a98c2315e4d2b935abb6fa8014a4d069fefad894
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
5 Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "value.h"
34 #include "gdbcmd.h"
35 #include "language.h"
36 #include "gdbcore.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbtypes.h"
40 #include "target.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "mips-tdep.h"
45 #include "block.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
48 #include "elf/mips.h"
49 #include "elf-bfd.h"
50 #include "symcat.h"
51 #include "sim-regno.h"
52 #include "dis-asm.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
56 #include "infcall.h"
57 #include "floatformat.h"
58
59 static const struct objfile_data *mips_pdr_data;
60
61 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
62
63 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
64 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
65 #define ST0_FR (1 << 26)
66
67 /* The sizes of floating point registers. */
68
69 enum
70 {
71 MIPS_FPU_SINGLE_REGSIZE = 4,
72 MIPS_FPU_DOUBLE_REGSIZE = 8
73 };
74
75
76 static const char *mips_abi_string;
77
78 static const char *mips_abi_strings[] = {
79 "auto",
80 "n32",
81 "o32",
82 "n64",
83 "o64",
84 "eabi32",
85 "eabi64",
86 NULL
87 };
88
89 /* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
91 them. */
92
93 static const char size_auto[] = "auto";
94 static const char size_32[] = "32";
95 static const char size_64[] = "64";
96
97 static const char *size_enums[] = {
98 size_auto,
99 size_32,
100 size_64,
101 0
102 };
103
104 /* Some MIPS boards don't support floating point while others only
105 support single-precision floating-point operations. */
106
107 enum mips_fpu_type
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
113
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116 #endif
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
119
120 static int mips_debug = 0;
121
122 /* MIPS specific per-architecture information */
123 struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int default_mask_address_p;
135 /* Is the target using 64-bit raw integer registers but only
136 storing a left-aligned 32-bit value in each? */
137 int mips64_transfers_32bit_regs_p;
138 /* Indexes for various registers. IRIX and embedded have
139 different values. This contains the "public" fields. Don't
140 add any that do not need to be public. */
141 const struct mips_regnum *regnum;
142 /* Register names table for the current register set. */
143 const char **mips_processor_reg_names;
144 };
145
146 static int
147 n32n64_floatformat_always_valid (const struct floatformat *fmt,
148 const char *from)
149 {
150 return 1;
151 }
152
153 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
154 They are implemented as a pair of 64bit doubles where the high
155 part holds the result of the operation rounded to double, and
156 the low double holds the difference between the exact result and
157 the rounded result. So "high" + "low" contains the result with
158 added precision. Unfortunately, the floatformat structure used
159 by GDB is not powerful enough to describe this format. As a temporary
160 measure, we define a 128bit floatformat that only uses the high part.
161 We lose a bit of precision but that's probably the best we can do
162 for now with the current infrastructure. */
163
164 static const struct floatformat floatformat_n32n64_long_double_big =
165 {
166 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
167 floatformat_intbit_no,
168 "floatformat_ieee_double_big",
169 n32n64_floatformat_always_valid
170 };
171
172 const struct mips_regnum *
173 mips_regnum (struct gdbarch *gdbarch)
174 {
175 return gdbarch_tdep (gdbarch)->regnum;
176 }
177
178 static int
179 mips_fpa0_regnum (struct gdbarch *gdbarch)
180 {
181 return mips_regnum (gdbarch)->fp0 + 12;
182 }
183
184 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
185 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
186
187 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
188
189 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
190
191 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
192
193 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
195
196 static CORE_ADDR
197 is_mips16_addr (CORE_ADDR addr)
198 {
199 return ((addr) & 1);
200 }
201
202 static CORE_ADDR
203 unmake_mips16_addr (CORE_ADDR addr)
204 {
205 return ((addr) & ~1);
206 }
207
208 /* Return the contents of register REGNUM as a signed integer. */
209
210 static LONGEST
211 read_signed_register (int regnum)
212 {
213 LONGEST val;
214 regcache_cooked_read_signed (current_regcache, regnum, &val);
215 return val;
216 }
217
218 static LONGEST
219 read_signed_register_pid (int regnum, ptid_t ptid)
220 {
221 ptid_t save_ptid;
222 LONGEST retval;
223
224 if (ptid_equal (ptid, inferior_ptid))
225 return read_signed_register (regnum);
226
227 save_ptid = inferior_ptid;
228
229 inferior_ptid = ptid;
230
231 retval = read_signed_register (regnum);
232
233 inferior_ptid = save_ptid;
234
235 return retval;
236 }
237
238 /* Return the MIPS ABI associated with GDBARCH. */
239 enum mips_abi
240 mips_abi (struct gdbarch *gdbarch)
241 {
242 return gdbarch_tdep (gdbarch)->mips_abi;
243 }
244
245 int
246 mips_isa_regsize (struct gdbarch *gdbarch)
247 {
248 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
249 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
250 }
251
252 /* Return the currently configured (or set) saved register size. */
253
254 static const char *mips_abi_regsize_string = size_auto;
255
256 unsigned int
257 mips_abi_regsize (struct gdbarch *gdbarch)
258 {
259 if (mips_abi_regsize_string == size_auto)
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
273 internal_error (__FILE__, __LINE__, _("bad switch"));
274 }
275 else if (mips_abi_regsize_string == size_64)
276 return 8;
277 else /* if (mips_abi_regsize_string == size_32) */
278 return 4;
279 }
280
281 /* Functions for setting and testing a bit in a minimal symbol that
282 marks it as 16-bit function. The MSB of the minimal symbol's
283 "info" field is used for this purpose.
284
285 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
286 i.e. refers to a 16-bit function, and sets a "special" bit in a
287 minimal symbol to mark it as a 16-bit function
288
289 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
290
291 static void
292 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
293 {
294 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
295 {
296 MSYMBOL_INFO (msym) = (char *)
297 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
298 SYMBOL_VALUE_ADDRESS (msym) |= 1;
299 }
300 }
301
302 static int
303 msymbol_is_special (struct minimal_symbol *msym)
304 {
305 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
306 }
307
308 /* XFER a value from the big/little/left end of the register.
309 Depending on the size of the value it might occupy the entire
310 register or just part of it. Make an allowance for this, aligning
311 things accordingly. */
312
313 static void
314 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
315 enum bfd_endian endian, bfd_byte * in,
316 const bfd_byte * out, int buf_offset)
317 {
318 int reg_offset = 0;
319 gdb_assert (reg_num >= NUM_REGS);
320 /* Need to transfer the left or right part of the register, based on
321 the targets byte order. */
322 switch (endian)
323 {
324 case BFD_ENDIAN_BIG:
325 reg_offset = register_size (current_gdbarch, reg_num) - length;
326 break;
327 case BFD_ENDIAN_LITTLE:
328 reg_offset = 0;
329 break;
330 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
331 reg_offset = 0;
332 break;
333 default:
334 internal_error (__FILE__, __LINE__, _("bad switch"));
335 }
336 if (mips_debug)
337 fprintf_unfiltered (gdb_stderr,
338 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
339 reg_num, reg_offset, buf_offset, length);
340 if (mips_debug && out != NULL)
341 {
342 int i;
343 fprintf_unfiltered (gdb_stdlog, "out ");
344 for (i = 0; i < length; i++)
345 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
346 }
347 if (in != NULL)
348 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
349 in + buf_offset);
350 if (out != NULL)
351 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
352 out + buf_offset);
353 if (mips_debug && in != NULL)
354 {
355 int i;
356 fprintf_unfiltered (gdb_stdlog, "in ");
357 for (i = 0; i < length; i++)
358 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
359 }
360 if (mips_debug)
361 fprintf_unfiltered (gdb_stdlog, "\n");
362 }
363
364 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
365 compatiblity mode. A return value of 1 means that we have
366 physical 64-bit registers, but should treat them as 32-bit registers. */
367
368 static int
369 mips2_fp_compat (void)
370 {
371 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
372 meaningful. */
373 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
374 4)
375 return 0;
376
377 #if 0
378 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
379 in all the places we deal with FP registers. PR gdb/413. */
380 /* Otherwise check the FR bit in the status register - it controls
381 the FP compatiblity mode. If it is clear we are in compatibility
382 mode. */
383 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
384 return 1;
385 #endif
386
387 return 0;
388 }
389
390 /* The amount of space reserved on the stack for registers. This is
391 different to MIPS_ABI_REGSIZE as it determines the alignment of
392 data allocated after the registers have run out. */
393
394 static const char *mips_stack_argsize_string = size_auto;
395
396 static unsigned int
397 mips_stack_argsize (struct gdbarch *gdbarch)
398 {
399 if (mips_stack_argsize_string == size_auto)
400 return mips_abi_regsize (gdbarch);
401 else if (mips_stack_argsize_string == size_64)
402 return 8;
403 else /* if (mips_stack_argsize_string == size_32) */
404 return 4;
405 }
406
407 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
408
409 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
410
411 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
412
413 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
414
415 static struct type *mips_float_register_type (void);
416 static struct type *mips_double_register_type (void);
417
418 /* The list of available "set mips " and "show mips " commands */
419
420 static struct cmd_list_element *setmipscmdlist = NULL;
421 static struct cmd_list_element *showmipscmdlist = NULL;
422
423 /* Integer registers 0 thru 31 are handled explicitly by
424 mips_register_name(). Processor specific registers 32 and above
425 are listed in the followign tables. */
426
427 enum
428 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
429
430 /* Generic MIPS. */
431
432 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
433 "sr", "lo", "hi", "bad", "cause", "pc",
434 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
435 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
436 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
437 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
438 "fsr", "fir", "" /*"fp" */ , "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 };
442
443 /* Names of IDT R3041 registers. */
444
445 static const char *mips_r3041_reg_names[] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "", /*"fp" */ "",
452 "", "", "bus", "ccfg", "", "", "", "",
453 "", "", "port", "cmp", "", "", "epc", "prid",
454 };
455
456 /* Names of tx39 registers. */
457
458 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "", "", "", "", "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 "", "", "", "", "", "", "", "",
463 "", "", "", "", "", "", "", "",
464 "", "", "", "",
465 "", "", "", "", "", "", "", "",
466 "", "", "config", "cache", "debug", "depc", "epc", ""
467 };
468
469 /* Names of IRIX registers. */
470 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
471 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
472 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
473 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
474 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
475 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
476 };
477
478
479 /* Return the name of the register corresponding to REGNO. */
480 static const char *
481 mips_register_name (int regno)
482 {
483 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
484 /* GPR names for all ABIs other than n32/n64. */
485 static char *mips_gpr_names[] = {
486 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
487 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
488 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
489 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
490 };
491
492 /* GPR names for n32 and n64 ABIs. */
493 static char *mips_n32_n64_gpr_names[] = {
494 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
495 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
496 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
497 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
498 };
499
500 enum mips_abi abi = mips_abi (current_gdbarch);
501
502 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
503 don't make the raw register names visible. */
504 int rawnum = regno % NUM_REGS;
505 if (regno < NUM_REGS)
506 return "";
507
508 /* The MIPS integer registers are always mapped from 0 to 31. The
509 names of the registers (which reflects the conventions regarding
510 register use) vary depending on the ABI. */
511 if (0 <= rawnum && rawnum < 32)
512 {
513 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
514 return mips_n32_n64_gpr_names[rawnum];
515 else
516 return mips_gpr_names[rawnum];
517 }
518 else if (32 <= rawnum && rawnum < NUM_REGS)
519 {
520 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
521 return tdep->mips_processor_reg_names[rawnum - 32];
522 }
523 else
524 internal_error (__FILE__, __LINE__,
525 _("mips_register_name: bad register number %d"), rawnum);
526 }
527
528 /* Return the groups that a MIPS register can be categorised into. */
529
530 static int
531 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
532 struct reggroup *reggroup)
533 {
534 int vector_p;
535 int float_p;
536 int raw_p;
537 int rawnum = regnum % NUM_REGS;
538 int pseudo = regnum / NUM_REGS;
539 if (reggroup == all_reggroup)
540 return pseudo;
541 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
542 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
543 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
544 (gdbarch), as not all architectures are multi-arch. */
545 raw_p = rawnum < NUM_REGS;
546 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
547 return 0;
548 if (reggroup == float_reggroup)
549 return float_p && pseudo;
550 if (reggroup == vector_reggroup)
551 return vector_p && pseudo;
552 if (reggroup == general_reggroup)
553 return (!vector_p && !float_p) && pseudo;
554 /* Save the pseudo registers. Need to make certain that any code
555 extracting register values from a saved register cache also uses
556 pseudo registers. */
557 if (reggroup == save_reggroup)
558 return raw_p && pseudo;
559 /* Restore the same pseudo register. */
560 if (reggroup == restore_reggroup)
561 return raw_p && pseudo;
562 return 0;
563 }
564
565 /* Map the symbol table registers which live in the range [1 *
566 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
567 registers. Take care of alignment and size problems. */
568
569 static void
570 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
571 int cookednum, void *buf)
572 {
573 int rawnum = cookednum % NUM_REGS;
574 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
575 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
576 regcache_raw_read (regcache, rawnum, buf);
577 else if (register_size (gdbarch, rawnum) >
578 register_size (gdbarch, cookednum))
579 {
580 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
581 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
582 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
583 else
584 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
585 }
586 else
587 internal_error (__FILE__, __LINE__, _("bad register size"));
588 }
589
590 static void
591 mips_pseudo_register_write (struct gdbarch *gdbarch,
592 struct regcache *regcache, int cookednum,
593 const void *buf)
594 {
595 int rawnum = cookednum % NUM_REGS;
596 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
597 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
598 regcache_raw_write (regcache, rawnum, buf);
599 else if (register_size (gdbarch, rawnum) >
600 register_size (gdbarch, cookednum))
601 {
602 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
603 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
604 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
605 else
606 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
607 }
608 else
609 internal_error (__FILE__, __LINE__, _("bad register size"));
610 }
611
612 /* Table to translate MIPS16 register field to actual register number. */
613 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
614
615 /* Heuristic_proc_start may hunt through the text section for a long
616 time across a 2400 baud serial line. Allows the user to limit this
617 search. */
618
619 static unsigned int heuristic_fence_post = 0;
620
621 /* Number of bytes of storage in the actual machine representation for
622 register N. NOTE: This defines the pseudo register type so need to
623 rebuild the architecture vector. */
624
625 static int mips64_transfers_32bit_regs_p = 0;
626
627 static void
628 set_mips64_transfers_32bit_regs (char *args, int from_tty,
629 struct cmd_list_element *c)
630 {
631 struct gdbarch_info info;
632 gdbarch_info_init (&info);
633 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
634 instead of relying on globals. Doing that would let generic code
635 handle the search for this specific architecture. */
636 if (!gdbarch_update_p (info))
637 {
638 mips64_transfers_32bit_regs_p = 0;
639 error (_("32-bit compatibility mode not supported"));
640 }
641 }
642
643 /* Convert to/from a register and the corresponding memory value. */
644
645 static int
646 mips_convert_register_p (int regnum, struct type *type)
647 {
648 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
649 && register_size (current_gdbarch, regnum) == 4
650 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
651 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
652 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
653 }
654
655 static void
656 mips_register_to_value (struct frame_info *frame, int regnum,
657 struct type *type, void *to)
658 {
659 get_frame_register (frame, regnum + 0, (char *) to + 4);
660 get_frame_register (frame, regnum + 1, (char *) to + 0);
661 }
662
663 static void
664 mips_value_to_register (struct frame_info *frame, int regnum,
665 struct type *type, const void *from)
666 {
667 put_frame_register (frame, regnum + 0, (const char *) from + 4);
668 put_frame_register (frame, regnum + 1, (const char *) from + 0);
669 }
670
671 /* Return the GDB type object for the "standard" data type of data in
672 register REG. */
673
674 static struct type *
675 mips_register_type (struct gdbarch *gdbarch, int regnum)
676 {
677 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
678 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
679 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
680 {
681 /* The floating-point registers raw, or cooked, always match
682 mips_isa_regsize(), and also map 1:1, byte for byte. */
683 switch (gdbarch_byte_order (gdbarch))
684 {
685 case BFD_ENDIAN_BIG:
686 if (mips_isa_regsize (gdbarch) == 4)
687 return builtin_type_ieee_single_big;
688 else
689 return builtin_type_ieee_double_big;
690 case BFD_ENDIAN_LITTLE:
691 if (mips_isa_regsize (gdbarch) == 4)
692 return builtin_type_ieee_single_little;
693 else
694 return builtin_type_ieee_double_little;
695 case BFD_ENDIAN_UNKNOWN:
696 default:
697 internal_error (__FILE__, __LINE__, _("bad switch"));
698 }
699 }
700 else if (regnum < NUM_REGS)
701 {
702 /* The raw or ISA registers. These are all sized according to
703 the ISA regsize. */
704 if (mips_isa_regsize (gdbarch) == 4)
705 return builtin_type_int32;
706 else
707 return builtin_type_int64;
708 }
709 else
710 {
711 /* The cooked or ABI registers. These are sized according to
712 the ABI (with a few complications). */
713 if (regnum >= (NUM_REGS
714 + mips_regnum (current_gdbarch)->fp_control_status)
715 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32;
719 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
720 /* The target, while possibly using a 64-bit register buffer,
721 is only transfering 32-bits of each integer register.
722 Reflect this in the cooked/pseudo (ABI) register value. */
723 return builtin_type_int32;
724 else if (mips_abi_regsize (gdbarch) == 4)
725 /* The ABI is restricted to 32-bit registers (the ISA could be
726 32- or 64-bit). */
727 return builtin_type_int32;
728 else
729 /* 64-bit ABI. */
730 return builtin_type_int64;
731 }
732 }
733
734 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
735
736 static CORE_ADDR
737 mips_read_sp (void)
738 {
739 return read_signed_register (MIPS_SP_REGNUM);
740 }
741
742 /* Should the upper word of 64-bit addresses be zeroed? */
743 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
744
745 static int
746 mips_mask_address_p (struct gdbarch_tdep *tdep)
747 {
748 switch (mask_address_var)
749 {
750 case AUTO_BOOLEAN_TRUE:
751 return 1;
752 case AUTO_BOOLEAN_FALSE:
753 return 0;
754 break;
755 case AUTO_BOOLEAN_AUTO:
756 return tdep->default_mask_address_p;
757 default:
758 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
759 return -1;
760 }
761 }
762
763 static void
764 show_mask_address (struct ui_file *file, int from_tty,
765 struct cmd_list_element *c, const char *value)
766 {
767 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
768
769 deprecated_show_value_hack (file, from_tty, c, value);
770 switch (mask_address_var)
771 {
772 case AUTO_BOOLEAN_TRUE:
773 printf_filtered ("The 32 bit mips address mask is enabled\n");
774 break;
775 case AUTO_BOOLEAN_FALSE:
776 printf_filtered ("The 32 bit mips address mask is disabled\n");
777 break;
778 case AUTO_BOOLEAN_AUTO:
779 printf_filtered
780 ("The 32 bit address mask is set automatically. Currently %s\n",
781 mips_mask_address_p (tdep) ? "enabled" : "disabled");
782 break;
783 default:
784 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
785 break;
786 }
787 }
788
789 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
790
791 int
792 mips_pc_is_mips16 (CORE_ADDR memaddr)
793 {
794 struct minimal_symbol *sym;
795
796 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
797 if (is_mips16_addr (memaddr))
798 return 1;
799
800 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
801 the high bit of the info field. Use this to decide if the function is
802 MIPS16 or normal MIPS. */
803 sym = lookup_minimal_symbol_by_pc (memaddr);
804 if (sym)
805 return msymbol_is_special (sym);
806 else
807 return 0;
808 }
809
810 /* MIPS believes that the PC has a sign extended value. Perhaps the
811 all registers should be sign extended for simplicity? */
812
813 static CORE_ADDR
814 mips_read_pc (ptid_t ptid)
815 {
816 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
817 }
818
819 static CORE_ADDR
820 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
821 {
822 return frame_unwind_register_signed (next_frame,
823 NUM_REGS + mips_regnum (gdbarch)->pc);
824 }
825
826 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
827 dummy frame. The frame ID's base needs to match the TOS value
828 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
829 breakpoint. */
830
831 static struct frame_id
832 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
833 {
834 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
835 frame_pc_unwind (next_frame));
836 }
837
838 static void
839 mips_write_pc (CORE_ADDR pc, ptid_t ptid)
840 {
841 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
842 }
843
844 /* Fetch and return instruction from the specified location. If the PC
845 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
846
847 static ULONGEST
848 mips_fetch_instruction (CORE_ADDR addr)
849 {
850 char buf[MIPS_INSN32_SIZE];
851 int instlen;
852 int status;
853
854 if (mips_pc_is_mips16 (addr))
855 {
856 instlen = MIPS_INSN16_SIZE;
857 addr = unmake_mips16_addr (addr);
858 }
859 else
860 instlen = MIPS_INSN32_SIZE;
861 status = deprecated_read_memory_nobpt (addr, buf, instlen);
862 if (status)
863 memory_error (status, addr);
864 return extract_unsigned_integer (buf, instlen);
865 }
866
867 /* These the fields of 32 bit mips instructions */
868 #define mips32_op(x) (x >> 26)
869 #define itype_op(x) (x >> 26)
870 #define itype_rs(x) ((x >> 21) & 0x1f)
871 #define itype_rt(x) ((x >> 16) & 0x1f)
872 #define itype_immediate(x) (x & 0xffff)
873
874 #define jtype_op(x) (x >> 26)
875 #define jtype_target(x) (x & 0x03ffffff)
876
877 #define rtype_op(x) (x >> 26)
878 #define rtype_rs(x) ((x >> 21) & 0x1f)
879 #define rtype_rt(x) ((x >> 16) & 0x1f)
880 #define rtype_rd(x) ((x >> 11) & 0x1f)
881 #define rtype_shamt(x) ((x >> 6) & 0x1f)
882 #define rtype_funct(x) (x & 0x3f)
883
884 static LONGEST
885 mips32_relative_offset (ULONGEST inst)
886 {
887 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
888 }
889
890 /* Determine whate to set a single step breakpoint while considering
891 branch prediction */
892 static CORE_ADDR
893 mips32_next_pc (CORE_ADDR pc)
894 {
895 unsigned long inst;
896 int op;
897 inst = mips_fetch_instruction (pc);
898 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
899 {
900 if (itype_op (inst) >> 2 == 5)
901 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
902 {
903 op = (itype_op (inst) & 0x03);
904 switch (op)
905 {
906 case 0: /* BEQL */
907 goto equal_branch;
908 case 1: /* BNEL */
909 goto neq_branch;
910 case 2: /* BLEZL */
911 goto less_branch;
912 case 3: /* BGTZ */
913 goto greater_branch;
914 default:
915 pc += 4;
916 }
917 }
918 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
919 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
920 {
921 int tf = itype_rt (inst) & 0x01;
922 int cnum = itype_rt (inst) >> 2;
923 int fcrcs =
924 read_signed_register (mips_regnum (current_gdbarch)->
925 fp_control_status);
926 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
927
928 if (((cond >> cnum) & 0x01) == tf)
929 pc += mips32_relative_offset (inst) + 4;
930 else
931 pc += 8;
932 }
933 else
934 pc += 4; /* Not a branch, next instruction is easy */
935 }
936 else
937 { /* This gets way messy */
938
939 /* Further subdivide into SPECIAL, REGIMM and other */
940 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
941 {
942 case 0: /* SPECIAL */
943 op = rtype_funct (inst);
944 switch (op)
945 {
946 case 8: /* JR */
947 case 9: /* JALR */
948 /* Set PC to that address */
949 pc = read_signed_register (rtype_rs (inst));
950 break;
951 default:
952 pc += 4;
953 }
954
955 break; /* end SPECIAL */
956 case 1: /* REGIMM */
957 {
958 op = itype_rt (inst); /* branch condition */
959 switch (op)
960 {
961 case 0: /* BLTZ */
962 case 2: /* BLTZL */
963 case 16: /* BLTZAL */
964 case 18: /* BLTZALL */
965 less_branch:
966 if (read_signed_register (itype_rs (inst)) < 0)
967 pc += mips32_relative_offset (inst) + 4;
968 else
969 pc += 8; /* after the delay slot */
970 break;
971 case 1: /* BGEZ */
972 case 3: /* BGEZL */
973 case 17: /* BGEZAL */
974 case 19: /* BGEZALL */
975 if (read_signed_register (itype_rs (inst)) >= 0)
976 pc += mips32_relative_offset (inst) + 4;
977 else
978 pc += 8; /* after the delay slot */
979 break;
980 /* All of the other instructions in the REGIMM category */
981 default:
982 pc += 4;
983 }
984 }
985 break; /* end REGIMM */
986 case 2: /* J */
987 case 3: /* JAL */
988 {
989 unsigned long reg;
990 reg = jtype_target (inst) << 2;
991 /* Upper four bits get never changed... */
992 pc = reg + ((pc + 4) & 0xf0000000);
993 }
994 break;
995 /* FIXME case JALX : */
996 {
997 unsigned long reg;
998 reg = jtype_target (inst) << 2;
999 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1000 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1001 }
1002 break; /* The new PC will be alternate mode */
1003 case 4: /* BEQ, BEQL */
1004 equal_branch:
1005 if (read_signed_register (itype_rs (inst)) ==
1006 read_signed_register (itype_rt (inst)))
1007 pc += mips32_relative_offset (inst) + 4;
1008 else
1009 pc += 8;
1010 break;
1011 case 5: /* BNE, BNEL */
1012 neq_branch:
1013 if (read_signed_register (itype_rs (inst)) !=
1014 read_signed_register (itype_rt (inst)))
1015 pc += mips32_relative_offset (inst) + 4;
1016 else
1017 pc += 8;
1018 break;
1019 case 6: /* BLEZ, BLEZL */
1020 if (read_signed_register (itype_rs (inst)) <= 0)
1021 pc += mips32_relative_offset (inst) + 4;
1022 else
1023 pc += 8;
1024 break;
1025 case 7:
1026 default:
1027 greater_branch: /* BGTZ, BGTZL */
1028 if (read_signed_register (itype_rs (inst)) > 0)
1029 pc += mips32_relative_offset (inst) + 4;
1030 else
1031 pc += 8;
1032 break;
1033 } /* switch */
1034 } /* else */
1035 return pc;
1036 } /* mips32_next_pc */
1037
1038 /* Decoding the next place to set a breakpoint is irregular for the
1039 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1040 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1041 We dont want to set a single step instruction on the extend instruction
1042 either.
1043 */
1044
1045 /* Lots of mips16 instruction formats */
1046 /* Predicting jumps requires itype,ritype,i8type
1047 and their extensions extItype,extritype,extI8type
1048 */
1049 enum mips16_inst_fmts
1050 {
1051 itype, /* 0 immediate 5,10 */
1052 ritype, /* 1 5,3,8 */
1053 rrtype, /* 2 5,3,3,5 */
1054 rritype, /* 3 5,3,3,5 */
1055 rrrtype, /* 4 5,3,3,3,2 */
1056 rriatype, /* 5 5,3,3,1,4 */
1057 shifttype, /* 6 5,3,3,3,2 */
1058 i8type, /* 7 5,3,8 */
1059 i8movtype, /* 8 5,3,3,5 */
1060 i8mov32rtype, /* 9 5,3,5,3 */
1061 i64type, /* 10 5,3,8 */
1062 ri64type, /* 11 5,3,3,5 */
1063 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1064 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1065 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1066 extRRItype, /* 15 5,5,5,5,3,3,5 */
1067 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1068 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1069 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1070 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1071 extRi64type, /* 20 5,6,5,5,3,3,5 */
1072 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1073 };
1074 /* I am heaping all the fields of the formats into one structure and
1075 then, only the fields which are involved in instruction extension */
1076 struct upk_mips16
1077 {
1078 CORE_ADDR offset;
1079 unsigned int regx; /* Function in i8 type */
1080 unsigned int regy;
1081 };
1082
1083
1084 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1085 for the bits which make up the immediatate extension. */
1086
1087 static CORE_ADDR
1088 extended_offset (unsigned int extension)
1089 {
1090 CORE_ADDR value;
1091 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1092 value = value << 6;
1093 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1094 value = value << 5;
1095 value |= extension & 0x01f; /* extract 4:0 */
1096 return value;
1097 }
1098
1099 /* Only call this function if you know that this is an extendable
1100 instruction, It wont malfunction, but why make excess remote memory references?
1101 If the immediate operands get sign extended or somthing, do it after
1102 the extension is performed.
1103 */
1104 /* FIXME: Every one of these cases needs to worry about sign extension
1105 when the offset is to be used in relative addressing */
1106
1107
1108 static unsigned int
1109 fetch_mips_16 (CORE_ADDR pc)
1110 {
1111 char buf[8];
1112 pc &= 0xfffffffe; /* clear the low order bit */
1113 target_read_memory (pc, buf, 2);
1114 return extract_unsigned_integer (buf, 2);
1115 }
1116
1117 static void
1118 unpack_mips16 (CORE_ADDR pc,
1119 unsigned int extension,
1120 unsigned int inst,
1121 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1122 {
1123 CORE_ADDR offset;
1124 int regx;
1125 int regy;
1126 switch (insn_format)
1127 {
1128 case itype:
1129 {
1130 CORE_ADDR value;
1131 if (extension)
1132 {
1133 value = extended_offset (extension);
1134 value = value << 11; /* rom for the original value */
1135 value |= inst & 0x7ff; /* eleven bits from instruction */
1136 }
1137 else
1138 {
1139 value = inst & 0x7ff;
1140 /* FIXME : Consider sign extension */
1141 }
1142 offset = value;
1143 regx = -1;
1144 regy = -1;
1145 }
1146 break;
1147 case ritype:
1148 case i8type:
1149 { /* A register identifier and an offset */
1150 /* Most of the fields are the same as I type but the
1151 immediate value is of a different length */
1152 CORE_ADDR value;
1153 if (extension)
1154 {
1155 value = extended_offset (extension);
1156 value = value << 8; /* from the original instruction */
1157 value |= inst & 0xff; /* eleven bits from instruction */
1158 regx = (extension >> 8) & 0x07; /* or i8 funct */
1159 if (value & 0x4000) /* test the sign bit , bit 26 */
1160 {
1161 value &= ~0x3fff; /* remove the sign bit */
1162 value = -value;
1163 }
1164 }
1165 else
1166 {
1167 value = inst & 0xff; /* 8 bits */
1168 regx = (inst >> 8) & 0x07; /* or i8 funct */
1169 /* FIXME: Do sign extension , this format needs it */
1170 if (value & 0x80) /* THIS CONFUSES ME */
1171 {
1172 value &= 0xef; /* remove the sign bit */
1173 value = -value;
1174 }
1175 }
1176 offset = value;
1177 regy = -1;
1178 break;
1179 }
1180 case jalxtype:
1181 {
1182 unsigned long value;
1183 unsigned int nexthalf;
1184 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1185 value = value << 16;
1186 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1187 value |= nexthalf;
1188 offset = value;
1189 regx = -1;
1190 regy = -1;
1191 break;
1192 }
1193 default:
1194 internal_error (__FILE__, __LINE__, _("bad switch"));
1195 }
1196 upk->offset = offset;
1197 upk->regx = regx;
1198 upk->regy = regy;
1199 }
1200
1201
1202 static CORE_ADDR
1203 add_offset_16 (CORE_ADDR pc, int offset)
1204 {
1205 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1206 }
1207
1208 static CORE_ADDR
1209 extended_mips16_next_pc (CORE_ADDR pc,
1210 unsigned int extension, unsigned int insn)
1211 {
1212 int op = (insn >> 11);
1213 switch (op)
1214 {
1215 case 2: /* Branch */
1216 {
1217 CORE_ADDR offset;
1218 struct upk_mips16 upk;
1219 unpack_mips16 (pc, extension, insn, itype, &upk);
1220 offset = upk.offset;
1221 if (offset & 0x800)
1222 {
1223 offset &= 0xeff;
1224 offset = -offset;
1225 }
1226 pc += (offset << 1) + 2;
1227 break;
1228 }
1229 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1230 {
1231 struct upk_mips16 upk;
1232 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1233 pc = add_offset_16 (pc, upk.offset);
1234 if ((insn >> 10) & 0x01) /* Exchange mode */
1235 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1236 else
1237 pc |= 0x01;
1238 break;
1239 }
1240 case 4: /* beqz */
1241 {
1242 struct upk_mips16 upk;
1243 int reg;
1244 unpack_mips16 (pc, extension, insn, ritype, &upk);
1245 reg = read_signed_register (upk.regx);
1246 if (reg == 0)
1247 pc += (upk.offset << 1) + 2;
1248 else
1249 pc += 2;
1250 break;
1251 }
1252 case 5: /* bnez */
1253 {
1254 struct upk_mips16 upk;
1255 int reg;
1256 unpack_mips16 (pc, extension, insn, ritype, &upk);
1257 reg = read_signed_register (upk.regx);
1258 if (reg != 0)
1259 pc += (upk.offset << 1) + 2;
1260 else
1261 pc += 2;
1262 break;
1263 }
1264 case 12: /* I8 Formats btez btnez */
1265 {
1266 struct upk_mips16 upk;
1267 int reg;
1268 unpack_mips16 (pc, extension, insn, i8type, &upk);
1269 /* upk.regx contains the opcode */
1270 reg = read_signed_register (24); /* Test register is 24 */
1271 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1272 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1273 /* pc = add_offset_16(pc,upk.offset) ; */
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
1279 case 29: /* RR Formats JR, JALR, JALR-RA */
1280 {
1281 struct upk_mips16 upk;
1282 /* upk.fmt = rrtype; */
1283 op = insn & 0x1f;
1284 if (op == 0)
1285 {
1286 int reg;
1287 upk.regx = (insn >> 8) & 0x07;
1288 upk.regy = (insn >> 5) & 0x07;
1289 switch (upk.regy)
1290 {
1291 case 0:
1292 reg = upk.regx;
1293 break;
1294 case 1:
1295 reg = 31;
1296 break; /* Function return instruction */
1297 case 2:
1298 reg = upk.regx;
1299 break;
1300 default:
1301 reg = 31;
1302 break; /* BOGUS Guess */
1303 }
1304 pc = read_signed_register (reg);
1305 }
1306 else
1307 pc += 2;
1308 break;
1309 }
1310 case 30:
1311 /* This is an instruction extension. Fetch the real instruction
1312 (which follows the extension) and decode things based on
1313 that. */
1314 {
1315 pc += 2;
1316 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1317 break;
1318 }
1319 default:
1320 {
1321 pc += 2;
1322 break;
1323 }
1324 }
1325 return pc;
1326 }
1327
1328 static CORE_ADDR
1329 mips16_next_pc (CORE_ADDR pc)
1330 {
1331 unsigned int insn = fetch_mips_16 (pc);
1332 return extended_mips16_next_pc (pc, 0, insn);
1333 }
1334
1335 /* The mips_next_pc function supports single_step when the remote
1336 target monitor or stub is not developed enough to do a single_step.
1337 It works by decoding the current instruction and predicting where a
1338 branch will go. This isnt hard because all the data is available.
1339 The MIPS32 and MIPS16 variants are quite different */
1340 CORE_ADDR
1341 mips_next_pc (CORE_ADDR pc)
1342 {
1343 if (pc & 0x01)
1344 return mips16_next_pc (pc);
1345 else
1346 return mips32_next_pc (pc);
1347 }
1348
1349 struct mips_frame_cache
1350 {
1351 CORE_ADDR base;
1352 struct trad_frame_saved_reg *saved_regs;
1353 };
1354
1355 /* Set a register's saved stack address in temp_saved_regs. If an
1356 address has already been set for this register, do nothing; this
1357 way we will only recognize the first save of a given register in a
1358 function prologue.
1359
1360 For simplicity, save the address in both [0 .. NUM_REGS) and
1361 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1362 is used as it is only second range (the ABI instead of ISA
1363 registers) that comes into play when finding saved registers in a
1364 frame. */
1365
1366 static void
1367 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1368 CORE_ADDR offset)
1369 {
1370 if (this_cache != NULL
1371 && this_cache->saved_regs[regnum].addr == -1)
1372 {
1373 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1374 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1375 }
1376 }
1377
1378
1379 /* Fetch the immediate value from a MIPS16 instruction.
1380 If the previous instruction was an EXTEND, use it to extend
1381 the upper bits of the immediate value. This is a helper function
1382 for mips16_scan_prologue. */
1383
1384 static int
1385 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1386 unsigned short inst, /* current instruction */
1387 int nbits, /* number of bits in imm field */
1388 int scale, /* scale factor to be applied to imm */
1389 int is_signed) /* is the imm field signed? */
1390 {
1391 int offset;
1392
1393 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1394 {
1395 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1396 if (offset & 0x8000) /* check for negative extend */
1397 offset = 0 - (0x10000 - (offset & 0xffff));
1398 return offset | (inst & 0x1f);
1399 }
1400 else
1401 {
1402 int max_imm = 1 << nbits;
1403 int mask = max_imm - 1;
1404 int sign_bit = max_imm >> 1;
1405
1406 offset = inst & mask;
1407 if (is_signed && (offset & sign_bit))
1408 offset = 0 - (max_imm - offset);
1409 return offset * scale;
1410 }
1411 }
1412
1413
1414 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1415 the associated FRAME_CACHE if not null.
1416 Return the address of the first instruction past the prologue. */
1417
1418 static CORE_ADDR
1419 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1420 struct frame_info *next_frame,
1421 struct mips_frame_cache *this_cache)
1422 {
1423 CORE_ADDR cur_pc;
1424 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1425 CORE_ADDR sp;
1426 long frame_offset = 0; /* Size of stack frame. */
1427 long frame_adjust = 0; /* Offset of FP from SP. */
1428 int frame_reg = MIPS_SP_REGNUM;
1429 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1430 unsigned inst = 0; /* current instruction */
1431 unsigned entry_inst = 0; /* the entry instruction */
1432 int reg, offset;
1433
1434 int extend_bytes = 0;
1435 int prev_extend_bytes;
1436 CORE_ADDR end_prologue_addr = 0;
1437
1438 /* Can be called when there's no process, and hence when there's no
1439 NEXT_FRAME. */
1440 if (next_frame != NULL)
1441 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1442 else
1443 sp = 0;
1444
1445 if (limit_pc > start_pc + 200)
1446 limit_pc = start_pc + 200;
1447
1448 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1449 {
1450 /* Save the previous instruction. If it's an EXTEND, we'll extract
1451 the immediate offset extension from it in mips16_get_imm. */
1452 prev_inst = inst;
1453
1454 /* Fetch and decode the instruction. */
1455 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1456
1457 /* Normally we ignore extend instructions. However, if it is
1458 not followed by a valid prologue instruction, then this
1459 instruction is not part of the prologue either. We must
1460 remember in this case to adjust the end_prologue_addr back
1461 over the extend. */
1462 if ((inst & 0xf800) == 0xf000) /* extend */
1463 {
1464 extend_bytes = MIPS_INSN16_SIZE;
1465 continue;
1466 }
1467
1468 prev_extend_bytes = extend_bytes;
1469 extend_bytes = 0;
1470
1471 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1472 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1473 {
1474 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1475 if (offset < 0) /* negative stack adjustment? */
1476 frame_offset -= offset;
1477 else
1478 /* Exit loop if a positive stack adjustment is found, which
1479 usually means that the stack cleanup code in the function
1480 epilogue is reached. */
1481 break;
1482 }
1483 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1484 {
1485 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1486 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1487 set_reg_offset (this_cache, reg, sp + offset);
1488 }
1489 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1490 {
1491 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1492 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1493 set_reg_offset (this_cache, reg, sp + offset);
1494 }
1495 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1496 {
1497 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1498 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1499 }
1500 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1501 {
1502 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1503 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1504 }
1505 else if (inst == 0x673d) /* move $s1, $sp */
1506 {
1507 frame_addr = sp;
1508 frame_reg = 17;
1509 }
1510 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1511 {
1512 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1513 frame_addr = sp + offset;
1514 frame_reg = 17;
1515 frame_adjust = offset;
1516 }
1517 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1518 {
1519 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1520 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1521 set_reg_offset (this_cache, reg, frame_addr + offset);
1522 }
1523 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1524 {
1525 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1526 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1527 set_reg_offset (this_cache, reg, frame_addr + offset);
1528 }
1529 else if ((inst & 0xf81f) == 0xe809
1530 && (inst & 0x700) != 0x700) /* entry */
1531 entry_inst = inst; /* save for later processing */
1532 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1533 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1534 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1535 {
1536 /* This instruction is part of the prologue, but we don't
1537 need to do anything special to handle it. */
1538 }
1539 else
1540 {
1541 /* This instruction is not an instruction typically found
1542 in a prologue, so we must have reached the end of the
1543 prologue. */
1544 if (end_prologue_addr == 0)
1545 end_prologue_addr = cur_pc - prev_extend_bytes;
1546 }
1547 }
1548
1549 /* The entry instruction is typically the first instruction in a function,
1550 and it stores registers at offsets relative to the value of the old SP
1551 (before the prologue). But the value of the sp parameter to this
1552 function is the new SP (after the prologue has been executed). So we
1553 can't calculate those offsets until we've seen the entire prologue,
1554 and can calculate what the old SP must have been. */
1555 if (entry_inst != 0)
1556 {
1557 int areg_count = (entry_inst >> 8) & 7;
1558 int sreg_count = (entry_inst >> 6) & 3;
1559
1560 /* The entry instruction always subtracts 32 from the SP. */
1561 frame_offset += 32;
1562
1563 /* Now we can calculate what the SP must have been at the
1564 start of the function prologue. */
1565 sp += frame_offset;
1566
1567 /* Check if a0-a3 were saved in the caller's argument save area. */
1568 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1569 {
1570 set_reg_offset (this_cache, reg, sp + offset);
1571 offset += mips_abi_regsize (current_gdbarch);
1572 }
1573
1574 /* Check if the ra register was pushed on the stack. */
1575 offset = -4;
1576 if (entry_inst & 0x20)
1577 {
1578 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1579 offset -= mips_abi_regsize (current_gdbarch);
1580 }
1581
1582 /* Check if the s0 and s1 registers were pushed on the stack. */
1583 for (reg = 16; reg < sreg_count + 16; reg++)
1584 {
1585 set_reg_offset (this_cache, reg, sp + offset);
1586 offset -= mips_abi_regsize (current_gdbarch);
1587 }
1588 }
1589
1590 if (this_cache != NULL)
1591 {
1592 this_cache->base =
1593 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1594 + frame_offset - frame_adjust);
1595 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1596 be able to get rid of the assignment below, evetually. But it's
1597 still needed for now. */
1598 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1599 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1600 }
1601
1602 /* If we didn't reach the end of the prologue when scanning the function
1603 instructions, then set end_prologue_addr to the address of the
1604 instruction immediately after the last one we scanned. */
1605 if (end_prologue_addr == 0)
1606 end_prologue_addr = cur_pc;
1607
1608 return end_prologue_addr;
1609 }
1610
1611 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1612 Procedures that use the 32-bit instruction set are handled by the
1613 mips_insn32 unwinder. */
1614
1615 static struct mips_frame_cache *
1616 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1617 {
1618 struct mips_frame_cache *cache;
1619
1620 if ((*this_cache) != NULL)
1621 return (*this_cache);
1622 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1623 (*this_cache) = cache;
1624 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1625
1626 /* Analyze the function prologue. */
1627 {
1628 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1629 CORE_ADDR start_addr;
1630
1631 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1632 if (start_addr == 0)
1633 start_addr = heuristic_proc_start (pc);
1634 /* We can't analyze the prologue if we couldn't find the begining
1635 of the function. */
1636 if (start_addr == 0)
1637 return cache;
1638
1639 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1640 }
1641
1642 /* SP_REGNUM, contains the value and not the address. */
1643 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1644
1645 return (*this_cache);
1646 }
1647
1648 static void
1649 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1650 struct frame_id *this_id)
1651 {
1652 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1653 this_cache);
1654 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1655 }
1656
1657 static void
1658 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1659 void **this_cache,
1660 int regnum, int *optimizedp,
1661 enum lval_type *lvalp, CORE_ADDR *addrp,
1662 int *realnump, void *valuep)
1663 {
1664 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1665 this_cache);
1666 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1667 optimizedp, lvalp, addrp, realnump, valuep);
1668 }
1669
1670 static const struct frame_unwind mips_insn16_frame_unwind =
1671 {
1672 NORMAL_FRAME,
1673 mips_insn16_frame_this_id,
1674 mips_insn16_frame_prev_register
1675 };
1676
1677 static const struct frame_unwind *
1678 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1679 {
1680 CORE_ADDR pc = frame_pc_unwind (next_frame);
1681 if (mips_pc_is_mips16 (pc))
1682 return &mips_insn16_frame_unwind;
1683 return NULL;
1684 }
1685
1686 static CORE_ADDR
1687 mips_insn16_frame_base_address (struct frame_info *next_frame,
1688 void **this_cache)
1689 {
1690 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1691 this_cache);
1692 return info->base;
1693 }
1694
1695 static const struct frame_base mips_insn16_frame_base =
1696 {
1697 &mips_insn16_frame_unwind,
1698 mips_insn16_frame_base_address,
1699 mips_insn16_frame_base_address,
1700 mips_insn16_frame_base_address
1701 };
1702
1703 static const struct frame_base *
1704 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1705 {
1706 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1707 return &mips_insn16_frame_base;
1708 else
1709 return NULL;
1710 }
1711
1712 /* Mark all the registers as unset in the saved_regs array
1713 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1714
1715 void
1716 reset_saved_regs (struct mips_frame_cache *this_cache)
1717 {
1718 if (this_cache == NULL || this_cache->saved_regs == NULL)
1719 return;
1720
1721 {
1722 const int num_regs = NUM_REGS;
1723 int i;
1724
1725 for (i = 0; i < num_regs; i++)
1726 {
1727 this_cache->saved_regs[i].addr = -1;
1728 }
1729 }
1730 }
1731
1732 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1733 the associated FRAME_CACHE if not null.
1734 Return the address of the first instruction past the prologue. */
1735
1736 static CORE_ADDR
1737 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1738 struct frame_info *next_frame,
1739 struct mips_frame_cache *this_cache)
1740 {
1741 CORE_ADDR cur_pc;
1742 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1743 CORE_ADDR sp;
1744 long frame_offset;
1745 int frame_reg = MIPS_SP_REGNUM;
1746
1747 CORE_ADDR end_prologue_addr = 0;
1748 int seen_sp_adjust = 0;
1749 int load_immediate_bytes = 0;
1750
1751 /* Can be called when there's no process, and hence when there's no
1752 NEXT_FRAME. */
1753 if (next_frame != NULL)
1754 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1755 else
1756 sp = 0;
1757
1758 if (limit_pc > start_pc + 200)
1759 limit_pc = start_pc + 200;
1760
1761 restart:
1762
1763 frame_offset = 0;
1764 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1765 {
1766 unsigned long inst, high_word, low_word;
1767 int reg;
1768
1769 /* Fetch the instruction. */
1770 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1771
1772 /* Save some code by pre-extracting some useful fields. */
1773 high_word = (inst >> 16) & 0xffff;
1774 low_word = inst & 0xffff;
1775 reg = high_word & 0x1f;
1776
1777 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1778 || high_word == 0x23bd /* addi $sp,$sp,-i */
1779 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1780 {
1781 if (low_word & 0x8000) /* negative stack adjustment? */
1782 frame_offset += 0x10000 - low_word;
1783 else
1784 /* Exit loop if a positive stack adjustment is found, which
1785 usually means that the stack cleanup code in the function
1786 epilogue is reached. */
1787 break;
1788 seen_sp_adjust = 1;
1789 }
1790 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1791 {
1792 set_reg_offset (this_cache, reg, sp + low_word);
1793 }
1794 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1795 {
1796 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1797 set_reg_offset (this_cache, reg, sp + low_word);
1798 }
1799 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1800 {
1801 /* Old gcc frame, r30 is virtual frame pointer. */
1802 if ((long) low_word != frame_offset)
1803 frame_addr = sp + low_word;
1804 else if (frame_reg == MIPS_SP_REGNUM)
1805 {
1806 unsigned alloca_adjust;
1807
1808 frame_reg = 30;
1809 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1810 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1811 if (alloca_adjust > 0)
1812 {
1813 /* FP > SP + frame_size. This may be because of
1814 an alloca or somethings similar. Fix sp to
1815 "pre-alloca" value, and try again. */
1816 sp += alloca_adjust;
1817 /* Need to reset the status of all registers. Otherwise,
1818 we will hit a guard that prevents the new address
1819 for each register to be recomputed during the second
1820 pass. */
1821 reset_saved_regs (this_cache);
1822 goto restart;
1823 }
1824 }
1825 }
1826 /* move $30,$sp. With different versions of gas this will be either
1827 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1828 Accept any one of these. */
1829 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1830 {
1831 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1832 if (frame_reg == MIPS_SP_REGNUM)
1833 {
1834 unsigned alloca_adjust;
1835
1836 frame_reg = 30;
1837 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1838 alloca_adjust = (unsigned) (frame_addr - sp);
1839 if (alloca_adjust > 0)
1840 {
1841 /* FP > SP + frame_size. This may be because of
1842 an alloca or somethings similar. Fix sp to
1843 "pre-alloca" value, and try again. */
1844 sp = frame_addr;
1845 /* Need to reset the status of all registers. Otherwise,
1846 we will hit a guard that prevents the new address
1847 for each register to be recomputed during the second
1848 pass. */
1849 reset_saved_regs (this_cache);
1850 goto restart;
1851 }
1852 }
1853 }
1854 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1855 {
1856 set_reg_offset (this_cache, reg, frame_addr + low_word);
1857 }
1858 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1859 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1860 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1861 || high_word == 0x3c1c /* lui $gp,n */
1862 || high_word == 0x279c /* addiu $gp,$gp,n */
1863 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1864 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1865 )
1866 {
1867 /* These instructions are part of the prologue, but we don't
1868 need to do anything special to handle them. */
1869 }
1870 /* The instructions below load $at or $t0 with an immediate
1871 value in preparation for a stack adjustment via
1872 subu $sp,$sp,[$at,$t0]. These instructions could also
1873 initialize a local variable, so we accept them only before
1874 a stack adjustment instruction was seen. */
1875 else if (!seen_sp_adjust
1876 && (high_word == 0x3c01 /* lui $at,n */
1877 || high_word == 0x3c08 /* lui $t0,n */
1878 || high_word == 0x3421 /* ori $at,$at,n */
1879 || high_word == 0x3508 /* ori $t0,$t0,n */
1880 || high_word == 0x3401 /* ori $at,$zero,n */
1881 || high_word == 0x3408 /* ori $t0,$zero,n */
1882 ))
1883 {
1884 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
1885 }
1886 else
1887 {
1888 /* This instruction is not an instruction typically found
1889 in a prologue, so we must have reached the end of the
1890 prologue. */
1891 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1892 loop now? Why would we need to continue scanning the function
1893 instructions? */
1894 if (end_prologue_addr == 0)
1895 end_prologue_addr = cur_pc;
1896 }
1897 }
1898
1899 if (this_cache != NULL)
1900 {
1901 this_cache->base =
1902 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1903 + frame_offset);
1904 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1905 this assignment below, eventually. But it's still needed
1906 for now. */
1907 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1908 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1909 }
1910
1911 /* If we didn't reach the end of the prologue when scanning the function
1912 instructions, then set end_prologue_addr to the address of the
1913 instruction immediately after the last one we scanned. */
1914 /* brobecker/2004-10-10: I don't think this would ever happen, but
1915 we may as well be careful and do our best if we have a null
1916 end_prologue_addr. */
1917 if (end_prologue_addr == 0)
1918 end_prologue_addr = cur_pc;
1919
1920 /* In a frameless function, we might have incorrectly
1921 skipped some load immediate instructions. Undo the skipping
1922 if the load immediate was not followed by a stack adjustment. */
1923 if (load_immediate_bytes && !seen_sp_adjust)
1924 end_prologue_addr -= load_immediate_bytes;
1925
1926 return end_prologue_addr;
1927 }
1928
1929 /* Heuristic unwinder for procedures using 32-bit instructions (covers
1930 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1931 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1932 unwinder. */
1933
1934 static struct mips_frame_cache *
1935 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
1936 {
1937 struct mips_frame_cache *cache;
1938
1939 if ((*this_cache) != NULL)
1940 return (*this_cache);
1941
1942 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1943 (*this_cache) = cache;
1944 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1945
1946 /* Analyze the function prologue. */
1947 {
1948 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1949 CORE_ADDR start_addr;
1950
1951 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1952 if (start_addr == 0)
1953 start_addr = heuristic_proc_start (pc);
1954 /* We can't analyze the prologue if we couldn't find the begining
1955 of the function. */
1956 if (start_addr == 0)
1957 return cache;
1958
1959 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1960 }
1961
1962 /* SP_REGNUM, contains the value and not the address. */
1963 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1964
1965 return (*this_cache);
1966 }
1967
1968 static void
1969 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1970 struct frame_id *this_id)
1971 {
1972 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1973 this_cache);
1974 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1975 }
1976
1977 static void
1978 mips_insn32_frame_prev_register (struct frame_info *next_frame,
1979 void **this_cache,
1980 int regnum, int *optimizedp,
1981 enum lval_type *lvalp, CORE_ADDR *addrp,
1982 int *realnump, void *valuep)
1983 {
1984 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1985 this_cache);
1986 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1987 optimizedp, lvalp, addrp, realnump, valuep);
1988 }
1989
1990 static const struct frame_unwind mips_insn32_frame_unwind =
1991 {
1992 NORMAL_FRAME,
1993 mips_insn32_frame_this_id,
1994 mips_insn32_frame_prev_register
1995 };
1996
1997 static const struct frame_unwind *
1998 mips_insn32_frame_sniffer (struct frame_info *next_frame)
1999 {
2000 CORE_ADDR pc = frame_pc_unwind (next_frame);
2001 if (! mips_pc_is_mips16 (pc))
2002 return &mips_insn32_frame_unwind;
2003 return NULL;
2004 }
2005
2006 static CORE_ADDR
2007 mips_insn32_frame_base_address (struct frame_info *next_frame,
2008 void **this_cache)
2009 {
2010 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2011 this_cache);
2012 return info->base;
2013 }
2014
2015 static const struct frame_base mips_insn32_frame_base =
2016 {
2017 &mips_insn32_frame_unwind,
2018 mips_insn32_frame_base_address,
2019 mips_insn32_frame_base_address,
2020 mips_insn32_frame_base_address
2021 };
2022
2023 static const struct frame_base *
2024 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2025 {
2026 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2027 return &mips_insn32_frame_base;
2028 else
2029 return NULL;
2030 }
2031
2032 static struct trad_frame_cache *
2033 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2034 {
2035 CORE_ADDR pc;
2036 CORE_ADDR start_addr;
2037 CORE_ADDR stack_addr;
2038 struct trad_frame_cache *this_trad_cache;
2039
2040 if ((*this_cache) != NULL)
2041 return (*this_cache);
2042 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2043 (*this_cache) = this_trad_cache;
2044
2045 /* The return address is in the link register. */
2046 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
2047
2048 /* Frame ID, since it's a frameless / stackless function, no stack
2049 space is allocated and SP on entry is the current SP. */
2050 pc = frame_pc_unwind (next_frame);
2051 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2052 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2053 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2054
2055 /* Assume that the frame's base is the same as the
2056 stack-pointer. */
2057 trad_frame_set_this_base (this_trad_cache, stack_addr);
2058
2059 return this_trad_cache;
2060 }
2061
2062 static void
2063 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2064 struct frame_id *this_id)
2065 {
2066 struct trad_frame_cache *this_trad_cache
2067 = mips_stub_frame_cache (next_frame, this_cache);
2068 trad_frame_get_id (this_trad_cache, this_id);
2069 }
2070
2071 static void
2072 mips_stub_frame_prev_register (struct frame_info *next_frame,
2073 void **this_cache,
2074 int regnum, int *optimizedp,
2075 enum lval_type *lvalp, CORE_ADDR *addrp,
2076 int *realnump, void *valuep)
2077 {
2078 struct trad_frame_cache *this_trad_cache
2079 = mips_stub_frame_cache (next_frame, this_cache);
2080 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2081 lvalp, addrp, realnump, valuep);
2082 }
2083
2084 static const struct frame_unwind mips_stub_frame_unwind =
2085 {
2086 NORMAL_FRAME,
2087 mips_stub_frame_this_id,
2088 mips_stub_frame_prev_register
2089 };
2090
2091 static const struct frame_unwind *
2092 mips_stub_frame_sniffer (struct frame_info *next_frame)
2093 {
2094 CORE_ADDR pc = frame_pc_unwind (next_frame);
2095 if (in_plt_section (pc, NULL))
2096 return &mips_stub_frame_unwind;
2097 else
2098 return NULL;
2099 }
2100
2101 static CORE_ADDR
2102 mips_stub_frame_base_address (struct frame_info *next_frame,
2103 void **this_cache)
2104 {
2105 struct trad_frame_cache *this_trad_cache
2106 = mips_stub_frame_cache (next_frame, this_cache);
2107 return trad_frame_get_this_base (this_trad_cache);
2108 }
2109
2110 static const struct frame_base mips_stub_frame_base =
2111 {
2112 &mips_stub_frame_unwind,
2113 mips_stub_frame_base_address,
2114 mips_stub_frame_base_address,
2115 mips_stub_frame_base_address
2116 };
2117
2118 static const struct frame_base *
2119 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2120 {
2121 if (mips_stub_frame_sniffer (next_frame) != NULL)
2122 return &mips_stub_frame_base;
2123 else
2124 return NULL;
2125 }
2126
2127 static CORE_ADDR
2128 read_next_frame_reg (struct frame_info *fi, int regno)
2129 {
2130 /* Always a pseudo. */
2131 gdb_assert (regno >= NUM_REGS);
2132 if (fi == NULL)
2133 {
2134 LONGEST val;
2135 regcache_cooked_read_signed (current_regcache, regno, &val);
2136 return val;
2137 }
2138 else
2139 return frame_unwind_register_signed (fi, regno);
2140
2141 }
2142
2143 /* mips_addr_bits_remove - remove useless address bits */
2144
2145 static CORE_ADDR
2146 mips_addr_bits_remove (CORE_ADDR addr)
2147 {
2148 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2149 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2150 /* This hack is a work-around for existing boards using PMON, the
2151 simulator, and any other 64-bit targets that doesn't have true
2152 64-bit addressing. On these targets, the upper 32 bits of
2153 addresses are ignored by the hardware. Thus, the PC or SP are
2154 likely to have been sign extended to all 1s by instruction
2155 sequences that load 32-bit addresses. For example, a typical
2156 piece of code that loads an address is this:
2157
2158 lui $r2, <upper 16 bits>
2159 ori $r2, <lower 16 bits>
2160
2161 But the lui sign-extends the value such that the upper 32 bits
2162 may be all 1s. The workaround is simply to mask off these
2163 bits. In the future, gcc may be changed to support true 64-bit
2164 addressing, and this masking will have to be disabled. */
2165 return addr &= 0xffffffffUL;
2166 else
2167 return addr;
2168 }
2169
2170 /* mips_software_single_step() is called just before we want to resume
2171 the inferior, if we want to single-step it but there is no hardware
2172 or kernel single-step support (MIPS on GNU/Linux for example). We find
2173 the target of the coming instruction and breakpoint it.
2174
2175 single_step is also called just after the inferior stops. If we had
2176 set up a simulated single-step, we undo our damage. */
2177
2178 void
2179 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
2180 {
2181 static CORE_ADDR next_pc;
2182 typedef char binsn_quantum[BREAKPOINT_MAX];
2183 static binsn_quantum break_mem;
2184 CORE_ADDR pc;
2185
2186 if (insert_breakpoints_p)
2187 {
2188 pc = read_register (mips_regnum (current_gdbarch)->pc);
2189 next_pc = mips_next_pc (pc);
2190
2191 target_insert_breakpoint (next_pc, break_mem);
2192 }
2193 else
2194 target_remove_breakpoint (next_pc, break_mem);
2195 }
2196
2197 /* Test whether the PC points to the return instruction at the
2198 end of a function. */
2199
2200 static int
2201 mips_about_to_return (CORE_ADDR pc)
2202 {
2203 if (mips_pc_is_mips16 (pc))
2204 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2205 generates a "jr $ra"; other times it generates code to load
2206 the return address from the stack to an accessible register (such
2207 as $a3), then a "jr" using that register. This second case
2208 is almost impossible to distinguish from an indirect jump
2209 used for switch statements, so we don't even try. */
2210 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2211 else
2212 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2213 }
2214
2215
2216 /* This fencepost looks highly suspicious to me. Removing it also
2217 seems suspicious as it could affect remote debugging across serial
2218 lines. */
2219
2220 static CORE_ADDR
2221 heuristic_proc_start (CORE_ADDR pc)
2222 {
2223 CORE_ADDR start_pc;
2224 CORE_ADDR fence;
2225 int instlen;
2226 int seen_adjsp = 0;
2227
2228 pc = ADDR_BITS_REMOVE (pc);
2229 start_pc = pc;
2230 fence = start_pc - heuristic_fence_post;
2231 if (start_pc == 0)
2232 return 0;
2233
2234 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2235 fence = VM_MIN_ADDRESS;
2236
2237 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2238
2239 /* search back for previous return */
2240 for (start_pc -= instlen;; start_pc -= instlen)
2241 if (start_pc < fence)
2242 {
2243 /* It's not clear to me why we reach this point when
2244 stop_soon, but with this test, at least we
2245 don't print out warnings for every child forked (eg, on
2246 decstation). 22apr93 rich@cygnus.com. */
2247 if (stop_soon == NO_STOP_QUIETLY)
2248 {
2249 static int blurb_printed = 0;
2250
2251 warning (_("GDB can't find the start of the function at 0x%s."),
2252 paddr_nz (pc));
2253
2254 if (!blurb_printed)
2255 {
2256 /* This actually happens frequently in embedded
2257 development, when you first connect to a board
2258 and your stack pointer and pc are nowhere in
2259 particular. This message needs to give people
2260 in that situation enough information to
2261 determine that it's no big deal. */
2262 printf_filtered ("\n\
2263 GDB is unable to find the start of the function at 0x%s\n\
2264 and thus can't determine the size of that function's stack frame.\n\
2265 This means that GDB may be unable to access that stack frame, or\n\
2266 the frames below it.\n\
2267 This problem is most likely caused by an invalid program counter or\n\
2268 stack pointer.\n\
2269 However, if you think GDB should simply search farther back\n\
2270 from 0x%s for code which looks like the beginning of a\n\
2271 function, you can increase the range of the search using the `set\n\
2272 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2273 blurb_printed = 1;
2274 }
2275 }
2276
2277 return 0;
2278 }
2279 else if (mips_pc_is_mips16 (start_pc))
2280 {
2281 unsigned short inst;
2282
2283 /* On MIPS16, any one of the following is likely to be the
2284 start of a function:
2285 entry
2286 addiu sp,-n
2287 daddiu sp,-n
2288 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2289 inst = mips_fetch_instruction (start_pc);
2290 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2291 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2292 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2293 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2294 break;
2295 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2296 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2297 seen_adjsp = 1;
2298 else
2299 seen_adjsp = 0;
2300 }
2301 else if (mips_about_to_return (start_pc))
2302 {
2303 /* Skip return and its delay slot. */
2304 start_pc += 2 * MIPS_INSN32_SIZE;
2305 break;
2306 }
2307
2308 return start_pc;
2309 }
2310
2311 struct mips_objfile_private
2312 {
2313 bfd_size_type size;
2314 char *contents;
2315 };
2316
2317 /* According to the current ABI, should the type be passed in a
2318 floating-point register (assuming that there is space)? When there
2319 is no FPU, FP are not even considered as possibile candidates for
2320 FP registers and, consequently this returns false - forces FP
2321 arguments into integer registers. */
2322
2323 static int
2324 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2325 {
2326 return ((typecode == TYPE_CODE_FLT
2327 || (MIPS_EABI
2328 && (typecode == TYPE_CODE_STRUCT
2329 || typecode == TYPE_CODE_UNION)
2330 && TYPE_NFIELDS (arg_type) == 1
2331 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2332 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2333 }
2334
2335 /* On o32, argument passing in GPRs depends on the alignment of the type being
2336 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2337
2338 static int
2339 mips_type_needs_double_align (struct type *type)
2340 {
2341 enum type_code typecode = TYPE_CODE (type);
2342
2343 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2344 return 1;
2345 else if (typecode == TYPE_CODE_STRUCT)
2346 {
2347 if (TYPE_NFIELDS (type) < 1)
2348 return 0;
2349 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2350 }
2351 else if (typecode == TYPE_CODE_UNION)
2352 {
2353 int i, n;
2354
2355 n = TYPE_NFIELDS (type);
2356 for (i = 0; i < n; i++)
2357 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2358 return 1;
2359 return 0;
2360 }
2361 return 0;
2362 }
2363
2364 /* Adjust the address downward (direction of stack growth) so that it
2365 is correctly aligned for a new stack frame. */
2366 static CORE_ADDR
2367 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2368 {
2369 return align_down (addr, 16);
2370 }
2371
2372 static CORE_ADDR
2373 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2374 struct regcache *regcache, CORE_ADDR bp_addr,
2375 int nargs, struct value **args, CORE_ADDR sp,
2376 int struct_return, CORE_ADDR struct_addr)
2377 {
2378 int argreg;
2379 int float_argreg;
2380 int argnum;
2381 int len = 0;
2382 int stack_offset = 0;
2383 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2384 CORE_ADDR func_addr = find_function_addr (function, NULL);
2385
2386 /* For shared libraries, "t9" needs to point at the function
2387 address. */
2388 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2389
2390 /* Set the return address register to point to the entry point of
2391 the program, where a breakpoint lies in wait. */
2392 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2393
2394 /* First ensure that the stack and structure return address (if any)
2395 are properly aligned. The stack has to be at least 64-bit
2396 aligned even on 32-bit machines, because doubles must be 64-bit
2397 aligned. For n32 and n64, stack frames need to be 128-bit
2398 aligned, so we round to this widest known alignment. */
2399
2400 sp = align_down (sp, 16);
2401 struct_addr = align_down (struct_addr, 16);
2402
2403 /* Now make space on the stack for the args. We allocate more
2404 than necessary for EABI, because the first few arguments are
2405 passed in registers, but that's OK. */
2406 for (argnum = 0; argnum < nargs; argnum++)
2407 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2408 mips_stack_argsize (gdbarch));
2409 sp -= align_up (len, 16);
2410
2411 if (mips_debug)
2412 fprintf_unfiltered (gdb_stdlog,
2413 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2414 paddr_nz (sp), (long) align_up (len, 16));
2415
2416 /* Initialize the integer and float register pointers. */
2417 argreg = MIPS_A0_REGNUM;
2418 float_argreg = mips_fpa0_regnum (current_gdbarch);
2419
2420 /* The struct_return pointer occupies the first parameter-passing reg. */
2421 if (struct_return)
2422 {
2423 if (mips_debug)
2424 fprintf_unfiltered (gdb_stdlog,
2425 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2426 argreg, paddr_nz (struct_addr));
2427 write_register (argreg++, struct_addr);
2428 }
2429
2430 /* Now load as many as possible of the first arguments into
2431 registers, and push the rest onto the stack. Loop thru args
2432 from first to last. */
2433 for (argnum = 0; argnum < nargs; argnum++)
2434 {
2435 char *val;
2436 char valbuf[MAX_REGISTER_SIZE];
2437 struct value *arg = args[argnum];
2438 struct type *arg_type = check_typedef (value_type (arg));
2439 int len = TYPE_LENGTH (arg_type);
2440 enum type_code typecode = TYPE_CODE (arg_type);
2441
2442 if (mips_debug)
2443 fprintf_unfiltered (gdb_stdlog,
2444 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2445 argnum + 1, len, (int) typecode);
2446
2447 /* The EABI passes structures that do not fit in a register by
2448 reference. */
2449 if (len > mips_abi_regsize (gdbarch)
2450 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2451 {
2452 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
2453 VALUE_ADDRESS (arg));
2454 typecode = TYPE_CODE_PTR;
2455 len = mips_abi_regsize (gdbarch);
2456 val = valbuf;
2457 if (mips_debug)
2458 fprintf_unfiltered (gdb_stdlog, " push");
2459 }
2460 else
2461 val = (char *) value_contents (arg);
2462
2463 /* 32-bit ABIs always start floating point arguments in an
2464 even-numbered floating point register. Round the FP register
2465 up before the check to see if there are any FP registers
2466 left. Non MIPS_EABI targets also pass the FP in the integer
2467 registers so also round up normal registers. */
2468 if (mips_abi_regsize (gdbarch) < 8
2469 && fp_register_arg_p (typecode, arg_type))
2470 {
2471 if ((float_argreg & 1))
2472 float_argreg++;
2473 }
2474
2475 /* Floating point arguments passed in registers have to be
2476 treated specially. On 32-bit architectures, doubles
2477 are passed in register pairs; the even register gets
2478 the low word, and the odd register gets the high word.
2479 On non-EABI processors, the first two floating point arguments are
2480 also copied to general registers, because MIPS16 functions
2481 don't use float registers for arguments. This duplication of
2482 arguments in general registers can't hurt non-MIPS16 functions
2483 because those registers are normally skipped. */
2484 /* MIPS_EABI squeezes a struct that contains a single floating
2485 point value into an FP register instead of pushing it onto the
2486 stack. */
2487 if (fp_register_arg_p (typecode, arg_type)
2488 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2489 {
2490 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
2491 {
2492 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2493 unsigned long regval;
2494
2495 /* Write the low word of the double to the even register(s). */
2496 regval = extract_unsigned_integer (val + low_offset, 4);
2497 if (mips_debug)
2498 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2499 float_argreg, phex (regval, 4));
2500 write_register (float_argreg++, regval);
2501
2502 /* Write the high word of the double to the odd register(s). */
2503 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2504 if (mips_debug)
2505 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2506 float_argreg, phex (regval, 4));
2507 write_register (float_argreg++, regval);
2508 }
2509 else
2510 {
2511 /* This is a floating point value that fits entirely
2512 in a single register. */
2513 /* On 32 bit ABI's the float_argreg is further adjusted
2514 above to ensure that it is even register aligned. */
2515 LONGEST regval = extract_unsigned_integer (val, len);
2516 if (mips_debug)
2517 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2518 float_argreg, phex (regval, len));
2519 write_register (float_argreg++, regval);
2520 }
2521 }
2522 else
2523 {
2524 /* Copy the argument to general registers or the stack in
2525 register-sized pieces. Large arguments are split between
2526 registers and stack. */
2527 /* Note: structs whose size is not a multiple of
2528 mips_abi_regsize() are treated specially: Irix cc passes
2529 them in registers where gcc sometimes puts them on the
2530 stack. For maximum compatibility, we will put them in
2531 both places. */
2532 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2533 && (len % mips_abi_regsize (gdbarch) != 0));
2534
2535 /* Note: Floating-point values that didn't fit into an FP
2536 register are only written to memory. */
2537 while (len > 0)
2538 {
2539 /* Remember if the argument was written to the stack. */
2540 int stack_used_p = 0;
2541 int partial_len = (len < mips_abi_regsize (gdbarch)
2542 ? len : mips_abi_regsize (gdbarch));
2543
2544 if (mips_debug)
2545 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2546 partial_len);
2547
2548 /* Write this portion of the argument to the stack. */
2549 if (argreg > MIPS_LAST_ARG_REGNUM
2550 || odd_sized_struct
2551 || fp_register_arg_p (typecode, arg_type))
2552 {
2553 /* Should shorter than int integer values be
2554 promoted to int before being stored? */
2555 int longword_offset = 0;
2556 CORE_ADDR addr;
2557 stack_used_p = 1;
2558 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2559 {
2560 if (mips_stack_argsize (gdbarch) == 8
2561 && (typecode == TYPE_CODE_INT
2562 || typecode == TYPE_CODE_PTR
2563 || typecode == TYPE_CODE_FLT) && len <= 4)
2564 longword_offset = mips_stack_argsize (gdbarch) - len;
2565 else if ((typecode == TYPE_CODE_STRUCT
2566 || typecode == TYPE_CODE_UNION)
2567 && (TYPE_LENGTH (arg_type)
2568 < mips_stack_argsize (gdbarch)))
2569 longword_offset = mips_stack_argsize (gdbarch) - len;
2570 }
2571
2572 if (mips_debug)
2573 {
2574 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2575 paddr_nz (stack_offset));
2576 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2577 paddr_nz (longword_offset));
2578 }
2579
2580 addr = sp + stack_offset + longword_offset;
2581
2582 if (mips_debug)
2583 {
2584 int i;
2585 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2586 paddr_nz (addr));
2587 for (i = 0; i < partial_len; i++)
2588 {
2589 fprintf_unfiltered (gdb_stdlog, "%02x",
2590 val[i] & 0xff);
2591 }
2592 }
2593 write_memory (addr, val, partial_len);
2594 }
2595
2596 /* Note!!! This is NOT an else clause. Odd sized
2597 structs may go thru BOTH paths. Floating point
2598 arguments will not. */
2599 /* Write this portion of the argument to a general
2600 purpose register. */
2601 if (argreg <= MIPS_LAST_ARG_REGNUM
2602 && !fp_register_arg_p (typecode, arg_type))
2603 {
2604 LONGEST regval =
2605 extract_unsigned_integer (val, partial_len);
2606
2607 if (mips_debug)
2608 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2609 argreg,
2610 phex (regval,
2611 mips_abi_regsize (gdbarch)));
2612 write_register (argreg, regval);
2613 argreg++;
2614 }
2615
2616 len -= partial_len;
2617 val += partial_len;
2618
2619 /* Compute the the offset into the stack at which we
2620 will copy the next parameter.
2621
2622 In the new EABI (and the NABI32), the stack_offset
2623 only needs to be adjusted when it has been used. */
2624
2625 if (stack_used_p)
2626 stack_offset += align_up (partial_len,
2627 mips_stack_argsize (gdbarch));
2628 }
2629 }
2630 if (mips_debug)
2631 fprintf_unfiltered (gdb_stdlog, "\n");
2632 }
2633
2634 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2635
2636 /* Return adjusted stack pointer. */
2637 return sp;
2638 }
2639
2640 /* Determin the return value convention being used. */
2641
2642 static enum return_value_convention
2643 mips_eabi_return_value (struct gdbarch *gdbarch,
2644 struct type *type, struct regcache *regcache,
2645 void *readbuf, const void *writebuf)
2646 {
2647 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2648 return RETURN_VALUE_STRUCT_CONVENTION;
2649 if (readbuf)
2650 memset (readbuf, 0, TYPE_LENGTH (type));
2651 return RETURN_VALUE_REGISTER_CONVENTION;
2652 }
2653
2654
2655 /* N32/N64 ABI stuff. */
2656
2657 static CORE_ADDR
2658 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2659 struct regcache *regcache, CORE_ADDR bp_addr,
2660 int nargs, struct value **args, CORE_ADDR sp,
2661 int struct_return, CORE_ADDR struct_addr)
2662 {
2663 int argreg;
2664 int float_argreg;
2665 int argnum;
2666 int len = 0;
2667 int stack_offset = 0;
2668 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2669 CORE_ADDR func_addr = find_function_addr (function, NULL);
2670
2671 /* For shared libraries, "t9" needs to point at the function
2672 address. */
2673 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2674
2675 /* Set the return address register to point to the entry point of
2676 the program, where a breakpoint lies in wait. */
2677 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2678
2679 /* First ensure that the stack and structure return address (if any)
2680 are properly aligned. The stack has to be at least 64-bit
2681 aligned even on 32-bit machines, because doubles must be 64-bit
2682 aligned. For n32 and n64, stack frames need to be 128-bit
2683 aligned, so we round to this widest known alignment. */
2684
2685 sp = align_down (sp, 16);
2686 struct_addr = align_down (struct_addr, 16);
2687
2688 /* Now make space on the stack for the args. */
2689 for (argnum = 0; argnum < nargs; argnum++)
2690 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
2691 mips_stack_argsize (gdbarch));
2692 sp -= align_up (len, 16);
2693
2694 if (mips_debug)
2695 fprintf_unfiltered (gdb_stdlog,
2696 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2697 paddr_nz (sp), (long) align_up (len, 16));
2698
2699 /* Initialize the integer and float register pointers. */
2700 argreg = MIPS_A0_REGNUM;
2701 float_argreg = mips_fpa0_regnum (current_gdbarch);
2702
2703 /* The struct_return pointer occupies the first parameter-passing reg. */
2704 if (struct_return)
2705 {
2706 if (mips_debug)
2707 fprintf_unfiltered (gdb_stdlog,
2708 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2709 argreg, paddr_nz (struct_addr));
2710 write_register (argreg++, struct_addr);
2711 }
2712
2713 /* Now load as many as possible of the first arguments into
2714 registers, and push the rest onto the stack. Loop thru args
2715 from first to last. */
2716 for (argnum = 0; argnum < nargs; argnum++)
2717 {
2718 char *val;
2719 struct value *arg = args[argnum];
2720 struct type *arg_type = check_typedef (value_type (arg));
2721 int len = TYPE_LENGTH (arg_type);
2722 enum type_code typecode = TYPE_CODE (arg_type);
2723
2724 if (mips_debug)
2725 fprintf_unfiltered (gdb_stdlog,
2726 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2727 argnum + 1, len, (int) typecode);
2728
2729 val = (char *) value_contents (arg);
2730
2731 if (fp_register_arg_p (typecode, arg_type)
2732 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2733 {
2734 /* This is a floating point value that fits entirely
2735 in a single register. */
2736 /* On 32 bit ABI's the float_argreg is further adjusted
2737 above to ensure that it is even register aligned. */
2738 LONGEST regval = extract_unsigned_integer (val, len);
2739 if (mips_debug)
2740 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2741 float_argreg, phex (regval, len));
2742 write_register (float_argreg++, regval);
2743
2744 if (mips_debug)
2745 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2746 argreg, phex (regval, len));
2747 write_register (argreg, regval);
2748 argreg += 1;
2749 }
2750 else
2751 {
2752 /* Copy the argument to general registers or the stack in
2753 register-sized pieces. Large arguments are split between
2754 registers and stack. */
2755 /* Note: structs whose size is not a multiple of
2756 mips_abi_regsize() are treated specially: Irix cc passes
2757 them in registers where gcc sometimes puts them on the
2758 stack. For maximum compatibility, we will put them in
2759 both places. */
2760 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2761 && (len % mips_abi_regsize (gdbarch) != 0));
2762 /* Note: Floating-point values that didn't fit into an FP
2763 register are only written to memory. */
2764 while (len > 0)
2765 {
2766 /* Rememer if the argument was written to the stack. */
2767 int stack_used_p = 0;
2768 int partial_len = (len < mips_abi_regsize (gdbarch)
2769 ? len : mips_abi_regsize (gdbarch));
2770
2771 if (mips_debug)
2772 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2773 partial_len);
2774
2775 /* Write this portion of the argument to the stack. */
2776 if (argreg > MIPS_LAST_ARG_REGNUM
2777 || odd_sized_struct
2778 || fp_register_arg_p (typecode, arg_type))
2779 {
2780 /* Should shorter than int integer values be
2781 promoted to int before being stored? */
2782 int longword_offset = 0;
2783 CORE_ADDR addr;
2784 stack_used_p = 1;
2785 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2786 {
2787 if (mips_stack_argsize (gdbarch) == 8
2788 && (typecode == TYPE_CODE_INT
2789 || typecode == TYPE_CODE_PTR
2790 || typecode == TYPE_CODE_FLT) && len <= 4)
2791 longword_offset = mips_stack_argsize (gdbarch) - len;
2792 }
2793
2794 if (mips_debug)
2795 {
2796 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2797 paddr_nz (stack_offset));
2798 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2799 paddr_nz (longword_offset));
2800 }
2801
2802 addr = sp + stack_offset + longword_offset;
2803
2804 if (mips_debug)
2805 {
2806 int i;
2807 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2808 paddr_nz (addr));
2809 for (i = 0; i < partial_len; i++)
2810 {
2811 fprintf_unfiltered (gdb_stdlog, "%02x",
2812 val[i] & 0xff);
2813 }
2814 }
2815 write_memory (addr, val, partial_len);
2816 }
2817
2818 /* Note!!! This is NOT an else clause. Odd sized
2819 structs may go thru BOTH paths. Floating point
2820 arguments will not. */
2821 /* Write this portion of the argument to a general
2822 purpose register. */
2823 if (argreg <= MIPS_LAST_ARG_REGNUM
2824 && !fp_register_arg_p (typecode, arg_type))
2825 {
2826 LONGEST regval =
2827 extract_unsigned_integer (val, partial_len);
2828
2829 /* A non-floating-point argument being passed in a
2830 general register. If a struct or union, and if
2831 the remaining length is smaller than the register
2832 size, we have to adjust the register value on
2833 big endian targets.
2834
2835 It does not seem to be necessary to do the
2836 same for integral types.
2837
2838 cagney/2001-07-23: gdb/179: Also, GCC, when
2839 outputting LE O32 with sizeof (struct) <
2840 mips_abi_regsize(), generates a left shift as
2841 part of storing the argument in a register a
2842 register (the left shift isn't generated when
2843 sizeof (struct) >= mips_abi_regsize()). Since
2844 it is quite possible that this is GCC
2845 contradicting the LE/O32 ABI, GDB has not been
2846 adjusted to accommodate this. Either someone
2847 needs to demonstrate that the LE/O32 ABI
2848 specifies such a left shift OR this new ABI gets
2849 identified as such and GDB gets tweaked
2850 accordingly. */
2851
2852 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2853 && partial_len < mips_abi_regsize (gdbarch)
2854 && (typecode == TYPE_CODE_STRUCT ||
2855 typecode == TYPE_CODE_UNION))
2856 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
2857 TARGET_CHAR_BIT);
2858
2859 if (mips_debug)
2860 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2861 argreg,
2862 phex (regval,
2863 mips_abi_regsize (gdbarch)));
2864 write_register (argreg, regval);
2865 argreg++;
2866 }
2867
2868 len -= partial_len;
2869 val += partial_len;
2870
2871 /* Compute the the offset into the stack at which we
2872 will copy the next parameter.
2873
2874 In N32 (N64?), the stack_offset only needs to be
2875 adjusted when it has been used. */
2876
2877 if (stack_used_p)
2878 stack_offset += align_up (partial_len,
2879 mips_stack_argsize (gdbarch));
2880 }
2881 }
2882 if (mips_debug)
2883 fprintf_unfiltered (gdb_stdlog, "\n");
2884 }
2885
2886 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2887
2888 /* Return adjusted stack pointer. */
2889 return sp;
2890 }
2891
2892 static enum return_value_convention
2893 mips_n32n64_return_value (struct gdbarch *gdbarch,
2894 struct type *type, struct regcache *regcache,
2895 void *readbuf, const void *writebuf)
2896 {
2897 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2898 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2899 || TYPE_CODE (type) == TYPE_CODE_UNION
2900 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2901 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2902 return RETURN_VALUE_STRUCT_CONVENTION;
2903 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2904 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2905 {
2906 /* A floating-point value belongs in the least significant part
2907 of FP0. */
2908 if (mips_debug)
2909 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2910 mips_xfer_register (regcache,
2911 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2912 TYPE_LENGTH (type),
2913 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2914 return RETURN_VALUE_REGISTER_CONVENTION;
2915 }
2916 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2917 && TYPE_NFIELDS (type) <= 2
2918 && TYPE_NFIELDS (type) >= 1
2919 && ((TYPE_NFIELDS (type) == 1
2920 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2921 == TYPE_CODE_FLT))
2922 || (TYPE_NFIELDS (type) == 2
2923 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2924 == TYPE_CODE_FLT)
2925 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2926 == TYPE_CODE_FLT)))
2927 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2928 {
2929 /* A struct that contains one or two floats. Each value is part
2930 in the least significant part of their floating point
2931 register.. */
2932 int regnum;
2933 int field;
2934 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2935 field < TYPE_NFIELDS (type); field++, regnum += 2)
2936 {
2937 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2938 / TARGET_CHAR_BIT);
2939 if (mips_debug)
2940 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2941 offset);
2942 mips_xfer_register (regcache, NUM_REGS + regnum,
2943 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2944 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2945 }
2946 return RETURN_VALUE_REGISTER_CONVENTION;
2947 }
2948 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2949 || TYPE_CODE (type) == TYPE_CODE_UNION)
2950 {
2951 /* A structure or union. Extract the left justified value,
2952 regardless of the byte order. I.e. DO NOT USE
2953 mips_xfer_lower. */
2954 int offset;
2955 int regnum;
2956 for (offset = 0, regnum = MIPS_V0_REGNUM;
2957 offset < TYPE_LENGTH (type);
2958 offset += register_size (current_gdbarch, regnum), regnum++)
2959 {
2960 int xfer = register_size (current_gdbarch, regnum);
2961 if (offset + xfer > TYPE_LENGTH (type))
2962 xfer = TYPE_LENGTH (type) - offset;
2963 if (mips_debug)
2964 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
2965 offset, xfer, regnum);
2966 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2967 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
2968 }
2969 return RETURN_VALUE_REGISTER_CONVENTION;
2970 }
2971 else
2972 {
2973 /* A scalar extract each part but least-significant-byte
2974 justified. */
2975 int offset;
2976 int regnum;
2977 for (offset = 0, regnum = MIPS_V0_REGNUM;
2978 offset < TYPE_LENGTH (type);
2979 offset += register_size (current_gdbarch, regnum), regnum++)
2980 {
2981 int xfer = register_size (current_gdbarch, regnum);
2982 if (offset + xfer > TYPE_LENGTH (type))
2983 xfer = TYPE_LENGTH (type) - offset;
2984 if (mips_debug)
2985 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
2986 offset, xfer, regnum);
2987 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2988 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2989 }
2990 return RETURN_VALUE_REGISTER_CONVENTION;
2991 }
2992 }
2993
2994 /* O32 ABI stuff. */
2995
2996 static CORE_ADDR
2997 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2998 struct regcache *regcache, CORE_ADDR bp_addr,
2999 int nargs, struct value **args, CORE_ADDR sp,
3000 int struct_return, CORE_ADDR struct_addr)
3001 {
3002 int argreg;
3003 int float_argreg;
3004 int argnum;
3005 int len = 0;
3006 int stack_offset = 0;
3007 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3008 CORE_ADDR func_addr = find_function_addr (function, NULL);
3009
3010 /* For shared libraries, "t9" needs to point at the function
3011 address. */
3012 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3013
3014 /* Set the return address register to point to the entry point of
3015 the program, where a breakpoint lies in wait. */
3016 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3017
3018 /* First ensure that the stack and structure return address (if any)
3019 are properly aligned. The stack has to be at least 64-bit
3020 aligned even on 32-bit machines, because doubles must be 64-bit
3021 aligned. For n32 and n64, stack frames need to be 128-bit
3022 aligned, so we round to this widest known alignment. */
3023
3024 sp = align_down (sp, 16);
3025 struct_addr = align_down (struct_addr, 16);
3026
3027 /* Now make space on the stack for the args. */
3028 for (argnum = 0; argnum < nargs; argnum++)
3029 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
3030 mips_stack_argsize (gdbarch));
3031 sp -= align_up (len, 16);
3032
3033 if (mips_debug)
3034 fprintf_unfiltered (gdb_stdlog,
3035 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3036 paddr_nz (sp), (long) align_up (len, 16));
3037
3038 /* Initialize the integer and float register pointers. */
3039 argreg = MIPS_A0_REGNUM;
3040 float_argreg = mips_fpa0_regnum (current_gdbarch);
3041
3042 /* The struct_return pointer occupies the first parameter-passing reg. */
3043 if (struct_return)
3044 {
3045 if (mips_debug)
3046 fprintf_unfiltered (gdb_stdlog,
3047 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3048 argreg, paddr_nz (struct_addr));
3049 write_register (argreg++, struct_addr);
3050 stack_offset += mips_stack_argsize (gdbarch);
3051 }
3052
3053 /* Now load as many as possible of the first arguments into
3054 registers, and push the rest onto the stack. Loop thru args
3055 from first to last. */
3056 for (argnum = 0; argnum < nargs; argnum++)
3057 {
3058 char *val;
3059 struct value *arg = args[argnum];
3060 struct type *arg_type = check_typedef (value_type (arg));
3061 int len = TYPE_LENGTH (arg_type);
3062 enum type_code typecode = TYPE_CODE (arg_type);
3063
3064 if (mips_debug)
3065 fprintf_unfiltered (gdb_stdlog,
3066 "mips_o32_push_dummy_call: %d len=%d type=%d",
3067 argnum + 1, len, (int) typecode);
3068
3069 val = (char *) value_contents (arg);
3070
3071 /* 32-bit ABIs always start floating point arguments in an
3072 even-numbered floating point register. Round the FP register
3073 up before the check to see if there are any FP registers
3074 left. O32/O64 targets also pass the FP in the integer
3075 registers so also round up normal registers. */
3076 if (mips_abi_regsize (gdbarch) < 8
3077 && fp_register_arg_p (typecode, arg_type))
3078 {
3079 if ((float_argreg & 1))
3080 float_argreg++;
3081 }
3082
3083 /* Floating point arguments passed in registers have to be
3084 treated specially. On 32-bit architectures, doubles
3085 are passed in register pairs; the even register gets
3086 the low word, and the odd register gets the high word.
3087 On O32/O64, the first two floating point arguments are
3088 also copied to general registers, because MIPS16 functions
3089 don't use float registers for arguments. This duplication of
3090 arguments in general registers can't hurt non-MIPS16 functions
3091 because those registers are normally skipped. */
3092
3093 if (fp_register_arg_p (typecode, arg_type)
3094 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3095 {
3096 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3097 {
3098 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3099 unsigned long regval;
3100
3101 /* Write the low word of the double to the even register(s). */
3102 regval = extract_unsigned_integer (val + low_offset, 4);
3103 if (mips_debug)
3104 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3105 float_argreg, phex (regval, 4));
3106 write_register (float_argreg++, regval);
3107 if (mips_debug)
3108 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3109 argreg, phex (regval, 4));
3110 write_register (argreg++, regval);
3111
3112 /* Write the high word of the double to the odd register(s). */
3113 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3114 if (mips_debug)
3115 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3116 float_argreg, phex (regval, 4));
3117 write_register (float_argreg++, regval);
3118
3119 if (mips_debug)
3120 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3121 argreg, phex (regval, 4));
3122 write_register (argreg++, regval);
3123 }
3124 else
3125 {
3126 /* This is a floating point value that fits entirely
3127 in a single register. */
3128 /* On 32 bit ABI's the float_argreg is further adjusted
3129 above to ensure that it is even register aligned. */
3130 LONGEST regval = extract_unsigned_integer (val, len);
3131 if (mips_debug)
3132 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3133 float_argreg, phex (regval, len));
3134 write_register (float_argreg++, regval);
3135 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3136 registers for each argument. The below is (my
3137 guess) to ensure that the corresponding integer
3138 register has reserved the same space. */
3139 if (mips_debug)
3140 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3141 argreg, phex (regval, len));
3142 write_register (argreg, regval);
3143 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3144 }
3145 /* Reserve space for the FP register. */
3146 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3147 }
3148 else
3149 {
3150 /* Copy the argument to general registers or the stack in
3151 register-sized pieces. Large arguments are split between
3152 registers and stack. */
3153 /* Note: structs whose size is not a multiple of
3154 mips_abi_regsize() are treated specially: Irix cc passes
3155 them in registers where gcc sometimes puts them on the
3156 stack. For maximum compatibility, we will put them in
3157 both places. */
3158 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3159 && (len % mips_abi_regsize (gdbarch) != 0));
3160 /* Structures should be aligned to eight bytes (even arg registers)
3161 on MIPS_ABI_O32, if their first member has double precision. */
3162 if (mips_abi_regsize (gdbarch) < 8
3163 && mips_type_needs_double_align (arg_type))
3164 {
3165 if ((argreg & 1))
3166 argreg++;
3167 }
3168 /* Note: Floating-point values that didn't fit into an FP
3169 register are only written to memory. */
3170 while (len > 0)
3171 {
3172 /* Remember if the argument was written to the stack. */
3173 int stack_used_p = 0;
3174 int partial_len = (len < mips_abi_regsize (gdbarch)
3175 ? len : mips_abi_regsize (gdbarch));
3176
3177 if (mips_debug)
3178 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3179 partial_len);
3180
3181 /* Write this portion of the argument to the stack. */
3182 if (argreg > MIPS_LAST_ARG_REGNUM
3183 || odd_sized_struct
3184 || fp_register_arg_p (typecode, arg_type))
3185 {
3186 /* Should shorter than int integer values be
3187 promoted to int before being stored? */
3188 int longword_offset = 0;
3189 CORE_ADDR addr;
3190 stack_used_p = 1;
3191 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3192 {
3193 if (mips_stack_argsize (gdbarch) == 8
3194 && (typecode == TYPE_CODE_INT
3195 || typecode == TYPE_CODE_PTR
3196 || typecode == TYPE_CODE_FLT) && len <= 4)
3197 longword_offset = mips_stack_argsize (gdbarch) - len;
3198 }
3199
3200 if (mips_debug)
3201 {
3202 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3203 paddr_nz (stack_offset));
3204 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3205 paddr_nz (longword_offset));
3206 }
3207
3208 addr = sp + stack_offset + longword_offset;
3209
3210 if (mips_debug)
3211 {
3212 int i;
3213 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3214 paddr_nz (addr));
3215 for (i = 0; i < partial_len; i++)
3216 {
3217 fprintf_unfiltered (gdb_stdlog, "%02x",
3218 val[i] & 0xff);
3219 }
3220 }
3221 write_memory (addr, val, partial_len);
3222 }
3223
3224 /* Note!!! This is NOT an else clause. Odd sized
3225 structs may go thru BOTH paths. Floating point
3226 arguments will not. */
3227 /* Write this portion of the argument to a general
3228 purpose register. */
3229 if (argreg <= MIPS_LAST_ARG_REGNUM
3230 && !fp_register_arg_p (typecode, arg_type))
3231 {
3232 LONGEST regval = extract_signed_integer (val, partial_len);
3233 /* Value may need to be sign extended, because
3234 mips_isa_regsize() != mips_abi_regsize(). */
3235
3236 /* A non-floating-point argument being passed in a
3237 general register. If a struct or union, and if
3238 the remaining length is smaller than the register
3239 size, we have to adjust the register value on
3240 big endian targets.
3241
3242 It does not seem to be necessary to do the
3243 same for integral types.
3244
3245 Also don't do this adjustment on O64 binaries.
3246
3247 cagney/2001-07-23: gdb/179: Also, GCC, when
3248 outputting LE O32 with sizeof (struct) <
3249 mips_abi_regsize(), generates a left shift as
3250 part of storing the argument in a register a
3251 register (the left shift isn't generated when
3252 sizeof (struct) >= mips_abi_regsize()). Since
3253 it is quite possible that this is GCC
3254 contradicting the LE/O32 ABI, GDB has not been
3255 adjusted to accommodate this. Either someone
3256 needs to demonstrate that the LE/O32 ABI
3257 specifies such a left shift OR this new ABI gets
3258 identified as such and GDB gets tweaked
3259 accordingly. */
3260
3261 if (mips_abi_regsize (gdbarch) < 8
3262 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3263 && partial_len < mips_abi_regsize (gdbarch)
3264 && (typecode == TYPE_CODE_STRUCT ||
3265 typecode == TYPE_CODE_UNION))
3266 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3267 TARGET_CHAR_BIT);
3268
3269 if (mips_debug)
3270 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3271 argreg,
3272 phex (regval,
3273 mips_abi_regsize (gdbarch)));
3274 write_register (argreg, regval);
3275 argreg++;
3276
3277 /* Prevent subsequent floating point arguments from
3278 being passed in floating point registers. */
3279 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3280 }
3281
3282 len -= partial_len;
3283 val += partial_len;
3284
3285 /* Compute the the offset into the stack at which we
3286 will copy the next parameter.
3287
3288 In older ABIs, the caller reserved space for
3289 registers that contained arguments. This was loosely
3290 refered to as their "home". Consequently, space is
3291 always allocated. */
3292
3293 stack_offset += align_up (partial_len,
3294 mips_stack_argsize (gdbarch));
3295 }
3296 }
3297 if (mips_debug)
3298 fprintf_unfiltered (gdb_stdlog, "\n");
3299 }
3300
3301 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3302
3303 /* Return adjusted stack pointer. */
3304 return sp;
3305 }
3306
3307 static enum return_value_convention
3308 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3309 struct regcache *regcache,
3310 void *readbuf, const void *writebuf)
3311 {
3312 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3313
3314 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3315 || TYPE_CODE (type) == TYPE_CODE_UNION
3316 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3317 return RETURN_VALUE_STRUCT_CONVENTION;
3318 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3319 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3320 {
3321 /* A single-precision floating-point value. It fits in the
3322 least significant part of FP0. */
3323 if (mips_debug)
3324 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3325 mips_xfer_register (regcache,
3326 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3327 TYPE_LENGTH (type),
3328 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3329 return RETURN_VALUE_REGISTER_CONVENTION;
3330 }
3331 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3332 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3333 {
3334 /* A double-precision floating-point value. The most
3335 significant part goes in FP1, and the least significant in
3336 FP0. */
3337 if (mips_debug)
3338 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3339 switch (TARGET_BYTE_ORDER)
3340 {
3341 case BFD_ENDIAN_LITTLE:
3342 mips_xfer_register (regcache,
3343 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3344 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3345 mips_xfer_register (regcache,
3346 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3347 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3348 break;
3349 case BFD_ENDIAN_BIG:
3350 mips_xfer_register (regcache,
3351 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3352 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3353 mips_xfer_register (regcache,
3354 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3355 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3356 break;
3357 default:
3358 internal_error (__FILE__, __LINE__, _("bad switch"));
3359 }
3360 return RETURN_VALUE_REGISTER_CONVENTION;
3361 }
3362 #if 0
3363 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3364 && TYPE_NFIELDS (type) <= 2
3365 && TYPE_NFIELDS (type) >= 1
3366 && ((TYPE_NFIELDS (type) == 1
3367 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3368 == TYPE_CODE_FLT))
3369 || (TYPE_NFIELDS (type) == 2
3370 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3371 == TYPE_CODE_FLT)
3372 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3373 == TYPE_CODE_FLT)))
3374 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3375 {
3376 /* A struct that contains one or two floats. Each value is part
3377 in the least significant part of their floating point
3378 register.. */
3379 bfd_byte reg[MAX_REGISTER_SIZE];
3380 int regnum;
3381 int field;
3382 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3383 field < TYPE_NFIELDS (type); field++, regnum += 2)
3384 {
3385 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3386 / TARGET_CHAR_BIT);
3387 if (mips_debug)
3388 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3389 offset);
3390 mips_xfer_register (regcache, NUM_REGS + regnum,
3391 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3392 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3393 }
3394 return RETURN_VALUE_REGISTER_CONVENTION;
3395 }
3396 #endif
3397 #if 0
3398 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3399 || TYPE_CODE (type) == TYPE_CODE_UNION)
3400 {
3401 /* A structure or union. Extract the left justified value,
3402 regardless of the byte order. I.e. DO NOT USE
3403 mips_xfer_lower. */
3404 int offset;
3405 int regnum;
3406 for (offset = 0, regnum = MIPS_V0_REGNUM;
3407 offset < TYPE_LENGTH (type);
3408 offset += register_size (current_gdbarch, regnum), regnum++)
3409 {
3410 int xfer = register_size (current_gdbarch, regnum);
3411 if (offset + xfer > TYPE_LENGTH (type))
3412 xfer = TYPE_LENGTH (type) - offset;
3413 if (mips_debug)
3414 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3415 offset, xfer, regnum);
3416 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3417 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3418 }
3419 return RETURN_VALUE_REGISTER_CONVENTION;
3420 }
3421 #endif
3422 else
3423 {
3424 /* A scalar extract each part but least-significant-byte
3425 justified. o32 thinks registers are 4 byte, regardless of
3426 the ISA. mips_stack_argsize controls this. */
3427 int offset;
3428 int regnum;
3429 for (offset = 0, regnum = MIPS_V0_REGNUM;
3430 offset < TYPE_LENGTH (type);
3431 offset += mips_stack_argsize (gdbarch), regnum++)
3432 {
3433 int xfer = mips_stack_argsize (gdbarch);
3434 if (offset + xfer > TYPE_LENGTH (type))
3435 xfer = TYPE_LENGTH (type) - offset;
3436 if (mips_debug)
3437 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3438 offset, xfer, regnum);
3439 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3440 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3441 }
3442 return RETURN_VALUE_REGISTER_CONVENTION;
3443 }
3444 }
3445
3446 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3447 ABI. */
3448
3449 static CORE_ADDR
3450 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3451 struct regcache *regcache, CORE_ADDR bp_addr,
3452 int nargs,
3453 struct value **args, CORE_ADDR sp,
3454 int struct_return, CORE_ADDR struct_addr)
3455 {
3456 int argreg;
3457 int float_argreg;
3458 int argnum;
3459 int len = 0;
3460 int stack_offset = 0;
3461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3462 CORE_ADDR func_addr = find_function_addr (function, NULL);
3463
3464 /* For shared libraries, "t9" needs to point at the function
3465 address. */
3466 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3467
3468 /* Set the return address register to point to the entry point of
3469 the program, where a breakpoint lies in wait. */
3470 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3471
3472 /* First ensure that the stack and structure return address (if any)
3473 are properly aligned. The stack has to be at least 64-bit
3474 aligned even on 32-bit machines, because doubles must be 64-bit
3475 aligned. For n32 and n64, stack frames need to be 128-bit
3476 aligned, so we round to this widest known alignment. */
3477
3478 sp = align_down (sp, 16);
3479 struct_addr = align_down (struct_addr, 16);
3480
3481 /* Now make space on the stack for the args. */
3482 for (argnum = 0; argnum < nargs; argnum++)
3483 len += align_up (TYPE_LENGTH (value_type (args[argnum])),
3484 mips_stack_argsize (gdbarch));
3485 sp -= align_up (len, 16);
3486
3487 if (mips_debug)
3488 fprintf_unfiltered (gdb_stdlog,
3489 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3490 paddr_nz (sp), (long) align_up (len, 16));
3491
3492 /* Initialize the integer and float register pointers. */
3493 argreg = MIPS_A0_REGNUM;
3494 float_argreg = mips_fpa0_regnum (current_gdbarch);
3495
3496 /* The struct_return pointer occupies the first parameter-passing reg. */
3497 if (struct_return)
3498 {
3499 if (mips_debug)
3500 fprintf_unfiltered (gdb_stdlog,
3501 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3502 argreg, paddr_nz (struct_addr));
3503 write_register (argreg++, struct_addr);
3504 stack_offset += mips_stack_argsize (gdbarch);
3505 }
3506
3507 /* Now load as many as possible of the first arguments into
3508 registers, and push the rest onto the stack. Loop thru args
3509 from first to last. */
3510 for (argnum = 0; argnum < nargs; argnum++)
3511 {
3512 char *val;
3513 struct value *arg = args[argnum];
3514 struct type *arg_type = check_typedef (value_type (arg));
3515 int len = TYPE_LENGTH (arg_type);
3516 enum type_code typecode = TYPE_CODE (arg_type);
3517
3518 if (mips_debug)
3519 fprintf_unfiltered (gdb_stdlog,
3520 "mips_o64_push_dummy_call: %d len=%d type=%d",
3521 argnum + 1, len, (int) typecode);
3522
3523 val = (char *) value_contents (arg);
3524
3525 /* 32-bit ABIs always start floating point arguments in an
3526 even-numbered floating point register. Round the FP register
3527 up before the check to see if there are any FP registers
3528 left. O32/O64 targets also pass the FP in the integer
3529 registers so also round up normal registers. */
3530 if (mips_abi_regsize (gdbarch) < 8
3531 && fp_register_arg_p (typecode, arg_type))
3532 {
3533 if ((float_argreg & 1))
3534 float_argreg++;
3535 }
3536
3537 /* Floating point arguments passed in registers have to be
3538 treated specially. On 32-bit architectures, doubles
3539 are passed in register pairs; the even register gets
3540 the low word, and the odd register gets the high word.
3541 On O32/O64, the first two floating point arguments are
3542 also copied to general registers, because MIPS16 functions
3543 don't use float registers for arguments. This duplication of
3544 arguments in general registers can't hurt non-MIPS16 functions
3545 because those registers are normally skipped. */
3546
3547 if (fp_register_arg_p (typecode, arg_type)
3548 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3549 {
3550 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3551 {
3552 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3553 unsigned long regval;
3554
3555 /* Write the low word of the double to the even register(s). */
3556 regval = extract_unsigned_integer (val + low_offset, 4);
3557 if (mips_debug)
3558 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3559 float_argreg, phex (regval, 4));
3560 write_register (float_argreg++, regval);
3561 if (mips_debug)
3562 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3563 argreg, phex (regval, 4));
3564 write_register (argreg++, regval);
3565
3566 /* Write the high word of the double to the odd register(s). */
3567 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3568 if (mips_debug)
3569 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3570 float_argreg, phex (regval, 4));
3571 write_register (float_argreg++, regval);
3572
3573 if (mips_debug)
3574 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3575 argreg, phex (regval, 4));
3576 write_register (argreg++, regval);
3577 }
3578 else
3579 {
3580 /* This is a floating point value that fits entirely
3581 in a single register. */
3582 /* On 32 bit ABI's the float_argreg is further adjusted
3583 above to ensure that it is even register aligned. */
3584 LONGEST regval = extract_unsigned_integer (val, len);
3585 if (mips_debug)
3586 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3587 float_argreg, phex (regval, len));
3588 write_register (float_argreg++, regval);
3589 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3590 registers for each argument. The below is (my
3591 guess) to ensure that the corresponding integer
3592 register has reserved the same space. */
3593 if (mips_debug)
3594 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3595 argreg, phex (regval, len));
3596 write_register (argreg, regval);
3597 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3598 }
3599 /* Reserve space for the FP register. */
3600 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3601 }
3602 else
3603 {
3604 /* Copy the argument to general registers or the stack in
3605 register-sized pieces. Large arguments are split between
3606 registers and stack. */
3607 /* Note: structs whose size is not a multiple of
3608 mips_abi_regsize() are treated specially: Irix cc passes
3609 them in registers where gcc sometimes puts them on the
3610 stack. For maximum compatibility, we will put them in
3611 both places. */
3612 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3613 && (len % mips_abi_regsize (gdbarch) != 0));
3614 /* Structures should be aligned to eight bytes (even arg registers)
3615 on MIPS_ABI_O32, if their first member has double precision. */
3616 if (mips_abi_regsize (gdbarch) < 8
3617 && mips_type_needs_double_align (arg_type))
3618 {
3619 if ((argreg & 1))
3620 argreg++;
3621 }
3622 /* Note: Floating-point values that didn't fit into an FP
3623 register are only written to memory. */
3624 while (len > 0)
3625 {
3626 /* Remember if the argument was written to the stack. */
3627 int stack_used_p = 0;
3628 int partial_len = (len < mips_abi_regsize (gdbarch)
3629 ? len : mips_abi_regsize (gdbarch));
3630
3631 if (mips_debug)
3632 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3633 partial_len);
3634
3635 /* Write this portion of the argument to the stack. */
3636 if (argreg > MIPS_LAST_ARG_REGNUM
3637 || odd_sized_struct
3638 || fp_register_arg_p (typecode, arg_type))
3639 {
3640 /* Should shorter than int integer values be
3641 promoted to int before being stored? */
3642 int longword_offset = 0;
3643 CORE_ADDR addr;
3644 stack_used_p = 1;
3645 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3646 {
3647 if (mips_stack_argsize (gdbarch) == 8
3648 && (typecode == TYPE_CODE_INT
3649 || typecode == TYPE_CODE_PTR
3650 || typecode == TYPE_CODE_FLT) && len <= 4)
3651 longword_offset = mips_stack_argsize (gdbarch) - len;
3652 }
3653
3654 if (mips_debug)
3655 {
3656 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3657 paddr_nz (stack_offset));
3658 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3659 paddr_nz (longword_offset));
3660 }
3661
3662 addr = sp + stack_offset + longword_offset;
3663
3664 if (mips_debug)
3665 {
3666 int i;
3667 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3668 paddr_nz (addr));
3669 for (i = 0; i < partial_len; i++)
3670 {
3671 fprintf_unfiltered (gdb_stdlog, "%02x",
3672 val[i] & 0xff);
3673 }
3674 }
3675 write_memory (addr, val, partial_len);
3676 }
3677
3678 /* Note!!! This is NOT an else clause. Odd sized
3679 structs may go thru BOTH paths. Floating point
3680 arguments will not. */
3681 /* Write this portion of the argument to a general
3682 purpose register. */
3683 if (argreg <= MIPS_LAST_ARG_REGNUM
3684 && !fp_register_arg_p (typecode, arg_type))
3685 {
3686 LONGEST regval = extract_signed_integer (val, partial_len);
3687 /* Value may need to be sign extended, because
3688 mips_isa_regsize() != mips_abi_regsize(). */
3689
3690 /* A non-floating-point argument being passed in a
3691 general register. If a struct or union, and if
3692 the remaining length is smaller than the register
3693 size, we have to adjust the register value on
3694 big endian targets.
3695
3696 It does not seem to be necessary to do the
3697 same for integral types.
3698
3699 Also don't do this adjustment on O64 binaries.
3700
3701 cagney/2001-07-23: gdb/179: Also, GCC, when
3702 outputting LE O32 with sizeof (struct) <
3703 mips_abi_regsize(), generates a left shift as
3704 part of storing the argument in a register a
3705 register (the left shift isn't generated when
3706 sizeof (struct) >= mips_abi_regsize()). Since
3707 it is quite possible that this is GCC
3708 contradicting the LE/O32 ABI, GDB has not been
3709 adjusted to accommodate this. Either someone
3710 needs to demonstrate that the LE/O32 ABI
3711 specifies such a left shift OR this new ABI gets
3712 identified as such and GDB gets tweaked
3713 accordingly. */
3714
3715 if (mips_abi_regsize (gdbarch) < 8
3716 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3717 && partial_len < mips_abi_regsize (gdbarch)
3718 && (typecode == TYPE_CODE_STRUCT ||
3719 typecode == TYPE_CODE_UNION))
3720 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3721 TARGET_CHAR_BIT);
3722
3723 if (mips_debug)
3724 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3725 argreg,
3726 phex (regval,
3727 mips_abi_regsize (gdbarch)));
3728 write_register (argreg, regval);
3729 argreg++;
3730
3731 /* Prevent subsequent floating point arguments from
3732 being passed in floating point registers. */
3733 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3734 }
3735
3736 len -= partial_len;
3737 val += partial_len;
3738
3739 /* Compute the the offset into the stack at which we
3740 will copy the next parameter.
3741
3742 In older ABIs, the caller reserved space for
3743 registers that contained arguments. This was loosely
3744 refered to as their "home". Consequently, space is
3745 always allocated. */
3746
3747 stack_offset += align_up (partial_len,
3748 mips_stack_argsize (gdbarch));
3749 }
3750 }
3751 if (mips_debug)
3752 fprintf_unfiltered (gdb_stdlog, "\n");
3753 }
3754
3755 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3756
3757 /* Return adjusted stack pointer. */
3758 return sp;
3759 }
3760
3761 static enum return_value_convention
3762 mips_o64_return_value (struct gdbarch *gdbarch,
3763 struct type *type, struct regcache *regcache,
3764 void *readbuf, const void *writebuf)
3765 {
3766 return RETURN_VALUE_STRUCT_CONVENTION;
3767 }
3768
3769 /* Floating point register management.
3770
3771 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3772 64bit operations, these early MIPS cpus treat fp register pairs
3773 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3774 registers and offer a compatibility mode that emulates the MIPS2 fp
3775 model. When operating in MIPS2 fp compat mode, later cpu's split
3776 double precision floats into two 32-bit chunks and store them in
3777 consecutive fp regs. To display 64-bit floats stored in this
3778 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3779 Throw in user-configurable endianness and you have a real mess.
3780
3781 The way this works is:
3782 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3783 double-precision value will be split across two logical registers.
3784 The lower-numbered logical register will hold the low-order bits,
3785 regardless of the processor's endianness.
3786 - If we are on a 64-bit processor, and we are looking for a
3787 single-precision value, it will be in the low ordered bits
3788 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3789 save slot in memory.
3790 - If we are in 64-bit mode, everything is straightforward.
3791
3792 Note that this code only deals with "live" registers at the top of the
3793 stack. We will attempt to deal with saved registers later, when
3794 the raw/cooked register interface is in place. (We need a general
3795 interface that can deal with dynamic saved register sizes -- fp
3796 regs could be 32 bits wide in one frame and 64 on the frame above
3797 and below). */
3798
3799 static struct type *
3800 mips_float_register_type (void)
3801 {
3802 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3803 return builtin_type_ieee_single_big;
3804 else
3805 return builtin_type_ieee_single_little;
3806 }
3807
3808 static struct type *
3809 mips_double_register_type (void)
3810 {
3811 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3812 return builtin_type_ieee_double_big;
3813 else
3814 return builtin_type_ieee_double_little;
3815 }
3816
3817 /* Copy a 32-bit single-precision value from the current frame
3818 into rare_buffer. */
3819
3820 static void
3821 mips_read_fp_register_single (struct frame_info *frame, int regno,
3822 char *rare_buffer)
3823 {
3824 int raw_size = register_size (current_gdbarch, regno);
3825 char *raw_buffer = alloca (raw_size);
3826
3827 if (!frame_register_read (frame, regno, raw_buffer))
3828 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3829 if (raw_size == 8)
3830 {
3831 /* We have a 64-bit value for this register. Find the low-order
3832 32 bits. */
3833 int offset;
3834
3835 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3836 offset = 4;
3837 else
3838 offset = 0;
3839
3840 memcpy (rare_buffer, raw_buffer + offset, 4);
3841 }
3842 else
3843 {
3844 memcpy (rare_buffer, raw_buffer, 4);
3845 }
3846 }
3847
3848 /* Copy a 64-bit double-precision value from the current frame into
3849 rare_buffer. This may include getting half of it from the next
3850 register. */
3851
3852 static void
3853 mips_read_fp_register_double (struct frame_info *frame, int regno,
3854 char *rare_buffer)
3855 {
3856 int raw_size = register_size (current_gdbarch, regno);
3857
3858 if (raw_size == 8 && !mips2_fp_compat ())
3859 {
3860 /* We have a 64-bit value for this register, and we should use
3861 all 64 bits. */
3862 if (!frame_register_read (frame, regno, rare_buffer))
3863 error (_("can't read register %d (%s)"), regno, REGISTER_NAME (regno));
3864 }
3865 else
3866 {
3867 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
3868 internal_error (__FILE__, __LINE__,
3869 _("mips_read_fp_register_double: bad access to "
3870 "odd-numbered FP register"));
3871
3872 /* mips_read_fp_register_single will find the correct 32 bits from
3873 each register. */
3874 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3875 {
3876 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3877 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3878 }
3879 else
3880 {
3881 mips_read_fp_register_single (frame, regno, rare_buffer);
3882 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
3883 }
3884 }
3885 }
3886
3887 static void
3888 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3889 int regnum)
3890 { /* do values for FP (float) regs */
3891 char *raw_buffer;
3892 double doub, flt1; /* doubles extracted from raw hex data */
3893 int inv1, inv2;
3894
3895 raw_buffer =
3896 (char *) alloca (2 *
3897 register_size (current_gdbarch,
3898 mips_regnum (current_gdbarch)->fp0));
3899
3900 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3901 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3902 "");
3903
3904 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
3905 {
3906 /* 4-byte registers: Print hex and floating. Also print even
3907 numbered registers as doubles. */
3908 mips_read_fp_register_single (frame, regnum, raw_buffer);
3909 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3910
3911 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3912 file);
3913
3914 fprintf_filtered (file, " flt: ");
3915 if (inv1)
3916 fprintf_filtered (file, " <invalid float> ");
3917 else
3918 fprintf_filtered (file, "%-17.9g", flt1);
3919
3920 if (regnum % 2 == 0)
3921 {
3922 mips_read_fp_register_double (frame, regnum, raw_buffer);
3923 doub = unpack_double (mips_double_register_type (), raw_buffer,
3924 &inv2);
3925
3926 fprintf_filtered (file, " dbl: ");
3927 if (inv2)
3928 fprintf_filtered (file, "<invalid double>");
3929 else
3930 fprintf_filtered (file, "%-24.17g", doub);
3931 }
3932 }
3933 else
3934 {
3935 /* Eight byte registers: print each one as hex, float and double. */
3936 mips_read_fp_register_single (frame, regnum, raw_buffer);
3937 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3938
3939 mips_read_fp_register_double (frame, regnum, raw_buffer);
3940 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3941
3942
3943 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
3944 file);
3945
3946 fprintf_filtered (file, " flt: ");
3947 if (inv1)
3948 fprintf_filtered (file, "<invalid float>");
3949 else
3950 fprintf_filtered (file, "%-17.9g", flt1);
3951
3952 fprintf_filtered (file, " dbl: ");
3953 if (inv2)
3954 fprintf_filtered (file, "<invalid double>");
3955 else
3956 fprintf_filtered (file, "%-24.17g", doub);
3957 }
3958 }
3959
3960 static void
3961 mips_print_register (struct ui_file *file, struct frame_info *frame,
3962 int regnum, int all)
3963 {
3964 struct gdbarch *gdbarch = get_frame_arch (frame);
3965 char raw_buffer[MAX_REGISTER_SIZE];
3966 int offset;
3967
3968 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
3969 {
3970 mips_print_fp_register (file, frame, regnum);
3971 return;
3972 }
3973
3974 /* Get the data in raw format. */
3975 if (!frame_register_read (frame, regnum, raw_buffer))
3976 {
3977 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
3978 return;
3979 }
3980
3981 fputs_filtered (REGISTER_NAME (regnum), file);
3982
3983 /* The problem with printing numeric register names (r26, etc.) is that
3984 the user can't use them on input. Probably the best solution is to
3985 fix it so that either the numeric or the funky (a2, etc.) names
3986 are accepted on input. */
3987 if (regnum < MIPS_NUMREGS)
3988 fprintf_filtered (file, "(r%d): ", regnum);
3989 else
3990 fprintf_filtered (file, ": ");
3991
3992 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3993 offset =
3994 register_size (current_gdbarch,
3995 regnum) - register_size (current_gdbarch, regnum);
3996 else
3997 offset = 0;
3998
3999 print_scalar_formatted (raw_buffer + offset,
4000 gdbarch_register_type (gdbarch, regnum), 'x', 0,
4001 file);
4002 }
4003
4004 /* Replacement for generic do_registers_info.
4005 Print regs in pretty columns. */
4006
4007 static int
4008 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4009 int regnum)
4010 {
4011 fprintf_filtered (file, " ");
4012 mips_print_fp_register (file, frame, regnum);
4013 fprintf_filtered (file, "\n");
4014 return regnum + 1;
4015 }
4016
4017
4018 /* Print a row's worth of GP (int) registers, with name labels above */
4019
4020 static int
4021 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4022 int start_regnum)
4023 {
4024 struct gdbarch *gdbarch = get_frame_arch (frame);
4025 /* do values for GP (int) regs */
4026 char raw_buffer[MAX_REGISTER_SIZE];
4027 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4028 int col, byte;
4029 int regnum;
4030
4031 /* For GP registers, we print a separate row of names above the vals */
4032 fprintf_filtered (file, " ");
4033 for (col = 0, regnum = start_regnum;
4034 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4035 {
4036 if (*REGISTER_NAME (regnum) == '\0')
4037 continue; /* unused register */
4038 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4039 TYPE_CODE_FLT)
4040 break; /* end the row: reached FP register */
4041 fprintf_filtered (file,
4042 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4043 REGISTER_NAME (regnum));
4044 col++;
4045 }
4046 /* print the R0 to R31 names */
4047 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4048 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4049 else
4050 fprintf_filtered (file, "\n ");
4051
4052 /* now print the values in hex, 4 or 8 to the row */
4053 for (col = 0, regnum = start_regnum;
4054 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4055 {
4056 if (*REGISTER_NAME (regnum) == '\0')
4057 continue; /* unused register */
4058 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4059 TYPE_CODE_FLT)
4060 break; /* end row: reached FP register */
4061 /* OK: get the data in raw format. */
4062 if (!frame_register_read (frame, regnum, raw_buffer))
4063 error (_("can't read register %d (%s)"), regnum, REGISTER_NAME (regnum));
4064 /* pad small registers */
4065 for (byte = 0;
4066 byte < (mips_abi_regsize (current_gdbarch)
4067 - register_size (current_gdbarch, regnum)); byte++)
4068 printf_filtered (" ");
4069 /* Now print the register value in hex, endian order. */
4070 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4071 for (byte =
4072 register_size (current_gdbarch,
4073 regnum) - register_size (current_gdbarch, regnum);
4074 byte < register_size (current_gdbarch, regnum); byte++)
4075 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4076 else
4077 for (byte = register_size (current_gdbarch, regnum) - 1;
4078 byte >= 0; byte--)
4079 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4080 fprintf_filtered (file, " ");
4081 col++;
4082 }
4083 if (col > 0) /* ie. if we actually printed anything... */
4084 fprintf_filtered (file, "\n");
4085
4086 return regnum;
4087 }
4088
4089 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4090
4091 static void
4092 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4093 struct frame_info *frame, int regnum, int all)
4094 {
4095 if (regnum != -1) /* do one specified register */
4096 {
4097 gdb_assert (regnum >= NUM_REGS);
4098 if (*(REGISTER_NAME (regnum)) == '\0')
4099 error (_("Not a valid register for the current processor type"));
4100
4101 mips_print_register (file, frame, regnum, 0);
4102 fprintf_filtered (file, "\n");
4103 }
4104 else
4105 /* do all (or most) registers */
4106 {
4107 regnum = NUM_REGS;
4108 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4109 {
4110 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4111 TYPE_CODE_FLT)
4112 {
4113 if (all) /* true for "INFO ALL-REGISTERS" command */
4114 regnum = print_fp_register_row (file, frame, regnum);
4115 else
4116 regnum += MIPS_NUMREGS; /* skip floating point regs */
4117 }
4118 else
4119 regnum = print_gp_register_row (file, frame, regnum);
4120 }
4121 }
4122 }
4123
4124 /* Is this a branch with a delay slot? */
4125
4126 static int
4127 is_delayed (unsigned long insn)
4128 {
4129 int i;
4130 for (i = 0; i < NUMOPCODES; ++i)
4131 if (mips_opcodes[i].pinfo != INSN_MACRO
4132 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4133 break;
4134 return (i < NUMOPCODES
4135 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4136 | INSN_COND_BRANCH_DELAY
4137 | INSN_COND_BRANCH_LIKELY)));
4138 }
4139
4140 int
4141 mips_single_step_through_delay (struct gdbarch *gdbarch,
4142 struct frame_info *frame)
4143 {
4144 CORE_ADDR pc = get_frame_pc (frame);
4145 char buf[MIPS_INSN32_SIZE];
4146
4147 /* There is no branch delay slot on MIPS16. */
4148 if (mips_pc_is_mips16 (pc))
4149 return 0;
4150
4151 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4152 /* If error reading memory, guess that it is not a delayed
4153 branch. */
4154 return 0;
4155 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4156 }
4157
4158 /* To skip prologues, I use this predicate. Returns either PC itself
4159 if the code at PC does not look like a function prologue; otherwise
4160 returns an address that (if we're lucky) follows the prologue. If
4161 LENIENT, then we must skip everything which is involved in setting
4162 up the frame (it's OK to skip more, just so long as we don't skip
4163 anything which might clobber the registers which are being saved.
4164 We must skip more in the case where part of the prologue is in the
4165 delay slot of a non-prologue instruction). */
4166
4167 static CORE_ADDR
4168 mips_skip_prologue (CORE_ADDR pc)
4169 {
4170 CORE_ADDR limit_pc;
4171 CORE_ADDR func_addr;
4172
4173 /* See if we can determine the end of the prologue via the symbol table.
4174 If so, then return either PC, or the PC after the prologue, whichever
4175 is greater. */
4176 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4177 {
4178 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4179 if (post_prologue_pc != 0)
4180 return max (pc, post_prologue_pc);
4181 }
4182
4183 /* Can't determine prologue from the symbol table, need to examine
4184 instructions. */
4185
4186 /* Find an upper limit on the function prologue using the debug
4187 information. If the debug information could not be used to provide
4188 that bound, then use an arbitrary large number as the upper bound. */
4189 limit_pc = skip_prologue_using_sal (pc);
4190 if (limit_pc == 0)
4191 limit_pc = pc + 100; /* Magic. */
4192
4193 if (mips_pc_is_mips16 (pc))
4194 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4195 else
4196 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4197 }
4198
4199 /* Root of all "set mips "/"show mips " commands. This will eventually be
4200 used for all MIPS-specific commands. */
4201
4202 static void
4203 show_mips_command (char *args, int from_tty)
4204 {
4205 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4206 }
4207
4208 static void
4209 set_mips_command (char *args, int from_tty)
4210 {
4211 printf_unfiltered
4212 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4213 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4214 }
4215
4216 /* Commands to show/set the MIPS FPU type. */
4217
4218 static void
4219 show_mipsfpu_command (char *args, int from_tty)
4220 {
4221 char *fpu;
4222 switch (MIPS_FPU_TYPE)
4223 {
4224 case MIPS_FPU_SINGLE:
4225 fpu = "single-precision";
4226 break;
4227 case MIPS_FPU_DOUBLE:
4228 fpu = "double-precision";
4229 break;
4230 case MIPS_FPU_NONE:
4231 fpu = "absent (none)";
4232 break;
4233 default:
4234 internal_error (__FILE__, __LINE__, _("bad switch"));
4235 }
4236 if (mips_fpu_type_auto)
4237 printf_unfiltered
4238 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4239 fpu);
4240 else
4241 printf_unfiltered
4242 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4243 }
4244
4245
4246 static void
4247 set_mipsfpu_command (char *args, int from_tty)
4248 {
4249 printf_unfiltered
4250 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4251 show_mipsfpu_command (args, from_tty);
4252 }
4253
4254 static void
4255 set_mipsfpu_single_command (char *args, int from_tty)
4256 {
4257 struct gdbarch_info info;
4258 gdbarch_info_init (&info);
4259 mips_fpu_type = MIPS_FPU_SINGLE;
4260 mips_fpu_type_auto = 0;
4261 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4262 instead of relying on globals. Doing that would let generic code
4263 handle the search for this specific architecture. */
4264 if (!gdbarch_update_p (info))
4265 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4266 }
4267
4268 static void
4269 set_mipsfpu_double_command (char *args, int from_tty)
4270 {
4271 struct gdbarch_info info;
4272 gdbarch_info_init (&info);
4273 mips_fpu_type = MIPS_FPU_DOUBLE;
4274 mips_fpu_type_auto = 0;
4275 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4276 instead of relying on globals. Doing that would let generic code
4277 handle the search for this specific architecture. */
4278 if (!gdbarch_update_p (info))
4279 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4280 }
4281
4282 static void
4283 set_mipsfpu_none_command (char *args, int from_tty)
4284 {
4285 struct gdbarch_info info;
4286 gdbarch_info_init (&info);
4287 mips_fpu_type = MIPS_FPU_NONE;
4288 mips_fpu_type_auto = 0;
4289 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4290 instead of relying on globals. Doing that would let generic code
4291 handle the search for this specific architecture. */
4292 if (!gdbarch_update_p (info))
4293 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4294 }
4295
4296 static void
4297 set_mipsfpu_auto_command (char *args, int from_tty)
4298 {
4299 mips_fpu_type_auto = 1;
4300 }
4301
4302 /* Attempt to identify the particular processor model by reading the
4303 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4304 the relevant processor still exists (it dates back to '94) and
4305 secondly this is not the way to do this. The processor type should
4306 be set by forcing an architecture change. */
4307
4308 void
4309 deprecated_mips_set_processor_regs_hack (void)
4310 {
4311 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4312 CORE_ADDR prid;
4313
4314 prid = read_register (MIPS_PRID_REGNUM);
4315
4316 if ((prid & ~0xf) == 0x700)
4317 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4318 }
4319
4320 /* Just like reinit_frame_cache, but with the right arguments to be
4321 callable as an sfunc. */
4322
4323 static void
4324 reinit_frame_cache_sfunc (char *args, int from_tty,
4325 struct cmd_list_element *c)
4326 {
4327 reinit_frame_cache ();
4328 }
4329
4330 static int
4331 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4332 {
4333 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4334
4335 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4336 disassembler needs to be able to locally determine the ISA, and
4337 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4338 work. */
4339 if (mips_pc_is_mips16 (memaddr))
4340 info->mach = bfd_mach_mips16;
4341
4342 /* Round down the instruction address to the appropriate boundary. */
4343 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4344
4345 /* Set the disassembler options. */
4346 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4347 {
4348 /* Set up the disassembler info, so that we get the right
4349 register names from libopcodes. */
4350 if (tdep->mips_abi == MIPS_ABI_N32)
4351 info->disassembler_options = "gpr-names=n32";
4352 else
4353 info->disassembler_options = "gpr-names=64";
4354 info->flavour = bfd_target_elf_flavour;
4355 }
4356 else
4357 /* This string is not recognized explicitly by the disassembler,
4358 but it tells the disassembler to not try to guess the ABI from
4359 the bfd elf headers, such that, if the user overrides the ABI
4360 of a program linked as NewABI, the disassembly will follow the
4361 register naming conventions specified by the user. */
4362 info->disassembler_options = "gpr-names=32";
4363
4364 /* Call the appropriate disassembler based on the target endian-ness. */
4365 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4366 return print_insn_big_mips (memaddr, info);
4367 else
4368 return print_insn_little_mips (memaddr, info);
4369 }
4370
4371 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4372 counter value to determine whether a 16- or 32-bit breakpoint should be
4373 used. It returns a pointer to a string of bytes that encode a breakpoint
4374 instruction, stores the length of the string to *lenptr, and adjusts pc
4375 (if necessary) to point to the actual memory location where the
4376 breakpoint should be inserted. */
4377
4378 static const unsigned char *
4379 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4380 {
4381 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4382 {
4383 if (mips_pc_is_mips16 (*pcptr))
4384 {
4385 static unsigned char mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4386 *pcptr = unmake_mips16_addr (*pcptr);
4387 *lenptr = sizeof (mips16_big_breakpoint);
4388 return mips16_big_breakpoint;
4389 }
4390 else
4391 {
4392 /* The IDT board uses an unusual breakpoint value, and
4393 sometimes gets confused when it sees the usual MIPS
4394 breakpoint instruction. */
4395 static unsigned char big_breakpoint[] = { 0, 0x5, 0, 0xd };
4396 static unsigned char pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4397 static unsigned char idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4398
4399 *lenptr = sizeof (big_breakpoint);
4400
4401 if (strcmp (target_shortname, "mips") == 0)
4402 return idt_big_breakpoint;
4403 else if (strcmp (target_shortname, "ddb") == 0
4404 || strcmp (target_shortname, "pmon") == 0
4405 || strcmp (target_shortname, "lsi") == 0)
4406 return pmon_big_breakpoint;
4407 else
4408 return big_breakpoint;
4409 }
4410 }
4411 else
4412 {
4413 if (mips_pc_is_mips16 (*pcptr))
4414 {
4415 static unsigned char mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4416 *pcptr = unmake_mips16_addr (*pcptr);
4417 *lenptr = sizeof (mips16_little_breakpoint);
4418 return mips16_little_breakpoint;
4419 }
4420 else
4421 {
4422 static unsigned char little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4423 static unsigned char pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4424 static unsigned char idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4425
4426 *lenptr = sizeof (little_breakpoint);
4427
4428 if (strcmp (target_shortname, "mips") == 0)
4429 return idt_little_breakpoint;
4430 else if (strcmp (target_shortname, "ddb") == 0
4431 || strcmp (target_shortname, "pmon") == 0
4432 || strcmp (target_shortname, "lsi") == 0)
4433 return pmon_little_breakpoint;
4434 else
4435 return little_breakpoint;
4436 }
4437 }
4438 }
4439
4440 /* If PC is in a mips16 call or return stub, return the address of the target
4441 PC, which is either the callee or the caller. There are several
4442 cases which must be handled:
4443
4444 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4445 target PC is in $31 ($ra).
4446 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4447 and the target PC is in $2.
4448 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4449 before the jal instruction, this is effectively a call stub
4450 and the the target PC is in $2. Otherwise this is effectively
4451 a return stub and the target PC is in $18.
4452
4453 See the source code for the stubs in gcc/config/mips/mips16.S for
4454 gory details. */
4455
4456 static CORE_ADDR
4457 mips_skip_trampoline_code (CORE_ADDR pc)
4458 {
4459 char *name;
4460 CORE_ADDR start_addr;
4461
4462 /* Find the starting address and name of the function containing the PC. */
4463 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4464 return 0;
4465
4466 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4467 target PC is in $31 ($ra). */
4468 if (strcmp (name, "__mips16_ret_sf") == 0
4469 || strcmp (name, "__mips16_ret_df") == 0)
4470 return read_signed_register (MIPS_RA_REGNUM);
4471
4472 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4473 {
4474 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4475 and the target PC is in $2. */
4476 if (name[19] >= '0' && name[19] <= '9')
4477 return read_signed_register (2);
4478
4479 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4480 before the jal instruction, this is effectively a call stub
4481 and the the target PC is in $2. Otherwise this is effectively
4482 a return stub and the target PC is in $18. */
4483 else if (name[19] == 's' || name[19] == 'd')
4484 {
4485 if (pc == start_addr)
4486 {
4487 /* Check if the target of the stub is a compiler-generated
4488 stub. Such a stub for a function bar might have a name
4489 like __fn_stub_bar, and might look like this:
4490 mfc1 $4,$f13
4491 mfc1 $5,$f12
4492 mfc1 $6,$f15
4493 mfc1 $7,$f14
4494 la $1,bar (becomes a lui/addiu pair)
4495 jr $1
4496 So scan down to the lui/addi and extract the target
4497 address from those two instructions. */
4498
4499 CORE_ADDR target_pc = read_signed_register (2);
4500 ULONGEST inst;
4501 int i;
4502
4503 /* See if the name of the target function is __fn_stub_*. */
4504 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4505 0)
4506 return target_pc;
4507 if (strncmp (name, "__fn_stub_", 10) != 0
4508 && strcmp (name, "etext") != 0
4509 && strcmp (name, "_etext") != 0)
4510 return target_pc;
4511
4512 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4513 The limit on the search is arbitrarily set to 20
4514 instructions. FIXME. */
4515 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4516 {
4517 inst = mips_fetch_instruction (target_pc);
4518 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4519 pc = (inst << 16) & 0xffff0000; /* high word */
4520 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4521 return pc | (inst & 0xffff); /* low word */
4522 }
4523
4524 /* Couldn't find the lui/addui pair, so return stub address. */
4525 return target_pc;
4526 }
4527 else
4528 /* This is the 'return' part of a call stub. The return
4529 address is in $r18. */
4530 return read_signed_register (18);
4531 }
4532 }
4533 return 0; /* not a stub */
4534 }
4535
4536 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4537 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4538
4539 static int
4540 mips_stab_reg_to_regnum (int num)
4541 {
4542 int regnum;
4543 if (num >= 0 && num < 32)
4544 regnum = num;
4545 else if (num >= 38 && num < 70)
4546 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4547 else if (num == 70)
4548 regnum = mips_regnum (current_gdbarch)->hi;
4549 else if (num == 71)
4550 regnum = mips_regnum (current_gdbarch)->lo;
4551 else
4552 /* This will hopefully (eventually) provoke a warning. Should
4553 we be calling complaint() here? */
4554 return NUM_REGS + NUM_PSEUDO_REGS;
4555 return NUM_REGS + regnum;
4556 }
4557
4558
4559 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4560 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4561
4562 static int
4563 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4564 {
4565 int regnum;
4566 if (num >= 0 && num < 32)
4567 regnum = num;
4568 else if (num >= 32 && num < 64)
4569 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4570 else if (num == 64)
4571 regnum = mips_regnum (current_gdbarch)->hi;
4572 else if (num == 65)
4573 regnum = mips_regnum (current_gdbarch)->lo;
4574 else
4575 /* This will hopefully (eventually) provoke a warning. Should we
4576 be calling complaint() here? */
4577 return NUM_REGS + NUM_PSEUDO_REGS;
4578 return NUM_REGS + regnum;
4579 }
4580
4581 static int
4582 mips_register_sim_regno (int regnum)
4583 {
4584 /* Only makes sense to supply raw registers. */
4585 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4586 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4587 decide if it is valid. Should instead define a standard sim/gdb
4588 register numbering scheme. */
4589 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4590 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4591 return regnum;
4592 else
4593 return LEGACY_SIM_REGNO_IGNORE;
4594 }
4595
4596
4597 /* Convert an integer into an address. By first converting the value
4598 into a pointer and then extracting it signed, the address is
4599 guarenteed to be correctly sign extended. */
4600
4601 static CORE_ADDR
4602 mips_integer_to_address (struct gdbarch *gdbarch,
4603 struct type *type, const bfd_byte *buf)
4604 {
4605 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
4606 LONGEST val = unpack_long (type, buf);
4607 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
4608 return extract_signed_integer (tmp,
4609 TYPE_LENGTH (builtin_type_void_data_ptr));
4610 }
4611
4612 static void
4613 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4614 {
4615 enum mips_abi *abip = (enum mips_abi *) obj;
4616 const char *name = bfd_get_section_name (abfd, sect);
4617
4618 if (*abip != MIPS_ABI_UNKNOWN)
4619 return;
4620
4621 if (strncmp (name, ".mdebug.", 8) != 0)
4622 return;
4623
4624 if (strcmp (name, ".mdebug.abi32") == 0)
4625 *abip = MIPS_ABI_O32;
4626 else if (strcmp (name, ".mdebug.abiN32") == 0)
4627 *abip = MIPS_ABI_N32;
4628 else if (strcmp (name, ".mdebug.abi64") == 0)
4629 *abip = MIPS_ABI_N64;
4630 else if (strcmp (name, ".mdebug.abiO64") == 0)
4631 *abip = MIPS_ABI_O64;
4632 else if (strcmp (name, ".mdebug.eabi32") == 0)
4633 *abip = MIPS_ABI_EABI32;
4634 else if (strcmp (name, ".mdebug.eabi64") == 0)
4635 *abip = MIPS_ABI_EABI64;
4636 else
4637 warning (_("unsupported ABI %s."), name + 8);
4638 }
4639
4640 static enum mips_abi
4641 global_mips_abi (void)
4642 {
4643 int i;
4644
4645 for (i = 0; mips_abi_strings[i] != NULL; i++)
4646 if (mips_abi_strings[i] == mips_abi_string)
4647 return (enum mips_abi) i;
4648
4649 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4650 }
4651
4652 static struct gdbarch *
4653 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4654 {
4655 struct gdbarch *gdbarch;
4656 struct gdbarch_tdep *tdep;
4657 int elf_flags;
4658 enum mips_abi mips_abi, found_abi, wanted_abi;
4659 int num_regs;
4660 enum mips_fpu_type fpu_type;
4661
4662 /* First of all, extract the elf_flags, if available. */
4663 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4664 elf_flags = elf_elfheader (info.abfd)->e_flags;
4665 else if (arches != NULL)
4666 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
4667 else
4668 elf_flags = 0;
4669 if (gdbarch_debug)
4670 fprintf_unfiltered (gdb_stdlog,
4671 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
4672
4673 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4674 switch ((elf_flags & EF_MIPS_ABI))
4675 {
4676 case E_MIPS_ABI_O32:
4677 found_abi = MIPS_ABI_O32;
4678 break;
4679 case E_MIPS_ABI_O64:
4680 found_abi = MIPS_ABI_O64;
4681 break;
4682 case E_MIPS_ABI_EABI32:
4683 found_abi = MIPS_ABI_EABI32;
4684 break;
4685 case E_MIPS_ABI_EABI64:
4686 found_abi = MIPS_ABI_EABI64;
4687 break;
4688 default:
4689 if ((elf_flags & EF_MIPS_ABI2))
4690 found_abi = MIPS_ABI_N32;
4691 else
4692 found_abi = MIPS_ABI_UNKNOWN;
4693 break;
4694 }
4695
4696 /* GCC creates a pseudo-section whose name describes the ABI. */
4697 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4698 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
4699
4700 /* If we have no useful BFD information, use the ABI from the last
4701 MIPS architecture (if there is one). */
4702 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4703 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4704
4705 /* Try the architecture for any hint of the correct ABI. */
4706 if (found_abi == MIPS_ABI_UNKNOWN
4707 && info.bfd_arch_info != NULL
4708 && info.bfd_arch_info->arch == bfd_arch_mips)
4709 {
4710 switch (info.bfd_arch_info->mach)
4711 {
4712 case bfd_mach_mips3900:
4713 found_abi = MIPS_ABI_EABI32;
4714 break;
4715 case bfd_mach_mips4100:
4716 case bfd_mach_mips5000:
4717 found_abi = MIPS_ABI_EABI64;
4718 break;
4719 case bfd_mach_mips8000:
4720 case bfd_mach_mips10000:
4721 /* On Irix, ELF64 executables use the N64 ABI. The
4722 pseudo-sections which describe the ABI aren't present
4723 on IRIX. (Even for executables created by gcc.) */
4724 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4725 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4726 found_abi = MIPS_ABI_N64;
4727 else
4728 found_abi = MIPS_ABI_N32;
4729 break;
4730 }
4731 }
4732
4733 if (gdbarch_debug)
4734 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4735 found_abi);
4736
4737 /* What has the user specified from the command line? */
4738 wanted_abi = global_mips_abi ();
4739 if (gdbarch_debug)
4740 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4741 wanted_abi);
4742
4743 /* Now that we have found what the ABI for this binary would be,
4744 check whether the user is overriding it. */
4745 if (wanted_abi != MIPS_ABI_UNKNOWN)
4746 mips_abi = wanted_abi;
4747 else if (found_abi != MIPS_ABI_UNKNOWN)
4748 mips_abi = found_abi;
4749 else
4750 mips_abi = MIPS_ABI_O32;
4751 if (gdbarch_debug)
4752 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4753 mips_abi);
4754
4755 /* Also used when doing an architecture lookup. */
4756 if (gdbarch_debug)
4757 fprintf_unfiltered (gdb_stdlog,
4758 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4759 mips64_transfers_32bit_regs_p);
4760
4761 /* Determine the MIPS FPU type. */
4762 if (!mips_fpu_type_auto)
4763 fpu_type = mips_fpu_type;
4764 else if (info.bfd_arch_info != NULL
4765 && info.bfd_arch_info->arch == bfd_arch_mips)
4766 switch (info.bfd_arch_info->mach)
4767 {
4768 case bfd_mach_mips3900:
4769 case bfd_mach_mips4100:
4770 case bfd_mach_mips4111:
4771 case bfd_mach_mips4120:
4772 fpu_type = MIPS_FPU_NONE;
4773 break;
4774 case bfd_mach_mips4650:
4775 fpu_type = MIPS_FPU_SINGLE;
4776 break;
4777 default:
4778 fpu_type = MIPS_FPU_DOUBLE;
4779 break;
4780 }
4781 else if (arches != NULL)
4782 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4783 else
4784 fpu_type = MIPS_FPU_DOUBLE;
4785 if (gdbarch_debug)
4786 fprintf_unfiltered (gdb_stdlog,
4787 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
4788
4789 /* try to find a pre-existing architecture */
4790 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4791 arches != NULL;
4792 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4793 {
4794 /* MIPS needs to be pedantic about which ABI the object is
4795 using. */
4796 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4797 continue;
4798 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4799 continue;
4800 /* Need to be pedantic about which register virtual size is
4801 used. */
4802 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4803 != mips64_transfers_32bit_regs_p)
4804 continue;
4805 /* Be pedantic about which FPU is selected. */
4806 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4807 continue;
4808 return arches->gdbarch;
4809 }
4810
4811 /* Need a new architecture. Fill in a target specific vector. */
4812 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4813 gdbarch = gdbarch_alloc (&info, tdep);
4814 tdep->elf_flags = elf_flags;
4815 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
4816 tdep->found_abi = found_abi;
4817 tdep->mips_abi = mips_abi;
4818 tdep->mips_fpu_type = fpu_type;
4819
4820 /* Initially set everything according to the default ABI/ISA. */
4821 set_gdbarch_short_bit (gdbarch, 16);
4822 set_gdbarch_int_bit (gdbarch, 32);
4823 set_gdbarch_float_bit (gdbarch, 32);
4824 set_gdbarch_double_bit (gdbarch, 64);
4825 set_gdbarch_long_double_bit (gdbarch, 64);
4826 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4827 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4828 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
4829
4830 set_gdbarch_elf_make_msymbol_special (gdbarch,
4831 mips_elf_make_msymbol_special);
4832
4833 /* Fill in the OS dependant register numbers and names. */
4834 {
4835 const char **reg_names;
4836 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4837 struct mips_regnum);
4838 if (info.osabi == GDB_OSABI_IRIX)
4839 {
4840 regnum->fp0 = 32;
4841 regnum->pc = 64;
4842 regnum->cause = 65;
4843 regnum->badvaddr = 66;
4844 regnum->hi = 67;
4845 regnum->lo = 68;
4846 regnum->fp_control_status = 69;
4847 regnum->fp_implementation_revision = 70;
4848 num_regs = 71;
4849 reg_names = mips_irix_reg_names;
4850 }
4851 else
4852 {
4853 regnum->lo = MIPS_EMBED_LO_REGNUM;
4854 regnum->hi = MIPS_EMBED_HI_REGNUM;
4855 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4856 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4857 regnum->pc = MIPS_EMBED_PC_REGNUM;
4858 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4859 regnum->fp_control_status = 70;
4860 regnum->fp_implementation_revision = 71;
4861 num_regs = 90;
4862 if (info.bfd_arch_info != NULL
4863 && info.bfd_arch_info->mach == bfd_mach_mips3900)
4864 reg_names = mips_tx39_reg_names;
4865 else
4866 reg_names = mips_generic_reg_names;
4867 }
4868 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4869 replaced by read_pc? */
4870 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
4871 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
4872 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
4873 set_gdbarch_num_regs (gdbarch, num_regs);
4874 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
4875 set_gdbarch_register_name (gdbarch, mips_register_name);
4876 tdep->mips_processor_reg_names = reg_names;
4877 tdep->regnum = regnum;
4878 }
4879
4880 switch (mips_abi)
4881 {
4882 case MIPS_ABI_O32:
4883 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
4884 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4885 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4886 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4887 tdep->default_mask_address_p = 0;
4888 set_gdbarch_long_bit (gdbarch, 32);
4889 set_gdbarch_ptr_bit (gdbarch, 32);
4890 set_gdbarch_long_long_bit (gdbarch, 64);
4891 break;
4892 case MIPS_ABI_O64:
4893 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
4894 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4895 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4896 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4897 tdep->default_mask_address_p = 0;
4898 set_gdbarch_long_bit (gdbarch, 32);
4899 set_gdbarch_ptr_bit (gdbarch, 32);
4900 set_gdbarch_long_long_bit (gdbarch, 64);
4901 break;
4902 case MIPS_ABI_EABI32:
4903 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4904 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4905 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4906 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4907 tdep->default_mask_address_p = 0;
4908 set_gdbarch_long_bit (gdbarch, 32);
4909 set_gdbarch_ptr_bit (gdbarch, 32);
4910 set_gdbarch_long_long_bit (gdbarch, 64);
4911 break;
4912 case MIPS_ABI_EABI64:
4913 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4914 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4915 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4916 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4917 tdep->default_mask_address_p = 0;
4918 set_gdbarch_long_bit (gdbarch, 64);
4919 set_gdbarch_ptr_bit (gdbarch, 64);
4920 set_gdbarch_long_long_bit (gdbarch, 64);
4921 break;
4922 case MIPS_ABI_N32:
4923 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
4924 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4925 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4926 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4927 tdep->default_mask_address_p = 0;
4928 set_gdbarch_long_bit (gdbarch, 32);
4929 set_gdbarch_ptr_bit (gdbarch, 32);
4930 set_gdbarch_long_long_bit (gdbarch, 64);
4931 set_gdbarch_long_double_bit (gdbarch, 128);
4932 set_gdbarch_long_double_format (gdbarch,
4933 &floatformat_n32n64_long_double_big);
4934 break;
4935 case MIPS_ABI_N64:
4936 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
4937 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
4938 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4939 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4940 tdep->default_mask_address_p = 0;
4941 set_gdbarch_long_bit (gdbarch, 64);
4942 set_gdbarch_ptr_bit (gdbarch, 64);
4943 set_gdbarch_long_long_bit (gdbarch, 64);
4944 set_gdbarch_long_double_bit (gdbarch, 128);
4945 set_gdbarch_long_double_format (gdbarch,
4946 &floatformat_n32n64_long_double_big);
4947 break;
4948 default:
4949 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
4950 }
4951
4952 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
4953 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
4954 comment:
4955
4956 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
4957 flag in object files because to do so would make it impossible to
4958 link with libraries compiled without "-gp32". This is
4959 unnecessarily restrictive.
4960
4961 We could solve this problem by adding "-gp32" multilibs to gcc,
4962 but to set this flag before gcc is built with such multilibs will
4963 break too many systems.''
4964
4965 But even more unhelpfully, the default linker output target for
4966 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
4967 for 64-bit programs - you need to change the ABI to change this,
4968 and not all gcc targets support that currently. Therefore using
4969 this flag to detect 32-bit mode would do the wrong thing given
4970 the current gcc - it would make GDB treat these 64-bit programs
4971 as 32-bit programs by default. */
4972
4973 set_gdbarch_read_pc (gdbarch, mips_read_pc);
4974 set_gdbarch_write_pc (gdbarch, mips_write_pc);
4975 set_gdbarch_read_sp (gdbarch, mips_read_sp);
4976
4977 /* Add/remove bits from an address. The MIPS needs be careful to
4978 ensure that all 32 bit addresses are sign extended to 64 bits. */
4979 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
4980
4981 /* Unwind the frame. */
4982 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
4983 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
4984
4985 /* Map debug register numbers onto internal register numbers. */
4986 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
4987 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
4988 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
4989 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
4990 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
4991 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
4992 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
4993 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
4994
4995 /* MIPS version of CALL_DUMMY */
4996
4997 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
4998 replaced by a command, and all targets will default to on stack
4999 (regardless of the stack's execute status). */
5000 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5001 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5002
5003 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5004 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5005 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5006
5007 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5008 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5009
5010 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5011
5012 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5013 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5014 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5015
5016 set_gdbarch_register_type (gdbarch, mips_register_type);
5017
5018 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5019
5020 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5021
5022 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5023 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5024 need to all be folded into the target vector. Since they are
5025 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5026 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5027 is sitting on? */
5028 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5029
5030 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5031
5032 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5033
5034 /* Hook in OS ABI-specific overrides, if they have been registered. */
5035 gdbarch_init_osabi (info, gdbarch);
5036
5037 /* Unwind the frame. */
5038 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5039 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5040 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5041 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5042 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5043 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5044
5045 return gdbarch;
5046 }
5047
5048 static void
5049 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5050 {
5051 struct gdbarch_info info;
5052
5053 /* Force the architecture to update, and (if it's a MIPS architecture)
5054 mips_gdbarch_init will take care of the rest. */
5055 gdbarch_info_init (&info);
5056 gdbarch_update_p (info);
5057 }
5058
5059 /* Print out which MIPS ABI is in use. */
5060
5061 static void
5062 show_mips_abi (char *ignore_args, int from_tty)
5063 {
5064 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5065 printf_filtered
5066 ("The MIPS ABI is unknown because the current architecture is not MIPS.\n");
5067 else
5068 {
5069 enum mips_abi global_abi = global_mips_abi ();
5070 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5071 const char *actual_abi_str = mips_abi_strings[actual_abi];
5072
5073 if (global_abi == MIPS_ABI_UNKNOWN)
5074 printf_filtered
5075 ("The MIPS ABI is set automatically (currently \"%s\").\n",
5076 actual_abi_str);
5077 else if (global_abi == actual_abi)
5078 printf_filtered
5079 ("The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5080 actual_abi_str);
5081 else
5082 {
5083 /* Probably shouldn't happen... */
5084 printf_filtered
5085 ("The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5086 actual_abi_str, mips_abi_strings[global_abi]);
5087 }
5088 }
5089 }
5090
5091 static void
5092 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5093 {
5094 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5095 if (tdep != NULL)
5096 {
5097 int ef_mips_arch;
5098 int ef_mips_32bitmode;
5099 /* determine the ISA */
5100 switch (tdep->elf_flags & EF_MIPS_ARCH)
5101 {
5102 case E_MIPS_ARCH_1:
5103 ef_mips_arch = 1;
5104 break;
5105 case E_MIPS_ARCH_2:
5106 ef_mips_arch = 2;
5107 break;
5108 case E_MIPS_ARCH_3:
5109 ef_mips_arch = 3;
5110 break;
5111 case E_MIPS_ARCH_4:
5112 ef_mips_arch = 4;
5113 break;
5114 default:
5115 ef_mips_arch = 0;
5116 break;
5117 }
5118 /* determine the size of a pointer */
5119 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5120 fprintf_unfiltered (file,
5121 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5122 tdep->elf_flags);
5123 fprintf_unfiltered (file,
5124 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5125 ef_mips_32bitmode);
5126 fprintf_unfiltered (file,
5127 "mips_dump_tdep: ef_mips_arch = %d\n",
5128 ef_mips_arch);
5129 fprintf_unfiltered (file,
5130 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5131 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5132 fprintf_unfiltered (file,
5133 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5134 mips_mask_address_p (tdep),
5135 tdep->default_mask_address_p);
5136 }
5137 fprintf_unfiltered (file,
5138 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5139 MIPS_DEFAULT_FPU_TYPE,
5140 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5141 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5142 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5143 : "???"));
5144 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5145 fprintf_unfiltered (file,
5146 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5147 MIPS_FPU_TYPE,
5148 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5149 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5150 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5151 : "???"));
5152 fprintf_unfiltered (file,
5153 "mips_dump_tdep: mips_stack_argsize() = %d\n",
5154 mips_stack_argsize (current_gdbarch));
5155 }
5156
5157 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5158
5159 void
5160 _initialize_mips_tdep (void)
5161 {
5162 static struct cmd_list_element *mipsfpulist = NULL;
5163 struct cmd_list_element *c;
5164
5165 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5166 if (MIPS_ABI_LAST + 1
5167 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5168 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5169
5170 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5171
5172 mips_pdr_data = register_objfile_data ();
5173
5174 /* Add root prefix command for all "set mips"/"show mips" commands */
5175 add_prefix_cmd ("mips", no_class, set_mips_command,
5176 _("Various MIPS specific commands."),
5177 &setmipscmdlist, "set mips ", 0, &setlist);
5178
5179 add_prefix_cmd ("mips", no_class, show_mips_command,
5180 _("Various MIPS specific commands."),
5181 &showmipscmdlist, "show mips ", 0, &showlist);
5182
5183 /* Allow the user to override the saved register size. */
5184 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
5185 size_enums, &mips_abi_regsize_string, _("\
5186 Set size of general purpose registers saved on the stack."), _("\
5187 Show size of general purpose registers saved on the stack."), _("\
5188 This option can be set to one of:\n\
5189 32 - Force GDB to treat saved GP registers as 32-bit\n\
5190 64 - Force GDB to treat saved GP registers as 64-bit\n\
5191 auto - Allow GDB to use the target's default setting or autodetect the\n\
5192 saved GP register size from information contained in the\n\
5193 executable (default)."),
5194 NULL,
5195 NULL, /* FIXME: i18n: Size of general purpose registers saved on the stack is %s. */
5196 &setmipscmdlist, &showmipscmdlist);
5197
5198 /* Allow the user to override the argument stack size. */
5199 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
5200 size_enums, &mips_stack_argsize_string, _("\
5201 Set the amount of stack space reserved for each argument."), _("\
5202 Show the amount of stack space reserved for each argument."), _("\
5203 This option can be set to one of:\n\
5204 32 - Force GDB to allocate 32-bit chunks per argument\n\
5205 64 - Force GDB to allocate 64-bit chunks per argument\n\
5206 auto - Allow GDB to determine the correct setting from the current\n\
5207 target and executable (default)"),
5208 NULL,
5209 NULL, /* FIXME: i18n: The amount of stack space reserved for each argument is %s. */
5210 &setmipscmdlist, &showmipscmdlist);
5211
5212 /* Allow the user to override the ABI. */
5213 c = add_set_enum_cmd
5214 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
5215 "Set the ABI used by this program.\n"
5216 "This option can be set to one of:\n"
5217 " auto - the default ABI associated with the current binary\n"
5218 " o32\n"
5219 " o64\n" " n32\n" " n64\n" " eabi32\n" " eabi64", &setmipscmdlist);
5220 set_cmd_sfunc (c, mips_abi_update);
5221 add_cmd ("abi", class_obscure, show_mips_abi,
5222 _("Show ABI in use by MIPS target"), &showmipscmdlist);
5223
5224 /* Let the user turn off floating point and set the fence post for
5225 heuristic_proc_start. */
5226
5227 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5228 _("Set use of MIPS floating-point coprocessor."),
5229 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5230 add_cmd ("single", class_support, set_mipsfpu_single_command,
5231 _("Select single-precision MIPS floating-point coprocessor."),
5232 &mipsfpulist);
5233 add_cmd ("double", class_support, set_mipsfpu_double_command,
5234 _("Select double-precision MIPS floating-point coprocessor."),
5235 &mipsfpulist);
5236 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5237 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5238 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5239 add_cmd ("none", class_support, set_mipsfpu_none_command,
5240 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5241 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5242 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5243 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5244 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5245 _("Select MIPS floating-point coprocessor automatically."),
5246 &mipsfpulist);
5247 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5248 _("Show current use of MIPS floating-point coprocessor target."),
5249 &showlist);
5250
5251 /* We really would like to have both "0" and "unlimited" work, but
5252 command.c doesn't deal with that. So make it a var_zinteger
5253 because the user can always use "999999" or some such for unlimited. */
5254 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5255 &heuristic_fence_post, _("\
5256 Set the distance searched for the start of a function."), _("\
5257 Show the distance searched for the start of a function."), _("\
5258 If you are debugging a stripped executable, GDB needs to search through the\n\
5259 program for the start of a function. This command sets the distance of the\n\
5260 search. The only need to set it is when debugging a stripped executable."),
5261 reinit_frame_cache_sfunc,
5262 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5263 &setlist, &showlist);
5264
5265 /* Allow the user to control whether the upper bits of 64-bit
5266 addresses should be zeroed. */
5267 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5268 &mask_address_var, _("\
5269 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5270 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5271 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5272 allow GDB to determine the correct value."),
5273 NULL, show_mask_address,
5274 &setmipscmdlist, &showmipscmdlist);
5275
5276 /* Allow the user to control the size of 32 bit registers within the
5277 raw remote packet. */
5278 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5279 &mips64_transfers_32bit_regs_p, _("\
5280 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5281 _("\
5282 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5283 _("\
5284 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5285 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5286 64 bits for others. Use \"off\" to disable compatibility mode"),
5287 set_mips64_transfers_32bit_regs,
5288 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5289 &setlist, &showlist);
5290
5291 /* Debug this files internals. */
5292 add_setshow_zinteger_cmd ("mips", class_maintenance,
5293 &mips_debug, _("\
5294 Set mips debugging."), _("\
5295 Show mips debugging."), _("\
5296 When non-zero, mips specific debugging is enabled."),
5297 NULL,
5298 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5299 &setdebuglist, &showdebuglist);
5300 }
This page took 0.18099 seconds and 4 git commands to generate.