }
4149 #endif
4150 else
4151 {
4152 /* A scalar extract each part but least-significant-byte
4153 justified. o32 thinks registers are 4 byte, regardless of
4154 the ISA. */
4155 int offset;
4156 int regnum;
4157 for (offset = 0, regnum = MIPS_V0_REGNUM;
4158 offset < TYPE_LENGTH (type);
4159 offset += MIPS32_REGSIZE, regnum++)
4160 {
4161 int xfer = MIPS32_REGSIZE;
4162 if (offset + xfer > TYPE_LENGTH (type))
4163 xfer = TYPE_LENGTH (type) - offset;
4164 if (mips_debug)
4165 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4166 offset, xfer, regnum);
4167 mips_xfer_register (gdbarch, regcache,
4168 gdbarch_num_regs (gdbarch) + regnum, xfer,
4169 gdbarch_byte_order (gdbarch),
4170 readbuf, writebuf, offset);
4171 }
4172 return RETURN_VALUE_REGISTER_CONVENTION;
4173 }
4174 }
4175
4176 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
4177 ABI. */
4178
4179 static CORE_ADDR
4180 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4181 struct regcache *regcache, CORE_ADDR bp_addr,
4182 int nargs,
4183 struct value **args, CORE_ADDR sp,
4184 int struct_return, CORE_ADDR struct_addr)
4185 {
4186 int argreg;
4187 int float_argreg;
4188 int argnum;
4189 int len = 0;
4190 int stack_offset = 0;
4191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4192 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4193 CORE_ADDR func_addr = find_function_addr (function, NULL);
4194
4195 /* For shared libraries, "t9" needs to point at the function
4196 address. */
4197 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4198
4199 /* Set the return address register to point to the entry point of
4200 the program, where a breakpoint lies in wait. */
4201 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4202
4203 /* First ensure that the stack and structure return address (if any)
4204 are properly aligned. The stack has to be at least 64-bit
4205 aligned even on 32-bit machines, because doubles must be 64-bit
4206 aligned. For n32 and n64, stack frames need to be 128-bit
4207 aligned, so we round to this widest known alignment. */
4208
4209 sp = align_down (sp, 16);
4210 struct_addr = align_down (struct_addr, 16);
4211
4212 /* Now make space on the stack for the args. */
4213 for (argnum = 0; argnum < nargs; argnum++)
4214 {
4215 struct type *arg_type = check_typedef (value_type (args[argnum]));
4216 int arglen = TYPE_LENGTH (arg_type);
4217
4218 /* Allocate space on the stack. */
4219 len += align_up (arglen, MIPS64_REGSIZE);
4220 }
4221 sp -= align_up (len, 16);
4222
4223 if (mips_debug)
4224 fprintf_unfiltered (gdb_stdlog,
4225 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
4226 paddress (gdbarch, sp), (long) align_up (len, 16));
4227
4228 /* Initialize the integer and float register pointers. */
4229 argreg = MIPS_A0_REGNUM;
4230 float_argreg = mips_fpa0_regnum (gdbarch);
4231
4232 /* The struct_return pointer occupies the first parameter-passing reg. */
4233 if (struct_return)
4234 {
4235 if (mips_debug)
4236 fprintf_unfiltered (gdb_stdlog,
4237 "mips_o64_push_dummy_call: struct_return reg=%d %s\n",
4238 argreg, paddress (gdbarch, struct_addr));
4239 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4240 stack_offset += MIPS64_REGSIZE;
4241 }
4242
4243 /* Now load as many as possible of the first arguments into
4244 registers, and push the rest onto the stack. Loop thru args
4245 from first to last. */
4246 for (argnum = 0; argnum < nargs; argnum++)
4247 {
4248 const gdb_byte *val;
4249 gdb_byte valbuf[MAX_REGISTER_SIZE];
4250 struct value *arg = args[argnum];
4251 struct type *arg_type = check_typedef (value_type (arg));
4252 int len = TYPE_LENGTH (arg_type);
4253 enum type_code typecode = TYPE_CODE (arg_type);
4254
4255 if (mips_debug)
4256 fprintf_unfiltered (gdb_stdlog,
4257 "mips_o64_push_dummy_call: %d len=%d type=%d",
4258 argnum + 1, len, (int) typecode);
4259
4260 val = value_contents (arg);
4261
4262 /* Function pointer arguments to mips16 code need to be made into
4263 mips16 pointers. */
4264 if (typecode == TYPE_CODE_PTR
4265 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
4266 {
4267 CORE_ADDR addr = extract_signed_integer (value_contents (arg),
4268 len, byte_order);
4269 if (mips_pc_is_mips16 (addr))
4270 {
4271 store_signed_integer (valbuf, len, byte_order,
4272 make_mips16_addr (addr));
4273 val = valbuf;
4274 }
4275 }
4276
4277 /* Floating point arguments passed in registers have to be
4278 treated specially. On 32-bit architectures, doubles
4279 are passed in register pairs; the even register gets
4280 the low word, and the odd register gets the high word.
4281 On O32/O64, the first two floating point arguments are
4282 also copied to general registers, because MIPS16 functions
4283 don't use float registers for arguments. This duplication of
4284 arguments in general registers can't hurt non-MIPS16 functions
4285 because those registers are normally skipped. */
4286
4287 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4288 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4289 {
4290 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
4291 if (mips_debug)
4292 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4293 float_argreg, phex (regval, len));
4294 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
4295 if (mips_debug)
4296 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4297 argreg, phex (regval, len));
4298 regcache_cooked_write_unsigned (regcache, argreg, regval);
4299 argreg++;
4300 /* Reserve space for the FP register. */
4301 stack_offset += align_up (len, MIPS64_REGSIZE);
4302 }
4303 else
4304 {
4305 /* Copy the argument to general registers or the stack in
4306 register-sized pieces. Large arguments are split between
4307 registers and stack. */
4308 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
4309 are treated specially: Irix cc passes them in registers
4310 where gcc sometimes puts them on the stack. For maximum
4311 compatibility, we will put them in both places. */
4312 int odd_sized_struct = (len > MIPS64_REGSIZE
4313 && len % MIPS64_REGSIZE != 0);
4314 while (len > 0)
4315 {
4316 /* Remember if the argument was written to the stack. */
4317 int stack_used_p = 0;
4318 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4319
4320 if (mips_debug)
4321 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4322 partial_len);
4323
4324 /* Write this portion of the argument to the stack. */
4325 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4326 || odd_sized_struct)
4327 {
4328 /* Should shorter than int integer values be
4329 promoted to int before being stored? */
4330 int longword_offset = 0;
4331 CORE_ADDR addr;
4332 stack_used_p = 1;
4333 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4334 {
4335 if ((typecode == TYPE_CODE_INT
4336 || typecode == TYPE_CODE_PTR
4337 || typecode == TYPE_CODE_FLT)
4338 && len <= 4)
4339 longword_offset = MIPS64_REGSIZE - len;
4340 }
4341
4342 if (mips_debug)
4343 {
4344 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4345 paddress (gdbarch, stack_offset));
4346 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4347 paddress (gdbarch, longword_offset));
4348 }
4349
4350 addr = sp + stack_offset + longword_offset;
4351
4352 if (mips_debug)
4353 {
4354 int i;
4355 fprintf_unfiltered (gdb_stdlog, " @%s ",
4356 paddress (gdbarch, addr));
4357 for (i = 0; i < partial_len; i++)
4358 {
4359 fprintf_unfiltered (gdb_stdlog, "%02x",
4360 val[i] & 0xff);
4361 }
4362 }
4363 write_memory (addr, val, partial_len);
4364 }
4365
4366 /* Note!!! This is NOT an else clause. Odd sized
4367 structs may go thru BOTH paths. */
4368 /* Write this portion of the argument to a general
4369 purpose register. */
4370 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4371 {
4372 LONGEST regval = extract_signed_integer (val, partial_len,
4373 byte_order);
4374 /* Value may need to be sign extended, because
4375 mips_isa_regsize() != mips_abi_regsize(). */
4376
4377 /* A non-floating-point argument being passed in a
4378 general register. If a struct or union, and if
4379 the remaining length is smaller than the register
4380 size, we have to adjust the register value on
4381 big endian targets.
4382
4383 It does not seem to be necessary to do the
4384 same for integral types. */
4385
4386 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
4387 && partial_len < MIPS64_REGSIZE
4388 && (typecode == TYPE_CODE_STRUCT
4389 || typecode == TYPE_CODE_UNION))
4390 regval <<= ((MIPS64_REGSIZE - partial_len)
4391 * TARGET_CHAR_BIT);
4392
4393 if (mips_debug)
4394 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4395 argreg,
4396 phex (regval, MIPS64_REGSIZE));
4397 regcache_cooked_write_unsigned (regcache, argreg, regval);
4398 argreg++;
4399
4400 /* Prevent subsequent floating point arguments from
4401 being passed in floating point registers. */
4402 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
4403 }
4404
4405 len -= partial_len;
4406 val += partial_len;
4407
4408 /* Compute the the offset into the stack at which we
4409 will copy the next parameter.
4410
4411 In older ABIs, the caller reserved space for
4412 registers that contained arguments. This was loosely
4413 refered to as their "home". Consequently, space is
4414 always allocated. */
4415
4416 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
4417 }
4418 }
4419 if (mips_debug)
4420 fprintf_unfiltered (gdb_stdlog, "\n");
4421 }
4422
4423 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4424
4425 /* Return adjusted stack pointer. */
4426 return sp;
4427 }
4428
4429 static enum return_value_convention
4430 mips_o64_return_value (struct gdbarch *gdbarch, struct type *func_type,
4431 struct type *type, struct regcache *regcache,
4432 gdb_byte *readbuf, const gdb_byte *writebuf)
4433 {
4434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4435
4436 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4437 || TYPE_CODE (type) == TYPE_CODE_UNION
4438 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
4439 return RETURN_VALUE_STRUCT_CONVENTION;
4440 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
4441 {
4442 /* A floating-point value. It fits in the least significant
4443 part of FP0. */
4444 if (mips_debug)
4445 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4446 mips_xfer_register (gdbarch, regcache,
4447 gdbarch_num_regs (gdbarch)
4448 + mips_regnum (gdbarch)->fp0,
4449 TYPE_LENGTH (type),
4450 gdbarch_byte_order (gdbarch),
4451 readbuf, writebuf, 0);
4452 return RETURN_VALUE_REGISTER_CONVENTION;
4453 }
4454 else
4455 {
4456 /* A scalar extract each part but least-significant-byte
4457 justified. */
4458 int offset;
4459 int regnum;
4460 for (offset = 0, regnum = MIPS_V0_REGNUM;
4461 offset < TYPE_LENGTH (type);
4462 offset += MIPS64_REGSIZE, regnum++)
4463 {
4464 int xfer = MIPS64_REGSIZE;
4465 if (offset + xfer > TYPE_LENGTH (type))
4466 xfer = TYPE_LENGTH (type) - offset;
4467 if (mips_debug)
4468 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4469 offset, xfer, regnum);
4470 mips_xfer_register (gdbarch, regcache,
4471 gdbarch_num_regs (gdbarch) + regnum,
4472 xfer, gdbarch_byte_order (gdbarch),
4473 readbuf, writebuf, offset);
4474 }
4475 return RETURN_VALUE_REGISTER_CONVENTION;
4476 }
4477 }
4478
4479 /* Floating point register management.
4480
4481 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4482 64bit operations, these early MIPS cpus treat fp register pairs
4483 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4484 registers and offer a compatibility mode that emulates the MIPS2 fp
4485 model. When operating in MIPS2 fp compat mode, later cpu's split
4486 double precision floats into two 32-bit chunks and store them in
4487 consecutive fp regs. To display 64-bit floats stored in this
4488 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4489 Throw in user-configurable endianness and you have a real mess.
4490
4491 The way this works is:
4492 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4493 double-precision value will be split across two logical registers.
4494 The lower-numbered logical register will hold the low-order bits,
4495 regardless of the processor's endianness.
4496 - If we are on a 64-bit processor, and we are looking for a
4497 single-precision value, it will be in the low ordered bits
4498 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4499 save slot in memory.
4500 - If we are in 64-bit mode, everything is straightforward.
4501
4502 Note that this code only deals with "live" registers at the top of the
4503 stack. We will attempt to deal with saved registers later, when
4504 the raw/cooked register interface is in place. (We need a general
4505 interface that can deal with dynamic saved register sizes -- fp
4506 regs could be 32 bits wide in one frame and 64 on the frame above
4507 and below). */
4508
4509 /* Copy a 32-bit single-precision value from the current frame
4510 into rare_buffer. */
4511
4512 static void
4513 mips_read_fp_register_single (struct frame_info *frame, int regno,
4514 gdb_byte *rare_buffer)
4515 {
4516 struct gdbarch *gdbarch = get_frame_arch (frame);
4517 int raw_size = register_size (gdbarch, regno);
4518 gdb_byte *raw_buffer = alloca (raw_size);
4519
4520 if (!frame_register_read (frame, regno, raw_buffer))
4521 error (_("can't read register %d (%s)"),
4522 regno, gdbarch_register_name (gdbarch, regno));
4523 if (raw_size == 8)
4524 {
4525 /* We have a 64-bit value for this register. Find the low-order
4526 32 bits. */
4527 int offset;
4528
4529 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4530 offset = 4;
4531 else
4532 offset = 0;
4533
4534 memcpy (rare_buffer, raw_buffer + offset, 4);
4535 }
4536 else
4537 {
4538 memcpy (rare_buffer, raw_buffer, 4);
4539 }
4540 }
4541
4542 /* Copy a 64-bit double-precision value from the current frame into
4543 rare_buffer. This may include getting half of it from the next
4544 register. */
4545
4546 static void
4547 mips_read_fp_register_double (struct frame_info *frame, int regno,
4548 gdb_byte *rare_buffer)
4549 {
4550 struct gdbarch *gdbarch = get_frame_arch (frame);
4551 int raw_size = register_size (gdbarch, regno);
4552
4553 if (raw_size == 8 && !mips2_fp_compat (frame))
4554 {
4555 /* We have a 64-bit value for this register, and we should use
4556 all 64 bits. */
4557 if (!frame_register_read (frame, regno, rare_buffer))
4558 error (_("can't read register %d (%s)"),
4559 regno, gdbarch_register_name (gdbarch, regno));
4560 }
4561 else
4562 {
4563 int rawnum = regno % gdbarch_num_regs (gdbarch);
4564
4565 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
4566 internal_error (__FILE__, __LINE__,
4567 _("mips_read_fp_register_double: bad access to "
4568 "odd-numbered FP register"));
4569
4570 /* mips_read_fp_register_single will find the correct 32 bits from
4571 each register. */
4572 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4573 {
4574 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4575 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4576 }
4577 else
4578 {
4579 mips_read_fp_register_single (frame, regno, rare_buffer);
4580 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4581 }
4582 }
4583 }
4584
4585 static void
4586 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4587 int regnum)
4588 { /* do values for FP (float) regs */
4589 struct gdbarch *gdbarch = get_frame_arch (frame);
4590 gdb_byte *raw_buffer;
4591 double doub, flt1; /* doubles extracted from raw hex data */
4592 int inv1, inv2;
4593
4594 raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
4595
4596 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
4597 fprintf_filtered (file, "%*s",
4598 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
4599 "");
4600
4601 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4602 {
4603 struct value_print_options opts;
4604
4605 /* 4-byte registers: Print hex and floating. Also print even
4606 numbered registers as doubles. */
4607 mips_read_fp_register_single (frame, regnum, raw_buffer);
4608 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float, raw_buffer, &inv1);
4609
4610 get_formatted_print_options (&opts, 'x');
4611 print_scalar_formatted (raw_buffer,
4612 builtin_type (gdbarch)->builtin_uint32,
4613 &opts, 'w', file);
4614
4615 fprintf_filtered (file, " flt: ");
4616 if (inv1)
4617 fprintf_filtered (file, " <invalid float> ");
4618 else
4619 fprintf_filtered (file, "%-17.9g", flt1);
4620
4621 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
4622 {
4623 mips_read_fp_register_double (frame, regnum, raw_buffer);
4624 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
4625 raw_buffer, &inv2);
4626
4627 fprintf_filtered (file, " dbl: ");
4628 if (inv2)
4629 fprintf_filtered (file, "<invalid double>");
4630 else
4631 fprintf_filtered (file, "%-24.17g", doub);
4632 }
4633 }
4634 else
4635 {
4636 struct value_print_options opts;
4637
4638 /* Eight byte registers: print each one as hex, float and double. */
4639 mips_read_fp_register_single (frame, regnum, raw_buffer);
4640 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
4641 raw_buffer, &inv1);
4642
4643 mips_read_fp_register_double (frame, regnum, raw_buffer);
4644 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
4645 raw_buffer, &inv2);
4646
4647 get_formatted_print_options (&opts, 'x');
4648 print_scalar_formatted (raw_buffer,
4649 builtin_type (gdbarch)->builtin_uint64,
4650 &opts, 'g', file);
4651
4652 fprintf_filtered (file, " flt: ");
4653 if (inv1)
4654 fprintf_filtered (file, "<invalid float>");
4655 else
4656 fprintf_filtered (file, "%-17.9g", flt1);
4657
4658 fprintf_filtered (file, " dbl: ");
4659 if (inv2)
4660 fprintf_filtered (file, "<invalid double>");
4661 else
4662 fprintf_filtered (file, "%-24.17g", doub);
4663 }
4664 }
4665
4666 static void
4667 mips_print_register (struct ui_file *file, struct frame_info *frame,
4668 int regnum)
4669 {
4670 struct gdbarch *gdbarch = get_frame_arch (frame);
4671 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4672 int offset;
4673 struct value_print_options opts;
4674
4675 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4676 {
4677 mips_print_fp_register (file, frame, regnum);
4678 return;
4679 }
4680
4681 /* Get the data in raw format. */
4682 if (!frame_register_read (frame, regnum, raw_buffer))
4683 {
4684 fprintf_filtered (file, "%s: [Invalid]",
4685 gdbarch_register_name (gdbarch, regnum));
4686 return;
4687 }
4688
4689 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
4690
4691 /* The problem with printing numeric register names (r26, etc.) is that
4692 the user can't use them on input. Probably the best solution is to
4693 fix it so that either the numeric or the funky (a2, etc.) names
4694 are accepted on input. */
4695 if (regnum < MIPS_NUMREGS)
4696 fprintf_filtered (file, "(r%d): ", regnum);
4697 else
4698 fprintf_filtered (file, ": ");
4699
4700 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4701 offset =
4702 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4703 else
4704 offset = 0;
4705
4706 get_formatted_print_options (&opts, 'x');
4707 print_scalar_formatted (raw_buffer + offset,
4708 register_type (gdbarch, regnum), &opts, 0,
4709 file);
4710 }
4711
4712 /* Replacement for generic do_registers_info.
4713 Print regs in pretty columns. */
4714
4715 static int
4716 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4717 int regnum)
4718 {
4719 fprintf_filtered (file, " ");
4720 mips_print_fp_register (file, frame, regnum);
4721 fprintf_filtered (file, "\n");
4722 return regnum + 1;
4723 }
4724
4725
4726 /* Print a row's worth of GP (int) registers, with name labels above */
4727
4728 static int
4729 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4730 int start_regnum)
4731 {
4732 struct gdbarch *gdbarch = get_frame_arch (frame);
4733 /* do values for GP (int) regs */
4734 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4735 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4736 int col, byte;
4737 int regnum;
4738
4739 /* For GP registers, we print a separate row of names above the vals */
4740 for (col = 0, regnum = start_regnum;
4741 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4742 + gdbarch_num_pseudo_regs (gdbarch);
4743 regnum++)
4744 {
4745 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4746 continue; /* unused register */
4747 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4748 TYPE_CODE_FLT)
4749 break; /* end the row: reached FP register */
4750 /* Large registers are handled separately. */
4751 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4752 {
4753 if (col > 0)
4754 break; /* End the row before this register. */
4755
4756 /* Print this register on a row by itself. */
4757 mips_print_register (file, frame, regnum);
4758 fprintf_filtered (file, "\n");
4759 return regnum + 1;
4760 }
4761 if (col == 0)
4762 fprintf_filtered (file, " ");
4763 fprintf_filtered (file,
4764 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
4765 gdbarch_register_name (gdbarch, regnum));
4766 col++;
4767 }
4768
4769 if (col == 0)
4770 return regnum;
4771
4772 /* print the R0 to R31 names */
4773 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
4774 fprintf_filtered (file, "\n R%-4d",
4775 start_regnum % gdbarch_num_regs (gdbarch));
4776 else
4777 fprintf_filtered (file, "\n ");
4778
4779 /* now print the values in hex, 4 or 8 to the row */
4780 for (col = 0, regnum = start_regnum;
4781 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4782 + gdbarch_num_pseudo_regs (gdbarch);
4783 regnum++)
4784 {
4785 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4786 continue; /* unused register */
4787 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4788 TYPE_CODE_FLT)
4789 break; /* end row: reached FP register */
4790 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4791 break; /* End row: large register. */
4792
4793 /* OK: get the data in raw format. */
4794 if (!frame_register_read (frame, regnum, raw_buffer))
4795 error (_("can't read register %d (%s)"),
4796 regnum, gdbarch_register_name (gdbarch, regnum));
4797 /* pad small registers */
4798 for (byte = 0;
4799 byte < (mips_abi_regsize (gdbarch)
4800 - register_size (gdbarch, regnum)); byte++)
4801 printf_filtered (" ");
4802 /* Now print the register value in hex, endian order. */
4803 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4804 for (byte =
4805 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4806 byte < register_size (gdbarch, regnum); byte++)
4807 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4808 else
4809 for (byte = register_size (gdbarch, regnum) - 1;
4810 byte >= 0; byte--)
4811 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4812 fprintf_filtered (file, " ");
4813 col++;
4814 }
4815 if (col > 0) /* ie. if we actually printed anything... */
4816 fprintf_filtered (file, "\n");
4817
4818 return regnum;
4819 }
4820
4821 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4822
4823 static void
4824 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4825 struct frame_info *frame, int regnum, int all)
4826 {
4827 if (regnum != -1) /* do one specified register */
4828 {
4829 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
4830 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
4831 error (_("Not a valid register for the current processor type"));
4832
4833 mips_print_register (file, frame, regnum);
4834 fprintf_filtered (file, "\n");
4835 }
4836 else
4837 /* do all (or most) registers */
4838 {
4839 regnum = gdbarch_num_regs (gdbarch);
4840 while (regnum < gdbarch_num_regs (gdbarch)
4841 + gdbarch_num_pseudo_regs (gdbarch))
4842 {
4843 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4844 TYPE_CODE_FLT)
4845 {
4846 if (all) /* true for "INFO ALL-REGISTERS" command */
4847 regnum = print_fp_register_row (file, frame, regnum);
4848 else
4849 regnum += MIPS_NUMREGS; /* skip floating point regs */
4850 }
4851 else
4852 regnum = print_gp_register_row (file, frame, regnum);
4853 }
4854 }
4855 }
4856
4857 /* Is this a branch with a delay slot? */
4858
4859 static int
4860 is_delayed (unsigned long insn)
4861 {
4862 int i;
4863 for (i = 0; i < NUMOPCODES; ++i)
4864 if (mips_opcodes[i].pinfo != INSN_MACRO
4865 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4866 break;
4867 return (i < NUMOPCODES
4868 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4869 | INSN_COND_BRANCH_DELAY
4870 | INSN_COND_BRANCH_LIKELY)));
4871 }
4872
4873 static int
4874 mips_single_step_through_delay (struct gdbarch *gdbarch,
4875 struct frame_info *frame)
4876 {
4877 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4878 CORE_ADDR pc = get_frame_pc (frame);
4879 gdb_byte buf[MIPS_INSN32_SIZE];
4880
4881 /* There is no branch delay slot on MIPS16. */
4882 if (mips_pc_is_mips16 (pc))
4883 return 0;
4884
4885 if (!breakpoint_here_p (get_frame_address_space (frame), pc + 4))
4886 return 0;
4887
4888 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4889 /* If error reading memory, guess that it is not a delayed
4890 branch. */
4891 return 0;
4892 return is_delayed (extract_unsigned_integer (buf, sizeof buf, byte_order));
4893 }
4894
4895 /* To skip prologues, I use this predicate. Returns either PC itself
4896 if the code at PC does not look like a function prologue; otherwise
4897 returns an address that (if we're lucky) follows the prologue. If
4898 LENIENT, then we must skip everything which is involved in setting
4899 up the frame (it's OK to skip more, just so long as we don't skip
4900 anything which might clobber the registers which are being saved.
4901 We must skip more in the case where part of the prologue is in the
4902 delay slot of a non-prologue instruction). */
4903
4904 static CORE_ADDR
4905 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4906 {
4907 CORE_ADDR limit_pc;
4908 CORE_ADDR func_addr;
4909
4910 /* See if we can determine the end of the prologue via the symbol table.
4911 If so, then return either PC, or the PC after the prologue, whichever
4912 is greater. */
4913 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4914 {
4915 CORE_ADDR post_prologue_pc
4916 = skip_prologue_using_sal (gdbarch, func_addr);
4917 if (post_prologue_pc != 0)
4918 return max (pc, post_prologue_pc);
4919 }
4920
4921 /* Can't determine prologue from the symbol table, need to examine
4922 instructions. */
4923
4924 /* Find an upper limit on the function prologue using the debug
4925 information. If the debug information could not be used to provide
4926 that bound, then use an arbitrary large number as the upper bound. */
4927 limit_pc = skip_prologue_using_sal (gdbarch, pc);
4928 if (limit_pc == 0)
4929 limit_pc = pc + 100; /* Magic. */
4930
4931 if (mips_pc_is_mips16 (pc))
4932 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4933 else
4934 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4935 }
4936
4937 /* Check whether the PC is in a function epilogue (32-bit version).
4938 This is a helper function for mips_in_function_epilogue_p. */
4939 static int
4940 mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4941 {
4942 CORE_ADDR func_addr = 0, func_end = 0;
4943
4944 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4945 {
4946 /* The MIPS epilogue is max. 12 bytes long. */
4947 CORE_ADDR addr = func_end - 12;
4948
4949 if (addr < func_addr + 4)
4950 addr = func_addr + 4;
4951 if (pc < addr)
4952 return 0;
4953
4954 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4955 {
4956 unsigned long high_word;
4957 unsigned long inst;
4958
4959 inst = mips_fetch_instruction (gdbarch, pc);
4960 high_word = (inst >> 16) & 0xffff;
4961
4962 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4963 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4964 && inst != 0x03e00008 /* jr $ra */
4965 && inst != 0x00000000) /* nop */
4966 return 0;
4967 }
4968
4969 return 1;
4970 }
4971
4972 return 0;
4973 }
4974
4975 /* Check whether the PC is in a function epilogue (16-bit version).
4976 This is a helper function for mips_in_function_epilogue_p. */
4977 static int
4978 mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4979 {
4980 CORE_ADDR func_addr = 0, func_end = 0;
4981
4982 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4983 {
4984 /* The MIPS epilogue is max. 12 bytes long. */
4985 CORE_ADDR addr = func_end - 12;
4986
4987 if (addr < func_addr + 4)
4988 addr = func_addr + 4;
4989 if (pc < addr)
4990 return 0;
4991
4992 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4993 {
4994 unsigned short inst;
4995
4996 inst = mips_fetch_instruction (gdbarch, pc);
4997
4998 if ((inst & 0xf800) == 0xf000) /* extend */
4999 continue;
5000
5001 if (inst != 0x6300 /* addiu $sp,offset */
5002 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
5003 && inst != 0xe820 /* jr $ra */
5004 && inst != 0xe8a0 /* jrc $ra */
5005 && inst != 0x6500) /* nop */
5006 return 0;
5007 }
5008
5009 return 1;
5010 }
5011
5012 return 0;
5013 }
5014
5015 /* The epilogue is defined here as the area at the end of a function,
5016 after an instruction which destroys the function's stack frame. */
5017 static int
5018 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
5019 {
5020 if (mips_pc_is_mips16 (pc))
5021 return mips16_in_function_epilogue_p (gdbarch, pc);
5022 else
5023 return mips32_in_function_epilogue_p (gdbarch, pc);
5024 }
5025
5026 /* Root of all "set mips "/"show mips " commands. This will eventually be
5027 used for all MIPS-specific commands. */
5028
5029 static void
5030 show_mips_command (char *args, int from_tty)
5031 {
5032 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5033 }
5034
5035 static void
5036 set_mips_command (char *args, int from_tty)
5037 {
5038 printf_unfiltered
5039 ("\"set mips\" must be followed by an appropriate subcommand.\n");
5040 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5041 }
5042
5043 /* Commands to show/set the MIPS FPU type. */
5044
5045 static void
5046 show_mipsfpu_command (char *args, int from_tty)
5047 {
5048 char *fpu;
5049
5050 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
5051 {
5052 printf_unfiltered
5053 ("The MIPS floating-point coprocessor is unknown "
5054 "because the current architecture is not MIPS.\n");
5055 return;
5056 }
5057
5058 switch (MIPS_FPU_TYPE (target_gdbarch))
5059 {
5060 case MIPS_FPU_SINGLE:
5061 fpu = "single-precision";
5062 break;
5063 case MIPS_FPU_DOUBLE:
5064 fpu = "double-precision";
5065 break;
5066 case MIPS_FPU_NONE:
5067 fpu = "absent (none)";
5068 break;
5069 default:
5070 internal_error (__FILE__, __LINE__, _("bad switch"));
5071 }
5072 if (mips_fpu_type_auto)
5073 printf_unfiltered
5074 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5075 fpu);
5076 else
5077 printf_unfiltered
5078 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
5079 }
5080
5081
5082 static void
5083 set_mipsfpu_command (char *args, int from_tty)
5084 {
5085 printf_unfiltered
5086 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5087 show_mipsfpu_command (args, from_tty);
5088 }
5089
5090 static void
5091 set_mipsfpu_single_command (char *args, int from_tty)
5092 {
5093 struct gdbarch_info info;
5094 gdbarch_info_init (&info);
5095 mips_fpu_type = MIPS_FPU_SINGLE;
5096 mips_fpu_type_auto = 0;
5097 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
5098 instead of relying on globals. Doing that would let generic code
5099 handle the search for this specific architecture. */
5100 if (!gdbarch_update_p (info))
5101 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
5102 }
5103
5104 static void
5105 set_mipsfpu_double_command (char *args, int from_tty)
5106 {
5107 struct gdbarch_info info;
5108 gdbarch_info_init (&info);
5109 mips_fpu_type = MIPS_FPU_DOUBLE;
5110 mips_fpu_type_auto = 0;
5111 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
5112 instead of relying on globals. Doing that would let generic code
5113 handle the search for this specific architecture. */
5114 if (!gdbarch_update_p (info))
5115 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
5116 }
5117
5118 static void
5119 set_mipsfpu_none_command (char *args, int from_tty)
5120 {
5121 struct gdbarch_info info;
5122 gdbarch_info_init (&info);
5123 mips_fpu_type = MIPS_FPU_NONE;
5124 mips_fpu_type_auto = 0;
5125 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
5126 instead of relying on globals. Doing that would let generic code
5127 handle the search for this specific architecture. */
5128 if (!gdbarch_update_p (info))
5129 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
5130 }
5131
5132 static void
5133 set_mipsfpu_auto_command (char *args, int from_tty)
5134 {
5135 mips_fpu_type_auto = 1;
5136 }
5137
5138 /* Attempt to identify the particular processor model by reading the
5139 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
5140 the relevant processor still exists (it dates back to '94) and
5141 secondly this is not the way to do this. The processor type should
5142 be set by forcing an architecture change. */
5143
5144 void
5145 deprecated_mips_set_processor_regs_hack (void)
5146 {
5147 struct regcache *regcache = get_current_regcache ();
5148 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5149 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5150 ULONGEST prid;
5151
5152 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
5153 if ((prid & ~0xf) == 0x700)
5154 tdep->mips_processor_reg_names = mips_r3041_reg_names;
5155 }
5156
5157 /* Just like reinit_frame_cache, but with the right arguments to be
5158 callable as an sfunc. */
5159
5160 static void
5161 reinit_frame_cache_sfunc (char *args, int from_tty,
5162 struct cmd_list_element *c)
5163 {
5164 reinit_frame_cache ();
5165 }
5166
5167 static int
5168 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
5169 {
5170 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5171 disassembler needs to be able to locally determine the ISA, and
5172 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5173 work. */
5174 if (mips_pc_is_mips16 (memaddr))
5175 info->mach = bfd_mach_mips16;
5176
5177 /* Round down the instruction address to the appropriate boundary. */
5178 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5179
5180 /* Set the disassembler options. */
5181 if (!info->disassembler_options)
5182 /* This string is not recognized explicitly by the disassembler,
5183 but it tells the disassembler to not try to guess the ABI from
5184 the bfd elf headers, such that, if the user overrides the ABI
5185 of a program linked as NewABI, the disassembly will follow the
5186 register naming conventions specified by the user. */
5187 info->disassembler_options = "gpr-names=32";
5188
5189 /* Call the appropriate disassembler based on the target endian-ness. */
5190 if (info->endian == BFD_ENDIAN_BIG)
5191 return print_insn_big_mips (memaddr, info);
5192 else
5193 return print_insn_little_mips (memaddr, info);
5194 }
5195
5196 static int
5197 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
5198 {
5199 /* Set up the disassembler info, so that we get the right
5200 register names from libopcodes. */
5201 info->disassembler_options = "gpr-names=n32";
5202 info->flavour = bfd_target_elf_flavour;
5203
5204 return gdb_print_insn_mips (memaddr, info);
5205 }
5206
5207 static int
5208 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
5209 {
5210 /* Set up the disassembler info, so that we get the right
5211 register names from libopcodes. */
5212 info->disassembler_options = "gpr-names=64";
5213 info->flavour = bfd_target_elf_flavour;
5214
5215 return gdb_print_insn_mips (memaddr, info);
5216 }
5217
5218 /* This function implements gdbarch_breakpoint_from_pc. It uses the program
5219 counter value to determine whether a 16- or 32-bit breakpoint should be used.
5220 It returns a pointer to a string of bytes that encode a breakpoint
5221 instruction, stores the length of the string to *lenptr, and adjusts pc (if
5222 necessary) to point to the actual memory location where the breakpoint
5223 should be inserted. */
5224
5225 static const gdb_byte *
5226 mips_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
5227 {
5228 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5229 {
5230 if (mips_pc_is_mips16 (*pcptr))
5231 {
5232 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
5233 *pcptr = unmake_mips16_addr (*pcptr);
5234 *lenptr = sizeof (mips16_big_breakpoint);
5235 return mips16_big_breakpoint;
5236 }
5237 else
5238 {
5239 /* The IDT board uses an unusual breakpoint value, and
5240 sometimes gets confused when it sees the usual MIPS
5241 breakpoint instruction. */
5242 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
5243 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
5244 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
5245 /* Likewise, IRIX appears to expect a different breakpoint,
5246 although this is not apparent until you try to use pthreads. */
5247 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
5248
5249 *lenptr = sizeof (big_breakpoint);
5250
5251 if (strcmp (target_shortname, "mips") == 0)
5252 return idt_big_breakpoint;
5253 else if (strcmp (target_shortname, "ddb") == 0
5254 || strcmp (target_shortname, "pmon") == 0
5255 || strcmp (target_shortname, "lsi") == 0)
5256 return pmon_big_breakpoint;
5257 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
5258 return irix_big_breakpoint;
5259 else
5260 return big_breakpoint;
5261 }
5262 }
5263 else
5264 {
5265 if (mips_pc_is_mips16 (*pcptr))
5266 {
5267 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
5268 *pcptr = unmake_mips16_addr (*pcptr);
5269 *lenptr = sizeof (mips16_little_breakpoint);
5270 return mips16_little_breakpoint;
5271 }
5272 else
5273 {
5274 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
5275 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
5276 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
5277
5278 *lenptr = sizeof (little_breakpoint);
5279
5280 if (strcmp (target_shortname, "mips") == 0)
5281 return idt_little_breakpoint;
5282 else if (strcmp (target_shortname, "ddb") == 0
5283 || strcmp (target_shortname, "pmon") == 0
5284 || strcmp (target_shortname, "lsi") == 0)
5285 return pmon_little_breakpoint;
5286 else
5287 return little_breakpoint;
5288 }
5289 }
5290 }
5291
5292 /* If PC is in a mips16 call or return stub, return the address of the target
5293 PC, which is either the callee or the caller. There are several
5294 cases which must be handled:
5295
5296 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5297 target PC is in $31 ($ra).
5298 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5299 and the target PC is in $2.
5300 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5301 before the jal instruction, this is effectively a call stub
5302 and the the target PC is in $2. Otherwise this is effectively
5303 a return stub and the target PC is in $18.
5304
5305 See the source code for the stubs in gcc/config/mips/mips16.S for
5306 gory details. */
5307
5308 static CORE_ADDR
5309 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5310 {
5311 struct gdbarch *gdbarch = get_frame_arch (frame);
5312 char *name;
5313 CORE_ADDR start_addr;
5314
5315 /* Find the starting address and name of the function containing the PC. */
5316 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5317 return 0;
5318
5319 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5320 target PC is in $31 ($ra). */
5321 if (strcmp (name, "__mips16_ret_sf") == 0
5322 || strcmp (name, "__mips16_ret_df") == 0)
5323 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
5324
5325 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5326 {
5327 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5328 and the target PC is in $2. */
5329 if (name[19] >= '0' && name[19] <= '9')
5330 return get_frame_register_signed (frame, 2);
5331
5332 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5333 before the jal instruction, this is effectively a call stub
5334 and the the target PC is in $2. Otherwise this is effectively
5335 a return stub and the target PC is in $18. */
5336 else if (name[19] == 's' || name[19] == 'd')
5337 {
5338 if (pc == start_addr)
5339 {
5340 /* Check if the target of the stub is a compiler-generated
5341 stub. Such a stub for a function bar might have a name
5342 like __fn_stub_bar, and might look like this:
5343 mfc1 $4,$f13
5344 mfc1 $5,$f12
5345 mfc1 $6,$f15
5346 mfc1 $7,$f14
5347 la $1,bar (becomes a lui/addiu pair)
5348 jr $1
5349 So scan down to the lui/addi and extract the target
5350 address from those two instructions. */
5351
5352 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
5353 ULONGEST inst;
5354 int i;
5355
5356 /* See if the name of the target function is __fn_stub_*. */
5357 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
5358 0)
5359 return target_pc;
5360 if (strncmp (name, "__fn_stub_", 10) != 0
5361 && strcmp (name, "etext") != 0
5362 && strcmp (name, "_etext") != 0)
5363 return target_pc;
5364
5365 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5366 The limit on the search is arbitrarily set to 20
5367 instructions. FIXME. */
5368 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
5369 {
5370 inst = mips_fetch_instruction (gdbarch, target_pc);
5371 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5372 pc = (inst << 16) & 0xffff0000; /* high word */
5373 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5374 return pc | (inst & 0xffff); /* low word */
5375 }
5376
5377 /* Couldn't find the lui/addui pair, so return stub address. */
5378 return target_pc;
5379 }
5380 else
5381 /* This is the 'return' part of a call stub. The return
5382 address is in $r18. */
5383 return get_frame_register_signed (frame, 18);
5384 }
5385 }
5386 return 0; /* not a stub */
5387 }
5388
5389 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
5390 PC of the stub target. The stub just loads $t9 and jumps to it,
5391 so that $t9 has the correct value at function entry. */
5392
5393 static CORE_ADDR
5394 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5395 {
5396 struct gdbarch *gdbarch = get_frame_arch (frame);
5397 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5398 struct minimal_symbol *msym;
5399 int i;
5400 gdb_byte stub_code[16];
5401 int32_t stub_words[4];
5402
5403 /* The stub for foo is named ".pic.foo", and is either two
5404 instructions inserted before foo or a three instruction sequence
5405 which jumps to foo. */
5406 msym = lookup_minimal_symbol_by_pc (pc);
5407 if (msym == NULL
5408 || SYMBOL_VALUE_ADDRESS (msym) != pc
5409 || SYMBOL_LINKAGE_NAME (msym) == NULL
5410 || strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) != 0)
5411 return 0;
5412
5413 /* A two-instruction header. */
5414 if (MSYMBOL_SIZE (msym) == 8)
5415 return pc + 8;
5416
5417 /* A three-instruction (plus delay slot) trampoline. */
5418 if (MSYMBOL_SIZE (msym) == 16)
5419 {
5420 if (target_read_memory (pc, stub_code, 16) != 0)
5421 return 0;
5422 for (i = 0; i < 4; i++)
5423 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
5424 4, byte_order);
5425
5426 /* A stub contains these instructions:
5427 lui t9, %hi(target)
5428 j target
5429 addiu t9, t9, %lo(target)
5430 nop
5431
5432 This works even for N64, since stubs are only generated with
5433 -msym32. */
5434 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
5435 && (stub_words[1] & 0xfc000000U) == 0x08000000
5436 && (stub_words[2] & 0xffff0000U) == 0x27390000
5437 && stub_words[3] == 0x00000000)
5438 return (((stub_words[0] & 0x0000ffff) << 16)
5439 + (stub_words[2] & 0x0000ffff));
5440 }
5441
5442 /* Not a recognized stub. */
5443 return 0;
5444 }
5445
5446 static CORE_ADDR
5447 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5448 {
5449 CORE_ADDR target_pc;
5450
5451 target_pc = mips_skip_mips16_trampoline_code (frame, pc);
5452 if (target_pc)
5453 return target_pc;
5454
5455 target_pc = find_solib_trampoline_target (frame, pc);
5456 if (target_pc)
5457 return target_pc;
5458
5459 target_pc = mips_skip_pic_trampoline_code (frame, pc);
5460 if (target_pc)
5461 return target_pc;
5462
5463 return 0;
5464 }
5465
5466 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5467 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
5468
5469 static int
5470 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
5471 {
5472 int regnum;
5473 if (num >= 0 && num < 32)
5474 regnum = num;
5475 else if (num >= 38 && num < 70)
5476 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
5477 else if (num == 70)
5478 regnum = mips_regnum (gdbarch)->hi;
5479 else if (num == 71)
5480 regnum = mips_regnum (gdbarch)->lo;
5481 else
5482 /* This will hopefully (eventually) provoke a warning. Should
5483 we be calling complaint() here? */
5484 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
5485 return gdbarch_num_regs (gdbarch) + regnum;
5486 }
5487
5488
5489 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5490 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
5491
5492 static int
5493 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
5494 {
5495 int regnum;
5496 if (num >= 0 && num < 32)
5497 regnum = num;
5498 else if (num >= 32 && num < 64)
5499 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
5500 else if (num == 64)
5501 regnum = mips_regnum (gdbarch)->hi;
5502 else if (num == 65)
5503 regnum = mips_regnum (gdbarch)->lo;
5504 else
5505 /* This will hopefully (eventually) provoke a warning. Should we
5506 be calling complaint() here? */
5507 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
5508 return gdbarch_num_regs (gdbarch) + regnum;
5509 }
5510
5511 static int
5512 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
5513 {
5514 /* Only makes sense to supply raw registers. */
5515 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
5516 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5517 decide if it is valid. Should instead define a standard sim/gdb
5518 register numbering scheme. */
5519 if (gdbarch_register_name (gdbarch,
5520 gdbarch_num_regs (gdbarch) + regnum) != NULL
5521 && gdbarch_register_name (gdbarch,
5522 gdbarch_num_regs (gdbarch) + regnum)[0] != '\0')
5523 return regnum;
5524 else
5525 return LEGACY_SIM_REGNO_IGNORE;
5526 }
5527
5528
5529 /* Convert an integer into an address. Extracting the value signed
5530 guarantees a correctly sign extended address. */
5531
5532 static CORE_ADDR
5533 mips_integer_to_address (struct gdbarch *gdbarch,
5534 struct type *type, const gdb_byte *buf)
5535 {
5536 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5537 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
5538 }
5539
5540 /* Dummy virtual frame pointer method. This is no more or less accurate
5541 than most other architectures; we just need to be explicit about it,
5542 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
5543 an assertion failure. */
5544
5545 static void
5546 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
5547 CORE_ADDR pc, int *reg, LONGEST *offset)
5548 {
5549 *reg = MIPS_SP_REGNUM;
5550 *offset = 0;
5551 }
5552
5553 static void
5554 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5555 {
5556 enum mips_abi *abip = (enum mips_abi *) obj;
5557 const char *name = bfd_get_section_name (abfd, sect);
5558
5559 if (*abip != MIPS_ABI_UNKNOWN)
5560 return;
5561
5562 if (strncmp (name, ".mdebug.", 8) != 0)
5563 return;
5564
5565 if (strcmp (name, ".mdebug.abi32") == 0)
5566 *abip = MIPS_ABI_O32;
5567 else if (strcmp (name, ".mdebug.abiN32") == 0)
5568 *abip = MIPS_ABI_N32;
5569 else if (strcmp (name, ".mdebug.abi64") == 0)
5570 *abip = MIPS_ABI_N64;
5571 else if (strcmp (name, ".mdebug.abiO64") == 0)
5572 *abip = MIPS_ABI_O64;
5573 else if (strcmp (name, ".mdebug.eabi32") == 0)
5574 *abip = MIPS_ABI_EABI32;
5575 else if (strcmp (name, ".mdebug.eabi64") == 0)
5576 *abip = MIPS_ABI_EABI64;
5577 else
5578 warning (_("unsupported ABI %s."), name + 8);
5579 }
5580
5581 static void
5582 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
5583 {
5584 int *lbp = (int *) obj;
5585 const char *name = bfd_get_section_name (abfd, sect);
5586
5587 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
5588 *lbp = 32;
5589 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
5590 *lbp = 64;
5591 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
5592 warning (_("unrecognized .gcc_compiled_longXX"));
5593 }
5594
5595 static enum mips_abi
5596 global_mips_abi (void)
5597 {
5598 int i;
5599
5600 for (i = 0; mips_abi_strings[i] != NULL; i++)
5601 if (mips_abi_strings[i] == mips_abi_string)
5602 return (enum mips_abi) i;
5603
5604 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
5605 }
5606
5607 static void
5608 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
5609 {
5610 /* If the size matches the set of 32-bit or 64-bit integer registers,
5611 assume that's what we've got. */
5612 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
5613 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
5614
5615 /* If the size matches the full set of registers GDB traditionally
5616 knows about, including floating point, for either 32-bit or
5617 64-bit, assume that's what we've got. */
5618 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5619 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
5620
5621 /* Otherwise we don't have a useful guess. */
5622 }
5623
5624 static struct value *
5625 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5626 {
5627 const int *reg_p = baton;
5628 return value_of_register (*reg_p, frame);
5629 }
5630
5631 static struct gdbarch *
5632 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5633 {
5634 struct gdbarch *gdbarch;
5635 struct gdbarch_tdep *tdep;
5636 int elf_flags;
5637 enum mips_abi mips_abi, found_abi, wanted_abi;
5638 int i, num_regs;
5639 enum mips_fpu_type fpu_type;
5640 struct tdesc_arch_data *tdesc_data = NULL;
5641 int elf_fpu_type = 0;
5642
5643 /* Check any target description for validity. */
5644 if (tdesc_has_registers (info.target_desc))
5645 {
5646 static const char *const mips_gprs[] = {
5647 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5648 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5649 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5650 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5651 };
5652 static const char *const mips_fprs[] = {
5653 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5654 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5655 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5656 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5657 };
5658
5659 const struct tdesc_feature *feature;
5660 int valid_p;
5661
5662 feature = tdesc_find_feature (info.target_desc,
5663 "org.gnu.gdb.mips.cpu");
5664 if (feature == NULL)
5665 return NULL;
5666
5667 tdesc_data = tdesc_data_alloc ();
5668
5669 valid_p = 1;
5670 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5671 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5672 mips_gprs[i]);
5673
5674
5675 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5676 MIPS_EMBED_LO_REGNUM, "lo");
5677 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5678 MIPS_EMBED_HI_REGNUM, "hi");
5679 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5680 MIPS_EMBED_PC_REGNUM, "pc");
5681
5682 if (!valid_p)
5683 {
5684 tdesc_data_cleanup (tdesc_data);
5685 return NULL;
5686 }
5687
5688 feature = tdesc_find_feature (info.target_desc,
5689 "org.gnu.gdb.mips.cp0");
5690 if (feature == NULL)
5691 {
5692 tdesc_data_cleanup (tdesc_data);
5693 return NULL;
5694 }
5695
5696 valid_p = 1;
5697 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5698 MIPS_EMBED_BADVADDR_REGNUM,
5699 "badvaddr");
5700 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5701 MIPS_PS_REGNUM, "status");
5702 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5703 MIPS_EMBED_CAUSE_REGNUM, "cause");
5704
5705 if (!valid_p)
5706 {
5707 tdesc_data_cleanup (tdesc_data);
5708 return NULL;
5709 }
5710
5711 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5712 backend is not prepared for that, though. */
5713 feature = tdesc_find_feature (info.target_desc,
5714 "org.gnu.gdb.mips.fpu");
5715 if (feature == NULL)
5716 {
5717 tdesc_data_cleanup (tdesc_data);
5718 return NULL;
5719 }
5720
5721 valid_p = 1;
5722 for (i = 0; i < 32; i++)
5723 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5724 i + MIPS_EMBED_FP0_REGNUM,
5725 mips_fprs[i]);
5726
5727 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5728 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5729 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5730 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5731
5732 if (!valid_p)
5733 {
5734 tdesc_data_cleanup (tdesc_data);
5735 return NULL;
5736 }
5737
5738 /* It would be nice to detect an attempt to use a 64-bit ABI
5739 when only 32-bit registers are provided. */
5740 }
5741
5742 /* First of all, extract the elf_flags, if available. */
5743 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5744 elf_flags = elf_elfheader (info.abfd)->e_flags;
5745 else if (arches != NULL)
5746 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5747 else
5748 elf_flags = 0;
5749 if (gdbarch_debug)
5750 fprintf_unfiltered (gdb_stdlog,
5751 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5752
5753 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5754 switch ((elf_flags & EF_MIPS_ABI))
5755 {
5756 case E_MIPS_ABI_O32:
5757 found_abi = MIPS_ABI_O32;
5758 break;
5759 case E_MIPS_ABI_O64:
5760 found_abi = MIPS_ABI_O64;
5761 break;
5762 case E_MIPS_ABI_EABI32:
5763 found_abi = MIPS_ABI_EABI32;
5764 break;
5765 case E_MIPS_ABI_EABI64:
5766 found_abi = MIPS_ABI_EABI64;
5767 break;
5768 default:
5769 if ((elf_flags & EF_MIPS_ABI2))
5770 found_abi = MIPS_ABI_N32;
5771 else
5772 found_abi = MIPS_ABI_UNKNOWN;
5773 break;
5774 }
5775
5776 /* GCC creates a pseudo-section whose name describes the ABI. */
5777 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5778 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5779
5780 /* If we have no useful BFD information, use the ABI from the last
5781 MIPS architecture (if there is one). */
5782 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5783 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5784
5785 /* Try the architecture for any hint of the correct ABI. */
5786 if (found_abi == MIPS_ABI_UNKNOWN
5787 && info.bfd_arch_info != NULL
5788 && info.bfd_arch_info->arch == bfd_arch_mips)
5789 {
5790 switch (info.bfd_arch_info->mach)
5791 {
5792 case bfd_mach_mips3900:
5793 found_abi = MIPS_ABI_EABI32;
5794 break;
5795 case bfd_mach_mips4100:
5796 case bfd_mach_mips5000:
5797 found_abi = MIPS_ABI_EABI64;
5798 break;
5799 case bfd_mach_mips8000:
5800 case bfd_mach_mips10000:
5801 /* On Irix, ELF64 executables use the N64 ABI. The
5802 pseudo-sections which describe the ABI aren't present
5803 on IRIX. (Even for executables created by gcc.) */
5804 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5805 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5806 found_abi = MIPS_ABI_N64;
5807 else
5808 found_abi = MIPS_ABI_N32;
5809 break;
5810 }
5811 }
5812
5813 /* Default 64-bit objects to N64 instead of O32. */
5814 if (found_abi == MIPS_ABI_UNKNOWN
5815 && info.abfd != NULL
5816 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5817 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5818 found_abi = MIPS_ABI_N64;
5819
5820 if (gdbarch_debug)
5821 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5822 found_abi);
5823
5824 /* What has the user specified from the command line? */
5825 wanted_abi = global_mips_abi ();
5826 if (gdbarch_debug)
5827 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5828 wanted_abi);
5829
5830 /* Now that we have found what the ABI for this binary would be,
5831 check whether the user is overriding it. */
5832 if (wanted_abi != MIPS_ABI_UNKNOWN)
5833 mips_abi = wanted_abi;
5834 else if (found_abi != MIPS_ABI_UNKNOWN)
5835 mips_abi = found_abi;
5836 else
5837 mips_abi = MIPS_ABI_O32;
5838 if (gdbarch_debug)
5839 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5840 mips_abi);
5841
5842 /* Also used when doing an architecture lookup. */
5843 if (gdbarch_debug)
5844 fprintf_unfiltered (gdb_stdlog,
5845 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5846 mips64_transfers_32bit_regs_p);
5847
5848 /* Determine the MIPS FPU type. */
5849 #ifdef HAVE_ELF
5850 if (info.abfd
5851 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5852 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5853 Tag_GNU_MIPS_ABI_FP);
5854 #endif /* HAVE_ELF */
5855
5856 if (!mips_fpu_type_auto)
5857 fpu_type = mips_fpu_type;
5858 else if (elf_fpu_type != 0)
5859 {
5860 switch (elf_fpu_type)
5861 {
5862 case 1:
5863 fpu_type = MIPS_FPU_DOUBLE;
5864 break;
5865 case 2:
5866 fpu_type = MIPS_FPU_SINGLE;
5867 break;
5868 case 3:
5869 default:
5870 /* Soft float or unknown. */
5871 fpu_type = MIPS_FPU_NONE;
5872 break;
5873 }
5874 }
5875 else if (info.bfd_arch_info != NULL
5876 && info.bfd_arch_info->arch == bfd_arch_mips)
5877 switch (info.bfd_arch_info->mach)
5878 {
5879 case bfd_mach_mips3900:
5880 case bfd_mach_mips4100:
5881 case bfd_mach_mips4111:
5882 case bfd_mach_mips4120:
5883 fpu_type = MIPS_FPU_NONE;
5884 break;
5885 case bfd_mach_mips4650:
5886 fpu_type = MIPS_FPU_SINGLE;
5887 break;
5888 default:
5889 fpu_type = MIPS_FPU_DOUBLE;
5890 break;
5891 }
5892 else if (arches != NULL)
5893 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5894 else
5895 fpu_type = MIPS_FPU_DOUBLE;
5896 if (gdbarch_debug)
5897 fprintf_unfiltered (gdb_stdlog,
5898 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5899
5900 /* Check for blatant incompatibilities. */
5901
5902 /* If we have only 32-bit registers, then we can't debug a 64-bit
5903 ABI. */
5904 if (info.target_desc
5905 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5906 && mips_abi != MIPS_ABI_EABI32
5907 && mips_abi != MIPS_ABI_O32)
5908 {
5909 if (tdesc_data != NULL)
5910 tdesc_data_cleanup (tdesc_data);
5911 return NULL;
5912 }
5913
5914 /* try to find a pre-existing architecture */
5915 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5916 arches != NULL;
5917 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5918 {
5919 /* MIPS needs to be pedantic about which ABI the object is
5920 using. */
5921 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5922 continue;
5923 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5924 continue;
5925 /* Need to be pedantic about which register virtual size is
5926 used. */
5927 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5928 != mips64_transfers_32bit_regs_p)
5929 continue;
5930 /* Be pedantic about which FPU is selected. */
5931 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5932 continue;
5933
5934 if (tdesc_data != NULL)
5935 tdesc_data_cleanup (tdesc_data);
5936 return arches->gdbarch;
5937 }
5938
5939 /* Need a new architecture. Fill in a target specific vector. */
5940 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5941 gdbarch = gdbarch_alloc (&info, tdep);
5942 tdep->elf_flags = elf_flags;
5943 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5944 tdep->found_abi = found_abi;
5945 tdep->mips_abi = mips_abi;
5946 tdep->mips_fpu_type = fpu_type;
5947 tdep->register_size_valid_p = 0;
5948 tdep->register_size = 0;
5949 tdep->gregset = NULL;
5950 tdep->gregset64 = NULL;
5951 tdep->fpregset = NULL;
5952 tdep->fpregset64 = NULL;
5953
5954 if (info.target_desc)
5955 {
5956 /* Some useful properties can be inferred from the target. */
5957 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5958 {
5959 tdep->register_size_valid_p = 1;
5960 tdep->register_size = 4;
5961 }
5962 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5963 {
5964 tdep->register_size_valid_p = 1;
5965 tdep->register_size = 8;
5966 }
5967 }
5968
5969 /* Initially set everything according to the default ABI/ISA. */
5970 set_gdbarch_short_bit (gdbarch, 16);
5971 set_gdbarch_int_bit (gdbarch, 32);
5972 set_gdbarch_float_bit (gdbarch, 32);
5973 set_gdbarch_double_bit (gdbarch, 64);
5974 set_gdbarch_long_double_bit (gdbarch, 64);
5975 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5976 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5977 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5978
5979 set_gdbarch_ax_pseudo_register_collect (gdbarch,
5980 mips_ax_pseudo_register_collect);
5981 set_gdbarch_ax_pseudo_register_push_stack
5982 (gdbarch, mips_ax_pseudo_register_push_stack);
5983
5984 set_gdbarch_elf_make_msymbol_special (gdbarch,
5985 mips_elf_make_msymbol_special);
5986
5987 /* Fill in the OS dependant register numbers and names. */
5988 {
5989 const char **reg_names;
5990 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5991 struct mips_regnum);
5992 if (tdesc_has_registers (info.target_desc))
5993 {
5994 regnum->lo = MIPS_EMBED_LO_REGNUM;
5995 regnum->hi = MIPS_EMBED_HI_REGNUM;
5996 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5997 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5998 regnum->pc = MIPS_EMBED_PC_REGNUM;
5999 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
6000 regnum->fp_control_status = 70;
6001 regnum->fp_implementation_revision = 71;
6002 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
6003 reg_names = NULL;
6004 }
6005 else if (info.osabi == GDB_OSABI_IRIX)
6006 {
6007 regnum->fp0 = 32;
6008 regnum->pc = 64;
6009 regnum->cause = 65;
6010 regnum->badvaddr = 66;
6011 regnum->hi = 67;
6012 regnum->lo = 68;
6013 regnum->fp_control_status = 69;
6014 regnum->fp_implementation_revision = 70;
6015 num_regs = 71;
6016 reg_names = mips_irix_reg_names;
6017 }
6018 else
6019 {
6020 regnum->lo = MIPS_EMBED_LO_REGNUM;
6021 regnum->hi = MIPS_EMBED_HI_REGNUM;
6022 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
6023 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
6024 regnum->pc = MIPS_EMBED_PC_REGNUM;
6025 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
6026 regnum->fp_control_status = 70;
6027 regnum->fp_implementation_revision = 71;
6028 num_regs = 90;
6029 if (info.bfd_arch_info != NULL
6030 && info.bfd_arch_info->mach == bfd_mach_mips3900)
6031 reg_names = mips_tx39_reg_names;
6032 else
6033 reg_names = mips_generic_reg_names;
6034 }
6035 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
6036 replaced by gdbarch_read_pc? */
6037 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
6038 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
6039 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
6040 set_gdbarch_num_regs (gdbarch, num_regs);
6041 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
6042 set_gdbarch_register_name (gdbarch, mips_register_name);
6043 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
6044 tdep->mips_processor_reg_names = reg_names;
6045 tdep->regnum = regnum;
6046 }
6047
6048 switch (mips_abi)
6049 {
6050 case MIPS_ABI_O32:
6051 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
6052 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
6053 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
6054 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
6055 tdep->default_mask_address_p = 0;
6056 set_gdbarch_long_bit (gdbarch, 32);
6057 set_gdbarch_ptr_bit (gdbarch, 32);
6058 set_gdbarch_long_long_bit (gdbarch, 64);
6059 break;
6060 case MIPS_ABI_O64:
6061 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
6062 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
6063 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
6064 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
6065 tdep->default_mask_address_p = 0;
6066 set_gdbarch_long_bit (gdbarch, 32);
6067 set_gdbarch_ptr_bit (gdbarch, 32);
6068 set_gdbarch_long_long_bit (gdbarch, 64);
6069 break;
6070 case MIPS_ABI_EABI32:
6071 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
6072 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
6073 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
6074 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
6075 tdep->default_mask_address_p = 0;
6076 set_gdbarch_long_bit (gdbarch, 32);
6077 set_gdbarch_ptr_bit (gdbarch, 32);
6078 set_gdbarch_long_long_bit (gdbarch, 64);
6079 break;
6080 case MIPS_ABI_EABI64:
6081 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
6082 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
6083 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
6084 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
6085 tdep->default_mask_address_p = 0;
6086 set_gdbarch_long_bit (gdbarch, 64);
6087 set_gdbarch_ptr_bit (gdbarch, 64);
6088 set_gdbarch_long_long_bit (gdbarch, 64);
6089 break;
6090 case MIPS_ABI_N32:
6091 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
6092 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
6093 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
6094 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
6095 tdep->default_mask_address_p = 0;
6096 set_gdbarch_long_bit (gdbarch, 32);
6097 set_gdbarch_ptr_bit (gdbarch, 32);
6098 set_gdbarch_long_long_bit (gdbarch, 64);
6099 set_gdbarch_long_double_bit (gdbarch, 128);
6100 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
6101 break;
6102 case MIPS_ABI_N64:
6103 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
6104 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
6105 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
6106 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
6107 tdep->default_mask_address_p = 0;
6108 set_gdbarch_long_bit (gdbarch, 64);
6109 set_gdbarch_ptr_bit (gdbarch, 64);
6110 set_gdbarch_long_long_bit (gdbarch, 64);
6111 set_gdbarch_long_double_bit (gdbarch, 128);
6112 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
6113 break;
6114 default:
6115 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
6116 }
6117
6118 /* GCC creates a pseudo-section whose name specifies the size of
6119 longs, since -mlong32 or -mlong64 may be used independent of
6120 other options. How those options affect pointer sizes is ABI and
6121 architecture dependent, so use them to override the default sizes
6122 set by the ABI. This table shows the relationship between ABI,
6123 -mlongXX, and size of pointers:
6124
6125 ABI -mlongXX ptr bits
6126 --- -------- --------
6127 o32 32 32
6128 o32 64 32
6129 n32 32 32
6130 n32 64 64
6131 o64 32 32
6132 o64 64 64
6133 n64 32 32
6134 n64 64 64
6135 eabi32 32 32
6136 eabi32 64 32
6137 eabi64 32 32
6138 eabi64 64 64
6139
6140 Note that for o32 and eabi32, pointers are always 32 bits
6141 regardless of any -mlongXX option. For all others, pointers and
6142 longs are the same, as set by -mlongXX or set by defaults.
6143 */
6144
6145 if (info.abfd != NULL)
6146 {
6147 int long_bit = 0;
6148
6149 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
6150 if (long_bit)
6151 {
6152 set_gdbarch_long_bit (gdbarch, long_bit);
6153 switch (mips_abi)
6154 {
6155 case MIPS_ABI_O32:
6156 case MIPS_ABI_EABI32:
6157 break;
6158 case MIPS_ABI_N32:
6159 case MIPS_ABI_O64:
6160 case MIPS_ABI_N64:
6161 case MIPS_ABI_EABI64:
6162 set_gdbarch_ptr_bit (gdbarch, long_bit);
6163 break;
6164 default:
6165 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
6166 }
6167 }
6168 }
6169
6170 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
6171 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
6172 comment:
6173
6174 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
6175 flag in object files because to do so would make it impossible to
6176 link with libraries compiled without "-gp32". This is
6177 unnecessarily restrictive.
6178
6179 We could solve this problem by adding "-gp32" multilibs to gcc,
6180 but to set this flag before gcc is built with such multilibs will
6181 break too many systems.''
6182
6183 But even more unhelpfully, the default linker output target for
6184 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
6185 for 64-bit programs - you need to change the ABI to change this,
6186 and not all gcc targets support that currently. Therefore using
6187 this flag to detect 32-bit mode would do the wrong thing given
6188 the current gcc - it would make GDB treat these 64-bit programs
6189 as 32-bit programs by default. */
6190
6191 set_gdbarch_read_pc (gdbarch, mips_read_pc);
6192 set_gdbarch_write_pc (gdbarch, mips_write_pc);
6193
6194 /* Add/remove bits from an address. The MIPS needs be careful to
6195 ensure that all 32 bit addresses are sign extended to 64 bits. */
6196 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6197
6198 /* Unwind the frame. */
6199 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
6200 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
6201 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
6202
6203 /* Map debug register numbers onto internal register numbers. */
6204 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6205 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
6206 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6207 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
6208 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6209 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
6210
6211 /* MIPS version of CALL_DUMMY */
6212
6213 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6214 replaced by a command, and all targets will default to on stack
6215 (regardless of the stack's execute status). */
6216 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
6217 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6218
6219 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
6220 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
6221 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
6222
6223 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6224 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6225
6226 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6227
6228 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
6229
6230 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6231 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6232 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6233
6234 set_gdbarch_register_type (gdbarch, mips_register_type);
6235
6236 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
6237
6238 if (mips_abi == MIPS_ABI_N32)
6239 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
6240 else if (mips_abi == MIPS_ABI_N64)
6241 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
6242 else
6243 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6244
6245 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
6246 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
6247 need to all be folded into the target vector. Since they are
6248 being used as guards for target_stopped_by_watchpoint, why not have
6249 target_stopped_by_watchpoint return the type of watchpoint that the code
6250 is sitting on? */
6251 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6252
6253 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
6254
6255 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
6256
6257 /* Virtual tables. */
6258 set_gdbarch_vbit_in_delta (gdbarch, 1);
6259
6260 mips_register_g_packet_guesses (gdbarch);
6261
6262 /* Hook in OS ABI-specific overrides, if they have been registered. */
6263 info.tdep_info = (void *) tdesc_data;
6264 gdbarch_init_osabi (info, gdbarch);
6265
6266 /* Unwind the frame. */
6267 dwarf2_append_unwinders (gdbarch);
6268 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
6269 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
6270 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
6271 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
6272 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
6273 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
6274 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
6275
6276 if (tdesc_data)
6277 {
6278 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
6279 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
6280
6281 /* Override the normal target description methods to handle our
6282 dual real and pseudo registers. */
6283 set_gdbarch_register_name (gdbarch, mips_register_name);
6284 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
6285
6286 num_regs = gdbarch_num_regs (gdbarch);
6287 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
6288 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
6289 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
6290 }
6291
6292 /* Add ABI-specific aliases for the registers. */
6293 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
6294 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
6295 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
6296 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
6297 else
6298 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
6299 user_reg_add (gdbarch, mips_o32_aliases[i].name,
6300 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
6301
6302 /* Add some other standard aliases. */
6303 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
6304 user_reg_add (gdbarch, mips_register_aliases[i].name,
6305 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
6306
6307 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
6308 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
6309 value_of_mips_user_reg,
6310 &mips_numeric_register_aliases[i].regnum);
6311
6312 return gdbarch;
6313 }
6314
6315 static void
6316 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
6317 {
6318 struct gdbarch_info info;
6319
6320 /* Force the architecture to update, and (if it's a MIPS architecture)
6321 mips_gdbarch_init will take care of the rest. */
6322 gdbarch_info_init (&info);
6323 gdbarch_update_p (info);
6324 }
6325
6326 /* Print out which MIPS ABI is in use. */
6327
6328 static void
6329 show_mips_abi (struct ui_file *file,
6330 int from_tty,
6331 struct cmd_list_element *ignored_cmd,
6332 const char *ignored_value)
6333 {
6334 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
6335 fprintf_filtered
6336 (file,
6337 "The MIPS ABI is unknown because the current architecture "
6338 "is not MIPS.\n");
6339 else
6340 {
6341 enum mips_abi global_abi = global_mips_abi ();
6342 enum mips_abi actual_abi = mips_abi (target_gdbarch);
6343 const char *actual_abi_str = mips_abi_strings[actual_abi];
6344
6345 if (global_abi == MIPS_ABI_UNKNOWN)
6346 fprintf_filtered
6347 (file,
6348 "The MIPS ABI is set automatically (currently \"%s\").\n",
6349 actual_abi_str);
6350 else if (global_abi == actual_abi)
6351 fprintf_filtered
6352 (file,
6353 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6354 actual_abi_str);
6355 else
6356 {
6357 /* Probably shouldn't happen... */
6358 fprintf_filtered
6359 (file,
6360 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6361 actual_abi_str, mips_abi_strings[global_abi]);
6362 }
6363 }
6364 }
6365
6366 static void
6367 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6368 {
6369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6370 if (tdep != NULL)
6371 {
6372 int ef_mips_arch;
6373 int ef_mips_32bitmode;
6374 /* Determine the ISA. */
6375 switch (tdep->elf_flags & EF_MIPS_ARCH)
6376 {
6377 case E_MIPS_ARCH_1:
6378 ef_mips_arch = 1;
6379 break;
6380 case E_MIPS_ARCH_2:
6381 ef_mips_arch = 2;
6382 break;
6383 case E_MIPS_ARCH_3:
6384 ef_mips_arch = 3;
6385 break;
6386 case E_MIPS_ARCH_4:
6387 ef_mips_arch = 4;
6388 break;
6389 default:
6390 ef_mips_arch = 0;
6391 break;
6392 }
6393 /* Determine the size of a pointer. */
6394 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6395 fprintf_unfiltered (file,
6396 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6397 tdep->elf_flags);
6398 fprintf_unfiltered (file,
6399 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6400 ef_mips_32bitmode);
6401 fprintf_unfiltered (file,
6402 "mips_dump_tdep: ef_mips_arch = %d\n",
6403 ef_mips_arch);
6404 fprintf_unfiltered (file,
6405 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6406 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
6407 fprintf_unfiltered (file,
6408 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6409 mips_mask_address_p (tdep),
6410 tdep->default_mask_address_p);
6411 }
6412 fprintf_unfiltered (file,
6413 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6414 MIPS_DEFAULT_FPU_TYPE,
6415 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6416 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6417 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6418 : "???"));
6419 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
6420 MIPS_EABI (gdbarch));
6421 fprintf_unfiltered (file,
6422 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6423 MIPS_FPU_TYPE (gdbarch),
6424 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
6425 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
6426 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
6427 : "???"));
6428 }
6429
6430 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6431
6432 void
6433 _initialize_mips_tdep (void)
6434 {
6435 static struct cmd_list_element *mipsfpulist = NULL;
6436 struct cmd_list_element *c;
6437
6438 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
6439 if (MIPS_ABI_LAST + 1
6440 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6441 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
6442
6443 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6444
6445 mips_pdr_data = register_objfile_data ();
6446
6447 /* Create feature sets with the appropriate properties. The values
6448 are not important. */
6449 mips_tdesc_gp32 = allocate_target_description ();
6450 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
6451
6452 mips_tdesc_gp64 = allocate_target_description ();
6453 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
6454
6455 /* Add root prefix command for all "set mips"/"show mips" commands */
6456 add_prefix_cmd ("mips", no_class, set_mips_command,
6457 _("Various MIPS specific commands."),
6458 &setmipscmdlist, "set mips ", 0, &setlist);
6459
6460 add_prefix_cmd ("mips", no_class, show_mips_command,
6461 _("Various MIPS specific commands."),
6462 &showmipscmdlist, "show mips ", 0, &showlist);
6463
6464 /* Allow the user to override the ABI. */
6465 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
6466 &mips_abi_string, _("\
6467 Set the MIPS ABI used by this program."), _("\
6468 Show the MIPS ABI used by this program."), _("\
6469 This option can be set to one of:\n\
6470 auto - the default ABI associated with the current binary\n\
6471 o32\n\
6472 o64\n\
6473 n32\n\
6474 n64\n\
6475 eabi32\n\
6476 eabi64"),
6477 mips_abi_update,
6478 show_mips_abi,
6479 &setmipscmdlist, &showmipscmdlist);
6480
6481 /* Let the user turn off floating point and set the fence post for
6482 heuristic_proc_start. */
6483
6484 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6485 _("Set use of MIPS floating-point coprocessor."),
6486 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6487 add_cmd ("single", class_support, set_mipsfpu_single_command,
6488 _("Select single-precision MIPS floating-point coprocessor."),
6489 &mipsfpulist);
6490 add_cmd ("double", class_support, set_mipsfpu_double_command,
6491 _("Select double-precision MIPS floating-point coprocessor."),
6492 &mipsfpulist);
6493 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6494 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6495 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6496 add_cmd ("none", class_support, set_mipsfpu_none_command,
6497 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
6498 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6499 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6500 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6501 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6502 _("Select MIPS floating-point coprocessor automatically."),
6503 &mipsfpulist);
6504 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6505 _("Show current use of MIPS floating-point coprocessor target."),
6506 &showlist);
6507
6508 /* We really would like to have both "0" and "unlimited" work, but
6509 command.c doesn't deal with that. So make it a var_zinteger
6510 because the user can always use "999999" or some such for unlimited. */
6511 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
6512 &heuristic_fence_post, _("\
6513 Set the distance searched for the start of a function."), _("\
6514 Show the distance searched for the start of a function."), _("\
6515 If you are debugging a stripped executable, GDB needs to search through the\n\
6516 program for the start of a function. This command sets the distance of the\n\
6517 search. The only need to set it is when debugging a stripped executable."),
6518 reinit_frame_cache_sfunc,
6519 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6520 &setlist, &showlist);
6521
6522 /* Allow the user to control whether the upper bits of 64-bit
6523 addresses should be zeroed. */
6524 add_setshow_auto_boolean_cmd ("mask-address", no_class,
6525 &mask_address_var, _("\
6526 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
6527 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
6528 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
6529 allow GDB to determine the correct value."),
6530 NULL, show_mask_address,
6531 &setmipscmdlist, &showmipscmdlist);
6532
6533 /* Allow the user to control the size of 32 bit registers within the
6534 raw remote packet. */
6535 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6536 &mips64_transfers_32bit_regs_p, _("\
6537 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6538 _("\
6539 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6540 _("\
6541 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6542 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6543 64 bits for others. Use \"off\" to disable compatibility mode"),
6544 set_mips64_transfers_32bit_regs,
6545 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
6546 &setlist, &showlist);
6547
6548 /* Debug this files internals. */
6549 add_setshow_zinteger_cmd ("mips", class_maintenance,
6550 &mips_debug, _("\
6551 Set mips debugging."), _("\
6552 Show mips debugging."), _("\
6553 When non-zero, mips specific debugging is enabled."),
6554 NULL,
6555 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6556 &setdebuglist, &showdebuglist);
6557 }
This page took 0.233566 seconds and 4 git commands to generate.