*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43 #include "block.h"
44 #include "reggroups.h"
45 #include "opcode/mips.h"
46 #include "elf/mips.h"
47 #include "elf-bfd.h"
48 #include "symcat.h"
49 #include "sim-regno.h"
50 #include "dis-asm.h"
51 #include "frame-unwind.h"
52 #include "frame-base.h"
53 #include "trad-frame.h"
54 #include "infcall.h"
55 #include "floatformat.h"
56 #include "remote.h"
57 #include "target-descriptions.h"
58 #include "dwarf2-frame.h"
59 #include "user-regs.h"
60 #include "valprint.h"
61
62 static const struct objfile_data *mips_pdr_data;
63
64 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
65
66 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
67 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
68 #define ST0_FR (1 << 26)
69
70 /* The sizes of floating point registers. */
71
72 enum
73 {
74 MIPS_FPU_SINGLE_REGSIZE = 4,
75 MIPS_FPU_DOUBLE_REGSIZE = 8
76 };
77
78 enum
79 {
80 MIPS32_REGSIZE = 4,
81 MIPS64_REGSIZE = 8
82 };
83
84 static const char *mips_abi_string;
85
86 static const char *mips_abi_strings[] = {
87 "auto",
88 "n32",
89 "o32",
90 "n64",
91 "o64",
92 "eabi32",
93 "eabi64",
94 NULL
95 };
96
97 /* The standard register names, and all the valid aliases for them. */
98 struct register_alias
99 {
100 const char *name;
101 int regnum;
102 };
103
104 /* Aliases for o32 and most other ABIs. */
105 const struct register_alias mips_o32_aliases[] = {
106 { "ta0", 12 },
107 { "ta1", 13 },
108 { "ta2", 14 },
109 { "ta3", 15 }
110 };
111
112 /* Aliases for n32 and n64. */
113 const struct register_alias mips_n32_n64_aliases[] = {
114 { "ta0", 8 },
115 { "ta1", 9 },
116 { "ta2", 10 },
117 { "ta3", 11 }
118 };
119
120 /* Aliases for ABI-independent registers. */
121 const struct register_alias mips_register_aliases[] = {
122 /* The architecture manuals specify these ABI-independent names for
123 the GPRs. */
124 #define R(n) { "r" #n, n }
125 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
126 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
127 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
128 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
129 #undef R
130
131 /* k0 and k1 are sometimes called these instead (for "kernel
132 temp"). */
133 { "kt0", 26 },
134 { "kt1", 27 },
135
136 /* This is the traditional GDB name for the CP0 status register. */
137 { "sr", MIPS_PS_REGNUM },
138
139 /* This is the traditional GDB name for the CP0 BadVAddr register. */
140 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
141
142 /* This is the traditional GDB name for the FCSR. */
143 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
144 };
145
146 const struct register_alias mips_numeric_register_aliases[] = {
147 #define R(n) { #n, n }
148 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
149 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
150 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
151 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
152 #undef R
153 };
154
155 #ifndef MIPS_DEFAULT_FPU_TYPE
156 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157 #endif
158 static int mips_fpu_type_auto = 1;
159 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
160
161 static int mips_debug = 0;
162
163 /* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
166 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
168 struct target_desc *mips_tdesc_gp32;
169 struct target_desc *mips_tdesc_gp64;
170
171 const struct mips_regnum *
172 mips_regnum (struct gdbarch *gdbarch)
173 {
174 return gdbarch_tdep (gdbarch)->regnum;
175 }
176
177 static int
178 mips_fpa0_regnum (struct gdbarch *gdbarch)
179 {
180 return mips_regnum (gdbarch)->fp0 + 12;
181 }
182
183 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
184 == MIPS_ABI_EABI32 \
185 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
186
187 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
188
189 #define MIPS_LAST_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
190
191 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
192
193 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
195
196 static CORE_ADDR
197 is_mips16_addr (CORE_ADDR addr)
198 {
199 return ((addr) & 1);
200 }
201
202 static CORE_ADDR
203 unmake_mips16_addr (CORE_ADDR addr)
204 {
205 return ((addr) & ~(CORE_ADDR) 1);
206 }
207
208 /* Return the MIPS ABI associated with GDBARCH. */
209 enum mips_abi
210 mips_abi (struct gdbarch *gdbarch)
211 {
212 return gdbarch_tdep (gdbarch)->mips_abi;
213 }
214
215 int
216 mips_isa_regsize (struct gdbarch *gdbarch)
217 {
218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219
220 /* If we know how big the registers are, use that size. */
221 if (tdep->register_size_valid_p)
222 return tdep->register_size;
223
224 /* Fall back to the previous behavior. */
225 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
226 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
227 }
228
229 /* Return the currently configured (or set) saved register size. */
230
231 unsigned int
232 mips_abi_regsize (struct gdbarch *gdbarch)
233 {
234 switch (mips_abi (gdbarch))
235 {
236 case MIPS_ABI_EABI32:
237 case MIPS_ABI_O32:
238 return 4;
239 case MIPS_ABI_N32:
240 case MIPS_ABI_N64:
241 case MIPS_ABI_O64:
242 case MIPS_ABI_EABI64:
243 return 8;
244 case MIPS_ABI_UNKNOWN:
245 case MIPS_ABI_LAST:
246 default:
247 internal_error (__FILE__, __LINE__, _("bad switch"));
248 }
249 }
250
251 /* Functions for setting and testing a bit in a minimal symbol that
252 marks it as 16-bit function. The MSB of the minimal symbol's
253 "info" field is used for this purpose.
254
255 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
256 i.e. refers to a 16-bit function, and sets a "special" bit in a
257 minimal symbol to mark it as a 16-bit function
258
259 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
260
261 static void
262 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
263 {
264 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
265 {
266 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
267 SYMBOL_VALUE_ADDRESS (msym) |= 1;
268 }
269 }
270
271 static int
272 msymbol_is_special (struct minimal_symbol *msym)
273 {
274 return MSYMBOL_TARGET_FLAG_1 (msym);
275 }
276
277 /* XFER a value from the big/little/left end of the register.
278 Depending on the size of the value it might occupy the entire
279 register or just part of it. Make an allowance for this, aligning
280 things accordingly. */
281
282 static void
283 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
284 int reg_num, int length,
285 enum bfd_endian endian, gdb_byte *in,
286 const gdb_byte *out, int buf_offset)
287 {
288 int reg_offset = 0;
289
290 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
291 /* Need to transfer the left or right part of the register, based on
292 the targets byte order. */
293 switch (endian)
294 {
295 case BFD_ENDIAN_BIG:
296 reg_offset = register_size (gdbarch, reg_num) - length;
297 break;
298 case BFD_ENDIAN_LITTLE:
299 reg_offset = 0;
300 break;
301 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
302 reg_offset = 0;
303 break;
304 default:
305 internal_error (__FILE__, __LINE__, _("bad switch"));
306 }
307 if (mips_debug)
308 fprintf_unfiltered (gdb_stderr,
309 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
310 reg_num, reg_offset, buf_offset, length);
311 if (mips_debug && out != NULL)
312 {
313 int i;
314 fprintf_unfiltered (gdb_stdlog, "out ");
315 for (i = 0; i < length; i++)
316 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
317 }
318 if (in != NULL)
319 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
320 in + buf_offset);
321 if (out != NULL)
322 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
323 out + buf_offset);
324 if (mips_debug && in != NULL)
325 {
326 int i;
327 fprintf_unfiltered (gdb_stdlog, "in ");
328 for (i = 0; i < length; i++)
329 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
330 }
331 if (mips_debug)
332 fprintf_unfiltered (gdb_stdlog, "\n");
333 }
334
335 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
336 compatiblity mode. A return value of 1 means that we have
337 physical 64-bit registers, but should treat them as 32-bit registers. */
338
339 static int
340 mips2_fp_compat (struct frame_info *frame)
341 {
342 struct gdbarch *gdbarch = get_frame_arch (frame);
343 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
344 meaningful. */
345 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
346 return 0;
347
348 #if 0
349 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
350 in all the places we deal with FP registers. PR gdb/413. */
351 /* Otherwise check the FR bit in the status register - it controls
352 the FP compatiblity mode. If it is clear we are in compatibility
353 mode. */
354 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
355 return 1;
356 #endif
357
358 return 0;
359 }
360
361 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
362
363 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
364
365 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
366
367 /* The list of available "set mips " and "show mips " commands */
368
369 static struct cmd_list_element *setmipscmdlist = NULL;
370 static struct cmd_list_element *showmipscmdlist = NULL;
371
372 /* Integer registers 0 thru 31 are handled explicitly by
373 mips_register_name(). Processor specific registers 32 and above
374 are listed in the following tables. */
375
376 enum
377 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
378
379 /* Generic MIPS. */
380
381 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
382 "sr", "lo", "hi", "bad", "cause", "pc",
383 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
384 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
385 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
386 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
387 "fsr", "fir", "" /*"fp" */ , "",
388 "", "", "", "", "", "", "", "",
389 "", "", "", "", "", "", "", "",
390 };
391
392 /* Names of IDT R3041 registers. */
393
394 static const char *mips_r3041_reg_names[] = {
395 "sr", "lo", "hi", "bad", "cause", "pc",
396 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
397 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
398 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
399 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
400 "fsr", "fir", "", /*"fp" */ "",
401 "", "", "bus", "ccfg", "", "", "", "",
402 "", "", "port", "cmp", "", "", "epc", "prid",
403 };
404
405 /* Names of tx39 registers. */
406
407 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
408 "sr", "lo", "hi", "bad", "cause", "pc",
409 "", "", "", "", "", "", "", "",
410 "", "", "", "", "", "", "", "",
411 "", "", "", "", "", "", "", "",
412 "", "", "", "", "", "", "", "",
413 "", "", "", "",
414 "", "", "", "", "", "", "", "",
415 "", "", "config", "cache", "debug", "depc", "epc", ""
416 };
417
418 /* Names of IRIX registers. */
419 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
420 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
421 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
422 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
423 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
424 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
425 };
426
427
428 /* Return the name of the register corresponding to REGNO. */
429 static const char *
430 mips_register_name (struct gdbarch *gdbarch, int regno)
431 {
432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
433 /* GPR names for all ABIs other than n32/n64. */
434 static char *mips_gpr_names[] = {
435 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
436 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
437 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
438 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
439 };
440
441 /* GPR names for n32 and n64 ABIs. */
442 static char *mips_n32_n64_gpr_names[] = {
443 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
444 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
445 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
446 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
447 };
448
449 enum mips_abi abi = mips_abi (gdbarch);
450
451 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
452 but then don't make the raw register names visible. */
453 int rawnum = regno % gdbarch_num_regs (gdbarch);
454 if (regno < gdbarch_num_regs (gdbarch))
455 return "";
456
457 /* The MIPS integer registers are always mapped from 0 to 31. The
458 names of the registers (which reflects the conventions regarding
459 register use) vary depending on the ABI. */
460 if (0 <= rawnum && rawnum < 32)
461 {
462 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
463 return mips_n32_n64_gpr_names[rawnum];
464 else
465 return mips_gpr_names[rawnum];
466 }
467 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
468 return tdesc_register_name (gdbarch, rawnum);
469 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
470 {
471 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
472 return tdep->mips_processor_reg_names[rawnum - 32];
473 }
474 else
475 internal_error (__FILE__, __LINE__,
476 _("mips_register_name: bad register number %d"), rawnum);
477 }
478
479 /* Return the groups that a MIPS register can be categorised into. */
480
481 static int
482 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
483 struct reggroup *reggroup)
484 {
485 int vector_p;
486 int float_p;
487 int raw_p;
488 int rawnum = regnum % gdbarch_num_regs (gdbarch);
489 int pseudo = regnum / gdbarch_num_regs (gdbarch);
490 if (reggroup == all_reggroup)
491 return pseudo;
492 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
493 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
494 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
495 (gdbarch), as not all architectures are multi-arch. */
496 raw_p = rawnum < gdbarch_num_regs (gdbarch);
497 if (gdbarch_register_name (gdbarch, regnum) == NULL
498 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
499 return 0;
500 if (reggroup == float_reggroup)
501 return float_p && pseudo;
502 if (reggroup == vector_reggroup)
503 return vector_p && pseudo;
504 if (reggroup == general_reggroup)
505 return (!vector_p && !float_p) && pseudo;
506 /* Save the pseudo registers. Need to make certain that any code
507 extracting register values from a saved register cache also uses
508 pseudo registers. */
509 if (reggroup == save_reggroup)
510 return raw_p && pseudo;
511 /* Restore the same pseudo register. */
512 if (reggroup == restore_reggroup)
513 return raw_p && pseudo;
514 return 0;
515 }
516
517 /* Return the groups that a MIPS register can be categorised into.
518 This version is only used if we have a target description which
519 describes real registers (and their groups). */
520
521 static int
522 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
523 struct reggroup *reggroup)
524 {
525 int rawnum = regnum % gdbarch_num_regs (gdbarch);
526 int pseudo = regnum / gdbarch_num_regs (gdbarch);
527 int ret;
528
529 /* Only save, restore, and display the pseudo registers. Need to
530 make certain that any code extracting register values from a
531 saved register cache also uses pseudo registers.
532
533 Note: saving and restoring the pseudo registers is slightly
534 strange; if we have 64 bits, we should save and restore all
535 64 bits. But this is hard and has little benefit. */
536 if (!pseudo)
537 return 0;
538
539 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
540 if (ret != -1)
541 return ret;
542
543 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
544 }
545
546 /* Map the symbol table registers which live in the range [1 *
547 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
548 registers. Take care of alignment and size problems. */
549
550 static void
551 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
552 int cookednum, gdb_byte *buf)
553 {
554 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
555 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
556 && cookednum < 2 * gdbarch_num_regs (gdbarch));
557 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
558 regcache_raw_read (regcache, rawnum, buf);
559 else if (register_size (gdbarch, rawnum) >
560 register_size (gdbarch, cookednum))
561 {
562 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
563 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
564 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
565 else
566 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
567 }
568 else
569 internal_error (__FILE__, __LINE__, _("bad register size"));
570 }
571
572 static void
573 mips_pseudo_register_write (struct gdbarch *gdbarch,
574 struct regcache *regcache, int cookednum,
575 const gdb_byte *buf)
576 {
577 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
578 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
579 && cookednum < 2 * gdbarch_num_regs (gdbarch));
580 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
581 regcache_raw_write (regcache, rawnum, buf);
582 else if (register_size (gdbarch, rawnum) >
583 register_size (gdbarch, cookednum))
584 {
585 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
586 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
587 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
588 else
589 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
590 }
591 else
592 internal_error (__FILE__, __LINE__, _("bad register size"));
593 }
594
595 /* Table to translate MIPS16 register field to actual register number. */
596 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
597
598 /* Heuristic_proc_start may hunt through the text section for a long
599 time across a 2400 baud serial line. Allows the user to limit this
600 search. */
601
602 static unsigned int heuristic_fence_post = 0;
603
604 /* Number of bytes of storage in the actual machine representation for
605 register N. NOTE: This defines the pseudo register type so need to
606 rebuild the architecture vector. */
607
608 static int mips64_transfers_32bit_regs_p = 0;
609
610 static void
611 set_mips64_transfers_32bit_regs (char *args, int from_tty,
612 struct cmd_list_element *c)
613 {
614 struct gdbarch_info info;
615 gdbarch_info_init (&info);
616 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
617 instead of relying on globals. Doing that would let generic code
618 handle the search for this specific architecture. */
619 if (!gdbarch_update_p (info))
620 {
621 mips64_transfers_32bit_regs_p = 0;
622 error (_("32-bit compatibility mode not supported"));
623 }
624 }
625
626 /* Convert to/from a register and the corresponding memory value. */
627
628 static int
629 mips_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
630 {
631 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
632 && register_size (gdbarch, regnum) == 4
633 && (regnum % gdbarch_num_regs (gdbarch))
634 >= mips_regnum (gdbarch)->fp0
635 && (regnum % gdbarch_num_regs (gdbarch))
636 < mips_regnum (gdbarch)->fp0 + 32
637 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
638 }
639
640 static void
641 mips_register_to_value (struct frame_info *frame, int regnum,
642 struct type *type, gdb_byte *to)
643 {
644 get_frame_register (frame, regnum + 0, to + 4);
645 get_frame_register (frame, regnum + 1, to + 0);
646 }
647
648 static void
649 mips_value_to_register (struct frame_info *frame, int regnum,
650 struct type *type, const gdb_byte *from)
651 {
652 put_frame_register (frame, regnum + 0, from + 4);
653 put_frame_register (frame, regnum + 1, from + 0);
654 }
655
656 /* Return the GDB type object for the "standard" data type of data in
657 register REG. */
658
659 static struct type *
660 mips_register_type (struct gdbarch *gdbarch, int regnum)
661 {
662 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
663 if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
664 && (regnum % gdbarch_num_regs (gdbarch))
665 < mips_regnum (gdbarch)->fp0 + 32)
666 {
667 /* The floating-point registers raw, or cooked, always match
668 mips_isa_regsize(), and also map 1:1, byte for byte. */
669 if (mips_isa_regsize (gdbarch) == 4)
670 return builtin_type (gdbarch)->builtin_float;
671 else
672 return builtin_type (gdbarch)->builtin_double;
673 }
674 else if (regnum < gdbarch_num_regs (gdbarch))
675 {
676 /* The raw or ISA registers. These are all sized according to
677 the ISA regsize. */
678 if (mips_isa_regsize (gdbarch) == 4)
679 return builtin_type (gdbarch)->builtin_int32;
680 else
681 return builtin_type (gdbarch)->builtin_int64;
682 }
683 else
684 {
685 /* The cooked or ABI registers. These are sized according to
686 the ABI (with a few complications). */
687 if (regnum >= (gdbarch_num_regs (gdbarch)
688 + mips_regnum (gdbarch)->fp_control_status)
689 && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
690 /* The pseudo/cooked view of the embedded registers is always
691 32-bit. The raw view is handled below. */
692 return builtin_type (gdbarch)->builtin_int32;
693 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
694 /* The target, while possibly using a 64-bit register buffer,
695 is only transfering 32-bits of each integer register.
696 Reflect this in the cooked/pseudo (ABI) register value. */
697 return builtin_type (gdbarch)->builtin_int32;
698 else if (mips_abi_regsize (gdbarch) == 4)
699 /* The ABI is restricted to 32-bit registers (the ISA could be
700 32- or 64-bit). */
701 return builtin_type (gdbarch)->builtin_int32;
702 else
703 /* 64-bit ABI. */
704 return builtin_type (gdbarch)->builtin_int64;
705 }
706 }
707
708 /* Return the GDB type for the pseudo register REGNUM, which is the
709 ABI-level view. This function is only called if there is a target
710 description which includes registers, so we know precisely the
711 types of hardware registers. */
712
713 static struct type *
714 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
715 {
716 const int num_regs = gdbarch_num_regs (gdbarch);
717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
718 int rawnum = regnum % num_regs;
719 struct type *rawtype;
720
721 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
722
723 /* Absent registers are still absent. */
724 rawtype = gdbarch_register_type (gdbarch, rawnum);
725 if (TYPE_LENGTH (rawtype) == 0)
726 return rawtype;
727
728 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
729 /* Present the floating point registers however the hardware did;
730 do not try to convert between FPU layouts. */
731 return rawtype;
732
733 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
734 {
735 /* The pseudo/cooked view of embedded registers is always
736 32-bit, even if the target transfers 64-bit values for them.
737 New targets relying on XML descriptions should only transfer
738 the necessary 32 bits, but older versions of GDB expected 64,
739 so allow the target to provide 64 bits without interfering
740 with the displayed type. */
741 return builtin_type (gdbarch)->builtin_int32;
742 }
743
744 /* Use pointer types for registers if we can. For n32 we can not,
745 since we do not have a 64-bit pointer type. */
746 if (mips_abi_regsize (gdbarch)
747 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
748 {
749 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
750 return builtin_type (gdbarch)->builtin_data_ptr;
751 else if (rawnum == MIPS_EMBED_PC_REGNUM)
752 return builtin_type (gdbarch)->builtin_func_ptr;
753 }
754
755 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
756 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
757 return builtin_type (gdbarch)->builtin_int32;
758
759 /* For all other registers, pass through the hardware type. */
760 return rawtype;
761 }
762
763 /* Should the upper word of 64-bit addresses be zeroed? */
764 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
765
766 static int
767 mips_mask_address_p (struct gdbarch_tdep *tdep)
768 {
769 switch (mask_address_var)
770 {
771 case AUTO_BOOLEAN_TRUE:
772 return 1;
773 case AUTO_BOOLEAN_FALSE:
774 return 0;
775 break;
776 case AUTO_BOOLEAN_AUTO:
777 return tdep->default_mask_address_p;
778 default:
779 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
780 return -1;
781 }
782 }
783
784 static void
785 show_mask_address (struct ui_file *file, int from_tty,
786 struct cmd_list_element *c, const char *value)
787 {
788 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
789
790 deprecated_show_value_hack (file, from_tty, c, value);
791 switch (mask_address_var)
792 {
793 case AUTO_BOOLEAN_TRUE:
794 printf_filtered ("The 32 bit mips address mask is enabled\n");
795 break;
796 case AUTO_BOOLEAN_FALSE:
797 printf_filtered ("The 32 bit mips address mask is disabled\n");
798 break;
799 case AUTO_BOOLEAN_AUTO:
800 printf_filtered
801 ("The 32 bit address mask is set automatically. Currently %s\n",
802 mips_mask_address_p (tdep) ? "enabled" : "disabled");
803 break;
804 default:
805 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
806 break;
807 }
808 }
809
810 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
811
812 int
813 mips_pc_is_mips16 (CORE_ADDR memaddr)
814 {
815 struct minimal_symbol *sym;
816
817 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
818 if (is_mips16_addr (memaddr))
819 return 1;
820
821 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
822 the high bit of the info field. Use this to decide if the function is
823 MIPS16 or normal MIPS. */
824 sym = lookup_minimal_symbol_by_pc (memaddr);
825 if (sym)
826 return msymbol_is_special (sym);
827 else
828 return 0;
829 }
830
831 /* MIPS believes that the PC has a sign extended value. Perhaps the
832 all registers should be sign extended for simplicity? */
833
834 static CORE_ADDR
835 mips_read_pc (struct regcache *regcache)
836 {
837 ULONGEST pc;
838 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
839 regcache_cooked_read_signed (regcache, regnum, &pc);
840 return pc;
841 }
842
843 static CORE_ADDR
844 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
845 {
846 return frame_unwind_register_signed
847 (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
848 }
849
850 static CORE_ADDR
851 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
852 {
853 return frame_unwind_register_signed
854 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
855 }
856
857 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
858 dummy frame. The frame ID's base needs to match the TOS value
859 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
860 breakpoint. */
861
862 static struct frame_id
863 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
864 {
865 return frame_id_build
866 (get_frame_register_signed (this_frame,
867 gdbarch_num_regs (gdbarch)
868 + MIPS_SP_REGNUM),
869 get_frame_pc (this_frame));
870 }
871
872 static void
873 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
874 {
875 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
876 regcache_cooked_write_unsigned (regcache, regnum, pc);
877 }
878
879 /* Fetch and return instruction from the specified location. If the PC
880 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
881
882 static ULONGEST
883 mips_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
884 {
885 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
886 gdb_byte buf[MIPS_INSN32_SIZE];
887 int instlen;
888 int status;
889
890 if (mips_pc_is_mips16 (addr))
891 {
892 instlen = MIPS_INSN16_SIZE;
893 addr = unmake_mips16_addr (addr);
894 }
895 else
896 instlen = MIPS_INSN32_SIZE;
897 status = target_read_memory (addr, buf, instlen);
898 if (status)
899 memory_error (status, addr);
900 return extract_unsigned_integer (buf, instlen, byte_order);
901 }
902
903 /* These the fields of 32 bit mips instructions */
904 #define mips32_op(x) (x >> 26)
905 #define itype_op(x) (x >> 26)
906 #define itype_rs(x) ((x >> 21) & 0x1f)
907 #define itype_rt(x) ((x >> 16) & 0x1f)
908 #define itype_immediate(x) (x & 0xffff)
909
910 #define jtype_op(x) (x >> 26)
911 #define jtype_target(x) (x & 0x03ffffff)
912
913 #define rtype_op(x) (x >> 26)
914 #define rtype_rs(x) ((x >> 21) & 0x1f)
915 #define rtype_rt(x) ((x >> 16) & 0x1f)
916 #define rtype_rd(x) ((x >> 11) & 0x1f)
917 #define rtype_shamt(x) ((x >> 6) & 0x1f)
918 #define rtype_funct(x) (x & 0x3f)
919
920 static LONGEST
921 mips32_relative_offset (ULONGEST inst)
922 {
923 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
924 }
925
926 /* Determine where to set a single step breakpoint while considering
927 branch prediction. */
928 static CORE_ADDR
929 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
930 {
931 struct gdbarch *gdbarch = get_frame_arch (frame);
932 unsigned long inst;
933 int op;
934 inst = mips_fetch_instruction (gdbarch, pc);
935 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
936 {
937 if (itype_op (inst) >> 2 == 5)
938 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
939 {
940 op = (itype_op (inst) & 0x03);
941 switch (op)
942 {
943 case 0: /* BEQL */
944 goto equal_branch;
945 case 1: /* BNEL */
946 goto neq_branch;
947 case 2: /* BLEZL */
948 goto less_branch;
949 case 3: /* BGTZL */
950 goto greater_branch;
951 default:
952 pc += 4;
953 }
954 }
955 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
956 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
957 {
958 int tf = itype_rt (inst) & 0x01;
959 int cnum = itype_rt (inst) >> 2;
960 int fcrcs =
961 get_frame_register_signed (frame,
962 mips_regnum (get_frame_arch (frame))->
963 fp_control_status);
964 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
965
966 if (((cond >> cnum) & 0x01) == tf)
967 pc += mips32_relative_offset (inst) + 4;
968 else
969 pc += 8;
970 }
971 else
972 pc += 4; /* Not a branch, next instruction is easy */
973 }
974 else
975 { /* This gets way messy */
976
977 /* Further subdivide into SPECIAL, REGIMM and other */
978 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
979 {
980 case 0: /* SPECIAL */
981 op = rtype_funct (inst);
982 switch (op)
983 {
984 case 8: /* JR */
985 case 9: /* JALR */
986 /* Set PC to that address */
987 pc = get_frame_register_signed (frame, rtype_rs (inst));
988 break;
989 case 12: /* SYSCALL */
990 {
991 struct gdbarch_tdep *tdep;
992
993 tdep = gdbarch_tdep (get_frame_arch (frame));
994 if (tdep->syscall_next_pc != NULL)
995 pc = tdep->syscall_next_pc (frame);
996 else
997 pc += 4;
998 }
999 break;
1000 default:
1001 pc += 4;
1002 }
1003
1004 break; /* end SPECIAL */
1005 case 1: /* REGIMM */
1006 {
1007 op = itype_rt (inst); /* branch condition */
1008 switch (op)
1009 {
1010 case 0: /* BLTZ */
1011 case 2: /* BLTZL */
1012 case 16: /* BLTZAL */
1013 case 18: /* BLTZALL */
1014 less_branch:
1015 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1016 pc += mips32_relative_offset (inst) + 4;
1017 else
1018 pc += 8; /* after the delay slot */
1019 break;
1020 case 1: /* BGEZ */
1021 case 3: /* BGEZL */
1022 case 17: /* BGEZAL */
1023 case 19: /* BGEZALL */
1024 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1025 pc += mips32_relative_offset (inst) + 4;
1026 else
1027 pc += 8; /* after the delay slot */
1028 break;
1029 /* All of the other instructions in the REGIMM category */
1030 default:
1031 pc += 4;
1032 }
1033 }
1034 break; /* end REGIMM */
1035 case 2: /* J */
1036 case 3: /* JAL */
1037 {
1038 unsigned long reg;
1039 reg = jtype_target (inst) << 2;
1040 /* Upper four bits get never changed... */
1041 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1042 }
1043 break;
1044 /* FIXME case JALX : */
1045 {
1046 unsigned long reg;
1047 reg = jtype_target (inst) << 2;
1048 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1049 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1050 }
1051 break; /* The new PC will be alternate mode */
1052 case 4: /* BEQ, BEQL */
1053 equal_branch:
1054 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1055 get_frame_register_signed (frame, itype_rt (inst)))
1056 pc += mips32_relative_offset (inst) + 4;
1057 else
1058 pc += 8;
1059 break;
1060 case 5: /* BNE, BNEL */
1061 neq_branch:
1062 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1063 get_frame_register_signed (frame, itype_rt (inst)))
1064 pc += mips32_relative_offset (inst) + 4;
1065 else
1066 pc += 8;
1067 break;
1068 case 6: /* BLEZ, BLEZL */
1069 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1070 pc += mips32_relative_offset (inst) + 4;
1071 else
1072 pc += 8;
1073 break;
1074 case 7:
1075 default:
1076 greater_branch: /* BGTZ, BGTZL */
1077 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1078 pc += mips32_relative_offset (inst) + 4;
1079 else
1080 pc += 8;
1081 break;
1082 } /* switch */
1083 } /* else */
1084 return pc;
1085 } /* mips32_next_pc */
1086
1087 /* Decoding the next place to set a breakpoint is irregular for the
1088 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1089 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1090 We dont want to set a single step instruction on the extend instruction
1091 either.
1092 */
1093
1094 /* Lots of mips16 instruction formats */
1095 /* Predicting jumps requires itype,ritype,i8type
1096 and their extensions extItype,extritype,extI8type
1097 */
1098 enum mips16_inst_fmts
1099 {
1100 itype, /* 0 immediate 5,10 */
1101 ritype, /* 1 5,3,8 */
1102 rrtype, /* 2 5,3,3,5 */
1103 rritype, /* 3 5,3,3,5 */
1104 rrrtype, /* 4 5,3,3,3,2 */
1105 rriatype, /* 5 5,3,3,1,4 */
1106 shifttype, /* 6 5,3,3,3,2 */
1107 i8type, /* 7 5,3,8 */
1108 i8movtype, /* 8 5,3,3,5 */
1109 i8mov32rtype, /* 9 5,3,5,3 */
1110 i64type, /* 10 5,3,8 */
1111 ri64type, /* 11 5,3,3,5 */
1112 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1113 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1114 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1115 extRRItype, /* 15 5,5,5,5,3,3,5 */
1116 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1117 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1118 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1119 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1120 extRi64type, /* 20 5,6,5,5,3,3,5 */
1121 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1122 };
1123 /* I am heaping all the fields of the formats into one structure and
1124 then, only the fields which are involved in instruction extension */
1125 struct upk_mips16
1126 {
1127 CORE_ADDR offset;
1128 unsigned int regx; /* Function in i8 type */
1129 unsigned int regy;
1130 };
1131
1132
1133 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1134 for the bits which make up the immediate extension. */
1135
1136 static CORE_ADDR
1137 extended_offset (unsigned int extension)
1138 {
1139 CORE_ADDR value;
1140 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1141 value = value << 6;
1142 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1143 value = value << 5;
1144 value |= extension & 0x01f; /* extract 4:0 */
1145 return value;
1146 }
1147
1148 /* Only call this function if you know that this is an extendable
1149 instruction. It won't malfunction, but why make excess remote memory
1150 references? If the immediate operands get sign extended or something,
1151 do it after the extension is performed. */
1152 /* FIXME: Every one of these cases needs to worry about sign extension
1153 when the offset is to be used in relative addressing. */
1154
1155 static unsigned int
1156 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
1157 {
1158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1159 gdb_byte buf[8];
1160 pc &= 0xfffffffe; /* clear the low order bit */
1161 target_read_memory (pc, buf, 2);
1162 return extract_unsigned_integer (buf, 2, byte_order);
1163 }
1164
1165 static void
1166 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
1167 unsigned int extension,
1168 unsigned int inst,
1169 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1170 {
1171 CORE_ADDR offset;
1172 int regx;
1173 int regy;
1174 switch (insn_format)
1175 {
1176 case itype:
1177 {
1178 CORE_ADDR value;
1179 if (extension)
1180 {
1181 value = extended_offset (extension);
1182 value = value << 11; /* rom for the original value */
1183 value |= inst & 0x7ff; /* eleven bits from instruction */
1184 }
1185 else
1186 {
1187 value = inst & 0x7ff;
1188 /* FIXME : Consider sign extension */
1189 }
1190 offset = value;
1191 regx = -1;
1192 regy = -1;
1193 }
1194 break;
1195 case ritype:
1196 case i8type:
1197 { /* A register identifier and an offset */
1198 /* Most of the fields are the same as I type but the
1199 immediate value is of a different length */
1200 CORE_ADDR value;
1201 if (extension)
1202 {
1203 value = extended_offset (extension);
1204 value = value << 8; /* from the original instruction */
1205 value |= inst & 0xff; /* eleven bits from instruction */
1206 regx = (extension >> 8) & 0x07; /* or i8 funct */
1207 if (value & 0x4000) /* test the sign bit , bit 26 */
1208 {
1209 value &= ~0x3fff; /* remove the sign bit */
1210 value = -value;
1211 }
1212 }
1213 else
1214 {
1215 value = inst & 0xff; /* 8 bits */
1216 regx = (inst >> 8) & 0x07; /* or i8 funct */
1217 /* FIXME: Do sign extension , this format needs it */
1218 if (value & 0x80) /* THIS CONFUSES ME */
1219 {
1220 value &= 0xef; /* remove the sign bit */
1221 value = -value;
1222 }
1223 }
1224 offset = value;
1225 regy = -1;
1226 break;
1227 }
1228 case jalxtype:
1229 {
1230 unsigned long value;
1231 unsigned int nexthalf;
1232 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1233 value = value << 16;
1234 nexthalf = mips_fetch_instruction (gdbarch, pc + 2); /* low bit still set */
1235 value |= nexthalf;
1236 offset = value;
1237 regx = -1;
1238 regy = -1;
1239 break;
1240 }
1241 default:
1242 internal_error (__FILE__, __LINE__, _("bad switch"));
1243 }
1244 upk->offset = offset;
1245 upk->regx = regx;
1246 upk->regy = regy;
1247 }
1248
1249
1250 static CORE_ADDR
1251 add_offset_16 (CORE_ADDR pc, int offset)
1252 {
1253 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1254 }
1255
1256 static CORE_ADDR
1257 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1258 unsigned int extension, unsigned int insn)
1259 {
1260 struct gdbarch *gdbarch = get_frame_arch (frame);
1261 int op = (insn >> 11);
1262 switch (op)
1263 {
1264 case 2: /* Branch */
1265 {
1266 CORE_ADDR offset;
1267 struct upk_mips16 upk;
1268 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
1269 offset = upk.offset;
1270 if (offset & 0x800)
1271 {
1272 offset &= 0xeff;
1273 offset = -offset;
1274 }
1275 pc += (offset << 1) + 2;
1276 break;
1277 }
1278 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1279 {
1280 struct upk_mips16 upk;
1281 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
1282 pc = add_offset_16 (pc, upk.offset);
1283 if ((insn >> 10) & 0x01) /* Exchange mode */
1284 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1285 else
1286 pc |= 0x01;
1287 break;
1288 }
1289 case 4: /* beqz */
1290 {
1291 struct upk_mips16 upk;
1292 int reg;
1293 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
1294 reg = get_frame_register_signed (frame, upk.regx);
1295 if (reg == 0)
1296 pc += (upk.offset << 1) + 2;
1297 else
1298 pc += 2;
1299 break;
1300 }
1301 case 5: /* bnez */
1302 {
1303 struct upk_mips16 upk;
1304 int reg;
1305 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
1306 reg = get_frame_register_signed (frame, upk.regx);
1307 if (reg != 0)
1308 pc += (upk.offset << 1) + 2;
1309 else
1310 pc += 2;
1311 break;
1312 }
1313 case 12: /* I8 Formats btez btnez */
1314 {
1315 struct upk_mips16 upk;
1316 int reg;
1317 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
1318 /* upk.regx contains the opcode */
1319 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1320 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1321 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1322 /* pc = add_offset_16(pc,upk.offset) ; */
1323 pc += (upk.offset << 1) + 2;
1324 else
1325 pc += 2;
1326 break;
1327 }
1328 case 29: /* RR Formats JR, JALR, JALR-RA */
1329 {
1330 struct upk_mips16 upk;
1331 /* upk.fmt = rrtype; */
1332 op = insn & 0x1f;
1333 if (op == 0)
1334 {
1335 int reg;
1336 upk.regx = (insn >> 8) & 0x07;
1337 upk.regy = (insn >> 5) & 0x07;
1338 switch (upk.regy)
1339 {
1340 case 0:
1341 reg = upk.regx;
1342 break;
1343 case 1:
1344 reg = 31;
1345 break; /* Function return instruction */
1346 case 2:
1347 reg = upk.regx;
1348 break;
1349 default:
1350 reg = 31;
1351 break; /* BOGUS Guess */
1352 }
1353 pc = get_frame_register_signed (frame, reg);
1354 }
1355 else
1356 pc += 2;
1357 break;
1358 }
1359 case 30:
1360 /* This is an instruction extension. Fetch the real instruction
1361 (which follows the extension) and decode things based on
1362 that. */
1363 {
1364 pc += 2;
1365 pc = extended_mips16_next_pc (frame, pc, insn,
1366 fetch_mips_16 (gdbarch, pc));
1367 break;
1368 }
1369 default:
1370 {
1371 pc += 2;
1372 break;
1373 }
1374 }
1375 return pc;
1376 }
1377
1378 static CORE_ADDR
1379 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1380 {
1381 struct gdbarch *gdbarch = get_frame_arch (frame);
1382 unsigned int insn = fetch_mips_16 (gdbarch, pc);
1383 return extended_mips16_next_pc (frame, pc, 0, insn);
1384 }
1385
1386 /* The mips_next_pc function supports single_step when the remote
1387 target monitor or stub is not developed enough to do a single_step.
1388 It works by decoding the current instruction and predicting where a
1389 branch will go. This isnt hard because all the data is available.
1390 The MIPS32 and MIPS16 variants are quite different. */
1391 static CORE_ADDR
1392 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1393 {
1394 if (is_mips16_addr (pc))
1395 return mips16_next_pc (frame, pc);
1396 else
1397 return mips32_next_pc (frame, pc);
1398 }
1399
1400 struct mips_frame_cache
1401 {
1402 CORE_ADDR base;
1403 struct trad_frame_saved_reg *saved_regs;
1404 };
1405
1406 /* Set a register's saved stack address in temp_saved_regs. If an
1407 address has already been set for this register, do nothing; this
1408 way we will only recognize the first save of a given register in a
1409 function prologue.
1410
1411 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1412 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1413 Strictly speaking, only the second range is used as it is only second
1414 range (the ABI instead of ISA registers) that comes into play when finding
1415 saved registers in a frame. */
1416
1417 static void
1418 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
1419 int regnum, CORE_ADDR offset)
1420 {
1421 if (this_cache != NULL
1422 && this_cache->saved_regs[regnum].addr == -1)
1423 {
1424 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
1425 = offset;
1426 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
1427 = offset;
1428 }
1429 }
1430
1431
1432 /* Fetch the immediate value from a MIPS16 instruction.
1433 If the previous instruction was an EXTEND, use it to extend
1434 the upper bits of the immediate value. This is a helper function
1435 for mips16_scan_prologue. */
1436
1437 static int
1438 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1439 unsigned short inst, /* current instruction */
1440 int nbits, /* number of bits in imm field */
1441 int scale, /* scale factor to be applied to imm */
1442 int is_signed) /* is the imm field signed? */
1443 {
1444 int offset;
1445
1446 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1447 {
1448 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1449 if (offset & 0x8000) /* check for negative extend */
1450 offset = 0 - (0x10000 - (offset & 0xffff));
1451 return offset | (inst & 0x1f);
1452 }
1453 else
1454 {
1455 int max_imm = 1 << nbits;
1456 int mask = max_imm - 1;
1457 int sign_bit = max_imm >> 1;
1458
1459 offset = inst & mask;
1460 if (is_signed && (offset & sign_bit))
1461 offset = 0 - (max_imm - offset);
1462 return offset * scale;
1463 }
1464 }
1465
1466
1467 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1468 the associated FRAME_CACHE if not null.
1469 Return the address of the first instruction past the prologue. */
1470
1471 static CORE_ADDR
1472 mips16_scan_prologue (struct gdbarch *gdbarch,
1473 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1474 struct frame_info *this_frame,
1475 struct mips_frame_cache *this_cache)
1476 {
1477 CORE_ADDR cur_pc;
1478 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1479 CORE_ADDR sp;
1480 long frame_offset = 0; /* Size of stack frame. */
1481 long frame_adjust = 0; /* Offset of FP from SP. */
1482 int frame_reg = MIPS_SP_REGNUM;
1483 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1484 unsigned inst = 0; /* current instruction */
1485 unsigned entry_inst = 0; /* the entry instruction */
1486 unsigned save_inst = 0; /* the save instruction */
1487 int reg, offset;
1488
1489 int extend_bytes = 0;
1490 int prev_extend_bytes;
1491 CORE_ADDR end_prologue_addr = 0;
1492
1493 /* Can be called when there's no process, and hence when there's no
1494 THIS_FRAME. */
1495 if (this_frame != NULL)
1496 sp = get_frame_register_signed (this_frame,
1497 gdbarch_num_regs (gdbarch)
1498 + MIPS_SP_REGNUM);
1499 else
1500 sp = 0;
1501
1502 if (limit_pc > start_pc + 200)
1503 limit_pc = start_pc + 200;
1504
1505 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1506 {
1507 /* Save the previous instruction. If it's an EXTEND, we'll extract
1508 the immediate offset extension from it in mips16_get_imm. */
1509 prev_inst = inst;
1510
1511 /* Fetch and decode the instruction. */
1512 inst = (unsigned short) mips_fetch_instruction (gdbarch, cur_pc);
1513
1514 /* Normally we ignore extend instructions. However, if it is
1515 not followed by a valid prologue instruction, then this
1516 instruction is not part of the prologue either. We must
1517 remember in this case to adjust the end_prologue_addr back
1518 over the extend. */
1519 if ((inst & 0xf800) == 0xf000) /* extend */
1520 {
1521 extend_bytes = MIPS_INSN16_SIZE;
1522 continue;
1523 }
1524
1525 prev_extend_bytes = extend_bytes;
1526 extend_bytes = 0;
1527
1528 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1529 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1530 {
1531 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1532 if (offset < 0) /* negative stack adjustment? */
1533 frame_offset -= offset;
1534 else
1535 /* Exit loop if a positive stack adjustment is found, which
1536 usually means that the stack cleanup code in the function
1537 epilogue is reached. */
1538 break;
1539 }
1540 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1541 {
1542 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1543 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1544 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1545 }
1546 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1547 {
1548 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1549 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1550 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1551 }
1552 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1553 {
1554 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1555 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1556 }
1557 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1558 {
1559 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1560 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1561 }
1562 else if (inst == 0x673d) /* move $s1, $sp */
1563 {
1564 frame_addr = sp;
1565 frame_reg = 17;
1566 }
1567 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1568 {
1569 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1570 frame_addr = sp + offset;
1571 frame_reg = 17;
1572 frame_adjust = offset;
1573 }
1574 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1575 {
1576 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1577 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1578 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
1579 }
1580 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1581 {
1582 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1583 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1584 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
1585 }
1586 else if ((inst & 0xf81f) == 0xe809
1587 && (inst & 0x700) != 0x700) /* entry */
1588 entry_inst = inst; /* save for later processing */
1589 else if ((inst & 0xff80) == 0x6480) /* save */
1590 {
1591 save_inst = inst; /* save for later processing */
1592 if (prev_extend_bytes) /* extend */
1593 save_inst |= prev_inst << 16;
1594 }
1595 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1596 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1597 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1598 {
1599 /* This instruction is part of the prologue, but we don't
1600 need to do anything special to handle it. */
1601 }
1602 else
1603 {
1604 /* This instruction is not an instruction typically found
1605 in a prologue, so we must have reached the end of the
1606 prologue. */
1607 if (end_prologue_addr == 0)
1608 end_prologue_addr = cur_pc - prev_extend_bytes;
1609 }
1610 }
1611
1612 /* The entry instruction is typically the first instruction in a function,
1613 and it stores registers at offsets relative to the value of the old SP
1614 (before the prologue). But the value of the sp parameter to this
1615 function is the new SP (after the prologue has been executed). So we
1616 can't calculate those offsets until we've seen the entire prologue,
1617 and can calculate what the old SP must have been. */
1618 if (entry_inst != 0)
1619 {
1620 int areg_count = (entry_inst >> 8) & 7;
1621 int sreg_count = (entry_inst >> 6) & 3;
1622
1623 /* The entry instruction always subtracts 32 from the SP. */
1624 frame_offset += 32;
1625
1626 /* Now we can calculate what the SP must have been at the
1627 start of the function prologue. */
1628 sp += frame_offset;
1629
1630 /* Check if a0-a3 were saved in the caller's argument save area. */
1631 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1632 {
1633 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1634 offset += mips_abi_regsize (gdbarch);
1635 }
1636
1637 /* Check if the ra register was pushed on the stack. */
1638 offset = -4;
1639 if (entry_inst & 0x20)
1640 {
1641 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1642 offset -= mips_abi_regsize (gdbarch);
1643 }
1644
1645 /* Check if the s0 and s1 registers were pushed on the stack. */
1646 for (reg = 16; reg < sreg_count + 16; reg++)
1647 {
1648 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1649 offset -= mips_abi_regsize (gdbarch);
1650 }
1651 }
1652
1653 /* The SAVE instruction is similar to ENTRY, except that defined by the
1654 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
1655 size of the frame is specified as an immediate field of instruction
1656 and an extended variation exists which lets additional registers and
1657 frame space to be specified. The instruction always treats registers
1658 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
1659 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
1660 {
1661 static int args_table[16] = {
1662 0, 0, 0, 0, 1, 1, 1, 1,
1663 2, 2, 2, 0, 3, 3, 4, -1,
1664 };
1665 static int astatic_table[16] = {
1666 0, 1, 2, 3, 0, 1, 2, 3,
1667 0, 1, 2, 4, 0, 1, 0, -1,
1668 };
1669 int aregs = (save_inst >> 16) & 0xf;
1670 int xsregs = (save_inst >> 24) & 0x7;
1671 int args = args_table[aregs];
1672 int astatic = astatic_table[aregs];
1673 long frame_size;
1674
1675 if (args < 0)
1676 {
1677 warning (_("Invalid number of argument registers encoded in SAVE."));
1678 args = 0;
1679 }
1680 if (astatic < 0)
1681 {
1682 warning (_("Invalid number of static registers encoded in SAVE."));
1683 astatic = 0;
1684 }
1685
1686 /* For standard SAVE the frame size of 0 means 128. */
1687 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
1688 if (frame_size == 0 && (save_inst >> 16) == 0)
1689 frame_size = 16;
1690 frame_size *= 8;
1691 frame_offset += frame_size;
1692
1693 /* Now we can calculate what the SP must have been at the
1694 start of the function prologue. */
1695 sp += frame_offset;
1696
1697 /* Check if A0-A3 were saved in the caller's argument save area. */
1698 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
1699 {
1700 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1701 offset += mips_abi_regsize (gdbarch);
1702 }
1703
1704 offset = -4;
1705
1706 /* Check if the RA register was pushed on the stack. */
1707 if (save_inst & 0x40)
1708 {
1709 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1710 offset -= mips_abi_regsize (gdbarch);
1711 }
1712
1713 /* Check if the S8 register was pushed on the stack. */
1714 if (xsregs > 6)
1715 {
1716 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
1717 offset -= mips_abi_regsize (gdbarch);
1718 xsregs--;
1719 }
1720 /* Check if S2-S7 were pushed on the stack. */
1721 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
1722 {
1723 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1724 offset -= mips_abi_regsize (gdbarch);
1725 }
1726
1727 /* Check if the S1 register was pushed on the stack. */
1728 if (save_inst & 0x10)
1729 {
1730 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
1731 offset -= mips_abi_regsize (gdbarch);
1732 }
1733 /* Check if the S0 register was pushed on the stack. */
1734 if (save_inst & 0x20)
1735 {
1736 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
1737 offset -= mips_abi_regsize (gdbarch);
1738 }
1739
1740 /* Check if A0-A3 were pushed on the stack. */
1741 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
1742 {
1743 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1744 offset -= mips_abi_regsize (gdbarch);
1745 }
1746 }
1747
1748 if (this_cache != NULL)
1749 {
1750 this_cache->base =
1751 (get_frame_register_signed (this_frame,
1752 gdbarch_num_regs (gdbarch) + frame_reg)
1753 + frame_offset - frame_adjust);
1754 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1755 be able to get rid of the assignment below, evetually. But it's
1756 still needed for now. */
1757 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1758 + mips_regnum (gdbarch)->pc]
1759 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
1760 }
1761
1762 /* If we didn't reach the end of the prologue when scanning the function
1763 instructions, then set end_prologue_addr to the address of the
1764 instruction immediately after the last one we scanned. */
1765 if (end_prologue_addr == 0)
1766 end_prologue_addr = cur_pc;
1767
1768 return end_prologue_addr;
1769 }
1770
1771 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1772 Procedures that use the 32-bit instruction set are handled by the
1773 mips_insn32 unwinder. */
1774
1775 static struct mips_frame_cache *
1776 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
1777 {
1778 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1779 struct mips_frame_cache *cache;
1780
1781 if ((*this_cache) != NULL)
1782 return (*this_cache);
1783 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1784 (*this_cache) = cache;
1785 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1786
1787 /* Analyze the function prologue. */
1788 {
1789 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
1790 CORE_ADDR start_addr;
1791
1792 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1793 if (start_addr == 0)
1794 start_addr = heuristic_proc_start (gdbarch, pc);
1795 /* We can't analyze the prologue if we couldn't find the begining
1796 of the function. */
1797 if (start_addr == 0)
1798 return cache;
1799
1800 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
1801 }
1802
1803 /* gdbarch_sp_regnum contains the value and not the address. */
1804 trad_frame_set_value (cache->saved_regs,
1805 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
1806 cache->base);
1807
1808 return (*this_cache);
1809 }
1810
1811 static void
1812 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
1813 struct frame_id *this_id)
1814 {
1815 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1816 this_cache);
1817 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
1818 }
1819
1820 static struct value *
1821 mips_insn16_frame_prev_register (struct frame_info *this_frame,
1822 void **this_cache, int regnum)
1823 {
1824 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1825 this_cache);
1826 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1827 }
1828
1829 static int
1830 mips_insn16_frame_sniffer (const struct frame_unwind *self,
1831 struct frame_info *this_frame, void **this_cache)
1832 {
1833 CORE_ADDR pc = get_frame_pc (this_frame);
1834 if (mips_pc_is_mips16 (pc))
1835 return 1;
1836 return 0;
1837 }
1838
1839 static const struct frame_unwind mips_insn16_frame_unwind =
1840 {
1841 NORMAL_FRAME,
1842 mips_insn16_frame_this_id,
1843 mips_insn16_frame_prev_register,
1844 NULL,
1845 mips_insn16_frame_sniffer
1846 };
1847
1848 static CORE_ADDR
1849 mips_insn16_frame_base_address (struct frame_info *this_frame,
1850 void **this_cache)
1851 {
1852 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1853 this_cache);
1854 return info->base;
1855 }
1856
1857 static const struct frame_base mips_insn16_frame_base =
1858 {
1859 &mips_insn16_frame_unwind,
1860 mips_insn16_frame_base_address,
1861 mips_insn16_frame_base_address,
1862 mips_insn16_frame_base_address
1863 };
1864
1865 static const struct frame_base *
1866 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
1867 {
1868 CORE_ADDR pc = get_frame_pc (this_frame);
1869 if (mips_pc_is_mips16 (pc))
1870 return &mips_insn16_frame_base;
1871 else
1872 return NULL;
1873 }
1874
1875 /* Mark all the registers as unset in the saved_regs array
1876 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1877
1878 static void
1879 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
1880 {
1881 if (this_cache == NULL || this_cache->saved_regs == NULL)
1882 return;
1883
1884 {
1885 const int num_regs = gdbarch_num_regs (gdbarch);
1886 int i;
1887
1888 for (i = 0; i < num_regs; i++)
1889 {
1890 this_cache->saved_regs[i].addr = -1;
1891 }
1892 }
1893 }
1894
1895 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1896 the associated FRAME_CACHE if not null.
1897 Return the address of the first instruction past the prologue. */
1898
1899 static CORE_ADDR
1900 mips32_scan_prologue (struct gdbarch *gdbarch,
1901 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1902 struct frame_info *this_frame,
1903 struct mips_frame_cache *this_cache)
1904 {
1905 CORE_ADDR cur_pc;
1906 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1907 CORE_ADDR sp;
1908 long frame_offset;
1909 int frame_reg = MIPS_SP_REGNUM;
1910
1911 CORE_ADDR end_prologue_addr = 0;
1912 int seen_sp_adjust = 0;
1913 int load_immediate_bytes = 0;
1914 int in_delay_slot = 0;
1915 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
1916
1917 /* Can be called when there's no process, and hence when there's no
1918 THIS_FRAME. */
1919 if (this_frame != NULL)
1920 sp = get_frame_register_signed (this_frame,
1921 gdbarch_num_regs (gdbarch)
1922 + MIPS_SP_REGNUM);
1923 else
1924 sp = 0;
1925
1926 if (limit_pc > start_pc + 200)
1927 limit_pc = start_pc + 200;
1928
1929 restart:
1930
1931 frame_offset = 0;
1932 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1933 {
1934 unsigned long inst, high_word, low_word;
1935 int reg;
1936
1937 /* Fetch the instruction. */
1938 inst = (unsigned long) mips_fetch_instruction (gdbarch, cur_pc);
1939
1940 /* Save some code by pre-extracting some useful fields. */
1941 high_word = (inst >> 16) & 0xffff;
1942 low_word = inst & 0xffff;
1943 reg = high_word & 0x1f;
1944
1945 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1946 || high_word == 0x23bd /* addi $sp,$sp,-i */
1947 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1948 {
1949 if (low_word & 0x8000) /* negative stack adjustment? */
1950 frame_offset += 0x10000 - low_word;
1951 else
1952 /* Exit loop if a positive stack adjustment is found, which
1953 usually means that the stack cleanup code in the function
1954 epilogue is reached. */
1955 break;
1956 seen_sp_adjust = 1;
1957 }
1958 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1959 && !regsize_is_64_bits)
1960 {
1961 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
1962 }
1963 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1964 && regsize_is_64_bits)
1965 {
1966 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1967 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
1968 }
1969 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1970 {
1971 /* Old gcc frame, r30 is virtual frame pointer. */
1972 if ((long) low_word != frame_offset)
1973 frame_addr = sp + low_word;
1974 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
1975 {
1976 unsigned alloca_adjust;
1977
1978 frame_reg = 30;
1979 frame_addr = get_frame_register_signed
1980 (this_frame, gdbarch_num_regs (gdbarch) + 30);
1981
1982 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1983 if (alloca_adjust > 0)
1984 {
1985 /* FP > SP + frame_size. This may be because of
1986 an alloca or somethings similar. Fix sp to
1987 "pre-alloca" value, and try again. */
1988 sp += alloca_adjust;
1989 /* Need to reset the status of all registers. Otherwise,
1990 we will hit a guard that prevents the new address
1991 for each register to be recomputed during the second
1992 pass. */
1993 reset_saved_regs (gdbarch, this_cache);
1994 goto restart;
1995 }
1996 }
1997 }
1998 /* move $30,$sp. With different versions of gas this will be either
1999 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2000 Accept any one of these. */
2001 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2002 {
2003 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2004 if (this_frame && frame_reg == MIPS_SP_REGNUM)
2005 {
2006 unsigned alloca_adjust;
2007
2008 frame_reg = 30;
2009 frame_addr = get_frame_register_signed
2010 (this_frame, gdbarch_num_regs (gdbarch) + 30);
2011
2012 alloca_adjust = (unsigned) (frame_addr - sp);
2013 if (alloca_adjust > 0)
2014 {
2015 /* FP > SP + frame_size. This may be because of
2016 an alloca or somethings similar. Fix sp to
2017 "pre-alloca" value, and try again. */
2018 sp = frame_addr;
2019 /* Need to reset the status of all registers. Otherwise,
2020 we will hit a guard that prevents the new address
2021 for each register to be recomputed during the second
2022 pass. */
2023 reset_saved_regs (gdbarch, this_cache);
2024 goto restart;
2025 }
2026 }
2027 }
2028 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
2029 && !regsize_is_64_bits)
2030 {
2031 set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
2032 }
2033 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
2034 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
2035 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
2036 || high_word == 0x3c1c /* lui $gp,n */
2037 || high_word == 0x279c /* addiu $gp,$gp,n */
2038 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2039 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
2040 )
2041 {
2042 /* These instructions are part of the prologue, but we don't
2043 need to do anything special to handle them. */
2044 }
2045 /* The instructions below load $at or $t0 with an immediate
2046 value in preparation for a stack adjustment via
2047 subu $sp,$sp,[$at,$t0]. These instructions could also
2048 initialize a local variable, so we accept them only before
2049 a stack adjustment instruction was seen. */
2050 else if (!seen_sp_adjust
2051 && (high_word == 0x3c01 /* lui $at,n */
2052 || high_word == 0x3c08 /* lui $t0,n */
2053 || high_word == 0x3421 /* ori $at,$at,n */
2054 || high_word == 0x3508 /* ori $t0,$t0,n */
2055 || high_word == 0x3401 /* ori $at,$zero,n */
2056 || high_word == 0x3408 /* ori $t0,$zero,n */
2057 ))
2058 {
2059 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
2060 }
2061 else
2062 {
2063 /* This instruction is not an instruction typically found
2064 in a prologue, so we must have reached the end of the
2065 prologue. */
2066 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2067 loop now? Why would we need to continue scanning the function
2068 instructions? */
2069 if (end_prologue_addr == 0)
2070 end_prologue_addr = cur_pc;
2071
2072 /* Check for branches and jumps. For now, only jump to
2073 register are caught (i.e. returns). */
2074 if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
2075 in_delay_slot = 1;
2076 }
2077
2078 /* If the previous instruction was a jump, we must have reached
2079 the end of the prologue by now. Stop scanning so that we do
2080 not go past the function return. */
2081 if (in_delay_slot)
2082 break;
2083 }
2084
2085 if (this_cache != NULL)
2086 {
2087 this_cache->base =
2088 (get_frame_register_signed (this_frame,
2089 gdbarch_num_regs (gdbarch) + frame_reg)
2090 + frame_offset);
2091 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2092 this assignment below, eventually. But it's still needed
2093 for now. */
2094 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2095 + mips_regnum (gdbarch)->pc]
2096 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2097 + MIPS_RA_REGNUM];
2098 }
2099
2100 /* If we didn't reach the end of the prologue when scanning the function
2101 instructions, then set end_prologue_addr to the address of the
2102 instruction immediately after the last one we scanned. */
2103 /* brobecker/2004-10-10: I don't think this would ever happen, but
2104 we may as well be careful and do our best if we have a null
2105 end_prologue_addr. */
2106 if (end_prologue_addr == 0)
2107 end_prologue_addr = cur_pc;
2108
2109 /* In a frameless function, we might have incorrectly
2110 skipped some load immediate instructions. Undo the skipping
2111 if the load immediate was not followed by a stack adjustment. */
2112 if (load_immediate_bytes && !seen_sp_adjust)
2113 end_prologue_addr -= load_immediate_bytes;
2114
2115 return end_prologue_addr;
2116 }
2117
2118 /* Heuristic unwinder for procedures using 32-bit instructions (covers
2119 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2120 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2121 unwinder. */
2122
2123 static struct mips_frame_cache *
2124 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
2125 {
2126 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2127 struct mips_frame_cache *cache;
2128
2129 if ((*this_cache) != NULL)
2130 return (*this_cache);
2131
2132 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2133 (*this_cache) = cache;
2134 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2135
2136 /* Analyze the function prologue. */
2137 {
2138 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2139 CORE_ADDR start_addr;
2140
2141 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2142 if (start_addr == 0)
2143 start_addr = heuristic_proc_start (gdbarch, pc);
2144 /* We can't analyze the prologue if we couldn't find the begining
2145 of the function. */
2146 if (start_addr == 0)
2147 return cache;
2148
2149 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
2150 }
2151
2152 /* gdbarch_sp_regnum contains the value and not the address. */
2153 trad_frame_set_value (cache->saved_regs,
2154 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2155 cache->base);
2156
2157 return (*this_cache);
2158 }
2159
2160 static void
2161 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
2162 struct frame_id *this_id)
2163 {
2164 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2165 this_cache);
2166 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2167 }
2168
2169 static struct value *
2170 mips_insn32_frame_prev_register (struct frame_info *this_frame,
2171 void **this_cache, int regnum)
2172 {
2173 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2174 this_cache);
2175 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2176 }
2177
2178 static int
2179 mips_insn32_frame_sniffer (const struct frame_unwind *self,
2180 struct frame_info *this_frame, void **this_cache)
2181 {
2182 CORE_ADDR pc = get_frame_pc (this_frame);
2183 if (! mips_pc_is_mips16 (pc))
2184 return 1;
2185 return 0;
2186 }
2187
2188 static const struct frame_unwind mips_insn32_frame_unwind =
2189 {
2190 NORMAL_FRAME,
2191 mips_insn32_frame_this_id,
2192 mips_insn32_frame_prev_register,
2193 NULL,
2194 mips_insn32_frame_sniffer
2195 };
2196
2197 static CORE_ADDR
2198 mips_insn32_frame_base_address (struct frame_info *this_frame,
2199 void **this_cache)
2200 {
2201 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2202 this_cache);
2203 return info->base;
2204 }
2205
2206 static const struct frame_base mips_insn32_frame_base =
2207 {
2208 &mips_insn32_frame_unwind,
2209 mips_insn32_frame_base_address,
2210 mips_insn32_frame_base_address,
2211 mips_insn32_frame_base_address
2212 };
2213
2214 static const struct frame_base *
2215 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
2216 {
2217 CORE_ADDR pc = get_frame_pc (this_frame);
2218 if (! mips_pc_is_mips16 (pc))
2219 return &mips_insn32_frame_base;
2220 else
2221 return NULL;
2222 }
2223
2224 static struct trad_frame_cache *
2225 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2226 {
2227 CORE_ADDR pc;
2228 CORE_ADDR start_addr;
2229 CORE_ADDR stack_addr;
2230 struct trad_frame_cache *this_trad_cache;
2231 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2232 int num_regs = gdbarch_num_regs (gdbarch);
2233
2234 if ((*this_cache) != NULL)
2235 return (*this_cache);
2236 this_trad_cache = trad_frame_cache_zalloc (this_frame);
2237 (*this_cache) = this_trad_cache;
2238
2239 /* The return address is in the link register. */
2240 trad_frame_set_reg_realreg (this_trad_cache,
2241 gdbarch_pc_regnum (gdbarch),
2242 num_regs + MIPS_RA_REGNUM);
2243
2244 /* Frame ID, since it's a frameless / stackless function, no stack
2245 space is allocated and SP on entry is the current SP. */
2246 pc = get_frame_pc (this_frame);
2247 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2248 stack_addr = get_frame_register_signed (this_frame,
2249 num_regs + MIPS_SP_REGNUM);
2250 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2251
2252 /* Assume that the frame's base is the same as the
2253 stack-pointer. */
2254 trad_frame_set_this_base (this_trad_cache, stack_addr);
2255
2256 return this_trad_cache;
2257 }
2258
2259 static void
2260 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2261 struct frame_id *this_id)
2262 {
2263 struct trad_frame_cache *this_trad_cache
2264 = mips_stub_frame_cache (this_frame, this_cache);
2265 trad_frame_get_id (this_trad_cache, this_id);
2266 }
2267
2268 static struct value *
2269 mips_stub_frame_prev_register (struct frame_info *this_frame,
2270 void **this_cache, int regnum)
2271 {
2272 struct trad_frame_cache *this_trad_cache
2273 = mips_stub_frame_cache (this_frame, this_cache);
2274 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2275 }
2276
2277 static int
2278 mips_stub_frame_sniffer (const struct frame_unwind *self,
2279 struct frame_info *this_frame, void **this_cache)
2280 {
2281 gdb_byte dummy[4];
2282 struct obj_section *s;
2283 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2284 struct minimal_symbol *msym;
2285
2286 /* Use the stub unwinder for unreadable code. */
2287 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2288 return 1;
2289
2290 if (in_plt_section (pc, NULL))
2291 return 1;
2292
2293 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2294 s = find_pc_section (pc);
2295
2296 if (s != NULL
2297 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2298 ".MIPS.stubs") == 0)
2299 return 1;
2300
2301 /* Calling a PIC function from a non-PIC function passes through a
2302 stub. The stub for foo is named ".pic.foo". */
2303 msym = lookup_minimal_symbol_by_pc (pc);
2304 if (msym != NULL
2305 && SYMBOL_LINKAGE_NAME (msym) != NULL
2306 && strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) == 0)
2307 return 1;
2308
2309 return 0;
2310 }
2311
2312 static const struct frame_unwind mips_stub_frame_unwind =
2313 {
2314 NORMAL_FRAME,
2315 mips_stub_frame_this_id,
2316 mips_stub_frame_prev_register,
2317 NULL,
2318 mips_stub_frame_sniffer
2319 };
2320
2321 static CORE_ADDR
2322 mips_stub_frame_base_address (struct frame_info *this_frame,
2323 void **this_cache)
2324 {
2325 struct trad_frame_cache *this_trad_cache
2326 = mips_stub_frame_cache (this_frame, this_cache);
2327 return trad_frame_get_this_base (this_trad_cache);
2328 }
2329
2330 static const struct frame_base mips_stub_frame_base =
2331 {
2332 &mips_stub_frame_unwind,
2333 mips_stub_frame_base_address,
2334 mips_stub_frame_base_address,
2335 mips_stub_frame_base_address
2336 };
2337
2338 static const struct frame_base *
2339 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
2340 {
2341 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
2342 return &mips_stub_frame_base;
2343 else
2344 return NULL;
2345 }
2346
2347 /* mips_addr_bits_remove - remove useless address bits */
2348
2349 static CORE_ADDR
2350 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2351 {
2352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2353 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2354 /* This hack is a work-around for existing boards using PMON, the
2355 simulator, and any other 64-bit targets that doesn't have true
2356 64-bit addressing. On these targets, the upper 32 bits of
2357 addresses are ignored by the hardware. Thus, the PC or SP are
2358 likely to have been sign extended to all 1s by instruction
2359 sequences that load 32-bit addresses. For example, a typical
2360 piece of code that loads an address is this:
2361
2362 lui $r2, <upper 16 bits>
2363 ori $r2, <lower 16 bits>
2364
2365 But the lui sign-extends the value such that the upper 32 bits
2366 may be all 1s. The workaround is simply to mask off these
2367 bits. In the future, gcc may be changed to support true 64-bit
2368 addressing, and this masking will have to be disabled. */
2369 return addr &= 0xffffffffUL;
2370 else
2371 return addr;
2372 }
2373
2374 /* Instructions used during single-stepping of atomic sequences. */
2375 #define LL_OPCODE 0x30
2376 #define LLD_OPCODE 0x34
2377 #define SC_OPCODE 0x38
2378 #define SCD_OPCODE 0x3c
2379
2380 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
2381 instruction and ending with a SC/SCD instruction. If such a sequence
2382 is found, attempt to step through it. A breakpoint is placed at the end of
2383 the sequence. */
2384
2385 static int
2386 deal_with_atomic_sequence (struct gdbarch *gdbarch,
2387 struct address_space *aspace, CORE_ADDR pc)
2388 {
2389 CORE_ADDR breaks[2] = {-1, -1};
2390 CORE_ADDR loc = pc;
2391 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
2392 unsigned long insn;
2393 int insn_count;
2394 int index;
2395 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2396 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2397
2398 if (pc & 0x01)
2399 return 0;
2400
2401 insn = mips_fetch_instruction (gdbarch, loc);
2402 /* Assume all atomic sequences start with a ll/lld instruction. */
2403 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
2404 return 0;
2405
2406 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
2407 instructions. */
2408 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2409 {
2410 int is_branch = 0;
2411 loc += MIPS_INSN32_SIZE;
2412 insn = mips_fetch_instruction (gdbarch, loc);
2413
2414 /* Assume that there is at most one branch in the atomic
2415 sequence. If a branch is found, put a breakpoint in its
2416 destination address. */
2417 switch (itype_op (insn))
2418 {
2419 case 0: /* SPECIAL */
2420 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
2421 return 0; /* fallback to the standard single-step code. */
2422 break;
2423 case 1: /* REGIMM */
2424 is_branch = ((itype_rt (insn) & 0xc0) == 0); /* B{LT,GE}Z* */
2425 break;
2426 case 2: /* J */
2427 case 3: /* JAL */
2428 return 0; /* fallback to the standard single-step code. */
2429 case 4: /* BEQ */
2430 case 5: /* BNE */
2431 case 6: /* BLEZ */
2432 case 7: /* BGTZ */
2433 case 20: /* BEQL */
2434 case 21: /* BNEL */
2435 case 22: /* BLEZL */
2436 case 23: /* BGTTL */
2437 is_branch = 1;
2438 break;
2439 case 17: /* COP1 */
2440 case 18: /* COP2 */
2441 case 19: /* COP3 */
2442 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
2443 break;
2444 }
2445 if (is_branch)
2446 {
2447 branch_bp = loc + mips32_relative_offset (insn) + 4;
2448 if (last_breakpoint >= 1)
2449 return 0; /* More than one branch found, fallback to the
2450 standard single-step code. */
2451 breaks[1] = branch_bp;
2452 last_breakpoint++;
2453 }
2454
2455 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
2456 break;
2457 }
2458
2459 /* Assume that the atomic sequence ends with a sc/scd instruction. */
2460 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
2461 return 0;
2462
2463 loc += MIPS_INSN32_SIZE;
2464
2465 /* Insert a breakpoint right after the end of the atomic sequence. */
2466 breaks[0] = loc;
2467
2468 /* Check for duplicated breakpoints. Check also for a breakpoint
2469 placed (branch instruction's destination) in the atomic sequence */
2470 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
2471 last_breakpoint = 0;
2472
2473 /* Effectively inserts the breakpoints. */
2474 for (index = 0; index <= last_breakpoint; index++)
2475 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
2476
2477 return 1;
2478 }
2479
2480 /* mips_software_single_step() is called just before we want to resume
2481 the inferior, if we want to single-step it but there is no hardware
2482 or kernel single-step support (MIPS on GNU/Linux for example). We find
2483 the target of the coming instruction and breakpoint it. */
2484
2485 int
2486 mips_software_single_step (struct frame_info *frame)
2487 {
2488 struct gdbarch *gdbarch = get_frame_arch (frame);
2489 struct address_space *aspace = get_frame_address_space (frame);
2490 CORE_ADDR pc, next_pc;
2491
2492 pc = get_frame_pc (frame);
2493 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
2494 return 1;
2495
2496 next_pc = mips_next_pc (frame, pc);
2497
2498 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2499 return 1;
2500 }
2501
2502 /* Test whether the PC points to the return instruction at the
2503 end of a function. */
2504
2505 static int
2506 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
2507 {
2508 if (mips_pc_is_mips16 (pc))
2509 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2510 generates a "jr $ra"; other times it generates code to load
2511 the return address from the stack to an accessible register (such
2512 as $a3), then a "jr" using that register. This second case
2513 is almost impossible to distinguish from an indirect jump
2514 used for switch statements, so we don't even try. */
2515 return mips_fetch_instruction (gdbarch, pc) == 0xe820; /* jr $ra */
2516 else
2517 return mips_fetch_instruction (gdbarch, pc) == 0x3e00008; /* jr $ra */
2518 }
2519
2520
2521 /* This fencepost looks highly suspicious to me. Removing it also
2522 seems suspicious as it could affect remote debugging across serial
2523 lines. */
2524
2525 static CORE_ADDR
2526 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
2527 {
2528 CORE_ADDR start_pc;
2529 CORE_ADDR fence;
2530 int instlen;
2531 int seen_adjsp = 0;
2532 struct inferior *inf;
2533
2534 pc = gdbarch_addr_bits_remove (gdbarch, pc);
2535 start_pc = pc;
2536 fence = start_pc - heuristic_fence_post;
2537 if (start_pc == 0)
2538 return 0;
2539
2540 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2541 fence = VM_MIN_ADDRESS;
2542
2543 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2544
2545 inf = current_inferior ();
2546
2547 /* search back for previous return */
2548 for (start_pc -= instlen;; start_pc -= instlen)
2549 if (start_pc < fence)
2550 {
2551 /* It's not clear to me why we reach this point when
2552 stop_soon, but with this test, at least we
2553 don't print out warnings for every child forked (eg, on
2554 decstation). 22apr93 rich@cygnus.com. */
2555 if (inf->stop_soon == NO_STOP_QUIETLY)
2556 {
2557 static int blurb_printed = 0;
2558
2559 warning (_("GDB can't find the start of the function at %s."),
2560 paddress (gdbarch, pc));
2561
2562 if (!blurb_printed)
2563 {
2564 /* This actually happens frequently in embedded
2565 development, when you first connect to a board
2566 and your stack pointer and pc are nowhere in
2567 particular. This message needs to give people
2568 in that situation enough information to
2569 determine that it's no big deal. */
2570 printf_filtered ("\n\
2571 GDB is unable to find the start of the function at %s\n\
2572 and thus can't determine the size of that function's stack frame.\n\
2573 This means that GDB may be unable to access that stack frame, or\n\
2574 the frames below it.\n\
2575 This problem is most likely caused by an invalid program counter or\n\
2576 stack pointer.\n\
2577 However, if you think GDB should simply search farther back\n\
2578 from %s for code which looks like the beginning of a\n\
2579 function, you can increase the range of the search using the `set\n\
2580 heuristic-fence-post' command.\n",
2581 paddress (gdbarch, pc), paddress (gdbarch, pc));
2582 blurb_printed = 1;
2583 }
2584 }
2585
2586 return 0;
2587 }
2588 else if (mips_pc_is_mips16 (start_pc))
2589 {
2590 unsigned short inst;
2591
2592 /* On MIPS16, any one of the following is likely to be the
2593 start of a function:
2594 extend save
2595 save
2596 entry
2597 addiu sp,-n
2598 daddiu sp,-n
2599 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2600 inst = mips_fetch_instruction (gdbarch, start_pc);
2601 if ((inst & 0xff80) == 0x6480) /* save */
2602 {
2603 if (start_pc - instlen >= fence)
2604 {
2605 inst = mips_fetch_instruction (gdbarch, start_pc - instlen);
2606 if ((inst & 0xf800) == 0xf000) /* extend */
2607 start_pc -= instlen;
2608 }
2609 break;
2610 }
2611 else if (((inst & 0xf81f) == 0xe809
2612 && (inst & 0x700) != 0x700) /* entry */
2613 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2614 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2615 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2616 break;
2617 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2618 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2619 seen_adjsp = 1;
2620 else
2621 seen_adjsp = 0;
2622 }
2623 else if (mips_about_to_return (gdbarch, start_pc))
2624 {
2625 /* Skip return and its delay slot. */
2626 start_pc += 2 * MIPS_INSN32_SIZE;
2627 break;
2628 }
2629
2630 return start_pc;
2631 }
2632
2633 struct mips_objfile_private
2634 {
2635 bfd_size_type size;
2636 char *contents;
2637 };
2638
2639 /* According to the current ABI, should the type be passed in a
2640 floating-point register (assuming that there is space)? When there
2641 is no FPU, FP are not even considered as possible candidates for
2642 FP registers and, consequently this returns false - forces FP
2643 arguments into integer registers. */
2644
2645 static int
2646 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
2647 struct type *arg_type)
2648 {
2649 return ((typecode == TYPE_CODE_FLT
2650 || (MIPS_EABI (gdbarch)
2651 && (typecode == TYPE_CODE_STRUCT
2652 || typecode == TYPE_CODE_UNION)
2653 && TYPE_NFIELDS (arg_type) == 1
2654 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2655 == TYPE_CODE_FLT))
2656 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
2657 }
2658
2659 /* On o32, argument passing in GPRs depends on the alignment of the type being
2660 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2661
2662 static int
2663 mips_type_needs_double_align (struct type *type)
2664 {
2665 enum type_code typecode = TYPE_CODE (type);
2666
2667 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2668 return 1;
2669 else if (typecode == TYPE_CODE_STRUCT)
2670 {
2671 if (TYPE_NFIELDS (type) < 1)
2672 return 0;
2673 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2674 }
2675 else if (typecode == TYPE_CODE_UNION)
2676 {
2677 int i, n;
2678
2679 n = TYPE_NFIELDS (type);
2680 for (i = 0; i < n; i++)
2681 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2682 return 1;
2683 return 0;
2684 }
2685 return 0;
2686 }
2687
2688 /* Adjust the address downward (direction of stack growth) so that it
2689 is correctly aligned for a new stack frame. */
2690 static CORE_ADDR
2691 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2692 {
2693 return align_down (addr, 16);
2694 }
2695
2696 static CORE_ADDR
2697 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2698 struct regcache *regcache, CORE_ADDR bp_addr,
2699 int nargs, struct value **args, CORE_ADDR sp,
2700 int struct_return, CORE_ADDR struct_addr)
2701 {
2702 int argreg;
2703 int float_argreg;
2704 int argnum;
2705 int len = 0;
2706 int stack_offset = 0;
2707 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2708 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2709 CORE_ADDR func_addr = find_function_addr (function, NULL);
2710 int regsize = mips_abi_regsize (gdbarch);
2711
2712 /* For shared libraries, "t9" needs to point at the function
2713 address. */
2714 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2715
2716 /* Set the return address register to point to the entry point of
2717 the program, where a breakpoint lies in wait. */
2718 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2719
2720 /* First ensure that the stack and structure return address (if any)
2721 are properly aligned. The stack has to be at least 64-bit
2722 aligned even on 32-bit machines, because doubles must be 64-bit
2723 aligned. For n32 and n64, stack frames need to be 128-bit
2724 aligned, so we round to this widest known alignment. */
2725
2726 sp = align_down (sp, 16);
2727 struct_addr = align_down (struct_addr, 16);
2728
2729 /* Now make space on the stack for the args. We allocate more
2730 than necessary for EABI, because the first few arguments are
2731 passed in registers, but that's OK. */
2732 for (argnum = 0; argnum < nargs; argnum++)
2733 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2734 sp -= align_up (len, 16);
2735
2736 if (mips_debug)
2737 fprintf_unfiltered (gdb_stdlog,
2738 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
2739 paddress (gdbarch, sp), (long) align_up (len, 16));
2740
2741 /* Initialize the integer and float register pointers. */
2742 argreg = MIPS_A0_REGNUM;
2743 float_argreg = mips_fpa0_regnum (gdbarch);
2744
2745 /* The struct_return pointer occupies the first parameter-passing reg. */
2746 if (struct_return)
2747 {
2748 if (mips_debug)
2749 fprintf_unfiltered (gdb_stdlog,
2750 "mips_eabi_push_dummy_call: struct_return reg=%d %s\n",
2751 argreg, paddress (gdbarch, struct_addr));
2752 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2753 }
2754
2755 /* Now load as many as possible of the first arguments into
2756 registers, and push the rest onto the stack. Loop thru args
2757 from first to last. */
2758 for (argnum = 0; argnum < nargs; argnum++)
2759 {
2760 const gdb_byte *val;
2761 gdb_byte valbuf[MAX_REGISTER_SIZE];
2762 struct value *arg = args[argnum];
2763 struct type *arg_type = check_typedef (value_type (arg));
2764 int len = TYPE_LENGTH (arg_type);
2765 enum type_code typecode = TYPE_CODE (arg_type);
2766
2767 if (mips_debug)
2768 fprintf_unfiltered (gdb_stdlog,
2769 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2770 argnum + 1, len, (int) typecode);
2771
2772 /* The EABI passes structures that do not fit in a register by
2773 reference. */
2774 if (len > regsize
2775 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2776 {
2777 store_unsigned_integer (valbuf, regsize, byte_order,
2778 value_address (arg));
2779 typecode = TYPE_CODE_PTR;
2780 len = regsize;
2781 val = valbuf;
2782 if (mips_debug)
2783 fprintf_unfiltered (gdb_stdlog, " push");
2784 }
2785 else
2786 val = value_contents (arg);
2787
2788 /* 32-bit ABIs always start floating point arguments in an
2789 even-numbered floating point register. Round the FP register
2790 up before the check to see if there are any FP registers
2791 left. Non MIPS_EABI targets also pass the FP in the integer
2792 registers so also round up normal registers. */
2793 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
2794 {
2795 if ((float_argreg & 1))
2796 float_argreg++;
2797 }
2798
2799 /* Floating point arguments passed in registers have to be
2800 treated specially. On 32-bit architectures, doubles
2801 are passed in register pairs; the even register gets
2802 the low word, and the odd register gets the high word.
2803 On non-EABI processors, the first two floating point arguments are
2804 also copied to general registers, because MIPS16 functions
2805 don't use float registers for arguments. This duplication of
2806 arguments in general registers can't hurt non-MIPS16 functions
2807 because those registers are normally skipped. */
2808 /* MIPS_EABI squeezes a struct that contains a single floating
2809 point value into an FP register instead of pushing it onto the
2810 stack. */
2811 if (fp_register_arg_p (gdbarch, typecode, arg_type)
2812 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
2813 {
2814 /* EABI32 will pass doubles in consecutive registers, even on
2815 64-bit cores. At one time, we used to check the size of
2816 `float_argreg' to determine whether or not to pass doubles
2817 in consecutive registers, but this is not sufficient for
2818 making the ABI determination. */
2819 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
2820 {
2821 int low_offset = gdbarch_byte_order (gdbarch)
2822 == BFD_ENDIAN_BIG ? 4 : 0;
2823 unsigned long regval;
2824
2825 /* Write the low word of the double to the even register(s). */
2826 regval = extract_unsigned_integer (val + low_offset,
2827 4, byte_order);
2828 if (mips_debug)
2829 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2830 float_argreg, phex (regval, 4));
2831 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2832
2833 /* Write the high word of the double to the odd register(s). */
2834 regval = extract_unsigned_integer (val + 4 - low_offset,
2835 4, byte_order);
2836 if (mips_debug)
2837 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2838 float_argreg, phex (regval, 4));
2839 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2840 }
2841 else
2842 {
2843 /* This is a floating point value that fits entirely
2844 in a single register. */
2845 /* On 32 bit ABI's the float_argreg is further adjusted
2846 above to ensure that it is even register aligned. */
2847 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
2848 if (mips_debug)
2849 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2850 float_argreg, phex (regval, len));
2851 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2852 }
2853 }
2854 else
2855 {
2856 /* Copy the argument to general registers or the stack in
2857 register-sized pieces. Large arguments are split between
2858 registers and stack. */
2859 /* Note: structs whose size is not a multiple of regsize
2860 are treated specially: Irix cc passes
2861 them in registers where gcc sometimes puts them on the
2862 stack. For maximum compatibility, we will put them in
2863 both places. */
2864 int odd_sized_struct = (len > regsize && len % regsize != 0);
2865
2866 /* Note: Floating-point values that didn't fit into an FP
2867 register are only written to memory. */
2868 while (len > 0)
2869 {
2870 /* Remember if the argument was written to the stack. */
2871 int stack_used_p = 0;
2872 int partial_len = (len < regsize ? len : regsize);
2873
2874 if (mips_debug)
2875 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2876 partial_len);
2877
2878 /* Write this portion of the argument to the stack. */
2879 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
2880 || odd_sized_struct
2881 || fp_register_arg_p (gdbarch, typecode, arg_type))
2882 {
2883 /* Should shorter than int integer values be
2884 promoted to int before being stored? */
2885 int longword_offset = 0;
2886 CORE_ADDR addr;
2887 stack_used_p = 1;
2888 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2889 {
2890 if (regsize == 8
2891 && (typecode == TYPE_CODE_INT
2892 || typecode == TYPE_CODE_PTR
2893 || typecode == TYPE_CODE_FLT) && len <= 4)
2894 longword_offset = regsize - len;
2895 else if ((typecode == TYPE_CODE_STRUCT
2896 || typecode == TYPE_CODE_UNION)
2897 && TYPE_LENGTH (arg_type) < regsize)
2898 longword_offset = regsize - len;
2899 }
2900
2901 if (mips_debug)
2902 {
2903 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
2904 paddress (gdbarch, stack_offset));
2905 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
2906 paddress (gdbarch, longword_offset));
2907 }
2908
2909 addr = sp + stack_offset + longword_offset;
2910
2911 if (mips_debug)
2912 {
2913 int i;
2914 fprintf_unfiltered (gdb_stdlog, " @%s ",
2915 paddress (gdbarch, addr));
2916 for (i = 0; i < partial_len; i++)
2917 {
2918 fprintf_unfiltered (gdb_stdlog, "%02x",
2919 val[i] & 0xff);
2920 }
2921 }
2922 write_memory (addr, val, partial_len);
2923 }
2924
2925 /* Note!!! This is NOT an else clause. Odd sized
2926 structs may go thru BOTH paths. Floating point
2927 arguments will not. */
2928 /* Write this portion of the argument to a general
2929 purpose register. */
2930 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
2931 && !fp_register_arg_p (gdbarch, typecode, arg_type))
2932 {
2933 LONGEST regval =
2934 extract_unsigned_integer (val, partial_len, byte_order);
2935
2936 if (mips_debug)
2937 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2938 argreg,
2939 phex (regval, regsize));
2940 regcache_cooked_write_unsigned (regcache, argreg, regval);
2941 argreg++;
2942 }
2943
2944 len -= partial_len;
2945 val += partial_len;
2946
2947 /* Compute the the offset into the stack at which we
2948 will copy the next parameter.
2949
2950 In the new EABI (and the NABI32), the stack_offset
2951 only needs to be adjusted when it has been used. */
2952
2953 if (stack_used_p)
2954 stack_offset += align_up (partial_len, regsize);
2955 }
2956 }
2957 if (mips_debug)
2958 fprintf_unfiltered (gdb_stdlog, "\n");
2959 }
2960
2961 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2962
2963 /* Return adjusted stack pointer. */
2964 return sp;
2965 }
2966
2967 /* Determine the return value convention being used. */
2968
2969 static enum return_value_convention
2970 mips_eabi_return_value (struct gdbarch *gdbarch, struct type *func_type,
2971 struct type *type, struct regcache *regcache,
2972 gdb_byte *readbuf, const gdb_byte *writebuf)
2973 {
2974 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2975 int fp_return_type = 0;
2976 int offset, regnum, xfer;
2977
2978 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2979 return RETURN_VALUE_STRUCT_CONVENTION;
2980
2981 /* Floating point type? */
2982 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
2983 {
2984 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2985 fp_return_type = 1;
2986 /* Structs with a single field of float type
2987 are returned in a floating point register. */
2988 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
2989 || TYPE_CODE (type) == TYPE_CODE_UNION)
2990 && TYPE_NFIELDS (type) == 1)
2991 {
2992 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
2993
2994 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
2995 fp_return_type = 1;
2996 }
2997 }
2998
2999 if (fp_return_type)
3000 {
3001 /* A floating-point value belongs in the least significant part
3002 of FP0/FP1. */
3003 if (mips_debug)
3004 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3005 regnum = mips_regnum (gdbarch)->fp0;
3006 }
3007 else
3008 {
3009 /* An integer value goes in V0/V1. */
3010 if (mips_debug)
3011 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
3012 regnum = MIPS_V0_REGNUM;
3013 }
3014 for (offset = 0;
3015 offset < TYPE_LENGTH (type);
3016 offset += mips_abi_regsize (gdbarch), regnum++)
3017 {
3018 xfer = mips_abi_regsize (gdbarch);
3019 if (offset + xfer > TYPE_LENGTH (type))
3020 xfer = TYPE_LENGTH (type) - offset;
3021 mips_xfer_register (gdbarch, regcache,
3022 gdbarch_num_regs (gdbarch) + regnum, xfer,
3023 gdbarch_byte_order (gdbarch), readbuf, writebuf,
3024 offset);
3025 }
3026
3027 return RETURN_VALUE_REGISTER_CONVENTION;
3028 }
3029
3030
3031 /* N32/N64 ABI stuff. */
3032
3033 /* Search for a naturally aligned double at OFFSET inside a struct
3034 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
3035 registers. */
3036
3037 static int
3038 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
3039 int offset)
3040 {
3041 int i;
3042
3043 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
3044 return 0;
3045
3046 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
3047 return 0;
3048
3049 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
3050 return 0;
3051
3052 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
3053 {
3054 int pos;
3055 struct type *field_type;
3056
3057 /* We're only looking at normal fields. */
3058 if (field_is_static (&TYPE_FIELD (arg_type, i))
3059 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
3060 continue;
3061
3062 /* If we have gone past the offset, there is no double to pass. */
3063 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
3064 if (pos > offset)
3065 return 0;
3066
3067 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
3068
3069 /* If this field is entirely before the requested offset, go
3070 on to the next one. */
3071 if (pos + TYPE_LENGTH (field_type) <= offset)
3072 continue;
3073
3074 /* If this is our special aligned double, we can stop. */
3075 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
3076 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
3077 return 1;
3078
3079 /* This field starts at or before the requested offset, and
3080 overlaps it. If it is a structure, recurse inwards. */
3081 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
3082 }
3083
3084 return 0;
3085 }
3086
3087 static CORE_ADDR
3088 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3089 struct regcache *regcache, CORE_ADDR bp_addr,
3090 int nargs, struct value **args, CORE_ADDR sp,
3091 int struct_return, CORE_ADDR struct_addr)
3092 {
3093 int argreg;
3094 int float_argreg;
3095 int argnum;
3096 int len = 0;
3097 int stack_offset = 0;
3098 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3099 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3100 CORE_ADDR func_addr = find_function_addr (function, NULL);
3101
3102 /* For shared libraries, "t9" needs to point at the function
3103 address. */
3104 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3105
3106 /* Set the return address register to point to the entry point of
3107 the program, where a breakpoint lies in wait. */
3108 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3109
3110 /* First ensure that the stack and structure return address (if any)
3111 are properly aligned. The stack has to be at least 64-bit
3112 aligned even on 32-bit machines, because doubles must be 64-bit
3113 aligned. For n32 and n64, stack frames need to be 128-bit
3114 aligned, so we round to this widest known alignment. */
3115
3116 sp = align_down (sp, 16);
3117 struct_addr = align_down (struct_addr, 16);
3118
3119 /* Now make space on the stack for the args. */
3120 for (argnum = 0; argnum < nargs; argnum++)
3121 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
3122 sp -= align_up (len, 16);
3123
3124 if (mips_debug)
3125 fprintf_unfiltered (gdb_stdlog,
3126 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
3127 paddress (gdbarch, sp), (long) align_up (len, 16));
3128
3129 /* Initialize the integer and float register pointers. */
3130 argreg = MIPS_A0_REGNUM;
3131 float_argreg = mips_fpa0_regnum (gdbarch);
3132
3133 /* The struct_return pointer occupies the first parameter-passing reg. */
3134 if (struct_return)
3135 {
3136 if (mips_debug)
3137 fprintf_unfiltered (gdb_stdlog,
3138 "mips_n32n64_push_dummy_call: struct_return reg=%d %s\n",
3139 argreg, paddress (gdbarch, struct_addr));
3140 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3141 }
3142
3143 /* Now load as many as possible of the first arguments into
3144 registers, and push the rest onto the stack. Loop thru args
3145 from first to last. */
3146 for (argnum = 0; argnum < nargs; argnum++)
3147 {
3148 const gdb_byte *val;
3149 struct value *arg = args[argnum];
3150 struct type *arg_type = check_typedef (value_type (arg));
3151 int len = TYPE_LENGTH (arg_type);
3152 enum type_code typecode = TYPE_CODE (arg_type);
3153
3154 if (mips_debug)
3155 fprintf_unfiltered (gdb_stdlog,
3156 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3157 argnum + 1, len, (int) typecode);
3158
3159 val = value_contents (arg);
3160
3161 /* A 128-bit long double value requires an even-odd pair of
3162 floating-point registers. */
3163 if (len == 16
3164 && fp_register_arg_p (gdbarch, typecode, arg_type)
3165 && (float_argreg & 1))
3166 {
3167 float_argreg++;
3168 argreg++;
3169 }
3170
3171 if (fp_register_arg_p (gdbarch, typecode, arg_type)
3172 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3173 {
3174 /* This is a floating point value that fits entirely
3175 in a single register or a pair of registers. */
3176 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3177 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
3178 if (mips_debug)
3179 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3180 float_argreg, phex (regval, reglen));
3181 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
3182
3183 if (mips_debug)
3184 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3185 argreg, phex (regval, reglen));
3186 regcache_cooked_write_unsigned (regcache, argreg, regval);
3187 float_argreg++;
3188 argreg++;
3189 if (len == 16)
3190 {
3191 regval = extract_unsigned_integer (val + reglen,
3192 reglen, byte_order);
3193 if (mips_debug)
3194 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3195 float_argreg, phex (regval, reglen));
3196 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
3197
3198 if (mips_debug)
3199 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3200 argreg, phex (regval, reglen));
3201 regcache_cooked_write_unsigned (regcache, argreg, regval);
3202 float_argreg++;
3203 argreg++;
3204 }
3205 }
3206 else
3207 {
3208 /* Copy the argument to general registers or the stack in
3209 register-sized pieces. Large arguments are split between
3210 registers and stack. */
3211 /* For N32/N64, structs, unions, or other composite types are
3212 treated as a sequence of doublewords, and are passed in integer
3213 or floating point registers as though they were simple scalar
3214 parameters to the extent that they fit, with any excess on the
3215 stack packed according to the normal memory layout of the
3216 object.
3217 The caller does not reserve space for the register arguments;
3218 the callee is responsible for reserving it if required. */
3219 /* Note: Floating-point values that didn't fit into an FP
3220 register are only written to memory. */
3221 while (len > 0)
3222 {
3223 /* Remember if the argument was written to the stack. */
3224 int stack_used_p = 0;
3225 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3226
3227 if (mips_debug)
3228 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3229 partial_len);
3230
3231 if (fp_register_arg_p (gdbarch, typecode, arg_type))
3232 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
3233
3234 /* Write this portion of the argument to the stack. */
3235 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
3236 {
3237 /* Should shorter than int integer values be
3238 promoted to int before being stored? */
3239 int longword_offset = 0;
3240 CORE_ADDR addr;
3241 stack_used_p = 1;
3242 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3243 {
3244 if ((typecode == TYPE_CODE_INT
3245 || typecode == TYPE_CODE_PTR)
3246 && len <= 4)
3247 longword_offset = MIPS64_REGSIZE - len;
3248 }
3249
3250 if (mips_debug)
3251 {
3252 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
3253 paddress (gdbarch, stack_offset));
3254 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
3255 paddress (gdbarch, longword_offset));
3256 }
3257
3258 addr = sp + stack_offset + longword_offset;
3259
3260 if (mips_debug)
3261 {
3262 int i;
3263 fprintf_unfiltered (gdb_stdlog, " @%s ",
3264 paddress (gdbarch, addr));
3265 for (i = 0; i < partial_len; i++)
3266 {
3267 fprintf_unfiltered (gdb_stdlog, "%02x",
3268 val[i] & 0xff);
3269 }
3270 }
3271 write_memory (addr, val, partial_len);
3272 }
3273
3274 /* Note!!! This is NOT an else clause. Odd sized
3275 structs may go thru BOTH paths. */
3276 /* Write this portion of the argument to a general
3277 purpose register. */
3278 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3279 {
3280 LONGEST regval;
3281
3282 /* Sign extend pointers, 32-bit integers and signed
3283 16-bit and 8-bit integers; everything else is taken
3284 as is. */
3285
3286 if ((partial_len == 4
3287 && (typecode == TYPE_CODE_PTR
3288 || typecode == TYPE_CODE_INT))
3289 || (partial_len < 4
3290 && typecode == TYPE_CODE_INT
3291 && !TYPE_UNSIGNED (arg_type)))
3292 regval = extract_signed_integer (val, partial_len,
3293 byte_order);
3294 else
3295 regval = extract_unsigned_integer (val, partial_len,
3296 byte_order);
3297
3298 /* A non-floating-point argument being passed in a
3299 general register. If a struct or union, and if
3300 the remaining length is smaller than the register
3301 size, we have to adjust the register value on
3302 big endian targets.
3303
3304 It does not seem to be necessary to do the
3305 same for integral types. */
3306
3307 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3308 && partial_len < MIPS64_REGSIZE
3309 && (typecode == TYPE_CODE_STRUCT
3310 || typecode == TYPE_CODE_UNION))
3311 regval <<= ((MIPS64_REGSIZE - partial_len)
3312 * TARGET_CHAR_BIT);
3313
3314 if (mips_debug)
3315 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3316 argreg,
3317 phex (regval, MIPS64_REGSIZE));
3318 regcache_cooked_write_unsigned (regcache, argreg, regval);
3319
3320 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
3321 TYPE_LENGTH (arg_type) - len))
3322 {
3323 if (mips_debug)
3324 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3325 float_argreg,
3326 phex (regval, MIPS64_REGSIZE));
3327 regcache_cooked_write_unsigned (regcache, float_argreg,
3328 regval);
3329 }
3330
3331 float_argreg++;
3332 argreg++;
3333 }
3334
3335 len -= partial_len;
3336 val += partial_len;
3337
3338 /* Compute the the offset into the stack at which we
3339 will copy the next parameter.
3340
3341 In N32 (N64?), the stack_offset only needs to be
3342 adjusted when it has been used. */
3343
3344 if (stack_used_p)
3345 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3346 }
3347 }
3348 if (mips_debug)
3349 fprintf_unfiltered (gdb_stdlog, "\n");
3350 }
3351
3352 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3353
3354 /* Return adjusted stack pointer. */
3355 return sp;
3356 }
3357
3358 static enum return_value_convention
3359 mips_n32n64_return_value (struct gdbarch *gdbarch, struct type *func_type,
3360 struct type *type, struct regcache *regcache,
3361 gdb_byte *readbuf, const gdb_byte *writebuf)
3362 {
3363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3364
3365 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3366
3367 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3368 if needed), as appropriate for the type. Composite results (struct,
3369 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3370 following rules:
3371
3372 * A struct with only one or two floating point fields is returned in $f0
3373 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3374 case.
3375
3376 * Any other struct or union results of at most 128 bits are returned in
3377 $2 (first 64 bits) and $3 (remainder, if necessary).
3378
3379 * Larger composite results are handled by converting the function to a
3380 procedure with an implicit first parameter, which is a pointer to an area
3381 reserved by the caller to receive the result. [The o32-bit ABI requires
3382 that all composite results be handled by conversion to implicit first
3383 parameters. The MIPS/SGI Fortran implementation has always made a
3384 specific exception to return COMPLEX results in the floating point
3385 registers.] */
3386
3387 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3388 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3389 return RETURN_VALUE_STRUCT_CONVENTION;
3390 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3391 && TYPE_LENGTH (type) == 16
3392 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3393 {
3394 /* A 128-bit floating-point value fills both $f0 and $f2. The
3395 two registers are used in the same as memory order, so the
3396 eight bytes with the lower memory address are in $f0. */
3397 if (mips_debug)
3398 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3399 mips_xfer_register (gdbarch, regcache,
3400 gdbarch_num_regs (gdbarch)
3401 + mips_regnum (gdbarch)->fp0,
3402 8, gdbarch_byte_order (gdbarch),
3403 readbuf, writebuf, 0);
3404 mips_xfer_register (gdbarch, regcache,
3405 gdbarch_num_regs (gdbarch)
3406 + mips_regnum (gdbarch)->fp0 + 2,
3407 8, gdbarch_byte_order (gdbarch),
3408 readbuf ? readbuf + 8 : readbuf,
3409 writebuf ? writebuf + 8 : writebuf, 0);
3410 return RETURN_VALUE_REGISTER_CONVENTION;
3411 }
3412 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3413 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3414 {
3415 /* A single or double floating-point value that fits in FP0. */
3416 if (mips_debug)
3417 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3418 mips_xfer_register (gdbarch, regcache,
3419 gdbarch_num_regs (gdbarch)
3420 + mips_regnum (gdbarch)->fp0,
3421 TYPE_LENGTH (type),
3422 gdbarch_byte_order (gdbarch),
3423 readbuf, writebuf, 0);
3424 return RETURN_VALUE_REGISTER_CONVENTION;
3425 }
3426 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3427 && TYPE_NFIELDS (type) <= 2
3428 && TYPE_NFIELDS (type) >= 1
3429 && ((TYPE_NFIELDS (type) == 1
3430 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3431 == TYPE_CODE_FLT))
3432 || (TYPE_NFIELDS (type) == 2
3433 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3434 == TYPE_CODE_FLT)
3435 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
3436 == TYPE_CODE_FLT))))
3437 {
3438 /* A struct that contains one or two floats. Each value is part
3439 in the least significant part of their floating point
3440 register (or GPR, for soft float). */
3441 int regnum;
3442 int field;
3443 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
3444 ? mips_regnum (gdbarch)->fp0
3445 : MIPS_V0_REGNUM);
3446 field < TYPE_NFIELDS (type); field++, regnum += 2)
3447 {
3448 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3449 / TARGET_CHAR_BIT);
3450 if (mips_debug)
3451 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3452 offset);
3453 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
3454 {
3455 /* A 16-byte long double field goes in two consecutive
3456 registers. */
3457 mips_xfer_register (gdbarch, regcache,
3458 gdbarch_num_regs (gdbarch) + regnum,
3459 8,
3460 gdbarch_byte_order (gdbarch),
3461 readbuf, writebuf, offset);
3462 mips_xfer_register (gdbarch, regcache,
3463 gdbarch_num_regs (gdbarch) + regnum + 1,
3464 8,
3465 gdbarch_byte_order (gdbarch),
3466 readbuf, writebuf, offset + 8);
3467 }
3468 else
3469 mips_xfer_register (gdbarch, regcache,
3470 gdbarch_num_regs (gdbarch) + regnum,
3471 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3472 gdbarch_byte_order (gdbarch),
3473 readbuf, writebuf, offset);
3474 }
3475 return RETURN_VALUE_REGISTER_CONVENTION;
3476 }
3477 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3478 || TYPE_CODE (type) == TYPE_CODE_UNION)
3479 {
3480 /* A structure or union. Extract the left justified value,
3481 regardless of the byte order. I.e. DO NOT USE
3482 mips_xfer_lower. */
3483 int offset;
3484 int regnum;
3485 for (offset = 0, regnum = MIPS_V0_REGNUM;
3486 offset < TYPE_LENGTH (type);
3487 offset += register_size (gdbarch, regnum), regnum++)
3488 {
3489 int xfer = register_size (gdbarch, regnum);
3490 if (offset + xfer > TYPE_LENGTH (type))
3491 xfer = TYPE_LENGTH (type) - offset;
3492 if (mips_debug)
3493 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3494 offset, xfer, regnum);
3495 mips_xfer_register (gdbarch, regcache,
3496 gdbarch_num_regs (gdbarch) + regnum,
3497 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
3498 offset);
3499 }
3500 return RETURN_VALUE_REGISTER_CONVENTION;
3501 }
3502 else
3503 {
3504 /* A scalar extract each part but least-significant-byte
3505 justified. */
3506 int offset;
3507 int regnum;
3508 for (offset = 0, regnum = MIPS_V0_REGNUM;
3509 offset < TYPE_LENGTH (type);
3510 offset += register_size (gdbarch, regnum), regnum++)
3511 {
3512 int xfer = register_size (gdbarch, regnum);
3513 if (offset + xfer > TYPE_LENGTH (type))
3514 xfer = TYPE_LENGTH (type) - offset;
3515 if (mips_debug)
3516 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3517 offset, xfer, regnum);
3518 mips_xfer_register (gdbarch, regcache,
3519 gdbarch_num_regs (gdbarch) + regnum,
3520 xfer, gdbarch_byte_order (gdbarch),
3521 readbuf, writebuf, offset);
3522 }
3523 return RETURN_VALUE_REGISTER_CONVENTION;
3524 }
3525 }
3526
3527 /* O32 ABI stuff. */
3528
3529 static CORE_ADDR
3530 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3531 struct regcache *regcache, CORE_ADDR bp_addr,
3532 int nargs, struct value **args, CORE_ADDR sp,
3533 int struct_return, CORE_ADDR struct_addr)
3534 {
3535 int argreg;
3536 int float_argreg;
3537 int argnum;
3538 int len = 0;
3539 int stack_offset = 0;
3540 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3542 CORE_ADDR func_addr = find_function_addr (function, NULL);
3543
3544 /* For shared libraries, "t9" needs to point at the function
3545 address. */
3546 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3547
3548 /* Set the return address register to point to the entry point of
3549 the program, where a breakpoint lies in wait. */
3550 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3551
3552 /* First ensure that the stack and structure return address (if any)
3553 are properly aligned. The stack has to be at least 64-bit
3554 aligned even on 32-bit machines, because doubles must be 64-bit
3555 aligned. For n32 and n64, stack frames need to be 128-bit
3556 aligned, so we round to this widest known alignment. */
3557
3558 sp = align_down (sp, 16);
3559 struct_addr = align_down (struct_addr, 16);
3560
3561 /* Now make space on the stack for the args. */
3562 for (argnum = 0; argnum < nargs; argnum++)
3563 {
3564 struct type *arg_type = check_typedef (value_type (args[argnum]));
3565 int arglen = TYPE_LENGTH (arg_type);
3566
3567 /* Align to double-word if necessary. */
3568 if (mips_type_needs_double_align (arg_type))
3569 len = align_up (len, MIPS32_REGSIZE * 2);
3570 /* Allocate space on the stack. */
3571 len += align_up (arglen, MIPS32_REGSIZE);
3572 }
3573 sp -= align_up (len, 16);
3574
3575 if (mips_debug)
3576 fprintf_unfiltered (gdb_stdlog,
3577 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
3578 paddress (gdbarch, sp), (long) align_up (len, 16));
3579
3580 /* Initialize the integer and float register pointers. */
3581 argreg = MIPS_A0_REGNUM;
3582 float_argreg = mips_fpa0_regnum (gdbarch);
3583
3584 /* The struct_return pointer occupies the first parameter-passing reg. */
3585 if (struct_return)
3586 {
3587 if (mips_debug)
3588 fprintf_unfiltered (gdb_stdlog,
3589 "mips_o32_push_dummy_call: struct_return reg=%d %s\n",
3590 argreg, paddress (gdbarch, struct_addr));
3591 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3592 stack_offset += MIPS32_REGSIZE;
3593 }
3594
3595 /* Now load as many as possible of the first arguments into
3596 registers, and push the rest onto the stack. Loop thru args
3597 from first to last. */
3598 for (argnum = 0; argnum < nargs; argnum++)
3599 {
3600 const gdb_byte *val;
3601 struct value *arg = args[argnum];
3602 struct type *arg_type = check_typedef (value_type (arg));
3603 int len = TYPE_LENGTH (arg_type);
3604 enum type_code typecode = TYPE_CODE (arg_type);
3605
3606 if (mips_debug)
3607 fprintf_unfiltered (gdb_stdlog,
3608 "mips_o32_push_dummy_call: %d len=%d type=%d",
3609 argnum + 1, len, (int) typecode);
3610
3611 val = value_contents (arg);
3612
3613 /* 32-bit ABIs always start floating point arguments in an
3614 even-numbered floating point register. Round the FP register
3615 up before the check to see if there are any FP registers
3616 left. O32/O64 targets also pass the FP in the integer
3617 registers so also round up normal registers. */
3618 if (fp_register_arg_p (gdbarch, typecode, arg_type))
3619 {
3620 if ((float_argreg & 1))
3621 float_argreg++;
3622 }
3623
3624 /* Floating point arguments passed in registers have to be
3625 treated specially. On 32-bit architectures, doubles
3626 are passed in register pairs; the even register gets
3627 the low word, and the odd register gets the high word.
3628 On O32/O64, the first two floating point arguments are
3629 also copied to general registers, because MIPS16 functions
3630 don't use float registers for arguments. This duplication of
3631 arguments in general registers can't hurt non-MIPS16 functions
3632 because those registers are normally skipped. */
3633
3634 if (fp_register_arg_p (gdbarch, typecode, arg_type)
3635 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
3636 {
3637 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3638 {
3639 int low_offset = gdbarch_byte_order (gdbarch)
3640 == BFD_ENDIAN_BIG ? 4 : 0;
3641 unsigned long regval;
3642
3643 /* Write the low word of the double to the even register(s). */
3644 regval = extract_unsigned_integer (val + low_offset,
3645 4, byte_order);
3646 if (mips_debug)
3647 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3648 float_argreg, phex (regval, 4));
3649 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3650 if (mips_debug)
3651 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3652 argreg, phex (regval, 4));
3653 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3654
3655 /* Write the high word of the double to the odd register(s). */
3656 regval = extract_unsigned_integer (val + 4 - low_offset,
3657 4, byte_order);
3658 if (mips_debug)
3659 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3660 float_argreg, phex (regval, 4));
3661 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3662
3663 if (mips_debug)
3664 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3665 argreg, phex (regval, 4));
3666 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3667 }
3668 else
3669 {
3670 /* This is a floating point value that fits entirely
3671 in a single register. */
3672 /* On 32 bit ABI's the float_argreg is further adjusted
3673 above to ensure that it is even register aligned. */
3674 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
3675 if (mips_debug)
3676 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3677 float_argreg, phex (regval, len));
3678 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3679 /* Although two FP registers are reserved for each
3680 argument, only one corresponding integer register is
3681 reserved. */
3682 if (mips_debug)
3683 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3684 argreg, phex (regval, len));
3685 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3686 }
3687 /* Reserve space for the FP register. */
3688 stack_offset += align_up (len, MIPS32_REGSIZE);
3689 }
3690 else
3691 {
3692 /* Copy the argument to general registers or the stack in
3693 register-sized pieces. Large arguments are split between
3694 registers and stack. */
3695 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3696 are treated specially: Irix cc passes
3697 them in registers where gcc sometimes puts them on the
3698 stack. For maximum compatibility, we will put them in
3699 both places. */
3700 int odd_sized_struct = (len > MIPS32_REGSIZE
3701 && len % MIPS32_REGSIZE != 0);
3702 /* Structures should be aligned to eight bytes (even arg registers)
3703 on MIPS_ABI_O32, if their first member has double precision. */
3704 if (mips_type_needs_double_align (arg_type))
3705 {
3706 if ((argreg & 1))
3707 {
3708 argreg++;
3709 stack_offset += MIPS32_REGSIZE;
3710 }
3711 }
3712 while (len > 0)
3713 {
3714 /* Remember if the argument was written to the stack. */
3715 int stack_used_p = 0;
3716 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3717
3718 if (mips_debug)
3719 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3720 partial_len);
3721
3722 /* Write this portion of the argument to the stack. */
3723 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
3724 || odd_sized_struct)
3725 {
3726 /* Should shorter than int integer values be
3727 promoted to int before being stored? */
3728 int longword_offset = 0;
3729 CORE_ADDR addr;
3730 stack_used_p = 1;
3731
3732 if (mips_debug)
3733 {
3734 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
3735 paddress (gdbarch, stack_offset));
3736 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
3737 paddress (gdbarch, longword_offset));
3738 }
3739
3740 addr = sp + stack_offset + longword_offset;
3741
3742 if (mips_debug)
3743 {
3744 int i;
3745 fprintf_unfiltered (gdb_stdlog, " @%s ",
3746 paddress (gdbarch, addr));
3747 for (i = 0; i < partial_len; i++)
3748 {
3749 fprintf_unfiltered (gdb_stdlog, "%02x",
3750 val[i] & 0xff);
3751 }
3752 }
3753 write_memory (addr, val, partial_len);
3754 }
3755
3756 /* Note!!! This is NOT an else clause. Odd sized
3757 structs may go thru BOTH paths. */
3758 /* Write this portion of the argument to a general
3759 purpose register. */
3760 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3761 {
3762 LONGEST regval = extract_signed_integer (val, partial_len,
3763 byte_order);
3764 /* Value may need to be sign extended, because
3765 mips_isa_regsize() != mips_abi_regsize(). */
3766
3767 /* A non-floating-point argument being passed in a
3768 general register. If a struct or union, and if
3769 the remaining length is smaller than the register
3770 size, we have to adjust the register value on
3771 big endian targets.
3772
3773 It does not seem to be necessary to do the
3774 same for integral types.
3775
3776 Also don't do this adjustment on O64 binaries.
3777
3778 cagney/2001-07-23: gdb/179: Also, GCC, when
3779 outputting LE O32 with sizeof (struct) <
3780 mips_abi_regsize(), generates a left shift
3781 as part of storing the argument in a register
3782 (the left shift isn't generated when
3783 sizeof (struct) >= mips_abi_regsize()). Since
3784 it is quite possible that this is GCC
3785 contradicting the LE/O32 ABI, GDB has not been
3786 adjusted to accommodate this. Either someone
3787 needs to demonstrate that the LE/O32 ABI
3788 specifies such a left shift OR this new ABI gets
3789 identified as such and GDB gets tweaked
3790 accordingly. */
3791
3792 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3793 && partial_len < MIPS32_REGSIZE
3794 && (typecode == TYPE_CODE_STRUCT
3795 || typecode == TYPE_CODE_UNION))
3796 regval <<= ((MIPS32_REGSIZE - partial_len)
3797 * TARGET_CHAR_BIT);
3798
3799 if (mips_debug)
3800 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3801 argreg,
3802 phex (regval, MIPS32_REGSIZE));
3803 regcache_cooked_write_unsigned (regcache, argreg, regval);
3804 argreg++;
3805
3806 /* Prevent subsequent floating point arguments from
3807 being passed in floating point registers. */
3808 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
3809 }
3810
3811 len -= partial_len;
3812 val += partial_len;
3813
3814 /* Compute the the offset into the stack at which we
3815 will copy the next parameter.
3816
3817 In older ABIs, the caller reserved space for
3818 registers that contained arguments. This was loosely
3819 refered to as their "home". Consequently, space is
3820 always allocated. */
3821
3822 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
3823 }
3824 }
3825 if (mips_debug)
3826 fprintf_unfiltered (gdb_stdlog, "\n");
3827 }
3828
3829 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3830
3831 /* Return adjusted stack pointer. */
3832 return sp;
3833 }
3834
3835 static enum return_value_convention
3836 mips_o32_return_value (struct gdbarch *gdbarch, struct type *func_type,
3837 struct type *type, struct regcache *regcache,
3838 gdb_byte *readbuf, const gdb_byte *writebuf)
3839 {
3840 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3841
3842 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3843 || TYPE_CODE (type) == TYPE_CODE_UNION
3844 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3845 return RETURN_VALUE_STRUCT_CONVENTION;
3846 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3847 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3848 {
3849 /* A single-precision floating-point value. It fits in the
3850 least significant part of FP0. */
3851 if (mips_debug)
3852 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3853 mips_xfer_register (gdbarch, regcache,
3854 gdbarch_num_regs (gdbarch)
3855 + mips_regnum (gdbarch)->fp0,
3856 TYPE_LENGTH (type),
3857 gdbarch_byte_order (gdbarch),
3858 readbuf, writebuf, 0);
3859 return RETURN_VALUE_REGISTER_CONVENTION;
3860 }
3861 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3862 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3863 {
3864 /* A double-precision floating-point value. The most
3865 significant part goes in FP1, and the least significant in
3866 FP0. */
3867 if (mips_debug)
3868 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3869 switch (gdbarch_byte_order (gdbarch))
3870 {
3871 case BFD_ENDIAN_LITTLE:
3872 mips_xfer_register (gdbarch, regcache,
3873 gdbarch_num_regs (gdbarch)
3874 + mips_regnum (gdbarch)->fp0 +
3875 0, 4, gdbarch_byte_order (gdbarch),
3876 readbuf, writebuf, 0);
3877 mips_xfer_register (gdbarch, regcache,
3878 gdbarch_num_regs (gdbarch)
3879 + mips_regnum (gdbarch)->fp0 + 1,
3880 4, gdbarch_byte_order (gdbarch),
3881 readbuf, writebuf, 4);
3882 break;
3883 case BFD_ENDIAN_BIG:
3884 mips_xfer_register (gdbarch, regcache,
3885 gdbarch_num_regs (gdbarch)
3886 + mips_regnum (gdbarch)->fp0 + 1,
3887 4, gdbarch_byte_order (gdbarch),
3888 readbuf, writebuf, 0);
3889 mips_xfer_register (gdbarch, regcache,
3890 gdbarch_num_regs (gdbarch)
3891 + mips_regnum (gdbarch)->fp0 + 0,
3892 4, gdbarch_byte_order (gdbarch),
3893 readbuf, writebuf, 4);
3894 break;
3895 default:
3896 internal_error (__FILE__, __LINE__, _("bad switch"));
3897 }
3898 return RETURN_VALUE_REGISTER_CONVENTION;
3899 }
3900 #if 0
3901 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3902 && TYPE_NFIELDS (type) <= 2
3903 && TYPE_NFIELDS (type) >= 1
3904 && ((TYPE_NFIELDS (type) == 1
3905 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3906 == TYPE_CODE_FLT))
3907 || (TYPE_NFIELDS (type) == 2
3908 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3909 == TYPE_CODE_FLT)
3910 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3911 == TYPE_CODE_FLT)))
3912 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3913 {
3914 /* A struct that contains one or two floats. Each value is part
3915 in the least significant part of their floating point
3916 register.. */
3917 gdb_byte reg[MAX_REGISTER_SIZE];
3918 int regnum;
3919 int field;
3920 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
3921 field < TYPE_NFIELDS (type); field++, regnum += 2)
3922 {
3923 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3924 / TARGET_CHAR_BIT);
3925 if (mips_debug)
3926 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3927 offset);
3928 mips_xfer_register (gdbarch, regcache,
3929 gdbarch_num_regs (gdbarch) + regnum,
3930 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3931 gdbarch_byte_order (gdbarch),
3932 readbuf, writebuf, offset);
3933 }
3934 return RETURN_VALUE_REGISTER_CONVENTION;
3935 }
3936 #endif
3937 #if 0
3938 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3939 || TYPE_CODE (type) == TYPE_CODE_UNION)
3940 {
3941 /* A structure or union. Extract the left justified value,
3942 regardless of the byte order. I.e. DO NOT USE
3943 mips_xfer_lower. */
3944 int offset;
3945 int regnum;
3946 for (offset = 0, regnum = MIPS_V0_REGNUM;
3947 offset < TYPE_LENGTH (type);
3948 offset += register_size (gdbarch, regnum), regnum++)
3949 {
3950 int xfer = register_size (gdbarch, regnum);
3951 if (offset + xfer > TYPE_LENGTH (type))
3952 xfer = TYPE_LENGTH (type) - offset;
3953 if (mips_debug)
3954 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3955 offset, xfer, regnum);
3956 mips_xfer_register (gdbarch, regcache,
3957 gdbarch_num_regs (gdbarch) + regnum, xfer,
3958 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3959 }
3960 return RETURN_VALUE_REGISTER_CONVENTION;
3961 }
3962 #endif
3963 else
3964 {
3965 /* A scalar extract each part but least-significant-byte
3966 justified. o32 thinks registers are 4 byte, regardless of
3967 the ISA. */
3968 int offset;
3969 int regnum;
3970 for (offset = 0, regnum = MIPS_V0_REGNUM;
3971 offset < TYPE_LENGTH (type);
3972 offset += MIPS32_REGSIZE, regnum++)
3973 {
3974 int xfer = MIPS32_REGSIZE;
3975 if (offset + xfer > TYPE_LENGTH (type))
3976 xfer = TYPE_LENGTH (type) - offset;
3977 if (mips_debug)
3978 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3979 offset, xfer, regnum);
3980 mips_xfer_register (gdbarch, regcache,
3981 gdbarch_num_regs (gdbarch) + regnum, xfer,
3982 gdbarch_byte_order (gdbarch),
3983 readbuf, writebuf, offset);
3984 }
3985 return RETURN_VALUE_REGISTER_CONVENTION;
3986 }
3987 }
3988
3989 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3990 ABI. */
3991
3992 static CORE_ADDR
3993 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3994 struct regcache *regcache, CORE_ADDR bp_addr,
3995 int nargs,
3996 struct value **args, CORE_ADDR sp,
3997 int struct_return, CORE_ADDR struct_addr)
3998 {
3999 int argreg;
4000 int float_argreg;
4001 int argnum;
4002 int len = 0;
4003 int stack_offset = 0;
4004 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4005 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4006 CORE_ADDR func_addr = find_function_addr (function, NULL);
4007
4008 /* For shared libraries, "t9" needs to point at the function
4009 address. */
4010 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4011
4012 /* Set the return address register to point to the entry point of
4013 the program, where a breakpoint lies in wait. */
4014 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4015
4016 /* First ensure that the stack and structure return address (if any)
4017 are properly aligned. The stack has to be at least 64-bit
4018 aligned even on 32-bit machines, because doubles must be 64-bit
4019 aligned. For n32 and n64, stack frames need to be 128-bit
4020 aligned, so we round to this widest known alignment. */
4021
4022 sp = align_down (sp, 16);
4023 struct_addr = align_down (struct_addr, 16);
4024
4025 /* Now make space on the stack for the args. */
4026 for (argnum = 0; argnum < nargs; argnum++)
4027 {
4028 struct type *arg_type = check_typedef (value_type (args[argnum]));
4029 int arglen = TYPE_LENGTH (arg_type);
4030
4031 /* Allocate space on the stack. */
4032 len += align_up (arglen, MIPS64_REGSIZE);
4033 }
4034 sp -= align_up (len, 16);
4035
4036 if (mips_debug)
4037 fprintf_unfiltered (gdb_stdlog,
4038 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
4039 paddress (gdbarch, sp), (long) align_up (len, 16));
4040
4041 /* Initialize the integer and float register pointers. */
4042 argreg = MIPS_A0_REGNUM;
4043 float_argreg = mips_fpa0_regnum (gdbarch);
4044
4045 /* The struct_return pointer occupies the first parameter-passing reg. */
4046 if (struct_return)
4047 {
4048 if (mips_debug)
4049 fprintf_unfiltered (gdb_stdlog,
4050 "mips_o64_push_dummy_call: struct_return reg=%d %s\n",
4051 argreg, paddress (gdbarch, struct_addr));
4052 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4053 stack_offset += MIPS64_REGSIZE;
4054 }
4055
4056 /* Now load as many as possible of the first arguments into
4057 registers, and push the rest onto the stack. Loop thru args
4058 from first to last. */
4059 for (argnum = 0; argnum < nargs; argnum++)
4060 {
4061 const gdb_byte *val;
4062 struct value *arg = args[argnum];
4063 struct type *arg_type = check_typedef (value_type (arg));
4064 int len = TYPE_LENGTH (arg_type);
4065 enum type_code typecode = TYPE_CODE (arg_type);
4066
4067 if (mips_debug)
4068 fprintf_unfiltered (gdb_stdlog,
4069 "mips_o64_push_dummy_call: %d len=%d type=%d",
4070 argnum + 1, len, (int) typecode);
4071
4072 val = value_contents (arg);
4073
4074 /* Floating point arguments passed in registers have to be
4075 treated specially. On 32-bit architectures, doubles
4076 are passed in register pairs; the even register gets
4077 the low word, and the odd register gets the high word.
4078 On O32/O64, the first two floating point arguments are
4079 also copied to general registers, because MIPS16 functions
4080 don't use float registers for arguments. This duplication of
4081 arguments in general registers can't hurt non-MIPS16 functions
4082 because those registers are normally skipped. */
4083
4084 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4085 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4086 {
4087 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
4088 if (mips_debug)
4089 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4090 float_argreg, phex (regval, len));
4091 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
4092 if (mips_debug)
4093 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4094 argreg, phex (regval, len));
4095 regcache_cooked_write_unsigned (regcache, argreg, regval);
4096 argreg++;
4097 /* Reserve space for the FP register. */
4098 stack_offset += align_up (len, MIPS64_REGSIZE);
4099 }
4100 else
4101 {
4102 /* Copy the argument to general registers or the stack in
4103 register-sized pieces. Large arguments are split between
4104 registers and stack. */
4105 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
4106 are treated specially: Irix cc passes them in registers
4107 where gcc sometimes puts them on the stack. For maximum
4108 compatibility, we will put them in both places. */
4109 int odd_sized_struct = (len > MIPS64_REGSIZE
4110 && len % MIPS64_REGSIZE != 0);
4111 while (len > 0)
4112 {
4113 /* Remember if the argument was written to the stack. */
4114 int stack_used_p = 0;
4115 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4116
4117 if (mips_debug)
4118 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4119 partial_len);
4120
4121 /* Write this portion of the argument to the stack. */
4122 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4123 || odd_sized_struct)
4124 {
4125 /* Should shorter than int integer values be
4126 promoted to int before being stored? */
4127 int longword_offset = 0;
4128 CORE_ADDR addr;
4129 stack_used_p = 1;
4130 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4131 {
4132 if ((typecode == TYPE_CODE_INT
4133 || typecode == TYPE_CODE_PTR
4134 || typecode == TYPE_CODE_FLT)
4135 && len <= 4)
4136 longword_offset = MIPS64_REGSIZE - len;
4137 }
4138
4139 if (mips_debug)
4140 {
4141 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4142 paddress (gdbarch, stack_offset));
4143 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4144 paddress (gdbarch, longword_offset));
4145 }
4146
4147 addr = sp + stack_offset + longword_offset;
4148
4149 if (mips_debug)
4150 {
4151 int i;
4152 fprintf_unfiltered (gdb_stdlog, " @%s ",
4153 paddress (gdbarch, addr));
4154 for (i = 0; i < partial_len; i++)
4155 {
4156 fprintf_unfiltered (gdb_stdlog, "%02x",
4157 val[i] & 0xff);
4158 }
4159 }
4160 write_memory (addr, val, partial_len);
4161 }
4162
4163 /* Note!!! This is NOT an else clause. Odd sized
4164 structs may go thru BOTH paths. */
4165 /* Write this portion of the argument to a general
4166 purpose register. */
4167 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4168 {
4169 LONGEST regval = extract_signed_integer (val, partial_len,
4170 byte_order);
4171 /* Value may need to be sign extended, because
4172 mips_isa_regsize() != mips_abi_regsize(). */
4173
4174 /* A non-floating-point argument being passed in a
4175 general register. If a struct or union, and if
4176 the remaining length is smaller than the register
4177 size, we have to adjust the register value on
4178 big endian targets.
4179
4180 It does not seem to be necessary to do the
4181 same for integral types. */
4182
4183 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
4184 && partial_len < MIPS64_REGSIZE
4185 && (typecode == TYPE_CODE_STRUCT
4186 || typecode == TYPE_CODE_UNION))
4187 regval <<= ((MIPS64_REGSIZE - partial_len)
4188 * TARGET_CHAR_BIT);
4189
4190 if (mips_debug)
4191 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4192 argreg,
4193 phex (regval, MIPS64_REGSIZE));
4194 regcache_cooked_write_unsigned (regcache, argreg, regval);
4195 argreg++;
4196
4197 /* Prevent subsequent floating point arguments from
4198 being passed in floating point registers. */
4199 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
4200 }
4201
4202 len -= partial_len;
4203 val += partial_len;
4204
4205 /* Compute the the offset into the stack at which we
4206 will copy the next parameter.
4207
4208 In older ABIs, the caller reserved space for
4209 registers that contained arguments. This was loosely
4210 refered to as their "home". Consequently, space is
4211 always allocated. */
4212
4213 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
4214 }
4215 }
4216 if (mips_debug)
4217 fprintf_unfiltered (gdb_stdlog, "\n");
4218 }
4219
4220 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4221
4222 /* Return adjusted stack pointer. */
4223 return sp;
4224 }
4225
4226 static enum return_value_convention
4227 mips_o64_return_value (struct gdbarch *gdbarch, struct type *func_type,
4228 struct type *type, struct regcache *regcache,
4229 gdb_byte *readbuf, const gdb_byte *writebuf)
4230 {
4231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4232
4233 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4234 || TYPE_CODE (type) == TYPE_CODE_UNION
4235 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
4236 return RETURN_VALUE_STRUCT_CONVENTION;
4237 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
4238 {
4239 /* A floating-point value. It fits in the least significant
4240 part of FP0. */
4241 if (mips_debug)
4242 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4243 mips_xfer_register (gdbarch, regcache,
4244 gdbarch_num_regs (gdbarch)
4245 + mips_regnum (gdbarch)->fp0,
4246 TYPE_LENGTH (type),
4247 gdbarch_byte_order (gdbarch),
4248 readbuf, writebuf, 0);
4249 return RETURN_VALUE_REGISTER_CONVENTION;
4250 }
4251 else
4252 {
4253 /* A scalar extract each part but least-significant-byte
4254 justified. */
4255 int offset;
4256 int regnum;
4257 for (offset = 0, regnum = MIPS_V0_REGNUM;
4258 offset < TYPE_LENGTH (type);
4259 offset += MIPS64_REGSIZE, regnum++)
4260 {
4261 int xfer = MIPS64_REGSIZE;
4262 if (offset + xfer > TYPE_LENGTH (type))
4263 xfer = TYPE_LENGTH (type) - offset;
4264 if (mips_debug)
4265 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4266 offset, xfer, regnum);
4267 mips_xfer_register (gdbarch, regcache,
4268 gdbarch_num_regs (gdbarch) + regnum,
4269 xfer, gdbarch_byte_order (gdbarch),
4270 readbuf, writebuf, offset);
4271 }
4272 return RETURN_VALUE_REGISTER_CONVENTION;
4273 }
4274 }
4275
4276 /* Floating point register management.
4277
4278 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4279 64bit operations, these early MIPS cpus treat fp register pairs
4280 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4281 registers and offer a compatibility mode that emulates the MIPS2 fp
4282 model. When operating in MIPS2 fp compat mode, later cpu's split
4283 double precision floats into two 32-bit chunks and store them in
4284 consecutive fp regs. To display 64-bit floats stored in this
4285 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4286 Throw in user-configurable endianness and you have a real mess.
4287
4288 The way this works is:
4289 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4290 double-precision value will be split across two logical registers.
4291 The lower-numbered logical register will hold the low-order bits,
4292 regardless of the processor's endianness.
4293 - If we are on a 64-bit processor, and we are looking for a
4294 single-precision value, it will be in the low ordered bits
4295 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4296 save slot in memory.
4297 - If we are in 64-bit mode, everything is straightforward.
4298
4299 Note that this code only deals with "live" registers at the top of the
4300 stack. We will attempt to deal with saved registers later, when
4301 the raw/cooked register interface is in place. (We need a general
4302 interface that can deal with dynamic saved register sizes -- fp
4303 regs could be 32 bits wide in one frame and 64 on the frame above
4304 and below). */
4305
4306 /* Copy a 32-bit single-precision value from the current frame
4307 into rare_buffer. */
4308
4309 static void
4310 mips_read_fp_register_single (struct frame_info *frame, int regno,
4311 gdb_byte *rare_buffer)
4312 {
4313 struct gdbarch *gdbarch = get_frame_arch (frame);
4314 int raw_size = register_size (gdbarch, regno);
4315 gdb_byte *raw_buffer = alloca (raw_size);
4316
4317 if (!frame_register_read (frame, regno, raw_buffer))
4318 error (_("can't read register %d (%s)"),
4319 regno, gdbarch_register_name (gdbarch, regno));
4320 if (raw_size == 8)
4321 {
4322 /* We have a 64-bit value for this register. Find the low-order
4323 32 bits. */
4324 int offset;
4325
4326 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4327 offset = 4;
4328 else
4329 offset = 0;
4330
4331 memcpy (rare_buffer, raw_buffer + offset, 4);
4332 }
4333 else
4334 {
4335 memcpy (rare_buffer, raw_buffer, 4);
4336 }
4337 }
4338
4339 /* Copy a 64-bit double-precision value from the current frame into
4340 rare_buffer. This may include getting half of it from the next
4341 register. */
4342
4343 static void
4344 mips_read_fp_register_double (struct frame_info *frame, int regno,
4345 gdb_byte *rare_buffer)
4346 {
4347 struct gdbarch *gdbarch = get_frame_arch (frame);
4348 int raw_size = register_size (gdbarch, regno);
4349
4350 if (raw_size == 8 && !mips2_fp_compat (frame))
4351 {
4352 /* We have a 64-bit value for this register, and we should use
4353 all 64 bits. */
4354 if (!frame_register_read (frame, regno, rare_buffer))
4355 error (_("can't read register %d (%s)"),
4356 regno, gdbarch_register_name (gdbarch, regno));
4357 }
4358 else
4359 {
4360 int rawnum = regno % gdbarch_num_regs (gdbarch);
4361
4362 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
4363 internal_error (__FILE__, __LINE__,
4364 _("mips_read_fp_register_double: bad access to "
4365 "odd-numbered FP register"));
4366
4367 /* mips_read_fp_register_single will find the correct 32 bits from
4368 each register. */
4369 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4370 {
4371 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4372 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4373 }
4374 else
4375 {
4376 mips_read_fp_register_single (frame, regno, rare_buffer);
4377 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4378 }
4379 }
4380 }
4381
4382 static void
4383 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4384 int regnum)
4385 { /* do values for FP (float) regs */
4386 struct gdbarch *gdbarch = get_frame_arch (frame);
4387 gdb_byte *raw_buffer;
4388 double doub, flt1; /* doubles extracted from raw hex data */
4389 int inv1, inv2;
4390
4391 raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
4392
4393 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
4394 fprintf_filtered (file, "%*s",
4395 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
4396 "");
4397
4398 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4399 {
4400 struct value_print_options opts;
4401
4402 /* 4-byte registers: Print hex and floating. Also print even
4403 numbered registers as doubles. */
4404 mips_read_fp_register_single (frame, regnum, raw_buffer);
4405 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float, raw_buffer, &inv1);
4406
4407 get_formatted_print_options (&opts, 'x');
4408 print_scalar_formatted (raw_buffer,
4409 builtin_type (gdbarch)->builtin_uint32,
4410 &opts, 'w', file);
4411
4412 fprintf_filtered (file, " flt: ");
4413 if (inv1)
4414 fprintf_filtered (file, " <invalid float> ");
4415 else
4416 fprintf_filtered (file, "%-17.9g", flt1);
4417
4418 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
4419 {
4420 mips_read_fp_register_double (frame, regnum, raw_buffer);
4421 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
4422 raw_buffer, &inv2);
4423
4424 fprintf_filtered (file, " dbl: ");
4425 if (inv2)
4426 fprintf_filtered (file, "<invalid double>");
4427 else
4428 fprintf_filtered (file, "%-24.17g", doub);
4429 }
4430 }
4431 else
4432 {
4433 struct value_print_options opts;
4434
4435 /* Eight byte registers: print each one as hex, float and double. */
4436 mips_read_fp_register_single (frame, regnum, raw_buffer);
4437 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
4438 raw_buffer, &inv1);
4439
4440 mips_read_fp_register_double (frame, regnum, raw_buffer);
4441 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
4442 raw_buffer, &inv2);
4443
4444 get_formatted_print_options (&opts, 'x');
4445 print_scalar_formatted (raw_buffer,
4446 builtin_type (gdbarch)->builtin_uint64,
4447 &opts, 'g', file);
4448
4449 fprintf_filtered (file, " flt: ");
4450 if (inv1)
4451 fprintf_filtered (file, "<invalid float>");
4452 else
4453 fprintf_filtered (file, "%-17.9g", flt1);
4454
4455 fprintf_filtered (file, " dbl: ");
4456 if (inv2)
4457 fprintf_filtered (file, "<invalid double>");
4458 else
4459 fprintf_filtered (file, "%-24.17g", doub);
4460 }
4461 }
4462
4463 static void
4464 mips_print_register (struct ui_file *file, struct frame_info *frame,
4465 int regnum)
4466 {
4467 struct gdbarch *gdbarch = get_frame_arch (frame);
4468 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4469 int offset;
4470 struct value_print_options opts;
4471
4472 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4473 {
4474 mips_print_fp_register (file, frame, regnum);
4475 return;
4476 }
4477
4478 /* Get the data in raw format. */
4479 if (!frame_register_read (frame, regnum, raw_buffer))
4480 {
4481 fprintf_filtered (file, "%s: [Invalid]",
4482 gdbarch_register_name (gdbarch, regnum));
4483 return;
4484 }
4485
4486 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
4487
4488 /* The problem with printing numeric register names (r26, etc.) is that
4489 the user can't use them on input. Probably the best solution is to
4490 fix it so that either the numeric or the funky (a2, etc.) names
4491 are accepted on input. */
4492 if (regnum < MIPS_NUMREGS)
4493 fprintf_filtered (file, "(r%d): ", regnum);
4494 else
4495 fprintf_filtered (file, ": ");
4496
4497 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4498 offset =
4499 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4500 else
4501 offset = 0;
4502
4503 get_formatted_print_options (&opts, 'x');
4504 print_scalar_formatted (raw_buffer + offset,
4505 register_type (gdbarch, regnum), &opts, 0,
4506 file);
4507 }
4508
4509 /* Replacement for generic do_registers_info.
4510 Print regs in pretty columns. */
4511
4512 static int
4513 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4514 int regnum)
4515 {
4516 fprintf_filtered (file, " ");
4517 mips_print_fp_register (file, frame, regnum);
4518 fprintf_filtered (file, "\n");
4519 return regnum + 1;
4520 }
4521
4522
4523 /* Print a row's worth of GP (int) registers, with name labels above */
4524
4525 static int
4526 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4527 int start_regnum)
4528 {
4529 struct gdbarch *gdbarch = get_frame_arch (frame);
4530 /* do values for GP (int) regs */
4531 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4532 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4533 int col, byte;
4534 int regnum;
4535
4536 /* For GP registers, we print a separate row of names above the vals */
4537 for (col = 0, regnum = start_regnum;
4538 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4539 + gdbarch_num_pseudo_regs (gdbarch);
4540 regnum++)
4541 {
4542 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4543 continue; /* unused register */
4544 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4545 TYPE_CODE_FLT)
4546 break; /* end the row: reached FP register */
4547 /* Large registers are handled separately. */
4548 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4549 {
4550 if (col > 0)
4551 break; /* End the row before this register. */
4552
4553 /* Print this register on a row by itself. */
4554 mips_print_register (file, frame, regnum);
4555 fprintf_filtered (file, "\n");
4556 return regnum + 1;
4557 }
4558 if (col == 0)
4559 fprintf_filtered (file, " ");
4560 fprintf_filtered (file,
4561 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
4562 gdbarch_register_name (gdbarch, regnum));
4563 col++;
4564 }
4565
4566 if (col == 0)
4567 return regnum;
4568
4569 /* print the R0 to R31 names */
4570 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
4571 fprintf_filtered (file, "\n R%-4d",
4572 start_regnum % gdbarch_num_regs (gdbarch));
4573 else
4574 fprintf_filtered (file, "\n ");
4575
4576 /* now print the values in hex, 4 or 8 to the row */
4577 for (col = 0, regnum = start_regnum;
4578 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4579 + gdbarch_num_pseudo_regs (gdbarch);
4580 regnum++)
4581 {
4582 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4583 continue; /* unused register */
4584 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4585 TYPE_CODE_FLT)
4586 break; /* end row: reached FP register */
4587 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4588 break; /* End row: large register. */
4589
4590 /* OK: get the data in raw format. */
4591 if (!frame_register_read (frame, regnum, raw_buffer))
4592 error (_("can't read register %d (%s)"),
4593 regnum, gdbarch_register_name (gdbarch, regnum));
4594 /* pad small registers */
4595 for (byte = 0;
4596 byte < (mips_abi_regsize (gdbarch)
4597 - register_size (gdbarch, regnum)); byte++)
4598 printf_filtered (" ");
4599 /* Now print the register value in hex, endian order. */
4600 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4601 for (byte =
4602 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4603 byte < register_size (gdbarch, regnum); byte++)
4604 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4605 else
4606 for (byte = register_size (gdbarch, regnum) - 1;
4607 byte >= 0; byte--)
4608 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4609 fprintf_filtered (file, " ");
4610 col++;
4611 }
4612 if (col > 0) /* ie. if we actually printed anything... */
4613 fprintf_filtered (file, "\n");
4614
4615 return regnum;
4616 }
4617
4618 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4619
4620 static void
4621 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4622 struct frame_info *frame, int regnum, int all)
4623 {
4624 if (regnum != -1) /* do one specified register */
4625 {
4626 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
4627 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
4628 error (_("Not a valid register for the current processor type"));
4629
4630 mips_print_register (file, frame, regnum);
4631 fprintf_filtered (file, "\n");
4632 }
4633 else
4634 /* do all (or most) registers */
4635 {
4636 regnum = gdbarch_num_regs (gdbarch);
4637 while (regnum < gdbarch_num_regs (gdbarch)
4638 + gdbarch_num_pseudo_regs (gdbarch))
4639 {
4640 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4641 TYPE_CODE_FLT)
4642 {
4643 if (all) /* true for "INFO ALL-REGISTERS" command */
4644 regnum = print_fp_register_row (file, frame, regnum);
4645 else
4646 regnum += MIPS_NUMREGS; /* skip floating point regs */
4647 }
4648 else
4649 regnum = print_gp_register_row (file, frame, regnum);
4650 }
4651 }
4652 }
4653
4654 /* Is this a branch with a delay slot? */
4655
4656 static int
4657 is_delayed (unsigned long insn)
4658 {
4659 int i;
4660 for (i = 0; i < NUMOPCODES; ++i)
4661 if (mips_opcodes[i].pinfo != INSN_MACRO
4662 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4663 break;
4664 return (i < NUMOPCODES
4665 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4666 | INSN_COND_BRANCH_DELAY
4667 | INSN_COND_BRANCH_LIKELY)));
4668 }
4669
4670 static int
4671 mips_single_step_through_delay (struct gdbarch *gdbarch,
4672 struct frame_info *frame)
4673 {
4674 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4675 CORE_ADDR pc = get_frame_pc (frame);
4676 gdb_byte buf[MIPS_INSN32_SIZE];
4677
4678 /* There is no branch delay slot on MIPS16. */
4679 if (mips_pc_is_mips16 (pc))
4680 return 0;
4681
4682 if (!breakpoint_here_p (get_frame_address_space (frame), pc + 4))
4683 return 0;
4684
4685 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4686 /* If error reading memory, guess that it is not a delayed
4687 branch. */
4688 return 0;
4689 return is_delayed (extract_unsigned_integer (buf, sizeof buf, byte_order));
4690 }
4691
4692 /* To skip prologues, I use this predicate. Returns either PC itself
4693 if the code at PC does not look like a function prologue; otherwise
4694 returns an address that (if we're lucky) follows the prologue. If
4695 LENIENT, then we must skip everything which is involved in setting
4696 up the frame (it's OK to skip more, just so long as we don't skip
4697 anything which might clobber the registers which are being saved.
4698 We must skip more in the case where part of the prologue is in the
4699 delay slot of a non-prologue instruction). */
4700
4701 static CORE_ADDR
4702 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4703 {
4704 CORE_ADDR limit_pc;
4705 CORE_ADDR func_addr;
4706
4707 /* See if we can determine the end of the prologue via the symbol table.
4708 If so, then return either PC, or the PC after the prologue, whichever
4709 is greater. */
4710 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4711 {
4712 CORE_ADDR post_prologue_pc
4713 = skip_prologue_using_sal (gdbarch, func_addr);
4714 if (post_prologue_pc != 0)
4715 return max (pc, post_prologue_pc);
4716 }
4717
4718 /* Can't determine prologue from the symbol table, need to examine
4719 instructions. */
4720
4721 /* Find an upper limit on the function prologue using the debug
4722 information. If the debug information could not be used to provide
4723 that bound, then use an arbitrary large number as the upper bound. */
4724 limit_pc = skip_prologue_using_sal (gdbarch, pc);
4725 if (limit_pc == 0)
4726 limit_pc = pc + 100; /* Magic. */
4727
4728 if (mips_pc_is_mips16 (pc))
4729 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4730 else
4731 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4732 }
4733
4734 /* Check whether the PC is in a function epilogue (32-bit version).
4735 This is a helper function for mips_in_function_epilogue_p. */
4736 static int
4737 mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4738 {
4739 CORE_ADDR func_addr = 0, func_end = 0;
4740
4741 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4742 {
4743 /* The MIPS epilogue is max. 12 bytes long. */
4744 CORE_ADDR addr = func_end - 12;
4745
4746 if (addr < func_addr + 4)
4747 addr = func_addr + 4;
4748 if (pc < addr)
4749 return 0;
4750
4751 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4752 {
4753 unsigned long high_word;
4754 unsigned long inst;
4755
4756 inst = mips_fetch_instruction (gdbarch, pc);
4757 high_word = (inst >> 16) & 0xffff;
4758
4759 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4760 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4761 && inst != 0x03e00008 /* jr $ra */
4762 && inst != 0x00000000) /* nop */
4763 return 0;
4764 }
4765
4766 return 1;
4767 }
4768
4769 return 0;
4770 }
4771
4772 /* Check whether the PC is in a function epilogue (16-bit version).
4773 This is a helper function for mips_in_function_epilogue_p. */
4774 static int
4775 mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4776 {
4777 CORE_ADDR func_addr = 0, func_end = 0;
4778
4779 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4780 {
4781 /* The MIPS epilogue is max. 12 bytes long. */
4782 CORE_ADDR addr = func_end - 12;
4783
4784 if (addr < func_addr + 4)
4785 addr = func_addr + 4;
4786 if (pc < addr)
4787 return 0;
4788
4789 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4790 {
4791 unsigned short inst;
4792
4793 inst = mips_fetch_instruction (gdbarch, pc);
4794
4795 if ((inst & 0xf800) == 0xf000) /* extend */
4796 continue;
4797
4798 if (inst != 0x6300 /* addiu $sp,offset */
4799 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4800 && inst != 0xe820 /* jr $ra */
4801 && inst != 0xe8a0 /* jrc $ra */
4802 && inst != 0x6500) /* nop */
4803 return 0;
4804 }
4805
4806 return 1;
4807 }
4808
4809 return 0;
4810 }
4811
4812 /* The epilogue is defined here as the area at the end of a function,
4813 after an instruction which destroys the function's stack frame. */
4814 static int
4815 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4816 {
4817 if (mips_pc_is_mips16 (pc))
4818 return mips16_in_function_epilogue_p (gdbarch, pc);
4819 else
4820 return mips32_in_function_epilogue_p (gdbarch, pc);
4821 }
4822
4823 /* Root of all "set mips "/"show mips " commands. This will eventually be
4824 used for all MIPS-specific commands. */
4825
4826 static void
4827 show_mips_command (char *args, int from_tty)
4828 {
4829 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4830 }
4831
4832 static void
4833 set_mips_command (char *args, int from_tty)
4834 {
4835 printf_unfiltered
4836 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4837 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4838 }
4839
4840 /* Commands to show/set the MIPS FPU type. */
4841
4842 static void
4843 show_mipsfpu_command (char *args, int from_tty)
4844 {
4845 char *fpu;
4846
4847 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
4848 {
4849 printf_unfiltered
4850 ("The MIPS floating-point coprocessor is unknown "
4851 "because the current architecture is not MIPS.\n");
4852 return;
4853 }
4854
4855 switch (MIPS_FPU_TYPE (target_gdbarch))
4856 {
4857 case MIPS_FPU_SINGLE:
4858 fpu = "single-precision";
4859 break;
4860 case MIPS_FPU_DOUBLE:
4861 fpu = "double-precision";
4862 break;
4863 case MIPS_FPU_NONE:
4864 fpu = "absent (none)";
4865 break;
4866 default:
4867 internal_error (__FILE__, __LINE__, _("bad switch"));
4868 }
4869 if (mips_fpu_type_auto)
4870 printf_unfiltered
4871 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4872 fpu);
4873 else
4874 printf_unfiltered
4875 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4876 }
4877
4878
4879 static void
4880 set_mipsfpu_command (char *args, int from_tty)
4881 {
4882 printf_unfiltered
4883 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4884 show_mipsfpu_command (args, from_tty);
4885 }
4886
4887 static void
4888 set_mipsfpu_single_command (char *args, int from_tty)
4889 {
4890 struct gdbarch_info info;
4891 gdbarch_info_init (&info);
4892 mips_fpu_type = MIPS_FPU_SINGLE;
4893 mips_fpu_type_auto = 0;
4894 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4895 instead of relying on globals. Doing that would let generic code
4896 handle the search for this specific architecture. */
4897 if (!gdbarch_update_p (info))
4898 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4899 }
4900
4901 static void
4902 set_mipsfpu_double_command (char *args, int from_tty)
4903 {
4904 struct gdbarch_info info;
4905 gdbarch_info_init (&info);
4906 mips_fpu_type = MIPS_FPU_DOUBLE;
4907 mips_fpu_type_auto = 0;
4908 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4909 instead of relying on globals. Doing that would let generic code
4910 handle the search for this specific architecture. */
4911 if (!gdbarch_update_p (info))
4912 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4913 }
4914
4915 static void
4916 set_mipsfpu_none_command (char *args, int from_tty)
4917 {
4918 struct gdbarch_info info;
4919 gdbarch_info_init (&info);
4920 mips_fpu_type = MIPS_FPU_NONE;
4921 mips_fpu_type_auto = 0;
4922 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4923 instead of relying on globals. Doing that would let generic code
4924 handle the search for this specific architecture. */
4925 if (!gdbarch_update_p (info))
4926 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4927 }
4928
4929 static void
4930 set_mipsfpu_auto_command (char *args, int from_tty)
4931 {
4932 mips_fpu_type_auto = 1;
4933 }
4934
4935 /* Attempt to identify the particular processor model by reading the
4936 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4937 the relevant processor still exists (it dates back to '94) and
4938 secondly this is not the way to do this. The processor type should
4939 be set by forcing an architecture change. */
4940
4941 void
4942 deprecated_mips_set_processor_regs_hack (void)
4943 {
4944 struct regcache *regcache = get_current_regcache ();
4945 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4946 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4947 ULONGEST prid;
4948
4949 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
4950 if ((prid & ~0xf) == 0x700)
4951 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4952 }
4953
4954 /* Just like reinit_frame_cache, but with the right arguments to be
4955 callable as an sfunc. */
4956
4957 static void
4958 reinit_frame_cache_sfunc (char *args, int from_tty,
4959 struct cmd_list_element *c)
4960 {
4961 reinit_frame_cache ();
4962 }
4963
4964 static int
4965 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4966 {
4967 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4968 disassembler needs to be able to locally determine the ISA, and
4969 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4970 work. */
4971 if (mips_pc_is_mips16 (memaddr))
4972 info->mach = bfd_mach_mips16;
4973
4974 /* Round down the instruction address to the appropriate boundary. */
4975 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4976
4977 /* Set the disassembler options. */
4978 if (!info->disassembler_options)
4979 /* This string is not recognized explicitly by the disassembler,
4980 but it tells the disassembler to not try to guess the ABI from
4981 the bfd elf headers, such that, if the user overrides the ABI
4982 of a program linked as NewABI, the disassembly will follow the
4983 register naming conventions specified by the user. */
4984 info->disassembler_options = "gpr-names=32";
4985
4986 /* Call the appropriate disassembler based on the target endian-ness. */
4987 if (info->endian == BFD_ENDIAN_BIG)
4988 return print_insn_big_mips (memaddr, info);
4989 else
4990 return print_insn_little_mips (memaddr, info);
4991 }
4992
4993 static int
4994 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
4995 {
4996 /* Set up the disassembler info, so that we get the right
4997 register names from libopcodes. */
4998 info->disassembler_options = "gpr-names=n32";
4999 info->flavour = bfd_target_elf_flavour;
5000
5001 return gdb_print_insn_mips (memaddr, info);
5002 }
5003
5004 static int
5005 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
5006 {
5007 /* Set up the disassembler info, so that we get the right
5008 register names from libopcodes. */
5009 info->disassembler_options = "gpr-names=64";
5010 info->flavour = bfd_target_elf_flavour;
5011
5012 return gdb_print_insn_mips (memaddr, info);
5013 }
5014
5015 /* This function implements gdbarch_breakpoint_from_pc. It uses the program
5016 counter value to determine whether a 16- or 32-bit breakpoint should be used.
5017 It returns a pointer to a string of bytes that encode a breakpoint
5018 instruction, stores the length of the string to *lenptr, and adjusts pc (if
5019 necessary) to point to the actual memory location where the breakpoint
5020 should be inserted. */
5021
5022 static const gdb_byte *
5023 mips_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
5024 {
5025 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5026 {
5027 if (mips_pc_is_mips16 (*pcptr))
5028 {
5029 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
5030 *pcptr = unmake_mips16_addr (*pcptr);
5031 *lenptr = sizeof (mips16_big_breakpoint);
5032 return mips16_big_breakpoint;
5033 }
5034 else
5035 {
5036 /* The IDT board uses an unusual breakpoint value, and
5037 sometimes gets confused when it sees the usual MIPS
5038 breakpoint instruction. */
5039 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
5040 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
5041 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
5042
5043 *lenptr = sizeof (big_breakpoint);
5044
5045 if (strcmp (target_shortname, "mips") == 0)
5046 return idt_big_breakpoint;
5047 else if (strcmp (target_shortname, "ddb") == 0
5048 || strcmp (target_shortname, "pmon") == 0
5049 || strcmp (target_shortname, "lsi") == 0)
5050 return pmon_big_breakpoint;
5051 else
5052 return big_breakpoint;
5053 }
5054 }
5055 else
5056 {
5057 if (mips_pc_is_mips16 (*pcptr))
5058 {
5059 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
5060 *pcptr = unmake_mips16_addr (*pcptr);
5061 *lenptr = sizeof (mips16_little_breakpoint);
5062 return mips16_little_breakpoint;
5063 }
5064 else
5065 {
5066 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
5067 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
5068 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
5069
5070 *lenptr = sizeof (little_breakpoint);
5071
5072 if (strcmp (target_shortname, "mips") == 0)
5073 return idt_little_breakpoint;
5074 else if (strcmp (target_shortname, "ddb") == 0
5075 || strcmp (target_shortname, "pmon") == 0
5076 || strcmp (target_shortname, "lsi") == 0)
5077 return pmon_little_breakpoint;
5078 else
5079 return little_breakpoint;
5080 }
5081 }
5082 }
5083
5084 /* If PC is in a mips16 call or return stub, return the address of the target
5085 PC, which is either the callee or the caller. There are several
5086 cases which must be handled:
5087
5088 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5089 target PC is in $31 ($ra).
5090 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5091 and the target PC is in $2.
5092 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5093 before the jal instruction, this is effectively a call stub
5094 and the the target PC is in $2. Otherwise this is effectively
5095 a return stub and the target PC is in $18.
5096
5097 See the source code for the stubs in gcc/config/mips/mips16.S for
5098 gory details. */
5099
5100 static CORE_ADDR
5101 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5102 {
5103 struct gdbarch *gdbarch = get_frame_arch (frame);
5104 char *name;
5105 CORE_ADDR start_addr;
5106
5107 /* Find the starting address and name of the function containing the PC. */
5108 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5109 return 0;
5110
5111 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5112 target PC is in $31 ($ra). */
5113 if (strcmp (name, "__mips16_ret_sf") == 0
5114 || strcmp (name, "__mips16_ret_df") == 0)
5115 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
5116
5117 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5118 {
5119 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5120 and the target PC is in $2. */
5121 if (name[19] >= '0' && name[19] <= '9')
5122 return get_frame_register_signed (frame, 2);
5123
5124 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5125 before the jal instruction, this is effectively a call stub
5126 and the the target PC is in $2. Otherwise this is effectively
5127 a return stub and the target PC is in $18. */
5128 else if (name[19] == 's' || name[19] == 'd')
5129 {
5130 if (pc == start_addr)
5131 {
5132 /* Check if the target of the stub is a compiler-generated
5133 stub. Such a stub for a function bar might have a name
5134 like __fn_stub_bar, and might look like this:
5135 mfc1 $4,$f13
5136 mfc1 $5,$f12
5137 mfc1 $6,$f15
5138 mfc1 $7,$f14
5139 la $1,bar (becomes a lui/addiu pair)
5140 jr $1
5141 So scan down to the lui/addi and extract the target
5142 address from those two instructions. */
5143
5144 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
5145 ULONGEST inst;
5146 int i;
5147
5148 /* See if the name of the target function is __fn_stub_*. */
5149 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
5150 0)
5151 return target_pc;
5152 if (strncmp (name, "__fn_stub_", 10) != 0
5153 && strcmp (name, "etext") != 0
5154 && strcmp (name, "_etext") != 0)
5155 return target_pc;
5156
5157 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5158 The limit on the search is arbitrarily set to 20
5159 instructions. FIXME. */
5160 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
5161 {
5162 inst = mips_fetch_instruction (gdbarch, target_pc);
5163 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5164 pc = (inst << 16) & 0xffff0000; /* high word */
5165 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5166 return pc | (inst & 0xffff); /* low word */
5167 }
5168
5169 /* Couldn't find the lui/addui pair, so return stub address. */
5170 return target_pc;
5171 }
5172 else
5173 /* This is the 'return' part of a call stub. The return
5174 address is in $r18. */
5175 return get_frame_register_signed (frame, 18);
5176 }
5177 }
5178 return 0; /* not a stub */
5179 }
5180
5181 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
5182 PC of the stub target. The stub just loads $t9 and jumps to it,
5183 so that $t9 has the correct value at function entry. */
5184
5185 static CORE_ADDR
5186 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5187 {
5188 struct gdbarch *gdbarch = get_frame_arch (frame);
5189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5190 struct minimal_symbol *msym;
5191 int i;
5192 gdb_byte stub_code[16];
5193 int32_t stub_words[4];
5194
5195 /* The stub for foo is named ".pic.foo", and is either two
5196 instructions inserted before foo or a three instruction sequence
5197 which jumps to foo. */
5198 msym = lookup_minimal_symbol_by_pc (pc);
5199 if (msym == NULL
5200 || SYMBOL_VALUE_ADDRESS (msym) != pc
5201 || SYMBOL_LINKAGE_NAME (msym) == NULL
5202 || strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) != 0)
5203 return 0;
5204
5205 /* A two-instruction header. */
5206 if (MSYMBOL_SIZE (msym) == 8)
5207 return pc + 8;
5208
5209 /* A three-instruction (plus delay slot) trampoline. */
5210 if (MSYMBOL_SIZE (msym) == 16)
5211 {
5212 if (target_read_memory (pc, stub_code, 16) != 0)
5213 return 0;
5214 for (i = 0; i < 4; i++)
5215 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
5216 4, byte_order);
5217
5218 /* A stub contains these instructions:
5219 lui t9, %hi(target)
5220 j target
5221 addiu t9, t9, %lo(target)
5222 nop
5223
5224 This works even for N64, since stubs are only generated with
5225 -msym32. */
5226 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
5227 && (stub_words[1] & 0xfc000000U) == 0x08000000
5228 && (stub_words[2] & 0xffff0000U) == 0x27390000
5229 && stub_words[3] == 0x00000000)
5230 return (((stub_words[0] & 0x0000ffff) << 16)
5231 + (stub_words[2] & 0x0000ffff));
5232 }
5233
5234 /* Not a recognized stub. */
5235 return 0;
5236 }
5237
5238 static CORE_ADDR
5239 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5240 {
5241 CORE_ADDR target_pc;
5242
5243 target_pc = mips_skip_mips16_trampoline_code (frame, pc);
5244 if (target_pc)
5245 return target_pc;
5246
5247 target_pc = find_solib_trampoline_target (frame, pc);
5248 if (target_pc)
5249 return target_pc;
5250
5251 target_pc = mips_skip_pic_trampoline_code (frame, pc);
5252 if (target_pc)
5253 return target_pc;
5254
5255 return 0;
5256 }
5257
5258 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5259 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
5260
5261 static int
5262 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
5263 {
5264 int regnum;
5265 if (num >= 0 && num < 32)
5266 regnum = num;
5267 else if (num >= 38 && num < 70)
5268 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
5269 else if (num == 70)
5270 regnum = mips_regnum (gdbarch)->hi;
5271 else if (num == 71)
5272 regnum = mips_regnum (gdbarch)->lo;
5273 else
5274 /* This will hopefully (eventually) provoke a warning. Should
5275 we be calling complaint() here? */
5276 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
5277 return gdbarch_num_regs (gdbarch) + regnum;
5278 }
5279
5280
5281 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5282 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
5283
5284 static int
5285 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
5286 {
5287 int regnum;
5288 if (num >= 0 && num < 32)
5289 regnum = num;
5290 else if (num >= 32 && num < 64)
5291 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
5292 else if (num == 64)
5293 regnum = mips_regnum (gdbarch)->hi;
5294 else if (num == 65)
5295 regnum = mips_regnum (gdbarch)->lo;
5296 else
5297 /* This will hopefully (eventually) provoke a warning. Should we
5298 be calling complaint() here? */
5299 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
5300 return gdbarch_num_regs (gdbarch) + regnum;
5301 }
5302
5303 static int
5304 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
5305 {
5306 /* Only makes sense to supply raw registers. */
5307 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
5308 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5309 decide if it is valid. Should instead define a standard sim/gdb
5310 register numbering scheme. */
5311 if (gdbarch_register_name (gdbarch,
5312 gdbarch_num_regs (gdbarch) + regnum) != NULL
5313 && gdbarch_register_name (gdbarch,
5314 gdbarch_num_regs (gdbarch) + regnum)[0] != '\0')
5315 return regnum;
5316 else
5317 return LEGACY_SIM_REGNO_IGNORE;
5318 }
5319
5320
5321 /* Convert an integer into an address. Extracting the value signed
5322 guarantees a correctly sign extended address. */
5323
5324 static CORE_ADDR
5325 mips_integer_to_address (struct gdbarch *gdbarch,
5326 struct type *type, const gdb_byte *buf)
5327 {
5328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5329 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
5330 }
5331
5332 /* Dummy virtual frame pointer method. This is no more or less accurate
5333 than most other architectures; we just need to be explicit about it,
5334 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
5335 an assertion failure. */
5336
5337 static void
5338 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
5339 CORE_ADDR pc, int *reg, LONGEST *offset)
5340 {
5341 *reg = MIPS_SP_REGNUM;
5342 *offset = 0;
5343 }
5344
5345 static void
5346 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5347 {
5348 enum mips_abi *abip = (enum mips_abi *) obj;
5349 const char *name = bfd_get_section_name (abfd, sect);
5350
5351 if (*abip != MIPS_ABI_UNKNOWN)
5352 return;
5353
5354 if (strncmp (name, ".mdebug.", 8) != 0)
5355 return;
5356
5357 if (strcmp (name, ".mdebug.abi32") == 0)
5358 *abip = MIPS_ABI_O32;
5359 else if (strcmp (name, ".mdebug.abiN32") == 0)
5360 *abip = MIPS_ABI_N32;
5361 else if (strcmp (name, ".mdebug.abi64") == 0)
5362 *abip = MIPS_ABI_N64;
5363 else if (strcmp (name, ".mdebug.abiO64") == 0)
5364 *abip = MIPS_ABI_O64;
5365 else if (strcmp (name, ".mdebug.eabi32") == 0)
5366 *abip = MIPS_ABI_EABI32;
5367 else if (strcmp (name, ".mdebug.eabi64") == 0)
5368 *abip = MIPS_ABI_EABI64;
5369 else
5370 warning (_("unsupported ABI %s."), name + 8);
5371 }
5372
5373 static void
5374 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
5375 {
5376 int *lbp = (int *) obj;
5377 const char *name = bfd_get_section_name (abfd, sect);
5378
5379 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
5380 *lbp = 32;
5381 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
5382 *lbp = 64;
5383 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
5384 warning (_("unrecognized .gcc_compiled_longXX"));
5385 }
5386
5387 static enum mips_abi
5388 global_mips_abi (void)
5389 {
5390 int i;
5391
5392 for (i = 0; mips_abi_strings[i] != NULL; i++)
5393 if (mips_abi_strings[i] == mips_abi_string)
5394 return (enum mips_abi) i;
5395
5396 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
5397 }
5398
5399 static void
5400 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
5401 {
5402 /* If the size matches the set of 32-bit or 64-bit integer registers,
5403 assume that's what we've got. */
5404 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
5405 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
5406
5407 /* If the size matches the full set of registers GDB traditionally
5408 knows about, including floating point, for either 32-bit or
5409 64-bit, assume that's what we've got. */
5410 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5411 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
5412
5413 /* Otherwise we don't have a useful guess. */
5414 }
5415
5416 static struct value *
5417 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5418 {
5419 const int *reg_p = baton;
5420 return value_of_register (*reg_p, frame);
5421 }
5422
5423 static struct gdbarch *
5424 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5425 {
5426 struct gdbarch *gdbarch;
5427 struct gdbarch_tdep *tdep;
5428 int elf_flags;
5429 enum mips_abi mips_abi, found_abi, wanted_abi;
5430 int i, num_regs;
5431 enum mips_fpu_type fpu_type;
5432 struct tdesc_arch_data *tdesc_data = NULL;
5433 int elf_fpu_type = 0;
5434
5435 /* Check any target description for validity. */
5436 if (tdesc_has_registers (info.target_desc))
5437 {
5438 static const char *const mips_gprs[] = {
5439 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5440 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5441 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5442 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5443 };
5444 static const char *const mips_fprs[] = {
5445 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5446 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5447 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5448 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5449 };
5450
5451 const struct tdesc_feature *feature;
5452 int valid_p;
5453
5454 feature = tdesc_find_feature (info.target_desc,
5455 "org.gnu.gdb.mips.cpu");
5456 if (feature == NULL)
5457 return NULL;
5458
5459 tdesc_data = tdesc_data_alloc ();
5460
5461 valid_p = 1;
5462 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5463 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5464 mips_gprs[i]);
5465
5466
5467 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5468 MIPS_EMBED_LO_REGNUM, "lo");
5469 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5470 MIPS_EMBED_HI_REGNUM, "hi");
5471 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5472 MIPS_EMBED_PC_REGNUM, "pc");
5473
5474 if (!valid_p)
5475 {
5476 tdesc_data_cleanup (tdesc_data);
5477 return NULL;
5478 }
5479
5480 feature = tdesc_find_feature (info.target_desc,
5481 "org.gnu.gdb.mips.cp0");
5482 if (feature == NULL)
5483 {
5484 tdesc_data_cleanup (tdesc_data);
5485 return NULL;
5486 }
5487
5488 valid_p = 1;
5489 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5490 MIPS_EMBED_BADVADDR_REGNUM,
5491 "badvaddr");
5492 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5493 MIPS_PS_REGNUM, "status");
5494 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5495 MIPS_EMBED_CAUSE_REGNUM, "cause");
5496
5497 if (!valid_p)
5498 {
5499 tdesc_data_cleanup (tdesc_data);
5500 return NULL;
5501 }
5502
5503 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5504 backend is not prepared for that, though. */
5505 feature = tdesc_find_feature (info.target_desc,
5506 "org.gnu.gdb.mips.fpu");
5507 if (feature == NULL)
5508 {
5509 tdesc_data_cleanup (tdesc_data);
5510 return NULL;
5511 }
5512
5513 valid_p = 1;
5514 for (i = 0; i < 32; i++)
5515 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5516 i + MIPS_EMBED_FP0_REGNUM,
5517 mips_fprs[i]);
5518
5519 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5520 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5521 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5522 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5523
5524 if (!valid_p)
5525 {
5526 tdesc_data_cleanup (tdesc_data);
5527 return NULL;
5528 }
5529
5530 /* It would be nice to detect an attempt to use a 64-bit ABI
5531 when only 32-bit registers are provided. */
5532 }
5533
5534 /* First of all, extract the elf_flags, if available. */
5535 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5536 elf_flags = elf_elfheader (info.abfd)->e_flags;
5537 else if (arches != NULL)
5538 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5539 else
5540 elf_flags = 0;
5541 if (gdbarch_debug)
5542 fprintf_unfiltered (gdb_stdlog,
5543 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5544
5545 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5546 switch ((elf_flags & EF_MIPS_ABI))
5547 {
5548 case E_MIPS_ABI_O32:
5549 found_abi = MIPS_ABI_O32;
5550 break;
5551 case E_MIPS_ABI_O64:
5552 found_abi = MIPS_ABI_O64;
5553 break;
5554 case E_MIPS_ABI_EABI32:
5555 found_abi = MIPS_ABI_EABI32;
5556 break;
5557 case E_MIPS_ABI_EABI64:
5558 found_abi = MIPS_ABI_EABI64;
5559 break;
5560 default:
5561 if ((elf_flags & EF_MIPS_ABI2))
5562 found_abi = MIPS_ABI_N32;
5563 else
5564 found_abi = MIPS_ABI_UNKNOWN;
5565 break;
5566 }
5567
5568 /* GCC creates a pseudo-section whose name describes the ABI. */
5569 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5570 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5571
5572 /* If we have no useful BFD information, use the ABI from the last
5573 MIPS architecture (if there is one). */
5574 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5575 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5576
5577 /* Try the architecture for any hint of the correct ABI. */
5578 if (found_abi == MIPS_ABI_UNKNOWN
5579 && info.bfd_arch_info != NULL
5580 && info.bfd_arch_info->arch == bfd_arch_mips)
5581 {
5582 switch (info.bfd_arch_info->mach)
5583 {
5584 case bfd_mach_mips3900:
5585 found_abi = MIPS_ABI_EABI32;
5586 break;
5587 case bfd_mach_mips4100:
5588 case bfd_mach_mips5000:
5589 found_abi = MIPS_ABI_EABI64;
5590 break;
5591 case bfd_mach_mips8000:
5592 case bfd_mach_mips10000:
5593 /* On Irix, ELF64 executables use the N64 ABI. The
5594 pseudo-sections which describe the ABI aren't present
5595 on IRIX. (Even for executables created by gcc.) */
5596 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5597 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5598 found_abi = MIPS_ABI_N64;
5599 else
5600 found_abi = MIPS_ABI_N32;
5601 break;
5602 }
5603 }
5604
5605 /* Default 64-bit objects to N64 instead of O32. */
5606 if (found_abi == MIPS_ABI_UNKNOWN
5607 && info.abfd != NULL
5608 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5609 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5610 found_abi = MIPS_ABI_N64;
5611
5612 if (gdbarch_debug)
5613 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5614 found_abi);
5615
5616 /* What has the user specified from the command line? */
5617 wanted_abi = global_mips_abi ();
5618 if (gdbarch_debug)
5619 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5620 wanted_abi);
5621
5622 /* Now that we have found what the ABI for this binary would be,
5623 check whether the user is overriding it. */
5624 if (wanted_abi != MIPS_ABI_UNKNOWN)
5625 mips_abi = wanted_abi;
5626 else if (found_abi != MIPS_ABI_UNKNOWN)
5627 mips_abi = found_abi;
5628 else
5629 mips_abi = MIPS_ABI_O32;
5630 if (gdbarch_debug)
5631 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5632 mips_abi);
5633
5634 /* Also used when doing an architecture lookup. */
5635 if (gdbarch_debug)
5636 fprintf_unfiltered (gdb_stdlog,
5637 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5638 mips64_transfers_32bit_regs_p);
5639
5640 /* Determine the MIPS FPU type. */
5641 #ifdef HAVE_ELF
5642 if (info.abfd
5643 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5644 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5645 Tag_GNU_MIPS_ABI_FP);
5646 #endif /* HAVE_ELF */
5647
5648 if (!mips_fpu_type_auto)
5649 fpu_type = mips_fpu_type;
5650 else if (elf_fpu_type != 0)
5651 {
5652 switch (elf_fpu_type)
5653 {
5654 case 1:
5655 fpu_type = MIPS_FPU_DOUBLE;
5656 break;
5657 case 2:
5658 fpu_type = MIPS_FPU_SINGLE;
5659 break;
5660 case 3:
5661 default:
5662 /* Soft float or unknown. */
5663 fpu_type = MIPS_FPU_NONE;
5664 break;
5665 }
5666 }
5667 else if (info.bfd_arch_info != NULL
5668 && info.bfd_arch_info->arch == bfd_arch_mips)
5669 switch (info.bfd_arch_info->mach)
5670 {
5671 case bfd_mach_mips3900:
5672 case bfd_mach_mips4100:
5673 case bfd_mach_mips4111:
5674 case bfd_mach_mips4120:
5675 fpu_type = MIPS_FPU_NONE;
5676 break;
5677 case bfd_mach_mips4650:
5678 fpu_type = MIPS_FPU_SINGLE;
5679 break;
5680 default:
5681 fpu_type = MIPS_FPU_DOUBLE;
5682 break;
5683 }
5684 else if (arches != NULL)
5685 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5686 else
5687 fpu_type = MIPS_FPU_DOUBLE;
5688 if (gdbarch_debug)
5689 fprintf_unfiltered (gdb_stdlog,
5690 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5691
5692 /* Check for blatant incompatibilities. */
5693
5694 /* If we have only 32-bit registers, then we can't debug a 64-bit
5695 ABI. */
5696 if (info.target_desc
5697 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5698 && mips_abi != MIPS_ABI_EABI32
5699 && mips_abi != MIPS_ABI_O32)
5700 {
5701 if (tdesc_data != NULL)
5702 tdesc_data_cleanup (tdesc_data);
5703 return NULL;
5704 }
5705
5706 /* try to find a pre-existing architecture */
5707 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5708 arches != NULL;
5709 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5710 {
5711 /* MIPS needs to be pedantic about which ABI the object is
5712 using. */
5713 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5714 continue;
5715 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5716 continue;
5717 /* Need to be pedantic about which register virtual size is
5718 used. */
5719 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5720 != mips64_transfers_32bit_regs_p)
5721 continue;
5722 /* Be pedantic about which FPU is selected. */
5723 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5724 continue;
5725
5726 if (tdesc_data != NULL)
5727 tdesc_data_cleanup (tdesc_data);
5728 return arches->gdbarch;
5729 }
5730
5731 /* Need a new architecture. Fill in a target specific vector. */
5732 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5733 gdbarch = gdbarch_alloc (&info, tdep);
5734 tdep->elf_flags = elf_flags;
5735 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5736 tdep->found_abi = found_abi;
5737 tdep->mips_abi = mips_abi;
5738 tdep->mips_fpu_type = fpu_type;
5739 tdep->register_size_valid_p = 0;
5740 tdep->register_size = 0;
5741
5742 if (info.target_desc)
5743 {
5744 /* Some useful properties can be inferred from the target. */
5745 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5746 {
5747 tdep->register_size_valid_p = 1;
5748 tdep->register_size = 4;
5749 }
5750 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5751 {
5752 tdep->register_size_valid_p = 1;
5753 tdep->register_size = 8;
5754 }
5755 }
5756
5757 /* Initially set everything according to the default ABI/ISA. */
5758 set_gdbarch_short_bit (gdbarch, 16);
5759 set_gdbarch_int_bit (gdbarch, 32);
5760 set_gdbarch_float_bit (gdbarch, 32);
5761 set_gdbarch_double_bit (gdbarch, 64);
5762 set_gdbarch_long_double_bit (gdbarch, 64);
5763 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5764 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5765 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5766
5767 set_gdbarch_elf_make_msymbol_special (gdbarch,
5768 mips_elf_make_msymbol_special);
5769
5770 /* Fill in the OS dependant register numbers and names. */
5771 {
5772 const char **reg_names;
5773 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5774 struct mips_regnum);
5775 if (tdesc_has_registers (info.target_desc))
5776 {
5777 regnum->lo = MIPS_EMBED_LO_REGNUM;
5778 regnum->hi = MIPS_EMBED_HI_REGNUM;
5779 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5780 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5781 regnum->pc = MIPS_EMBED_PC_REGNUM;
5782 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5783 regnum->fp_control_status = 70;
5784 regnum->fp_implementation_revision = 71;
5785 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5786 reg_names = NULL;
5787 }
5788 else if (info.osabi == GDB_OSABI_IRIX)
5789 {
5790 regnum->fp0 = 32;
5791 regnum->pc = 64;
5792 regnum->cause = 65;
5793 regnum->badvaddr = 66;
5794 regnum->hi = 67;
5795 regnum->lo = 68;
5796 regnum->fp_control_status = 69;
5797 regnum->fp_implementation_revision = 70;
5798 num_regs = 71;
5799 reg_names = mips_irix_reg_names;
5800 }
5801 else
5802 {
5803 regnum->lo = MIPS_EMBED_LO_REGNUM;
5804 regnum->hi = MIPS_EMBED_HI_REGNUM;
5805 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5806 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5807 regnum->pc = MIPS_EMBED_PC_REGNUM;
5808 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5809 regnum->fp_control_status = 70;
5810 regnum->fp_implementation_revision = 71;
5811 num_regs = 90;
5812 if (info.bfd_arch_info != NULL
5813 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5814 reg_names = mips_tx39_reg_names;
5815 else
5816 reg_names = mips_generic_reg_names;
5817 }
5818 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
5819 replaced by gdbarch_read_pc? */
5820 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5821 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5822 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5823 set_gdbarch_num_regs (gdbarch, num_regs);
5824 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5825 set_gdbarch_register_name (gdbarch, mips_register_name);
5826 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
5827 tdep->mips_processor_reg_names = reg_names;
5828 tdep->regnum = regnum;
5829 }
5830
5831 switch (mips_abi)
5832 {
5833 case MIPS_ABI_O32:
5834 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5835 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5836 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5837 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5838 tdep->default_mask_address_p = 0;
5839 set_gdbarch_long_bit (gdbarch, 32);
5840 set_gdbarch_ptr_bit (gdbarch, 32);
5841 set_gdbarch_long_long_bit (gdbarch, 64);
5842 break;
5843 case MIPS_ABI_O64:
5844 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5845 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5846 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5847 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5848 tdep->default_mask_address_p = 0;
5849 set_gdbarch_long_bit (gdbarch, 32);
5850 set_gdbarch_ptr_bit (gdbarch, 32);
5851 set_gdbarch_long_long_bit (gdbarch, 64);
5852 break;
5853 case MIPS_ABI_EABI32:
5854 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5855 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5856 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5857 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5858 tdep->default_mask_address_p = 0;
5859 set_gdbarch_long_bit (gdbarch, 32);
5860 set_gdbarch_ptr_bit (gdbarch, 32);
5861 set_gdbarch_long_long_bit (gdbarch, 64);
5862 break;
5863 case MIPS_ABI_EABI64:
5864 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5865 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5866 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5867 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5868 tdep->default_mask_address_p = 0;
5869 set_gdbarch_long_bit (gdbarch, 64);
5870 set_gdbarch_ptr_bit (gdbarch, 64);
5871 set_gdbarch_long_long_bit (gdbarch, 64);
5872 break;
5873 case MIPS_ABI_N32:
5874 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5875 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5876 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5877 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5878 tdep->default_mask_address_p = 0;
5879 set_gdbarch_long_bit (gdbarch, 32);
5880 set_gdbarch_ptr_bit (gdbarch, 32);
5881 set_gdbarch_long_long_bit (gdbarch, 64);
5882 set_gdbarch_long_double_bit (gdbarch, 128);
5883 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
5884 break;
5885 case MIPS_ABI_N64:
5886 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5887 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5888 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5889 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5890 tdep->default_mask_address_p = 0;
5891 set_gdbarch_long_bit (gdbarch, 64);
5892 set_gdbarch_ptr_bit (gdbarch, 64);
5893 set_gdbarch_long_long_bit (gdbarch, 64);
5894 set_gdbarch_long_double_bit (gdbarch, 128);
5895 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
5896 break;
5897 default:
5898 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5899 }
5900
5901 /* GCC creates a pseudo-section whose name specifies the size of
5902 longs, since -mlong32 or -mlong64 may be used independent of
5903 other options. How those options affect pointer sizes is ABI and
5904 architecture dependent, so use them to override the default sizes
5905 set by the ABI. This table shows the relationship between ABI,
5906 -mlongXX, and size of pointers:
5907
5908 ABI -mlongXX ptr bits
5909 --- -------- --------
5910 o32 32 32
5911 o32 64 32
5912 n32 32 32
5913 n32 64 64
5914 o64 32 32
5915 o64 64 64
5916 n64 32 32
5917 n64 64 64
5918 eabi32 32 32
5919 eabi32 64 32
5920 eabi64 32 32
5921 eabi64 64 64
5922
5923 Note that for o32 and eabi32, pointers are always 32 bits
5924 regardless of any -mlongXX option. For all others, pointers and
5925 longs are the same, as set by -mlongXX or set by defaults.
5926 */
5927
5928 if (info.abfd != NULL)
5929 {
5930 int long_bit = 0;
5931
5932 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5933 if (long_bit)
5934 {
5935 set_gdbarch_long_bit (gdbarch, long_bit);
5936 switch (mips_abi)
5937 {
5938 case MIPS_ABI_O32:
5939 case MIPS_ABI_EABI32:
5940 break;
5941 case MIPS_ABI_N32:
5942 case MIPS_ABI_O64:
5943 case MIPS_ABI_N64:
5944 case MIPS_ABI_EABI64:
5945 set_gdbarch_ptr_bit (gdbarch, long_bit);
5946 break;
5947 default:
5948 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5949 }
5950 }
5951 }
5952
5953 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5954 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5955 comment:
5956
5957 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5958 flag in object files because to do so would make it impossible to
5959 link with libraries compiled without "-gp32". This is
5960 unnecessarily restrictive.
5961
5962 We could solve this problem by adding "-gp32" multilibs to gcc,
5963 but to set this flag before gcc is built with such multilibs will
5964 break too many systems.''
5965
5966 But even more unhelpfully, the default linker output target for
5967 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5968 for 64-bit programs - you need to change the ABI to change this,
5969 and not all gcc targets support that currently. Therefore using
5970 this flag to detect 32-bit mode would do the wrong thing given
5971 the current gcc - it would make GDB treat these 64-bit programs
5972 as 32-bit programs by default. */
5973
5974 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5975 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5976
5977 /* Add/remove bits from an address. The MIPS needs be careful to
5978 ensure that all 32 bit addresses are sign extended to 64 bits. */
5979 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5980
5981 /* Unwind the frame. */
5982 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5983 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
5984 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
5985
5986 /* Map debug register numbers onto internal register numbers. */
5987 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5988 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5989 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5990 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5991 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5992 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5993
5994 /* MIPS version of CALL_DUMMY */
5995
5996 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5997 replaced by a command, and all targets will default to on stack
5998 (regardless of the stack's execute status). */
5999 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
6000 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6001
6002 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
6003 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
6004 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
6005
6006 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6007 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6008
6009 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6010
6011 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
6012
6013 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6014 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6015 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6016
6017 set_gdbarch_register_type (gdbarch, mips_register_type);
6018
6019 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
6020
6021 if (mips_abi == MIPS_ABI_N32)
6022 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
6023 else if (mips_abi == MIPS_ABI_N64)
6024 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
6025 else
6026 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6027
6028 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
6029 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
6030 need to all be folded into the target vector. Since they are
6031 being used as guards for target_stopped_by_watchpoint, why not have
6032 target_stopped_by_watchpoint return the type of watchpoint that the code
6033 is sitting on? */
6034 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6035
6036 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
6037
6038 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
6039
6040 /* Virtual tables. */
6041 set_gdbarch_vbit_in_delta (gdbarch, 1);
6042
6043 mips_register_g_packet_guesses (gdbarch);
6044
6045 /* Hook in OS ABI-specific overrides, if they have been registered. */
6046 info.tdep_info = (void *) tdesc_data;
6047 gdbarch_init_osabi (info, gdbarch);
6048
6049 /* Unwind the frame. */
6050 dwarf2_append_unwinders (gdbarch);
6051 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
6052 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
6053 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
6054 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
6055 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
6056 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
6057 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
6058
6059 if (tdesc_data)
6060 {
6061 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
6062 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
6063
6064 /* Override the normal target description methods to handle our
6065 dual real and pseudo registers. */
6066 set_gdbarch_register_name (gdbarch, mips_register_name);
6067 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
6068
6069 num_regs = gdbarch_num_regs (gdbarch);
6070 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
6071 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
6072 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
6073 }
6074
6075 /* Add ABI-specific aliases for the registers. */
6076 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
6077 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
6078 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
6079 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
6080 else
6081 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
6082 user_reg_add (gdbarch, mips_o32_aliases[i].name,
6083 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
6084
6085 /* Add some other standard aliases. */
6086 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
6087 user_reg_add (gdbarch, mips_register_aliases[i].name,
6088 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
6089
6090 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
6091 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
6092 value_of_mips_user_reg,
6093 &mips_numeric_register_aliases[i].regnum);
6094
6095 return gdbarch;
6096 }
6097
6098 static void
6099 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
6100 {
6101 struct gdbarch_info info;
6102
6103 /* Force the architecture to update, and (if it's a MIPS architecture)
6104 mips_gdbarch_init will take care of the rest. */
6105 gdbarch_info_init (&info);
6106 gdbarch_update_p (info);
6107 }
6108
6109 /* Print out which MIPS ABI is in use. */
6110
6111 static void
6112 show_mips_abi (struct ui_file *file,
6113 int from_tty,
6114 struct cmd_list_element *ignored_cmd,
6115 const char *ignored_value)
6116 {
6117 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
6118 fprintf_filtered
6119 (file,
6120 "The MIPS ABI is unknown because the current architecture "
6121 "is not MIPS.\n");
6122 else
6123 {
6124 enum mips_abi global_abi = global_mips_abi ();
6125 enum mips_abi actual_abi = mips_abi (target_gdbarch);
6126 const char *actual_abi_str = mips_abi_strings[actual_abi];
6127
6128 if (global_abi == MIPS_ABI_UNKNOWN)
6129 fprintf_filtered
6130 (file,
6131 "The MIPS ABI is set automatically (currently \"%s\").\n",
6132 actual_abi_str);
6133 else if (global_abi == actual_abi)
6134 fprintf_filtered
6135 (file,
6136 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6137 actual_abi_str);
6138 else
6139 {
6140 /* Probably shouldn't happen... */
6141 fprintf_filtered
6142 (file,
6143 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6144 actual_abi_str, mips_abi_strings[global_abi]);
6145 }
6146 }
6147 }
6148
6149 static void
6150 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6151 {
6152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6153 if (tdep != NULL)
6154 {
6155 int ef_mips_arch;
6156 int ef_mips_32bitmode;
6157 /* Determine the ISA. */
6158 switch (tdep->elf_flags & EF_MIPS_ARCH)
6159 {
6160 case E_MIPS_ARCH_1:
6161 ef_mips_arch = 1;
6162 break;
6163 case E_MIPS_ARCH_2:
6164 ef_mips_arch = 2;
6165 break;
6166 case E_MIPS_ARCH_3:
6167 ef_mips_arch = 3;
6168 break;
6169 case E_MIPS_ARCH_4:
6170 ef_mips_arch = 4;
6171 break;
6172 default:
6173 ef_mips_arch = 0;
6174 break;
6175 }
6176 /* Determine the size of a pointer. */
6177 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6178 fprintf_unfiltered (file,
6179 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6180 tdep->elf_flags);
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6183 ef_mips_32bitmode);
6184 fprintf_unfiltered (file,
6185 "mips_dump_tdep: ef_mips_arch = %d\n",
6186 ef_mips_arch);
6187 fprintf_unfiltered (file,
6188 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6189 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
6190 fprintf_unfiltered (file,
6191 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6192 mips_mask_address_p (tdep),
6193 tdep->default_mask_address_p);
6194 }
6195 fprintf_unfiltered (file,
6196 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6197 MIPS_DEFAULT_FPU_TYPE,
6198 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6199 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6200 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6201 : "???"));
6202 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
6203 MIPS_EABI (gdbarch));
6204 fprintf_unfiltered (file,
6205 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6206 MIPS_FPU_TYPE (gdbarch),
6207 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
6208 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
6209 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
6210 : "???"));
6211 }
6212
6213 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6214
6215 void
6216 _initialize_mips_tdep (void)
6217 {
6218 static struct cmd_list_element *mipsfpulist = NULL;
6219 struct cmd_list_element *c;
6220
6221 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
6222 if (MIPS_ABI_LAST + 1
6223 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6224 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
6225
6226 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6227
6228 mips_pdr_data = register_objfile_data ();
6229
6230 /* Create feature sets with the appropriate properties. The values
6231 are not important. */
6232 mips_tdesc_gp32 = allocate_target_description ();
6233 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
6234
6235 mips_tdesc_gp64 = allocate_target_description ();
6236 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
6237
6238 /* Add root prefix command for all "set mips"/"show mips" commands */
6239 add_prefix_cmd ("mips", no_class, set_mips_command,
6240 _("Various MIPS specific commands."),
6241 &setmipscmdlist, "set mips ", 0, &setlist);
6242
6243 add_prefix_cmd ("mips", no_class, show_mips_command,
6244 _("Various MIPS specific commands."),
6245 &showmipscmdlist, "show mips ", 0, &showlist);
6246
6247 /* Allow the user to override the ABI. */
6248 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
6249 &mips_abi_string, _("\
6250 Set the MIPS ABI used by this program."), _("\
6251 Show the MIPS ABI used by this program."), _("\
6252 This option can be set to one of:\n\
6253 auto - the default ABI associated with the current binary\n\
6254 o32\n\
6255 o64\n\
6256 n32\n\
6257 n64\n\
6258 eabi32\n\
6259 eabi64"),
6260 mips_abi_update,
6261 show_mips_abi,
6262 &setmipscmdlist, &showmipscmdlist);
6263
6264 /* Let the user turn off floating point and set the fence post for
6265 heuristic_proc_start. */
6266
6267 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6268 _("Set use of MIPS floating-point coprocessor."),
6269 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6270 add_cmd ("single", class_support, set_mipsfpu_single_command,
6271 _("Select single-precision MIPS floating-point coprocessor."),
6272 &mipsfpulist);
6273 add_cmd ("double", class_support, set_mipsfpu_double_command,
6274 _("Select double-precision MIPS floating-point coprocessor."),
6275 &mipsfpulist);
6276 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6277 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6278 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6279 add_cmd ("none", class_support, set_mipsfpu_none_command,
6280 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
6281 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6282 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6283 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6284 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6285 _("Select MIPS floating-point coprocessor automatically."),
6286 &mipsfpulist);
6287 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6288 _("Show current use of MIPS floating-point coprocessor target."),
6289 &showlist);
6290
6291 /* We really would like to have both "0" and "unlimited" work, but
6292 command.c doesn't deal with that. So make it a var_zinteger
6293 because the user can always use "999999" or some such for unlimited. */
6294 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
6295 &heuristic_fence_post, _("\
6296 Set the distance searched for the start of a function."), _("\
6297 Show the distance searched for the start of a function."), _("\
6298 If you are debugging a stripped executable, GDB needs to search through the\n\
6299 program for the start of a function. This command sets the distance of the\n\
6300 search. The only need to set it is when debugging a stripped executable."),
6301 reinit_frame_cache_sfunc,
6302 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6303 &setlist, &showlist);
6304
6305 /* Allow the user to control whether the upper bits of 64-bit
6306 addresses should be zeroed. */
6307 add_setshow_auto_boolean_cmd ("mask-address", no_class,
6308 &mask_address_var, _("\
6309 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
6310 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
6311 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6312 allow GDB to determine the correct value."),
6313 NULL, show_mask_address,
6314 &setmipscmdlist, &showmipscmdlist);
6315
6316 /* Allow the user to control the size of 32 bit registers within the
6317 raw remote packet. */
6318 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6319 &mips64_transfers_32bit_regs_p, _("\
6320 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6321 _("\
6322 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6323 _("\
6324 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6325 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6326 64 bits for others. Use \"off\" to disable compatibility mode"),
6327 set_mips64_transfers_32bit_regs,
6328 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
6329 &setlist, &showlist);
6330
6331 /* Debug this files internals. */
6332 add_setshow_zinteger_cmd ("mips", class_maintenance,
6333 &mips_debug, _("\
6334 Set mips debugging."), _("\
6335 Show mips debugging."), _("\
6336 When non-zero, mips specific debugging is enabled."),
6337 NULL,
6338 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6339 &setdebuglist, &showdebuglist);
6340 }
This page took 0.162155 seconds and 4 git commands to generate.